Science.gov

Sample records for kinetic ion particle

  1. Toroidal Electromagnetic Particle-in-Cell Code with Gyro-kinetic Electron and Fully-kinetic ion

    NASA Astrophysics Data System (ADS)

    Lin, Jingbo; Zhang, Wenlu; Liu, Pengfei; Li, Ding

    2016-10-01

    A kinetic simulation model has been developed using gyro-kinetic electron and fully-kinetic ion by removing fast gyro motion of electrons using the Lie-transform perturbation theory. A particle-in-cell kinetic code is developed based on this model in general magnetic flux coordinate systems, which is particularly suitable for simulations of toroidally confined plasma. Single particle motion and field solver are successfully verified respectively. Integrated electrostatic benchmark, for example the lower-hybrid wave (LHW) and ion Bernstein wave (IBW), shows a good agreement with theoretical results. Preliminary electromagnetic benchmark of fast wave at lower hybrid frequency range is also presented. This code can be a first-principal tool to investigate high frequency nonlinear phenomenon, such as parametric decay instability, during lower-hybrid current drive (LHCD) and ion cyclotron radio frequency heating (ICRF) with complex geometry effect included. Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.

  2. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    SciTech Connect

    Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin

    2009-08-11

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test

  3. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    DOE PAGES

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2016-11-10

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less

  4. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    SciTech Connect

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2016-11-10

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field. It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.

  5. Effects of dust particles in plasma kinetics: Ion dynamics time scales

    SciTech Connect

    Angelis, U. de; Tolias, P.; Ratynskaia, S.

    2012-07-15

    The self-consistent kinetic theory of dusty plasmas [V. N. Tsytovich and U. de Angelis, Phys. Plasmas 6, 1093 (1999)] is extended to frequency regimes relevant for ion dynamics, accounting for both constant and fluctuating plasma sources. In contrast to earlier models, binary plasma collisions are no longer neglected with respect to collisions with dust; hence, the model developed here is also valid for low dust densities. Expressions are found for the system's permittivity, the ion collision integral, and the spectral densities of ion density fluctuations. The structure of the ion kinetic equation is analyzed, and applications of the model for both astrophysical and laboratory environments are discussed.

  6. Kinetics of positive ions and electrically neutral active particles in afterglow in neon at low pressure

    SciTech Connect

    Pejović, Milić M. Nešić, Nikola T.; Pejović, Momčilo M.

    2014-04-15

    Kinetics of positive ions and electrically neutral active particles formed during breakdown and successive discharge in neon-filled tube at 6.6 millibars pressure had been analyzed. This analysis was performed on the basis of mean value of electrical breakdown time delay t{sup ¯}{sub d} dependence on afterglow period τ (memory curve). It was shown that positive ions are present in the 1μs < τ < 30 ms interval, which is manifested through t{sup ¯}{sub d} slow increase with the increase of τ. A rapid t{sup ¯}{sub d} increase in the 30 ms < τ < 3 s interval is a consequence of significant decrease of positive ions concentration and dominant role in breakdown initiation have ground state nitrogen atoms, which further release secondary electrons from the cathode by catalytic recombination process. These atoms are formed during discharge by dissociation of ground state nitrogen molecules that are present as impurities in neon. For τ > 3 s, breakdown is initiated by cosmic rays and natural radioactivity. The increase of discharge current leads to decrease of t{sup ¯}{sub d} due to the increase of positive ions concentration in inter electrode gap. The increase of applied voltage also decreases t{sup ¯}{sub d} for τ > 30 ms due to the increase of the probability for initial electron to initiate breakdown. The presence of UV radiation leads to the decrease of t{sup ¯}{sub d} due to the increased electron yield caused by photoelectrons. The influence of photoelectrons on breakdown initiation can be noticed for τ > 0.1 ms, while they dominantly determine t{sup ¯}{sub d} for τ > 30 ms.

  7. Effect of ions on sulfuric acid-water binary particle formation: 1. Theory for kinetic- and nucleation-type particle formation and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Merikanto, Joonas; Duplissy, Jonathan; Määttänen, Anni; Henschel, Henning; Donahue, Neil M.; Brus, David; Schobesberger, Siegfried; Kulmala, Markku; Vehkamäki, Hanna

    2016-02-01

    We derive a version of Classical Nucleation Theory normalized by quantum chemical results on sulfuric acid-water hydration to describe neutral and ion-induced particle formation in the binary sulfuric acid-water system. The theory is extended to treat the kinetic regime where the nucleation free energy barrier vanishes at high sulfuric acid concentrations or low temperatures. In the kinetic regime particle formation rates become proportional to sulfuric acid concentration to second power in the neutral system or first power in the ion-induced system. We derive simple general expressions for the prefactors in kinetic-type and activation-type particle formation calculations applicable also to more complex systems stabilized by other species. The theory predicts that the binary water-sulfuric acid system can produce strong new particle formation in the free troposphere both through barrier crossing and through kinetic pathways. At cold stratospheric and upper free tropospheric temperatures neutral formation dominates the binary particle formation rates. At midtropospheric temperatures the ion-induced pathway becomes the dominant mechanism. However, even the ion-induced binary mechanism does not produce significant particle formation in warm boundary layer conditions, as it requires temperatures below 0°C to take place at atmospheric concentrations. The theory successfully reproduces the characteristics of measured charged and neutral binary particle formation in CERN CLOUD3 and CLOUD5 experiments, as discussed in a companion paper.

  8. Kinetic effects on the Kelvin–Helmholtz instability in ion-to-magnetohydrodynamic scale transverse velocity shear layers: Particle simulations

    PubMed Central

    Nakamura, T. K. M.; Hasegawa, H.; Shinohara, I.

    2010-01-01

    Ion-to-magnetohydrodynamic scale physics of the transverse velocity shear layer and associated Kelvin–Helmholtz instability (KHI) in a homogeneous, collisionless plasma are investigated by means of full particle simulations. The shear layer is broadened to reach a kinetic equilibrium when its initial thickness is close to the gyrodiameter of ions crossing the layer, namely, of ion-kinetic scale. The broadened thickness is larger in B⋅Ω<0 case than in B⋅Ω>0 case, where Ω is the vorticity at the layer. This is because the convective electric field, which points out of (into) the layer for B⋅Ω<0 (B⋅Ω>0), extends (reduces) the gyrodiameters. Since the kinetic equilibrium is established before the KHI onset, the KHI growth rate depends on the broadened thickness. In the saturation phase of the KHI, the ion vortex flow is strengthened (weakened) for B⋅Ω<0 (B⋅Ω>0), due to ion centrifugal drift along the rotational plasma flow. In ion inertial scale vortices, this drift effect is crucial in altering the ion vortex size. These results indicate that the KHI at Mercury-like ion-scale magnetospheric boundaries could show clear dawn-dusk asymmetries in both its linear and nonlinear growth. PMID:20838425

  9. Wave-particle resonance condition test for ion-kinetic waves in the solar wind

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Marsch, E.; Perschke, C.; Glassmeier, K.-H.; Motschmann, U.; Comişel, H.

    2016-04-01

    Conditions for the Landau and cyclotron resonances are tested for 543 waves (identified as local peaks in the energy spectra) in the magnetic field fluctuations of the solar wind measured by the Cluster spacecraft on a tetrahedral scale of 100 km. The resonance parameters are evaluated using the frequencies in the plasma rest frame, the parallel components of the wavevectors, the ion cyclotron frequency, and the ion thermal speed. The observed waves show a character of the sideband waves associated with the ion Bernstein mode, and are in a weak agreement with the fundamental electron cyclotron resonance in spite of the ion-kinetic scales. The electron cyclotron resonance is likely taking place in solar wind turbulence near 1 AU (astronomical unit).

  10. Ion gyroradius effects on particle trapping in kinetic Alfvén waves along auroral field lines

    NASA Astrophysics Data System (ADS)

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2016-11-01

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfvén wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfvén waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field. It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfvén wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfvén wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Even in the cold ion limit, trapping effects in kinetic Alfvén waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.

  11. Kinetics of electrons and neutral particles in radio-frequency transformer coupled plasma H- ion source at Seoul National University

    NASA Astrophysics Data System (ADS)

    Chung, K. J.; Dang, J. J.; Kim, J. Y.; Cho, W. H.; Hwang, Y. S.

    2016-10-01

    In volume production H- ion sources, control of electron temperature is essential due to its close correlation with the generation of vibrationally-excited hydrogen molecules in the driver region as well as the generation of H- ions by dissociative attachment in the extraction region. In the ion source group at Seoul National University (SNU) in Korea, a lot of research effort has been made to the development of a volume production H- ion source based on radio-frequency (RF) transformer-coupled plasma (TCP) for long lifetime continuous wave (CW) operation. It has a spiral RF antenna located outside the discharge chamber to generate a plasma with high electron temperature in the driver region and employs a magnetic filter field to prevent high energy electrons from being transported to the extraction region. In this paper, we present the recent progress on understanding of the underlying physics of the RF TCP H- ion source at SNU. Special attention is paid to the characterization of electron kinetics regime for controlling electron energy distribution and the influence of relaxation of neutral particles during the transport across the magnetic filter region. Effect of the degree of dissociation on the production of H- ions is also discussed.

  12. The inverse problem of the kinetics of redox sorption taking into account the size of ultradisperse metal particles in an electron-ion exchanger

    NASA Astrophysics Data System (ADS)

    Konev, D. V.; Fertikov, V. V.; Kravchenko, T. A.; Kalinichev, A. I.

    2008-08-01

    The inverse kinetic problem of reducing sorption of molecular oxygen by a copper-containing electron-ion exchanger was formulated and solved taking into account the influence of the size of ultradisperse metal particles on the total rate of the process. These results were used to determine the inside diffusion coefficient of oxygen and rate constants for its interaction with disperse copper from the experimental kinetic curves. The diffusion coefficient obtained was compared with the result of an independent experiment. The kinetic parameters found were used to perform a theoretical analysis of the contributions of various factors influencing the rate of the process under consideration. The reason for the experimentally observed acceleration of the reducing sorption of oxygen by a high-dispersity electron-ion exchanger sample was shown to be an increase in the surface area of metal because of a decrease in the size of its particles and a comparatively high copper content in the surface layer of grains.

  13. Ion Kinetics in Silane Plasmas

    DTIC Science & Technology

    1988-02-01

    reaction are determined not only by the chemical reactivity but by the electrical properties of the plasma. Current continuity, impedence match- ing...conventional kinetic theory. Since the chemical and physical properties of the noble-gases vary monotonically down the periods of Mendeleev’s table, one...formation. Most literature with the phrase ion chemistry in its title is concerned only with the properties and reactions of positively charged species

  14. Ion kinetic transport in TJ-II

    SciTech Connect

    Velasco, J. L.; Tarancon, A.; Castejon, F.; Fernandez, L. A.; Martin-Mayor, V.

    2008-11-02

    The ion Drift Kinetic Equation (DKE) which describes the ion collisional transport is solved for the TJ-II device plasmas. This non-linear equation is computed by performing a mean field iterative calculation. In each step of the calculation, a Fokker-Planck equation is solved by means of the Langevin approach: one million particles are followed in a realistic TJ-II magnetic configuration, taking into account collisions and electric field. This allows to avoid the assumptions made in the usual neoclassical approach, namely considering radially narrow particle trajectories, diffusive transport, energy conservation and infinite parallel transport. As a consequence, global features of transport, not present in the customary neoclassical models, appear: non-diffusive transport and asymmetries on the magnetic surfaces.

  15. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    NASA Astrophysics Data System (ADS)

    Sio, H.; Frenje, J. A.; Katz, J.; Stoeckl, C.; Weiner, D.; Bedzyk, M.; Glebov, V.; Sorce, C.; Gatu Johnson, M.; Rinderknecht, H. G.; Zylstra, A. B.; Sangster, T. C.; Regan, S. P.; Kwan, T.; Le, A.; Simakov, A. N.; Taitano, W. T.; Chacòn, L.; Keenan, B.; Shah, R.; Sutcliffe, G.; Petrasso, R. D.

    2016-11-01

    A Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D3He, and T3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, their time differences, and measurements of Ti(t) and Te(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.

  16. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    DOE PAGES

    Sio, H.; Frenje, J. A.; Katz, J.; ...

    2016-09-14

    Here, a Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D3He, and T3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, their time differences,more » and measurements of Ti(t) and Te(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.« less

  17. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited).

    PubMed

    Sio, H; Frenje, J A; Katz, J; Stoeckl, C; Weiner, D; Bedzyk, M; Glebov, V; Sorce, C; Gatu Johnson, M; Rinderknecht, H G; Zylstra, A B; Sangster, T C; Regan, S P; Kwan, T; Le, A; Simakov, A N; Taitano, W T; Chacòn, L; Keenan, B; Shah, R; Sutcliffe, G; Petrasso, R D

    2016-11-01

    A Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D(3)He, and T(3)He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, their time differences, and measurements of Ti(t) and Te(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.

  18. Kinetic transport simulation of energetic particles

    NASA Astrophysics Data System (ADS)

    Sheng, He; Waltz, R. E.

    2016-05-01

    A kinetic transport code (EPtran) is developed for the transport of the energetic particles (EPs). The EPtran code evolves the EP distribution function in radius, energy, and pitch angle phase space (r, E, λ) to steady state with classical slowing down, pitch angle scattering, as well as radial and energy transport of the injected EPs (neutral beam injection (NBI) or fusion alpha). The EPtran code is illustrated by treating the transport of NBI fast ions from high-n ITG/TEM micro-turbulence and EP driven unstable low-n Alfvén eigenmodes (AEs) in a well-studied DIII-D NBI heated discharge with significant AE central core loss. The kinetic transport code results for this discharge are compared with previous study using a simple EP density moment transport code ALPHA (R.E. Waltz and E.M. Bass 2014 Nucl. Fusion 54 104006). The dominant EP-AE transport is treated with a local stiff critical EP density (or equivalent pressure) gradient radial transport model modified to include energy-dependence and the nonlocal effects EP drift orbits. All previous EP transport models assume that the EP velocity space distribution function is not significantly distorted from the classical ‘no transport’ slowing down distribution. Important transport distortions away from the slowing down EP spectrum are illustrated by a focus on the coefficient of convection: EP energy flux divided by the product of EP average energy and EP particle flux.

  19. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    SciTech Connect

    Sio, H.; Frenje, J. A.; Katz, J.; Stoeckl, C.; Weiner, D.; Bedzyk, M.; Glebov, V.; Sorce, C.; Gatu Johnson, M.; Rinderknecht, H. G.; Zylstra, A. B.; Sangster, T. C.; Regan, S. P.; Kwan, T.; Le, A.; Simakov, A. N.; Taitano, W. T.; Chacòn, L.; Keenan, B.; Shah, R.; Sutcliffe, G.; Petrasso, R. D.

    2016-09-14

    Here, a Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D3He, and T3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, their time differences, and measurements of Ti(t) and Te(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.

  20. [Particle therapy: carbon ions].

    PubMed

    Pommier, Pascal; Hu, Yi; Baron, Marie-Hélène; Chapet, Olivier; Balosso, Jacques

    2010-07-01

    Carbon ion therapy is an innovative radiation therapy. It has been first proposed in the forties by Robert Wilson, however the first dedicated centres for human care have been build up only recently in Japan and Germany. The interest of carbon ion is twofold: 1) the very sharp targeting of the tumour with the so called spread out Bragg peak that delivers most of the beam energy in the tumour and nothing beyond it, sparing very efficiently the healthy tissues; 2) the higher relative biological efficiency compared to X rays or protons, able to kill radioresistant tumour cells. Both properties make carbon ions the elective therapy for non resectable radioresistant tumours loco-regionally threatening. The technical and clinical experience accumulated during the recent decades is summarized in this paper along with a detailed presentation of the elective indications. A short comparison between conventional radiotherapy and hadrontherapy is proposed for the indications which are considered as priority for carbon ions.

  1. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.

    2015-12-10

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  2. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Kuley, A.; Bao, J.; Lin, Z.; Wei, X. S.; Xiao, Y.

    2015-12-01

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  3. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Wang, Joseph

    2010-05-21

    Ion beam emission/neutralization is one of the most fundamental problems in spacecraft plasma interactions and electric propulsion. Although ion beam neutralization is readily achieved in experiments, the understanding of the underlying physical process remains at a rather primitive level. No theoretical or simulation models have convincingly explained the detailed neutralization mechanism, and no conclusions have been reached. This paper presents a fully kinetic simulation of ion beam neutralization and plasma beam propagation and discusses the physics of electron-ion coupling and the resulting propagation of a neutralized mesothermal plasma.

  4. Ion Kinetics in Silane Plasmas

    DTIC Science & Technology

    1988-04-20

    reactivity but by the electrical properties of the plasma. Current continuity, impedance matching, and the cou- pling between total charged particle fluxes...theory. Since the chemical and physical properties of the noble-gases vary monotonically down the periods of Mendeleev’s table, one might anticipate a...chemistry in its title is concerned only with the properties and reactions of positively charged species. Anions play a qualitatively different and important

  5. On a Kinetic Equation for Coalescing Particles

    NASA Astrophysics Data System (ADS)

    Escobedo, Miguel; Laurençot, Philippe; Mischler, Stéphane

    Existence of global weak solutions to a spatially inhomogeneous kinetic model for coalescing particles is proved, each particle being identified by its mass, momentum and position. The large time convergence to zero is also shown. The cornestone of our analysis is that, for any nonnegative and convex function, the associated Orlicz norm is a Liapunov functional. Existence and asymptotic behaviour then rely on weak and strong compactness methods in L1 in the spirit of the DiPerna-Lions theory for the Boltzmann equation.

  6. Kinetic Simulations of Particle Acceleration at Shocks

    SciTech Connect

    Caprioli, Damiano; Guo, Fan

    2015-07-16

    Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shock drift acceleration; and electron DSA is efficient at oblique shocks.

  7. Kinetic aspects of the ion current layer in a reconnection outflow exhaust

    SciTech Connect

    Zenitani, Seiji; Wada, Tomohide; Shinohara, Iku; Nagai, Tsugunobu

    2013-09-15

    Kinetic aspects of the ion current layer at the center of a reconnection outflow exhaust near the X-type region are investigated by a two-dimensional particle-in-cell (PIC) simulation. The layer consists of magnetized electrons and unmagnetized ions that carry a perpendicular electric current. The ion fluid appears to be nonideal, sub-Alfvénic, and nondissipative. The ion velocity distribution functions contain multiple populations, such as global Speiser ions, local Speiser ions, and trapped ions. The particle motion of the local Speiser ions in an appropriately rotated coordinate system explains the ion fluid properties very well. The trapped ions are the first demonstration of the regular orbits in the chaotic particle dynamics [Chen and Palmadesso, J. Geophys. Res. 91, 1499 (1986)] in self-consistent PIC simulations. They would be observational signatures in the ion current layer near reconnection sites.

  8. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2005-01-25

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  9. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    SciTech Connect

    Oboh, I.; Aluyor, E.; Audu, T.

    2015-03-30

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.

  10. Simulating complex ion channel kinetics with IonChannelLab

    PubMed Central

    Covarrubias, Manuel; Sánchez-Rodríguez, Jorge E; Perez-Cornejo, Patricia; Arreola, Jorge

    2010-01-01

    In-silico simulation based on Markov chains is a powerful way to describe and predict the activity of many transport proteins including ion channels. However, modeling and simulation using realistic models of voltage- or ligand-gated ion channels exposed to a wide range of experimental conditions require building complex kinetic schemes and solving complicated differential equations. To circumvent these problems, we developed IonChannelLab a software tool that includes a user-friendly Graphical User Interface and a simulation library. This program supports channels with Ohmic or Goldman-Hodgkin-Katz behavior and can simulate the time-course of ionic and gating currents, single channel behavior and steady-state conditions. The program allows the simulation of experiments where voltage, ligand and ionic concentration are varied independently or simultaneously. PMID:20935453

  11. Effects of Ion-Ion Collisions and Inhomogeneity in Two-Dimensional Kinetic Ion Simulations of Stimulated Brillouin Backscattering

    SciTech Connect

    Cohen, B I; Divol, L; Langdon, A B; Williams, E A

    2005-10-17

    Two-dimensional simulations with the BZOHAR [B.I. Cohen, B.F. Lasinski, A.B. Langdon, and E.A. Williams, Phys. Plasmas 4, 956 (1997)] hybrid code (kinetic particle ions and Boltzmann fluid electrons) have been used to investigate the saturation of stimulated Brillouin backscatter (SBBS) instability including the effects of ion-ion collisions and inhomogeneity. Ion-ion collisions tend to increase ion-wave dissipation, which decreases the gain exponent for stimulated Brillouin backscattering; and the peak Brillouin backscatter reflectivities tend to decrease with increasing collisionality in the simulations. Two types of Langevin-operator, ion-ion collision models were implemented in the simulations. In both models used the collisions are functions of the local ion temperature and density, but the collisions have no velocity dependence in the first model. In the second model, the collisions are also functions of the energy of the ion that is being scattered so as to represent a Fokker-Planck collision operator. Collisions decorrelate the ions from the acoustic waves in SBS, which disrupts ion trapping in the acoustic wave. Nevertheless, ion trapping leading to a hot ion tail and two-dimensional physics that allows the SBS ion waves to nonlinearly scatter remain robust saturation mechanisms for SBBS in a high-gain limit over a range of ion collisionality. SBS backscatter in the presence of a spatially nonuniform plasma flow is also investigated. Simulations show that depending on the sign of the spatial gradient of the flow relative to the backscatter, ion trapping effects that produce a nonlinear frequency shift can enhance (auto-resonance) or decrease (anti-auto-resonance) reflectivities in agreement with theoretical arguments.

  12. Fokker–Planck kinetic modeling of suprathermal α-particles in a fusion plasma

    SciTech Connect

    Peigney, B.E.

    2014-12-01

    We present an ion kinetic model describing the transport of suprathermal α-particles in inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (α-particles) at a kinetic level. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal α-particles and the thermal bulk of the imploding plasma. This method provides an accurate numerical treatment of energy deposition and transport processes involving suprathermal particles. The numerical tools presented here are then validated against known analytical results. This enables us to investigate the potential role of ion kinetic effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes.

  13. Kinetic models of sub-ion cylindrical magnetic hole

    NASA Astrophysics Data System (ADS)

    Shustov, P. I.; Artemyev, A. V.; Vasko, I. Y.; Yushkov, E. V.

    2016-12-01

    Magnetic holes are magnetoplasma structures very similar to the classical θ-pinch. They are widely observed in the space plasma and identified by the substantial magnetic field depressions on scales from magnetohydrodynamic range to electron scales. In this paper, we develop the kinetic models of cylindrically symmetric magnetic holes with sub-ion scales using two types of charged particle distribution functions (both current-carrying and background plasma populations are included). We demonstrate that developed magnetic holes have configurations very similar to those revealed in the recent spacecraft observations in the Earth magnetosphere: both localized electron currents and strong radial electric fields are found at the magnetic hole boundary. We demonstrate that for realistic plasma parameters, the inclusion of ion currents into the model produces magnetic holes with double-scale magnetic field profile. We find that the magnetic hole depth (amplitude of the magnetic field depression) depends on the magnetic hole typical radius. Possible applications of developed models are discussed.

  14. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  15. Selective recognition of neodymium (III) using ion imprinted polymer particles.

    PubMed

    Krishna, Paramesamangalam Gopi; Gladis, Joseph Mary; Rao, Talasila Prasada; Naidu, Gurijala Ramakrishna

    2005-01-01

    Neodymium (III) ion-imprinted polymer (IIP) materials were prepared by the copolymerization of neodymium (III)-5,7-dichloroquinoline-8-ol-4-vinylpyridine ternary complex with styrene(monomer), divinyl benzene (crosslinking monomer) in the presence of 2,2'-azobisisobutyronitrile (initiator). The synthesis was carried out in 2-methoxy ethanol medium (porogen) and the resultant material was filtered, washed, dried and powdered to form unleached IIP particles. The imprint ion was removed by stirring the above particles with 50% (v/v) HCl for 6 h to obtain leached IIP particles with cavities in the polymer particles. Control polymer (CP) particles were similarly prepared without imprint ion, i.e. neodymium (III). CP, unleached and leached IIP particles were characterized by TLC, IR, microanalysis, XRD and UV-visible spectrophotometric studies. The preconcentration of 5-150 microg of neodymium (III) ions present in 500 ml of solution was possible with as little as 40 mg of neodymium (III) IIP particles in the pH range 7.5-8.0 with a detection limit of 50 ng/l. Five replicate determinations of 25 microg of neodymium (III) present in 500 ml of solution gave a mean absorbance of 0.120 with a relative standard deviation of 2.65%. The imprinting effect of IIP particles was noticed in all preconcentration and selectivity studies when compared with CP particles. Furthermore, the selectivity coefficients of neodymium (III) IIP particles were much higher compared with the reported separation factors for the best liquid-liquid extractants, viz. di-2-ethylhexyl phosphoric acid and 2-ethylhexyl-ethylhexyl phosphonate. Kinetic and isotherm studies during rebinding of neodymium (III) onto IIP particles were also carried out.

  16. A Simulation Model for the Toroidal Ion Temperature Gradient Instability with Fully Kinetic Ions

    NASA Astrophysics Data System (ADS)

    Sturdevant, Benjamin; Parker, Scott; Chen, Yang

    2016-10-01

    A simulation model for the toroidal ITG mode in which the ions follow the primitive Lorentz force equations of motion is presented. Such a model can provide an important validation tool or replacement for gyrokinetic ion models in applications where higher order terms may be important. A number of multiple-scale simulation techniques are employed in this work, based on the previous success in slab geometry with an implicit orbit averaged and sub-cycled δf model. For the toroidal geometry model, we have derived a particle integration scheme based on variational principles, which is demonstrated to produce stable and accurate ion trajectories on long time scales. Orbit averaging and sub-cycling will be implemented with the variational integration scheme. The inclusion of equilibrium gradients in the fully kinetic δf formulation is achieved through the use of a guiding center coordinate transformation of the weight equation. Simulation results for the fully kinetic ion model will be presented for the cyclone base case and comparisons will be made with gyrokinetic ion models.

  17. Antibacterial activity of nanosilver ions and particles.

    PubMed

    Sotiriou, Georgios A; Pratsinis, Sotiris E

    2010-07-15

    The antibacterial activity of nanosilver against Gram negative Escherichia coli bacteria is investigated by immobilizing nanosilver on nanostructured silica particles and closely controlling Ag content and size. These Ag/SiO(2) nanoparticles were characterized by S/TEM, EDX spectroscopy, X-ray diffraction the exposed Ag surface area was measured qualitatively by O(2) chemisorption. Furthermore, the fraction of dissolved nanosilver was determined by measuring the released (leached) Ag(+) ion concentration in aqueous suspensions of such Ag/SiO(2) particles. The antibacterial effect of Ag(+) ions was distinguished from that of nanosilver particles by monitoring the growth of E. coli populations in the presence and absence of Ag/SiO(2) particles. The antibacterial activity of nanosilver was dominated by Ag(+) ions when fine Ag nanoparticles (less than about 10 nm in average diameter) were employed that release high concentrations of Ag(+) ions. In contrast, when relatively larger Ag nanoparticles were used, the concentration of the released Ag(+) ions was lower. Then the antibacterial activity of the released Ag(+) ions and nanosilver particles was comparable.

  18. Preparation and properties of ion-imprinted hollow particles for the selective adsorption of silver ions.

    PubMed

    Hou, Hongbin; Yu, Demei; Hu, Guohe

    2015-02-03

    Four kinds of silver ion-imprinted particles (Ag-IIPs) with different morphologies were prepared by the surface ion-imprinting technology (SIIT) and were used for the selective removal and concentration of silver ions from wastewater. The favorable adsorptivity and selectivity of Ag-IIPs for Ag(+) were confirmed by a series of adsorption experiments at a suitable pH value. The adsorption mechanism was elucidated by analyzing the adsorption isotherms, adsorption thermodynamics, and adsorption kinetics systematically. The Ag(+) adsorption onto the Ag-IIPs was well-described by the Langmuir isotherm model, and it was likely to be a monolayer chemical adsorption. This conclusion was also confirmed by the thermodynamic parameters. Moreover, the adsorption kinetics indicated that the adsorption rate would be controlled jointly by the intraparticle diffusion and the inner surface adsorption process, and the latter process was generally associated with the formation and breaking of chemical bonds. Finally, the effects of different morphologies of the Ag-IIPs for Ag(+) adsorption were also investigated. In aqueous solution, the adsorptivity of the Ag(+) ion-imprinting single-hole hollow particles (Ag-IISHPs) for Ag(+) was highest (80.5 mg g(-1)) because of a specific morphology that features a single hole in the shell. In an oil-water mixture, Ag(+) in the water phase could be adsorbed efficiently by the Ag(+) ion-imprinting Janus hollow particles (Ag-IIJHPs), with emulsifiability originating from the Janus structure.

  19. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Chang, O.; Wang, J.

    2011-05-20

    Full particle PIC simulations are performed to study the neutralization of an ion beam in the cohesionless, mesothermal regime. Simulations further confirmed that neutralization is achieved through interactions between the trapped electrons and the potential well established by the propagation of the beam front along the beam direction and is not through plasma instabilities as previous studies suggested. In the transverse direction, the process is similar to that of the expansion of mesothermal plasma into vacuum. Parametric simulations are also performed to investigate the effects of beam radius and domain boundary condition on the neutralization process. The results suggests that, while the qualitative behavior may be similar in ground tests, quantitative parameters such as the beam potential will be affected significantly by the vacuum chamber because of the limits imposed on the expansion process by the finite chamber space.

  20. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  1. Kinetic equation for nonlinear resonant wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.

    2016-09-01

    We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.

  2. Ion source studies for particle beam accelerators

    SciTech Connect

    Bieg, K.W.; Burns, E.J.T.; Olsen, J.N.; Dorrell, L.R.

    1985-05-01

    High power particle beam accelerators are being developed for use in inertial confinement fusion applications. These pulsed power accelerators require sources of low atomic number ions (e.g., protons, deuterons, carbon, or lithium). The sources must be of high purity for efficient accelerator operation and proper target coupling, must have a rapid ''turn-on,'' and must be compatible with ion diode configurations under development. A particular type of source presently being investigated is the flashover ion source which generates ions by means of the vacuum flashover of an insulating anode material when the high voltage pulse arrives at the diode. We have developed an applied-magnetic-field, extraction ion diode for the 0.03 TW Nereus accelerator specifically to investigate these sources. Extracted ion species are measured by means of a Thomson-parabola ion analyzer, dB/dt current monitors, and Faraday cups. Experiments have been performed to investigate the surface flashover mechanism and the effects of various dielectric source materials, anode preparation methods (including rf glow discharge cleaning), and vacuum conditions on ion species and diode operation.

  3. Versatile gas/particle ion chromatograph.

    PubMed

    Ullah, S M Rahmat; Takeuchi, Masaki; Dasgupta, Purnendu K

    2006-02-01

    A new, compact gas/particle ion chromatograph has been developed for measuring ionic constituents in PM2.5 (particulate matter of aerodynamic diameter < or = 2.5 microm) and water-soluble ionogenic gases. The instrument has separate sampling channels for gases and particles. In one, a membrane denuder collects soluble gases for preconcentration and analysis. In the other, a cyclone removes larger particles, a membrane denuder removes soluble gases, and a continuously wetted hydrophilic filter collects particles. A single, multiport, syringe pump handles liquid transport, and one conductivity detector measures anions and ammonium for both channels. Electrodialytically generated gradient hydroxide eluent permits 20 min chromatographic runs. Gas/particle samples are each collected for 40 min, butthe sampling intervals are staggered by 20 min. Liquid samples from the gas denuder and particle collector are aspirated and preconcentrated on sequential cation and anion concentrators and transferred respectively to an ammonia transfer device and an anion separation column. The flow configuration results in an ammonium peak before anion peaks in the chromatogram. The system measures ammonia, organic acids (such as acetic, formic, and oxalic acids), HCl, HONO, SO2, HNO3, and the corresponding ions in the aerosol phase. Low ng/m3 to sub-ng/m3 limits of detection (LODs) are attained for most common gases and particulate constituents, the LODs for gaseous SO2 to NH3 range, for example, from sub parts per trillion by volume (sub-pptv) to approximately 5 pptv.

  4. Janus particle rotator-to-lamellar nucleation and growth kinetics

    NASA Astrophysics Data System (ADS)

    Beltran-Villegas, Daniel J.; Zhang, Yulei; Larson, Ronald G.

    2017-03-01

    We determine the free energy barrier, critical nucleus size, and kinetics of a Janus particle solid-solid transition by nucleation and growth of lamellar clusters within a metastable rotator phase. The transition involves negligible change in particle position and phase volume and entails only particle orientational ordering. Fast kinetics enable the analysis of unbiased crystal growth and shrinkage trajectories from Brownian dynamic simulations. By fitting simulation trajectories to a diffusion-migration equation, the nucleus free energy and growth coefficient as a function of nucleus size are extracted. Observed transition times are on the order of hundreds of characteristic particle rotation times. Lamellar crystal nuclei are oblate rather than spherical, but otherwise classical nucleation theory applies, with the bulk free energy contribution following closely the Maier-Saupe theory for purely orientational transitions and the interfacial energy contribution following trends from 3-dimensional Ising spin kinetics.

  5. Fishbone mode excitation in the ion kinetic regime

    SciTech Connect

    Shi, B.; Sui, G. |

    1997-08-01

    By solving the dispersion relation in the ion kinetic regime, it is found that the threshold of the plasma beta value for exciting the ion-fishbone mode is lowered. Thus, for most of the present-day tokamaks where the Bussac criterion [Bussac {ital et al.}, Phys. Rev. Lett. {bold 35}, 1638 (1975)] is not satisfied, it will still be possible to excite the ion-fishbone mode. {copyright} {ital 1997 American Institute of Physics.}

  6. Particle transport and deposition: basic physics of particle kinetics.

    PubMed

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research.

  7. Particle transport and deposition: basic physics of particle kinetics

    PubMed Central

    Tsuda, Akira; Henry, Frank S.; Butler, James P.

    2015-01-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235

  8. 3D hybrid simulations with gyrokinetic particle ions and fluid electrons

    SciTech Connect

    Belova, E.V.; Park, W.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or current coupling scheme. A small energetic to bulk ion density ratio was assumed, n{sub h}/n{sub b} {much_lt} 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum equation and the use of MHD Ohm`s law E = {minus}v{sub b} {times} B. A generalization of this model in which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used for the electron dynamics is considered in this paper.

  9. Adsorption-desorption kinetics of soft particles onto surfaces

    NASA Astrophysics Data System (ADS)

    Osberg, Brendan; Gerland, Ulrich

    A broad range of physical, chemical, and biological systems feature processes in which particles randomly adsorb on a substrate. Theoretical models usually assume ``hard'' (mutually impenetrable) particles, but in soft matter physics the adsorbing particles can be effectively compressible, implying ``soft'' interaction potentials. We recently studied the kinetics of such soft particles adsorbing onto one-dimensional substrates, identifying three novel phenomena: (i) a gradual density increase, or ''cramming'', replaces the usual jamming behavior of hard particles, (ii) a density overshoot, can occur (only for soft particles) on a time scale set by the desorption rate, and (iii) relaxation rates of soft particles increase with particle size (on a lattice), while hard particles show the opposite trend. The latter occurs since unjamming requires desorption and many-bodied reorganization to equilibrate -a process that is generally very slow. Here we extend this analysis to a two-dimensional substrate, focusing on the question of whether the adsorption-desorption kinetics of particles in two dimensions is similarly enriched by the introduction of soft interactions. Application to experiments, for example the adsorption of fibrinogen on two-dimensional surfaces, will be discussed.

  10. Test-particle method in kinetic theory of a plasma.

    NASA Technical Reports Server (NTRS)

    Matsuda, K.

    1971-01-01

    The introduction of a test particle into a system is considered. The system may be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy. The field particles form a cloud which surrounds the test particle. The cloud is described by a conditional probability function which satisfies a certain equation. A generalization of the superposition principle reported by Rostoker (1964) to higher order correlation functions is discussed. Kinetic equations with the generalized Lenard-Balescu term are obtained, taking into account also diffusion by waves. The characteristics regarding the absorption or emission of waves by particles can be calculated.

  11. Integrating particle physical geometry into composting degradation kinetics.

    PubMed

    Wang, Yongjiang; Ai, Ping

    2016-01-01

    The study was carried out to integrate physical geometry of compost particle with degradation kinetics to model biological reactions, which revealing additional dynamic approaches. A sphere and its circumscribing cube were used to represent compost particles. An inner sphere, representing anaerobic zone, was introduced to describe variations of substrate volume without sufficient oxygen supply. Degradation of soluble substrates and hydrolysis of insoluble substrates were associated with the particle geometry. Transportation of soluble substrates produced from hydrolysis was expressed using Fick's law. Through the integration of degradation kinetics with geometry models, degradation models could describe varying volume of composting materials involving aerobic or anaerobic digestion and transportation of soluble substrates in a unit compost particle.

  12. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    SciTech Connect

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  13. Kinetic model of particle-inhibited grain growth

    NASA Astrophysics Data System (ADS)

    Thompson, Gary Scott

    The effects of second phase particles on matrix grain growth kinetics were investigated using Al2O3-SiC as a model system. In particular, the validity of the conclusion drawn from a previous kinetic analysis that the kinetics of particle-inhibited grain growth in Al2 O3-SiC samples with an intermediate volume fraction of second phase could be well quantified by a modified-Zener model was investigated. A critical analysis of assumptions made during the previous kinetic analysis revealed oversimplifications which affect the validity of the conclusion. Specifically, the degree of interaction between particles and grain boundaries was assumed to be independent of the mean second phase particle size and size distribution. In contrast, current measurements indicate that the degree of interaction in Al2O3-SiC is dependent on these parameters. An improved kinetic model for particle-inhibited grain growth in Al 2O3-SiC was developed using a modified-Zener approach. The comparison of model predictions with experimental grain growth data indicated that significant discrepancies (as much as 4--5 orders of magnitude) existed. Based on this, it was concluded that particles had a much more significant effect on grain growth kinetics than that caused by a simple reduction of the boundary driving force due to the removal of boundary area. Consequently, it was also concluded that the conclusion drawn from the earlier kinetic analysis regarding the validity of a modified-Zener model was incorrect. Discrepancies between model and experiment were found to be the result of a significant decrease in experimental growth rate constant not predicted by the model. Possible physical mechanisms for such a decrease were investigated. The investigation of a small amount of SiO2 on grain growth in Al2O3 indicated that the decrease was not the result of a decrease in grain boundary mobility due to impurity contamination by particles. By process of elimination and based on previous observations

  14. Linear kinetic theory and particle transport in stochastic mixtures

    SciTech Connect

    Pomraning, G.C.

    1995-12-31

    We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.

  15. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    ERIC Educational Resources Information Center

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  16. Sorption kinetics of ofloxacin in soils and mineral particles.

    PubMed

    Pan, Bo; Wang, Peng; Wu, Min; Li, Jing; Zhang, Di; Xiao, Di

    2012-12-01

    The environmental behavior of antibiotics is not well known and the precise environmental risk assessment is not practical. This study investigated the sorption kinetics of ofloxacin, a widely used antibiotics, on soil particles with different organic carbon contents as well as soil components (a humic acid, ferric oxide and kaolinite). Two-compartment sorption kinetics were mathematically recognized (except ferric oxide because of its very fast sorption). The apparent sorption rate and the contribution of fast sorption compartment decreased with the increased organic carbon content with the exception of humic acid, suggesting that the slow sorption sites were partially located in organo-mineral complex. The OFL concentration-dependent sorption kinetics suggested that the slow sorption compartment was not controlled by diffusion process as indicated by slower sorption at higher OFL loading. The difference between OFL sorption kinetics and those of hydrophobic organic contaminants was discussed and possible mechanism of OFL two-compartment sorption was proposed.

  17. The cleft ion fountain - A two-dimensional kinetic model

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.; Lockwood, M.

    1985-01-01

    The transport of ionospheric ions from a source in the polar cleft ionosphere through the polar magnetosphere is investigated using a two-dimensional, kinetic, trajectory-based code. The transport model includes the effects of gravitation, longitudinal magnetic gradient force, convection electric fields, and parallel electric fields. Individual ion trajectories as well as distribution functions and resulting bulk parameters of density, parallel average energy, and parallel flux for a presumed cleft ionosphere source distribution are presented for various conditions to illustrate parametrically the dependences on source energies, convection electric field strengths, ion masses, and parallel electric field strengths. The essential features of the model are consistent with the concept of a cleft-based ion fountain supplying ionospheric ions to the polar magnetosphere, and the resulting plasma distributions and parameters are in general agreement with recent low-energy ion measurements from the DE 1 satellite.

  18. Impact of particle formation on atmospheric ions and particle number concentrations in an urban environment

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Chou, C. C.-K.; Jayaratne, E. R.; Morawska, L.

    2015-04-01

    A measurement campaign was conducted from 3 to 19 December 2012 at an urban site of Brisbane, Australia. Size distribution of ions and particle number concentrations were measured to investigate the influence of particle formation and biomass burning on atmospheric ion and particle concentrations. Overall ion and particle number concentrations during the measurement period were found to be (- 1.2 × 103 cm- 3 | + 1.6 × 103 cm- 3) and 4.4 × 103, respectively. The results of correlation analysis between concentrations of ions and nitrogen oxides indicated that positive and negative ions originated from similar sources, and that vehicle exhaust emissions had a more significant influence on intermediate/large ions, while cluster ions rapidly attached to larger particles once emitted into the atmosphere. Diurnal variations in ion concentration suggested the enrichment of intermediate and large ions on new particle formation event days, indicating that they were involved in the particle formation processes. Elevated total ions, particularly larger ions, and particle number concentrations were found during biomass burning episodes. This could be due to the attachment of cluster ions onto accumulation mode particles or production of charged particles from biomass burning, which were in turn transported to the measurement site. The results of this work enhance scientific understanding of the sources of atmospheric ions in an urban environment, as well as their interactions with particles during particle formation processes.

  19. Towards a unified linear kinetic transport model with the trace ion module for EIRENE

    PubMed Central

    Seebacher, J.; Kendl, A.

    2012-01-01

    Linear kinetic Monte Carlo particle transport models are frequently employed in fusion plasma simulations to quantify atomic and surface effects on the main plasma flow dynamics. Separate codes are used for transport of neutral particles (incl. radiation) and charged particles (trace impurity ions). Integration of both modules into main plasma fluid solvers provides then self-consistent solutions, in principle. The required interfaces are far from trivial, because rapid atomic processes in particular in the edge region of fusion plasmas require either smoothing and resampling, or frequent transfer of particles from one into the other Monte Carlo code. We propose a different scheme here, in which despite the inherently different mathematical form of kinetic equations for ions and neutrals (e.g. Fokker–Planck vs. Boltzmann collision integrals) both types of particle orbits can be integrated into one single code. We show that the approximations and shortcomings of this “single sourcing” concept (e.g., restriction to explicit ion drift orbit integration) can be fully tolerable in a wide range of typical fusion edge plasma conditions, and be overcompensated by the code-system simplicity, as well as by inherently ensured consistency in geometry (one single numerical grid only) and (the common) atomic and surface process modules. PMID:22474397

  20. The kinetics of composite particle formation during mechanical alloying

    NASA Technical Reports Server (NTRS)

    Aikin, B. J. M.; Courtney, T. H.

    1993-01-01

    The kinetics of composite particle formation during attritor milling of insoluble binary elemental powders have been examined. The effects of processing conditions (i.e., mill power, temperature, and charge ratio) on these kinetics were studied. Particle size distributions and fractions of elemental and composite particles were determined as functions of milling time and processing conditions. This allowed the deduction of phenomenological rate constants describing the propensity for fracture and welding during processing. For the mill-operating conditions investigated, the number of particles in the mill generally decreased with milling time, indicating a greater tendency for particle welding than fracture. Moreover, a bimodal size distribution is often obtained as a result of preferential welding. Copper and chromium 'alloy' primarily by encapsulation of Cr particles within Cu. This form of alloying also occurs in Cu-Nb alloys processed at low mill power and/or for short milling times. For other conditions, however, Cu-Nb alloys develop a lamellar morphology characteristic of mechanically alloyed two-phase ductile metals. Increasing mill power or charge (ball-to-powder weight) ratio (CR) increases the rate of composite particle formation.

  1. Differential kinetic dynamics and heating of ions in the turbulent solar wind

    NASA Astrophysics Data System (ADS)

    Valentini, F.; Perrone, D.; Stabile, S.; Pezzi, O.; Servidio, S.; De Marco, R.; Marcucci, F.; Bruno, R.; Lavraud, B.; De Keyser, J.; Consolini, G.; Brienza, D.; Sorriso-Valvo, L.; Retinò, A.; Vaivads, A.; Salatti, M.; Veltri, P.

    2016-12-01

    The solar wind plasma is a fully ionized and turbulent gas ejected by the outer layers of the solar corona at very high speed, mainly composed by protons and electrons, with a small percentage of helium nuclei and a significantly lower abundance of heavier ions. Since particle collisions are practically negligible, the solar wind is typically not in a state of thermodynamic equilibrium. Such a complex system must be described through self-consistent and fully nonlinear models, taking into account its multi-species composition and turbulence. We use a kinetic hybrid Vlasov-Maxwell numerical code to reproduce the turbulent energy cascade down to ion kinetic scales, in typical conditions of the uncontaminated solar wind plasma, with the aim of exploring the differential kinetic dynamics of the dominant ion species, namely protons and alpha particles. We show that the response of different species to the fluctuating electromagnetic fields is different. In particular, a significant differential heating of alphas with respect to protons is observed. Interestingly, the preferential heating process occurs in spatial regions nearby the peaks of ion vorticity and where strong deviations from thermodynamic equilibrium are recovered. Moreover, by feeding a simulator of a top-hat ion spectrometer with the output of the kinetic simulations, we show that measurements by such spectrometer planned on board the Turbulence Heating ObserveR (THOR mission), a candidate for the next M4 space mission of the European Space Agency, can provide detailed three-dimensional ion velocity distributions, highlighting important non-Maxwellian features. These results support the idea that future space missions will allow a deeper understanding of the physics of the interplanetary medium.

  2. Excitation of dust kinetic Alfven waves by semi-relativistic ion beams

    NASA Astrophysics Data System (ADS)

    Rubab, N.; Jaffer, G.

    2016-05-01

    The growth rates for dust kinetic Alfvén wave (DKAW) based on semi-relativistic Maxwellian distribution function are investigated in a hot and magnetized plasma. The dispersion relation of DKAW is obtained on a dust acoustic velocity branch, and the kinetic instability due to cross-field semi-relativistic ion flow is examined by the effect of dust parameters. Analytical expressions are derived for various modes as a natural consequence of the form of the solution, and is shown through graphical representation that the presence of dust particles and the cross-field semi-relativistic ions sensibly modify the dispersion characteristics of low-frequency DKAW. The results are valid for a frequency regime well below the dust cyclotron frequency. We suggest that semi-relativistic particles are an important factor in the growth/damping of DKAWs. It is also found that relativistic effects appear with the dust lower hybrid frequency are more effective for dust kinetic Alfvén waves in the perpendicular component as compared to the parallel one. In particular, the relativistic effects associated with electrons suppress the instability while ions enhance the growth rates. The growth rates are significantly modified with dust parameters and streaming velocity of cross-field ions.

  3. Method for ion implantation induced embedded particle formation via reduction

    DOEpatents

    Hampikian, Janet M; Hunt, Eden M

    2001-01-01

    A method for ion implantation induced embedded particle formation via reduction with the steps of ion implantation with an ion/element that will chemically reduce the chosen substrate material, implantation of the ion/element to a sufficient concentration and at a sufficient energy for particle formation, and control of the temperature of the substrate during implantation. A preferred embodiment includes the formation of particles which are nano-dimensional (<100 m-n in size). The phase of the particles may be affected by control of the substrate temperature during and/or after the ion implantation process.

  4. Kinetics of small particle activation in supersaturated vapors

    SciTech Connect

    McGraw, R.; Wang, J.

    2010-08-29

    We examine the nucleated (with barrier) activation of perfectly wetting (zero contact angle) particles ranging from bulk size down to one nanometer. Thermodynamic properties of the particles, coated with liquid layers of varying thickness and surrounded by vapor, are analyzed. Nano-size particles are predicted to activate at relative humidity below the Kelvin curve on crossing a nucleation barrier, located at a critical liquid layer thickness such that the total particle size (core + liquid layer) equals the Kelvin radius (Fig. 1). This barrier vanishes precisely as the critical layer thickness approaches the thin layer limit and the Kelvin radius equals the radius of the particle itself. These considerations are similar to those included in Fletcher's theory (Fletcher, 1958) however the present analysis differs in several important respects. Firstly, where Fletcher used the classical prefactor-exponent form for the nucleation rate, requiring separate estimation of the kinetic prefactor, we solve a diffusion-drift equation that is equivalent to including the full Becker-Doering (BD) multi-state kinetics of condensation/evaporation along the growth coordinate. We also determine the mean first passage time (MFPT) for barrier crossing (Wedekind et al., 2007), which is shown to provide a generalization of BD nucleation kinetics especially useful for barrier heights that are considerably lower than those typically encountered in homogeneous vapor-liquid nucleation, and make explicit comparisons between the MFPT and BD kinetic models. Barrier heights for heterogeneous nucleation are computed by a thermo-dynamic area construction introduced recently to model deliquescence and efflorescence of small particles (McGraw and Lewis, 2009). In addition to providing a graphical representation of the activation process that offers new insights, the area construction provides a molecular approach that avoids explicit use of the interfacial tension. Typical barrier profiles for

  5. Fluid and kinetic models of negative ion sheaths

    SciTech Connect

    Cavenago, M.

    2011-09-26

    Due to the presence of a large transverse magnetic field (B{sub x} and B{sub y} where z is the extraction axis), the extraction of electrons from a negative ion source is likely to happen with a large angle with respect to z axis. The negative ion and electron sheaths are here studied both with kinetic and with fluid models. First, Vlasov-Poisson models are reduced to one dimensional integrodifferential equations, discussing also trapped orbits. The integrodifferential equations for electron transport are analytically solved for a variety of extraction potentials (in 1D). Collision frequency dependency from electron flow speed and temperature is discussed. Then both ion and electron space charge and fluid motion are solved, using electron densities expression consistent with kinetic model. Results for the sheath charge profile and extraction field as a function of B{sub x} are shown.

  6. Ion Dynamics during Substorm Events Modeled with Coupled Global MHD and Kinetic Models

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Ashour-Abdalla, M.; Walker, R. J.; El-Alaoui, M.

    2014-12-01

    We have studied ion dynamics during a substorm by using a coupled fluid-kinetic approach. The UCLA global magnetospheric model was applied first and its results in a region encompassing a magnetotail reconnection site and earthward propagating dipolarization fronts was selected as input state for a full kinetic simulation based on the iPic3D code [1]. The coupling is one-way: the MHD result is used to create a full kinetic initial state by using the approach described by [2] and to force the boundary conditions. The kinetic results are not fed back into the MHD run. This approach previously has been shown [3] to provide correctly the large scale picture for a kinetic approach when the duration of the kinetic run is not so long as to alter significantly the macroscopic state captured by MHD. Here we focus especially on the ions. The electrons were described in [3]. Three aspects are analyzed. First, the ions are accelerated during the event and we track the localization of the energy exchanged, separating the contributions to the directed energy and those to the thermal energy. Second, we consider the ion motion to identify the regions where the finite Larmor radius effects violate the drift approximation and the frozen-in condition, thereby identifying the ion diffusion region. Our approach follows individual electrons and ions fully kinetically and no approximation is made in the particle orbit, so our code is equipped to study accurately the regions where the drift approximation is valid. Finally, we consider the ion distribution as a possible source of instabilities, focusing especially on temperature anisotropy instabilities and on the firehose instability. The novelty of the approach is this kinetic study is done for a specific substorm by using the global state of the magnetosphere as provided by a global MHD simulation. This differs sharply from previous approaches based on analytical approximations such as the Harris or the (quasi)-parabolic equilibria. [1

  7. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    SciTech Connect

    Haakonsen, Christian Bernt Hutchinson, Ian H. Zhou, Chuteng

    2015-03-15

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effects can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.

  8. Origin of energetic ions observed in the terrestrial ion foreshock : 2D full-particle simulations

    NASA Astrophysics Data System (ADS)

    Savoini, Philippe; Lembege, bertrand

    2016-04-01

    Collisionless shocks are well-known structures in astrophysical environments which dissipate bulk flow kinetic energy and accelerate large fraction of particle. Spacecrafts have firmly established the existence of the so-called terrestrial foreshock region magnetically connected to the shock and filled by two distinct populations in the quasi-perpendicular shock region (i.e. for 45r{ } ≤ quad θ Bn quad ≤ 90r{ }, where θ Bn is the angle between the shock normal and the upstream magnetic field) : (i) the field-aligned ion beams or `` FAB '' characterized by a gyrotropic distributionsout{,} and (ii) the gyro-phase bunched ions or `` GPB '' characterized by a NON gyrotropic distribution. The present work is based on the use of two dimensional PIC simulation of a curved shock and associated foreshock region where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described by a self consistent approach. Our previous analysis (Savoini et Lembège, 2015) has evidenced that these two types of backstreaming populations can originate from the shock front itself without invoking any local diffusion by ion beam instabilities. Present results are focussed on individual ion trajectories and evidence that "FAB" population is injected into the foreshock mainly along the shock front whereas the "GPB" population penetrates more deeply the shock front. Such differences explain why the "FAB" population loses their gyro-phase coherency and become gyrotropic which is not the case for the "GPB". The impact of these different injection features on the energy gain for each ion population will be presented in détails. Savoini, P. and B. Lembège (2015), `` Production of nongyrotropic and gyrotropic backstreaming ion distributions in the quasi-perpendicular ion foreshock région '', J. Geophys. Res., 120, pp 7154-7171, doi = 10.1002/2015JA021018.

  9. A bounce-averaged kinetic model of the ring current ion population

    NASA Technical Reports Server (NTRS)

    Jordanova, V. K.; Kozyra, J. U.; Khazanov, G. V.; Nagy, A. F.; Rasmussen, C. E.; Fok, M.-C.

    1994-01-01

    A bounced-averaged ring current kinetic model for arbitrary pitch angle, including losses due to charge exchange and Coulomb collisions along ion drift paths, is developed and solved numerically. Results from simplifield model runs, intended to illustrate the effects of adiabatic drifts and collisional losses on the proton population, are presented. The processes of: (1) particle acceleration under the conditions of time-independent magnetospheric electric fields; (2) a predominant loss of particles with small pitch angles due to charge exchange; and (3) a buildup of a low-energy population caused by the Coulomb drag energy degradation, are discussed.

  10. Shock wave, fluid instability and implosion studies with a kinetic particle approach

    NASA Astrophysics Data System (ADS)

    Sagert, Irina; Even, Wesley P.; Strother, Terrance T.

    2016-10-01

    Many problems in laboratory plasma physics are subject to flows that move between the continuum and the kinetic regime. The correct description of these flows is crucial in order to capture their impact on the system's dynamical evolution. Examples are capsule implosions in inertial confinement fusion (ICF). Although their dynamics is predominantly shaped by shock waves and fluid instabilities, non-equilibrium flows in form of deuterium/tritium ions have been shown to play a significant role. We present recent studies with our Monte Carlo kinetic particle code that is designed to capture continuum and kinetic flows in large physical systems with possible applications in ICF studies. Discussed results will include standard shock wave and fluid instability tests and simulations that are adapted towards future ICF studies with comparisons to hydrodynamic simulations. This work used the Wolf TriLAB Capacity Cluster at LANL. I.S. acknowledges support through a Director's fellowship (20150741PRD3) from Los Alamos National Laboratory.

  11. Scaling of Kinetic Instability Induced Fast Ion Losses in NSTX

    SciTech Connect

    E.D. Fredrickson; D. Darrow; S. Medley; J. Menard; H. Park; L. Roquemore; D. Stutman; K. Tritz; S. Kubota; K.C. Lee

    2005-06-24

    During neutral beam injection (NBI) in the National Spherical Torus Experiment (NSTX), a wide variety of fast ion driven instabilities is excited by the large ratio of fast ion velocity to Alfven velocity, together with the relatively high fast ion beta, beta(sub)f. The fast ion instabilities have frequencies ranging from a few kilohertz to the ion cyclotron frequency. The modes can be divided roughly into three categories, starting with Energetic Particle Modes (EPM) in the lowest frequency range (0 to 120 kHz), the Toroidal Alfven Eigenmodes (TAE) in the intermediate frequency range (50 to 200 kHz) and the Compressional and Global Alfven Eigenmodes (CAE and GAE, respectively) from approximately equal to 300 kHz up to the ion cyclotron frequency. Each of these categories of modes exhibits a wide range of behavior, including quasi-continuous oscillation, bursting, chirping and, except for the lower frequency range, turbulence.

  12. Kinetics of silica particle formation in nonionic W/O microemulsions from TEOS

    SciTech Connect

    Chang, C.L.; Fogler, H.S.

    1996-11-01

    The kinetics of silica particle formation by the ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) in water-in-oil (W/O) microemulsions containing a nonionic surfactant was investigated using Fourier-transform infrared spectroscopy, transmission electron microscopy, and light-scattering techniques. The results show that TEOS hydrolysis and silica-particle growth occur at the same rate, indicating the growth of silica particles is rate-controlled by the hydrolysis of TEOS. The rate of TEOS hydrolysis in microemulsions is first order with respect to the concentration of aqueous ammonia (29 wt. % NH{sub 3}), but depends weakly on the concentration of water. Based on the fact that TEOS hydrolysis follows a nucleophilic substitution of the TEOS`s ethoxy group with hydroxyl ion, the kinetic data suggest that both water and ammonia remain predominantly in W/O microemulsion droplets. The rate of TEOS hydrolysis also depends on the surfactant concentration that controls the molecular contact between hydroxyl ions and TEOS in the solution. Due to the reaction-controlled growth mechanism, the silica-particle size distribution retains virtually the same shape over the growth period. The final average size of silica particles can be varied from 26 to 43 nm by adjusting concentrations of water and surfactant. Increasing the water concentration decreases the average size and uniformity of silica particles. For a given water concentration, the smallest and most uniform silica particles are produced at intermediate water-to-surfactant molar ratios (about 1.9). The results are discussed in terms of the effect of water concentration on the stability of the hydrolyzed silica reacting species during the nucleation of particles and of the water-to-surfactant molar ratio on the compartmentalization of silica species in microemulsions.

  13. Ion kinetic scale in the solar wind observed.

    PubMed

    Śafránková, Jana; Němeček, Zdeněk; Přech, Lubomír; Zastenker, Georgy N

    2013-01-11

    This Letter shows the first results from the solar wind monitor onboard the Spektr-R spacecraft which measures plasma moments with a time resolution of 31 ms. This high-time resolution allows us to make direct observations of solar wind turbulence below ion kinetic length scales. We present examples of the frequency spectra of the density, velocity, and thermal velocity. Our study reveals that although these parameters exhibit the same behavior at the magnetohydrodynamic scale, their spectra are remarkably different at the kinetic scale.

  14. Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: isotherm and kinetic study

    NASA Astrophysics Data System (ADS)

    Zamri, Mohd Faiz Muaz Ahmad; Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Aziz, Hamidi Abdul; Foo, Keng Yuen

    2015-03-01

    This study was carried out to investigate the treatability of ion exchange resin (Indion MB 6 SR) for the removal of chromium (VI), aluminium (III), zinc (II), copper (II), iron (II), and phosphate (PO4)3-, chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and colour from semi-aerobic stabilized leachate by batch test. A range of ion exchange resin dosage was tested towards the removal efficiency of leachate parameters. It was observed that equilibrium data were best represented by the Langmuir model for metal ions and Freundlich was ideally fit for COD, NH3-N and colour. Intra particle diffusion model, pseudo first-order and pseudo second-order isotherm models were found ideally fit with correlation of the experimental data. The findings revealed that the models could describe the ion exchange kinetic behaviour efficiently, which further suggests comprehensive outlook for the future research in this field.

  15. Global simulation of field-reversed configuration using fully kinetic ion and drift kinetic electron

    NASA Astrophysics Data System (ADS)

    Lau, Calvin; Fulton, Daniel; Kuley, Animesh; Bao, Jian; Lin, Zhihong; Binderbauer, Michael; Tajima, Toshiki; Schmitz, Lothar; the TAE Team Team

    2016-10-01

    In the last several years, the C-2/C-2U advanced beam-driven field-reversed configuration (FRC) experiments at Tri Alpha Energy have progressed to consistent, reproducible plasma lifetimes of 10+ ms, i.e. FRCs have reached transport limited regimes. In FRC geometry, the thermal ion gyroradius is on the order of the size of the plasma near the magnetic null-point. Fast ion orbits intersect both the FRC core and the scrape-off layer (SOL) regions. Previous local simulations of electrostatic drift-wave instabilities using the Gyrokinetic Toroidal Code (GTC) find the core to be robustly stable with driftwave instability only in the SOL at frequencies approaching the ion cyclotron frequency. Therefore, FRC transport studies require fully kinetic ion simulations with cross-separatrix coupling between the core and SOL. Here we report progress of such global simulations using fully kinetic ions and drift kinetic electrons, including the implementation of the Boris push scheme for cyclotron motion and cylindrical coordinates for the separatrix. Supported by the Norman Rostoker Fellowship.

  16. Inelastic processes in ion/surface collisions: Direct recoil ion fractions as a function of kinetic energy

    NASA Astrophysics Data System (ADS)

    Rabalais, J. Wayne; Chen, Jie-Nan

    1986-09-01

    Time-of-flight (TOF) spectra of the scattered and recoiled particles resulting from 1-10 keV Ar+ ions impingent on surfaces of MgO, Mg(OH)2, graphite, Si, and SiO2 have been obtained. Measurements of directly recoiled (DR) neutrals plus ions and neutrals only are used to calculate positive and negative ion fractions Y+,- from DR events. These positive and negative ion yields observed for DR of H, C, O, and Si have distinctly different behavior as a function of ion kinetic energy. The Y+ values exhibit a ``threshold-type'' behavior with a steep rise followed by a slowly rising or plateau region at higher energy. The Y- values exhibit a maximum in the low energy region followed by a decreasing yield as energy increases. The Y-/Y+ ratio for C and O is very sensitive to the amount of hydrogen present, with the Y+ yields dropping as hydrogen concentration increases. The recently developed model for electronic transitions in keV ion/surface collisions which considers Auger and resonant transitions along the ion trajectory and electron promotions in the quasidiatomic molecule of the close atomic encounter is extended to include DR events. Analytical expressions for Y+,- are derived for the case of surface atoms in positive, neutral, and negative bonding environments. These model expressions are fitted to the experimental data, allowing determination of the probabilities of ionization in the close atomic encounter and of electron capture along the outgoing trajectory.

  17. Kinetic Structures of Quasi-Perpendicular Shocks in Global Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Peng, I. B.; Markidis, S.; Laure, E.; Johlander, A.; Vaivads, A.; Khotyaintsev, Y. V.; Pierre, H.; Lapenta, G.

    2015-12-01

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has been identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.

  18. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    SciTech Connect

    Peng, Ivy Bo Markidis, Stefano; Laure, Erwin; Johlander, Andreas; Vaivads, Andris; Khotyaintsev, Yuri; Henri, Pierre; Lapenta, Giovanni

    2015-09-15

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has been identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.

  19. The Role of Kinetic Effects, Including Plasma Rotation and Energetic Particles, in Resistive Wall Mode Stability

    NASA Astrophysics Data System (ADS)

    Berkery, John W.

    2009-11-01

    Continuous, disruption-free operation of tokamaks requires stabilization of the resistive wall mode (RWM). Theoretically, the RWM is thought to be stabilized by energy dissipation mechanisms that depend on plasma rotation and other parameters, with kinetic effects being emphasized.footnotetextB. Hu et al., Phys. Plasmas 12 (2005) 057301. Experiments in NSTX show that the RWM can be destabilized in high rotation plasmas while low rotation plasmas can be stable, which calls into question the concept of a simple critical plasma rotation threshold for stability. The present work tests theoretical stabilization mechanisms against experimental discharges with various plasma rotation profiles created by applying non-resonant n=3 braking, and with various fast particle fractions. Kinetic modification of ideal stability is calculated with the MISK code, using experimental equilibrium reconstructions. Analysis of NSTX discharges with unstable RWMs predicts near-marginal mode growth rates. Trapped ions provide the dominant kinetic resonances, while fast particles contribute an important stabilizing effect. Increasing or decreasing rotation in the calculation drives the prediction farther from the marginal point, showing that unlike simpler critical rotation theories, kinetic theory allows a more complex relationship between plasma rotation and RWM stability. Results from JT-60U show that energetic particle modes can trigger RWMsfootnotetextG. Matsunaga et al., IAEA FEC 2008 Paper EX/5-2.. Kinetic theory may explain how fast particle loss can trigger RWMs through the loss of an important stabilization mechanism. These results are applied to ITER advanced scenario equilibria to determine the impact on RWM stability.

  20. Ion composition and kinetics in Mercury's magnetotail (Invited)

    NASA Astrophysics Data System (ADS)

    Gershman, D. J.; Slavin, J. A.; Raines, J. M.; Zurbuchen, T.; Anderson, B. J.; Korth, H.; Baker, D. N.; Solomon, S. C.

    2013-12-01

    We present the first targeted study of the kinetic properties of Mercury's magnetotail plasmas using three-dimensional data from the Fast Imaging Plasma Spectrometer sensor on the MESSENGER spacecraft. The average velocity distribution functions of both solar wind and planetary ions in the plasma sheet are consistent with hot, near-isotropic Maxwellian distributions, enabling an estimation of both density and temperature for each species. Although the temperature and density of the H+-dominated plasma sheet vary over the ranges ~2-20 cm-3 and ~5-30 MK, respectively, they maintain a nearly constant thermal pressure of ~0.75 nPa, sufficient to balance the observed diamagnetic depressions in Mercury's magnetotail magnetic field. Solar wind ions, namely He2+ and O6++C5+, retain near-solar-wind abundances with respect to H+ and exhibit mass-proportional ion temperatures. Conversely, planetary ion species such as He+, O+, and Na+ are accelerated to approximately the same average energies. Substantial heavy ion plasma content in the pre-midnight plasma sheet suggests that planetary ions may asymmetrically mass-load Mercury's magnetotail, though it remains to be seen whether the predicted quasi-adiabaticity of these ions permits them to dynamically influence the ambient plasma. No such asymmetry with respect to local midnight is evident in the measured planetary ion temperatures. The temperature of He2+ is strongly correlated with that of H+ in the plasma sheet, which scales linearly with upstream solar wind speed (vsw) due to the conversion of solar wind ram pressure to plasma thermal pressure across Mercury's bow shock. The temperature of Na+-group ions, however, increases only linearly with solar wind speed for vsw < 500 km/s. For vsw > 500 km/s, the temperature of Na+ remains near ~25 MK, suggesting the presence of a saturation effect in the energization process of planetary ions at Mercury.

  1. Characterizing the kinetics of suspended cylindrical particles by polarization measurements

    NASA Astrophysics Data System (ADS)

    Liao, Ran; Ou, Xueheng; Ma, Hui

    2015-09-01

    Polarization has promising potential to retrieve the information of the steady samples, such as tissues. However, for the fast changing sample such as the suspended algae in the water, the kinetics of the particles also influence the scattered polarization. The present paper will show our recent results to extract the information about the kinetics of the suspended cylindrical particles by polarization measurements. The sample is the aqueous suspension of the glass fibers stirred by a magnetic stirrer. We measure the scattered polarization of the fibers by use of a simultaneous polarization measurement system and obtain the time series of two orthogonal polarization components. By use of correlation analysis, we obtain the time parameters from the auto-correlation functions of the polarization components, and observe the changes with the stirring speeds. Results show that these time parameters indicate the immigration of the fibers. After discussion, we find that they may further characterize the kinetics, including the translation and rotation, of the glass fibers in the fluid field.

  2. Annealing kinetics of latent particle tracks in Durango apatite

    SciTech Connect

    Afra, B.; Rodriguez, M. D.; Giulian, R.; Kluth, P.; Lang, M.; Zhang, J.; Ewing, R. C.; Kirby, N.; Trautmann, C.; Toulemonde, M.

    2011-02-01

    Using synchrotron small-angle x-ray scattering we determine the ''latent'' track morphology and the track annealing kinetics in the Durango apatite. The latter, measured during ex situ and in situ annealing experiments, suggests structural relaxation followed by recrystallization of the damaged material. The resolution of fractions of a nanometer with which the track radii are determined, as well as the nondestructive, artefact-free measurement methodology shown here, provides an effective means for in-depth studies of ion-track formation in natural minerals under a wide variety of geological conditions.

  3. Nonequilibrium statistical field theory for classical particles: Basic kinetic theory.

    PubMed

    Viermann, Celia; Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias

    2015-06-01

    Recently Mazenko and Das and Mazenko [Phys. Rev. E 81, 061102 (2010); J. Stat. Phys. 149, 643 (2012); J. Stat. Phys. 152, 159 (2013); Phys. Rev. E 83, 041125 (2011)] introduced a nonequilibrium field-theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.

  4. Kinetic effects of energetic particles on resistive MHD stability.

    PubMed

    Takahashi, R; Brennan, D P; Kim, C C

    2009-04-03

    We show that the kinetic effects of energetic particles can play a crucial role in the stability of the m/n=2/1 tearing mode in tokamaks (e.g., JET, JT-60U, and DIII-D), where the fraction of energetic particle beta(frac) is high. Using model equilibria based on DIII-D experimental reconstructions, the nonideal MHD linear stability of cases unstable to the 2/1 mode is investigated including a deltaf particle-in-cell model for the energetic particles coupled to the nonlinear 3D resistive MHD code NIMROD [C. C. Kim et al., Phys. Plasmas 15, 072507 (2008)10.1063/1.2949704]. It is observed that energetic particles have significant damping and stabilizing effects at experimentally relevant beta, beta(frac), and S, and excite a real frequency of the 2/1 mode. Extrapolation of the results is discussed for implications to JET and ITER, where the effects are projected to be significant.

  5. Fully kinetic particle simulations of high pressure streamer propagation

    NASA Astrophysics Data System (ADS)

    Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert

    2012-10-01

    Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].

  6. Kinetic behavior of solid particles in fluidized beds: Annual report

    SciTech Connect

    Kono, H.O.; Huang, C.C.

    1987-10-01

    This report summarizes technical accomplishments for the first year in a 3-year contract project for the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE) under contract number AC21-86MC23249. The objectives of the project are (1) to develop experimental techniques for measuring the forces of fluidized particles, and (2) to predict solid particle performance in fluidized beds using data analysis and mathematical modeling. During the first year, the fracture-sensitive tracer-particle method was developed and applied to investigate the effects of fluidized particle size, superficial gas velocity, bed height, bed diameter, and bed configuration on the kinetic behavior of solid particles in fluidized beds. Quantitative data and comprehensive information were obtained. A piezoresistive strain-gauge sensor and a PC data-acquisition system were also developed; these are being used to measure the force distribution in fluidized beds. The pressure fluctuation method will also be investigated in the near future. 12 refs., 24 figs., 2 tabs.

  7. Strange Particles and Heavy Ion Physics

    SciTech Connect

    Bassalleck, Bernd; Fields, Douglas

    2016-04-28

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.

  8. Continuum Theory of Phase Separation Kinetics for Active Brownian Particles

    NASA Astrophysics Data System (ADS)

    Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J.; Marenduzzo, Davide; Cates, Michael E.

    2013-10-01

    Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.

  9. Dipole-Potential-Mediated Effects on Ion Pump Kinetics

    PubMed Central

    Clarke, Ronald J.

    2015-01-01

    The kinetics of conformational changes of P-type ATPases necessary for the occlusion or deocclusion of transported ions are known to be sensitive to the composition of the surrounding membrane, e.g., phospholipid content, mole percentage of cholesterol, and the presence of lipid-bound anions. Research has shown that many membrane components modify the dipole potential of the lipid head-group region. Based on the observation that occlusion/deocclusion reactions of ion pumps perturb the membrane surrounding the protein, a mechanism is suggested whereby dipole potential modifiers induce preferential stabilization or destabilization of occluded or nonoccluded states of the protein, leading to changes in the forward and backward rate constants for the transition. The mechanism relies on the assumption that conformational changes of the protein are associated with changes in its hydrophobic thickness that requires a change in local lipid packing density to allow hydrophobic matching with the membrane. The changes in lipid packing density cause changes in local lipid dipole potential that are responsible for the dependence of conformational kinetics on dipole potential modifiers. The proposed mechanism has the potential to explain effects of lipid composition on the kinetics of any membrane protein undergoing significant changes in its membrane cross-sectional area during its activity. PMID:26488640

  10. Ion specificity in α-helical folding kinetics.

    PubMed

    von Hansen, Yann; Kalcher, Immanuel; Dzubiella, Joachim

    2010-11-04

    The influence of the salts KCl, NaCl, and NaI at molar concentrations on the α-helical folding kinetics of the alanine-based oligopeptide Ace-AEAAAKEAAAKA-Nme is investigated by means of (explicit-water) molecular dynamics simulations and a diffusional analysis. The mean first passage times for folding and unfolding are found to be highly salt-specific. In particular, the folding times increase about 1 order of magnitude for the sodium salts. The drastic slowing can be traced to long-lived, compact configurations of the partially folded peptide, in which sodium ions are tightly bound by several carbonyl and carboxylate groups. This multiple trapping leads to a nonexponential residence time distribution of the cations in the first solvation shell of the peptide. The analysis of α-helical folding in the framework of diffusion in a reduced (one-dimensional) free energy landscape further shows that the salt not only specifically modifies equilibrium properties but also induces kinetic barriers due to individual ion binding. In the sodium salts, for instance, the peptide's configurational mobility (or "diffusivity") can decrease about 1 order of magnitude. This study demonstrates the highly specific action of ions and highlights the intimate coupling of intramolecular friction and solvent effects in protein folding.

  11. Adsorption intrinsic kinetics and isotherms of lead ions on steel slag.

    PubMed

    Liu, Sheng-Yu; Gao, Jin; Yang, Yi-Jin; Yang, Ying-Chun; Ye, Zhi-Xiang

    2010-01-15

    Batch experiments were carried out to investigate the kinetics of adsorption of lead ions by steel slag on the basis of the external diffusion, intra-particle diffusion and adsorption reaction model (pseudo-first-order, pseudo-second-order). The results showed that the controlling step for the adsorption kinetics changed with the varying experimental parameters. When the particle size of steel slag was larger than 120 mesh, intra-particle diffusion of Pb(2+) was the controlling step, and when the initial concentration of Pb(2+) was less than 150 m gL(-1) or the shaking rate was lower than 150 rpm, external diffusion of Pb(2+) was promoted. Contrary to the former experimental conditions the adsorption reaction was the controlling step, and the adsorption followed second-order kinetics, with an adsorption rate constant of 13.26 g mg(-1)min(-1). The adsorption isotherm of Pb(2+) with steel slag followed the Langmuir model, with a correlation coefficient of 0.99.

  12. Understanding memory effects in Li-ion batteries: evidence of a kinetic origin in TiO2 upon hydrogen annealing.

    PubMed

    Ventosa, E; Löffler, T; La Mantia, F; Schuhmann, W

    2016-09-20

    Memory effects in Li-ion battery materials have been explained on the basis of the thermodynamics of many-particles body, however the role of the (de-)intercalation kinetics is not yet clear. We demonstrate that kinetic aspects, specifically Li-ion mobility, are determining the magnitude of the memory effect in TiO2 by studying samples with different levels of oxygen vacancies.

  13. Kinetic particle simulation of turbulence in an FRC geometry

    NASA Astrophysics Data System (ADS)

    Fulton, Daniel; Lau, Calvin; Holod, Ihor; Lin, Zhihong; Dettrick, Sean; Binderbauer, Michl; Tajima, Toshiki

    2014-10-01

    Core turbulence in a Field Reversed Configuration (FRC) is studied using the Gyrokinetic Toroidal Code with modified equilibrium geometry. The code solves the gyrokinetic equation for ions and the drift kinetic equation for electrons. The simulation region is an annulus which excludes plasma near the O-point to avoid breakdown of the gyrokinetic dynamics of ions. The C-2 FRC equilibrium is introduced to study similar conditions as found in the C-2 experiments, where the core is found to be relatively quiescent. In simulation, we find the C-2 plasma is stable to ion temperature gradient instabilities using realistic experimental parameters, consistent with experimental results obtained in C-2. When temperature and density gradients are enhanced beyond typical C-2 parameters, we observe a class of instabilities that appear as flute-like drift modes. These results shed light on a possible reason why transport temperature scaling in the C-2 core is radically different from that of typical turbulent transport scaling such as the Bohm-like regime. Progress is also reported on simulations of scrape off layer turbulence and electron driven turbulence.

  14. Spectator Ions ARE Important! A Kinetic Study of the Copper-Aluminum Displacement Reaction

    ERIC Educational Resources Information Center

    Sobel, Sabrina G.; Cohen, Skyler

    2010-01-01

    Surprisingly, spectator ions are responsible for unexpected kinetics in the biphasic copper(II)-aluminum displacement reaction, with the rate of reaction dependent on the identity of the otherwise ignored spectator ions. Application of a published kinetic analysis developed for a reaction between a rotating Al disk and a Cu(II) ion solution to the…

  15. Kinetics of particle deposition in the oblique impinging jet cell.

    PubMed

    Adamczyk, Zbigniew; Musiał, Elizeusz; Siwek, Barbara

    2004-01-01

    A new oblique impinging-jet (OBIJ) cell was developed, suitable for colloid deposition studies at various interfaces. In contrast to previously used orthogonal cells, the OBIJ construction makes possible direct microscope observations of particle deposition on nontransparent substrates. The cell performance was tested by studying kinetics of polystyrene latex particle deposition on mica. Two limiting cell configuration were used in the experiments: (i) the lower position (inverted microscope observation of substrate surface through air) and (ii) the upper position (observation of the substrate surface with adsorbed particles through the suspension layer). The dependence of local mass transfer rate (particle flux) on the position over the substrate surface was studied for various flow Reynolds numbers. It was demonstrated that deposition rate attained maximum at the flow stagnation point whose position was dependent on Re number. Moreover, it was shown that the local flux decreased at much slower rate when moving in the downstream direction, than for previously used impinging-jet cells. Consequently, the area of uniform transport conditions was larger, enabling more precise determination of the limiting particle flux at the stagnation-point. The dependence of the flux on Re number was systematically studied for various ionic strength of the suspension. It was demonstrated, in accordance with previous results for the ordinary impinging-jet, that the flux increased significantly for low ionic strength and high Re number. This phenomenon, referred to as the inverse salt effect, was interpreted in terms of the convective diffusion theory. The governing transport equation originating from this theory was solved numerically, for the region near the stagnation point, using the finite-difference method. These numerical solutions were used for nonlinear fitting of the flow intensity parameter dependence on the Re number. In this way the flow field in the vicinity of the

  16. Fluid electrons with kinetic closure for long wavelength energetic particles driven modes

    SciTech Connect

    Chen Yang; Parker, Scott E.

    2011-05-15

    A kinetic electron closure scheme is presented for the fluid electron model that has been implemented in the GEM code [J. Lang, Y. Chen, S. E. Parker, and G.-Y. Fu, Phys. Plasmas 16, 102101 (2009)]. The most important element of the closure scheme is a complete Ohm's law for the parallel electric field E{sub ||}, derived by combining the quasineutrality condition, the Ampere's equation and the v{sub ||} moment of the gyrokinetic equations. A discretization method for the closure scheme is presented and studied in detail for a three-dimensional shearless slab plasma. It is found that for long wavelength shear Alfven waves the kinetic closure scheme is both more accurate and more robust than the previous GEM algorithm [Y. Chen and S. E. Parker, J. Comput. Phys. 189, 463 (2003)], whereas for the ion-gradient-driven instability the previous algorithm is more efficient. The fluid electron model with kinetic electron closure is useful for studying energetic particles driven modes with electron kinetic damping effects.

  17. The influence of particle size on latex colloid deposition kinetics

    SciTech Connect

    Litton, G.M.; Olson, T.M.

    1995-12-01

    The influence of particle size on the deposition kinetics of latex colloids in packed-bed columns was investigated in the presence of sodium dodecyl sulfate. Deposition rates, expressed as attachment efficiencies, were determined with 245, 481, and 755 nm carboxyl and 248 and 753 nm sulfate latex microspheres in granular quartz beds as a function of ionic strength. Experiments were performed at pH 10 in the presence of 10{sup -3} M sodium dodecyl sulfate to mask possible hydrophobic regions on the interacting surfaces. The onset of unfavorable filtration conditions and the sensitivity of the experimental attachment efficiencies, {alpha}{sub exp}, to changes in the ionic strength were both particle size dependent. However, both effects were opposite to that predicted by DLVO theory based on the primary interaction energy barrier height. Correlations of {alpha}{sub exp} with the secondary minimum showed that as attachment efficiencies approached 1 the depth of the secondary well increased. These observations suggest that particles may be retained within the secondary minimum even when a primary energy barrier is sufficient to inhibit attachment.

  18. Kinetic Studies with Ion Selective Electrodes: Determination of Creatinine in Urine with a Picrate Ion Selective Electrode: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Diamandis, E. P.; And Others

    1983-01-01

    The kinetic of the Jaffe reaction with picrate ion selective electrode (ISE) and a kinetic method for determining creatinine in urine is presented. The experiment could be used to familarize students with the application of ISE in kinetic studies and chemical analysis. (Author/JN)

  19. Emergence of ion channel modal gating from independent subunit kinetics

    PubMed Central

    Bicknell, Brendan A.

    2016-01-01

    Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca2+ concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior. PMID:27551100

  20. Charged particles and cluster ions produced during cooking activities.

    PubMed

    Stabile, L; Jayaratne, E R; Buonanno, G; Morawska, L

    2014-11-01

    Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles.

  1. Ion-release kinetics and ecotoxicity effects of silver nanoparticles.

    PubMed

    Lee, Yong-Ju; Kim, Jiwon; Oh, Jeehyun; Bae, Sujin; Lee, Sungkyu; Hong, In Seok; Kim, Sang-Ho

    2012-01-01

    The environmental toxicity associated with silver nanoparticles (AgNPs) has been a major focus in nanotoxicology. The Ag(+) released from AgNPs may affect ecotoxicity, although whether the major toxic effect is governed by Ag(+) ions or by AgNPs themselves is unclear. In the present study, we have examined the ecotoxicity of AgNPs in aquatic organisms, silver ion-release kinetics of AgNPs, and their relationship. The 48-h median effective concentration (EC50) values for Daphnia magna of powder-type AgNP suspensions were 0.75 µg/L (95% confidence interval [CI] = 0.71-0.78) total Ag and 0.37 µg/L (95% CI = 0.36-0.38) dissolved Ag. For sol-type AgNP suspension, the 48-h EC50 values for D. magna were 7.98 µg/L (95% CI = 7.04-9.03) total Ag and 0.88 µg/L (95% CI = 0.80-0.97) dissolved Ag. The EC50 values for the dissolved Ag of powder-type and sol-type AgNPs for D. magna showed similar results (0.37 µg/L and 0.88 µg/L) despite their differences of EC50 values in total Ag. We observed that the first-order rate constant (k) of Ag(+) ions released from AgNPs was 0.0734/h at 0.05 mg/L total Ag at 22°C within 6 h. The kinetic experiments and the toxicity test showed that 36% and 11% of sol-type AgNPs were converted to the Ag(+) ion form under oxidation conditions, respectively. Powder-type AgNPs showed 49% conversion rate of Ag(+) ion from AgNPs. We also confirmed that Ag(+) ion concentration in AgNP suspension reaches an equilibrium concentration after 48 h, which is an exposure time of the acute aquatic toxicity test.

  2. Bridging the fluid-kinetic gap with implicit particle methods

    NASA Astrophysics Data System (ADS)

    Amaya, Jorge; Bacchini, Fabio; Innocenti, Maria Elena; Jiang, Wei; Olshevsky, Vyacheslav; Lapenta, Giovanni

    2015-11-01

    Plasmas have intrinsic kinetic scales determined by the response of electrons and ions. The kinetic scales determine the finest scales that are to be expected in a plasma. However, the intrinsic scales are tiny compared with the system scales of interest in most situations where a fluid approach is more efficient. When computers will be able to resolve all scales for the problems of interest now, we will no longer be interested in them and we will be attempting much bigger and more challenging problems. There is now and there always will be a grand canyon between the scales we can resolve with the supercomputers available and the system sizes we want to consider. Mathematics needs to be called into action to lay a bridge over this grand canyon. We consider two pontifex methods: the implicit method and the multi level-multi domain method. Our most recent developments will be described and their properties of stability, accuracy and ability to resolve the different characteristics will be discussed. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  3. Verification of particle-in-cell simulations against exact solutions of kinetic equations

    NASA Astrophysics Data System (ADS)

    Turner, Miles

    2015-09-01

    Demonstrating correctness of computer simulations (or verification) has become a matter of increasing concern in recent years. The strongest type of verification is a demonstration that the simulation converges to an exact solution of the mathematical model that is supposed to be solved. Of course, this is possible only if such an exact solution is available. In this paper, we are interested in kinetic simulation using the particle-in-cell method, and consequently a relevant exact solution must be a solution of a kinetic equation. While we know of no such solutions that exercise all the features of a typical particle-in-cell simulation, in this paper we show that the mathematical literature contains several such solutions that involve a large fraction of the functionality of such a code, and which collectively exercise essentially all of the code functionality. These solutions include the plane diode, the neutron criticality problem, and the calculation of ion energy distribution functions in oscillating fields. In each of theses cases, we can show the the particle-in-cell simulation converges to the exact solution in the expected way. These demonstrations are strong evidence of correct implementation. Work supported by Science Foundation Ireland under grant 08/SRC/I1411.

  4. Gelation kinetics of gelatin using particle tracking microrheology

    NASA Astrophysics Data System (ADS)

    Hardcastle, Joseph; Bansil, Rama

    2012-02-01

    Previous studies with gelatin have observed four distinct stages during the physical gelation process [Normand et al. Macromolecules, 2000, 33, 1063]. In this presentation we report measurements of microrheology in an effort to examine the time evolution of the gel on short length scales and time scales. By tracking latex particles in gelatin solution at different temperatures we can follow the microrheological changes and kinetics of the gelation process. Using the generalized Stokes-Einstein relation viscoelastic properties of these quasi-static gel states the evolution of the storage and loss moduli, G' and G'', are examined as functions of both time and temperature. The data show that both G' and G'' exhibit power law scaling versus frequency with the same exponent. The temperature and concentration dependence of the frequency at which the system crosses over from viscous to elastic behavior will be presented.

  5. Superconducting Kinetic Inductance Detectors for astronomy and particle physics

    NASA Astrophysics Data System (ADS)

    Calvo, M.; Goupy, J.; D`Addabbo, A.; Benoit, A.; Bourrion, O.; Catalano, A.; Monfardini, A.

    2016-07-01

    Kinetic Inductance Detectors (KID) represent a novel detector technology based on superconducting resonators. Since their first demonstration in 2003, they have been rapidly developed and are today a strong candidate for present and future experiments in the different bands of the electromagnetic spectrum. This has been possible thanks to the unique features of such devices: in particular, they couple a very high sensitivity to their intrinsic suitability for frequency domain multiplexed readout, making the fabrication of large arrays of ultrasensitive detectors possible. There are many fields of application that can profit of such detectors. Here, we will briefly review the principle of operation of a KID, and give two sample applications, to mm-wave astronomy and to particle physics.

  6. A survey of the cusp ion outflow's kinetic energy flux measured by Polar and FAST during conjunction events

    NASA Astrophysics Data System (ADS)

    Tian, S.; Wygant, J. R.; Cattell, C. A.; Scudder, J. D.; McFadden, J. P.; Mozer, F.; Russell, C. T.

    2014-12-01

    Polar and FAST conjunction events are selected from Polar cusp crossings in 1997. These conjunction events reveal a common pattern in which Polar observed significant ion kinetic energy flux in the upward direction at mid-altitudes (below 6 Re). Depending on the magnetic activity level, the maximum ion kinetic energy flux is on the order of 10-100 mW/m^2, when mapped to the ionosphere. It is an order of magnitude or more larger than the ion kinetic energy flux observed by FAST in conjunction at altitudes of <1 Re. Therefore, the ion outflows are significantly energized within the mid-latitude cusp. Also shown in the conjunction events is that the downward Poynting flux has enough wave energy to power the ion energization. The observed pattern suggests that the cusp at ionosphere altitudes is not a simple mapping of higher altitude particles. Instead, the mid-latitude cusp receives significant downward Poynting flux from higher altitude due to the solar wind/magnetosphere coupling. Within the mid-altitude cusp, the Poynting flux then supplies energy to power the ionosphere/magnetosphere coupling. Ion outflows are triggered and energized, forming a planetary wind that feeds the magnetosphere with ionospheric ions. During southward IMF, the wind convects anti-sunward and can affect the tail lobe, the nightside auroral region and the nightside plasma sheet.

  7. Kinetic and thermodynamic evaluation of phosphate ions binding onto sevelamer hydrochloride.

    PubMed

    Elsiddig, Reem; Hughes, Helen; Owens, Eleanor; O' Reilly, Niall J; O'Grady, David; McLoughlin, Peter

    2014-10-20

    Sevelamer hydrochloride is the first non-aluminium, non-calcium-based phosphate binder developed for the management of hyperphosphatemia in end stage renal diseases. It is a synthetic ion-exchange polymer which binds and removes phosphate ions due to the high content of cationic charge associated with protonated amine groups on the polymer matrix. This is the first in-depth study investigating phosphate removal in vitro from aqueous solutions using commercially available sevelamer hydrochloride at physiological conditions of phosphate level, pH and temperature. The kinetic and thermodynamic parameters of phosphate binding onto the sevelamer hydrochloride particles were evaluated in order to define the binding process. A series of kinetic studies were carried out in order to delineate the effect of initial phosphate concentration, absorbent dose and temperature on the rate of binding. The results were analysed using three kinetic models with the best-fit of the experimental data obtained using a pseudo-second order model. Thermodynamic parameters provide in-depth information on inherent energetic changes that are associated with binding. Free energy ΔG°, enthalpy ΔH°, and entropy ΔS° changes were calculated in this study in order to assess the relationship of these parameters to polymer morphology. The binding reaction was found to be a spontaneous endothermic process with increasing entropy at the solid-liquid interface.

  8. Stopping power of charged particles due to ion wave excitations.

    PubMed

    Nitta, H; Muroki, C; Nambu, M

    2002-08-01

    Stopping power due to ion wave excitations is derived for a charged particle moving in a two-component plasma. Unlike previous theories based on ion-acoustic-wave approximation (IAWA), the excitation of short-wavelength ion waves is taken into account. The obtained stopping power has a magnitude larger than that of IAWA. Stopping power at subsonic velocities, where stopping power in IAWA disappears, is even larger than that of supersonic velocities.

  9. Stopping power of charged particles due to ion wave excitations

    NASA Astrophysics Data System (ADS)

    Nitta, H.; Muroki, C.; Nambu, M.

    2002-08-01

    Stopping power due to ion wave excitations is derived for a charged particle moving in a two-component plasma. Unlike previous theories based on ion-acoustic-wave approximation (IAWA), the excitation of short-wavelength ion waves is taken into account. The obtained stopping power has a magnitude larger than that of IAWA. Stopping power at subsonic velocities, where stopping power in IAWA disappears, is even larger than that of supersonic velocities.

  10. A multi-ion particle sensor.

    PubMed

    Ruedas-Rama, Maria Jose; Wang, Xiaojuan; Hall, Elizabeth A H

    2007-04-21

    The first sub-micron polyacrylic sensor containing two independent ion-sensing systems is shown, that uses a single excitation wavelength and separates signals by using quantum dot donors to form FRET pairs with other fluorophores.

  11. Effect of ion streaming on particle-particle interactions in a dusty plasma

    SciTech Connect

    Vyas, Vivek; Kushner, Mark J.

    2005-02-15

    Dust particles in low-temperature, low-pressure plasmas form Coulomb crystals and display collective behavior under select conditions. The trajectories of ions can be perturbed as they pass by negatively charged dust particles and, in some cases, will converge beyond the particle. This process, called ion streaming, produces a positive potential in the wakefield of the particle that can be large enough to perturb interparticle dynamics. In this paper, we discuss results from a three-dimensional model for dust particle transport in plasma processing reactors with which we investigated the effects of ion streaming on particle-particle interactions. When including the wakefield potential produced by ion streaming, dust particles can form vertically correlated pairs when trapped in electrical potential wells. The ion-streaming force was found to be significant only over a select range of pressures and for given combinations of particle sizes and mass densities. The formation of vertically correlated pairs critically depends on the shape of the potential well. Wakefield forces can also affect the order of multilayer lattices by producing vertical correlations between particles in adjacent layers.

  12. The Influence of Trapped Ions and Non-equilibrium EDF on Dust Particle Charging

    SciTech Connect

    Sukhinin, G. I.; Fedoseev, A. V.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    Dust particles charging in a low-pressure glow discharge was investigated theoretically with the help of model for trapped and free ions coupled with the self-consistent solution of Poisson equation for electric potential. Non-equilibrium (non-Maxwellian) character of electron energy distribution function depending on gas pressure and electric field was also taken into account on the basis of the solution of kinetic Boltzmann equation. The results were compared with the experimental measurements of dust particle charge depending on gas pressure. It was shown that the calculated effective charge, i.e. the difference of the dust particle charge and trapped ion charge, is in a fairly good agreement with the experimental data.

  13. Design Conception of a Solution Ion Source Based Particle Accelerator

    NASA Astrophysics Data System (ADS)

    Ashis, Das

    2004-05-01

    Particle accelerators till date have been based on several ion source principles such as thermal ionization, stripping etc. Such methods of ion source enabling is very limited by high temperature of ionization required in cases of very heavy ions generation. Heavy ions speeding in accelerator may lead to experiments with such ions in both accelerators and colliders, that is believed capable of opening new regimes of particle accelerator studies that is very heavy very heavy collision. Literature indicate that many yet-unknown mysteries of atomic and subnuclear Physics, creation and fate of Universe, new element synthesis all lie in this regime of investigation. In this paper, I outline a simpler and less energetic manner of creating, particularly, speeding very heavy ions using a solution ion stripping source such as with liquid ammonia which has ability to dissolve many heavy metals in form of ammonia-metal ion clusters, that can be led to a specially designed accelerator chamber as detailed in the paper. It is surprising indeed why such easy road to ions source generation was not conceived by particle accelerator Physicists earlier.

  14. Determination of Dusty Particle Charge Taking into Account Ion Drag

    SciTech Connect

    Ramazanov, T. S.; Dosbolayev, M. K.; Jumabekov, A. N.; Amangaliyeva, R. Zh.; Orazbayev, S. A.; Petrov, O. F.; Antipov, S. N.

    2008-09-07

    This work is devoted to the experimental estimation of charge of dust particle that levitates in the stratum of dc glow discharge. Particle charge is determined on the basis of the balance between ion drag force, gravitational and electric forces. Electric force is obtained from the axial distribution of the light intensity of strata.

  15. Study of the ion kinetic effects in ICF run-away burn using a quasi-1D hybrid model

    NASA Astrophysics Data System (ADS)

    Huang, C.-K.; Molvig, K.; Albright, B. J.; Dodd, E. S.; Vold, E. L.; Kagan, G.; Hoffman, N. M.

    2017-02-01

    The loss of fuel ions in the Gamow peak and other kinetic effects related to the α particles during ignition, run-away burn, and disassembly stages of an inertial confinement fusion D-T capsule are investigated with a quasi-1D hybrid volume ignition model that includes kinetic ions, fluid electrons, Planckian radiation photons, and a metallic pusher. The fuel ion loss due to the Knudsen effect at the fuel-pusher interface is accounted for by a local-loss model by Molvig et al. [Phys. Rev. Lett. 109, 095001 (2012)] with an albedo model for ions returning from the pusher wall. The tail refilling and relaxation of the fuel ion distribution are captured with a nonlinear Fokker-Planck solver. Alpha heating of the fuel ions is modeled kinetically while simple models for finite alpha range and electron heating are used. This dynamical model is benchmarked with a 3 T hydrodynamic burn model employing similar assumptions. For an energetic pusher (˜40 kJ) that compresses the fuel to an areal density of ˜1.07 g/cm 2 at ignition, the simulation shows that the Knudsen effect can substantially limit ion temperature rise in runaway burn. While the final yield decreases modestly from kinetic effects of the α particles, large reduction of the fuel reactivity during ignition and runaway burn may require a higher Knudsen loss rate compared to the rise time of the temperatures above ˜25 keV when the broad D-T Gamow peak merges into the bulk Maxwellian distribution.

  16. Probing the oxidation kinetics of small permalloy particles

    NASA Astrophysics Data System (ADS)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu; Shirolkar, Mandar M.; Li, Ming; Wang, Haiqian

    2017-02-01

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe2O3/(Ni, Fe)3O4 plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method. Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe2O3 to (Ni, Fe)3O4 induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed.

  17. A particle dynamic model of red blood cell aggregation kinetics.

    PubMed

    Fenech, Marianne; Garcia, Damien; Meiselman, Herbert J; Cloutier, Guy

    2009-11-01

    To elucidate the relationship between microscopic red blood cell (RBC) interactions and macroscopic rheological behavior, we propose a two-dimensional particle model capable of mimicking the main characteristics of RBC aggregation kinetics. The mechanical model of RBCs sheared in Couette flow is based on Newton law. We assumed a hydrodynamic force to move particles, a force to describe aggregation and an elasticity force. The role of molecular mass and concentration of neutral polymers on aggregation [Neu, B., and H. J. Meiselman. Biophys. J. 83:2482-2490, 2002] could be mimicked. Specifically, it was shown that for any shear rate (SR), the mean aggregate size (MAS) grew with time until it reached a constant value, which is consistent with in vitro experiments. It was also demonstrated that we could mimic the modal relationship between MAS and SR and the occurrence of maximum aggregation at about 0.1 s(-1). As anticipated, simulations indicated that an increase in aggregation force augmented MAS. Further, augmentation of the depletion layer thickness influenced MAS only for SR close to zero, which is a new finding. To conclude, our contribution reveals that the aggregation force intensity and SR influence the steady state MAS, and that the depletion and layer thickness affect the aggregation speed.

  18. Particle radiotherapy with carbon ion beams

    PubMed Central

    2013-01-01

    Carbon ion radiotherapy offers superior dose conformity in the treatment of deep-seated malignant tumours compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. The algorithm of treatment planning and beam delivery system is tailored to the individual parameters of the patient. The present article reviews the available literatures for various disease sites including the head and neck, skull base, lung, liver, prostate, bone and soft tissues and pelvic recurrence of rectal cancer as well as physical and biological properties. PMID:23497542

  19. Negative ion-driven associated particle neutron generator

    SciTech Connect

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in either pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.

  20. Negative ion-driven associated particle neutron generator

    NASA Astrophysics Data System (ADS)

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2016-01-01

    An associated particle neutron generator is described that employs a negative ion source to produce high neutron flux from a small source size. Negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). The neutron generator can operate in either pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to ~108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.

  1. Negative ion-driven associated particle neutron generator

    DOE PAGES

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less

  2. Probing kinetic and multi-ion-fluid effects in ICF implosions using DT and D He reaction histories on OMEGA

    NASA Astrophysics Data System (ADS)

    Sio, H. W.; Frenje, J. A.; Gatu Johnson, M.; Li, C. K.; Petrasso, R. D.; Katz, J.; Stoeckl, C.; Kwan, T.; Le, A.; Bellei, C.

    2016-10-01

    To explore kinetic and multi-ion-fluid effects in D3He-gas-filled shock-driven implosions (with a trace amount of T2) , D3He and DT reaction histories were measured using the upgraded Particle X-ray Temporal Diagnostic (PXTD) on OMEGA. The relative timing between the D3He and DT reaction histories was measured with 10-ps precision. The initial gas-fill density of the thin-glass targets was varied from 0.3 - 2.2 mg/cc, spanning highly-kinetic to more hydrodynamic-like plasma conditions during shock burn. Multi-ion-fluid simulations of similar implosions show reaction histories that are quantitatively different than those from average-ion-fluid simulations, including differences in burn onset, burn width, and relative bang-time. The measured differences between the reaction histories will be contrasted to average-ion-fluid hydrodynamic simulations, as well as multi-ion-fluid and kinetic-ion simulations, using LSP. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  3. Kinetic-MHD hybrid simulation of fishbone modes excited by fast ions on the experimental advanced superconducting tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Pei, Youbin; Xiang, Nong; Hu, Youjun; Todo, Y.; Li, Guoqiang; Shen, Wei; Xu, Liqing

    2017-03-01

    Kinetic-MagnetoHydroDynamic hybrid simulations are carried out to investigate fishbone modes excited by fast ions on the Experimental Advanced Superconducting Tokamak. The simulations use realistic equilibrium reconstructed from experiment data with the constraint of the q = 1 surface location (q is the safety factor). Anisotropic slowing down distribution is used to model the distribution of the fast ions from neutral beam injection. The resonance condition is used to identify the interaction between the fishbone mode and the fast ions, which shows that the fishbone mode is simultaneously in resonance with the bounce motion of the trapped particles and the transit motion of the passing particles. Both the passing and trapped particles are important in destabilizing the fishbone mode. The simulations show that the mode frequency chirps down as the mode reaches the nonlinear stage, during which there is a substantial flattening of the perpendicular pressure of fast ions, compared with that of the parallel pressure. For passing particles, the resonance remains within the q = 1 surface, while, for trapped particles, the resonant location moves out radially during the nonlinear evolution. In addition, parameter scanning is performed to examine the dependence of the linear frequency and growth rate of fishbones on the pressure and injection velocity of fast ions.

  4. Kinetic particle simulation of discharge and wall erosion of a Hall thruster

    SciTech Connect

    Cho, Shinatora; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-06-15

    The primary lifetime limiting factor of Hall thrusters is the wall erosion caused by the ion induced sputtering, which is predominated by dielectric wall sheath and pre-sheath. However, so far only fluid or hybrid simulation models were applied to wall erosion and lifetime studies in which this non-quasi-neutral and non-equilibrium area cannot be treated directly. Thus, in this study, a 2D fully kinetic particle-in-cell model was presented for Hall thruster discharge and lifetime simulation. Because the fully kinetic lifetime simulation was yet to be achieved so far due to the high computational cost, the semi-implicit field solver and the technique of mass ratio manipulation was employed to accelerate the computation. However, other artificial manipulations like permittivity or geometry scaling were not used in order to avoid unrecoverable change of physics. Additionally, a new physics recovering model for the mass ratio was presented for better preservation of electron mobility at the weakly magnetically confined plasma region. The validity of the presented model was examined by various parametric studies, and the thrust performance and wall erosion rate of a laboratory model magnetic layer type Hall thruster was modeled for different operation conditions. The simulation results successfully reproduced the measurement results with typically less than 10% discrepancy without tuning any numerical parameters. It is also shown that the computational cost was reduced to the level that the Hall thruster fully kinetic lifetime simulation is feasible.

  5. Kinetic particle simulation of discharge and wall erosion of a Hall thruster

    NASA Astrophysics Data System (ADS)

    Cho, Shinatora; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-06-01

    The primary lifetime limiting factor of Hall thrusters is the wall erosion caused by the ion induced sputtering, which is predominated by dielectric wall sheath and pre-sheath. However, so far only fluid or hybrid simulation models were applied to wall erosion and lifetime studies in which this non-quasi-neutral and non-equilibrium area cannot be treated directly. Thus, in this study, a 2D fully kinetic particle-in-cell model was presented for Hall thruster discharge and lifetime simulation. Because the fully kinetic lifetime simulation was yet to be achieved so far due to the high computational cost, the semi-implicit field solver and the technique of mass ratio manipulation was employed to accelerate the computation. However, other artificial manipulations like permittivity or geometry scaling were not used in order to avoid unrecoverable change of physics. Additionally, a new physics recovering model for the mass ratio was presented for better preservation of electron mobility at the weakly magnetically confined plasma region. The validity of the presented model was examined by various parametric studies, and the thrust performance and wall erosion rate of a laboratory model magnetic layer type Hall thruster was modeled for different operation conditions. The simulation results successfully reproduced the measurement results with typically less than 10% discrepancy without tuning any numerical parameters. It is also shown that the computational cost was reduced to the level that the Hall thruster fully kinetic lifetime simulation is feasible.

  6. Kinetic temperature of dust particle motion in gas-discharge plasma.

    PubMed

    Norman, G E; Timofeev, A V

    2011-11-01

    A system of equations describing motion of dust particles in gas discharge plasma is formulated. This system is developed for a monolayer of dust particles with an account of dust particle charge fluctuations and features of the discharge near-electrode layer. Molecular dynamics simulation of the dust particles system is performed. A mechanism of dust particle average kinetic energy increase is suggested on the basis of theoretical analysis of the simulation results. It is shown that heating of dust particles' vertical motion is initiated by forced oscillations caused by the dust particles' charge fluctuations. The process of energy transfer from vertical to horizontal motion is based on the phenomenon of the parametric resonance. The combination of parametric and forced resonances explains the abnormally high values of the dust particles' kinetic energy. Estimates of frequency, amplitude, and kinetic energy of dust particles are close to the experimental values.

  7. Ion kinetic effects on the ignition and burn of inertial confinement fusion targets: A multi-scale approach

    SciTech Connect

    Peigney, B. E.; Larroche, O.

    2014-12-15

    In this article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal α-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A typical hot-spot ignition design is considered. Compared with fluid simulations where a multi-group diffusion scheme is applied to model α transport, the full ion-kinetic approach reveals significant non-local effects on the transport of energetic α-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are pre-heated by the escaping α-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of fusion products leads to a significant reduction of the fusion yield.

  8. Kinetic Effects on the Ion Sound Waves Generated by Stimulated Brillouin Scattering of a Spatially Smoothed Laser Beam

    NASA Astrophysics Data System (ADS)

    Riconda, Caterina; Hüller, Stefan; Myatt, Jason; Pesme, Denise

    Stimulated Brillouin Scattering (SBS) can drive ion sound waves to amplitudes such that steepening and particle kinetic effects occur. Such phenomena have been studied recently in spatial volumes corresponding to a single laser speckle, in two [Cohen, B. I. et al. Phys. Plasmas 4, 956 (1997)], and three spatial dimensions [Vu, H. X., Phys. Plasmas 4, 1841 (1997)]. We analyze the results of 2D kinetic simulations modeling the evolution of SBS in the case of a spatially smoothed laser beam interacting with a plasma containing many speckles. For this purpose, we have coupled a 2D particle-in-cell code to a 2D non-paraxial electromagnetic wave solver. The generation of a fast ion population is observed to initially take place in the most intense hot spots, resulting in a decrease of the amplitude of the ion sound wave amplitude generated by SBS in these hot spots. SBS activity is consequently reduced in the most intense laser speckles, so that the overall backscattering SBS reflectivity drops considerably below the values expected from models that do not account for particle kinetics and/or nonlinear hydrodynamics.

  9. Kinetic characteristics of mixed conductive electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Jianxin; Wang, Chunsheng; Wroblewski, Shannon

    The rate performances of four mixed conductive electrodes (Li 4/3Ti 5/3O 4, LiFePO 4, LiCoO 2 and LiCo 1/3Ni 1/3Mn 1/3O 2) were investigated using galvanostatic charge/discharge, electrochemical impedance Spectroscopy (EIS) and galvanostatic intermittent titration (GITT). These four electrode materials can be roughly divided into two groups according to the structure change during Li intercalation/extraction, i.e. the phase transition materials (Li 4/3Ti 5/3O 4 and LiFePO 4) and mixed phase transformation and solid solution materials (LiNi 1/3Mn 1/3Co 1/3O 2 and LiCoO 2). Both the ionic conductivity and phase transition kinetics have a strong impact on the rate capability of the electrode material in addition to the generally accepted factors such as particle size and electronic conductivity. The rate capabilities of Li 4/3Ti 5/3O 4 and LiFePO 4, which have an extended flat region in the charge/discharge curves, mainly depended on their phase transition kinetics. The rate performance of the solid solution materials were controlled by the ionic conductivity, with some influence from the electronic conductivity.

  10. Kinetic studies of clavulanic acid recovery by ion exchange chromatography.

    PubMed

    Barboza, M; Almeida, R M; Hokka, C O

    2001-01-01

    Clavulanic acid (CA) is a beta-lactamase inhibitor produced by strains of Streptomyces clavuligerus. Nowadays, the combination of CA with amoxycillin is the most successful example of the use of a beta-lactam antibiotic sensitive to beta-lactamases together with an inhibitor of these enzymes. Clavulanic acid is purified from fermentation broth by a series of steps consisting mainly of two-phase separation processes such as liquid-liquid extraction, adsorption or ion-exchange chromatography, among others. Amberlite IRA 400, a strong anion-exchange resin, has a very high adsorption capacity for CA (Mayer et al. 1997). This resin can be pre-treated with NaCl (chloride cycle), to remove selectively only those anions, which are able to displace chloride from the resin or with NaOH (hydroxyl cycle), to remove all species of anions. In order to decide the best operating conditions for CA recovery by ion-exchange resins and then to construct a model of this separation process, batch experiments were conducted using Amberlite IRA 400 in the chloride cycle. These runs were carried out in a 200 ml stirred tank, at two different initial solution pH, 6.2 and 4.0; the temperature was maintained at 10 degrees C and 20 degrees C during adsorption and 30 degrees C during the desorption step. It was possible, on the basis of these batch results, to model the separation process, including the adsorption kinetics, equilibrium data and mass transfer limitations.

  11. Cesium Ion Exchange Loading Kinetics Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-11-02

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (2 to 8 M) due to caustic leaching and higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of linear load velocity (4, 6, 8 cm/min), initial sodium concentration (2, 5, 8 M), initial sodium-to-cesium ratio (1.4E+05, 2.1E+05, 2.8E+05 mol/mol), initial sodium-to-hydroxide ratio (2.0, 3.0, 4.0 mol/mol), and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing was performed using a~2mL column packed with SRF resin with feed flowing through it in an up-flow pattern. Samples were taken at set intervals and the data analyzed to help understand the impact of these conditions on the SRF resin performance. It was found that the loading kinetics were not significantly impacted by the sodium concentration over the range tested. However, the loading kinetics were impacted by the linear load velocity. These results indicated that at the test temperature, the adsorption of cesium is strongly dependent on mass transfer through the film and not significantly impacted by interparticle diffusion. Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  12. Dispensing targets for ion beam particle generators

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1974-01-01

    A target for dispensing high energy protons or neutrons or ionized atoms or ionized molecules is provided which comprises a container for the target gas, which is at atmospheric or higher pressure. The container material can release the target gas in the spot where the container is heated above a predetermined temperature by the impact of an ion beam where protons or neutrons are desired, or by electrons where ionized atoms or molecules are desired. On the outside of the container, except for the region where the beam is to impact, there is deposited a layer of a metal which is imperious to gaseous diffusion. A further protective coating of a material is placed over the layer of metal, except at the region of the ion impact area in order to adsorb any unreacted gas in the vacuum in which the target is placed, to thereby prevent reduction of the high vacuum, as well as contamination of the interior of the vacuum chamber.

  13. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers.

    PubMed

    Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun

    2013-10-01

    An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF).

  14. Simulations of Magnetic Reconnection - Kinetic Mechanisms Underlying the Fluid Description of Ions

    NASA Technical Reports Server (NTRS)

    Aunai, icolas; Belmont, Gerard; Smets, Roch

    2012-01-01

    Because of its ability to transfer the energy stored in magnetic field together with the breaking of the flux freezing constraint, magnetic reconnection is considered as one of the most important phenomena in plasma physics. When it happens in a collision less environment such as the terrestrial magnetosphere, it should a priori be modelled with in the framework of kinetic physics. The evidence of kinetic features has incidentally for a long time, been shown by researchers with the help of both numerical simulations and satellite observations. However, most of our understanding of the process comes from the more intuitive fluid interpretation with simple closure hypothesis which do not include kinetic effects. To what extent are these two separate descriptions of the same phenomenon related? What is the role of kinetic effects in the averaged/fluid dynamics of reconnection? This thesis addresses these questions for the proton population in the particular case of anti parallel merging with the help of 2D Hybrid simulations. We show that one can not assume, as is usually done, that the acceleration of the proton flow is only due to the Laplace force. Our results show, for symmetric and asymmetric connection, the importance of the pressure force, opposed to the electric one on the separatrices, in the decoupling region. In the symmetric case, we emphasize the kinetic origin of this force by analyzing the proton distribution functions and explain their structure by studying the underlying particle dynamics. Protons, as individual particles, are shown to bounce in the electric potential well created by the Hall effect. The spatial divergence of this well results in a mixing in phase space responsible for the observed structure of the pressure tensor. A detailed energy budget analysis confirms the role of the pressure force for the acceleration; but, contrary to what is sometimes assumed, it also reveals that the major part of the incoming Poynting flux is transferred to

  15. Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch

    SciTech Connect

    Schmidt, A. Ellsworth, J. Falabella, S. Link, A. McLean, H. Rusnak, B. Sears, J. Tang, V.; Welch, D.

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ∼cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.

  16. Ion Pre-acceleration in Fully Self-consistent Particle-in-cell Simulations of Supercritical Perpendicular Reforming Shocks in Multiple Ion Species Plasmas

    NASA Astrophysics Data System (ADS)

    Rekaa, V. L.; Chapman, S. C.; Dendy, R. O.

    2014-08-01

    Supernova remnant and heliopause termination shock plasmas may contain significant populations of minority heavy ions, with relative number densities n α/ni up to 50%. Preliminary kinetic simulations of collisionless shocks in these environments showed that the reformation cycle and acceleration mechanisms at quasi-perpendicular shocks can depend on the value of n α/ni . Shock reformation unfolds on ion spatio-temporal scales, requiring fully kinetic simulations of particle dynamics, together with the self-consistent electric and magnetic fields. This paper presents the first set of particle-in-cell simulations for two ion species, protons (np ) and α-particles (n α), with differing mass and charge-to-mass ratios, that spans the entire range of n α/ni from 0% to 100%. The interplay between the differing gyro length scales and timescales of the ion species is crucial to the time-evolving phenomenology of the shocks, the downstream turbulence, and the particle acceleration at different n α/ni . We show how the overall energization changes with n α/ni , and relate this to the processes individual ions undergo in the shock region and in the downstream turbulence, and to the power spectra of magnetic field fluctuations. The crossover between shocks dominated by the respective ion species happens when n α/ni = 25%, and minority ion energization is strongest in this regime. Energization of the majority ion species scales with injection energy. The power spectrum of the downstream turbulence includes peaks at sequential ion cyclotron harmonics, suggestive of ion ring-beam collective instability.

  17. Kinetic simulation of neutral particle transport in sputtering processes

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Gallian, Sara; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Ries, Stefan; Bibinov, Nikita; Awakowicz, Peter

    2013-09-01

    For many physical vapor deposition applications using sputtering processes, knowledge about the detailed spatial and temporal evolution of the involved gas species is of great importance. Modeling of the involved gas dynamic and plasma processes is however challenging, because the operating pressure is typically below 1 Pa. In consequence, only kinetic descriptions are appropriate. In order to approach this problem, the dynamics of sputtered particle transport through a neutral gas background is simulated. For this study, a modified version of the three-dimensional Direct Simulation Monte Carlo (DSMC) code dsmcFoam is utilized. The impact of a transient sputtering wind is investigated in a generic reactor geometry, which may be used for dc Magnetron Sputtering (dcMS), High Power Impulse Magnetron Sputtering (HiPIMS), as well as sputtering in capacitively coupled discharges. In the present work a rarefaction of the background gas is observed. Moreover in pulsed mode the temporal dynamics of the rarefaction and subsequent recovery of the background gas is investigated. This work is supported by the German Research Foundation in the frame of TRR 87.

  18. Kinetics of lipid mixing between bicelles and nanolipoprotein particles

    PubMed Central

    Lai, Ginny; Forti, Kevin Muñoz; Renthal, Robert

    2015-01-01

    Nanolipoprotein particles (NLPs), also known as nanodiscs, are lipid bilayers bounded by apolipoprotein. Lipids and membrane proteins cannot exchange between NLPs. However, addition of bicelles opens NLPs and transfers their contents to bicelles, which freely exchange lipids and proteins. NLP-bicelle interactions may provide a new method for studying membrane protein oligomerization. The interaction mechanism was investigated by stopped flow fluorometry. NLP lipids included fluorescence resonance energy transfer donors and acceptors. NLPs were mixed with a 200-fold molar excess of dihexanoyl phosphatidylcholine (DHPC)/dimyristoyl phosphatidylcholine bicelles, and the rate of lipid transfer was monitored by the appearance of dequenched lipid donor fluorescence. The observed pseudo-first-order rate constant was surprisingly small. NLPs did not react with DHPC alone below its critical micelle concentration (cmc). Above the cmc, the reaction was complete within the instrument dead time. Thus, the rate-limiting step is not the reaction of NLPs with DHPC monomers or micelles. Added MSP1E3D1 had no effect on the rate, ruling out free apolipoprotein involvement. The NLP-bicelle mixing rate showed a strong temperature dependence (activation energy = 28 kcal/mol). Near or below the DMPC phase transition temperature, the kinetics were sigmoidal. Models are proposed for the NLP-bicelle mixing, including one involving fusion pores. PMID:25660392

  19. Preparation of zirconium oxy ion-imprinted particle for the selective separation of trace zirconium ion from water.

    PubMed

    Ren, Yueming; Liu, Pingxin; Liu, Xiaoli; Feng, Jing; Fan, Zhuangjun; Luan, Tianzhu

    2014-10-01

    Zr(IV) oxy ion-imprinted particle (Zr-IIP) was prepared using the metal ion imprinting technique in a sol-gel process on the surface of amino-silica. The dosages of zirconium ions as imprinted target, (3-aminopropyl) triethoxysilane (APTES) as a functional monomer and teraethyl orthosilicate (TEOS) as a cross-linker were optimized. The prepared Zr-IIP and Zr(IV) oxy ion non-imprinted particle (Zr-NIP) were characterized. pH effect, binding ability and the selectivity were investigated in detail. The results showed that the Zr-IIP had an excellent binding capacity and selectivity in the water. The equilibrium data fitted well to the pseudo-second-order kinetic and the Langmuir model for Zr(IV) binding onto Zr-IIP, respectively. The saturate binding capacity of Zr-IIP was found to be 196.08 μmol g(-1), which was 18 times higher than that of Zr-NIP. The sequence of binding efficiency of Zr-IIP for various ions was Zr(IV)>Cu(II)>Sb(III)>Eu(III). The coordination number has an important effect on the dimensional binding capacity. The equilibrium binding capacity of Zr-IIP for Zr(IV) decreased little under various concentrations of Pb(II) ions. The analysis of relative selectivity coefficient (Kr) indicated that the Zr-IIP had an appreciable binding specificity towards Zr(IV) although the competitive ions coexisted in the water. The Zr-IIP could serve as an efficient selective material for recovering or removing zirconium from the water environment.

  20. Super-thermal particles in hot plasmas—Kinetic models, numerical solution strategies, and comparison to tokamak experiments

    NASA Astrophysics Data System (ADS)

    Lauber, Philipp

    2013-12-01

    The excitation of collective instabilities by super-thermal particles in hot plasmas and the related transport processes attract increasing interest due to their fundamental challenges for theoretical models and their practical importance for burning fusion plasmas. In fact, the physics of a self-heated thermonuclear plasma due to fusion-born 3.5 MeV α-particles is one of the most important outstanding fundamental research topics on the way to a fusion power plant with magnetic confinement. Within the last 10 years significant advances on both the theoretical and the experimental sides have been made leading to a more detailed and quantitative understanding of fast-particle-driven instabilities. On the theoretical side, the crucial step was to move from fluid models for the plasma background with a hybrid kinetic expression for the energetic particles to a fully kinetic model for all the plasma species, i.e. background ions, background electrons, and fast ions. This improvement allows one to describe consistently the resonant interaction between global plasma waves such as shear Alfvén and Alfvén-acoustic waves, and the particles via Landau damping, i.e. the dynamics parallel to the magnetic background field. Also, mode conversion mechanisms require the inclusion of background ion scales in a kinetic, non-perturbative way. This accurate treatment of the plasma background leads not only to changes in the linear mode properties such as frequency, growth/damping rate, and mode structure but also influences the non-linear dynamics. Due to major advances, innovations and installation of diagnostics in present day experiments, this comparison can be carried out in a more detailed and comprehensive way than a few years ago. For example, the measurement of damping rates via active external antennas, the imaging of 2D mode structures via electron-cyclotron-emission spectroscopy, and the direct detection of escaping fast ions allow to diagnose various kinetic features of

  1. Kinetic Alfven wave instability in a Lorentzian dusty plasma: Non-resonant particle approach

    SciTech Connect

    Rubab, N.; Biernat, H. K.; Erkaev, V.; Langmayr, D.

    2011-07-15

    Analysis of the electromagnetic streaming instability is carried out which is related to the cross field drift of kappa distributed ions. The linear dispersion relation for electromagnetic wave using Vlasov-fluid equations in a dusty plasma is derived. Modified two stream instability (MTSI) in a dusty plasma has been discussed in the limit {omega}{sub pd}{sup 2}/c{sup 2}k{sub perpendicular}{sup 2}<<1. Numerical calculations of the growth rate of instability have been carried out. Growth rates of kinetic Alfven instability are found to be small as compared to MTSI. Maximum growth rates for both instabilities occur in oblique directions for V{sub 0}{>=}V{sub A}. It is shown that the presence of both the charged dust particles and perpendicular ion beam sensibly modify the dispersion relation of low-frequency electromagnetic wave. The dispersion characteristics are found to be insensible to the superthermal character of the ion distribution function. Applications to different intersteller regions are discussed.

  2. Interaction between chitosan and uranyl ions. Role of physical and physicochemical parameters on the kinetics of sorption

    SciTech Connect

    Piron, E. |; Accominotti, M.; Domard, A.

    1997-03-19

    This work corresponds to the first part of our studies on the interactions between chitosan particles dispersed in water and uranyl ions. The measurements were obtained by ICP, and we considered the role of various physical and physicochemical parameters related to chitosan. We showed that the crystallinity, the particle dimensions, and the swelling in water of chitosan are parameters which are connected together and govern the kinetic laws of metal diffusion and sorption. The molecular mobility of the polymer chains is then essential parameter. 31 refs., 5 figs., 3 tabs.

  3. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS.

    SciTech Connect

    STEINBERG,P.A.FOR THE PHOBOS COLLABORATION

    2002-07-24

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  4. Analysis of VX on soil particles using ion trap secondary ion mass spectrometry.

    PubMed

    Groenewold, G S; Appelhans, A D; Gresham, G L; Olson, J E; Jeffery, M; Wright, J B

    1999-07-01

    The direct detection of the nerve agent VX (methylphosphonothioic acid, S-[2-[bis(1-methylethyl)amino]ethyl] O-ethyl ester) on milligram quantities of soil particles has been achieved using ion trap secondary ion mass spectrometry (IT-SIMS). VX is highly adsorptive toward a wide variety of surfaces; this attribute makes detection using gas-phase approaches difficult but renders the compound very amenable to surface detection. An ion trap mass spectrometer, modified to perform SIMS, was employed in the present study. A primary ion beam (ReO4-) was fired on axis through the ion trap, where it impacted the soil particle samples. [VX + H]+, [VX + H]+ fragment ions, and ions from the chemical background were sputtered into the gas-phase environment of the ion trap, where they were either scanned out or isolated and fragmented (MS2). At a surface concentration of 0.4 monolayer, intact [VX + H]+, and its fragment ions, were readily observable above background. However, at lower concentrations, the secondary ion signal from VX became obscured by ions derived from the chemical background on the surface of the soil particles. MS2 analysis using the ion trap was employed to improve detection of lower concentrations of VX: detection of the 34S isotopic ion of [VX + H]+, present at a surface concentration of approximately 0.002 monolayer, was accomplished. The study afforded the opportunity to investigate the fragmentation chemistry of VX. Semiempirical calculations suggest strongly that the molecule is protonated at the N atom. Deuterium labeling showed that formation of the base peak ion (C2H4)N(i-C3H7)2+ involves transfer of the amino proton to the phosphonothioate moiety prior to, or concurrent with, C-S bond cleavage. To manage the risk associated with working with the compound, the vacuum unit of the IT-SIMS was located in a hood, connected by cables to the externally located electronics and computer.

  5. Dominant particles and reactions in a two-temperature chemical kinetic model of a decaying SF6 arc

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Gao, Qingqing; Fu, Yuwei; Yang, Aijun; Rong, Mingzhe; Wu, Yi; Niu, Chunping; Murphy, Anthony B.

    2016-03-01

    This paper is devoted to the computation of the non-equilibrium composition of an SF6 plasma, and determination of the dominant particles and reactions, at conditions relevant to high-voltage circuit breakers after current zero (temperatures from 12 000 K to 1000 K and a pressure of 4 atm). The non-equilibrium composition is characterized by departures from both thermal and chemical equilibrium. In thermal non-equilibrium process, the electron temperature (T e) is not equal to the heavy-particle temperature (T h), while for chemical non-equilibrium, a chemical kinetic model is adopted. In order to evaluate the reasonableness and reliability of the non-equilibrium composition, calculation methods for equilibrium composition based on Gibbs free energy minimization and kinetic composition in a one-temperature kinetic model are first considered. Based on the one-temperature kinetic model, a two-temperature kinetic model with the ratio T e/T h varying as a function of the logarithm of electron density ratio (n e/n\\text{e}\\max ) was established. In this model, T* is introduced to allow a smooth transition between T h and T e and to determine the temperatures for the rate constants. The initial composition in the kinetic models is obtained from the asymptotic composition as infinite time is approached at 12 000 K. The molar fractions of neutral particles and ions in the two-temperature kinetic model are consistent with the equilibrium composition and the composition obtained from the one-temperature kinetic model above 10 000 K, while significant differences appear below 10 000 K. Based on the dependence of the particle distributions on temperature in the two-temperature kinetic model, three temperature ranges, and the dominant particles and reactions in the respective ranges, are determined. The full model is then simplified into three models and the accuracy of the simplified models is assessed. The simplified models reduce the number of species and

  6. Increase of ion kinetic temperature across a collisionless shock. I - A new mechanism

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wu, C. S.; Hu, X. W.

    1986-01-01

    A simple but effective mechanism is proposed to account for the increase of ion kinetic temperature across an oblique or perpendicular shock. This mechanism is based on the nonadiabatic motion of the transmitted ions across the shock ramp, which can lead to an ion gyrophase-bunching behind the shock.

  7. Kinetic studies on the cupric ion oxidation of sheep hemoglobin.

    PubMed

    Brittain, T; Ivanetich, K M

    1980-11-01

    The oxidation of sheep hemoglobin, in both the oxygenated and deoxygenated forms, by cuprous ions have been studied by spectrophotometric and stopped-flow techniques. Mixing of both the oxy and deoxy forms with excess Cu2+ leads to the rapid oxidation of the iron atoms of all four of the hem groups of the tetrameric protein, followed by the slow formation of hemichromes (low spin FeIII forms of hemoglobin). Stopped-flow studies show that the oxidations follow simple monophasic kinetics with second-order rate constants of 65 and 310 M-1 sec-1 for the oxy and deoxy forms, respectively. Variable temperature studies yield Arrhenius activation energies of 43 for the oxy form and 113 kJ mole-1 for the deoxy form. For each form of the protein the activation energy is very similar to the activation enthalpy. While the deoxy form is characterized by an activation energy and enthalpy that is more than twice the corresponding value in the oxy form. The activation entropies show highly significant differences being -128 e.u. and 136 e.u. at 25 degrees C for the oxy and deoxy forms, respectively.

  8. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    SciTech Connect

    Battaglia, D. J.; Boedo, J. A.; Burrell, K. H.; Chang, C. S.; Canik, J. M.; deGrassie, J. S.; Gerhardt, S. P.; Grierson, B. A.; Groebner, R. J.; Maingi, Rajesh; Smith, S. P.

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  9. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study.

    PubMed

    Kul, Ali Riza; Koyuncu, Hülya

    2010-07-15

    In this study, the adsorption kinetics, equilibrium and thermodynamics of Pb(II) ions on native (NB) and acid activated (AAB) bentonites were examined. The specific surface areas, pore size and pore-size distributions of the samples were fully characterized. The adsorption efficiency of Pb(II) onto the NB and AAB was increased with increasing temperature. The kinetics of adsorption of Pb(II) ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 16.51 and 13.66 kJ mol(-1) for NB and AAB, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin-Redushkevich (D-R) isotherm equations at different temperatures. R(L) separation factor for Langmuir and the n value for Freundlich isotherm show that Pb(II) ions are favorably adsorbed by NB and AAB. Thermodynamic quantities such as Gibbs free energy (DeltaG), the enthalpy (DeltaH) and the entropy change of sorption (DeltaS) were determined as about -5.06, 10.29 and 0.017 kJ mol(-1) K(-1), respectively for AAB. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously.

  10. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  11. A hybrid kinetic hot ion PIC module for the M3D-C1 Code

    NASA Astrophysics Data System (ADS)

    Breslau, J. A.; Ferraro, N.; Jardin, S. C.; Kalyanaraman, K.

    2016-10-01

    Building on the success of the original M3D code with the addition of efficient high-order, high-continuity finite elements and a fully implicit time advance making use of cutting-edge numerical techniques, M3D-C1 has become a flagship code for realistic time-dependent 3D MHD and two-fluid calculations of the nonlinear evolution of macroinstabilities in tokamak plasmas. It is therefore highly desirable to introduce to M3D-C1 one of the most-used features of its predecessor: the option to use a drift-kinetic delta- f PIC model for a minority population of energetic ions (representing, e.g., beam ions or fusion alpha particles) coupled with the usual finite element advance of the bulk ion and electron fluids through its pressure tensor. We describe the implementation of a module for this purpose using high-order-of-accuracy numerical integration and carefully tuned to take advantage of state-of-the-art multicore processing elements. Verification results for a toroidal Alfvén eigenmode test problem will be presented, along with a demonstration of favorable parallel scaling to large numbers of supercomputer nodes.

  12. Kinetic Modeling of Ion Beams in Dense Plasma Focus Z-Pinches

    NASA Astrophysics Data System (ADS)

    Link, A.; Bennett, N.; Falabella, S.; Higginson, D. P.; Olsen, R.; Podpaly, Y. A.; Povilus, A.; Shaw, B.; Sipes, N.; Welch, D. R.; Schmidt, A.

    2016-10-01

    Dense plasma focus (DPF) Z-pinches are compact devices capable of producing MeV ion beams, x-rays, and (for D or DT gas fill) neutrons. We report on predictions of ion beam generation using the particle-in-cell code LSP. These simulations include full-scale electrodes, an external pulse power circuit and model through the run-down phase as a fluid, transitioning to a fully kinetic simulation during the run-in phase and through the pinch. Simulations of a deuterium filled DPF predict a substantial number of ions accelerated to energies greater than 50 keV escape the dense plasma in the pinch region and could be used to enhance total neutron yield by employing a solid target. Results of the simulations will be presented and compared to experimental observations. LLNL-ABS-697617 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  13. Kinetic freeze-out, particle spectra, and harmonic-flow coefficients from mode-by-mode hydrodynamics

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2014-03-01

    The kinetic freeze-out for the hydrodynamical description of relativistic heavy-ion collisions is discussed using a background-fluctuation splitting of the hydrodynamical fields. For a single event, the particle spectrum, or its logarithm, can be written as the sum of the background part that is symmetric with respect to azimuthal rotations and longitudinal boosts and a part containing the contribution of fluctuations or deviations from the background. Using a complete orthonormal basis to characterize the initial state allows one to write the double differential harmonic-flow coefficients determined by the two-particle correlation method as matrix expressions involving the initial fluid correlations. We discuss the use of these expressions for a mode-by-mode analysis of fluctuating initial conditions in heavy-ion collisions.

  14. Optimization and adsorption kinetic studies of aqueous manganese ion removal using chitin extracted from shells of edible Philippine crabs

    NASA Astrophysics Data System (ADS)

    Quimque, Mark Tristan J.; Jimenez, Marvin C.; Acas, Meg Ina S.; Indoc, Danrelle Keth L.; Gomez, Enjelyn C.; Tabuñag, Jenny Syl D.

    2017-01-01

    Manganese is a common contaminant in drinking water along with other metal pollutants. This paper investigates the use of chitin, extracted from crab shells obtained as restaurant throwaway, as an adsorbent in removing manganese ions from aqueous medium. In particular, this aims to optimize the adsorption parameters and look into the kinetics of the process. The adsorption experiments done in this study employed the batch equilibration method. In the optimization, the following parameters were considered: pH and concentration of Mn (II) sorbate solution, particle size and dosage of adsorbent chitin, and adsorbent-adsorbate contact time. At the optimal condition, the order of the adsorption reaction was estimated using kinetic models which describes the process best. It was found out that the adsorption of aqueous Mn (II) ions onto chitin obeys the pseudo-second order model. This model assumes that the adsorption occurred via chemisorption

  15. Ion-induced nucleation of pure biogenic particles

    NASA Astrophysics Data System (ADS)

    Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, Antonio; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A. D.; Riipinen, Ilona; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L.; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S.; Curtius, Joachim

    2016-05-01

    Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.

  16. Ion-induced nucleation of pure biogenic particles.

    PubMed

    Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, Antonio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A D; Riipinen, Ilona; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S; Curtius, Joachim

    2016-05-26

    Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.

  17. Simulations of ion acceleration at non-relativistic shocks. III. Particle diffusion

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-10-10

    We use large hybrid (kinetic-protons-fluid-electrons) simulations to investigate the transport of energetic particles in self-consistent electromagnetic configurations of collisionless shocks. In previous papers of this series, we showed that ion acceleration may be very efficient (up to 10%-20% in energy), and outlined how the streaming of energetic particles amplifies the upstream magnetic field. Here, we measure particle diffusion around shocks with different strengths, finding that the mean free path for pitch-angle scattering of energetic ions is comparable with their gyroradii calculated in the self-generated turbulence. For moderately strong shocks, magnetic field amplification proceeds in the quasi-linear regime, and particles diffuse according to the self-generated diffusion coefficient, i.e., the scattering rate depends only on the amount of energy in modes with wavelengths comparable with the particle gyroradius. For very strong shocks, instead, the magnetic field is amplified up to non-linear levels, with most of the energy in modes with wavelengths comparable to the gyroradii of highest-energy ions, and energetic particles experience Bohm-like diffusion in the amplified field. We also show how enhanced diffusion facilitates the return of energetic particles to the shock, thereby determining the maximum energy that can be achieved in a given time via diffusive shock acceleration. The parameterization of the diffusion coefficient that we derive can be used to introduce self-consistent microphysics into large-scale models of cosmic ray acceleration in astrophysical sources, such as supernova remnants and clusters of galaxies.

  18. Fluid electron, gyrokinetic ion simulations of linear internal kink and energetic particle modes

    NASA Astrophysics Data System (ADS)

    Cole, Michael; Mishchenko, Alexey; Könies, Axel; Kleiber, Ralf; Borchardt, Matthias

    2014-07-01

    The internal kink mode is an important plasma instability responsible for a broad class of undesirable phenomena in tokamaks, including the sawtooth cycle and fishbones. To predict and discover ways to mitigate this behaviour in current and future devices, numerical simulations are necessary. The internal kink mode can be modelled by reduced magnetohydrodynamics (MHD). Fishbone modes are an inherently kinetic and non-linear phenomenon based on the n = 1 Energetic Particle Mode (EPM), and have been studied using hybrid codes that combine a reduced MHD bulk plasma model with a kinetic treatment of fast ions. In this work, linear simulations are presented using a hybrid model which couples a fluid treatment of electrons with a gyrokinetic treatment of both bulk and fast ions. Studies of the internal kink mode in geometry relevant to large tokamak experiments are presented and the effect of gyrokinetic ions is considered. Interaction of the kink with gyrokinetic fast ions is also considered, including the destabilisation of the linear n = 1 EPM underlying the fishbone.

  19. Fluid electron, gyrokinetic ion simulations of linear internal kink and energetic particle modes

    SciTech Connect

    Cole, Michael Mishchenko, Alexey; Könies, Axel; Kleiber, Ralf; Borchardt, Matthias

    2014-07-15

    The internal kink mode is an important plasma instability responsible for a broad class of undesirable phenomena in tokamaks, including the sawtooth cycle and fishbones. To predict and discover ways to mitigate this behaviour in current and future devices, numerical simulations are necessary. The internal kink mode can be modelled by reduced magnetohydrodynamics (MHD). Fishbone modes are an inherently kinetic and non-linear phenomenon based on the n = 1 Energetic Particle Mode (EPM), and have been studied using hybrid codes that combine a reduced MHD bulk plasma model with a kinetic treatment of fast ions. In this work, linear simulations are presented using a hybrid model which couples a fluid treatment of electrons with a gyrokinetic treatment of both bulk and fast ions. Studies of the internal kink mode in geometry relevant to large tokamak experiments are presented and the effect of gyrokinetic ions is considered. Interaction of the kink with gyrokinetic fast ions is also considered, including the destabilisation of the linear n = 1 EPM underlying the fishbone.

  20. Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Battistoni, G.; Bellini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Frallicciardi, P. M.; Marafini, M.; Mattei, I.; Morganti, S.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Piersanti, L.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Traini, G.; Voena, C.

    2016-05-01

    Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.

  1. A NIST Kinetic Data Base for PAH Reaction and Soot Particle Inception During Combusion

    DTIC Science & Technology

    2007-12-01

    13 D. Kinetic Modeling of Heptane Combustion 62 and PAH Formation E. Ring Expansion...that can be competitive with oxidation and the unsaturated compounds are the precursors to soot models . It extends the application of combustion...soot particles and then through kinetic modeling extract rate constants that can now be used to simulate the process. The elements of the

  2. The Modeling of Pickup Ion or Energetic Particle Mediated Plasmas

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Mostafavi, P.; Hunana, P.

    2016-05-01

    Suprathermal energetic particles, such as solar energetic particles (SEPs) in the inner heliosphere and pickup ions (PUIs) in the outer heliosphere and the very local interstellar medium, often form a thermodynamically dominant component in their various environments. In the supersonic solar wind beyond > 10 AU, in the inner heliosheath (IHS), and in the very local interstellar medium (VLISM), PUIs do not equilibrate collisionally with the background plasma. Similarly, SEPs do not equilibrate collisionally with the background solar wind in the inner heliosphere. In the absence of equilibration between plasma components, a separate coupled plasma description for the energetic particles is necessary. Using a collisionless Chapman-Enskog expansion, we derive a closed system of multi-component equations for a plasma comprised of thermal protons and electrons, and suprathermal particles (SEPs, PUIs). The energetic particles contribute an isotropic scalar pressure to leading order, a collisionless heat flux at the next order, and a collisionless stress tensor at the second-order. The collisionless heat conduction and viscosity in the multi-fluid description results from a nonisotropic energetic particle distribution. A simpler single-fluid MHD-like system of equations with distinct equations of state for both the background plasma and the suprathermal particles is derived. We note briefly potential pitfalls that can emerge in the numerical modeling of collisionless plasma flows that contain a dynamically important energetic particle component.

  3. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    NASA Astrophysics Data System (ADS)

    Kolpakov, V. A.; Krichevskii, S. V.; Markushin, M. A.

    2017-01-01

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1-4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5-8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion-electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3-1 kV can be implemented in practice [3, 9, 10].

  4. Cluster kinetics model of particle separation in vibrated granular media

    NASA Astrophysics Data System (ADS)

    McCoy, Benjamin J.; Madras, Giridhar

    2006-01-01

    We model the Brazil-nut effect (BNE) by hypothesizing that granules form clusters that fragment and aggregate. This provides a heterogeneous medium in which the immersed intruder particle rises (BNE) or sinks (reverse BNE) according to relative convection currents and buoyant and drag forces. A simple relationship proposed for viscous drag in terms of the vibrational intensity and the particle to grain density ratio allows simulation of published experimental data for rise and sink times as functions of particle radius, initial depth of the particle, and particle-grain density ratio. The proposed model correctly describes the experimentally observed maximum in risetime.

  5. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows

    SciTech Connect

    Muñoz, P. A. Kilian, P.; Büchner, J.; Told, D.; Jenko, F.

    2015-08-15

    In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (b{sub g}). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (β{sub i} = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (b{sub g} ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (b{sub g} ≳ 5). Kinetic PIC simulations using guide fields b{sub g} ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (β{sub i} = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (b{sub g} ≲ 3)

  6. Kinetic Alfvén wave and ion velocity distribution functions in the solar wind

    NASA Astrophysics Data System (ADS)

    Li, X.; Lu, Q.; Chen, Y.; Li, B.; Xia, L.

    2010-12-01

    Using 1D test particle simulations, the effect of a kinetic Alfvén wave on the velocity distribution function of protons in the collisionless solar wind is investigated. We first use linear Vlasov theory to obtain the property of a kinetic Alfvén wave numerically (the wave propagates in the direction almost perpendicular to the background magnetic field). We then numerically simulate how the wave will shape the proton velocity distribution function. It is found that Landau resonance may be able to generate two components in the initially Maxwellian proton velocity distribution function: a tenuous beam component along the direction of the background magnetic field and a core component. The streaming speed of the beam relative to the core proton component is about 1.2 -- 1.3 Alfvén speed. However, no perpendicular ion heating is observed from the simulation. Reference: Li, X., Lu, Q.M., Chen, Y., Li, B., Xia, L.D., ApJ, 719, L190, 2010.

  7. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    SciTech Connect

    Rosenberg, M. J. Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C.; and others

    2014-12-15

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.

  8. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Pino, J.; McNaney, J. M.; Rygg, J. R.; Amendt, P. A.; Bellei, C.; Benedetti, L. R.; Berzak Hopkins, L.; Bionta, R. M.; Casey, D. T.; Divol, L.; Edwards, M. J.; Glenn, S.; Glenzer, S. H.; Hicks, D. G.; Kimbrough, J. R.; Landen, O. L.; Lindl, J. D.; Ma, T.; MacPhee, A.; Meezan, N. B.; Moody, J. D.; Moran, M. J.; Park, H.-S.; Remington, B. A.; Robey, H.; Rosen, M. D.; Wilks, S. C.; Zacharias, R. A.; Herrmann, H. W.; Hoffman, N. M.; Kyrala, G. A.; Leeper, R. J.; Olson, R. E.; Kilkenny, J. D.; Nikroo, A.

    2014-12-01

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D2 and D3He gas-filled "exploding-pusher" inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D draco hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.

  9. Ion heating by kinetic cross-field streaming instability due to reflected ions at a quasiperpendicular shock

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Wu, C. S.; Mandt, M. E.

    1992-01-01

    The present paper shows that the reflected ion at a supercritical quasi-perpendicular shock wave can excite a purely growing mode propagating parallel to the ambient magnetic field. To discuss the ion heating by such an unstable mode, the self-consistent quasi-linear kinetic equation is solved with the assumption that the present purely growing mode is the dominant unstable mode in the system. In the quasi-linear analysis of the instability, two particular cases are considered: the case of low initial ion beta and that of a high initial ion beta.

  10. Particle-In-Cell/Monte Carlo Simulation of Ion Back BomBardment in a High Average Current RF Photo-Gun

    SciTech Connect

    Qiang, J.

    2009-10-17

    In this paper, we report on study of ion back bombardment in a high average current radio-frequency (RF) photo-gun using a particle-in-cell/Monte Carlo simulation method. Using this method, we systematically studied effects of gas pressure, RF frequency, RF initial phase, electric field profile, magnetic field, laser repetition rate, different ion species on ion particle line density distribution, kinetic energy spectrum, and ion power line density distribution back bombardment onto the photocathode. Those simulation results suggested that effects of ion back bombardment could increase linearly with the background gas pressure and laser repetition rate. The RF frequency has significantly affected the ion motion inside the gun so that the ion power deposition on the photocathode in an RF gun can be several orders of magnitude lower than that in a DC gun. The ion back bombardment can be minimized by appropriately choosing the electric field profile and the initial phase.

  11. Sheath and presheath in ion-ion plasmas via particle-in-cell simulation

    SciTech Connect

    Meige, A.; Leray, G.; Raimbault, J.-L.; Chabert, P.

    2008-02-11

    A full particle-in-cell simulation is developed to investigate electron-free plasmas constituted of positive and negative ions under the influence of a dc bias voltage. It is shown that high-voltage sheaths following the classical Child-law sheaths form within a few microseconds (which corresponds to the ion transit time) after the dc voltage is applied. It is also shown that there exists the equivalent of a Bohm criterion where a presheath accelerates the ions collected at one of the electrodes up to the sound speed before they enter the sheath. From an applied perspective, this leads to smaller sheaths than one would expect.

  12. Generation of ion temperature anisotropy in kinetic hybrid-Vlasov simulations (Invited)

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Valentini, F.; Servidio, S.; Dalena, S.; Veltri, P.

    2013-12-01

    The interplanetary medium is a multi-component and weakly collisional system generally observed to be in a fully turbulent regime [1,2]. The system dynamics at short spatial scales appears to be dominated by kinetic effects that drive the interstellar gas far from the configuration of thermodynamic equilibrium [3-5]. We present a numerical analysis of a turbulent plasma composed of kinetic ions (protons and alpha particles) and fluid electrons in the typical conditions of the solar-wind environment, developed by using a low-noise hybrid Vlasov-Maxwell code [6,7] in a five dimensional phase space configuration (two dimensions in physical space and three dimensions in velocity space) [8]. The ion dynamics at short spatial scales (shorter than the proton skin depth) display several interesting aspects, mainly consisting in the departure of the distribution functions from the typical Maxwellian configuration, which has been systematically quantified through the evalutation of the temperature anisotropy ratio (perpendicular to parallel temperature ratio) with respect to the local magnetic field. This temperature anisotropy appears to be a direct effect of the turbulent nature of the system dynamics. Moreover, the turbulent activity leads to the generation of coherent structures, such as vortices and current sheets. Conditioned ion temperature distributions suggest heating associated with coherent structures; the distribution of ion temperatures moves towards higher values with increasing PVI threshold for the upper inertial range in the turbulent spectra. This behavior is more evident for alpha particles than for protons. The physical phenomenology recovered in these numerical simulations reproduces very common features recovered in 'in situ' measurements in the turbulent solar wind [9-11], suggesting that the multi-ion Vlasov model represents a valid approach to the understanding of the nature of complex kinetic effects in astrophysical plasmas. [1] R. Bruno and V

  13. Nonlinear particle-wave kinetics in weakly unstable plasmas

    SciTech Connect

    Breizman, B.N.; Berk, H.L.; Pekker, M.S.

    1996-12-31

    With the motivation to address the behavior of the fusion produced alpha particles in a thermonuclear reactor, a theory is developed for predicting the wave saturation levels and particle transport in weakly unstable systems with a discrete number of modes in the presence of energetic particle sources and sinks. Conditions are established for either steady state or bursting nonlinear scenarios when several modes are excited for cases where there is and there is not resonance overlap. Depending on parameters, the particles can undergo benign relaxation, with only a small fraction of the available free energy released to waves and with no global transport, or the particles can experience rapid global transport caused by a substantial conversion of their free energy into wave energy. When the resonance condition of the particle-wave interaction is varied adiabatically, the particles trapped in a wave are found to form phase space holes or clumps that enhance the particle-wave energy exchange. This mechanism, which has been experimentally observed when there is frequency chirping, causes increased saturation levels of instabilities. If resonance sweeping is imposed externally, the particle free energy can even be tapped in stable systems where background dissipation suppresses linear instability. Externally applied resonance sweeping can be important for alpha particle energy channeling, as well as for understanding fishbone and some Alfven wave instability experiments. Near instability threshold, that is when the destabilizing drive just exceeds the background dissipation, a more sophisticated analysis is developed to predict the correct saturation. To leading order, this problem reduces to an integral equation for the wave amplitude with a temporally non local cubic term. This equation has a self-similar solution that blows-up in a finite time.

  14. Measurement of alpha particle energy using windowless electret ion chambers.

    PubMed

    Dua, S K; Kotrappa, P; Srivastava, R; Ebadian, M A; Stieff, L R

    2002-10-01

    Electret ion chambers are inexpensive, lightweight, robust, commercially available, passive, charge-integrating devices for accurate measurement of different ionizing radiations. In an earlier work a chamber of dimensions larger than the range of alpha particles having aluminized Mylar windows of different thickness was used for measurement of alpha radiation. Correlation between electret mid-point voltage, alpha particle energy, and response was developed and it was shown that this chamber could be used for estimating the effective energy of an unknown alpha source. In the present study, the electret ion chamber is used in the windowless mode so that the alpha particles dissipate their entire energy inside the volume, and the alpha particle energy is determined from the first principles. This requires that alpha disintegration rate be accurately known or measured by an alternate method. The measured energies were within 1 to 4% of the true values for different sources (230Th, 237Np, 239Pu, 241Am, and 224Cm). This method finds application in quantitative determination of alpha energy absorbed in thin membrane and, hence, the absorbed dose.

  15. Kinetic shear Alfvén instability in the presence of impurity ions in tokamak plasmas

    SciTech Connect

    Lu, Gaimin; Shen, Y.; Xie, T.; He, Zhixiong; He, Hongda; Qi, Longyu; Cui, Shaoyan

    2013-10-15

    The effects of impurity ions on the kinetic shear Alfvén (KSA) instability in tokamak plasmas are investigated by numerically solving the integral equations for the KSA eigenmode in the toroidal geometry. The kinetic effects of hydrogen and impurity ions, including transit motion, finite ion Larmor radius, and finite-orbit-width, are taken into account. Toroidicity induced linear mode coupling is included through the ballooning-mode representation. Here, the effects of carbon, oxygen, and tungsten ions on the KSA instability in toroidal plasmas are investigated. It is found that, depending on the concentration and density profile of the impurity ions, the latter can be either stabilizing or destabilizing for the KSA modes. The results here confirm the importance of impurity ions in tokamak experiments and should be useful for analyzing experimental data as well as for understanding anomalous transport and control of tokamak plasmas.

  16. The kinetics of energetic O‑ ions in oxygen discharge plasmas

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. A.; Aleksandrov, N. L.

    2017-04-01

    Monte Carlo simulation was used to study the translational relaxation of energetic O‑ ions produced by dissociative electron attachment to O2 molecules in oxygen plasmas in a strong electric field. Initial O‑ ions have rather high energies and are more reactive than the ions reaching equilibrium with the electric field. Therefore, there is a noticeable probability that the energetic O‑ ions participate in endothermic reactions prior to energy relaxation of these ions. The probabilities of charge exchange, electron detachment and ion impact vibrational excitation of O2 molecules were calculated versus the reduced electric field. It was shown that up to 6% of energetic O‑ ions produced in oxygen by dissociative electron attachment to O2 molecules are rapidly transformed to {{{{O}}}2}- ions due to charge exchange collisions. The probability of electron detachment from energetic O‑ ions and the probability of vibrational excitation were smaller that the probability of charge exchange. Estimates showed that the increase in the effective rates of the ion–molecule reactions due to high reactivity of energetic O‑ ions can be important in oxygen plasmas for reduced electric fields of 50–100 Td.

  17. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  18. Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment

    NASA Astrophysics Data System (ADS)

    Le, A.; Kwan, T. J. T.; Schmitt, M. J.; Herrmann, H. W.; Batha, S. H.

    2016-10-01

    The first simulations employing a kinetic treatment of both fuel and shell ions to model inertial confinement fusion experiments are presented, including results showing the importance of kinetic physics processes in altering fusion burn. A pair of direct drive capsule implosions performed at the OMEGA facility with two different gas fills of deuterium, tritium, and helium-3 are analyzed. During implosion shock convergence, highly non-Maxwellian ion velocity distributions and separations in the density and temperature amongst the ion species are observed. Diffusion of fuel into the capsule shell is identified as a principal process that degrades fusion burn performance.

  19. Kinetic response of ionospheric ions to onset of auroral electric fields

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Kan, J. R.

    1981-01-01

    By examining the exact analytic solution of a kinetic model of collisional interaction of ionospheric ions with atmospheric neutrals in the Bhatnagar-Gross-Krook approximation, we show that the onset of intense auroral electric fields in the topside ionosphere can produce the following kinetic effects: (1) heat the bulk ionospheric ions to approximately 2 eV, thus driving them up to higher altitudes where they can be subjected to collisionless plasma processes; (2) produce a non-Maxwellian superthermal tail in the distribution function; and (3) cause the ion distribution function to be anisotropic with respect to the magnetic field with the perpendicular average thermal energy exceeding the parallel thermal energy.

  20. Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment

    DOE PAGES

    Le, Ari Yitzchak; Kwan, Thomas J. T.; Schmitt, Mark J.; ...

    2016-10-24

    The first simulations employing a kinetic treatment of both fuel and shell ions to model inertial confinement fusion experiments are presented, including results showing the importance of kinetic physics processes in altering fusion burn. A pair of direct drive capsule implosions performed at the OMEGA facility with two different gas fills of deuterium, tritium, and helium-3 are analyzed. During implosion shock convergence, highly non-Maxwellian ion velocity distributions and separations in the density and temperature amongst the ion species are observed. Finally, diffusion of fuel into the capsule shell is identified as a principal process that degrades fusion burn performance.

  1. Measuring and Imaging Metal Ions With Fluorescence-Based Biosensors: Speciation, Selectivity, Kinetics, and Other Issues.

    PubMed

    Thompson, Richard B; Fierke, Carol A

    2017-01-01

    Fluorescence-based biosensors have shown themselves to be a powerful tool for the study of a variety of chemical species in biological systems, notably including metal ions. This chapter provides an overview of several important issues in using such sensors to study metallobiochemistry. These issues include selectivity for the analyte over potential interferents, including those that do not themselves induce a signal, the different forms in which metal ions are found (speciation), the utility of metal ion buffers, and the importance of kinetics in studying metal ion binding reactions. Finally, the chapter briefly discusses some of the issues in understanding whole-organism distribution of metal ions and its control.

  2. Sorption kinetics of Zn (II) ion by thermally treated rice husk

    NASA Astrophysics Data System (ADS)

    Ong, K. K.; Tarmizi, A. F. A.; Wan Yunus W. M., Z.; Safidin, K. M.; Fitrianto, A.; Hussin, A. G. A.; Azmi, F. M.

    2015-05-01

    Agricultural wastes such as orange peels, tea leave waste, rice husk and corn cobs have been widely studied as sorbents for heavy metal ion removal from various wastewaters. In order to understand their sorption mechanism, the adsorption kinetics is studied. This report describes the kinetics study of a thermally treated rice husk to adsorb Zn (II) ion from an aqueous solution. The adsorbent was obtained by heating the rice husk in a furnace at 500°C for two hours. Increase the contact period improved percentage of the removal of Zn (II) ion until an equilibrium was reached. The data obtained showed that the adsorption of Zn (II) ion by thermally treated rice husk obeyed pseudo-second order kinetics model, which is in agreement with chemisorption as the rate limiting mechanism.

  3. Stormtime Subauroral Density Troughs: Ion-Molecule Kinetics Effects

    DTIC Science & Technology

    2007-11-02

    trap to measure the total ion density (ni); and (4) a coincided with an increase in the energy and intensity of spherical Langmuir probe to measure...Experiments Figure 3. Rate coefficients for the reaction (RI). Circles in a high-temperature flowing afterglow device (HTFA) and squares show the HTFA and...poleward part coincided with strong wave structures, energetic (ring current) ion precipitations, and enhanced vertical ion flows . One or several narrow

  4. Kinetic Simulation and Visualization of Ion Ring Instability in Interstellar Plasma

    NASA Astrophysics Data System (ADS)

    Ernst, A. E.; Florinski, V. A.; Heerikhuisen, J.

    2015-12-01

    First observed by the Interstellar Boundary Explorer (IBEX) in 2009, the mysterious band of neutral atom flux known as the IBEX ribbon is commonly attributed to the effect of a charge exchange between energetic neutral atoms originating in the inner heliosheath and secondary pickup ions (PUIs) gyrating in rings about local galactic magnetic field lines in the outer heliosheath and interstellar space. Underpinning this theory is the assumption that the newly formed PUI ring is fairly stable relative to wave generation, an assumption that has been challenged by previous simulations of ions in the local interstellar medium (LISM). However, recent data received from Voyager 1 as it entered interstellar space indicates that the LISM is much quieter than previously thought. Using linear kinetic theory and newly developed hybrid simulation software, equipped with a binning algorithm and Python interface to VisIt for 3D visualization, we reexamine the 2010 simulation of Florinski et al., investigate other possible PUI ring distributions such as the Gauss torus, and run new large scale simulations with over a billion particles for an unprecedented reduction in numerical noise. We also simulate PUI ring stability away from the ribbon, including the direction of Voyager 1's trajectory, allowing us to compare our results with actual measurements of magnetic fluctuations in the LISM. Using these improved methods, we hope to gain new insight into the previously observed instability of PUI rings in the LISM. Preliminary results suggest that while broadened rings show very low levels of turbulence (in contrast with narrow rings of PUIs, which demonstrate abundant magnetic fluctuations at resonant frequency), some particle scattering occurred for every type of ring studied. The results of these simulations will be of critical importance to existing theories about the origins of the IBEX ribbon.

  5. Determining Ion-Aerosol Nucleation Rates in the Lower Atmosphere: Thermodynamic and Kinetic Modeling and Data Requirements

    NASA Astrophysics Data System (ADS)

    D'Auria, R.; Turco, R. P.

    2005-12-01

    In situ measurements in the free troposphere [Eichkorn et al., 2002] have detected massive positively charged clusters (up to 2500 amu) that appear to be composed of water, acetone and sulfuric acid. Previous modeling studies have suggested that such ionic clusters participate in a number of atmospheric processes, including aerosol formation [Yu and Turco, 1999] and phase transitions in polar stratospheric clouds [D'Auria and Turco, 2001a]. Other work [Lee et al., 2003] indicates that ultrafine particle bursts detected in the upper troposphere can be explained by negative ion clustering mechanisms constrained by laboratory thermodynamic data [Lovejoy et al., 2004], offering further evidence for ion-mediated nucleation. In the lower troposphere, where charged clusters containing hydrated acids, ammonia and a variety of organic compounds are seen, ion-based modeling can often explain nucleation events observed in this region [Yu and Turco, 2001]. We discuss the thermodynamic and kinetic aspects of ion growth and activation in the atmosphere, and describe a "hybrid" representation for common ion families that integrates laboratory measurements with quantum mechanical simulations of charged cluster structure and energetics [D'Auria and Turco, 2001b]. We show that a kinetic model of ion cluster evolution applicable to atmospheric phenomena, including particle nucleation, can be constructed using a hybrid data approach. We present recent results--based on high-level quantum mechanical geometry optimization and thermochemical calculations--for positive ion clusters composed of water, sulfuric acid and acetone [D'Auria, 2005]. It is argued that ions with ternary compositions provide a high degree of cluster stabilization, and are therefore likely to generate pre-condensation nuclei throughout the lower atmosphere. We also discuss errors in the determination of cluster free energies and entropies under atmospheric conditions, and identify the types and precision of data

  6. Kinetics of ion and prompt electron emission from laser-produced plasma

    SciTech Connect

    Farid, N.; Harilal, S. S.; Hassanein, A.; Ding, H.

    2013-07-15

    We investigated ion emission dynamics of laser-produced plasma from several elements, comprised of metals and non-metals (C, Al, Si, Cu, Mo, Ta, W), under vacuum conditions using a Faraday cup. The estimated ion flux for various targets studied showed a decreasing tendency with increasing atomic mass. For metals, the ion flux is found to be a function of sublimation energy. A comparison of temporal ion profiles of various materials showed only high-Z elements exhibited multiple structures in the ion time of flight profile indicated by the observation of higher peak kinetic energies, which were absent for low-Z element targets. The slower ions were seen regardless of the atomic number of target material propagated with a kinetic energy of 1–5 keV, while the fast ions observed in high-Z materials possessed significantly higher energies. A systematic study of plasma properties employing fast photography, time, and space resolved optical emission spectroscopy, and electron analysis showed that there existed different mechanisms for generating ions in laser ablation plumes. The origin of high kinetic energy ions is related to prompt electron emission from high-Z targets.

  7. A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    SciTech Connect

    Meinerzhagen, F.; Breuer, L.; Bukowska, H.; Herder, M.; Schleberger, M.; Wucher, A.; Bender, M.; Severin, D.; Lebius, H.

    2016-01-15

    The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.

  8. A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    NASA Astrophysics Data System (ADS)

    Meinerzhagen, F.; Breuer, L.; Bukowska, H.; Bender, M.; Severin, D.; Herder, M.; Lebius, H.; Schleberger, M.; Wucher, A.

    2016-01-01

    The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.

  9. A comparative study of ion exchange kinetics in zinc/lead-modified zeolite-clinoptilolite systems.

    PubMed

    Trgo, M; Perić, J; Medvidović, N Vukojević

    2006-08-25

    The kinetics of zinc and lead ions removal by modified zeolite-clinoptilolite has been investigated. The rate of the ion exchange process for lead ions is faster than for zinc ions, as well as the time needed to reach the equilibrium. The ion exchange capacity of zeolite of lead ions is doubly higher than that of zinc ions. Diffusion models according to the Vermeulen's approximation, the parabolic diffusion model and the homogeneous diffusion model have been tested with the experimental data of ion exchange for zinc and lead. For both systems examined, the best fit of the models proposed with the experimental data was shown by the Vermeulen's approximation and the homogeneous diffusion model with t-->t(infinity). The diffusion coefficients are calculated from kinetic models of lead ions they are of the order of 10(-6)cm(2)/min, constant for all examined initial concentrations and not dependent on time. The diffusion coefficients in the system of zinc ions is of the order of 10(-8)cm(2)/min, also independent of initial concentrations, but decreasing with time from the beginning of ion exchange to the equilibrium.

  10. A Diffusion Limited Sorption Kinetics Model with a Mixture of Polydispersed Particles

    NASA Astrophysics Data System (ADS)

    Basagaoglu, H.; McCoy, B. J.; Ginn, T. R.; Loge, F. J.; Dietrich, J. P.

    2002-12-01

    A reactive radial pore diffusion model has been formulated for batch systems with a mixture of polydispersed particles of distinct shapes and sizes to determine temporal and spatial variations in intra particle sorbed and aqueous concentrations that undergo dynamic mass transfer with the extra particle bulk volume. The model accommodates film resistance at particle boundaries, intra particle reversible sorption kinetics, and first-order decays in intra and extra particle phases. The model also allows consideration of nonlinear site-limited intra particle reaction kinetics. A finite-difference formulation of the model identifies a novel term that carries important information on the interaction and competition of a mixture of particles with varying sizes and shapes for the uptake of contaminants from the extra particle aqueous volume. The spatial resolution employed in the finite-difference formulation has been found to be a critical factor that determines the magnitude of the mass balance error (MBE). We have shown that 5 to 20 radial divisions along the particle radius can lead to a MBE as high as 6-27%. Applications for several generic examples illustrate the general behavior. In addition, the model was used to represent experimental site-limited non-linear pore diffusion of iodine into particles in a wastewater secondary effluent.

  11. Particle Size Effect on Wetting Kinetics of a Nanosuspension Drop: MD Simulations

    NASA Astrophysics Data System (ADS)

    Shi, Baiou; Webb, Edmund

    The behavior of nano-fluids, or fluid suspensions containing nanoparticles, has garnered tremendous attention recently for applications in advanced manufacturing. In our previous results from MD simulations, for a wetting system with different advancing contact angles, cases where self-pinning was observed were compared to cases where it was not and relevant forces on particles at the contact line were computed. To advance this work, the roles of particle size and particle loading are examined. Results presented illustrate how particle size affects spreading kinetics and how this connects to dynamic droplet morphology and relevant forces that exist nearby the contact line region. Furthermore, increased particle size in simulations permits a more detailed investigation of particle/substrate interfacial contributions to behavior observed at the advancing contact line. Based on changes in spreading kinetics with particle size, forces between the particle and liquid front are predicted and compared to those computed from simulations. At high loading, particle/particle interactions become relevant and forces computed between particles entrained to an advancing contact line will be presented.

  12. Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence.

    PubMed Central

    Ullman, E F; Kirakossian, H; Singh, S; Wu, Z P; Irvin, B R; Pease, J S; Switchenko, A C; Irvine, J D; Dafforn, A; Skold, C N

    1994-01-01

    A method for monitoring formation of latex particle pairs by chemiluminescence is described. Molecular oxygen is excited by a photosensitizer and an antenna dye that are dissolved in one of the particles. 1 delta gO2 diffuses to the second particle and initiates a high quantum yield chemiluminescent reaction of an olefin that is dissolved in it. The efficiency of 1 delta gO2 transfer between particles is approximately 3.5%. The technique permits real-time measurement of particle binding kinetics. Second-order rate constants increase with the number of receptor binding sites on the particles and approach diffusion control. By using antibody-coated particles, a homogeneous immunoassay capable of detecting approximately 4 amol of thyroid-stimulating hormone in 12 min was demonstrated. Single molecules of analyte produce particle heterodimers that are detected even when no larger aggregates are formed. PMID:8202502

  13. Combined Experimental and Theoretical Approach to the Kinetics of Magnetite Crystal Growth from Primary Particles

    PubMed Central

    2017-01-01

    It is now recognized that nucleation and growth of crystals can occur not only by the addition of solvated ions but also by accretion of nanoparticles, in a process called nonclassical crystallization. The theoretical framework of such processes has only started to be described, partly due to the lack of kinetic or thermodynamic data. Here, we study the growth of magnetite nanoparticles from primary particles—nanometer-sized amorphous iron-rich precursors—in aqueous solution at different temperatures. We propose a theoretical framework to describe the growth of the nanoparticles and model both a diffusion-limited and a reaction-limited pathway to determine which of these best describes the rate-limiting step of the process. We show that, based on the measured iron concentration and the related calculated concentration of primary particles at the steady state, magnetite growth is likely a reaction-limited process, and within the framework of our model, we propose a phase diagram to summarize the observations.

  14. Acute toxicity and accumulation of ZnO NPs in Ceriodaphnia dubia: Relative contributions of dissolved ions and particles.

    PubMed

    Bhuvaneshwari, M; Iswarya, V; Nagarajan, R; Chandrasekaran, N; Mukherjee, Amitava

    2016-08-01

    Although the ecotoxicological effects of various metal oxide nanoparticles on aquatic organisms are being actively studied, the contributions of particles and dissolved ions towards toxicity are still not well understood. The current study aims to assess the contribution of ZnO NP(particle) and ZnO NP(ion) to the overall toxicity and accumulation of ZnO NP(total) in Ceriodaphnia dubia. The aggregation and dissolution kinetics were studied for three different sizes (50nm, 100nm and bulk) of ZnO particles at 0.05, 0.12, 0.25 and 0.5mg/L concentrations in the sterile lake water medium at 6, 12, 24, and 48h intervals. The 48h LC50 of ZnO NP(total) was found to be 0.431, 0.605 and 0.701mg/L for 50, 100nm and bulk particles exposure. However, LC50 of Zn(ion) was found to be 1.048, 1.343 and 2.046mg/L for dissolved ions from different sizes (50nm, 100nm, and bulk) of ZnO particles. At LC50 concentration, the accumulation of 90-95% was noted for the NP(particles) across the sizes employed, while only about 4-5% contribution was from the NP(ion) to the overall accumulation NP(total). The relative contribution of ZnO NP(ion) to overall toxicity and accumulation was found to be lesser than that of ZnO NP(particles) across the sizes used in the study.

  15. Kinetics of sorption of niobium ions by anion-exchangers from mixed chloride-fluoride solutions

    SciTech Connect

    Rychkov, V.N.; Pakholkov, V.S.; Kuznetsova, L.D.

    1987-08-10

    The authors showed earlier on the basis of experimental and calculated data obtained in studies of ion-exchange equilibrium that the sorbability and composition of sorbed niobium ions are determined by the content of hydrofluoric acid in mixed chloride-fluoride solutions. Variation of the ionic state of niobium in these solutions should also influence the rate of ion exchange. In this communication they examine the results of a study of the kinetics of exchange of niobium ions on AV-17 x 8, EDE-10P, and AN-2F anion-exchange resins in fluoride-containing solutions. Kinetic curves for sorption of niobium ions and the results of their evaluation are presented.

  16. Measurement of ion cascade energies through resolution degradation of alpha particle microcalorimeters

    SciTech Connect

    Horansky, Robert D.; Stiehl, Gregory M.; Beall, James A.; Irwin, Kent D.; Ullom, Joel N.; Plionis, Alexander A.; Rabin, Michael W.

    2010-02-15

    Atomic cascades caused by ions impinging on bulk materials have remained of interest to the scientific community since their discovery by Goldstein in 1902. While considerable effort has been spent describing and, more recently, simulating these cascades, tools that can study individual events are lacking and several aspects of cascade behavior remain poorly known. These aspects include the material energies that determine cascade magnitude and the variation between cascades produced by monoenergetic ions. We have recently developed an alpha particle detector with a thermodynamic resolution near 100 eV full-width-at-half-maximum (FWHM) and an achieved resolution of 1.06 keV FWHM for 5.3 MeV particles. The detector relies on the absorption of particles by a bulk material and a thermal change in a superconducting thermometer. The achieved resolution of this detector provides the highest resolving power of any energy dispersive technique and a factor of 8 improvement over semiconductor detectors. The exquisite resolution can be directly applied to improved measurements of fundamental nuclear decays and nuclear forensics. In addition, we propose that the discrepancy between the thermodynamic and achieved resolution is due to fluctuations in lattice damage caused by ion-induced cascades in the absorber. Hence, this new detector is capable of measuring the kinetic energy converted to lattice damage in individual atomic cascades. This capability allows new measurements of cascade dynamics; for example, we find that the ubiquitous modeling program, SRIM, significantly underestimates the lattice damage caused in bulk tin by 5.3 MeV alpha particles.

  17. The Effects of Ion heating in Martian Magnetic Crustal Fields: Particle Tracing and Ion Distributions

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Andersson, L.

    2014-12-01

    Ion heating is a process that may allow low energy ions within the Martian ionosphere to be accelerated and escape. Ion heating can be especially efficient if the ions stay in the heating region for long time durations. With this in mind, the magnetic crustal field regions on Mars are particularly interesting. We focus on ions present within these regions, where changes in magnetic field strength and direction can heat these ions. Since crustal magnetic fields can maintain a trapped particle population it is unclear how efficiently plasma can be built up that can later escape to space. We investigate here two drivers: rotation of the planet and the solar wind pressure. As crustal fields rotate from the wake of the planet to the sub solar point and back, they experience compression and expansion over time scales of ~24 hours. The solar wind pressure on the other hand can cause variations over much shorter time scales (minutes). The effect of these two drivers using a particle tracing simulation that solves the Lorentz force is presented. O+ ions are seeded within the simulation box. The magnetic environment is a linear sum of a dipole field and a solar wind magnetic field. The dipole field represents the magnetic crustal field and the dipole strength is chosen to be consistent with MGS magnetometer observations of Martian crustal field regions. By increasing the solar wind strength the magnetic dipole is compressed. Decreasing solar wind strength allows the dipole to expand. Small magnitude, short time scale variations can be imposed over the top of this larger variation to represent short time scale solar wind variations. Since the purpose of this analysis is to understand the changes of the ion distribution inside the crustal field, simplistic assumptions of the field outside the crustal field can be made. Initial results are presented, with the focus on two main questions: (a) can low energy ions be heated and escape the closed dipole field lines as a result of

  18. The composition of heavy ions in solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Gloeckler, G.; Hovestadt, D.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of or approximate to 1 to or approximate to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.

  19. Kinetic effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Siminos, Evangelos; Svedung Wettervik, Benjamin; Grech, Mickael; Fülöp, Tünde

    2016-10-01

    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is shown, using particle-in-cell simulations and an analysis of separatrices in single-particle phase-space, that this transition is mediated by the complex interplay of fast electron dynamics and ion motion at the initial stage of the interaction. It thus depends on the ion charge-to-mass ratio and can be controlled by varying the laser temporal profile. Moreover, we find a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread. This work was supported by the Knut and Alice Wallenberg Foundation (pliona project) and the European Research Council (ERC-2014-CoG Grant 647121).

  20. Kinetics and equilibrium studies of adsorption of chromium(VI) ion from industrial wastewater using Chrysophyllum albidum (Sapotaceae) seed shells.

    PubMed

    Amuda, O S; Adelowo, F E; Ologunde, M O

    2009-02-01

    A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63mgCr(VI)/g at initial pH of 3.0 at 30 degrees C for the particle size of 1.00-1.25mm with the use of 12.5, 16.5 and 2.1g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.

  1. Kinetics of ion carbonitriding of constructional steels with direct hardening

    NASA Astrophysics Data System (ADS)

    Grigor'ev, V. S.; Solodkin, G. A.; Shevchuk, S. A.

    1991-07-01

    The action of a glow discharge plasma in carbonitriding of steel provides high kinetic effectiveness of the process, the parameters of which exceed those of vacuum carburizing by no less than 1.5 times and of gas carburizing by no less than 2.0 times at the same temperatures.

  2. Analogue of Cosmological Particle Creation in an Ion Trap

    SciTech Connect

    Schuetzhold, Ralf; Uhlmann, Michael; Petersen, Lutz; Schmitz, Hector; Friedenauer, Axel; Schaetz, Tobias

    2007-11-16

    We study phonons in a dynamical chain of ions confined by a trap with a time-dependent (axial) potential strength and demonstrate that they behave in the same way as quantum fields in an expanding or contracting Universe. Based on this analogy, we present a scheme for the detection of the analogue of cosmological particle creation which should be feasible with present day technology. In order to test the quantum nature of the particle creation mechanism and to distinguish it from classical effects such as heating, we propose to measure the two-phonon amplitude via the 2nd red sideband transition and to compare it with the one-phonon amplitude (1st red sideband)

  3. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE PAGES

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; ...

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method describedmore » here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple

  4. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    SciTech Connect

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Johnson, Maria Gatu; Séguin, Fredrick H.; Frenje, Johan A.; Li, C. K.; Petrasso, Richard D.; Higdon, David M.; Srinivasan, Gowri; Glebov, Vladimir Yu.; Stoeckl, Christian; Seka, Wolf; Sangster, T. Craig

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method described here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach

  5. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    NASA Astrophysics Data System (ADS)

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Gatu Johnson, Maria; Séguin, Fredrick H.; Frenje, Johan A.; Li, C. K.; Petrasso, Richard D.; Higdon, David M.; Srinivasan, Gowri; Glebov, Vladimir Yu.; Stoeckl, Christian; Seka, Wolf; Sangster, T. Craig

    2015-05-01

    "Reduced" (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method described here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach

  6. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    DOE PAGES

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; ...

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying mi/me, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less

  7. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-01

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  8. The role of kinetic effects, including plasma rotation and energetic particles, in resistive wall mode stability

    SciTech Connect

    Berkery, J. W.; Sabbagh, S. A.; Reimerdes, H.; Betti, R.; Hu, B.; Bell, R. E.; Gerhardt, S. P.; Manickam, J.; Podesta, M.

    2010-08-15

    The resistive wall mode (RWM) instability in high-beta tokamaks is stabilized by energy dissipation mechanisms that depend on plasma rotation and kinetic effects. Kinetic modification of ideal stability calculated with the 'MISK' code [B. Hu et al., Phys. Plasmas 12, 057301 (2005)] is outlined. For an advanced scenario ITER [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)] plasma, the present calculation finds that alpha particles are required for RWM stability at presently expected levels of plasma rotation. Kinetic stabilization theory is tested in an experiment in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] that produced marginally stable plasmas with various energetic particle contents. Plasmas with the highest and lowest energetic particle content agree with calculations predicting that increased energetic particle pressure is stabilizing but does not alter the nonmonotonic dependence of stability on plasma rotation due to thermal particle resonances. Presently, the full MISK model, including thermal particles and an isotropic slowing-down distribution function for energetic particles, overpredicts stability in NSTX experiments. Minor alteration of either effect in the theory may yield agreement; several possibilities are discussed.

  9. Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Abdel Moghny, Th.; Mousa, Mahmoud Ahmed; El-Bellihi, Abdel-Hameed A.-A.; Awadallah, Ahmed E.

    2016-11-01

    Sorption of calcium ion from the hard underground water using novel oxidized graphene (GO) sheets was studied in this paper. Physicochemical properties and microstructure of graphene sheets were investigated using Raman spectrometer, thermogravimetry analyzer, transmission electron microscope, scanning electron microscope. The kinetics adsorption of calcium on graphene oxide sheets was examined using Lagergren first and second orders. The results show that the Lagergren second-order was the best-fit model that suggests the conception process of calcium ion adsorption on the Go sheets. For isothermal studies, the Langmuir and Freundlich isotherm models were used at temperatures ranging between 283 and 313 K. Thermodynamic parameters resolved at 283, 298 and 313 K indicating that the GO adsorption was exothermic spontaneous process. Finally, the graphene sheets show high partiality toward calcium particles and it will be useful in softening and treatment of hard water.

  10. Formation of gas-phase peptide ions and their dissociation in MALDI: insights from kinetic and ion yield studies.

    PubMed

    Moon, Jeong Hee; Yoon, Sohee; Bae, Yong Jin; Kim, Myung Soo

    2015-01-01

    Insights on mechanisms for the generation of gas-phase peptide ions and their dissociation in matrix-assisted laser desorption ionization (MALDI) gained from the kinetic and ion yield studies are presented. Even though the time-resolved photodissociation technique was initially used to determine the dissociation kinetics of peptide ions and their effective temperature, it was replaced by a simpler method utilizing dissociation yields from in-source decay (ISD) and post-source decay (PSD). The ion yields for a matrix and a peptide were measured by repeatedly irradiating a region on a sample and collecting ion signals until the sample in the region was completely depleted. Matrix- and peptide-derived gas-phase cations were found to be generated by pre-formed ion emission or by ion-pair emission followed by anion loss, but not by laser-induced ionization. The total number of ions, that is, matrix plus peptide, was found to be equal to the number of ions emitted from a pure matrix. A matrix plume was found to cool as it expanded, from around 800-1,000 K to 400-500 K. Dissociation of peptide ions along b/y channels was found to occur statistically, that is, following RRKM behavior. Small critical energy (E0  = 0.6-0.7 eV) and highly negative critical entropy (ΔS(‡)  = -30 to -25 eu) suggested that the transition structure was stabilized by multiple intramolecular interactions.

  11. KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS

    SciTech Connect

    Isenberg, Philip A.; Vasquez, Bernard J.

    2015-08-01

    We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg and Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric distances of 20 solar radii, which will be attainable by the Solar Probe Plus spacecraft. We consider three ratios of outward-propagating to inward-propagating resonant intensities: 1, 4, and 9. The self-consistent bulk flow speed reaches fast solar wind values in all cases, and these speeds are basically independent of the intensity ratio. The steady-state proton distribution is highly organized into nested constant-density shells by the resonant wave-particle interaction. The radial evolution of this kinetic distribution as the coronal hole plasma flows outward is understood as a competition between the inward- and outward-directed large-scale forces, causing an effective circulation of particles through the (v{sub ∥}, v{sub ⊥}) phase space and a characteristic asymmetric shape to the distribution. These asymmetries are substantial and persist to the outer limit of the model computation, where they should be observable by the Solar Probe Plus instruments.

  12. Simulation study of overtaking of ion-acoustic solitons in the fully kinetic regime

    NASA Astrophysics Data System (ADS)

    Hosseini Jenab, S. M.; Spanier, F.

    2017-03-01

    The overtaking collisions of ion-acoustic solitons in the presence of trapping effects of electrons are studied based on a fully kinetic simulation approach. The method is able to provide all the kinetic details of the process alongside the fluid-level quantities self consistently. Solitons are produced naturally by utilizing the chain formation phenomenon, and then are arranged in a new simulation box to test the different scenarios of overtaking collisions. Three achievements are reported here. First, simulations prove the long-time life span of the ion-acoustic solitons in the presence of trapping effect of electrons (kinetic effects), which serves as the benchmark of the simulation code. Second, their stability against overtaking mutual collisions is established by creating collisions between solitons with different number and shapes of trapped electrons, i.e., different trapping parameter. Finally, details of solitons during collisions for both ions and electrons are provided on both fluid and kinetic levels. These results show that on the kinetic level, trapped electron population accompanying each of the solitons are exchanged between the solitons during the collision. Furthermore, the behavior of electron holes accompanying solitons contradicts the theory about the electron holes interaction developed based on kinetic theory. They also show behaviors much different from other electron holes witnessed in processes such as nonlinear Landau damping (Bernstein-Greene-Kruskal -BGK- modes) or beam-plasma interaction (like two-beam instability).

  13. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; Boardsen, Scott A.; Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; Saito, Yoshifumi; Paterson, William R.; Fuselier, Stephen A.; Ergun, Robert E.; Strangeway, Robert J.; Russell, Christopher T.; Giles, Barbara L.; Pollock, Craig J.; Torbert, Roy B.; Burch, James L.

    2017-03-01

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  14. Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, O. Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Izotov, I.; Mansfeld, D.; Skalyga, V.

    2016-02-15

    The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz A-electron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10-100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime.

  15. Kinetic response of ionospheric ions to onset of auroral electric fields

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Kan, J. R.

    1981-01-01

    Examination of the exact analytic solution of a kinetic model of collisional interaction of ionospheric fions with atmospheric neutrals in the Bhatnagar-Gross-Krook approximation, shows that the onset of intense auroral electric fields in the topside ionosphere can produce the following kinetic effects: (1) heat the bulk ionospheric ions to approximately 2 eV, thus driving them up to higher altitudes where they can be subjected to collisionless plasma processes; (2) produce a nonMaxwellian superthermal tail in the distribution function; and (3) cause the ion distribution function to be anisotropic with respect to the magnetic field with the perpendicular average thermal energy exceeding the parallel thermal energy.

  16. Gating Kinetics and Ion Transfer in Channels of Nerve Membrane.

    DTIC Science & Technology

    1987-10-21

    and sea hare ( Aplysia ). In the classical squid axon preparation a detailed comparison between estimates of the relaxation time obtained via Hodgkin...Mrra nr . r -W, ,.r w -. r- _ ,,- Fishman, H.M. N00014-87-K-0055 Inward K Rectifier Channel Kinetics from Analysis of Complex Conductances in Aplysia ...Neuronal Membrane. The inward K rectifier in Aplysia neuron and Ba* blockade of the recti- fication process were studied by rapid measurement of

  17. The nonlinear evolution of driven nonlinear ion acoustic waves with kinetic electrons

    NASA Astrophysics Data System (ADS)

    Berger, Richard; Brunner, Stephan; Valeo, Ernest; Divol, Laurent; Still, Charles

    2006-10-01

    The stimulated Brillouin scattering (SBS) of laser light from hot plasma drives ion acoustic waves to large amplitudes particularly if the phase velocity is much greater than the ion thermal velocity for all ion species, that is, ZTe/Ti >>1 where Z is the charge state of the ion, and Te and Ti are the electron and ion temperatures. In fluid simulations of the SBS from CO2 and Krypton plasmas, ad hoc limits on the amplitude of the driven ion waves were required to match the measured reflectivity. Because ZTe/Ti >>1, ion kinetics are unlikely to play a role in the saturation of ion waves. Here, we study the effect of electron trapping which produces a positive frequency shift in quantitative agreement with theory (see abstract by S. Brunner et al., this meeting) and the role of electron kinetics on the decay instability of the driven ion wave. Further, we apply these results to modeling of experiments where ZTe/Ti >>1 [e.g., Glenzer et al., PRL 86, 2565 (2001), L. Divol, et al., Physics of Plasmas 10, 1822 (2003)].

  18. Overview of Particle and Heavy Ion Transport Code System PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  19. Nonlinear evolution of ion acoustic solitary waves in space plasmas: Fluid and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Kakad, Bharati; Kakad, Amar; Omura, Yoshiharu

    2014-07-01

    Spacecraft observations revealed the presence of electrostatic solitary waves (ESWs) in various regions of the Earth's magnetosphere. Over the years, many researchers have attempted to model these observations in terms of electron/ion acoustic solitary waves by using nonlinear fluid theory/simulations. The ESW structures predicted by fluid models can be inadequate due to its inability in handling kinetic effects. To provide clear view on the application of the fluid and kinetic treatments in modeling the ESWs, we perform both fluid and particle-in-cell (PIC) simulations of ion acoustic solitary waves (IASWs) and estimate the quantitative differences in their characteristics like speed, amplitude, and width. We find that the number of trapped electrons in the wave potential is higher for the IASW, which are generated by large-amplitude initial density perturbation (IDP). The present fluid and PIC simulation results are in close agreement for small amplitude IDPs, whereas for large IDPs they show discrepancy in the amplitude, width, and speed of the IASW, which is attributed to negligence of kinetic effects in the former approach. The speed of IASW in the fluid simulations increases with the increase of IASW amplitude, while the reverse tendency is seen in the PIC simulation. The present study suggests that the fluid treatment is appropriate when the magnitude of phase velocity of IASW is less than the ion acoustic (IA) speed obtained from their linear dispersion relation, whereas when it exceeds IA speed, it is necessary to include the kinetic effects in the model.

  20. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  1. A kinetic model of NMDA ion channel under varying noise

    NASA Astrophysics Data System (ADS)

    Wang, Rubin; Chen, Hao; Zhang, Zhikang

    2004-05-01

    It is well known that when transmitters are applied to the postsynaptic membrane, the resulting depolarization is noisy that is due to the random opening and closing of the ion channels activated by the transmitters[1]. In other words, the energy of noise is associated with changes in ion channels. On the base of these ideas, we explore a model of relationship between NMDA (n-methyl-D-aspartate) ion channels and LTP (long-term synaptic potentiation). We have proved that NMDA ion channel and calcium-dependent protein kinases, which are the triggers for the inducement of LTP, could be regarded as "molecular machines". In this system all of these molecules require energy and the energy of the system is supplied from the random motion of water molecules generated through heat energy of ATP hydrolysis[2]. So the appropriate framework to describe them comes from bioenergetics. Models of LTP previously reported are all on the macroscopic level [3-7]. Instead, we research a model at the molecular level by applying energy parameters [8].

  2. Fundamental equations of a mixture of gas and small spherical solid particles from simple kinetic theory.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.

    1973-01-01

    The fundamental equations of a mixture of a gas and pseudofluid of small spherical solid particles are derived from the Boltzmann equation of two-fluid theory. The distribution function of the gas molecules is defined in the same manner as in the ordinary kinetic theory of gases, but the distribution function for the solid particles is different from that of the gas molecules, because it is necessary to take into account the different size and physical properties of solid particles. In the proposed simple kinetic theory, two additional parameters are introduced: one is the radius of the spheres and the other is the instantaneous temperature of the solid particles in the distribution of the solid particles. The Boltzmann equation for each species of the mixture is formally written, and the transfer equations of these Boltzmann equations are derived and compared to the well-known fundamental equations of the mixture of a gas and small solid particles from continuum theory. The equations obtained reveal some insight into various terms in the fundamental equations. For instance, the partial pressure of the pseudofluid of solid particles is not negligible if the volume fraction of solid particles is not negligible as in the case of lunar ash flow.

  3. Particle kinetic simulation of high altitude hypervelocity flight

    NASA Technical Reports Server (NTRS)

    Heinemann, Klaus; Boyd, Iain D.; Haas, Brian L.

    1993-01-01

    In this grant period, the focus has been on the effects of thermo-chemical nonequilibrium in low-density gases, and on interactions between such gases and solid surfaces. Such conditions apply to hypersonic flows of re-entry vehicles, and to the expansion plumes of small rockets. Due to the nonequilibrium nature of these flows, a particle approach has been adopted. The method continues to undergo refinement and application to typical flows of interest. A number of studies have been performed for flows in thermo-chemical nonequilibrium. The effects of vibrational nonequilibrium on the rate of dissociation were studied for diatomic nitrogen. It was found that a new model reproduced the nonequilibrium behavior observed experimentally.

  4. Thermodynamics and kinetics of ion speciation in supercritical aqueous solutions: A molecular based study

    SciTech Connect

    Chialvo, A.A.; Cummings, P.T. |; Simonson, J.M.; Mesmer, R.E.

    1997-05-01

    Molecular simulation of infinitely dilute NaCl aqueous solutions are performed to study the Na{sup +}/Cl{sup -} ion pairing in a polarizable and a nonpolarizable solvent at supercritical conditions. The Simple Point Charge, Pettitt-Rossky, and Fumi-Tosi models for the water-water, ion-water, and ion-ion interactions are used in determining the degree of dissociation, its temperature and density dependence, and the kinetics of the interconversion between ion-pair configurations in a nonpolarizable medium. To assess the effect of the solvent polarizability on the stability of the ion-pair configurations, we replace the Simple Point Charge by the Polarizable Point Charge water model and determine the anion-cation potential of mean force at T{sub r}=1.20 and {rho}{sub r}=1.5.

  5. Kinetic study of ion acoustic twisted waves with kappa distributed electrons

    NASA Astrophysics Data System (ADS)

    Arshad, Kashif; Aman-ur-Rehman, Mahmood, Shahzad

    2016-05-01

    The kinetic theory of Landau damping of ion acoustic twisted modes is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons and Maxwellian ions. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the ion acoustic twisted waves in a non-thermal plasma. The strong damping effects of ion acoustic twisted waves at low values of temperature ratio of electrons and ions are also obtained by using exact numerical method and illustrated graphically, where the weak damping wave theory fails to explain the phenomenon properly. The obtained results of Landau damping rates of the twisted ion acoustic wave are discussed at different values of azimuthal wave number and non-thermal parameter kappa for electrons.

  6. Magnetic particle imaging: kinetics of the intravascular signal in vivo

    PubMed Central

    Haegele, Julian; Duschka, Robert L; Graeser, Matthias; Schaecke, Catharina; Panagiotopoulos, Nikolaos; Lüdtke-Buzug, Kerstin; Buzug, Thorsten M; Barkhausen, Jörg; Vogt, Florian M

    2014-01-01

    Background Magnetic particle imaging (MPI) uses magnetic fields to visualize superparamagnetic iron oxide nanoparticles (SPIO). Today, Resovist® is still the reference SPIO for MPI. The objective of this study was to evaluate the in vivo blood half-life of two different types of Resovist (one from Bayer Pharma AG, and one from I’rom Pharmaceutical Co Ltd) in MPI. Methods A Resovist concentration of 50 μmol/kg was injected into the ear artery of ten New Zealand White rabbits. Five animals received Resovist distributed by I’rom Pharmaceutical Co Ltd and five received Resovist by Bayer Pharma AG. Blood samples were drawn before and directly after injection of Resovist, at 5, 10, and 15 minutes, and then every 15 minutes until 120 minutes after the injection. The MPI signal of the blood samples was evaluated using magnetic particle spectroscopy. Results The average decline of the blood MPI signal from the two distributions differed significantly (P=0.0056). Resovist distributed by Bayer Pharma AG showed a slower decline of the MPI signal (39.7% after 5 minutes, 20.5% after 10 minutes, and 12.1% after 15 minutes) compared with Resovist produced by I’rom Pharmaceutical Co Ltd (20.4% after 5 minutes, 7.8% after 10 minutes, no signal above noise level after 15 minutes). Conclusion In MPI, the blood half-life of an SPIO tracer cannot be equalized to the blood half-life of its MPI signal. Resovist shows a very rapid decline of blood MPI signal and is thus not suitable as a long circulating tracer. For cardiovascular applications in MPI, it may be used as a bolus tracer. PMID:25214784

  7. Interactive Computer Simulation and Animation for Improving Student Learning of Particle Kinetics

    ERIC Educational Resources Information Center

    Fang, N.; Guo, Y.

    2016-01-01

    Computer simulation and animation (CSA) has been receiving growing attention and wide application in engineering education in recent years. A new interactive CSA module was developed in the present study to improve student learning of particle kinetics in an undergraduate engineering dynamics course. The unique feature of this CSA module is that…

  8. Preequilibrium particle emissions and in-medium effects on the pion production in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Feng, Zhao-Qing

    2017-02-01

    Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, pion dynamics in heavy-ion collisions near threshold energies and the emission of preequilibrium particles (nucleons and light complex fragments) have been investigated. A density, momentum and isospin-dependent pion-nucleon potential based on the Δ-hole model is implemented in the transport approach, which slightly leads to the increase of the π-/π+ ratio, but reduces the total pion yields. It is found that a bump structure of the π-/π+ ratio in the kinetic energy spectra appears at the pion energy close to the Δ (1232) resonance region. The yield ratios of neutrons to protons from the squeeze-out particles perpendicular to the reaction plane are sensitive to the stiffness of nuclear symmetry energy, in particular at the high-momentum (kinetic energy) tails.

  9. Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation.

    PubMed

    Jung, Heejung; Kittelson, David B; Zachariah, Michael R

    2006-08-15

    Biodiesel is one of the most promising alternative diesel fuels. As diesel emission regulations have become more stringent, the diesel particulate filter (DPF) has become an essential part of the aftertreatment system. Knowledge of kinetics of exhaust particle oxidation for alternative diesel fuels is useful in estimating the change in regeneration behavior of a DPF with such fuels. This study examines the characteristics of diesel particulate emissions as well as kinetics of particle oxidation using a 1996 John Deere T04045TF250 off-highway engine and 100% soy methyl ester (SME) biodiesel (B100) as fuel. Compared to standard D2 fuel, this B100 reduced particle size, number, and volume in the accumulation mode where most of the particle mass is found. At 75% load, number decreased by 38%, DGN decreased from 80 to 62 nm, and volume decreased by 82%. Part of this decrease is likely associated with the fact that the particles were more easily oxidized. Arrhenius parameters for the biodiesel fuel showed a 2-3times greater frequency factor and approximately 6 times higher oxidation rate compared to regular diesel fuel in the range of 700-825 degrees C. The faster oxidation kinetics should facilitate regeneration when used with a DPF.

  10. 3-D Full-kinetic Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies: Particle Behaviour

    NASA Astrophysics Data System (ADS)

    Deca, J.; Divin, A. V.; Wang, X.; Lembege, B.; Markidis, S.; Lapenta, G.; Horanyi, M.

    2015-12-01

    We present three-dimensional full-kinetic electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the full-kinetic nature of iPic3D allows to self-consistently investigate space charge effects, and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general mechanism of the interaction of both a horizontal and vertical dipole model embedded just below the lunar surface focussing on the ion and electron kinetic behaviour of the system. It is shown that the configurations are largely dominated by electron motion, because the LMA scale size is small with respect to the gyro-radius of the solar wind ions. The formation of mini-magnetospheres is an electrostatic effect. Additionally, we discuss typical particle trajectories as well as complete particle distribution functions covering thermal and suprathermal energies, within the interaction region and on viable spacecraft altitudes. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs.This research has received funding from the European Commission's FP7 Program with the grant agreement EHEROES (project 284461, www.eheroes.eu). The simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2013091928 (SuperMUC). This research was supported by the Swedish National Space Board

  11. Ion kinetic energy distributions and cross sections for the electron impact ionization of ethyl tert-butyl ether

    NASA Astrophysics Data System (ADS)

    Di Palma, T. M.; Apicella, B.; Armenante, M.; Velotta, R.; Wang, X.; Spinelli, N.

    2005-11-01

    The kinetic energy distributions and the cross sections of the ions produced in the electron impact of ethyl tert-butyl ether (ETBE) have been studied by time of flight (TOF) mass spectrometry. The kinetic energy distributions have been deduced from the TOF peak shape analysis and a Montecarlo simulation method of the ion trajectories has been used to evaluate the collection efficiency of the spectrometer as a function of the ion initial kinetic energy. The measured ion yields have been corrected for the collection efficiency and the partial and total ionization cross sections of ETBE determined in the range 20-150 eV.

  12. Particle kinetic simulation of high altitude hypervelocity flight

    NASA Technical Reports Server (NTRS)

    Haas, Brian L.

    1993-01-01

    In this grant period, the focus has been on enhancement and application of the direct simulation Monte Carlo (DSMC) particle method for computing hypersonic flows of re-entry vehicles. Enhancement efforts dealt with modeling gas-gas interactions for thermal non-equilibrium relaxation processes and gas-surface interactions for prediction of vehicle surface temperatures. Both are important for application to problems of engineering interest. The code was employed in a parametric study to improve future applications, and in simulations of aeropass maneuvers in support of the Magellan mission. Detailed comparisons between continuum models for internal energy relaxation and DSMC models reveals that several discrepancies exist. These include definitions of relaxation parameters and the methodologies for implementing them in DSMC codes. These issues were clarified and all differences were rectified in a paper (Appendix A) submitted to Physics of Fluids A, featuring several key figures in the DSMC community as co-authors and B. Haas as first author. This material will be presented at the Fluid Dynamics meeting of the American Physical Society on November 21, 1993. The aerodynamics of space vehicles in highly rarefied flows are very sensitive to the vehicle surface temperatures. Rather than require prescribed temperature estimates for spacecraft as is typically done in DSMC methods, a new technique was developed which couples the dynamic surface heat transfer characteristics into the DSMC flow simulation code to compute surface temperatures directly. This model, when applied to thin planar bodies such as solar panels, was described in AIAA Paper No. 93-2765 (Appendix B) and was presented at the Thermophysics Conference in July 1993. The paper has been submitted to the Journal of Thermophysics and Heat Transfer. Application of the DSMC method to problems of practical interest requires a trade off between solution accuracy and computational expense and limitations. A

  13. Kinetic and Potential Sputtering of Lunar Regolith: Contribution of Solar-Wind Heavy Ions

    NASA Technical Reports Server (NTRS)

    Meyer, F. W.; Harris, P. R.; Meyer, H. M., III; Hijiazi, H.; Barghouty, A. F.

    2013-01-01

    Sputtering of lunar regolith by protons as well as solar-wind heavy ions is considered. From preliminary measurements of H+, Ar+1, Ar+6 and Ar+9 ion sputtering of JSC-1A AGGL lunar regolith simulant at solar wind velocities, and TRIM simulations of kinetic sputtering yields, the relative contributions of kinetic and potential sputtering contributions are estimated. An 80-fold enhancement of oxygen sputtering by Ar+ over same-velocity H+, and an additional x2 increase for Ar+9 over same-velocity Ar+ was measured. This enhancement persisted to the maximum fluences investigated is approximately 1016/cm (exp2). Modeling studies including the enhanced oxygen ejection by potential sputtering due to the minority heavy ion multicharged ion solar wind component, and the kinetic sputtering contribution of all solar wind constituents, as determined from TRIM sputtering simulations, indicate an overall 35% reduction of near-surface oxygen abundance. XPS analyses of simulant samples exposed to singly and multicharged Ar ions show the characteristic signature of reduced (metallic) Fe, consistent with the preferential ejection of oxygen atoms that can occur in potential sputtering of some metal oxides.

  14. Secondary particle tracks generated by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  15. Independent-particle models for light negative atomic ions

    NASA Technical Reports Server (NTRS)

    Ganas, P. S.; Talman, J. D.; Green, A. E. S.

    1980-01-01

    For the purposes of astrophysical, aeronomical, and laboratory application, a precise independent-particle model for electrons in negative atomic ions of the second and third period is discussed. The optimum-potential model (OPM) of Talman et al. (1979) is first used to generate numerical potentials for eight of these ions. Results for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the OPM and HF electron affinities both depart significantly from experimental affinities. For this reason, two analytic potentials are developed whose inner energy levels are very close to the OPM and HF levels but whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These models are: (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter potential model of the Green, Sellin, Zachor type. The system O(-) or e-O, which is important in upper atmospheric physics is examined in some detail.

  16. Observation of ions and particles near busy roads using a neutral cluster and air ion spectrometer (NAIS)

    NASA Astrophysics Data System (ADS)

    Jayaratne, E. R.; Ling, X.; Morawska, L.

    2014-02-01

    Motor vehicles emit large quantities of ions in the form of both charged particles and molecular cluster ions. While, the health effects of inhalation of charged particles is largely unexplored, the concentrations near busy roads and the distance to which these particles and ions are carried have important implications for the exposure of the large percentage of the population that lives close to such roadways. We measured ion concentrations using a neutral cluster and air ion spectrometer (NAIS) near seven busy roads carrying on the average approximately 7000 vehicles h-1 including about 15% heavy duty diesel vehicles. In this study, charged particle concentrations were measured as a function of downwind distance from the road for the first time. We show that, at a moderate wind speed of 2.0 m s-1, mean charged particle concentrations at the kerb were of the order of 2 × 104 cm-3 and, more importantly, decreased as d-0.6 where d is the distance from the road. While cluster ions were rapidly depleted by attachment to particles and were not carried to more than about 20 m from the road, elevated concentrations of charged particle were detected up to at least 400 m from the road. Most of the charge on the downwind side was carried on the larger particles, with no excess charge on particles smaller than about 10 nm. At 30 nm, particles carried more than double the charge they would normally carry in equilibrium. There are very few measurements of ions near road traffic and this is the first study of the spatial dispersion of charged particles from a road.

  17. Overview of WARP, a particle code for Heavy Ion Fusion

    SciTech Connect

    Friedman, A.; Grote, D.P.; Callahan, D.A.; Langdon, A.B.; Haber, I.

    1993-02-22

    The beams in a Heavy Ion beam driven inertial Fusion (HIF) accelerator must be focused onto small spots at the fusion target, and so preservation of beam quality is crucial. The nonlinear self-fields of these space-charge-dominated beams can lead to emittance growth; thus a self-consistent field description is necessary. We have developed a multi-dimensional discrete-particle simulation code, WARP, and are using it to study the behavior of HIF beams. The code`s 3d package combines features of an accelerator code and a particle-in-cell plasma simulation, and can efficiently track beams through many lattice elements and around bends. We have used the code to understand the physics of aggressive drift-compression in the MBE-4 experiment at Lawrence Berkeley Laboratory (LBL). We have applied it to LBL`s planned ILSE experiments, to various ``recirculator`` configurations, and to the study of equilibria and equilibration processes. Applications of the 3d package to ESQ injectors, and of the r, z package to longitudinal stability in driver beams, are discussed in related papers.

  18. Dynamics of pickup ion velocity distribution function in Titan's plasma environment (TA encounter): 3D hybrid kinetic modeling and comparison with CAPS observations

    NASA Astrophysics Data System (ADS)

    Simpson, D. G.; Lipatov, A. S.; Sittler, E. C.; Hartle, R. E.; Cooper, J. F.

    2013-12-01

    Wave-particle interactions play a very important role in the plasma dynamics near Titan: mass loading, excitation of the low-frequency waves and the formation of the particle velocity distribution function, e.g. ring/shell-like distributions, etc. The kinetic approach is important for estimation of the collision processes e.g. a charge exchange. The particle velocity distribution function also plays a key role for understanding the observed particle fluxes. In this report we discuss the ion velocity distribution function dynamics from 3D hybrid modeling. The modeling is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) ion measurements during the TA flyby. In our model the background ions, all pickup ions, and ionospheric ions are considered as particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. The temperatures of the background electrons and pickup electrons were also included into the generalized Ohm's law. We also take into account the collisions between the ions and neutrals. We use Chamberlain profiles for the exosphere's components and include a simple ionosphere model with M=28 ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Our modeling shows that interaction between background plasma and pickup ions H+, H2+, CH4+ and N2+ has a more complicated structure than was observed in the T9 flyby and modeling due to the large gyroradius of the background O+ ions [1,2,3,4]. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS TA observations. We also compare our kinetic modeling with other hybrid and MHD modeling of Titan's environment. References [1] Sittler, E.C., et al., Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton J.P., Waite, J.H., Eds

  19. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle.

    PubMed

    Luo, Xisheng; Fan, Yu; Qin, Fenghua; Gui, Huaqiao; Liu, Jianguo

    2014-01-14

    A kinetic model is developed to describe the heterogeneous condensation of vapor on an insoluble spherical particle. This new model considers two mechanisms of cluster growth: direct addition of water molecules from the vapor and surface diffusion of adsorbed water molecules on the particle. The effect of line tension is also included in the model. For the first time, the exact expression of evaporation coefficient is derived for heterogeneous condensation of vapor on an insoluble spherical particle by using the detailed balance. The obtained expression of evaporation coefficient is proved to be also correct in the homogeneous condensation and the heterogeneous condensation on a planar solid surface. The contributions of the two mechanisms to heterogeneous condensation including the effect of line tension are evaluated and analysed. It is found that the cluster growth via surface diffusion of adsorbed water molecules on the particle is more important than the direct addition from the vapor. As an example of our model applications, the growth rate of the cap shaped droplet on the insoluble spherical particle is derived. Our evaluation shows that the growth rate of droplet in heterogeneous condensation is larger than that in homogeneous condensation. These results indicate that an explicit kinetic model is benefit to the study of heterogeneous condensation on an insoluble spherical particle.

  20. Automated system for kinetic analysis of particle size distributions for pharmaceutically relevant systems.

    PubMed

    Green, John-Bruce D; Carter, Phillip W; Zhang, Yingqing; Patel, Dipa; Kotha, Priyanka; Gonyon, Thomas

    2014-01-01

    Detailing the kinetics of particle formation for pharmaceutically relevant solutions is challenging, especially when considering the combination of formulations, containers, and timescales of clinical importance. This paper describes a method for using commercial software Automate with a stream-selector valve capable of sampling container solutions from within an environmental chamber. The tool was built to monitor changes in particle size distributions via instrumental particle counters but can be adapted to other solution-based sensors. The tool and methodology were demonstrated to be highly effective for measuring dynamic changes in emulsion globule distributions as a function of storage and mixing conditions important for parenteral nutrition. Higher levels of agitation induced the fastest growth of large globules (≥5 μm) while the gentler conditions actually showed a decrease in the number of these large globules. The same methodology recorded calcium phosphate precipitation kinetics as a function of [Ca(2+)] and pH. This automated system is readily adaptable to a wide range of pharmaceutically relevant systems where the particle size is expected to vary with time. This instrumentation can dramatically reduce the time and resources needed to probe complex formulation issues while providing new insights for monitoring the kinetics as a function of key variables.

  1. Modeling of hydrogen production methods: Single particle model and kinetics assessment

    SciTech Connect

    Miller, R.S.; Bellan, J.

    1996-10-01

    The investigation carried out by the Jet Propulsion Laboratory (JPL) is devoted to the modeling of biomass pyrolysis reactors producing an oil vapor (tar) which is a precursor to hydrogen. This is an informal collaboration with NREL whereby JPL uses the experimentally-generated NREL data both as initial and boundary conditions for the calculations, and as a benchmark for model validation. The goal of this investigation is to find drivers of biomass fast-pyrolysis in the low temperature regime. The rationale is that experimental observations produce sparse discrete conditions for model validation, and that numerical simulations produced with a validated model are an economic way to find control parameters and an optimal operation regime, thereby circumventing costly changes in hardware and tests. During this first year of the investigation, a detailed mathematical model has been formulated for the temporal and spatial accurate modeling of solid-fluid reactions in biomass particles. These are porous particles for which volumetric reaction rate data is known a priori and both the porosity and the permeability of the particle are large enough to allow for continuous gas phase flow. The methodology has been applied to the pyrolysis of spherically symmetric biomass particles by considering previously published kinetics schemes for both cellulose and wood. The results show that models which neglect the thermal and species boundary layers exterior to the particle will generally over predict both the pyrolysis rates and experimentally obtainable tar yields. An evaluation of the simulation results through comparisons with experimental data indicates that while the cellulose kinetics is reasonably accurate, the wood pyrolysis kinetics is not accurate; particularly at high reactor temperatures. Current effort in collaboration with NREL is aimed at finding accurate wood kinetics.

  2. Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants.

    PubMed

    Benhima, H; Chiban, M; Sinan, F; Seta, P; Persin, M

    2008-01-15

    In the present work, Pb(II) and Cd(II) ion adsorption onto inert organic matter (IOM) obtained from ground dried plants: Euphorbia echinus, Launea arborescens, Senecio anthophorbium growing in semi-arid zones of Morocco and Carpobrotus edulis as the Mediterranean plant has been studied. A suspension of plant deroed micro-particles adsorbs lead and cadmium present as ionic species, with a higher affinity for Pb(II). The kinetics and the maximum capacity adsorption depend on the type of plant as well as on the metal ions (atomic weight, ionic radius and electronegativity). The adsorption process is affected by various parameters such as contact time, solution volume to mass of plant particles ratio (m/V), particle size, solution pH and metal concentration. A dose of 25 g/l of adsorbent was optimal to obtain maximum adsorption of both metal ions. The maximum metal uptake was obtained with particles of organic matter of <50 microm. As to classical ionic adsorption phenomena, the adsorption of both metal ions increases with the increase of the initial concentration in the solution. For the two metal cations, the uptake efficiency of the studied plants ranged from: C. edulis>E. echinus>S. anthophorbium>L. arborescens, however, the differences are rather small. Two different waste water types (domestic and industrial) were tested and good results were obtained for removal of Pb(II) and Cd(II) at more than 90%. The removal of the metal and mineral ions waste water was observed for PO(4)(3-) at 88%, for NO(3)(-) at 96.5% and for metal ions (Pb(II), Cd(II), Cu(II) and Zn(II)) at about 100%, using IOM as absorbent.

  3. Kinetics of interlayer ion migration in non-swelling clays: An atomic-scale study

    NASA Astrophysics Data System (ADS)

    Lammers, L. N.; Kolluri, K.

    2015-12-01

    Clay-rich geologic repositories serve as hosts for fossil methane reserves and as traps for contaminant radionuclides and sequestered CO2. Despite the abundance of non-swelling clay minerals in sedimentary formations, the mechanisms of ion exchange and mass transport mediated by these minerals are not well understood. Ion exchange kinetics in collapsed clays are characterized by a long tail of slow exchange, which suggests that interlayer ions can exchange with the bulk solution. Recent High-Resolution TEM evidence suggests that Cs+ ion exchange K+ in collapsed interlayers leads to interstratified structures, where entire interlayers are completely exchanged while others remain pristine [Okamura T et al., (2005) Microscopy 6365-72]. This phenomenon could be explained by kinetic feedbacks arising when a larger ion substitutes for a smaller one, although the details of this exchange mechanism are currently unknown. We investigated the kinetics and mechanisms of interlayer cation migration in illite (K0.7Al2[Al0.7Si3.3O10](OH)2) using molecular simulations. A Monte Carlo scheme was used to distribute interlayer K ions, and these ions were found to prefer sites neighboring two or more Al3+ substitutions in the tetrahedral sheets. Interlayer K+ ion migration between stable ditrigonal cavity sites was observed directly in molecular dynamics simulations performed at temperatures ranging from 500 K to 900 K and at constant volume. The Climbing Image Nudged Elastic Band method was used to determine the activation energy barrier on 660 K+ ion migration paths. Interlayer ions were observed to migrate between stable lattice sites with migration barriers of 2.35 ± 1.06 eV. Only about 20% of this variation is statistically explained by the distribution of charge deficit sites in the layer caused by Al3+ substitution for Si4+. Remarkably, we find that migration barriers decrease as we increase interlayer spacing. These results suggest that frayed edge sites - local regions with

  4. Ion kinetics in Ar/H2 cold plasmas: the relevance of ArH+

    PubMed Central

    Jiménez-Redondo, Miguel; Cueto, Maite; Doménech, José Luis; Tanarro, Isabel; Herrero, Víctor J.

    2015-01-01

    The recent discovery of ArH+ in the interstellar medium has awakened the interest in the chemistry of this ion. In this work, the ion-molecule kinetics of cold plasmas of Ar/H2 is investigated in glow discharges spanning the whole range of [H2]/([H2]+[Ar]) proportions for two pressures, 1.5 and 8 Pa. Ion concentrations are determined by mass spectrometry, and electron temperatures and densities, with Langmuir probes. A kinetic model is used for the interpretation of the results. The selection of experimental conditions evinces relevant changes with plasma pressure in the ion distributions dependence with the H2 fraction, particularly for the major ions: Ar+, ArH+ and H3+. At 1.5 Pa, ArH+ prevails for a wide interval of H2 fractions: 0.3<[H2]/([H2]+[Ar])<0.7. Nevertheless, a pronounced displacement of the ArH+ maximum towards the lowest H2 fractions is observed at 8 Pa, in detriment of Ar+, which becomes restricted to very small [H2]/([H2]+[Ar]) ratios, whereas H3+ becomes dominant for all [H2]/([H2]+[Ar]) > 0.1. The analysis of the data with the kinetic model allows the identification of the sources and sinks of the major ions over the whole range of experimental conditions sampled. Two key factors turn out to be responsible for the different ion distributions observed: the electron temperature, which determines the rate of Ar+ formation and thus of ArH+, and the equilibrium ArH+ + H2 ⇄ H3+ + Ar, which can be strongly dependent of the degree of vibrational excitation of H3+. The results are discussed and compared with previously published data on other Ar/H2 plasmas. PMID:26702354

  5. Nonlinear Evolution of Ion Acoustic Solitary Waves in Earth's Magnetosphere: Fluid and Particle-In-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Kakad, A.; Kakad, B. A.; Omura, Y.

    2014-12-01

    In recent spacecraft observations, coherent electrostatic solitary wave (ESWs) structures are observed in various regions of the Earth's magnetosphere. Over the years, many researchers have attempted to model these observations in terms of electron/ion acoustic solitary waves by using nonlinear fluid theory/simulations. The ESW structures predicted by fluid models can be inadequate due to its inability in handling kinetic effects. To provide clear view on the application of the fluid and kinetic treatments in modeling the ESWs, we perform both fluid and particle-in-cell (PIC) simulations of ion acoustic solitary waves (IASWs) and estimate the quantitative differences in their characteristics like speed, amplitude, and width. It is noted that a long time evolution of Gaussian type perturbations in the equilibrium electron and ion densities generated the nonlinear IASW structures in both fluid and PIC simulations. The IASW structures represent vortices of trapped electrons in PIC simulations. We find that the number of trapped electrons in the wave potential is higher for the large amplitude IASW, which are generated by large-amplitude initial density perturbation (IDP). The present fluid and PIC simulation results are in close agreement for small amplitude IDPs, whereas for large IDPs they show discrepancy in the amplitude, width, and speed of the IASW, which is attributed to negligence of kinetic effects in the former approach. The speed of IASW in the fluid simulations increases with the increase of IASW amplitude, while the reverse tendency is seen in the PIC simulation. The present study suggests that the fluid treatment is appropriate to model the IASW observations when the magnitude of phase velocity of IASW is less than the ion acoustic (IA) speed obtained from their linear dispersion relation, whereas when it exceeds IA speed, it is necessary to include the kinetic effects in the model.

  6. Kinetic modeling of ion conduction in KcsA potassium channel.

    PubMed

    Mafé, Salvador; Pellicer, Julio; Cervera, Javier

    2005-05-22

    KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K(+),Tl(+), and Rb(+)). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K(+). This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K(+) symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH(4) (+) are obtained and compared with those of other ions (the NH(4) (+) J-V curve is qualitatively different from those of Rb(+) and Tl(+)). Third, the effects of Na(+) block on K(+) and Rb(+) currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K(+) conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter

  7. Thermal ablation of plasma-facing surfaces in tokamak disruptions: Sensitivity to particle kinetic energy

    SciTech Connect

    Ehst, D.A.; Hassanein, A.

    1996-02-01

    Ablation damage to solid targets with high heat flux impulses is generally greater high-energy electron beam heat sources compared to low-energy plasma guns. This sensitivity to incoming particle kinetic energy is explored with computer modelling; a fast-running routine (DESIRE) is developed for initial scoping analysis and is found to be in reasonable agreement with several experiments on graphite and tungsten targets. If tokamak disruptions are characterized by particle energies less than {approximately}1 keV, then we expect plasma guns are a better analogue than electron beams for simulating disruption behavior and testing candidate plasma-facing materials.

  8. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    NASA Astrophysics Data System (ADS)

    Niu, H.; Chang, H. C.; Cho, I. C.; Chen, C. H.; Liu, C. S.; Chou, W. T.

    2014-08-01

    In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair.

  9. Brownian particle-kinetics in a superparamagnetic ferrofluid subjected to static magnetic-field

    NASA Astrophysics Data System (ADS)

    Trisnanto, Suko Bagus; Kitamoto, Yoshitaka

    2017-01-01

    The stochastic Brownian particle-kinetics in a superparamagnetic ferrofluid at room temperature is of significance in nullifying total magnetization vectors of the suspended particles. Correspondingly, the apparent magnetization response observed under static magnetic field shows no hysteresis loop, but being linear at a given finite field-difference. Owing to this superparamagnetism, we propose a differential magnetometry to analyze the static field-induced particle-kinetics and further to identify the effective field-strength in reorienting particle-moments toward the applied field direction. A polydispersive ferrofluid containing iron-oxide nanoparticles, in practice, is subjected to a very-low oscillatory-field, immediately after applying the static-field. For a given frequency, we confirm a decreasing ac susceptibility as dc field-strength increases, which suggests a statistically less fluctuating magnetization-vectors. Via numerical integration of ac susceptibility recorded, we furthermore estimate the nonlinear quasi-static magnetization at various measurement frequencies. The resulting nonlinearity is attributable to the contributing relaxation dynamics of the particles. More importantly, the difference between dc and ac susceptibilities is found to be field-strength and frequency-dependent. Its value is further maximized at an effective field-strength, from which we identified the coexisting energy-barriers.

  10. Dispersion and absorption of longitudinal electro-kinetic wave in ion-implanted GaN semiconductor plasmas

    SciTech Connect

    Soni, Dilip; Sharma, Giriraj; Saxena, Ajay; Jadhav, Akhilesh

    2015-07-31

    An analytical study on propagation characteristics of longitudinal electro-kinetic (LEK) waves is presented. Based on multi-fluid model of plasma, we have derived a dispersion relation for LEK waves in colloid laden GaN semiconductor plasmas. It is assumed that ions are implanted to form colloids in the GaN sample. The colloids are continuously bombarded by the plasma particles and stick on them, but they acquire a net negative charge due to relatively higher mobility of electrons. It is found from the dispersion relation that the presence of charged colloids not only modifies the existing modes but also supports new novel modes of LEKWs. It is hoped that the study would enhance understanding on dispersion and absorption of LEKWs and help in singling out the appropriate configurations in which GaN crystal would be better suited for fabrication of microwave devices.

  11. Effect of the surface on charge reduction and desorption kinetics of soft landed peptide ions.

    PubMed

    Hadjar, Omar; Wang, Peng; Futrell, Jean H; Laskin, Julia

    2009-06-01

    Charge reduction and desorption kinetics of ions and neutral molecules produced by soft-landing of mass-selected singly and doubly protonated Gramicidin S (GS) on different surfaces was studied using time dependant in situ secondary ion mass spectrometry (SIMS) integrated in a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) research instrument. Soft-landing targets utilized in this study included inert self-assembled monolayers (SAMs) of 1-dodecane thiol (HSAM) and its fluorinated analog (FSAM) on gold and hydrophilic carboxyl-terminated (COOH-SAM) and amine-terminated (NH(2)-SAM) surfaces. We observed efficient neutralization of soft-landed ions on the COOH-SAM surface, partial retention of only one proton on the HSAM surface, and efficient retention of two protons on the FSAM surface. Slow desorption rates measured experimentally indicate fairly strong binding between peptide molecules and SAM surfaces with the binding energy of 20-25 kcal/mol.

  12. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    SciTech Connect

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where $\\vec{k}$• $\\vec{B}$ =0, consistent with previous analytical and simulation studies. Here, $\\vec{B}$ is the equilibrium magnetic field and $\\vec{k}$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $\\vec{k}$ •$\\vec{B}$ ≠0. Additionally, the simulation results indicate that varying mi/me, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  13. Langevin equation versus kinetic equation: Subdiffusive behavior of charged particles in a stochastic magnetic field

    SciTech Connect

    Balescu, R.; Wang, H. ); Misguich, J.H. )

    1994-12-01

    The running diffusion coefficient [ital D]([ital t]) is evaluated for a system of charged particles undergoing the effect of a fluctuating magnetic field and of their mutual collisions. The latter coefficient can be expressed either in terms of the mean square displacement (MSD) of a test particle, or in terms of a correlation between a fluctuating distribution function and the magnetic field fluctuation. In the first case a stochastic differential equation of Langevin type for the position of a test particle must be solved; the second problem requires the determination of the distribution function from a kinetic equation. Using suitable simplifications, both problems are amenable to exact analytic solution. The conclusion is that the equivalence of the two approaches is by no means automatically guaranteed. A new type of object, the hybrid kinetic equation'' is constructed: it automatically ensures the equivalence with the Langevin results. The same conclusion holds for the generalized Fokker--Planck equation. The (Bhatnagar--Gross--Krook) (BGK) model for the collisions yields a completely wrong result. A linear approximation to the hybrid kinetic equation yields an inexact behavior, but represents an acceptable approximation in the strongly collisional limit.

  14. Mechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory.

    PubMed

    Castellanos, Milagros; Pérez, Rebeca; Carrillo, Pablo J P; de Pablo, Pedro J; Mateu, Mauricio G

    2012-06-06

    New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T=1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly.

  15. Mechanical Disassembly of Single Virus Particles Reveals Kinetic Intermediates Predicted by Theory

    PubMed Central

    Castellanos, Milagros; Pérez, Rebeca; Carrillo, Pablo J.P.; de Pablo, Pedro J.; Mateu, Mauricio G.

    2012-01-01

    New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T = 1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly. PMID:22713577

  16. Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars

    NASA Astrophysics Data System (ADS)

    Curry, S. M.; Liemohn, M.; Fang, X.; Brain, D.; Ma, Y.

    2013-06-01

    We present results from the Mars Test Particle (MTP) simulation as part of a community‒wide model comparison in order to quantify the role of different neutral atmospheric conditions in planetary ion transport and escape. This study examines the effects of individual ion motion by simulating particle trajectories for three cases: solar minimum without the neutral corona, solar minimum with the inclusion of the neutral corona, and solar maximum with the inclusion of the neutral corona. The MTP simulates 1.5 billion test particles through background electric and magnetic fields computed by a global magnetohydrodynamic model. By implementing virtual detectors in the simulation, the MTP has generated velocity space distributions of pickup ions and quantifies the ion acceleration at different spatial locations. The study found that the inclusion of a hot neutral corona greatly affects the total O+ production and subsequent loss, roughly doubling the total escape for solar minimum conditions and directly contributing to high energy sources above 10 keV. The solar cycle influences the amount of O+ flux observed by the virtual detectors, increasing the O+ flux and total escape by an order of magnitude from solar minimum to maximum. Additionally, solar maximum case induces greater mass loading of the magnetic fields, which decreases the gyroradius of the ions and redirects a significant ion population downtail to subsequently escape.

  17. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite.

    PubMed

    Panayotova, M I

    2001-01-01

    Natural Bulgarian zeolite was tested for its ability to remove Cu2+ from model wastewater. Influence of process variables was investigated. It was found that the optimum wastewater to zeolite ratio is 100:1 and the optimum pH value of water to be treated is 5.5 to 7.5. Zeolite with finer particles shows a higher uptake capacity. The simultaneous presence of Ca2+ and Mg2+ in concentrations similar to their concentrations in Bulgarian natural water does not significantly influence the uptake of Cu2+. Zeolite modification by treating it with NaCl, CH3COONa and NaOH increases its uptake ability. Copper ions are strongly immobilized by modified zeolite and secondary pollution of water caused by its contact with preloaded zeolite is very low (1.5-2.5% of Cu2+ preliminary immobilized have been released back into acidified water). Contacting with 2 mol dm(-3) NaCl can easily regenerate loaded zeolite; best results were obtained for zeolite modified with NaCl. Requirements of Bulgarian standards for industrial wastewater can be met by a one-stage process for an initial Cu2+ concentration of 10 mg dm(-3), and by a two stage process for an initial Cu2+ concentration of 50 mg dm(-3). Uptake of Cu2+ by zeolite from neutral wastewater has proved to be as effective as Cu2+ removal by precipitation of copper hydroxide. The process of Cu2+ uptake by natural zeolite is best described by the kinetic equation for adsorption. This fact, together with the correlation found between the Cu2+ uptake and the amount of Na+, Ca2+ and K+ released into solution by zeolite shows that the ion exchange sorption plays the basic role in Cu2+ uptake by natural zeolite. The value obtained for the apparent activation energy (26.112 kJ mol(-1) implies that the process can be easily carried out with a satisfactory rate. The uptake equilibrium is best described by the Langmuir adsorption isotherm, with Langmuir constants KL= 6.4 x 10(-2) dm3 mg(-1) and M = 6.74 mg g(-1). The apparent equilibrium constant

  18. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres.

    PubMed

    Zhou, Limin; Wang, Yiping; Liu, Zhirong; Huang, Qunwu

    2009-01-30

    Magnetic chitosan microspheres were prepared and chemically modified with thiourea (TMCS) for adsorption of metal ions. TMCS obtained were investigated by means of X-ray diffraction (XRD), IR, magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of TMCS toward Hg(2+), Cu(2+), and Ni(2+) ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetics was evaluated utilizing the pseudo-first-order, pseudo-second-order, and the intra-particle diffusion models. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 625.2, 66.7, and 15.3mg/g for Hg(2+), Cu(2+), and Ni(2+) ions, respectively. TMCS displayed higher adsorption capacity for Hg(2+) in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded TMCS with were regenerated with an efficiency of greater than 88% using 0.01-0.1M ethylendiamine tetraacetic acid (EDTA).

  19. Role of Ion Kinetic Physics in the Interaction of Magnetic Flux Ropes.

    PubMed

    Stanier, A; Daughton, W; Chacón, L; Karimabadi, H; Ng, J; Huang, Y-M; Hakim, A; Bhattacharjee, A

    2015-10-23

    To explain many natural magnetized plasma phenomena, it is crucial to understand how rates of collisionless magnetic reconnection scale in large magnetohydrodynamic (MHD) scale systems. Simulations of isolated current sheets conclude such rates are independent of system size and can be reproduced by the Hall-MHD model, but neglect sheet formation and coupling to MHD scales. Here, it is shown for the problem of flux-rope merging, which includes this formation and coupling, that the Hall-MHD model fails to reproduce the kinetic results. The minimum sufficient model must retain ion kinetic effects, which set the ion diffusion region geometry and give time-averaged rates that reduce significantly with system size, leading to different global evolution in large systems.

  20. Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon.

    PubMed

    Silva-Medeiros, Flávia V; Consolin-Filho, Nelson; Xavier de Lima, Mateus; Bazzo, Fernando Previato; Barros, Maria Angélica S D; Bergamasco, Rosângela; Tavares, Célia R G

    2016-12-01

    The presence of silver in the natural water environment has been of great concern because of its toxicity, especially when it is in the free ion form (Ag(+)). This paper aims to study the adsorption kinetics of silver ions from an aqueous solution onto coconut shell activated carbon using batch methods. Batch kinetic data were fitted to the first-order model and the pseudo-second-order model, and this last equation fits correctly the experimental data. Equilibrium experiments were carried out at 30°C, 40°C, and 50°C. The adsorption isotherms were reasonably fit using Langmuir model, and the adsorption process was slightly influenced by changes in temperature. Thermodynamic parameters (ΔH°, ΔG°, and ΔS°) were determined. The adsorption process seems to be non-favorable, exothermic, and have an increase in the orderness.

  1. Ion acoustic kinetic Alfvén rogue waves in two temperature electrons superthermal plasmas

    NASA Astrophysics Data System (ADS)

    Kaur, Nimardeep; Saini, N. S.

    2016-10-01

    The propagation properties of ion acoustic kinetic Alfvén (IAKA) solitary and rogue waves have been investigated in two temperature electrons magnetized superthermal plasma in the presence of dust impurity. A nonlinear analysis is carried out to derive the Korteweg-de Vries (KdV) equation using the reductive perturbation method (RPM) describing the evolution of solitary waves. The effect of various plasma parameters on the characteristics of the IAKA solitary waves is studied. The dynamics of ion acoustic kinetic Alfvén rogue waves (IAKARWs) are also studied by transforming the KdV equation into nonlinear Schrödinger (NLS) equation. The characteristics of rogue wave profile under the influence of various plasma parameters (κc, μc, σ , θ) are examined numerically by using the data of Saturn's magnetosphere (Schippers et al. 2008; Sakai et al. 2013).

  2. Role of Ion Kinetic Physics in the Interaction of Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Stanier, A.; Daughton, W.; Chacón, L.; Karimabadi, H.; Ng, J.; Huang, Y.-M.; Hakim, A.; Bhattacharjee, A.

    2015-10-01

    To explain many natural magnetized plasma phenomena, it is crucial to understand how rates of collisionless magnetic reconnection scale in large magnetohydrodynamic (MHD) scale systems. Simulations of isolated current sheets conclude such rates are independent of system size and can be reproduced by the Hall-MHD model, but neglect sheet formation and coupling to MHD scales. Here, it is shown for the problem of flux-rope merging, which includes this formation and coupling, that the Hall-MHD model fails to reproduce the kinetic results. The minimum sufficient model must retain ion kinetic effects, which set the ion diffusion region geometry and give time-averaged rates that reduce significantly with system size, leading to different global evolution in large systems.

  3. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study

    SciTech Connect

    Holmes, P.R.; Crundwell, F.K.

    2000-01-01

    The dissolution of pyrite is important in the geochemical cycling of iron and sulphur, in the formation of acid mine drainage, and in the extraction of metals by bacterial leaching. Many researchers have studied the kinetics of dissolution, and the rate of dissolution has often been found to be half-order in ferric ions or oxygen. Previous work has not adequately explained the kinetics of dissolution of pyrite. The dissolution of pyrite is an oxidation-reduction reaction. The kinetics of the oxidation and reduction half-reactions was studied independently using electrochemical techniques of voltammetry. The kinetics of the overall reaction was studied by the electrochemical technique of potentiometry, which consisted of measuring the mixed potential of a sample of corroding pyrite in solutions of different compositions. The kinetics of the half reactions are related to the kinetics of the overall dissolution reaction by the condition that there is no accumulation of charge. This principle is used to derive expressions for the mixed potential and the rate of dissolution, which successfully describe the mixed potential measurements and the kinetics of dissolution reported in the literature. It is shown that the observations of half-order kinetics and that the oxygen in the sulphate product arises from water are both a direct consequence of the electrochemical mechanism. Thus it is concluded that the electrochemical reaction steps occurring at the mineral-solution interface control the rate of dissolution. Raman spectroscopy was used to analyze reaction products formed on the pyrite surface. The results indicated that small amounts of polysulphides form on the surface of the pyrite. However, it was also found that the mixed (corrosion) potential does not change over a 14-day leaching period. This indicates that even though polysulphide material is present on the surface, it does not influence the rate of the reactions occurring at the surface. Measurement of the

  4. Kinetics of ion admixture in a native gas in an external harmonic electric field

    NASA Astrophysics Data System (ADS)

    Ender, A. Ya.; Ender, I. A.; Gerasimenko, A. B.

    2016-11-01

    We have considered the spatially homogeneous problem of the behavior of an ion admixture in a background gas after applying a harmonic electric field with arbitrary parameters for various laws of interaction of particles. The Boltzmann equation has been solved using the modified method of moments. The ion distribution function and its first moments have been analyzed. It has been shown that the universal analytic expressions for the current density and the ion energy that we derived earlier for a small field amplitude-tofrequency ratio have a considerably wider range of applications.

  5. Effects of ion dynamics on kinetic structures of the diffusion region during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Chen, L. J.; Shuster, J. R.; Bessho, N.; Li, G.; Torbert, R. B.; Daughton, W. S.

    2014-12-01

    Based on results from Particle-in-cell (PIC) simulations, we report how ion dynamics influencethe Hall electric field and electron velocity distributions in the diffusion region of magnetic reconnection.The Hall electric field is due to charge imbalance in the diffusion region. At early times, within a few ion cyclotron oscillations from the peak reconnection,electron orbit dynamics dominate, and the Hall electric field layer assumes the width of the electron current layer.As the pre-existing current sheet ions are accelerated and jetted away, inflowing ions form an ion phase space hole structure.The ion hole structure is self-consistently supported by the Hall electric field. The ion meandering orbit width increasesover the course of about 10 ion cyclotron oscillations from several to approximately 40 electron skin depths (two ion skin depths,where the skin depth is based on the initial current sheet density), and theHall electric field layer widens in the same manner to become much broader than the electron diffusion region.The electron velocity distributions upstream of the electron diffusion region and within the regionof counter streaming ions become fragmented as the ion hole establishes itself.The fragmentation is carried into the electron diffusion region, and through the electron outflow jet, leading to a multitude of arcs in the electron distributions at the end of the jet. The broadening of the Hall electric field layer resolves a longstanding discrepancy concerning whether the narrowest width of the layer is of the electron [Chen et al., 2008] or ion [Mozer et al., 2002] scale. The fragmentation of the electron distributions may be due to an electron-ion instability, and is underinvestigation.

  6. Entry Kinetics and Cell-Cell Transmission of Surface-Bound Retroviral Vector Particles

    PubMed Central

    O’Neill, Lee S.; Skinner, Amy M.; Woodward, Josha A.; Kurre, Peter

    2010-01-01

    Background Transduction with recombinant Human Immunodeficiency Virus (HIV) -1 derived lentivirus vectors is a multi-step process initiated by surface attachment and subsequent receptor-directed uptake into the target cell. We previously reported the retention of vesicular stomatitis virus G protein (VSV-G) pseudotyped particles on murine progenitor cells and their delayed cell-cell transfer. Methods To examine the underlying mechanism in more detail we used a combination of approaches focused on investigating the role of receptor-independent factors in modulating attachment. Results Studies of synchronized transduction herein reveal cell-type specific rates of vector particle clearance with substantial delays during particle entry into murine hematopoietic progenitor cells. The observed uptake kinetics from the surface of the 1° cell correlate inversely with the magnitude of transfer to 2° targets, corresponding with our initial observation of preferential cell-cell transfer in the context of brief vector exposures. We further demonstrate that vector particle entry into cells is associated with the cell–type specific abundance of extracellular matrix fibronectin. Residual particle – ECM binding and 2° transfer can be competitively disrupted by heparin exposure without affecting murine progenitor homing and repopulation. Conclusions While cellular attachment factors, including fibronectin, aid gene transfer by colocalizing particles to cells and disfavoring early dissociation from targets, they also appear to stabilize particles on the cell surface. Our study highlights the inadvertent consequences for cell entry and cell-cell transfer. PMID:20440757

  7. Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles

    NASA Astrophysics Data System (ADS)

    Back, Julian M.; McCue, Scott W.; Moroney, Timothy J.

    2014-11-01

    The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs-Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs-Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle.

  8. Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles.

    PubMed

    Back, Julian M; McCue, Scott W; Moroney, Timothy J

    2014-11-17

    The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs-Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs-Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle.

  9. Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy

    DOE PAGES

    Le, A.; Daughton, W.; Karimabadi, H.; ...

    2016-03-16

    We present the first hybrid simulations with kinetic ions and recently developed equations of state for the electron fluid appropriate for reconnection with a guide field. The equations of state account for the main anisotropy of the electron pressure tensor.Magnetic reconnection is studied in two systems, an initially force-free current sheet and a Harris sheet. The hybrid model with the equations of state is compared to two other models, hybrid simulations with isothermal electrons and fully kinetic simulations. Including the anisotropicequations of state in the hybrid model provides a better match to the fully kinetic model. In agreement with fullymore » kinetic results, the main feature captured is the formation of an electron current sheet that extends several ion inertial lengths. This electron current sheet modifies the Hall magnetic field structure near the X-line, and it is not observed in the standard hybrid model with isotropic electrons. The saturated reconnection rate in this regime nevertheless remains similar in all three models. Here, implications for global modeling are discussed.« less

  10. Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy

    SciTech Connect

    Le, A.; Daughton, W.; Karimabadi, H.; Egedal, J.

    2016-03-16

    We present the first hybrid simulations with kinetic ions and recently developed equations of state for the electron fluid appropriate for reconnection with a guide field. The equations of state account for the main anisotropy of the electron pressure tensor.Magnetic reconnection is studied in two systems, an initially force-free current sheet and a Harris sheet. The hybrid model with the equations of state is compared to two other models, hybrid simulations with isothermal electrons and fully kinetic simulations. Including the anisotropicequations of state in the hybrid model provides a better match to the fully kinetic model. In agreement with fully kinetic results, the main feature captured is the formation of an electron current sheet that extends several ion inertial lengths. This electron current sheet modifies the Hall magnetic field structure near the X-line, and it is not observed in the standard hybrid model with isotropic electrons. The saturated reconnection rate in this regime nevertheless remains similar in all three models. Here, implications for global modeling are discussed.

  11. Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Le, A.; Daughton, W.; Karimabadi, H.; Egedal, J.

    2016-03-01

    We present the first hybrid simulations with kinetic ions and recently developed equations of state for the electron fluid appropriate for reconnection with a guide field. The equations of state account for the main anisotropy of the electron pressure tensor. Magnetic reconnection is studied in two systems, an initially force-free current sheet and a Harris sheet. The hybrid model with the equations of state is compared to two other models, hybrid simulations with isothermal electrons and fully kinetic simulations. Including the anisotropic equations of state in the hybrid model provides a better match to the fully kinetic model. In agreement with fully kinetic results, the main feature captured is the formation of an electron current sheet that extends several ion inertial lengths. This electron current sheet modifies the Hall magnetic field structure near the X-line, and it is not observed in the standard hybrid model with isotropic electrons. The saturated reconnection rate in this regime nevertheless remains similar in all three models. Implications for global modeling are discussed.

  12. Kinetics of chromium ion absorption by cross-linked polyacrylate films

    NASA Technical Reports Server (NTRS)

    May, C. E.

    1984-01-01

    Three cross-linked ion exchange membranes were studied as to their ability to absorb chromium ion from aqueous chromium III nitrate solutions. Attention was given to the mechanism of absorption, composition of the absorbed product, and the chemical bonding. The membranes were: calcium polyacrylate, polyacrylic acid, and a copolymer of acrylic acid and vinyl alcohol. For the calcium polyacrylate and the copolymer, parabolic kinetics were observed, indicating the formation of a chromium polyacrylate phase as a coating on the membrane. The rate of absorption is controlled by the diffusion of the chromium ion through this coating. The product formed in the copolymer involves the formation of a coordination complex of a chromium ion with 6 carboxylic acid groups from the same molecule. The absorption of the chromium ion by the polyacrylic acid membranes appears to be more complicated, involving cross-linking. This is due to the coordination of the chromium ion with carboxylic acid groups from more than one polymer molecule. The absorption rate of the chromium ion by the calcium salt membrane was found to be more rapid than that by the free polyacrylic acid membrane.

  13. Ion-polycyclic aromatic hydrocarbon collisions: kinetic energy releases for specific fragmentation channels

    NASA Astrophysics Data System (ADS)

    Reitsma, G.; Zettergren, H.; Boschman, L.; Bodewits, E.; Hoekstra, R.; Schlathölter, T.

    2013-12-01

    We report on 30 keV He2 + collisions with naphthalene (C10H8) molecules, which leads to very extensive fragmentation. To unravel such complex fragmentation patterns, we designed and constructed an experimental setup, which allows for the determination of the full momentum vector by measuring charged collision products in coincidence in a recoil ion momentum spectrometer type of detection scheme. The determination of fragment kinetic energies is found to be considerably more accurate than for the case of mere coincidence time-of-flight spectrometers. In fission reactions involving two cationic fragments, typically kinetic energy releases of 2-3 eV are observed. The results are interpreted by means of density functional theory calculations of the reverse barriers. It is concluded that naphthalene fragmentation by collisions with keV ions clearly is much more violent than the corresponding photofragmentation with energetic photons. The ion-induced naphthalene fragmentation provides a feedstock of various small hydrocarbonic species of different charge states and kinetic energy, which could influence several molecule formation processes in the cold interstellar medium and facilitates growth of small hydrocarbon species on pre-existing polycyclic aromatic hydrocarbons.

  14. In vitro analysis of human immunodeficiency virus particle dissociation: gag proteolytic processing influences dissociation kinetics.

    PubMed

    Müller, Barbara; Anders, Maria; Reinstein, Jochen

    2014-01-01

    Human immunodeficiency virus particles undergo a step of proteolytic maturation, in which the main structural polyprotein Gag is cleaved into its mature subunits matrix (MA), capsid (CA), nucleocapsid (NC) and p6. Gag proteolytic processing is accompanied by a dramatic structural rearrangement within the virion, which is necessary for virus infectivity and has been proposed to proceed through a sequence of dissociation and reformation of the capsid lattice. Morphological maturation appears to be tightly regulated, with sequential cleavage events and two small spacer peptides within Gag playing important roles by regulating the disassembly of the immature capsid layer and formation of the mature capsid lattice. In order to measure the influence of individual Gag domains on lattice stability, we established Förster's resonance energy transfer (FRET) reporter virions and employed rapid kinetic FRET and light scatter measurements. This approach allowed us to measure dissociation properties of HIV-1 particles assembled in eukaryotic cells containing Gag proteins in different states of proteolytic processing. While the complex dissociation behavior of the particles prevented an assignment of kinetic rate constants to individual dissociation steps, our analyses revealed characteristic differences in the dissociation properties of the MA layer dependent on the presence of additional domains. The most striking effect observed here was a pronounced stabilization of the MA-CA layer mediated by the presence of the 14 amino acid long spacer peptide SP1 at the CA C-terminus, underlining the crucial role of this peptide for the resolution of the immature particle architecture.

  15. KINETIC MODELING OF PARTICLE ACCELERATION IN A SOLAR NULL-POINT RECONNECTION REGION

    SciTech Connect

    Baumann, G.; Haugbolle, T.; Nordlund, A.

    2013-07-10

    The primary focus of this paper is on the particle acceleration mechanism in solar coronal three-dimensional reconnection null-point regions. Starting from a potential field extrapolation of a Solar and Heliospheric Observatory (SOHO) magnetogram taken on 2002 November 16, we first performed magnetohydrodynamics (MHD) simulations with horizontal motions observed by SOHO applied to the photospheric boundary of the computational box. After a build-up of electric current in the fan plane of the null point, a sub-section of the evolved MHD data was used as initial and boundary conditions for a kinetic particle-in-cell model of the plasma. We find that sub-relativistic electron acceleration is mainly driven by a systematic electric field in the current sheet. A non-thermal population of electrons with a power-law distribution in energy forms in the simulated pre-flare phase, featuring a power-law index of about -1.78. This work provides a first step toward bridging the gap between macroscopic scales on the order of hundreds of Mm and kinetic scales on the order of centimeter in the solar corona, and explains how to achieve such a cross-scale coupling by utilizing either physical modifications or (equivalent) modifications of the constants of nature. With their exceptionally high resolution-up to 135 billion particles and 3.5 billion grid cells of size 17.5 km-these simulations offer a new opportunity to study particle acceleration in solar-like settings.

  16. Kinetic study on removal of heavy metal ions from aqueous solution by using soil.

    PubMed

    Lim, Soh-Fong; Lee, Agnes Yung Weng

    2015-07-01

    In the present study, the feasibility of soil used as a low-cost adsorbent for the removal of Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution was investigated. The kinetics for adsorption of the heavy metal ions from aqueous solution by soil was examined under batch mode. The influence of the contact time and initial concentration for the adsorption process at pH of 4.5, under a constant room temperature of 25 ± 1 °C were studied. The adsorption capacity of the three heavy metal ions from aqueous solution was decreased in order of Pb(2+) > Cu(2+) > Zn(2+). The soil was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopic-energy dispersive X-ray (SEM-EDX), and Brunauer, Emmett, and Teller (BET) surface area analyzer. From the FTIR analysis, the experimental data was corresponded to the peak changes of the spectra obtained before and after adsorption process. Studies on SEM-EDX showed distinct adsorption of the heavy metal ions and the mineral composition in the study areas were determined to be silica (SiO2), alumina (Al2O3), and iron(III) oxide (FeO3). A distinct decrease of the specific surface area and total pore volumes of the soil after adsorption was found from the BET analysis. The experimental results obtained were analyzed using four adsorption kinetic models, namely pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion. Evaluating the linear correlation coefficients, the kinetic studies showed that pseudo-second-order equation described the data appropriable than others. It was concluded that soil can be used as an effective adsorbent for removing Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution.

  17. Kinetic analysis of competition between aerosol particle removal and generation by ionization air purifiers.

    PubMed

    Alshawa, Ahmad; Russell, Ashley R; Nizkorodov, Sergey A

    2007-04-01

    Ionization air purifiers are increasingly used to remove aerosol particles from indoor air. However, certain ionization air purifiers also emit ozone. Reactions between the emitted ozone and unsaturated volatile organic compounds (VOC) commonly found in indoor air produce additional respirable aerosol particles in the ultrafine (<0.1 microm) and fine (<2.5 microm) size domains. A simple kinetic model is used to analyze the competition between the removal and generation of particulate matter by ionization air purifiers under conditions of a typical residential building. This model predicts that certain widely used ionization air purifiers may actually increase the mass concentration of fine and ultrafine particulates in the presence of common unsaturated VOC, such as limonene contained in many household cleaning products. This prediction is supported by an explicit observation of ultrafine particle nucleation events caused by the addition of D-limonene to a ventilated office room equipped with a common ionization air purifier.

  18. Multiphase OH oxidation kinetics of organic aerosol: The role of particle phase state and relative humidity

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H.; Knopf, Daniel A.

    2014-07-01

    Organic aerosol can exhibit different phase states in response to changes in relative humidity (RH), thereby influencing heterogeneous reaction rates with trace gas species. OH radical uptake by laboratory-generated levoglucosan and methyl-nitrocatechol particles, serving as surrogates for biomass burning aerosol, is determined as a function of RH. Increasing RH lowers the viscosity of amorphous levoglucosan aerosol particles enabling enhanced OH uptake. Conversely, OH uptake by methyl-nitrocatechol aerosol particles is suppressed at higher RH as a result of competitive coadsorption of H2O that occupies reactive sites. This is shown to have substantial impacts on organic aerosol lifetimes with respect to OH oxidation. The results emphasize the importance of organic aerosol phase state to accurately describe the multiphase chemical kinetics and thus chemical aging process in atmospheric models to better represent the evolution of organic aerosol and its role in air quality and climate.

  19. Kinetics of Particle Adsorption in Stagnation Point Flow Studied by Optical Reflectometry

    PubMed

    Böhmer; van der Zeeuw EA; Koper

    1998-01-15

    The kinetics of adsorption of nano-sized silica particles on a polymer pretreated surface were followed in situ by using optical reflectometry in a stagnation point flow setup. Conversion of the reflectometric signal to the surface coverage could be performed using a homogeneous slab model which was verified by determining the particle density on SEM pictures taken in the stagnation point and by comparison with a model which includes the particulate nature of the layer explicitly. The effects of salt concentration on the plateau adsorbed amounts for all particle sizes can be described with an effective hard sphere concept. Although initial slopes and plateau values are in reasonable agreement with a random sequential adsorption model, this model does not accurately describe the evolution of the surface coverage as a function of time in a stagnation point flow system. Copyright 1998 Academic Press. Copyright 1998Academic Press

  20. Kinetics and mechanism of the oxidation of pentathionate ion by chlorine dioxide in a slightly acidic medium.

    PubMed

    Xu, Li; Csekő, György; Petz, Andrea; Horváth, Attila K

    2014-02-27

    The chlorine dioxide-pentathionate reaction has been studied at a slightly acidic medium by conventional UV-vis spectroscopy monitoring the absorbance at 430 nm. We have shown that pentathionate was oxidized to sulfate, but chlorate is also a marginal product of the reaction besides the chloride ion. The stoichiometry of the reaction can be established as a linear combination of two limiting stoichiometries under our experimental conditions. Kinetics of the reaction was found to be also complex because initial rate studies revealed that formal kinetic orders of both the hydrogen ion and chlorine dioxide is far from unity. Moreover, log-log plot of the initial rate against pentathionate concentration indicated a nonconstant formal kinetic order. We also observed a significant catalytic effect of chloride ion. Based on our observations and simultaneous evaluation of the kinetic curves, an 11-step kinetic model is obtained with 6 fitted rate coefficients. A relatively simple rate equation has also been derived and discussed.

  1. Application of the focused ion beam technique in aerosol science: detailed investigation of selected, airborne particles.

    PubMed

    Kaegi, R; Gasser, Ph

    2006-11-01

    The focused ion beam technique was used to fabricate transmission electron microscope lamellas of selected, micrometre-sized airborne particles. Particles were sampled from ambient air on Nuclepore polycarbonate filters and analysed with an environmental scanning electron microscope. A large number of particles between 0.6 and 10 microm in diameter (projected optical equivalent diameter) were detected and analysed using computer-controlled scanning electron microscopy. From the resulting dataset, where the chemistry, morphology and position of each individual particle are stored, two particles were selected for a more detailed investigation. For that purpose, the particle-loaded filter was transferred from the environmental scanning electron microscope to the focused ion beam, where lamellas of the selected particles were fabricated. The definition of a custom coordinate system enabled the relocation of the particles after the transfer. The lamellas were finally analysed with an analytical transmission electron microscope. Internal structure and elemental distribution maps of the interior of the particles provided additional information about the particles, which helped to assign the particles to their sources. The combination of computer-controlled scanning electron microscopy, focused ion beam and transmission electron microscopy offers new possibilities for characterizing airborne particles in great detail, eventually enabling a detailed source apportionment of specific particles. The particle of interest can be selected from a large dataset (e.g. based on chemistry and/or morphology) and then investigated in more detail in the transmission electron microscope.

  2. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    PubMed

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  3. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  4. Effect of the particle size of a heterogeneous catalyst on the kinetics of liquid-phase oxidation of tetralin

    SciTech Connect

    Artemov, A.V.; Vainshtein, E.F.

    1988-01-10

    The dependence of the initial rate of oxidation of tetralin on the particle size of the Co/sup 2 +//SiO/sub 2/ catalyst is shown. The method proposed permitted explanation of the dependence of the kinetics of liquid-phase processes in the absence of extra- and intradiffusion hindrances on the particle size of a heterogeneous catalyst and estimation of the values of the kinetic constants from this dependence.

  5. Ion distribution effects of turbulence on a kinetic auroral arc model

    NASA Technical Reports Server (NTRS)

    Cornwall, J. M.; Chiu, Y. T.

    1982-01-01

    An inverted-V auroral arc structure plasma-kinetic model is extended to phenomenologically include the effects of electrostatic turbulence, with k-parallel/k-perpendicular being much less than unity. It is shown that, unless plasma sheet ions are very much more energetic than the electrons, anomalous resistivity is not a large contributor to parallel electrostatic potential drops, since the support of the observed potential drop requires a greater dissipation of energy than can be provided by the plasma sheet. Wave turbulence can, however, be present, with the ion cyclotron turbulence levels suggested by the ion resonance broadening saturation mechanism of Dum and Dupree (1970) being comparable to those observed on auroral field lines. The diffusion coefficient and net growth rate are much smaller than estimates based solely on local plasma properties.

  6. Momentum transfer cross-section for ion scattering on dust particles

    NASA Astrophysics Data System (ADS)

    Semenov, I. L.; Khrapak, S. A.; Thomas, H. M.

    2017-03-01

    The momentum transfer cross-section for ion scattering on charged dust particles is calculated using different models of the interaction potential. The results are applied to estimate the ion drag force for typical conditions used in the experiments with complex (dusty) plasmas. The influence of two factors on the ion-dust collision cross section is discussed. The first is related to the nonlinear screening effects associated with the strong coupling between ions and dust particles. The second factor is the plasma absorption by dust particles. It is shown that the nonlinear screening effects are of importance and affect both the momentum transfer cross-section and the ion drag force. On the other hand, the absorption process affects the scattering momentum transfer cross-section only at low collision energies and thus can be neglected in estimating the ion drag force.

  7. Activating Molecules, Ions, and Solid Particles with Acoustic Cavitation

    PubMed Central

    Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I.

    2014-01-01

    The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sonoluminescence. In this manuscript, we describe the techniques allowing study of extreme intrabubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sonoluminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the "hot" particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultrabright sonoluminescence of uranyl ions in acidic solutions varies with uranium concentration: sonophotoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sonochemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sonolysis of PuO2 powder in pure water yields stable colloids of plutonium due to both effects. PMID:24747272

  8. Activating molecules, ions, and solid particles with acoustic cavitation.

    PubMed

    Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I

    2014-04-11

    The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sonoluminescence. In this manuscript, we describe the techniques allowing study of extreme intrabubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sonoluminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the "hot" particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultrabright sonoluminescence of uranyl ions in acidic solutions varies with uranium concentration: sonophotoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sonochemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sonolysis of PuO2 powder in pure water yields stable colloids of plutonium due to both effects.

  9. Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics.

    PubMed

    Fang, Guo-Dong; Dionysiou, Dionysios D; Wang, Yu; Al-Abed, Souhail R; Zhou, Dong-Mei

    2012-08-15

    Advanced oxidation processes (AOPs) based on sulfate radical (SO(4)(·-)) have been recently used for soil and groundwater remediation. The presence of chloride ion in natural or wastewater decreases the reactivity of sulfate radical system, but explanations for this behavior were inconsistent, and the mechanisms are poorly understood. Therefore, in this paper we investigated the effect of chloride ion on the degradation of 2,4,4'-CB (PCB28) and biphenyl (BP) by persulfate, based on the produced SO(4)(·-). The results showed that the presence of chloride ion greatly inhibited the transformation of PCB28 and BP. Transformation intermediates of BP were monitored, suggesting that the chloride ion can react with SO(4)(·-) to produce chlorine radical, which reacts with BP to generate chlorinated compounds. To better understand the underlying mechanisms of these processes, a kinetic model was developed for predicting the effect of chloride ion on the types of radical species and their distributions. The results showed that chloride ion could influence the selectivity of radical species and their distribution, and increase the concentration of the sum of radical species. In addition, the second-order rate constants of sulfate radical with PCBs were determined, and quantum-chemical descriptors were introduced to predict the rate constants of other PCBs based on our experimental data.

  10. Impedance Analysis of Ion Transport Through Supported Lipid Membranes Doped with Ionophores: A New Kinetic Approach

    PubMed Central

    Alvarez, P. E.; Vallejo, A. E.

    2008-01-01

    Kinetics of facilitated ion transport through planar bilayer membranes are normally analyzed by electrical conductance methods. The additional use of electrical relaxation techniques, such as voltage jump, is necessary to evaluate individual rate constants. Although electrochemical impedance spectroscopy is recognized as the most powerful of the available electric relaxation techniques, it has rarely been used in connection with these kinetic studies. According to the new approach presented in this work, three steps were followed. First, a kinetic model was proposed that has the distinct quality of being general, i.e., it properly describes both carrier and channel mechanisms of ion transport. Second, the state equations for steady-state and for impedance experiments were derived, exhibiting the input–output representation pertaining to the model’s structure. With the application of a method based on the similarity transformation approach, it was possible to check that the proposed mechanism is distinguishable, i.e., no other model with a different structure exhibits the same input–output behavior for any input as the original. Additionally, the method allowed us to check whether the proposed model is globally identifiable (i.e., whether there is a single set of fit parameters for the model) when analyzed in terms of its impedance response. Thus, our model does not represent a theoretical interpretation of the experimental impedance but rather constitutes the prerequisite to select this type of experiment in order to obtain optimal kinetic identification of the system. Finally, impedance measurements were performed and the results were fitted to the proposed theoretical model in order to obtain the kinetic parameters of the system. The successful application of this approach is exemplified with results obtained for valinomycin–K+ in lipid bilayers supported onto gold substrates, i.e., an arrangement capable of emulating biological membranes. PMID:19669528

  11. Efficient production of high-energy nonthermal particles during magnetic reconnection in a magnetically dominated ion-electron plasma

    SciTech Connect

    Guo, Fan; Li, Xiaocan; Li, Hui; Daughton, William; Zhang, Bing; Lloyd-Ronning, Nicole; Liu, Yi-Hsin; Zhang, Haocheng; Deng, Wei

    2016-02-03

    Magnetic reconnection is a leading mechanism for dissipating magnetic energy and accelerating nonthermal particles in Poynting-flux-dominated flows. We investigate nonthermal particle acceleration during magnetic reconnection in a magnetically dominated ion–electron plasma using fully kinetic simulations. For an ion–electron plasma with a total magnetization of ${\\sigma }_{0}={B}^{2}/(4\\pi n({m}_{i}+{m}_{e}){c}^{2})$, the magnetization for each species is ${\\sigma }_{i}\\sim {\\sigma }_{0}$ and ${\\sigma }_{e}\\sim ({m}_{i}/{m}_{e}){\\sigma }_{0}$, respectively. We have studied the magnetically dominated regime by varying σe = 103–105 with initial ion and electron temperatures ${T}_{i}={T}_{e}=5-20{m}_{e}{c}^{2}$ and mass ratio ${m}_{i}/{m}_{e}=1-1836$. Our results demonstrate that reconnection quickly establishes power-law energy distributions for both electrons and ions within several (2–3) light-crossing times. For the cases with periodic boundary conditions, the power-law index is $1\\lt s\\lt 2$ for both electrons and ions. The hard spectra limit the power-law energies for electrons and ions to be ${\\gamma }_{{be}}\\sim {\\sigma }_{e}$ and ${\\gamma }_{{bi}}\\sim {\\sigma }_{i}$, respectively. The main acceleration mechanism is a Fermi-like acceleration through the drift motions of charged particles. When comparing the spectra for electrons and ions in momentum space, the spectral indices sp are identical as predicted in Fermi acceleration. We also find that the bulk flow can carry a significant amount of energy during the simulations. Finally, we discuss the implication of this study in the context of Poynting-flux dominated jets and pulsar winds, especially the applications for explaining nonthermal high-energy emissions.

  12. Efficient production of high-energy nonthermal particles during magnetic reconnection in a magnetically dominated ion-electron plasma

    DOE PAGES

    Guo, Fan; Li, Xiaocan; Li, Hui; ...

    2016-02-03

    Magnetic reconnection is a leading mechanism for dissipating magnetic energy and accelerating nonthermal particles in Poynting-flux-dominated flows. We investigate nonthermal particle acceleration during magnetic reconnection in a magnetically dominated ion–electron plasma using fully kinetic simulations. For an ion–electron plasma with a total magnetization ofmore » $${\\sigma }_{0}={B}^{2}/(4\\pi n({m}_{i}+{m}_{e}){c}^{2})$$, the magnetization for each species is $${\\sigma }_{i}\\sim {\\sigma }_{0}$$ and $${\\sigma }_{e}\\sim ({m}_{i}/{m}_{e}){\\sigma }_{0}$$, respectively. We have studied the magnetically dominated regime by varying σe = 103–105 with initial ion and electron temperatures $${T}_{i}={T}_{e}=5-20{m}_{e}{c}^{2}$$ and mass ratio $${m}_{i}/{m}_{e}=1-1836$$. Our results demonstrate that reconnection quickly establishes power-law energy distributions for both electrons and ions within several (2–3) light-crossing times. For the cases with periodic boundary conditions, the power-law index is $$1\\lt s\\lt 2$$ for both electrons and ions. The hard spectra limit the power-law energies for electrons and ions to be $${\\gamma }_{{be}}\\sim {\\sigma }_{e}$$ and $${\\gamma }_{{bi}}\\sim {\\sigma }_{i}$$, respectively. The main acceleration mechanism is a Fermi-like acceleration through the drift motions of charged particles. When comparing the spectra for electrons and ions in momentum space, the spectral indices sp are identical as predicted in Fermi acceleration. We also find that the bulk flow can carry a significant amount of energy during the simulations. Finally, we discuss the implication of this study in the context of Poynting-flux dominated jets and pulsar winds, especially the applications for explaining nonthermal high-energy emissions.« less

  13. Particle reflection and ion-induced desorption from tungsten surfaces with chemisorbed nitrogen

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.; Kimura, H.

    1987-06-01

    Using the Monte Carlo simulation program ACAT, ion-induced desorption yields of nitrogen chemisorbed on tungsten surfaces and the associated particle reflection coefficients have been calculated for low-energy helium-ions. It is found that both the particle reflection coefficients and the energy distributions of the reflected particles depend strongly on the thickness of the adsorbate layer on the surface if the ion energy is in the threshold regime and that the collision sequence of the near-threshold mechanism includes at least two adsorbate atoms. The ACAT desorption yields are found to be in good agreement with experimental yields.

  14. Particle reflection and ion-induced desorption from tungsten surfaces with chemisorbed nitrogen

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.; Kimura, H.

    Using the Monte Carlo simulation program ACAT, ion-induced desorption yields of nitrogen chemisorbed on tungsten surfaces and the associated particle reflection coefficients have been calculated for low-energy helium-ions. It is found that both the particle reflection coefficients and the energy distributions of the reflected particles depend strongly on the thickness of the adsorbate layer on the surface if the ion energy is in the threshold regime and that the collision sequence of the near-threshold mechanism includes at least two adsorbate atoms. The ACAT desorption yields are found to be in good agreement with experimental yields.

  15. Shear-induced reaction-limited aggregation kinetics of brownian particles at arbitrary concentrations.

    PubMed

    Zaccone, Alessio; Gentili, Daniele; Wu, Hua; Morbidelli, Massimo

    2010-04-07

    The aggregation of interacting brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.

  16. Fast electron energy deposition in a magnetized plasma: Kinetic theory and particle-in-cell simulation

    SciTech Connect

    Robiche, J.; Rax, J.-M.; Bonnaud, G.; Gremillet, L.

    2010-03-15

    The collisional dynamics of a relativistic electron jet in a magnetized plasma are investigated within the framework of kinetic theory. The relativistic Fokker-Planck equation describing slowing down, pitch angle scattering, and cyclotron rotation is derived and solved. Based on the solution of this Fokker-Planck equation, an analytical formula for the root mean square spot size transverse to the magnetic field is derived and this result predicts a reduction in radial transport. Some comparisons with particle-in-cell simulation are made and confirm striking agreement between the theory and the simulation. For fast electron with 1 MeV typical kinetic energy interacting with a solid density hydrogen plasma, the energy deposition density in the transverse direction increases by a factor 2 for magnetic field of the order of 1 T. Along the magnetic field, the energy deposition profile is unaltered compared with the field-free case.

  17. The kinetic features of ion dynamics in the closed magnetic configurations.

    NASA Astrophysics Data System (ADS)

    Malykhin, Andrey; Grigorenko, Elena; Malova, Helmi

    2016-04-01

    A lot of spacecraft observations showed that the closed magnetic configurations such as plasmoids and magnetic islands are often observed in the Earth magnetotail. The purpose of our study is to analyze the kinetic features of nonadiabatic ion dynamics in the current sheet (CS) inside a plasmoid and the efficiency of ion acceleration in such configurations. Trajectories of test ions of different masses (H+ i O+) were studied in the prescribed magnetic configuration similar to the one observed by Cluster spacecraft (s/c). The magnetic configuration consists of a single stationary plasmoid in the tail side of a near-Earth magnetic X-line. Everywhere in the system there is the constant and uniform dawn-dusk electric field Ey ~ 0.1 mV/m. Cold ion beams with the characteristics similar to the ones observed in the lobe were launched in the system. In the absence of electromagnetic fluctuations the plasmoid localization in the dawn-dusk direction imposes a limit on the ion energy gain in the course of ion nonadiabatic interaction with the plasmoid's CS (in the region of minimum |B| field). The ion dynamics and energy gain changed dramatically when we introduced the low-frequency electromagnetic fluctuations into the plasmoid. The spectra of the magnetic and electric field fluctuations were similar to the ones observed inside the plasmoids by Cluster spacecraft. Our analysis showed that in the presence of fluctuations the ion dynamics and energy gain are defined by the resonant interaction of ions with the wave harmonics. Ions can gain energy hundred times larger than their energy gain in the system without electromagnetic fluctuations. The inclusion of a guide magnetic field (By) significantly affects the ion dynamics inside the plasmoid. The presence of a guide field generates the "north-south" asymmetry in the ejection of nonadiabatic ions from the CS. The effects of the "north-south" asymmetry in the spatial distribution of the nonadiabatic ions inside the plasmoid on

  18. Chemical reduction kinetics of nitrate in aqueous solution by Mg/Cu bimetallic particles.

    PubMed

    Mortazavi, S B; Ramavandi, B; Moussavi, G

    2011-01-01

    Synthesized magnesium/copper (Mg/Cu) bimetallic particles have shown good potential for use in the reduction of nitrate from aqueous solutions. This study was conducted to investigate the main factors affecting the kinetics of nitrate reduction by Mg/Cu particles (<100 microm) in uncontrolled reaction conditions. The Mg/Cu bimetallic particles removed the majority of the various nitrate concentrations tested (50, 100, 150, 200 and 300 mg L(-1)) within a short period. The time required for the removal of 90.6% of the NO3(-) from a 100 mg L(-1) solution was about 20 min using 2 gL(-1) bimetallic Mg/Cu at an initial solution pH of 6. The activation energy (Ea) for nitrate reduction by Mg/Cu over the temperature range of 5 to 60 degrees C was 14.21 kJ mol(-1). The experimental results of the kinetic analysis from batch studies indicated that a higher initial nitrate concentration yielded a greater reaction-rate constant and the denitrification rate increased with increase Mg/Cu dosage.

  19. Laboratory investigation of electric charging of dust particles by electrons, ions, and UV radiation

    NASA Technical Reports Server (NTRS)

    Svestka, Jiri; Pinter, S.; Gruen, E.

    1989-01-01

    In many cosmic environments electric charging of dust particles occurs by electrons, ions, and UV radiation. In case of interstellar dust particles the value of their electric charge can have, for instance, very important consequences for their destruction rate in supernova remnant's shock waves and can globally influence the overall life cycle of dust particles in galaxies. For experimental simulation of charging processes a vacuum chamber was used in which the particles fall through an electron or ion beam of energies up to 10 KeV. The aim of the experiments was to attain maximum charge of dust particles. Furthermore the influence of the rest gas was also determined because electrons and ions produced by collisional ionization of the rest gas can result in significant effects. For measurement particles from 1 to 100 microns from glass, carbon, Al, Fe, MgO, and very loosely bound conglomerates of Al2O3 were used.

  20. Active matter beyond mean-field: ring-kinetic theory for self-propelled particles.

    PubMed

    Chou, Yen-Liang; Ihle, Thomas

    2015-02-01

    Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.

  1. Active matter beyond mean-field: Ring-kinetic theory for self-propelled particles

    NASA Astrophysics Data System (ADS)

    Chou, Yen-Liang; Ihle, Thomas

    2015-02-01

    Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013), 10.1103/PhysRevE.88.052309] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N -particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8 , followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.

  2. The dynamics of particle disks. III - Dense and spinning particle disks. [development of kinetic theory for planetary rings

    NASA Technical Reports Server (NTRS)

    Araki, Suguru

    1991-01-01

    The kinetic theory of planetary rings developed by Araki and Tremaine (1986) and Araki (1988) is extended and refined, with a focus on the implications of finite particle size: (1) nonlocal collisions and (2) finite filling factors. Consideration is given to the derivation of the equations for the local steady state, the low-optical-depth limit, and the steady state at finite filling factors (including the effects of collision inelasticity, spin degrees of freedom, and self-gravity). Numerical results are presented in extensive graphs and characterized in detail. The importance of distinguishing effects (1) and (2) at low optical depths is stressed, and the existence of vertical density profiles with layered structures at high filling factors is demonstrated.

  3. Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials: adsorption isotherms and kinetic studies.

    PubMed

    Ma, Xiaoming; Li, Liping; Yang, Lin; Su, Caiyun; Wang, Kui; Yuan, Shibao; Zhou, Jianguo

    2012-03-30

    Highly ordered hierarchical calcium carbonate is an important phase and has technological interest in the development of functional materials. The work describes hierarchical CaCO(3)-maltose meso/macroporous hybrid materials were synthesized using a simple gas-diffusion method. The uniform hexagonal-shaped CaCO(3)-maltose hybrid materials are formed by the hierarchical assembly of nanoparticles. The pore structure analysis indicates that the sample possesses the macroporous structure of mesoporous framework. The distinguishing features of the hierarchical CaCO(3)-maltose materials in water treatment involve not only high removal capacities, but also decontamination of trace metal ions. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The maximum removal capacity of the CaCO(3)-maltose hybrid materials for Pb(2+), Cd(2+), Cu(2+), Co(2+), Mn(2+) and Ni(2+) ions was 3242.48, 487.80, 628.93, 393.70, 558.66 and 769.23 mg/g, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The adsorption and precipitation transformation mechanism can be considered due to hierarchical meso/macroporous structure, rich organic ligands of the CaCO(3)-maltose hybrid materials and the larger solubility product of CaCO(3).

  4. Production of low-Z ions in the Dresden superconducting electron ion beam source for medical particle therapy.

    PubMed

    Zschornack, G; Schwan, A; Ullmann, F; Grossmann, F; Ovsyannikov, V P; Ritter, E

    2012-02-01

    We report on experiments with a new superconducting electron beam ion source (EBIS-SC), the Dresden EBIS-SC, with the objective to meet the main requirements for their application in particle-therapy facilities. Synchrotrons as well as innovative accelerator concepts, such as high-gradient linacs which are driven by a large-current cyclotron (CYCLINACS) and direct drive RF linear accelerators may benefit from the advantages of EBISs in regard to their functional principle. First experimental studies of the production of low-Z ions such as H(+), H(2)(+), H(3)(+), C(4+), and C(6+) are presented. Particular attention is paid to the ion output, i.e., the number of ions per pulse and per second, respectively. Important beam parameters in this context are, among others, ion pulse shaping, pulse repetition rates, beam emittance, and ion energy spread.

  5. Ion Beam Collimation For Improved Resolution In Associated Particle Imaging

    NASA Astrophysics Data System (ADS)

    Sy, Amy; Ji, Qing

    2011-06-01

    Beam spot size on target for a Penning ion source has been measured under different source operating pressures as a function of the extraction channel length and beam energy. A beam halo/core structure was observed for ion extraction at low extraction voltages, and was greatly reduced at higher beam energy. Collimation through use of longer extraction channels results in reduced ion current on target; the resultant reduction in neutron yield for an API system driven by such an ion source can be compensated for by use of even higher beam energies.

  6. Kinetic, equilibrium and thermodynamic studies for the removal of lead (II) and copper (II) ions from aqueous solutions by nanocrystalline TiO

    NASA Astrophysics Data System (ADS)

    Rashidi, Fatemeh; Sarabi, Reza Sadeghi; Ghasemi, Zinab; Seif, Ahmad

    2010-12-01

    Titanium dioxide nanocrystallites were synthesized as adsorbents through the hydrolysis of titanium tetrachloride as the precursor in hydrochloric acid. The product was analyzed by XRD, BET and SEM-EDX; analysis indicated that the particles were a mixture of 86.8% rutile and 13.2% anatase TiO 2 with spherical shapes. The adsorption of Pb (II) and Cu (II) metal ions from aqueous solution onto nano- TiO 2 were investigated with variations in pH, contact time, initial metal ion concentration and temperature. The kinetics, adsorption isotherm and adsorption thermodynamics of the heavy metals were studied. The kinetics data were analyzed by the pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models; the best correlation coefficients were obtained for the pseudo-second order kinetic model. The adsorption results obtained from equilibrium experiments were analyzed by Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherms with the Freundlich isotherm giving the best fitting isotherm to the equilibrium data. The thermodynamic parameters ( ΔG°, ΔH° and ΔS°) were calculated and it was found that the adsorption process is spontaneous and endothermic and is favored at higher temperature.

  7. Particle formation by ion nucleation in the upper troposphere and lower stratosphere.

    PubMed

    Lee, S-H; Reeves, J M; Wilson, J C; Hunton, D E; Viggiano, A A; Miller, T M; Ballenthin, J O; Lait, L R

    2003-09-26

    Unexpectedly high concentrations of ultrafine particles were observed over a wide range of latitudes in the upper troposphere and lower stratosphere. Particle number concentrations and size distributions simulated by a numerical model of ion-induced nucleation, constrained by measured thermodynamic data and observed atmospheric key species, were consistent with the observations. These findings indicate that, at typical upper troposphere and lower stratosphere conditions, particles are formed by this nucleation process and grow to measurable sizes with sufficient sun exposure and low preexisting aerosol surface area. Ion-induced nucleation is thus a globally important source of aerosol particles, potentially affecting cloud formation and radiative transfer.

  8. Factors affecting ion kinetic temperature, number density, and containment time in the NASA Lewis bumpy-torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1977-01-01

    The degree of toroidal symmetry of the plasma, the number of midplane electrode rings, the configuration of electrode rings, and the location of the diagnostic instruments with respect to the electrode rings used to generate the plasma are discussed. Impurities were deliberately introduced into the plasma, and the effects of the impurity fraction on ion kinetic temperature and electron number density were observed. It is concluded that, if necessary precautions are taken, the plasma communicates extremely well along the magnetic field lines and displays a high degree of symmetry from sector to sector for a wide range of electrode ring configurations and operating conditions. Finally, some characteristic data taken under nonoptimized conditions are presented, which include the highest electron number density and the longest particle containment time (1.9 msec) observed. Also, evidence from a paired comparison test is presented which shows that the electric field acting along the minor radius of the toroidal plasma improves the plasma density and the calculated containment time more than an order of magnitude if the electric field points inward, relative to the values observed when it points (and pushes ions) radially outward.

  9. Impact of natural organic matter properties on the kinetics of suspended ion exchange process.

    PubMed

    Bazri, Mohammad Mahdi; Mohseni, Madjid

    2016-03-15

    Removal kinetics of four standard organic matter isolates under the application of strongly basic ion exchange resins (IEX) in suspended mode was studied under commercial application conditions. Suwannee River natural organic matter (SRNOM), SR fulvic acid (SRFA), and Pony Lake fulvic acid (PLFA) were greatly removed (>90%) and highly preferred by IEX resins (α > 5, over Cl(-), and HCO3(-)) while SR humic acid (SRHA) was the least preferred organic structure among the four isolates studied (α ≈ 1). Moreover, the efficacy of removal for fulvic acids (i.e., SRFA, PLFA) was consistent over consecutive reuse of IEX resins (i.e., loading cycles) whereas it decreased for SRNOM and SRHA over the course of operation. The stoichiometric correlation between the chloride released from the resins as a result of organic molecules uptake indicated that ion exchange was the dominant mechanism. Results obtained indicated that molecular weight and charge density of isolates played a major role in the performance of ion exchange process for organic matter removal. Furthermore, various empirical and physical models were evaluated using the experimental data and pore diffusion was found to be the rate-liming step during the uptake of organic matters; hence, it was used as the appropriate model to predict the kinetics of removal. Consequently, free liquid diffusivities and effective pore diffusion coefficients of organic molecules were estimated and findings were in agreement with the literature data that were obtained from spectrophotometric methods.

  10. Kinetics studies with fruit bromelain (Ananas comosus) in the presence of cysteine and divalent ions.

    PubMed

    Kaur, Tajwinder; Kaur, Amandeep; Grewal, Ravneet K

    2015-09-01

    The kinetics of cysteine and divalent ion modulation viz. Ca(2+), Cu(2+), Hg(2+) of fruit bromelain (EC 3.4.22.33) have been investigated in the present study. Kinetic studies revealed that at pH 4.5, cysteine induced V-type activation of bromelain catalyzed gelatin hydrolysis. At pH 3.5, Ca(2+) inhibited the enzyme noncompetitively, whereas, both K-and V-type activations of bromelain were observed in the presence of 0.5 mM Ca(2+) at pH 4.5 and 7.5. Bromelain was inhibited competitively at 0.6 mM Cu(2+) ions at pH 3.5, which changed to an uncompetitive inhibition at pH 4.5 and 7.5. An un-competitive inhibition of bromelain catalyzed gelatin hydrolysis was observed in the presence of 0.6 mM Hg(2+) at pH 3.5 and 4.5. These findings suggest that divalent ions modulation of fruit bromelain is pH dependent.

  11. Anaerobic biohydrogen production from wheat stalk by mixed microflora: kinetic model and particle size influence.

    PubMed

    Yuan, Xianzheng; Shi, Xiaoshuang; Zhang, Peidong; Wei, Yueli; Guo, Rongbo; Wang, Lisheng

    2011-10-01

    This study investigated the influence of particle size on anaerobic biohydrogen production from wheat stalk by mixed microflora. In addition, the kinetic model for the formation of main products was also mentioned. The results demonstrated that all the cumulative productions of hydrogen, acetate and butyrate decreased as the particle size increasing from 1 to 10mm at a constant TS value of 2%, 5% and 8%, respectively. However, this difference for aqueous products was not very obvious compared with hydrogen. A modified Gompertz equation was able to adequately describe the cumulative production of hydrogen, acetate and butyrate (R² higher than 0.989). The results also indicated that the formation of the main products were all associated with the degradation of cellulose and hemicellulose (R² higher than 0.855).

  12. Statistical rate theory and kinetic energy-resolved ion chemistry: theory and applications.

    PubMed

    Armentrout, P B; Ervin, Kent M; Rodgers, M T

    2008-10-16

    Ion chemistry, first discovered 100 years ago, has profitably been coupled with statistical rate theories, developed about 80 years ago and refined since. In this overview, the application of statistical rate theory to the analysis of kinetic-energy-dependent collision-induced dissociation (CID) reactions is reviewed. This procedure accounts for and quantifies the kinetic shifts that are observed as systems increase in size. The statistical approach developed allows straightforward extension to systems undergoing competitive or sequential dissociations. Such methods can also be applied to the reverse of the CID process, association reactions, as well as to quantitative analysis of ligand exchange processes. Examples of each of these types of reactions are provided and the literature surveyed for successful applications of this statistical approach to provide quantitative thermochemical information. Such applications include metal-ligand complexes, metal clusters, proton-bound complexes, organic intermediates, biological systems, saturated organometallic complexes, and hydrated and solvated species.

  13. Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud

    2016-11-01

    We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.

  14. Permeant ion effects on the gating kinetics of the type L potassium channel in mouse lymphocytes

    PubMed Central

    1991-01-01

    Permeant ion species was found to profoundly affect the gating kinetics of type l K+ currents in mouse T lymphocytes studied with the whole- cell or on-cell patch gigaohm-seal techniques. Replacing external K+ with Rb+ (as the sole monovalent cation, at 160 mM) shifted the peak conductance voltage (g-V) relation by approximately 20 mV to more negative potentials, while NH4+ shifted the g-V curve by 15 mV to more positive potentials. Deactivation (the tail current time constant, tau tail) was slowed by an average of 14-fold at -70 mV in external Rb+, by approximately 8-fold in Cs+, and by a factor of two to three in NH4+. Changing the external K+ concentration, [K+]o, from 4.5 to 160 mM or [Rb+]o from 10 to 160 mM had no effect on tau tail. With all the internal K+ replaced by Rb+ or Cs+ and either isotonic Rb+ or K+ in the bath, tau tail was indistinguishable from that with K+ in the cell. With the exception of NH4+, activation time constants were insensitive to permeant ion species. These results indicate that external permeant ions have stronger effects than internal permeant ions, suggesting an external modulatory site that influences K+ channel gating. However, in bi-ionic experiments with reduced external permeant ion concentrations, tau tail was sensitive to the direction of current flow, indicating that the modulatory site is either within the permeation pathway or in the outer vestibule of the channel. The latter interpretation implies that outward current through an open type l K+ channel significantly alters local ion concentrations at the modulatory site in the outer vestibule, and consequently at the mouth of the channel. Experiments with mixtures of K+ and Rb+ in the external solution reveal that deactivation kinetics are minimally affected by addition of Rb+ until the Rb+ mole fraction approaches unity. This relationship between mole fraction and tau tail, together with the concentration independence of tau tail, was hard to reconcile with simple

  15. Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions

    DOE PAGES

    Tuchin, Kirill

    2013-01-01

    I reviewmore » the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~ m π 2 at RHIC and ~ 10 m π 2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J / ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.« less

  16. Charged particle flows in the beam extraction region of a negative ion source for NBI

    SciTech Connect

    Geng, S.; Tsumori, K.; Nakano, H.; Osakabe, M.; Nagaoka, K.; Takeiri, Y.; Kaneko, O.; Kisaki, M.; Ikeda, K.; Shibuya, M.

    2016-02-15

    Experiments by a four-pin probe and photodetachment technique were carried out to investigate the charged particle flows in the beam extraction region of a negative hydrogen ion source for neutral beam injector. Electron and positive ion flows were obtained from the polar distribution of the probe saturation current. Negative hydrogen ion flow velocity and temperature were obtained by comparing the recovery times of the photodetachment signals at opposite probe tips. Electron and positive ions flows are dominated by crossed field drift and ambipolar diffusion. Negative hydrogen ion temperature is evaluated to be 0.12 eV.

  17. Rate theory of solvent exchange and kinetics of Li+ - BF4-/PF6- ion pairs in acetonitrile

    NASA Astrophysics Data System (ADS)

    Dang, Liem X.; Chang, Tsun-Mei

    2016-09-01

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li+ and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li+ in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li+-[BF4] and Li+-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li+. We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li+-[BF4] and Li+-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  18. Rate theory of solvent exchange and kinetics of Li(+) - BF4 (-)/PF6 (-) ion pairs in acetonitrile.

    PubMed

    Dang, Liem X; Chang, Tsun-Mei

    2016-09-07

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li(+) and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li(+) in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li(+)-[BF4] and Li(+)-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li(+). We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li(+)-[BF4] and Li(+)-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  19. Nano- and microcrystalline particles of palladium formed on hydrogen-bombarded palladium surfaces; their structure and formation kinetics

    NASA Astrophysics Data System (ADS)

    Senda, S.; Muto, H.; Takamori, H.; Okuyama, F.

    2003-03-01

    Crystalline particles of palladium are known to form on polycrystalline Pd interacting with low-energy hydrogen ions. These particles disperse on the glassy medium called the “matrix". The particles were recently confirmed by transmission electron microscopy to be classified into two groups: the particles emerging from the projectile-implanted subsurface together with the outflowing matrix and those newly produced on the hydrogen-bombarded matrix. The latter type of particles was nucleated as a crystalline cluster on the disordered substrate, and then underwent three-dimensional growth into a nanocrystal under the bombard- ment of showering hydrogen ions. Some particles presented a bubble-like TEM contrast, independently of their growth history. Such particles were chestnut-like in structure, with a hard shell wrapping the less-dense interior, and their formation may be attributed to a chemical process occurring within the particles.

  20. Yields of clustered DNA damage induced by charged-particle radiations of similar kinetic energy per nucleon: LET dependence in different DNA microenvironments

    SciTech Connect

    Keszenman, D.J.; Sutherland, B. M.

    2010-08-01

    To determine the linear energy transfer (LET) dependence of the biological effects of densely ionizing radiation in relation to changes in the ionization density along the track, we measured the yields and spectrum of clustered DNA damages induced by charged particles of different atomic number but similar kinetic energy per nucleon in different DNA microenvironments. Yeast DNA embedded in agarose in solutions of different free radical scavenging capacity was irradiated with 1 GeV protons, 1 GeV/nucleon oxygen ions, 980 MeV/nucleon titanium ions or 968 MeV/nucleon iron ions. The frequencies of double-strand breaks (DSBs), abasic sites and oxypurine clusters were quantified. The total DNA damage yields per absorbed dose induced in non-radioquenching solution decreased with LET, with minor variations in radioquenching conditions being detected. However, the total damage yields per particle fluence increased with LET in both conditions, indicating a higher efficiency per particle to induce clustered DNA damages. The yields of DSBs and non-DSB clusters as well as the damage spectra varied with LET and DNA milieu, suggesting the involvement of more than one mechanism in the formation of the different types of clustered damages.

  1. Final Report: Mechanisms of sputter ripple formation: coupling among energetic ions, surface kinetics, stress and composition

    SciTech Connect

    Chason, Eric; Shenoy, Vivek

    2013-01-22

    Self-organized pattern formation enables the creation of nanoscale surface structures over large areas based on fundamental physical processes rather than an applied template. Low energy ion bombardment is one such method that induces the spontaneous formation of a wide variety of interesting morphological features (e.g., sputter ripples and/or quantum dots). This program focused on the processes controlling sputter ripple formation and the kinetics controlling the evolution of surfaces and nanostructures in high flux environments. This was done by using systematic, quantitative experiments to measure ripple formation under a variety of processing conditions coupled with modeling to interpret the results.

  2. Isotopic exchange of uranium. II. Exchange kinetics in solution-organic-ion exchanger systems

    SciTech Connect

    Ryzhinskii, M.V.; Bronzov, P.A.; Vitinskii, M.Yu.

    1987-07-01

    The results of a study of the sorption of uranium and the kinetics of isotopic exchange between uranium(IV) and uranium(VI) in systems consisting of a hydrochloric acid solution and the KU-2-8P and AV-17-10P ion-exchange resins have been studied. It has been shown that the sorption of uranium is limited by diffusion in the sorbent grains and that isotopic exchange is limited by the reaction between uranium(IV) and uranium(VI).

  3. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Wilks, S. C.; Pino, J.; Kagan, G.; Molvig, K.; Nikroo, A.

    2015-06-01

    The significance and nature of ion kinetic effects in D3He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ˜ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  4. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE PAGES

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; ...

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmore » of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  5. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    SciTech Connect

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Wilks, S. C.; Pino, J.; Kagan, G.; Molvig, K.; Nikroo, A.

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  6. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    SciTech Connect

    Rosenberg, M. J. Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Pino, J.; Atzeni, S.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; and others

    2015-06-15

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  7. 2D Kinetic Particle in Cell Simulations of a Shear-Flow Stabilized Z-Pinch

    NASA Astrophysics Data System (ADS)

    Tummel, Kurt; Higginson, Drew; Schmidt, Andrea; Link, Anthony; McLean, Harry; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Claveau, Elliot; Lawrence Livermore National Lab Team; University of Washington Team

    2016-10-01

    The Z-pinch is a relatively simple and attractive potential fusion reactor design, but attempts to develop such a reactor have consistently struggled to overcome Z-pinch instabilities. The ``sausage'' and ``kink'' modes are among the most robust and prevalent Z-pinch instabilities, but theory and simulations suggest that axial flow-shear, dvz / dr ≠ 0 , can suppress these modes. Experiments have confirmed that Z-pinch plasmas with embedded axial flow-shear display a significantly enhanced resilience to the sausage and kink modes at a demonstration current of 50kAmps. A new experiment is under way to test the concept at higher current, and efforts to model these plasmas are being expanded. The performance and stability of these devices will depend on features like the plasma viscosity, anomalous resistivity, and finite Larmor radius effects, which are most accurately characterized in kinetic models. To predict these features, kinetic simulations using the particle in cell code LSP are now in development, and initial benchmarking and 2D stability analyses of the sausage mode are presented here. These results represent the first kinetic modeling of the flow-shear stabilized Z-pinch. This work is funded by the USDOE/ARPAe Alpha Program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators.

    PubMed

    Veltri, P; Cavenago, M; Serianni, G

    2014-02-01

    Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than λD. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed.

  9. Kinetic Monte Carlo (KMC) simulation of fission product silver transport through TRISO fuel particle

    NASA Astrophysics Data System (ADS)

    de Bellefon, G. M.; Wirth, B. D.

    2011-06-01

    A mesoscale kinetic Monte Carlo (KMC) model developed to investigate the diffusion of silver through the pyrolytic carbon and silicon carbide containment layers of a TRISO fuel particle is described. The release of radioactive silver from TRISO particles has been studied for nearly three decades, yet the mechanisms governing silver transport are not fully understood. This model atomically resolves Ag, but provides a mesoscale medium of carbon and silicon carbide, which can include a variety of defects including grain boundaries, reflective interfaces, cracks, and radiation-induced cavities that can either accelerate silver diffusion or slow diffusion by acting as traps for silver. The key input parameters to the model (diffusion coefficients, trap binding energies, interface characteristics) are determined from available experimental data, or parametrically varied, until more precise values become available from lower length scale modeling or experiment. The predicted results, in terms of the time/temperature dependence of silver release during post-irradiation annealing and the variability of silver release from particle to particle have been compared to available experimental data from the German HTR Fuel Program ( Gontard and Nabielek [1]) and Minato and co-workers ( Minato et al. [2]).

  10. Kinetic modeling of Europa's neutral atmosphere and pick-up ions

    NASA Astrophysics Data System (ADS)

    Tenishev, V.; Rubin, M.; Borovikov, D.; Jia, X.; Combi, M. R.; Gombosi, T. I.

    2013-12-01

    Europa was the highest priority outer planet exploration target in the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, and the 2003 planetary sciences Decadal Survey. The in-depth exploration of the plasma environment of Jupiter's moon Europa and investigation of its interaction with moon's surface and atmosphere remains a central objective of any proposed Europa Jupiter System Mission. The neutral species in Europa's atmosphere are mostly provided by ion sputtering of the water ice surface. Energetic ions and electrons from the Jovian magnetosphere produce molecular oxygen O2, the dominant species in Europa's atmosphere. Very close to the moon's surface the probability for collisional interaction between the species is close to the limit for a surface bound exosphere. The main loss mechanisms for neutrals are electron impact ionization, photoionization, as well as escape when neutral particles leave Europa's Hill sphere at roughly 8.7 Europa radii. The neutral and plasma environment of Europa are a tightly coupled system. A detailed study of this system requires coupled models of both the plasma and neutral environment. In this study we use coupled state-of-the-art computer models developed at the University of Michigan. In particular we include the BATSRUS MHD code of the Space Weather Modeling Framework (SWMF) and the Adaptive Mesh Particle Simulator (AMPS) model based on the DSMC method that both have well proven heritage in numerous space applications. In this investigation we calculate the plasma distribution in the vicinity of Europa at different locations along its orbit. The energetic ion flux derived from these calculations is used for simulation of the neutral particle sputtering that form Europa's atmosphere. The subsequent ionization of these neutral particles is the source of the pick-up ions. Populations of the neutrals and ions are calculated by tracing trajectories of the individual particles with accounting for both Europa

  11. Size Resolved High Temperature Oxidation Kinetics of Nano-Sized Titanium and Zirconium Particles.

    PubMed

    Zong, Yichen; Jacob, Rohit J; Li, Shuiqing; Zachariah, Michael R

    2015-06-18

    While ultrafine metal particles offer the possibility of very high energy density fuels, there is considerable uncertainty in the mechanism by which metal nanoparticles burn, and few studies that have examined the size dependence to their kinetics at the nanoscale. In this work we quantify the size dependence to the burning rate of titanium and zirconium nanoparticles. Nanoparticles in the range of 20-150 nm were produced via pulsed laser ablation, and then in-flight size-selected using differential electrical mobility. The size-selected oxide free metal particles were directly injected into the post flame region of a laminar flame to create a high temperature (1700-2500 K) oxidizing environment. The reaction was monitored using high-speed videography by tracking the emission from individual nanoparticles. We find that sintering occurs prior to significant reaction, and that once sintering is accounted for, the rate of combustion follows a near nearly (diameter)(1) power-law dependence. Additionally, Arrhenius parameters for the combustion of these nanoparticles were evaluated by measuring the burn times at different ambient temperatures. The optical emission from combustion was also used to model the oxidation process, which we find can be reasonably described with a kinetically controlled shrinking core model.

  12. Physico-chemical requirements and kinetics of membrane fusion of flavivirus-like particles

    PubMed Central

    Espósito, Danillo L. A.; Nguyen, Jennifer B.; DeWitt, David C.; Rhoades, Elizabeth

    2015-01-01

    Flaviviruses deliver their RNA genome into the host-cell cytoplasm by fusing their lipid envelope with a cellular membrane. Expression of the flavivirus pre-membrane and envelope glycoprotein genes in the absence of other viral genes results in the spontaneous assembly and secretion of virus-like particles (VLPs) with membrane fusion activity. Here, we examined the physico-chemical requirements for membrane fusion of VLPs from West Nile and Japanese encephalitis viruses. In a bulk fusion assay, optimal hemifusion (or lipid mixing) efficiencies were observed at 37 °C. Fusion efficiency increased with decreasing pH; half-maximal hemifusion was attained at pH 5.6. The anionic lipids bis(monoacylglycero)phosphate and phosphatidylinositol-3-phosphate, when present in the target membrane, significantly enhanced fusion efficiency, consistent with the emerging model that flaviviruses fuse with intermediate-to-late endosomal compartments, where these lipids are most abundant. In a single-particle fusion assay, VLPs catalysed membrane hemifusion, tracked as lipid mixing with the cellular membrane, on a timescale of 7–20 s after acidification. Lipid mixing kinetics suggest that hemifusion is a kinetically complex, multistep process. PMID:25740960

  13. Kinetic theory for systems of self-propelled particles with metric-free interactions.

    PubMed

    Chou, Yen-Liang; Wolfe, Rylan; Ihle, Thomas

    2012-08-01

    A model of self-driven particles similar to the Vicsek model [Phys. Rev. Lett. 75, 1226 (1995)] but with metric-free interactions is studied by means of a novel Enskog-type kinetic theory. In this model, N particles of constant speed v(0) try to align their travel directions with the average direction of a fixed number of closest neighbors. At strong alignment a global flocking state forms. The alignment is defined by a stochastic rule, not by a Hamiltonian. The corresponding interactions are of genuine multibody nature. The theory is based on a Master equation in 3N-dimensional phase space, which is made tractable by means of the molecular chaos approximation. The phase diagram for the transition to collective motion is calculated and compared to direct numerical simulations. A linear stability analysis of a homogeneous ordered state is performed using the kinetic but not the hydrodynamic equations in order to achieve high accuracy. In contrast to the regular metric Vicsek-model no instabilities occur. This confirms previous direct simulations that, for Vicsek-like models with metric-free interactions, there is no formation of density bands and that the flocking transition is continuous.

  14. Evidence for MeV Particle Emission from Ti Charged with Low Energy Deuterium Ions

    DTIC Science & Technology

    1991-12-18

    Low Energy Deuterium Ions GEORGE P. CHAMBERS, GRAHAM K. HUBLER AND KENNETH S. GRABOWSKI Surface Modification Branch Condensed Matter and Radiation...FUNDING NUMBERS Evidence for MeV Particle Emission From Ti Charged with Low Energy Deuterium Ions 46-3765-01 6. AUT1HOR(S) OR628 George P. Chambers... deuterium ions at high current density (0.2-0.4 mA.cm ) to investigate the reported occurrence of nuclear reations at ambient temperatures in deuteriumn

  15. IONEX: a meshfree ion extraction code based on "particle in cloud of points" concept.

    PubMed

    Galkin, S A; Grubert, J E; Cluggish, B P; Barov, N; Kim, J S

    2010-02-01

    Ion Extraction (IONEX) is an ion extraction modeling code, developed at FAR-TECH, Inc., based on the meshless particle-in-cloud-of-points concept. IONEX self-consistently solves motion equations for ions and Poisson's equation for the electrostatic field, assuming a Boltzmann distribution for the electrons. IONEX is capable of handling multiple species and is graphical user interface-driven. The two-dimensional version is benchmarked with IGUN. The basic algorithm and sample runs are presented.

  16. Kinetic temperatures of iron ions in the solar wind observed with STEREO/PLASTIC

    SciTech Connect

    Bochsler, Peter; Lee, Martin A.; Popecki, Mark A.; Galvin, Antoinette B.; Kistler, Lynn M.; Moebius, Eberhard; Farrugia, Charles J.; Kucharek, Harald; Simunac, Kristin D. C.; Karrer, Reto; Blush, Lisa M.; Daoudi, Hagar; Wurz, Peter; Klecker, Berndt; Wimmer-Schweingruber, Robert F.; Thompson, Barbara; Luhmann, Janet G.; Jian, Lan K.; Russell, Christopher T.; Opitz, Andrea

    2010-03-25

    STEREO/PLASTIC provides detailed information on the three-dimensional velocity distributions of solar wind iron ions with a time resolution of 5 minutes. In general the distributions at 1 AU contain complicated structures showing persistence over several records, i.e., over intervals of up to 30 minutes, but no clear correlation of the properties of these distributions with the direction of the ambient magnetic field is evident. We have performed a statistical analysis using nearly 9000 observations. Iron ions follow the same trends as protons, alpha particles, and electrons: The ratio T{sub perpendicular}/T{sub ||} seems to be limited by the ion cyclotron instability, whereas T{sub ||} /T{sub perpendicular} is bounded by the firehose instability.

  17. Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated

  18. Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dargent, J.; Aunai, N.; Belmont, G.; Dorville, N.; Lavraud, B.; Hesse, M.

    2016-06-01

    > Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for a tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic particle-in-cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations on their initial conditions. We show that, as the current sheet evolves from a symmetric to an asymmetric upstream plasma, the reconnection rate is impacted and the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet.

  19. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy.

    PubMed

    Zschornack, G; Ritter, E; Schmidt, M; Schwan, A

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C(4 +) and C(6 +) ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C(6 +)/H2(+) ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 10(9) protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  20. Time-resolved electron kinetics in swift heavy ion irradiated solids

    NASA Astrophysics Data System (ADS)

    Medvedev, N. A.; Rymzhanov, R. A.; Volkov, A. E.

    2015-09-01

    The event-by-event Monte Carlo model, TREKIS, was developed to describe the excitation of the electron subsystems of various solids by a penetrating swift heavy ion (SHI), the spatial spreading of generated fast electrons, and secondary electron and hole cascades. Complex dielectric function formalism is used to obtain relevant cross sections. This allows the recognition of fundamental effects resulting from the collective response of the electron subsystem of a target for excitation that is not possible within the binary collision approximation of these cross sections, e.g. the differences in the electronic stopping of an ion and in the electron mean free paths for different structures (phases) of a material. A systematic study performed with this model for different materials (insulators, semiconductors and metals) revealed effects which may be important for an ion track: e.g. the appearance of a second front of excess electronic energy propagation outwards from the track core following the primary front of spreading of generated electrons. We also analyze how the initial ballistic spatial spreading of fast electrons generated in a track turns to the diffusion ~10 fs after ion passage. Detailed time-resolved simulations of electronic subsystem kinetics helped in understanding the reasons behind enhanced silicon resistance to SHI irradiation in contrast to easily produced damage in this material by femtosecond laser pulses. We demonstrate that the fast spreading of excited electrons from the track core on a sub-100 fs timescale prevents the Si lattice from nonthermal melting in a relaxing SHI track.

  1. Effect of the Surface on Charge Reduction and Desorption Kinetics of Soft Landed Peptide Ions

    SciTech Connect

    Hadjar, Omar; Wang, Peng; Futrell, Jean H.; Laskin, Julia

    2009-06-01

    Charge reduction and desorption kinetics of ions and neutral molecules produced by soft-landing of mass-selected singly and doubly protonated Gramicidin S (GS) on different surfaces was studied using time dependant in situ secondary ion mass spectrometry (SIMS) integrated in a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) research instrument. Soft-landing targets utilized in this study included inert self-assembled monolayers (SAMs) of 1-dodecane thiol (HSAM) and its fluorinated analog (FSAM) on gold and hydrophilic carboxyl-terminated (COOH-SAM) and amine-terminated (NH2-SAM) SAM surfaces. We observed efficient neutralization of soft-landed ions on the COOH-SAM surface, partial retention of only one proton on the HSAM surface and efficient retention of two protons on the FSAM surface. Slow desorption rates measured experimentally indicate fairly strong binding between peptide molecules and SAM surfaces with the binding energy of 20-25 kcal/mol.

  2. Crystallization kinetics and phase transformations in aluminum ion-implanted electrospun TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Albetran, H.; Low, I. M.

    2016-12-01

    Electrospun TiO2 nanofibers were implanted with aluminum ions, and their crystallization kinetics, phase transformations, and activation energies were investigated from 25 to 900 °C by in situ high-temperature synchrotron radiation diffraction. The amorphous non-implanted and Al ion-implanted TiO2 nanofibers transformed to crystalline anatase at 600 °C and to rutile at 700 °C. The TiO2 phase transformation of the Al ion-implanted material was accelerated relative to non-implanted sample. Compared with non-implanted nanofibers, the Al-implanted materials yielded a decreased activation energies from 69(17) to 29(2) kJ/mol for amorphous-to-anatase transformation and from 112(15) to 129(5) kJ/mol for anatase-to-rutile transformation. A substitution of smaller Al ions for Ti in the TiO2 crystal structure results in accelerated titania phase transformation and a concomitant reduction in the activation energies.

  3. Kinetics of sub-2 nm TiO2 particle formation in an aerosol reactor during thermal decomposition of titanium tetraisopropoxide

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Liu, Pai; Fang, Jiaxi; Wang, Wei-Ning; Biswas, Pratim

    2015-03-01

    Particle size distribution measurements from differential mobility analyzers (DMAs) can be utilized to study particle formation mechanisms. However, knowledge on the initial stages of particle formation is incomplete, since in conventional DMAs, the Brownian broadening effect limits their ability to measure sub-2 nm-sized particles. Previous studies have demonstrated the capability of high-flow DMAs, such as the Half Mini DMAs, to measure sub-2 nm particles with significantly higher resolutions than conventional DMAs. A Half Mini DMA was applied to study the kinetics of sub-2 nm TiO2 nanoparticle formation in a furnace aerosol reactor, through the thermal decomposition of titanium tetraisopropoxide (TTIP). The influence of parameters such as reaction temperature, residence time, precursor concentration, and the introduction of bipolar charges on sub-2 nm particle size distributions were studied. A first order reaction rate derived from the dependence of size distributions on reaction temperature matched well with existing literature data. The change in precursor residence time and precursor concentration altered the size distributions correspondingly, indicating the occurrence of TTIP thermal decomposition. The introduction of bipolar charges in aerosol reactors enhanced the consumption of reactants, possibly due to ion-induced nucleation and induced dipole effects.

  4. Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms

    PubMed Central

    Galhoum, Ahmed A.; Mafhouz, Mohammad G.; Abdel-Rehem, Sayed T.; Gomaa, Nabawia A.; Atia, Asem A.; Vincent, Thierry; Guibal, Eric

    2015-01-01

    Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea. PMID:28347004

  5. Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms.

    PubMed

    Galhoum, Ahmed A; Mafhouz, Mohammad G; Abdel-Rehem, Sayed T; Gomaa, Nabawia A; Atia, Asem A; Vincent, Thierry; Guibal, Eric

    2015-02-04

    Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea.

  6. Kinetics of nucleotide and metal ion interaction with G-actin.

    PubMed

    Nowak, E; Strzelecka-Golaszewska, H; Goody, R S

    1988-03-08

    The kinetics of interaction of Ca2+ ions and nucleotides with G-actin have been investigated by making use of the enhancement of 1,N6-ethenoadenosine 5'-triphosphate (epsilon ATP) fluorescence on binding to actin, the enhancement of 2-[[2-[bis(carboxymethyl)amino]-5-methylphenoxy] methyl]-6-methoxy-8-[bis(carboxymethyl)amino]quinoline (Quin-2) fluorescence on binding to Ca2+, and the sensitivity of the fluorescence of an N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-AEDANS) group on Cys-374 to metal ion binding. It is concluded that metal ion dissociation is the rate-limiting step in nucleotide dissociation (0.016 s-1 for Ca2+ at pH 7.2 and 21 degrees C) and that earlier conclusions that metal ion release is relatively fast and subsequent nucleotide release slow are incorrect. Results presented here and obtained by others on the metal ion concentration dependence of the effective rate of nucleotide exchange can be interpreted in the light of this conclusion in terms of a limiting rate which corresponds to that of metal ion release and an "apparent" dissociation constant for Ca2+ which is without direct physical significance. This apparent dissociation constant is more than 2 orders of magnitude greater than the real dissociation constant of Ca2+ from the Ca-actin-ATP complex, which was estimated to be 2 X 10(-9) M from a titration with Quin-2. Confirmation that the rate of Ca2+ release is rate limiting both in nucleotide dissociation reactions and in replacement of Ca2+ by Mg2+ was obtained with 1,5-AEDANS-actin, since both the replacement of Ca2+ by Mg2+ and the removal of Ca2+ to give the actin-ATP complex occurred at the same (slow) rate.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Kinetic energy releases of small amino acids upon interaction with keV ions

    NASA Astrophysics Data System (ADS)

    Bari, S.; Alvarado, F.; Postma, J.; Sobocinski, P.; Hoekstra, R.; Schlathölter, T.

    2009-01-01

    In chromatin, DNA is tightly packed into one complex together with histone and non-histone proteins. These proteins are known to protect the DNA against indirect and to some extent even direct radiation damage. Radiation action upon amino acids is thus one of the primary steps in biological radiation action. In this paper we investigate the ionization and fragmentation of the gas-phase amino acids glycine, alanine and valine upon interaction with keV α-particles. High resolution coincidence time-of-flight mass spectrometry is used to determine the dominant fragmentation channels as well as fragment kinetic energies.

  8. Effect of the specific surface area on thermodynamic and kinetic properties of nanoparticle anatase TiO2 in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Madej, Edyta; Klink, Stefan; Schuhmann, Wolfgang; Ventosa, Edgar; La Mantia, Fabio

    2015-11-01

    Anatase TiO2 nanoparticles with a specific surface area of 100 m2 g-1 and 300 m2 g-1 have been investigated as negative insertion electrode material for lithium-ion batteries. Galvanostatic intermittent titration (GITT) and electrochemical impedance spectroscopy (EIS) were used to investigate the effect of the specific surface area on the performance of the material. GITT was performed at C/10 rate, followed by an EIS measurement after each relaxation step. Separation of kinetic and thermodynamic contributions to the overpotential of the phase transformation on Li+ (de-)insertion allowed revealing a dependency of both terms on the specific surface area. The material with higher surface area undergoes intrinsic transformation during the initial cycles affecting the thermodynamics of (de-)insertion while the sample with lower surface area shows large and asymmetric kinetic hindrances. For the material with 15 nm particles, Li+ de-insertion appears to have a higher resistance than lithium insertion.

  9. Kinetic Modeling of the Neutral Gas, Ions, and Charged Dust in Europa's Exosphere

    NASA Astrophysics Data System (ADS)

    Tenishev, V.; Borovikov, D.; Rubin, M.; Jia, X.; Combi, M. R.

    2015-12-01

    The interaction of the Jovian magnetosphere with Europa has been a subject of active research during the last few decades both through in-situ and remote sensing observations as well as theoretical considerations. Linking the magnetosphere and the moon's surface and interior, Europa's exosphere has become one of the primary objects of study in the field. Understanding the physical processes occurring in the exosphere and its chemical composition is required for the understanding of the interaction between Europa and Jupiter. Europa's surface-bound exosphere originates mostly from ion sputtering of the water ice surface. Minor neutral species and ions of exospheric origin are produced via photolytic and electron impact reactions. The interaction of the Jovian magnetosphere and Europa affects the exospheric population of both neutrals and ions via source and loss processes. Moreover, the Lorentz force causes the newly created exospheric ions to move preferably aligned with the magnetic field lines. Contrary to the ions, heavier and slow-moving charged dust grains are mostly affected by gravity and the electric field component of the Lorentz force. As a result, escaping dust forms a narrow tail aligned in the direction of the convection electric field. Here we present results of a kinetic model of the neutral species (H2O, OH, O2, O, and H), ions (O+, O2+, H+, H2+, H2O+, and OH+), and neutral and charged dust in Europa's exosphere. In our model H2O and O2 are produced via sputtering and other exospheric neutral and ions species are produced via photolytic and electron impact reactions. For the charged dust we compute the equilibrium grain charge by balancing the electron and ion collecting currents according to the local plasma flow conditions at the grain's location. For the tracking of the ions, charged dust, and the calculation of the grains' charge we use plasma density and velocity, and the magnetic field derived from our multi-fluid MHD model of Europa

  10. A comparison between determination of trace amounts of sulfide in the presence and absence of micelle particles in natural waters (Qazvin, Iran): a kinetic spectrophotometric approach.

    PubMed

    Alizadeh, Nina; Mahjoub, Mohammad

    2015-05-01

    A new sensitive kinetic spectrophotometric method described for the determination of trace amounts of sulfides based on the addition reaction of sulfide ions with malachite green has been investigated in aqueous and micellar media at 25 °C. The variables affecting the rate of the reaction were investigated, and the optimum conditions were established. Under the optimum experimental conditions, decreases in the absorbance of malachite green at 615 nm in the absence and 630 nm in the presence of micelle particles, their λ max, were proportional to the concentrations of sulfide ions at the first 15 and 25 s from initiation of the reaction. The working curve was linear over the concentration range 50-1200 ng mL(-1) of sulfide ions with a fixed time method at the first 15 and 25 s from initiation of the reaction in aqueous medium and 25-1750 ng mL(-1) with a fixed time method at the first 15 s and 25-1500 ng mL(-1) for primitive 25 s in micellar medium. For the proposed kinetic method, the experimental and theoretical limit of detection (LOD) and limit of quantification (LOQ) in the presence and absence of micelle particles were obtained and tabulated at Δt = 15 and 25 s. The effective range concentration was achieved from the plot of Ringbom in both media and reported. Different surfactants, such as nonionic surfactant (Triton-X100), anionic surfactant sodium dodecyl sulfate (SDS), and cationic surfactant cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC), were investigated and Triton X-100 selected as a suitable surfactant. To valuable vision into the reaction pathways, pseudo-first-order condition was applied and different kinetic parameters like ΔG (≠), ΔE (≠), ΔS (≠), and ΔH (≠) computed. The 2:1 stoichiometry of malachite green to sulfide ions was indicated by the results of mole ratio and Job's method of continuous variation. The effect of different environments on the interfering of various ions on sulfide

  11. Effect of metal ions on the kinetics of tyrosine oxidation catalysed by tyrosinase.

    PubMed

    Palumbo, A; Misuraca, G; D'Ischia, M; Prota, G

    1985-06-15

    The conversion of tyrosine into dopa [3-(3,4-dihydroxyphenyl)alanine] is the rate limiting step in the biosynthesis of melanins catalysed by tyrosinase. This hydroxylation reaction is characterized by a lag period, the extent of which depends on various parameters, notably the presence of a suitable hydrogen donor such as dopa or tetrahydropterin. We have now found that catalytic amounts of Fe2+ ions have the same effect as dopa in stimulating the tyrosine hydroxylase activity of the enzyme. Kinetic experiments showed that the shortening of the induction time depends on the concentration of the added metal and the nature of the buffer system used and is not suppressed by superoxide dismutase, catalase, formate or mannitol. Notably, Fe3+ ions showed only a small delaying effect on tyrosinase activity. Among the other metals which were tested, Zn2+, Co2+, Cd2+ and Ni2+ had no detectable influence, whereas Cu2+ and Mn2+ exhibited a marked inhibitory effect on the kinetics of tyrosine oxidation. These findings are discussed in the light of the commonly accepted mechanism of action of tyrosinase.

  12. Limitations of electron cyclotron resonance ion source performances set by kinetic plasma instabilities

    SciTech Connect

    Tarvainen, O. Laulainen, J.; Komppula, J.; Kronholm, R.; Kalvas, T.; Koivisto, H.; Izotov, I.; Mansfeld, D.; Skalyga, V.

    2015-02-15

    Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropy of the electron energy distribution function stemming from the resonant nature of the electron heating process. Electron cyclotron plasma instabilities are related to non-linear interaction between plasma waves and energetic electrons resulting to strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic oscillations of the extracted beam currents observed in several laboratories. It is demonstrated with a minimum-B 14 GHz ECRIS operating on helium, oxygen, and argon plasmas that kinetic instabilities restrict the parameter space available for the optimization of high charge state ion currents. The most critical parameter in terms of plasma stability is the strength of the solenoid magnetic field. It is demonstrated that due to the instabilities the optimum B{sub min}-field in single frequency heating mode is often ≤0.8B{sub ECR}, which is the value suggested by the semiempirical scaling laws guiding the design of modern ECRISs. It is argued that the effect can be attributed not only to the absolute magnitude of the magnetic field but also to the variation of the average magnetic field gradient on the resonance surface.

  13. Ion kinetics and self pulsing in DC microplasma discharges at atmospheric and higher pressure

    NASA Astrophysics Data System (ADS)

    Mahamud, Rajib; Farouk, Tanvir I.

    2016-04-01

    Atmospheric pressure microplasma devices have been the subject of considerable interest and research during the last decade. Most of the operation regime of the plasma discharges studied fall in the ‘abnormal’, ‘normal’ and ‘corona’ modes—increasing and a ‘flat’ voltage current characteristics. However, the negative differential resistance regime at atmospheric and high pressures has been less studied and possesses unique characteristics that can be employed for novel applications. In this work, the role of ion kinetics especially associated with trace impurities; on the self pulsing behavior has been investigated. Detailed numerical simulations have been conducted with a validated model for a helium-nitrogen feed gas mixture. Different oscillatory modes were observed where the discharge was found to undergo complete or partial relaxation. Trace amount of nitrogen was found to significantly alter the pulsing characteristics. External parameters influencing these self oscillations are also studied and aspects of the ion kinetics on the oscillatory behavior are discussed.

  14. Adsorption studies of Dichloromethane on some commercially available GACs: Effect of kinetics, thermodynamics and competitive ions.

    PubMed

    Khan, Moonis Ali; Kim, Seong-wook; Rao, Rifaqat Ali Khan; Abou-Shanab, R A I; Bhatnagar, Amit; Song, Hocheol; Jeon, Byong-Hun

    2010-06-15

    The objective of this work was to compare the effectiveness of four commercially available granular activated carbons (GACs); coconut (CGAC), wood (WGAC), lignite (LGAC) and bituminous (BGAC) for the removal of dichloromethane (DCM) from aqueous solution by batch process. Various parameters such as thermodynamics, kinetics, pH, concentration of adsorbate, dosages of adsorbent and competitive ions effect on DCM adsorption were investigated. Maximum adsorption capacity (45.5mg/g for CGAC) was observed at pH 6.0-8.0. The kinetics data indicate better applicability of pseudo-second-order kinetics model at 25 and 35 degrees C. Freundlich model was better obeyed on CGAC, WGAC, and BGAC, while LGAC followed Langmuir model. The adsorption process for 100mg/L initial DCM concentration on CGAC was exothermic in nature. The adsorption of DCM on various adsorbents involves physical adsorption process. The adsorption of DCM over a large range of initial concentration on CGAC and LGAC is effective even in presence of ionic salts.

  15. (S)-5-(p-Nitrobenzyl)-PCTA, a Promising Bifunctional Ligand with Advantageous Metal Ion Complexation Kinetics

    PubMed Central

    Tircsó, Gyula; Benyó, Enikő Tircsóné; Suh, Eul Hyun; Jurek, Paul; Kiefer, Garry E.; Sherry, A. Dean; Kovács, Zoltán

    2009-01-01

    A bifunctional version of PCTA (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid) that exhibits fast complexation kinetics with the trivalent lanthanide(III) ions was synthesized in reasonable yields starting from N, N′, N″-tristosyl-(S)-2-(p-nitrobenzyl)-diethylenetriamine. pH-potentiometric studies showed that the basicities of p-nitrobenzyl-PCTA and the parent ligand PCTA were similar. The stability of M(NO2-Bn-PCTA) (M = Mg2+, Ca2+, Cu2+, Zn2+) complexes was similar to that of the corresponding PCTA complexes while the stability of Ln3+ complexes of the bifunctional ligand is somewhat lower than that of PCTA chelates. The rate of complex formation of Ln(NO2-Bn-PCTA) complexes was found to be quite similar to that of PCTA, a ligand known to exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid catalyzed decomplexation kinetic studies of the selected Ln(NO2-Bn-PCTA) complexes showed that the kinetic inertness of the complexes was comparable to that of Ln(DOTA) chelates making the bifunctional ligand NO2-Bn-PCTA suitable for labeling biological vectors with radioisotopes for nuclear medicine applications. PMID:19220012

  16. (S)-5-(p-nitrobenzyl)-PCTA, a promising bifunctional ligand with advantageous metal ion complexation kinetics.

    PubMed

    Tircsó, Gyula; Benyó, Eniko Tircsóné; Suh, Eul Hyun; Jurek, Paul; Kiefer, Garry E; Sherry, A Dean; Kovács, Zoltán

    2009-03-18

    A bifunctional version of PCTA (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid) that exhibits fast complexation kinetics with the trivalent lanthanide(III) ions was synthesized in reasonable yields starting from N,N',N''-tristosyl-(S)-2-(p-nitrobenzyl)-diethylenetriamine. pH-potentiometric studies showed that the basicities of p-nitrobenzyl-PCTA and the parent ligand PCTA were similar. The stability of M(NO(2)-Bn-PCTA) (M = Mg(2+), Ca(2+), Cu(2+), Zn(2+)) complexes was similar to that of the corresponding PCTA complexes, while the stability of Ln(3+) complexes of the bifunctional ligand is somewhat lower than that of PCTA chelates. The rate of complex formation of Ln(NO(2)-Bn-PCTA) complexes was found to be quite similar to that of PCTA, a ligand known to exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid-catalyzed decomplexation kinetic studies of the selected Ln(NO(2)-Bn-PCTA) complexes showed that the kinetic inertness of the complexes was comparable to that of Ln(DOTA) chelates making the bifunctional ligand NO(2)-Bn-PCTA suitable for labeling biological vectors with radioisotopes for nuclear medicine applications.

  17. Nonlinear kinetic effects in inductively coupled plasmas via particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Froese, Aaron; Smolyakov, Andrei; Sydorenko, Dmytro

    2007-11-01

    Kinetic effects in inductively coupled plasmas due to thermal motion of particles modified by self-consistent magnetic fields are studied using a particle-in-cell code. In the low pressure, low frequency regime, electron mean free paths are large relative to device size and the trajectories are strongly curved by the induced rf magnetic field. Analytic linear theories are unable to recover effects accumulated along each nonlinear path. Therefore, the simulated ICP is made progressively more complex to find the source of observed plasma behaviours. With only thermal motion modifying the wave-particle interaction, nonlocal behaviour becomes dominant at low frequencies, causing an anomalous skin effect with increased skin depth and power absorption and decreased ponderomotive force. However, when influenced by magnetic fields, the nonlocal effects are suppressed at large wave amplitudes due to nonlinear trapping. A mechanism is proposed for this low frequency restoration of local behaviour. Finally, a low rate of electron-neutral collisions is found to counteract the nonlinear behaviour, and hence reinforces nonlocal behaviour.

  18. Kinetic theory of phase space plateaux in a non-thermal energetic particle distribution

    SciTech Connect

    Eriksson, F. Nyqvist, R. M.; Lilley, M. K.

    2015-09-15

    The transformation of kinetically unstable plasma eigenmodes into hole-clump pairs with temporally evolving carrier frequencies was recently attributed to the emergence of an intermediate stage in the mode evolution cycle, that of an unmodulated plateau in the phase space distribution of fast particles. The role of the plateau as the hole-clump breeding ground is further substantiated in this article via consideration of its linear and nonlinear stability in the presence of fast particle collisions and sources, which are known to affect the production rates and subsequent frequency sweeping of holes and clumps. In particular, collisional relaxation, as mediated by e.g. velocity space diffusion or even simple Krook-type collisions, is found to inhibit hole-clump generation and detachment from the plateau, as it should. On the other hand, slowing down of the fast particles turns out to have an asymmetrically destabilizing/stabilizing effect, which explains the well-known result that collisional drag enhances holes and their sweeping rates but suppresses clumps. It is further demonstrated that relaxation of the plateau edge gradients has only a minor quantitative effect and does not change the plateau stability qualitatively, unless the edge region extends far into the plateau shelf and the corresponding Landau pole needs to be taken into account.

  19. 'Self-consistent' production of ion conics on return current region auroral field lines - A time-dependent, semi-kinetic model

    NASA Technical Reports Server (NTRS)

    Brown, David G.; Wilson, Gordon R.; Horwitz, James L.; Gallagher, Dennis L.

    1991-01-01

    We describe initial results from a time-dependent, semi-kinetic model of plasma outflow incorporating wave-particle interactions along current-carrying auroral field lines. Electrostatic waves are generated by the current driven ion cyclotron instability (CDICI), causing perpendicular velocity diffusion of ions plus electron heating via anomalous resistivity when and where the relative drift between electrons and ions exceeds certain critical velocities. Using the local bulk parameters we calculate these critical velocities, and so are able to self-consistently switch on and off the heating of the various particle species. Due to the dependence of these critical velocities on the bulk parameters of the species the heating effects exhibit quite complex spatial and temporal variations. A wide range of ion distribution functions are observed in these simulations, including conics with energies of a few electron volts and 'ring' distributions. The rings are seen to be a natural result of transverse heating and velocity filter effects and do not require coherent acceleration processes. We also observe the formation of a density depletion in hydrogen and enhanced oxygen densities at high altitudes.

  20. Kinetics of the Reduction of Hematite Concentrate Particles by Carbon Monoxide Relevant to a Novel Flash Ironmaking Process

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Mohassab, Yousef; Zhang, Shengqin; Sohn, Hong Yong

    2015-08-01

    A novel ironmaking process is under development at the University of Utah to produce iron directly from iron oxides concentrates by the gas-solid flash reaction using gaseous fuels and reductants. This process will reduce energy consumption and minimize carbon dioxide emissions. Having investigated the hydrogen reduction kinetics of magnetite and hematite concentrate particles relevant to the novel flash ironmaking process, the carbon monoxide reduction kinetics of hematite concentrate particles (average particle size 21 µm) was determined in the temperature range 1473 K to 1623 K (1200 °C to 1350 °C) under various carbon monoxide partial pressures. At 1623 K (1350 °C) and residence time 5 seconds, the reduction degree of hematite concentrate particles was more than 90 pct under a pure carbon monoxide. This is slower than reduction by hydrogen but still significant, indicating that CO will contribute to the reduction of hematite concentrate in the flash process. The kinetics of CO reduction separately from hydrogen is important for understanding and analyzing the complex kinetics of hematite reduction by the H2 + CO mixtures. The nucleation and growth rate equation with the Avrami parameter n = 1.0 adequately described the carbon monoxide reduction kinetics of hematite concentrate particles. The reduction rate is of 1st order with respect to the partial pressure of carbon monoxide and the activation energy of the reaction was 231 kJ/mol, indicating strong temperature dependence. The following complete rate equation was developed that can satisfactorily predict the carbon monoxide reduction kinetics of hematite concentrate particles and is suitable for the design of a flash reactor where X is the fraction of oxygen removed from iron oxide, R is 8.314 J/mol K, T is in K, p is in atm, and t is in seconds.

  1. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  2. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  3. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multi-layer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-01-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: (1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), (2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and (3) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. These salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar like amorphous phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if low-volatility and viscous oligomerized SOA material accumulates in the particle surface layer upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass transfer limited uptake of condensable organic compounds onto wall deposited particles or directly onto the Teflon chamber walls of smog chambers can have profound influence on the

  4. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  5. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    SciTech Connect

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  6. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.

    1983-01-01

    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  7. Gas phase oxidation of monoethanolamine (MEA) with OH radical and ozone: kinetics, products, and particles.

    PubMed

    Borduas, Nadine; Abbatt, Jonathan P D; Murphy, Jennifer G

    2013-06-18

    Monoethanolamine (MEA) is currently the benchmark solvent in carbon capture and storage (CCS), a technology aimed at reducing CO2 emissions in large combustion industries. To accurately assess the environmental impact of CCS, a sound understanding of the fate of MEA in the atmosphere is necessary. Relative and absolute rate kinetic experiments were conducted in a smog chamber using online proton transfer reaction mass spectrometry (PTR-MS) to follow the decay of MEA. The room temperature (295 ± 3K) kinetics of oxidation with hydroxyl radicals from light and dark sources yield an average value of (7.02 ± 0.46) × 10(-11) cm(3) molec(-1) s(-1), in good agreement with previously published data. For the first time, the rate coefficient for MEA with ozone was measured: (1.09 ± 0.05) × 10(-18) cm(3) molec(-1) s(-1). An investigation into the oxidation products was also conducted using online chemical ionization mass spectrometry (CI-TOFMS) where formamide, isocyanic acid as well as higher order products including cyclic amines were detected. Significant particle numbers and mass loadings were observed during the MEA oxidation experiments and accounted for over 15% of the fate of MEA-derived nitrogen.

  8. Kinetics and equilibrium adsorption of nano-TiO 2 particles on synthetic biofilm

    NASA Astrophysics Data System (ADS)

    Sahle-Demessie, Endalkachew; Tadesse, Haregewine

    2011-07-01

    Understanding the environmental behavior of nanoparticles includes their interaction with biofilms, which is a covering on the surface of a living or nonliving substrate composed of microorganisms. This study focuses on nano-TiO2 sorption mechanism by synthetic biofilm that was prepared as superporous spherical beads from agarose, using batch stirred flasks kept at room temperature. The pH plays an important part in these phenomena, by its influence on the nanoparticles and biofilm chemistry, where the biofilm nanoTiO2 uptake at neutral pH was enhanced over acidic conditions. Hydroxylation of TiO2 nanoparticles, dependent on pH and the salinity of the solution, influences the stability of colloids, the sorption kinetics via the nature of limiting phases: diffusion through the boundary layer or intrabiofilm mass transfer and the sorption mechanism. The sorption follows pseudo first-order adsorption kinetics with estimated average rate constants of 2.2 (min- 1). Equilibrium isotherms were evaluated using Langmuir and Freundlich isotherms to obtain the maximum uptake at different solution pH and the free energy of the adsorption. The adsorption is apparently irreversible because biofilm limits diffusion of particles out of the pores and the complexation active binding sites on the surface hydrated biofilm to the hydrophilic TiO2 nanoparticles.

  9. 3-D Simulations of NSTAR Ion Thruster Plasma Interactions

    NASA Technical Reports Server (NTRS)

    Wang, J.; Brophy, J.; Polk, J.; Brinza, D.

    1996-01-01

    Described is a Particle-in-Cell with Monte Carlo Collision code developed to perform detailed three-dimensional ion thruster simulations. To capture the full kinetic behavior of ion thruster plumes, both the electrons and ions are treated as test particles. Simulation results are given of the NSTAR ion thruster under ground test and in space conditions. Numerical results are compared.

  10. The heavy ion compositional signature in 3He-rich solar particle events

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Reames, D. V.; Klecker, B.; Hovestadt, D.; Vonrosenvinge, T. T.

    1985-01-01

    A survey of the approx. 1 MeV/nucleon heavy ion abundances in 66 He3-rich solar particle events was performed using the Max-Planck-Institut/University of Maryland and Goddard Space Flight Center instruments on the ISEE-3 spacecraft. The observations were carried out in interplanetary space over the period 1978 October through 1982 June. Earlier observations were confirmed which show an enrichment of heavy ions in HE3-rich events, relative to the average solar energetic particle composition in large particle events. For the survey near 1.5 MeV/nucleon the enrichments compared to large solar particle events are approximately He4:C:O:Ne:Mg:Si:Fe = 0.44:0.66:1.:3.4:3.5:4.1:9.6. Surprising new results emerging from the present broad survey are that the heavy ion enrichment pattern is the same within a factor of approx. 2 for almost all cases, and the degree of heavy ion enrichment is uncorrelated with the He3 enrichment. Overall, the features established appear to be best explained by an acceleration mechanism in which the He3 enrichment process is not responsible for the heavy ion enrichment, but rather the heavy ion enrichment is a measure of the ambient coronal composition at the sites where the He3-rich events occur.

  11. Improved dispensing targets for ion beam particle generators

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1974-01-01

    Beam impinges on palladium-silver tube, which is target, and heats impinged surface causing local hot spot. Contained gas diffuses through hot spot to meet incoming beam and produce desired particles. When beam is turned off, target spot cools and stops dispensing contained gas.

  12. Enhancement of negative hydrogen ion production at low pressure by controlling the electron kinetics property with transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Kim, Seongcheol; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-12-01

    In a volume production H- ion source, independent control of electron energy distribution between the driver region and the extraction region is crucial for the efficient production of H- ions due to its unique volume production mechanism. However, at the low pressure regime compatible to ITER operation, it is difficult to control electron energy distribution separately because the nonlocal property dominates the electron kinetics. In this work, we suggest a new method to control the locality of electron kinetics. In this method, an additional pair of permanent magnets is introduced in the vicinity of the skin layer, differently from the conventional method in which the magnetic filter field was strengthened in the extraction region. This magnetic field shortens the energy relaxation length and changes the electron kinetics from nonlocal to local even for low pressure discharges. In this paper, we show that the locality of electron kinetics can be effectively controlled by the additional magnetic field near the skin layer by measuring the electron temperature profile along the center of the discharge chamber as well as by comparing electron energy probability function shapes for different strengths of magnetic field. Using this new method, we demonstrate that control of locality of electron kinetics can greatly enhance the production of H- ions in the extraction region by measuring H- ion beam current extracted from the plasma source.

  13. Determination of char combustion kinetics parameters: comparison of point detector and imaging-based particle-sizing pyrometry.

    PubMed

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

  14. Determination of char combustion kinetics parameters: Comparison of point detector and imaging-based particle-sizing pyrometry

    NASA Astrophysics Data System (ADS)

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R.; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

  15. An investigation of electrostatic interactions between organically functionalized silica particles, surfaces, and metal ions

    NASA Astrophysics Data System (ADS)

    Stahl, Sarah Margaret

    This research focuses on the electrostatic interactions between silica particles and either coated surfaces or metal ions. This work has two objectives: to begin a preliminary investigation into particle-surface systems that may be ideal for further investigation as a sensor and to investigate metal-ligand interactions for the potential use of metal ions to aid in the self assembly of silica particles. Silica particles with various organic functionalizations were synthesized from trialkoxysilane precursors using variations of the Stöber synthesis method, a well-known colloidal suspensions technique. The functional groups that were used in this work include mercaptopropyl (MPTMS), ethylenediamine (enTMOS), and aminopropyl groups (APTES). The aminopropyl functionalized particles were synthesized by varying the mol% of APTES in a tetraethoxyorthosilicate (TEOS) particle formulation. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to analyze the particles for size, shape, and composition. Silica particles with all three functionalizations were used for the particle-surface study, whereas only MPTMS particles were used in the metal-ligand study. The coatings used for the particle-surface study were synthesized using standard sol gel chemistry with trialkoxysilane precursors as well. The functional groups used in this study include methyl (MTMOS) and aminopropyl groups (TEOS/APTES). Sol gel coatings incorporating carboxy and ammonium groups were also investigated but were not suitable for further study. FTIR was used to analyze the MTMOS and TEOS/APTES coatings. The adsorption of the MPTMS particles onto TEOS/APTES coatings and enTMOS or TEOS/APTES particles onto MTMOS coatings over time was monitored using fluorescence spectroscopy. Since silica particles are not fluorescent in the visible light range, a fluorescent dye was incorporated into the particles, either rhodamine (MPTMS particles) or pyranine dye (enTMOS, TEOS

  16. The deadtime correction for ion-trap particle detectors

    NASA Astrophysics Data System (ADS)

    Byrne, J.

    2005-10-01

    When ion traps are used to store low-energy recoil protons in precision studies of neutron β-decay, decay events are lost when several protons are stored during a single trapping cycle and their detection is registered as a single event during the release phase. The correction for this deadtime effect, which is proportional to the trapping time, is analysed as a problem in Baysian statistics.

  17. Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral Atoms and Nonthermal Ions

    SciTech Connect

    Pogorelov, Nikolai; Zhang, Ming

    2016-07-31

    Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) ion components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of ions is formed due to charge exchange and collisions between the thermal (core) ions and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere –- the part of interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral atoms into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all ions and the kinetic Boltzmann equation to describe the transport of neutral atoms. As a separate capability, we can treat the flow of neutral atoms in a multi-component fashion, where neutral atoms born in each thermodynamically distinct region are governed by the Euler gas dynamic equations. We also describe the behavior of pickup ions either kinetically, using the Fokker--Planck equation

  18. Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral Atoms and Nonthermal Ions

    SciTech Connect

    Pogorelov, Nikolai; Zhang, Ming; Borovikov, Sergey; Heerikhuisen, Jacob; Zank, Gary; Gamayunov, Konstantin; Colella, Phillip

    2016-07-31

    Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) ion components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of ions is formed due to charge exchange and collisions between the thermal (core) ions and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere - the part of interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral atoms into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all ions and the kinetic Boltzmann equation to describe the transport of neutral atoms. As a separate capability, we can treat the flow of neutral atoms in a multi-component fashion, where neutral atoms born in each thermodynamically distinct regions are governed by the Euler gas dynamic equations. We also describe the behavior of pickup ions either kinetically, using the Fokker–Planck equation, or

  19. Kinetics of heterogeneous reaction of CaCO3 particles with gaseous HNO3 over a wide range of humidity.

    PubMed

    Liu, Y; Gibson, E R; Cain, J P; Wang, H; Grassian, V H; Laskin, A

    2008-02-21

    Heterogeneous reaction kinetics of gaseous nitric acid (HNO3) with calcium carbonate (CaCO3) particles was investigated using a particle-on-substrate stagnation flow reactor (PS-SFR). This technique utilizes the exposure of substrate deposited, isolated, and narrowly dispersed particles to a gas mixture of HNO3/H2O/N2, followed by microanalysis of individual reacted particles using computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The first series of experiments were conducted at atmospheric pressure, room temperature and constant relative humidity (40%) with a median dry particle diameter of Dp = 0.85 mum, particle loading densities 2 x 104 particles as a function of particle loading. Quantitative treatment of the data using a diffusion-kinetic model yields a lower limit to the net reaction probability gammanet >/= 0.06 (x3//2). In a second series of experiments, HNO3 uptake on CaCO3 particles of the same size was examined over a wide range of relative humidity, from 10 to 80%. The net reaction probability was found to increase with increasing relative humidity, from gammanet >/= 0.003 at RH = 10% to 0.21 at 80%.

  20. The "kinetic capture" of an acylium ion from live aluminum chloride promoted Friedel-Crafts acylation reactions.

    PubMed

    Huang, Zhiliang; Jin, Liqun; Han, Heyou; Lei, Aiwen

    2013-03-21

    AlCl(3) promoted Friedel-Crafts acylation between 4-tert-butylbenzoyl chloride and mesitylene was investigated. The donor-acceptor complex was observed as the major species. Kinetic investigation demonstrated that the reaction was first-order on the donor-acceptor complex and zero-order on ArH, suggesting that the donor-acceptor complex was not the true reactive species. However, the acylium ion was almost invisible with a fairly low concentration under live reaction conditions. It was approved as the true reactive species through kinetic data ("kinetic capture") in the AlCl(3) promoted Friedel-Crafts acylation reaction.

  1. Particle-in-cell simulations of ion-acoustic waves with application to Saturn's magnetosphere

    SciTech Connect

    Koen, Etienne J.; Collier, Andrew B.; Hellberg, Manfred A.; Maharaj, Shimul K.

    2014-07-15

    Using a particle-in-cell simulation, the dispersion and growth rate of the ion-acoustic mode are investigated for a plasma containing two ion and two electron components. The electron velocities are modelled by a combination of two kappa distributions, as found in Saturn's magnetosphere. The ion components consist of adiabatic ions and an ultra-low density ion beam to drive a very weak instability, thereby ensuring observable waves. The ion-acoustic mode is explored for a range of parameter values such as κ, temperature ratio, and density ratio of the two electron components. The phase speed, frequency range, and growth rate of the mode are investigated. Simulations of double-kappa two-temperature plasmas typical of the three regions of Saturn's magnetosphere are also presented and analysed.

  2. Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies.

    PubMed

    Nibou, D; Mekatel, H; Amokrane, S; Barkat, M; Trari, M

    2010-01-15

    The adsorption of Zn(2+) onto NaA and NaX zeolites was investigated. The samples were synthesized according to a hydrothermal crystallization using aluminium isopropoxide (Al[OCH(CH(3))(2)](3)) as a new alumina source. The effects of pH, initial concentration, solid/liquid ratio and temperature were studied in batch experiments. The Freundlich and the Langmuir models were applied and the adsorption equilibrium followed Langmuir adsorption isotherm. The uptake distribution coefficient (K(d)) indicated that the Zn(2+) removal was the highest at minimum concentration. Thermodynamic parameters were calculated. The negative values of standard enthalpy of adsorption revealed the exothermic nature of the adsorption process whereas the negative activation entropies reflected that no significant change occurs in the internal structure of the zeolites solid matrix during the sorption of Zn(2+). The negative values of Gibbs free energy were indicative of the spontaneity of the adsorption process. Analysis of the kinetic and rate data revealed that the pseudo second-order sorption mechanism is predominant and the intra particle diffusion was the determining step for the sorption of zinc ions. The obtained optimal parameters have been applied to wastewater from the industrial zone (Algeria) in order to remove the contained zinc effluents.

  3. Origin of the different energetic ion populations in the quasi-perpendicular Ion Foreshock: 2D Full-particle simulation

    NASA Astrophysics Data System (ADS)

    Savoini, P.; Lembege, B.; Stienlet, J.

    2012-04-01

    The foreshock region is located upstream of the terrestrial bow shock and is characterized by energetic backstreaming particles (electrons and ions) issued from the shock and by an important wave activity as observed by many space missions. In order to analyse the foreshock region, a curved shock is simulated with the help of a 2 - D full particle (PIC) code, where full curvature and time of flight effects, and where both electrons and ions dynamics are fully described by a self consistent approach. The analysis is presently restricted to the quasi-perpendicular angular range defined by 45°≤ θBn ≤ 90°, where θBn is the angle between the shock normal and the upstream magnetostatic field, and we focus only on the ion foreshock. In a good agreement with experimental data, present preliminary results evidence two distinct ion populations collimated along the interplanetary magnetic field (IMF): (i) the Field-Aligned Beam population (hereafter named "FAB") and (ii) the gyro-phase bunch population (hereafter named "GPB") which differ from each other by their gyrotropic or non-gyrotropic behavior, respectively. Additionally, the "FAB" population is observed at the edge of the ion foreshock and near the curved shock front, while the "'GPB" population is observed deeper in the foreshock and further from the shock front. The analysis shows that no pitch angle scattering mechanism needs to be invoked to account for the generation of the "GPB", but rather additional criteria are necessary namely: the interaction time Δtint of backstreaming ions with the shock front and their downstream penetration depth. These criteria allow to evidence that (i) the "FAB" population corresponds to particles which move back and forth between the upstream edge of the front and the overshoot, and are characterized by a quite large Δtint (covering several local gyro-periods, 4 ≤ τci ≤ 12). In contrast, (ii) the "GPB" ions have suffered a very short interaction time (i.e. Δtint < 1

  4. Effects of He and Ar ion kinetic energies in protection of organosilicate glass from O{sub 2} plasma damage

    SciTech Connect

    Lee, Joe; Graves, David B.; Kazi, Haseeb; Gaddam, Sneha; Kelber, Jeffry A.

    2013-07-15

    In-situ x-ray photoelectron spectroscopy (XPS) and ex-situ Fourier transform infrared studies of He plasma and Ar{sup +} ion bombardment pretreatments of organosilicate glass demonstrate that such pretreatments inhibit subsequent O{sub 2} plasma-induced carbon loss by forming a SiO{sub 2}-like damaged overlayer, and that the degree of protection correlates directly with increased ion kinetic energies, but not with the thickness of the SiO{sub 2} overlayer. This thickness is observed by XPS to be roughly constant and <1 nm regardless of ion energies involved. The data indicate that ion kinetic energies are an important parameter in protective noble gas plasma pretreatments to inhibit O{sub 2} plasma-induced carbon loss.

  5. Kinetic theory of binary particles with unequal mean velocities and non-equipartition energies

    NASA Astrophysics Data System (ADS)

    Chen, Yanpei; Mei, Yifeng; Wang, Wei

    2017-03-01

    The hydrodynamic conservation equations and constitutive relations for a binary granular mixture composed of smooth, nearly elastic spheres with non-equipartition energies and different mean velocities are derived. This research is aimed to build three-dimensional kinetic theory to characterize the behaviors of two species of particles suffering different forces. The standard Enskog method is employed assuming a Maxwell velocity distribution for each species of particles. The collision components of the stress tensor and the other parameters are calculated from the zeroth- and first-order approximation. Our results demonstrate that three factors, namely the differences between two granular masses, temperatures and mean velocities all play important roles in the stress-strain relation of the binary mixture, indicating that the assumption of energy equipartition and the same mean velocity may not be acceptable. The collision frequency and the solid viscosity increase monotonously with each granular temperature. The zeroth-order approximation to the energy dissipation varies greatly with the mean velocities of both species of spheres, reaching its peak value at the maximum of their relative velocity.

  6. A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics

    NASA Astrophysics Data System (ADS)

    Told, D.; Cookmeyer, J.; Astfalk, P.; Jenko, F.

    2016-07-01

    A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm’s law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.

  7. Sexual modification of female spinach seeds (Spinacia oleracea L.) by irradiation with ion particles.

    PubMed

    Komai, F; Shikazono, N; Tanaka, A

    2003-04-01

    The female seeds of a spinach plant (Spinacia orelacea L.) were exposed to He (12.5 MeV/n) and C (18.3 MeV/n) ions in order to investigate the effects of ion particles on sex expression. He ions did not affect germination rates or flowering at doses up to 50 Gy. C ions did not affect germination rates or flowering at doses up to 15 Gy, but a dose of 25 Gy resulted in many plants with morphological aberrations. When unexposed female plants were grown without cross-fertilization for 10 weeks after sowing, 5.6-14.3% of the plants produced anthers from female flowers. These sex-modified plants could self-pollinate and form seeds, which expressed only female organs. Conversely, gynomonoecious plants were induced from these female seeds by exposure to He ions (5-50 Gy) and C ions (5-25 Gy) without any difference in the rates of flowered progeny. Moreover, andromonoecious plants were induced from female seeds by exposure to He ions at 50 Gy. These results suggest that the sex of a spinach plant is expressed as a flexible phenotype, converging from female to gyno- and andromonoecy after exposure to ion particles.

  8. The effect of codopants on spectral-kinetic characteristics of luminescence of scintillation glasses doped with terbium ions

    NASA Astrophysics Data System (ADS)

    Valiev, D. T.; Polisadova, E. F.

    2016-10-01

    The effect of Ce3+ and Pr3+ ions on spectral-kinetic characteristics of luminescence of lithium-phosphate-borate glasses is studied. It is shown that terbium ion luminescence caused by transitions from 5 D 3 and 5 D 4 multiplets to the ground 7FJ term is detected in samples containing Tb3+/Ce3+ and Tb3+/Pr3+. It has been found that an increase in the concentration of cerium ions from 0.2 to 1 wt % leads to an increase in the intensity of main luminescence bands of terbium ions. In Tb3+/Pr3+ glasses, a decrease in the relative light yield is observed with an increase in the concentration of Pr3+ ions. Processes of energy transfer between Tb3+/Ce3+ and Tb3+/Pr3+ ions are discussed.

  9. CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Gorlé, C.; van Beeck, J.; Rambaud, P.; Van Tendeloo, G.

    When considering the modelling of small particle dispersion in the lower part of the Atmospheric Boundary Layer (ABL) using Reynolds Averaged Navier Stokes simulations, the particle paths depend on the velocity profile and on the turbulence kinetic energy, from which the fluctuating velocity components are derived to predict turbulent dispersion. It is therefore important to correctly reproduce the ABL, both for the velocity profile and the turbulence kinetic energy profile. For RANS simulations with the standard k- ɛ model, Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46-47, 145-153.) proposed a set of boundary conditions which result in horizontally homogeneous profiles. The drawback of this method is that it assumes a constant profile of turbulence kinetic energy, which is not always consistent with field or wind tunnel measurements. Therefore, a method was developed which allows the modelling of a horizontally homogeneous turbulence kinetic energy profile that is varying with height. By comparing simulations performed with the proposed method to simulations performed with the boundary conditions described by Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46-47, 145-153.), the influence of the turbulence kinetic energy on the dispersion of small particles over flat terrain is quantified.

  10. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles.

    PubMed

    Preetha, Chandrika Ravindran; Gladis, Joseph Mary; Rao, Talasila Prasada; Venkateswaran, Gopala

    2006-05-01

    Major quantities of uranium find use as nuclear fuel in nuclear power reactors. In view of the extreme toxicity of uranium and consequent stringent limits fixed by WHO and various national governments, it is essential to remove uranium from nuclear power reactor effluents before discharge into environment. Ion imprinted polymer (IIP) materials have traditionally been used for the recovery of uranium from dilute aqueous solutions prior to detection or from seawater. We now describe the use of IIP materials for selective removal of uranium from a typical synthetic nuclear power reactor effluent. The IIP materials were prepared for uranyl ion (imprint ion) by forming binary salicylaldoxime (SALO) or 4-vinylpyridine (VP) or ternary SALO-VP complexes in 2-methoxyethanol (porogen) and copolymerizing in the presence of styrene (monomer), divinylbenzene (cross-linking monomer), and 2,2'-azobisisobutyronitrile (initiator). The resulting materials were then ground and sieved to obtain unleached polymer particles. Leached IIP particles were obtained by leaching the imprint ions with 6.0 M HCl. Control polymer particles were also prepared analogously without the imprint ion. The IIP particles obtained with ternary complex alone gave quantitative removal of uranyl ion in the pH range 3.5-5.0 with as low as 0.08 g. The retention capacity of uranyl IIP particles was found to be 98.50 mg/g of polymer. The present study successfully demonstrates the feasibility of removing uranyl ions selectively in the range 5 microg - 300 mg present in 500 mL of synthetic nuclear power reactor effluent containing a host of other inorganic species.

  11. Kinetics of nitrate and perchlorate removal and biofilm stratification in an ion exchange membrane bioreactor.

    PubMed

    Ricardo, Ana R; Carvalho, Gilda; Velizarov, Svetlozar; Crespo, João G; Reis, Maria A M

    2012-09-15

    The biological degradation of nitrate and perchlorate was investigated in an ion exchange membrane bioreactor (IEMB) using a mixed anoxic microbial culture and ethanol as the carbon source. In this process, a membrane-supported biofilm reduces nitrate and perchlorate delivered through an anion exchange membrane from a polluted water stream, containing 60 mg/L of NO₃⁻ and 100 μg/L of ClO₄⁻. Under ammonia limiting conditions, the perchlorate reduction rate decreased by 10%, whereas the nitrate reduction rate was unaffected. Though nitrate and perchlorate accumulated in the bioreactor, their concentrations in the treated water (2.8 ± 0.5 mg/L of NO₃⁻ and 7.0 ± 0.8 μg/L of ClO₄⁻, respectively) were always below the drinking water regulatory levels, due to Donnan dialysis control of the ionic transport in the system. Kinetic parameters determined for the mixed microbial culture in suspension showed that the nitrate reduction rate was 35 times higher than the maximum perchlorate reduction rate. It was found that perchlorate reduction was inhibited by nitrate, since after nitrate depletion perchlorate reduction rate increased by 77%. The biofilm developed in the IEMB was cryosectioned and the microbial population was analyzed by fluorescence in situ hybridization (FISH). The results obtained seem to indicate that the kinetic advantage of nitrate reduction favored accumulation of denitrifiers near the membrane, whereas per(chlorate) reducing bacteria were mainly positioned at the biofilm outer surface, contacting the biomedium. As a consequence of the biofilm stratification, the reduction of perchlorate and nitrate occur sequentially in space allowing for the removal of both ions in the IEMB.

  12. Kinetic behavior of LiFeMgPO 4 cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hong, Jian; Wang, Chunsheng; Kasavajjula, Uday

    LiFe 0.9Mg 0.1PO 4 material was prepared by mechanical milling method, followed by heat treatment. The equilibrium potential-composition isotherm of LiFe 0.9Mg 0.1PO 4 and charge-discharge kinetics of LiFe 0.9Mg 0.1PO 4 were measured using galvanostatic intermittent titration technique (GITT), potential-step chronoamperometry (PSCA), and electrochemical impedance spectroscopy (EIS). The rate performance of the cathode is controlled by the charge-transfer kinetics, electronic conductivity, Li-ion diffusion capability, and phase transformation rate. Since LiFe 0.9Mg 0.1PO 4 has a fast charge-transfer reaction and high electronic and ionic diffusivity, the phase transformation between LiFe 0.9Mg 0.1PO 4 and Li 0.1Fe 0.9Mg 0.1PO 4 begins to play a more important role in the charge-discharge process, as is evident by an inductive loop induced by the phase transformation in the low frequency region of EIS. The phase purity and morphology of LiFe 0.9Mg 0.1PO 4 were also observed using X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  13. Measurement of energetic-particle-driven core magnetic fluctuations and induced fast-ion transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J. A.; Anderson, J. K.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2013-03-01

    Internal fluctuations arising from energetic-particle-driven instabilities, including both density and radial magnetic field, are measured in a reversed-field-pinch plasma. The fluctuations peak near the core where fast ions reside and shift outward along the major radius as the instability transits from the n = 5 to n = 4 mode. During this transition, strong nonlinear three-wave interaction among multiple modes accompanied by enhanced fast-ion transport is observed.

  14. Light Induced Degradation of Eight Commonly Used Pesticides Adsorbed on Atmospheric Particles: Kinetics and Product Study

    NASA Astrophysics Data System (ADS)

    Socorro, J.; Durand, A.; Gligorovski, S.; Wortham, H.; Quivet, E.

    2014-12-01

    Pesticides are widely used all over the world whether in agricultural production or in non-agricultural settings. They may pose a potential human health effects and environmental risks due to their physico-chemical properties and their extensive use which is growing every year. Pesticides are found in the atmosphere removed from the target area by volatilization or wind erosion, and carried over long distances. These compounds are partitioned between the gaseous and particulate atmospheric phases. The increasingly used pesticides are semi-volatile compounds which are usually adsorbed on the surface of the atmospheric particles. These pesticides may undergo chemical and photo-chemical transformation. New compounds may then be formed that could be more hazardous than the primary pesticides. The atmospheric fate and lifetime of adsorbed pesticides on particles are controlled by the these (photo)chemical processes. However, there is a lack of kinetic data regarding the pesticides in the particle phase. This current work focuses on the photolytic degradation of commonly used pesticides in particulate phase. It aims at estimating the photolytic rates and thus the lifetimes of pesticides adsorbed on silica particles as a proxy of atmospheric particles. The following eight commonly used pesticides, cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, tetraconazole, were chosen because of their physico-chemical properties. The photolysis rates of tetraconazole and permethrin were extremely slow ≤ 1.2 · 10-6 s-1. The photolysis rates for the other pesticides were determined in the range of: (5.9 ± 0.3) · 10-6 < k < (1.7 ± 0.1) · 10-4 s-1 from slowest to the fastest: pendimethalin < cyprodinil < deltamethrin < difenoconazole < oxadiazon < fipronil. Finally, the identification of the surface products upon light irradiation was performed, using GC-(QqQ)-MS/MS and LC-(Q-IMS-ToF)-MS/MS. The potentially formed gas-phase products during

  15. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    PubMed

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  16. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J.

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H]4+ ions exhibit two major conformer types with collision cross sections of 418 Å2 and 446 Å2; the [M + 3H]3+ ions also yield two different conformer types having collision cross sections of 340 Å2 and 367 Å2. Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H]3+ ions show faster HDX rate contributions compared with [M + 4H]4+ ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H]4+ ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  17. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  18. Wave-particle interactions in a resonant system of photons and ion-solvated water

    NASA Astrophysics Data System (ADS)

    Konishi, Eiji

    2017-02-01

    We investigate a laser model for a resonant system of photons and ion cluster-solvated rotating water molecules in which ions in the cluster are identical and have very low, non-relativistic velocities and direction of motion parallel to a static electric field induced in a single direction. This model combines Dicke superradiation with wave-particle interaction. As the result, we find that the equations of motion of the system are expressed in terms of a conventional free electron laser system. This result leads to a mechanism for dynamical coherence, induced by collective instability in the wave-particle interaction.

  19. Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV radiation

    EPA Science Inventory

    A system consisting of a photochemical reaction was used to evaluate the kinetic parameters, such as reaction order and rate constant for the elemental mercury uptake by TiO2 in the presence of uv irradiation. TiO2 particles generated by an aerosol route were used in a fixed bed...

  20. Single-cell/Single-particle Irradiation Using Heavy-ion Microbeams

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiko

    Heavy charged particles transfer their energy to biological organisms through high-density ionization along the particle trajectories. The population of cells exposed to a very low dose of heavy-ion beams contains a few cells hit by a particle, while the majority of the cells receive no radiation damage. At somewhat higher doses, some of the cells receive two or more events according to the Poisson distribution of ion injections. This fluctuation of particle trajectories through individual cells makes interpretation of radiological effects of heavy ions difficult. Furthermore, there has recently been an increasing interest in ionizing radiation-induced “bystander effects”, that is, radiation effects transmitted from hit cells to neighboring un-hit cells. Therefore, we have established a single-cell/single-particle irradiation system using a heavy-ion microbeam apparatus at JAEA-Takasaki to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures.

  1. Test particle study of ion transport in drift type turbulence

    SciTech Connect

    Vlad, M.; Spineanu, F.

    2013-12-15

    Ion transport regimes in drift type turbulence are determined in the frame of a realistic model for the turbulence spectrum based on numerical simulations. The model includes the drift of the potential with the effective diamagnetic velocity, turbulence anisotropy, and dominant waves. The effects of the zonal flow modes are also analyzed. A semi-analytical method that is able to describe trajectory stochastic trapping or eddying is used for obtaining the transport coefficients as function of the parameters of the turbulence. Analytical approximations of the transport coefficients are derived from the results. They show the transition from Bohm to gyro-Bohm scaling as plasma size increases in very good agreement with the numerical simulations.

  2. Influence of oxide particle network morphology on ion solvation and transport in "soggy sand" electrolytes.

    PubMed

    Das, Shyamal K; Bhattacharyya, Aninda J

    2010-05-27

    The role of oxide surface chemical composition and solvent on ion solvation and ion transport of "soggy sand" electrolytes are discussed here. A "soggy sand" electrolyte system comprising dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate-methoxy polyethylene glycol solution was employed for the study. Static and dynamic rheology measurements show formation of an attractive particle network in the case of the composite with unmodified aerosil silica (i.e., with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e., for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. No enhancement in ionic conductivity compared to the liquid electrolyte was observed in the case of the unmodified silica. This was attributed to the existence of a very strong particle network, which led to the "expulsion" of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity dependent on the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol, and no percolation in ionic conductivity was observed.

  3. Ion size effects on the electrokinetics of spherical particles in salt-free concentrated suspensions

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Carrique, Felix; Ruiz-Reina, Emilio

    2012-02-01

    In this work we study the influence of the counterion size on the electrophoretic mobility and on the dynamic mobility of a suspended spherical particle in a salt-free concentrated colloidal suspension. Salt-free suspensions contain charged particles and the added counterions that counterbalance their surface charge. A spherical cell model approach is used to take into account particle-particle electro-hydrodynamic interactions in concentrated suspensions. The finite size of the counterions is considered including an entropic contribution, related with the excluded volume of the ions, in the free energy of the suspension, giving rise to a modified counterion concentration profile. We are interested in studying the linear response of the system to an electric field, thus we solve the different electrokinetic equations by using a linear perturbation scheme. We find that the ionic size effect is quite important for moderate to high particles charges at a given particle volume fraction. In addition for such particle surface charges, both the electrophoretic mobility and the dynamic mobility suffer more important changes the larger the particle volume fraction for each ion size. The latter effects are more relevant the larger the ionic size.

  4. Effects of H+, He+ ion reflection at the lunar surface and pickup ion dynamics in case of oblique/quasi-parallel magnetic field: 3-D hybrid kinetic modeling

    NASA Astrophysics Data System (ADS)

    Lipatov, A. S.; Cooper, J. F.; Sittler, E. C.; Hartle, R. E.; Sarantos, M.

    2013-12-01

    The hybrid kinetic model used here supports comprehensive simulation of the interaction between different spatial and energetic elements of the moon-solar wind-magnetosphere of the Earth system. This involves variable upstream magnetic field and solar wind plasma, including energetic ions, electrons, and neutral atoms. This capability is critical to improved interpretation of existing measurements for surface and atmospheric composition from previous missions and planning future missions. Recently, MAP-PAGE-IMA (Plasma energy Angle and Composition Experiment, and Ion Mass Analyzer) onboard Japanese lunar orbiter SELENE (KAGUYA) detected Moon originating ions at 100 km altitude. Ion species of H+, He++, He+, C+, O+, Na+, K+, and Ar+ were definitively identified. The first portion of our modeling devotes to a study of the H+, H2+, He+, Na+ pickup ion dynamics in cases of flow with a oblique and quasi-parallel magnetic field. In the second series of modeling we also take into account collisions between ions and the surface of the moon and further sputtering of fragments from the surface of the moon. The ion reflection at the lunar surface is also responsible for wave activity in the upstream flow. The solar wind parameters are chosen from ARTEMIS observations. The hybrid kinetic model allows us to take into account the finite gyroradius effects of pickup ions and to estimate correctly the ions velocity distribution and the fluxes along the magnetic field. Modeling shows the asymmetric Mach cone, pickup and reflected ion tails, and presents another type of lunar-solar wind interaction. Our simulation may be also important for the study of the interaction between the solar wind and very weak comets, Mercury and Pluto.

  5. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.

    PubMed

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J; Lee, Younghee; Liu, Nian; Piper, Daniela Molina; Lee, Se-Hee; Zhao, Peng; George, Steven M; Zhang, Ji-Guang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong-Min

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found that nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (∼5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a "V-shaped" lithiation front of the SiNWs, while the Al2O3 coating yields an "H-shaped" lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk lithiation rate of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  6. Early stage of the electron kinetics in swift heavy ion tracks in dielectrics

    SciTech Connect

    Medvedev, N. A.; Rethfeld, B.; Volkov, A. E.; Shcheblanov, N. S.

    2010-09-15

    A Monte Carlo approach was applied for simulations of the early stage (first tens of femtosecond) of kinetics of the electronic subsystem of silica (SiO{sub 2}) in tracks of swift heavy ions (SHIs) decelerated in the electronic stopping regime. At the first step multiple ionizations of target atoms by a projectile (Ca{sup +19}, E=11.4 MeV/amu) were described that gave the initial spatial distributions of free electrons having different momenta as well as distributions of holes in different atomic shells. Spatial propagation of fast electrons results in secondary ionizations of target atoms as well as in energy transfer to the lattice at times much shorter than the times of atomic oscillations (phonons). The well detected front of excitation in the electronic and ionic subsystems is formed due to this propagation which cannot be described by models based on diffusion mechanisms (e.g., parabolic equations of heat diffusion). At times {approx}10 fs after the projectile passage, about {approx}0.1% of the energy is already transferred to the lattice. About 63% of the energy deposited by the ion is accumulated in holes at these times. Calculated distributions of these holes through the atomic shells are in excellent agreement with the spectroscopy experiments. Comparison with these experiments demonstrated also that relaxation of the electronic subsystem in SHI tracks in solids cannot be described adequately without taking into account intra-atomic and interatomic Auger (Knotek-Feibelman) processes.

  7. Constraining Solar Wind Heating Processes by Kinetic Properties of Heavy Ions

    NASA Astrophysics Data System (ADS)

    Tracy, Patrick J.; Kasper, Justin C.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason A.; Zurbuchen, Thomas H.

    2016-06-01

    We analyze the heavy ion components (A >4 amu ) in collisionally young solar wind plasma and show that there is a clear, stable dependence of temperature on mass, probably reflecting the conditions in the solar corona. We consider both linear and power law forms for the dependence and find that a simple linear fit of the form Ti/Tp=(1.35 ±.02 )mi/mp describes the observations twice as well as the equivalent best fit power law of the form Ti/Tp=(mi/mp) 1.07 ±.01 . Most importantly we find that current model predictions based on turbulent transport and kinetic dissipation are in agreement with observed nonthermal heating in intermediate collisional age plasma for m /q <3.5 , but are not in quantitative or qualitative agreement with the lowest collisional age results. These dependencies provide new constraints on the physics of ion heating in multispecies plasmas, along with predictions to be tested by the upcoming Solar Probe Plus and Solar Orbiter missions to the near-Sun environment.

  8. Constraining Solar Wind Heating Processes by Kinetic Properties of Heavy Ions.

    PubMed

    Tracy, Patrick J; Kasper, Justin C; Raines, Jim M; Shearer, Paul; Gilbert, Jason A; Zurbuchen, Thomas H

    2016-06-24

    We analyze the heavy ion components (A>4  amu) in collisionally young solar wind plasma and show that there is a clear, stable dependence of temperature on mass, probably reflecting the conditions in the solar corona. We consider both linear and power law forms for the dependence and find that a simple linear fit of the form T_{i}/T_{p}=(1.35±.02)m_{i}/m_{p} describes the observations twice as well as the equivalent best fit power law of the form T_{i}/T_{p}=(m_{i}/m_{p})^{1.07±.01}. Most importantly we find that current model predictions based on turbulent transport and kinetic dissipation are in agreement with observed nonthermal heating in intermediate collisional age plasma for m/q<3.5, but are not in quantitative or qualitative agreement with the lowest collisional age results. These dependencies provide new constraints on the physics of ion heating in multispecies plasmas, along with predictions to be tested by the upcoming Solar Probe Plus and Solar Orbiter missions to the near-Sun environment.

  9. A Kinetic Transport Theory for Particle Acceleration and Transport in Regions of Multiple Contracting and Reconnecting Inertial-scale Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O.

    2015-03-01

    Simulations of particle acceleration in turbulent plasma regions with multiple contracting and merging (reconnecting) magnetic islands emphasize the key role of temporary particle trapping in island structures for the efficient acceleration of particles to form hard power-law spectra. Statistical kinetic transport theories have been developed that capture the essential physics of particle acceleration in multi-island regions. The transport theory of Zank et al. is further developed by considering the acceleration effects of both the mean and the variance of the electric fields induced by the dynamics of multiple inertial-scale flux ropes. A focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows, and reconnection electric fields. A Parker transport equation is also derived in which a new expression for momentum diffusion appears, combining stochastic acceleration by particle scattering in the mean multi-flux-rope electric fields with acceleration by the variance in these electric fields. Test particle acceleration is modeled analytically considering drift acceleration by the variance in the induced electric fields of flux ropes in the slow supersonic, radially expanding solar wind. Hard power-law spectra occur for sufficiently strong inertial-scale flux ropes with an index modified by adiabatic cooling, solar wind advection, and diffusive escape from flux ropes. Flux ropes might be sufficiently strong behind interplanetary shocks where the index of suprathermal ion power-law spectra observed in the supersonic solar wind can be reproduced.

  10. A KINETIC TRANSPORT THEORY FOR PARTICLE ACCELERATION AND TRANSPORT IN REGIONS OF MULTIPLE CONTRACTING AND RECONNECTING INERTIAL-SCALE FLUX ROPES

    SciTech Connect

    Le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O.

    2015-03-10

    Simulations of particle acceleration in turbulent plasma regions with multiple contracting and merging (reconnecting) magnetic islands emphasize the key role of temporary particle trapping in island structures for the efficient acceleration of particles to form hard power-law spectra. Statistical kinetic transport theories have been developed that capture the essential physics of particle acceleration in multi-island regions. The transport theory of Zank et al. is further developed by considering the acceleration effects of both the mean and the variance of the electric fields induced by the dynamics of multiple inertial-scale flux ropes. A focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows, and reconnection electric fields. A Parker transport equation is also derived in which a new expression for momentum diffusion appears, combining stochastic acceleration by particle scattering in the mean multi-flux-rope electric fields with acceleration by the variance in these electric fields. Test particle acceleration is modeled analytically considering drift acceleration by the variance in the induced electric fields of flux ropes in the slow supersonic, radially expanding solar wind. Hard power-law spectra occur for sufficiently strong inertial-scale flux ropes with an index modified by adiabatic cooling, solar wind advection, and diffusive escape from flux ropes. Flux ropes might be sufficiently strong behind interplanetary shocks where the index of suprathermal ion power-law spectra observed in the supersonic solar wind can be reproduced.

  11. A Kinetic-fluid Model

    SciTech Connect

    First Author = C.Z. Cheng; Jay R. Johnson

    1998-07-10

    A nonlinear kinetic-fluid model for high-beta plasmas with multiple ion species which can be applied to multiscale phenomena is presented. The model embeds important kinetic effects due to finite ion Larmor radius (FLR), wave-particle resonances, magnetic particle trapping, etc. in the framework of simple fluid descriptions. When further restricting to low frequency phenomena with frequencies less than the ion cyclotron frequency the kinetic-fluid model takes a simpler form in which the fluid equations of multiple ion species collapse into single-fluid density and momentum equations and a low frequency generalized Ohm's law. The kinetic effects are introduced via plasma pressure tensors for ions and electrons which are computed from particle distribution functions that are governed by the Vlasov equation or simplified plasma dynamics equations such as the gyrokinetic equation. The ion FLR effects provide a finite parallel electric field, a perpendicular velocity that modifies the ExB drift, and a gyroviscosity tensor, all of which are neglected in the usual one-fluid MHD description. Eigenmode equations are derived which include magnetosphere-ionosphere coupling effects for low frequency waves (e.g., kinetic/inertial Alfven waves and ballooning-mirror instabilities).

  12. Kinetic Alfven Waves Carrying Intense Field Aligned Currents: Particle Trapping and Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Artemyev, A.

    2015-12-01

    It is now common knowledge that dispersive scale Alfvén waves can drive parallel electron acceleration [Lotko et al., JGR, 1998; Samson et al., Ann. Geophys., 2003; Wygant et al., JGR, 2002] and transverse ion energization in the auroral zone and inner magnetosphere [Johnson and Cheng, JGR, 2001; Chaston et al., 2004]. In this paper we show that relatively low energy electrons (plasma sheet electrons with energies ranging up to ˜100 eV) can be accelerated very efficiently as they interact nonlinearly with kinetic Alfvén waves (KAWs) that carry intense field aligned currents from the equatorial plane toward the ionosphere in the inner magnetosphere. We propose a theoretical model describing electron trapping into an effective wave potential generated by parallel wave electric fields (with perpendicular wavelengths on the order of the ion gyro-radius) and the mirror force acting on electrons as they propagate along geomagnetic field lines. We demonstrate that waves with an electric potential amplitude between ~100 - 400 V can trap and accelerate electrons to energies approaching several keVs. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch-angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented. We discuss the application of the proposed model in light of recent observations of electromagnetic fluctuations in the inner magnetosphere that are present during periods of strong geomagnetic activity [Chaston et al., GRL, 2014; Califf et al., JGR, 2015].

  13. Atoms and Ions Interacting with Particles and Fields: Final Report

    SciTech Connect

    Robicheaux, Francis

    2014-09-18

    This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms with particles and fields. The duration of the grant was the 10 year period from 8/2003 to 8/2013. All of the support from the grant was used to pay salaries of the PI, postdocs, graduate students, and undergraduates and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals. There were 65 peer reviewed publications over these 10 years with 8 of the publications in Physical Review Letters; all of the other articles were in respected peer reviewed journals (Physical Review A, New Journal of Physics, Journal of Physics B, ...). I will disuss the results for the periods of time relevant for each grant period.

  14. The investigation of electrokinetic behaviour of micro-particles produced by CTA+ ions and Na-montmorillonite

    NASA Astrophysics Data System (ADS)

    Gürses, Ahmet; Güneş, Kübra; Mindivan, Ferda; Korucu, Mehtap Ejder; Açıkyıldız, Metin; Doğar, Çetin

    2014-11-01

    In this study, the interactions between clay platelets and CTA+ ions in aqueous dispersions of Na-montmorillonite (Na-MMT) were examined in detail by using electro kinetic parameters such as electrical conductivity and zeta potential and by considering XRD patterns and d-spacing values of the organoclay samples as a function of both surfactant concentration (CTAB, cetyltrimethylammonium bromide) and clay amount. The amounts adsorbed and zeta potentials of the particles increased with an increase in the initial concentration of CTAB in parallel with the electrical conductivity values. The adsorption mechanisms which predominate at certain ranges of CTAB concentration were proposed and schematized by considering the d-spacing values calculated and the zeta potential values of particles. For the different solid/liquid ratios, the initial concentrations of CTAB, in which appeared significant increases in the d-spacing values were found as 200, 280 and 300 mg/L, respectively. The d-spacing values which correspond to these concentrations are, respectively 1.82, 1.82 and 1.68 nm. It is remarkable that at first three solid/liquid ratios, a "stress region" to be related with hydrophobic binding appeared. Thermodynamic parameters such as Gibbs free energy (ΔGo), isosteric enthalpy (ΔHoads)q, and isosteric entropy (ΔSoads)q were also calculated by using experimental data. These parameters indicate that adsorption of CTAB onto Na-montmorillonite is spontaneous and exothermic in the temperature range studied. The ((ΔSoads)q, (ΔHoads)q and (ΔGo)) values calculated are highly negative. This reveals that the adsorption of CTA+ ions at the interlayer region of clay carried out with more order stacking of CTA+ ions.

  15. Kinetics and mechanisms of heterogeneous reaction of gaseous hydrogen peroxide on mineral oxide particles.

    PubMed

    Zhao, Yue; Chen, Zhongming; Shen, Xiaoli; Zhang, Xuan

    2011-04-15

    Recent studies have shown that heterogeneous reactions of hydrogen peroxide (H(2)O(2)) on aerosol surfaces may play an important role in tropospheric chemistry. The data concerning the kinetics and mechanisms of these reactions, however, are quite scarce so far. Here, we investigated, for the first time, the heterogeneous reactions of gaseous H(2)O(2) on SiO(2) and α-Al(2)O(3) particles, two major components of mineral dust aerosol, using transmission-Fourier Transform Infrared (T-FTIR) spectroscopy, and high-performance liquid chromatography (HPLC). It is found that H(2)O(2) molecularly adsorbs on SiO(2), and a small amount of molecularly adsorbed H(2)O(2) decomposes due to its thermal instability. For α-Al(2)O(3), catalytic decomposition of H(2)O(2) evidently occurs, but there is also a small amount of H(2)O(2) molecularly adsorbed on the particle surface. The BET uptake coefficients of H(2)O(2) on both particles appear to be independent of gaseous H(2)O(2) concentration (1.27-13.8 ppmv) and particle sample mass (2.8-6.5 mg for SiO(2) and 8.6-18.9 mg for α-Al(2)O(3)), but are strongly dependent on relative humidity with the values ranging from (1.55 ± 0.14) × 10(-8) and (1.21 ± 0.04) × 10(-7) at 2% RH to (0.61 ± 0.06) × 10(-8) and (0.76 ± 0.09) × 10(-7) at 76% RH for SiO(2) and α-Al(2)O(3), respectively. On the basis of the experimental results and literature data, the potential mechanisms for heterogeneous decomposition of H(2)O(2) were proposed, and the atmospheric implications of these reactions were discussed. It is found that heterogeneous reaction of H(2)O(2) on both mineral oxides plays a significant role in processing mineral aerosols, although its role as a sink for ambient H(2)O(2) is probably limited.

  16. Kinetic and fluid descriptions of charged particle swarms in gases and nonpolar fluids: Theory and applications

    NASA Astrophysics Data System (ADS)

    Dujko, Sasa

    2016-09-01

    In this work we review the progress achieved over the last few decades in the fundamental kinetic theory of charged particle swarms with the focus on numerical techniques for the solution of Boltzmann's equation for electrons, as well as on the development of fluid models. We present a time-dependent multi term solution of Boltzmann's equation valid for electrons and positrons in varying configurations of electric and magnetic fields. The capacity of a theory and associated computer code will be illustrated by considering the heating mechanisms for electrons in radio-frequency electric and magnetic fields in a collision-dominated regime under conditions when electron transport is greatly affected by non-conservative collisions. The kinetic theory for solving the Boltzmann equation will be followed by a fluid equation description of charged particle swarms in both the hydrodynamic and non-hydrodynamic regimes, highlighting (i) the utility of momentum transfer theory for evaluating collisional terms in the balance equations and (ii) closure assumptions and approximations. The applications of this theory are split into three sections. First, we will present our 1.5D model of Resistive Plate Chambers (RPCs) which are used for timing and triggering purposes in many high energy physics experiments. The model is employed to study the avalanche to streamer transition in RPCs under the influence of space charge effects and photoionization. Second, we will discuss our high-order fluid model for streamer discharges. Particular emphases will be placed on the correct implementation of transport data in streamer models as well as on the evaluation of the mean-energy-dependent collision rates for electrons required as an input in the high-order fluid model. In the last segment of this work, we will present our model to study the avalanche to streamer transition in non-polar fluids. Using a Monte Carlo simulation technique we have calculated transport coefficients for electrons in

  17. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-01-01

    Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of

  18. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    SciTech Connect

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-05-15

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q{sub fi}) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  19. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pincha)

    NASA Astrophysics Data System (ADS)

    Lin, L.; Anderson, J. K.; Brower, D. L.; Capecchi, W.; Ding, W. X.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Liu, D.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.

    2014-05-01

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n =5 to n =6 while retaining the same poloidal mode number m =1. The transition occurs when the m =1, n =5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (qfi) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  20. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  1. Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan; Qin, Guang-You; Bass, Steffen A.

    2016-12-01

    We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs.

  2. Concentration of Methylamine and Ethylamine Salts measured by a particle into liquid sampler and Ion Chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Particle-Into-Liquid Sampler (PILS) and ion chromatographs (ICs) were used to detect the concentration of methylamine salts associated with atmospheric particulate matter reactions in a smog chamber. The smog chamber is located at U.C. Riverside’s College of Engineering Center for Environmental Re...

  3. Can Bose condensation of alpha particles be observed in heavy ion collisions?

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Townsend, Lawrence W.

    1993-01-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of alpha particles with a concomitant phase transition in heavy ion collisions. Suggestions for the experimental observation of the signature of the onset of this phenomenon are made.

  4. Specific spacecraft evaluation: Special report. [charged particle transport from a mercury ion thruster to spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1978-01-01

    Charged and neutral particle transport from an 8 cm mercury ion thruster to the surfaces of the P 80-1 spacecraft and to the Teal Ruby sensor and the ECOM-501 sensor of that spacecraft were investigated. Laboratory measurements and analyses were used to examine line-of-sight and nonline-of sight particle transport modes. The recirculation of Hg(+) ions in the magnetic field of the earth was analyzed for spacecraft velocity and Earth magnetic field vector configurations which are expected to occur in near Earth, circular, high inclination orbits. For these magnetic field and orbit conditions and for expected ion release distribution functions, in both angles and energies, the recirculation/re-interception of ions on spacecraft surfaces was evaluated. The refraction of weakly energetic ions in the electric fields of the thruster plasma plume and in the electric fields between this plasma plume and the material boundaries of the thruster, the thruster sputter shield, and the various spacecraft surfaces were examined. The neutral particle transport modes of interest were identified as sputtered metal atoms from the thruster beam shield. Results, conclusions, and future considerations are presented.

  5. Comparison of kinetic and extended magnetohydrodynamics computational models for the linear ion temperature gradient instability in slab geometry

    NASA Astrophysics Data System (ADS)

    Schnack, D. D.; Cheng, J.; Barnes, D. C.; Parker, S. E.

    2013-06-01

    We perform linear stability studies of the ion temperature gradient (ITG) instability in unsheared slab geometry using kinetic and extended magnetohydrodynamics (MHD) models, in the regime k∥/k⊥≪1. The ITG is a parallel (to B) sound wave that may be destabilized by finite ion Larmor radius (FLR) effects in the presence of a gradient in the equilibrium ion temperature. The ITG is stable in both ideal and resistive MHD; for a given temperature scale length LTi0, instability requires that either k⊥ρi or ρi/LTi0 be sufficiently large. Kinetic models capture FLR effects to all orders in either parameter. In the extended MHD model, these effects are captured only to lowest order by means of the Braginskii ion gyro-viscous stress tensor and the ion diamagnetic heat flux. We present the linear electrostatic dispersion relations for the ITG for both kinetic Vlasov and extended MHD (two-fluid) models in the local approximation. In the low frequency fluid regime, these reduce to the same cubic equation for the complex eigenvalue ω =ωr+iγ. An explicit solution is derived for the growth rate and real frequency in this regime. These are found to depend on a single non-dimensional parameter. We also compute the eigenvalues and the eigenfunctions with the extended MHD code NIMROD, and a hybrid kinetic δf code that assumes six-dimensional Vlasov ions and isothermal fluid electrons, as functions of k⊥ρi and ρi/LTi0 using a spatially dependent equilibrium. These solutions are compared with each other, and with the predictions of the local kinetic and fluid dispersion relations. Kinetic and fluid calculations agree well at and near the marginal stability point, but diverge as k⊥ρi or ρi/LTi0 increases. There is good qualitative agreement between the models for the shape of the unstable global eigenfunction for LTi0/ρi=30 and 20. The results quantify how far fluid calculations can be extended accurately into the kinetic regime. We conclude that for the linear ITG

  6. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    SciTech Connect

    Cho, Shinatora Kubota, Kenichi; Funaki, Ikkoh; Watanabe, Hiroki; Iihara, Shigeyasu; Fuchigami, Kenji; Uematsu, Kazuo

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models; the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.

  7. Modeling aerosol surface chemistry and gas-particle interaction kinetics with K2-SURF: PAH oxidation

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Garland, R.; Pöschl, U.

    2009-04-01

    Atmospheric aerosols are ubiquitous in the atmosphere. They have the ability to impact cloud properties, radiative balance and provide surfaces for heterogeneous reactions. The uptake of gaseous species on aerosol surfaces impacts both the aerosol particles and the atmospheric budget of trace gases. These subsequent changes to the aerosol can in turn impact the aerosol chemical and physical properties. However, this uptake, as well as the impact on the aerosol, is not fully understood. This uncertainty is due not only to limited measurement data, but also a dearth of comprehensive and applicable modeling formalizations used for the analysis, interpretation and description of these heterogeneous processes. Without a common model framework, comparing and extrapolating experimental data is difficult. In this study, a novel kinetic surface model (K2-SURF) [Ammann & Pöschl, 2007; Pöschl et al., 2007] was used to describe the oxidation of a variety of polycyclic aromatic hydrocarbons (PAHs). Integrated into this consistent and universally applicable kinetic and thermodynamic process model are the concepts, terminologies and mathematical formalizations essential to the description of atmospherically relevant physicochemical processes involving organic and mixed organic-inorganic aerosols. Within this process model framework, a detailed master mechanism, simplified mechanism and parameterizations of atmospheric aerosol chemistry are being developed and integrated in analogy to existing mechanisms and parameterizations of atmospheric gas-phase chemistry. One of the key aspects to this model is the defining of a clear distinction between various layers of the particle and surrounding gas phase. The processes occurring at each layer can be fully described using known fluxes and kinetic parameters. Using this system there is a clear separation of gas phase, gas-surface and surface bulk transport and reactions. The partitioning of compounds can be calculated using the flux

  8. Comparison of BES measurements of ion-scale turbulence with direct gyro-kinetic simulations of MAST L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Field, A. R.; Dunai, D.; Ghim, Y.-c.; Hill, P.; McMillan, B.; Roach, C. M.; Saarelma, S.; Schekochihin, A. A.; Zoletnik, S.; the MAST Team

    2014-02-01

    Observations of ion-scale (kyρi ⩽ 1) density turbulence of relative amplitude ≳0.2% are available on the Mega Amp Spherical Tokamak (MAST) using a 2D (8 radial × 4 poloidal channel) imaging beam emission spectroscopy diagnostic. Spatial and temporal characteristics of this turbulence, i.e., amplitudes, correlation times, radial and perpendicular correlation lengths and apparent phase velocities of the density contours, are determined by means of correlation analysis. For a low-density, L-mode discharge with strong equilibrium flow shear exhibiting an internal transport barrier in the ion channel, the observed turbulence characteristics are compared with synthetic density turbulence data generated from global, non-linear, gyro-kinetic simulations using the particle-in-cell code NEMORB. This validation exercise highlights the need to include increasingly sophisticated physics, e.g., kinetic treatment of trapped electrons, equilibrium flow shear and collisions, to reproduce most of the characteristics of the observed turbulence. Even so, significant discrepancies remain: an underprediction by the simulations of the turbulence amplitude and heat flux at plasma periphery and the finding that the correlation times of the numerically simulated turbulence are typically two orders of magnitude longer than those measured in MAST. Comparison of these correlation times with various linear timescales suggests that, while the measured turbulence is strong and may be ‘critically balanced’, the simulated turbulence is weak.

  9. Magnetospheric particle injection and the upstream ion event of September 5, 1984

    SciTech Connect

    Krimigis, S.M.; Sibeck, D.G.; McEntire, R.W.

    1986-12-01

    Energetic particle data from the AMPTE Charge Composition Explorer (CCE) spacecraft in the outer dayside magnetosphere are examined during the period of an upstream ion event observed by AMPTE Ion Release Module (IRM) spacecraft on September 5, 1984 (Moebius et al., this issue). The CCE data reveal the following: (a) an ion enhancement was observed at --0040 UT in near coincidence with a substorm onset at --0035 UT, approximately 15 minutes prior to the onset of the event upstream of the shock; (b) ions of both solar wind (He/sup + +/, Fe-group) and ionospheric (O/sup +/) origin over a broad energy range (--20 keV to >1350 keV) were injected at substorm onset; (c) the time evolution of the H/sup +/, He/sup + +/, and O/sup +/ pitch angle distributions markedly differed, with O/sup +/ exhibiting mostly enhancements at off-90/sup 0/ angles for the first hour after injection; (d) an enhancement in the Fe-group ions inside the magnetosphere at L--6.4 occurred simultaneously with the appearance of an O/sup +/ burst upstream of the shock. The CCE observations, taken together with the simultaneously observed IRM ion event, suggest that a plausible explanation for the appearence of upstream ions is leakage from the magnetosphere into the upstream region, rather than the alternate explanation which requires in-situ acceleration of solar wind ions via the Fermi mechanism.

  10. Magnetospheric particle injection and the upstream ion event of September 5, 1984

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Sibeck, D. G.; Mcentire, R. W.

    1986-01-01

    Energetic particle data from the AMPTE Charge Composition Explorer (CCE) spacecraft in the outer dayside magnetosphere are examined during the period of an upstream ion event observed by the AMPTE Ion Release Module (IRM) spacecraft on September 5, 1984. The CCE data reveal the following: (1) an ion enhancement was observed at about 0040 UT in near coincidence with a substorm onset at about 0035 UT, approximately 15 minutes prior to the onset of the event upstream of the shock; (b) ions of both solar-wind - H(2+) Fe-group - and ionospheric O(+) - origin over a broad energy range (about 20 keV to greater than 1350 keV) were injected at substorm onset; (3) the time evolution of the H(+), He(2+), and O(+) pitch angle distributions markedly differed, with O(+) exhibiting mostly enhancements at off-90-deg angles for the first hour after injection; (4) an enhancement in the Fe-group ions inside the magnetosphere at L = about 6.4 occurred simultaneously with the appearance of an O(+) burst upstream of the shock. The CCE observations, taken together with the simultaneously observed IRM ion event, suggest that a plausible explanation for the appearance of upstream ions is leakage from the magnetosphere into the upstream region, rather than the alternative explanation which requires in situ acceleration of solar wind ions via the Fermi Mechanims.

  11. Modelling of the physico-chemical behaviour of clay minerals with a thermo-kinetic model taking into account particles morphology in compacted material.

    NASA Astrophysics Data System (ADS)

    Sali, D.; Fritz, B.; Clément, C.; Michau, N.

    2003-04-01

    Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical

  12. Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Grygiel, C.; Dufour, C.; Sun, J. R.; Wang, Z. G.; Zhao, Y. T.; Xiao, G. Q.; Cheng, R.; Zhou, X. M.; Ren, J. R.; Liu, S. D.; Lei, Y.; Sun, Y. B.; Ritter, R.; Gruber, E.; Cassimi, A.; Monnet, I.; Bouffard, S.; Aumayr, F.; Toulemonde, M.

    2014-07-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe22+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  13. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  14. Energetic-Particle-Driven Instabilities and Their Effect on Fast Ions in a Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J.; Anderson, J. K.; Almagri, A. F.; Chapman, B. E.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2012-10-01

    During 1 MW tangential neutral-beam injection (NBI) into the MST reversed field pinch, multiple, bursty instabilities (n=5, 4 and -1) are detected by various fluctuation diagnostics. The spatial structure of associated density fluctuations peaks near the core where fast ions reside. Significant bicoherence among them is measured, indicating nonlinear three-wave coupling. These instabilities are also observed by a laser-based Faraday-rotation diagnostic, containing critical information on the internal magnetic field fluctuations. A tangential-view high-energy neutral particle analyzer (NPA) is used to study the fast-ion population. The measured NPA signal decreases by 15% following NBI-driven instabilities, indicating fluctuation-induced fast-ion transport. The NBI also reduces the amplitude of the innermost-resonant tearing mode by up to 65%. This mode-suppression is lessened following the NBI-driven bursts, consistent with fast ion loss/redistribution weakening the suppression effect.

  15. Ion exchange properties of monolithic and particle type iminodiacetic acid modified silica.

    PubMed

    Sugrue, Edel; Nesterenko, Pavel; Paull, Brett

    2004-07-01

    A 10 cm silica monolith has been modified with iminodiacetic acid (IDA) groups and characterised for its selectivity toward alkali, alkaline earth, and selected transition metal cations. Physical characterisation of the modified monolith found non-homogeneous modification along the length of the monolith, although sufficient capacity was achieved to facilitate significant retention of alkaline earth and transition/heavy metal ions over a range of eluent pH and ionic strength conditions. For alkaline earth and transition/heavy metal ions, selectivity of the 10 cm IDA monolith closely matched that seen with a 25 cm IDA modified silica gel particle packed column, although the separation of alkali metal ions was noticeably poorer on the monolithic column. Peak efficiencies for most metal ions were of a similar order for both column types, except for Zn(II), which showed significant peak broadening on the IDA monolithic column.

  16. Simulation of ion motion at atmospheric pressure: particle tracing versus electrokinetic flow.

    PubMed

    Wissdorf, Walter; Pohler, Larissa; Klee, Sonja; Müller, David; Benter, Thorsten

    2012-02-01

    Results obtained with two computational approaches for the simulation of ion motion at elevated pressure are compared with experimentally derived ion current data. The computational approaches used are charged particle tracings with the software package SIMION ver. 8 and finite element based calculations using the software package Comsol Multiphysics ver. 4.0/4.0a. The experimental setup consisted of a tubular corona discharge ion source coupled to a cylindrical measurement chamber held at atmospheric pressure. Generated ions are flown into the chamber at essentially subsonic laminar isothermal conditions. In the simulations, strictly stationary conditions were assumed. The results show very good agreement between the SIMION/SDS model and experimental data. For the Comsol model, only qualitative agreement is observed.

  17. A Core-Particle Model for Periodically Focused Ion Beams with Intense Space-Charge

    SciTech Connect

    Lund, S M; Barnard, J J; Bukh, B; Chawla, S R; Chilton, S H

    2006-08-02

    A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to remove coherent utter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla, Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes are presented here.

  18. The role of ions in the self-healing behavior of soft particle suspensions

    PubMed Central

    Scotti, Andrea; Gasser, Urs; Herman, Emily S.; Pelaez-Fernandez, Miguel; Han, Jun; Menzel, Andreas; Lyon, L. Andrew; Fernández-Nieves, Alberto

    2016-01-01

    Impurities in crystals generally cause point defects and can even suppress crystallization. This general rule, however, does not apply to colloidal crystals formed by soft microgel particles [Iyer ASJ, Lyon LA (2009) Angew Chem Int Ed 48:4562–4566], as, in this case, the larger particles are able to shrink and join the crystal formed by a majority of smaller particles. Using small-angle X-ray scattering, we find the limit in large-particle concentration for this spontaneous deswelling to persist. We rationalize our data in the context of those counterions that are bound to the microgel particles as a result of the electrostatic attraction exerted by the fixed charges residing on the particle periphery. These bound counterions do not contribute to the suspension osmotic pressure in dilute conditions, as they can be seen as internal degrees of freedom associated with each microgel particle. In contrast, at sufficiently high particle concentrations, the counterion cloud of each particle overlaps with that of its neighbors, allowing these ions to freely explore the space outside the particles. We confirm this scenario by directly measuring the osmotic pressure of the suspension. Because these counterions are then no longer bound, they create an osmotic pressure difference between the inside and outside of the microgels, which, if larger than the microgel bulk modulus, can cause deswelling, explaining why large, soft microgel particles feel the squeeze when suspended with a majority of smaller particles. We perform small-angle neutron scattering measurements to further confirm this remarkable behavior. PMID:27125854

  19. Solar Wind Magnetic Field Turbulence at Ion Kinetic Scales Measured by Cluster Using k-filtering Technique

    NASA Astrophysics Data System (ADS)

    Li, X.; Roberts, O. W.; Jeska, L.; Li, B.; Lu, Q.

    2014-12-01

    The nature of turbulence at kinetic scales is important since turbulence energy is believed to dissipate as heat at these scales. Here we report our several work on the solar wind turbulence at ion kinetic scales using the k-filtering technique. We found evidence of ion cyclotron resonance in solar wind intervals. In the wave vector space, in addition to the commonly observed population of magnetic field fluctuations propagating at quasi-perpendicular angles to the global mean field B0, a population propagating at quasi-parallel angles are also observed with no local plasma instabilities identified. At low wavenumbers (kv_A/Omega_p <= 0.6 ) both components are present, and have similar powers, while at higher wavenumbers (kv_A/Omega_p> 0.6) only the perpendicular component can be identified. A statistical study of 52 intervals of solar wind finds that the turbulence is predominantly highly oblique to the magnetic field with perpendicular wavenumbers much greater than parallel wavenumbers, and propagates slowly in the plasma frame with most points having frequencies smaller than the proton gyrofrequency. Weak agreement is found that turbulence at the ion kinetic scales consists of kinetic Alfven waves and coherent structures advected with plasma bulk velocity plus some minor more compressible components. The results suggest that anti-sunward and sunward propagating magnetic fluctuations have similar nature in both the fast and slow solar wind. The fast wind was shown to have significantly more anti-sunward flux than sunward flux and the slow wind appears to be more balanced at ion kinetic scales. The fluctuated magnetic field and magnitude of the magnetic field are used to compute the power of incompressible and compressible turbulence for the fast solar wind. It is found that Taylor's frozen-in hypothesis may break down for compressible turbulence at the ion kinetic scales, suggesting that whistler waves may contribute to the compressible turbulence on the scales

  20. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.

    PubMed

    Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan

    2013-01-01

    Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.

  1. Single discharge of the matrix source of negative hydrogen ions: Influence of the neutral particle dynamics

    SciTech Connect

    Paunska, Ts.; Todorov, D. Shivarova, A.; Tarnev, Kh.

    2015-04-08

    The study presents two-dimensional (2D) fluid-plasma-model description of a planar-coil inductively-driven discharge, considered as a single element of a matrix source of volume-produced negative hydrogen ions. Whereas the models developed up to now have been directed towards description of the charged particle behavior in the discharge, including that of the negative ions, this model stresses on the role of the neutral particle dynamics and of the surface processes in the formation of the discharge structure. The latter is discussed based on comparison of results obtained for discharges in a flowing gas and at a constant gas pressure as well as for different values of the coefficient of atom recombination on the walls. The conclusions are that the main plasma parameters – electron density and temperature and plasma potential – determining the gas discharge regime stay stable, regardless of changes in the redistribution of the densities of the neutral particles and of the positive ions. With regards to the volume production of the ions, which requires high density of (vibrationally excited) molecules, the impact on the degree of dissociation of the coefficient of atom recombination on the wall is discussed.

  2. A new alpha particle diagnostic using knock-on ion tails

    SciTech Connect

    Fisher, R.K.; Parks, P.B.; McChesney, J.M.; Rosenbluth, M.N.

    1994-06-01

    We propose a new method of measuring the fast confined ct-particle distribution in a reacting plasma. The presence of ct-particles in a D-T plasma will create a high energy tail on the deuterium and tritium ion energy distributions. A 3.5 MeV alpha can transfer 3.4 MeV to a tritium ion in a single elastic scattering interaction. Calculations of the size of these knock-on tails in tokamaks such as TFTR, JET, and ITER show that it may be possible to measure these tails and provide information on the fast confined alphas. The knock-on tail ions will produce D-T neutrons with energies up to 20.7 MeV, so that D-T neutron spectroscopy can be used to monitor the alpha population. Neutron spectroscopy looks especially attractive for ITER. A collimated array of threshold neutron activation detectors could be used to deduce the confined alpha density profile. Tests of this diagnostic can also be done on TFTR and JET. Existing high energy neutral particle analyzers may allow observation of the ion tails directly via passive and/or active charge exchange.

  3. Modeled Ion and Neutral Particle Distributions around Jupiter’s Moon Europa

    NASA Astrophysics Data System (ADS)

    Rubin, M.; Tenishev, V.; Hansen, K. C.; Jia, X.; Combi, M. R.; Gombosi, T. I.

    2009-12-01

    Jupiter’s moon Europa has a thin gravitationally bound neutral atmosphere which is mostly created through sputtering of high energy ions impacting on its icy surface. In a first step we will simulate the interaction of Europa with the Jovian magnetosphere by using the magnetohydrodynamics (MHD) model BATSRUS. Starting from the model used by Kabin et al. [JGR, Vol. 104, No. A9, (1999)] which accounts for the exospheric mass loading, ion-neutral charge exchange, and recombination we will further use the resistive MHD equations addressing the finite electron diffusivity. These results, including the magnetic field topology, are then used to calculate the Lorentz forces for our test particle Monte Carlo model. We use this model to simulate Europa’s plasma and neutral environment by tracking particles created on the moon’s surface by sputtering or sublimation, through dissociation and/or ionization in the atmosphere, or entering the system from Jupiter’s magnetosphere as high energy ions. Neutral particle trajectories are followed by solving the equation of motion in Europa’s gravity field whereas the ion population is additionally subject to the Lorentz force. We will show preliminary results of this work with application to the missions to the Jupiter system currently under consideration by NASA (JEO) and ESA (JGO).

  4. Kinetic Study of Radiation-Reaction-Limited Particle Acceleration During the Relaxation of Force-Free Equilibria

    NASA Astrophysics Data System (ADS)

    Yuan, Yajie; Nalewajko, Krzysztof; Blandford, Roger D.; East, William E.; Zrake, Jonathan

    2016-01-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over short time scales. This might be due to prodigal dissipation in a highly magnetized outflow. In order to understand the generic behavior of relativistic plasma with high magnetization, we consider a class of prototypical force-free equilibria which are shown to be unstable to ideal modes (East et al 2015 PRL 115, 095002). Kinetic simulations are carried out to follow the evolution of the instability and to study the basic mechanisms of particle acceleration, especially in the radiation-reaction-limited regime. We find that the instability naturally produces current layers and these are sites for efficient particle acceleration. Detailed calculations of the gamma ray spectrum, the evolution of the particle distribution function and the dynamical consequences of radiation reaction will be presented.

  5. Nanoalginate based biosorbent for the removal of lead ions from aqueous solutions: Equilibrium and kinetic studies.

    PubMed

    Geetha, P; Latha, M S; Pillai, Saumya S; Koshy, Mathew

    2015-12-01

    Population explosion, depletion of water resources and prolonged droughts and floods due to climatic change lead to scarcity of pure and hygienic drinking water in most of the developing countries. Recently nanomaterials attained considerable attention as biosorbent for water purification purpose. However difficulties in removing polymeric surfactants and organic solvents used for nanoproduction and instability of the generated nanoparticles limit the scope of this approach in water cleanup. Here, we describe a novel green method for synthesizing polysaccharide nanoparticles in aqueous medium using honey as the capping agent. The highly stable alginate nanoparticles, characterized by various microscopic and spectroscopic techniques, exhibited a maximum uptake capacity of 333 mg g (-1)of Pb(II) ions from aqueous solution. The effect of various parameters such as initial metal concentration, pH, contact time, temperature and adsorbent dose on sorption process was investigated in batch mode technique. The maximum removal percentage was 94.81 at 45 °C and at pH 4.5 in 60 min contact time. The biosorption followed Freundlich model indicating multilayer adsorption and pseudo second order kinetics. The mechanism involves both surface adsorption and pore diffusion. The positive values of ΔH°, ∆S° and the negative value of ΔG°, confirmed the endothermic nature, randomness and spontaneity of biosorption process.

  6. The role of ions in the formation and evolution of particles in aircraft plumes

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun; Turco, Richard P.

    We consider the effects on aircraft plume microphysics of ions generated by chemiionization processes within the engine combustors. Ions provide centers around which molecular clusters rapidly coalesce, thus promoting the formation of electrically charged sulfuric acid/water aerosols. The resulting charged micro-particles exhibit enhanced growth due to condensation and coagulation aided by electrostatic effects. Simulations with a plume microphysics code show that volatile particles observed behind aircraft may be explained by such processes, as long as initial ion concentrations in the exhaust exceed ˜108/cm³. This analysis also suggests that the primary emissions of sulfuric acid (plus sulfur trioxide) should amount to at least 20-30% of the fuel sulfur to explain the observed number of volatile particles >9 nm in diameter. Ionized plume simulations reveal a distinct bimodal aerosol distribution, in which an “ion” mode constitutes the larger “activated” volatile sulfuric acid particles, while a smaller “neutral” mode comprises the residual slowly-growing neutral molecular clusters formed in the highly supersaturated region of the plume.

  7. Influence of natural organic matter on the adsorption of metal ion onto clay particles

    USGS Publications Warehouse

    Schmitt, D.; Taylor, H.E.; Aiken, G.R.; Roth, D.A.; Frimmel, F.H.

    2002-01-01

    The influence of natural organic matter (NOM) on the adsorption of Al, Fe, Zn, and Pb onto clay minerals was investigated. Adsorption experiments were carried out at pH = 5 and pH = 7 in the presence and absence of NOM. In general, the presence of NOM decreased the adsorption of metal ions onto the clay particles. Al and Fe were strongly influenced by NOM, whereas Zn and Pb adsorption was only slightly altered. The interaction of the metal ions with the minerals and the influence of NOM on this interaction was investigated by coupling SdFFF with an inductively coupled plasma mass spectrometer (ICPMS) or an inductively coupled plasma atomic emission spectrometer (ICPAES). Quantitative atomization of the clay particles in the ICP was confirmed by comparing elemental content determined by direct injection of the clay into the ICPMS with values from acid digestion. Particle sizes of the clays were found to be between 0.1 and 1 μm by sedimentation field-flow fractionation (SdFFF) with UV detection. Aggregation of particles due to metal adsorption was observed using SdFFF-ICPMS measurements. This aggregation was dependent on the specific metal ion and decreased in the presence of NOM and at higher pH value.

  8. Self-Consistent Conversion of a Viscous Fluid to Particles and Heavy-Ion Physics Applications

    NASA Astrophysics Data System (ADS)

    Wolff, Zack J.

    The most widely used theoretical framework to model the early stages of a heavy-ion collision is viscous hydrodynamics. Comparing hydrodynamic simulations to heavy-ion data inevitably requires the conversion of the fluid to particles. This conversion, typically done in the Cooper-Frye formalism, is ambiguous for viscous fluids. In this thesis work, self-consistent phase space corrections are calculated by solving the linearized Boltzmann equation. These species-dependent solutions are contrasted with those obtained using the ad-hoc ''democratic Grad'' ansatz typically employed in the literature in which coefficients are independent of particle dynamics. Solutions are calculated analytically for a massless gas and numerically for the general case of a hadron resonance gas. For example, it is found that for a gas of massless particles interacting via isotropic, energy-independent 2 → 2 scatterings, the shear viscous corrections variationally prefer a momentum dependence close to p3/2 rather than the quadratic dependence assumed in the Grad ansatz. The self-consistent phase space distributions are then used to calculate transverse momentum spectra and differential flow coefficients, v n(pT), to study the effects on heavy-ion identified particle observables. Using additive quark model cross sections, it is found that proton flow coefficients are higher than those for pions at moderately high pT in Pb + Pb collisions at LHC, especially for the coefficients v 4 and v6.

  9. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A.

    PubMed

    El-Kamash, A M; Zaki, A A; El Geleel, M Abed

    2005-12-09

    The sorptive removal of zinc and cadmium ions from aqueous solutions using synthetic zeolite A was investigated. Experiments were carried out as a function of solute concentration and temperature (298-333 K). Several kinetic models were used to test the experimental rate data and to examine the controlling mechanism of the sorption process. Various parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. Equilibrium sorption data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Of the model tested, both Freundlich and D-R isotherm expressions were found to give better fit to the experimental equilibrium data compared to Langmuir model. The mean free energy is in all cases in the range corresponding to the ion exchange type of sorption. The results indicated that synthetic zeolite A can be used as an efficient ion exchange material for the removal of zinc and cadmium ions from industrial and radioactive wastewaters.

  10. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection.

    PubMed

    Patterson, N; Adams, D P; Hodges, V C; Vasile, M J; Michael, J R; Kotula, P G

    2008-06-11

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si(3)N(4) and W/Si(3)N(4) to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations.

  11. Particle simulation of collision dynamics for ion beam injection into a rarefied gas

    SciTech Connect

    Giuliano, Paul N.; Boyd, Iain D.

    2013-03-15

    This study details a comparison of ion beam simulations with experimental data from a simplified plasma test cell in order to study and validate numerical models and environments representative of electric propulsion devices and their plumes. The simulations employ a combination of the direct simulation Monte Carlo and particle-in-cell methods representing xenon ions and atoms as macroparticles. An anisotropic collision model is implemented for momentum exchange and charge exchange interactions between atoms and ions in order to validate the post-collision scattering behaviors of dominant collision mechanisms. Cases are simulated in which the environment is either collisionless or non-electrostatic in order to prove that the collision models are the dominant source of low- and high-angle particle scattering and current collection within this environment. Additionally, isotropic cases are run in order to show the importance of anisotropy in these collision models. An analysis of beam divergence leads to better characterization of the ion beam, a parameter that requires careful analysis. Finally, suggestions based on numerical results are made to help guide the experimental design in order to better characterize the ion environment.

  12. The virial theorem and the kinetic energy of particles of a macroscopic system in the general field concept

    NASA Astrophysics Data System (ADS)

    Fedosin, Sergey G.

    2016-10-01

    The virial theorem is considered for a system of randomly moving particles that are tightly bound to each other by the gravitational and electromagnetic fields, acceleration field and pressure field. The kinetic energy of the particles of this system is estimated by three methods, and the ratio of the kinetic energy to the absolute value of the energy of forces, binding the particles, is determined, which is approximately equal to 0.6. For simple systems in classical mechanics, this ratio equals 0.5. The difference between these ratios arises by the consideration of the pressure field and acceleration field inside the bodies, which make additional contribution to the acceleration of the particles. It is found that the total time derivative of the system's virial is not equal to zero, as is assumed in classical mechanics for systems with potential fields. This is due to the fact that although the partial time derivative of the virial for stationary systems tends to zero, but in real bodies the virial also depends on the coordinates and the convective derivative of the virial, as part of the total time derivative inside the body, is not equal to zero. It is shown that the convective derivative is also necessary for correct description of the equations of motion of particles.

  13. The virial theorem and the kinetic energy of particles of a macroscopic system in the general field concept

    NASA Astrophysics Data System (ADS)

    Fedosin, Sergey G.

    2017-03-01

    The virial theorem is considered for a system of randomly moving particles that are tightly bound to each other by the gravitational and electromagnetic fields, acceleration field and pressure field. The kinetic energy of the particles of this system is estimated by three methods, and the ratio of the kinetic energy to the absolute value of the energy of forces, binding the particles, is determined, which is approximately equal to 0.6. For simple systems in classical mechanics, this ratio equals 0.5. The difference between these ratios arises by the consideration of the pressure field and acceleration field inside the bodies, which make additional contribution to the acceleration of the particles. It is found that the total time derivative of the system's virial is not equal to zero, as is assumed in classical mechanics for systems with potential fields. This is due to the fact that although the partial time derivative of the virial for stationary systems tends to zero, but in real bodies the virial also depends on the coordinates and the convective derivative of the virial, as part of the total time derivative inside the body, is not equal to zero. It is shown that the convective derivative is also necessary for correct description of the equations of motion of particles.

  14. Correlation of Fracture Mode Transition of Ceramic Particle with Critical Velocity for Successful Deposition in Vacuum Kinetic Spraying Process

    NASA Astrophysics Data System (ADS)

    Park, Hyungkwon; Kim, Jinyoung; Lee, Sung Bo; Lee, Changhee

    2017-02-01

    Vacuum kinetic spraying (VKS) is a promising room-temperature process to fabricate dense ceramic films. However, unfortunately, the deposition mechanism is still not clearly understood. In this respect, the critical conditions for successful deposition were investigated. Based on simulation and microstructural analysis, it was found that as the particle velocity increased, fracture mode transition from tensile fracture to shear fracture occurred and particle did not bounce off anymore above a certain velocity. Simultaneously, particle underwent shock-induced plasticity and dynamic fragmentation. The plasticity assisted to prevent the fragments from rebounding by spending the excessive kinetic energy and fragmentation is essential for fragment bonding and film growth considering that the deposition rate increased as the fraction of fragmentation increased. Accordingly, plasticity and fragmentation take a crucial role for particle deposition. In this respect, the velocity that fracture mode transition occurs is newly defined as critical velocity. Consequently, for successful deposition, the particle should at least exceed the critical velocity and thus it is very crucial for film fabrication in VKS process at room temperature.

  15. Correlation of Fracture Mode Transition of Ceramic Particle with Critical Velocity for Successful Deposition in Vacuum Kinetic Spraying Process

    NASA Astrophysics Data System (ADS)

    Park, Hyungkwon; Kim, Jinyoung; Lee, Sung Bo; Lee, Changhee

    2016-12-01

    Vacuum kinetic spraying (VKS) is a promising room-temperature process to fabricate dense ceramic films. However, unfortunately, the deposition mechanism is still not clearly understood. In this respect, the critical conditions for successful deposition were investigated. Based on simulation and microstructural analysis, it was found that as the particle velocity increased, fracture mode transition from tensile fracture to shear fracture occurred and particle did not bounce off anymore above a certain velocity. Simultaneously, particle underwent shock-induced plasticity and dynamic fragmentation. The plasticity assisted to prevent the fragments from rebounding by spending the excessive kinetic energy and fragmentation is essential for fragment bonding and film growth considering that the deposition rate increased as the fraction of fragmentation increased. Accordingly, plasticity and fragmentation take a crucial role for particle deposition. In this respect, the velocity that fracture mode transition occurs is newly defined as critical velocity. Consequently, for successful deposition, the particle should at least exceed the critical velocity and thus it is very crucial for film fabrication in VKS process at room temperature.

  16. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  17. Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions

    SciTech Connect

    Padula, Sandra S.; Socolowski, O. Jr.

    2010-09-15

    Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated {phi}{phi} pairs at the Relativistic Heavy Ion Collider (RHIC) energies.

  18. Activation of oxygen-mediating pathway using copper ions: fine-tuning of growth kinetics in gold nanorod overgrowth.

    PubMed

    Liu, Wenqi; Zhang, Hui; Wen, Tao; Yan, Jiao; Hou, Shuai; Shi, Xiaowei; Hu, Zhijian; Ji, Yinglu; Wu, Xiaochun

    2014-10-21

    Growth kinetics plays an important role in the shape control of nanocrystals (NCs). Herein, we presented a unique way to fine-tune the growth kinetics via oxidative etching activated by copper ions. For the overgrowth of gold nanorods (Au NRs), competitive adsorption of dissolved oxygen on rod surface was found to slow down the overgrowth rate. Copper ions were able to remove the adsorbed oxygen species from the Au surface via oxidative etching, thus exposing more reaction sites for Au deposition. In this way, copper ions facilitated the overgrowth process. Furthermore, Cu(2+) rather than Cu(+) acted as the catalyst for the oxidative etching. Comparative study with Ag(+) indicated that Cu(2+) cannot regulate NC shapes via an underpotential deposition mechanism. In contrast, Ag(+) led to the formation of Au tetrahexahedra (THH) and a slight decrease of the growth rate at similar growth conditions. Combining the distinct roles of the two ions enabled elongated THH to be produced. Copper ions activating the O2 pathway suggested that dissolved oxygen has a strong affinity for the Au surface. Moreover, the results of NC-sensitized singlet oxygen ((1)O2) indicated that the absorbed oxygen species on the surface of Au NCs bounded with low-index facets mainly existed in the form of molecular O2.

  19. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Lin, Liang

    2013-10-01

    Multiple bursty energetic-particle (EP) modes with fishbone-like structures are observed during 1 MW tangential neutral-beam injection into MST reversed field pinch (RFP) plasmas. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to large fast ion beta and stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of these instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport and interaction with global tearing modes. Internal magnetic field fluctuations associated with the EP modes are directly observed for the first time by Faraday-effect polarimetry (frequency ~ 90 kHz and amplitude ~ 2 G). Simultaneously measured density fluctuations exhibit a dynamically evolving and asymmetric spatial structure that peaks near the core where fast ions reside and shifts outward as the instability evolves. Furthermore, the EP mode frequencies appear at ~k∥VA , consistent with continuum modes destabilized by strong drive. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growing phase arising from the beam fueling followed by a rapid drop (~ 15 %) when the EP modes peak, indicating the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced (× 2) with the onset of multiple nonlinearly-interacting EP modes. The fast ions also impact global tearing modes, reducing their amplitudes by up to 65%. This mode reduction is lessened following the EP-bursts, further evidence for fast ion redistribution that weakens the suppression mechanism. Possible tearing mode suppression mechanisms will be discussed. Work supported by US DoE.

  20. Phase-field modeling of stress generation in electrode particles of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huttin, Magalie; Kamlah, Marc

    2012-09-01

    Many cathode materials in lithium ion batteries show capacity fade due to particle crackings even at low applied charge and discharge current (C-rate). The promising candidate material LixMn2O4 exhibits such effects on the 4 V-plateau when the state of charge 0particle failure in this range of values indicates the existence of very large stresses, which may occur due to phase segregation. In this letter, we employ a phase-field model coupled to mechanics to demonstrate the relationship between phase segregation and high values of the mechanical stresses thus explaining numerous experimental results.

  1. HZE particle shielding using confined magnetic fields. [high-energy heavy ions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1983-01-01

    The great rigidities characteristic of high energy heavy ion (HZE) particles are judged to preclude near term use of confined magnetic fields of reasonable dimensions and strengths for small spacecraft shielding on long duration manned missions. It is noted that a Mars mission-class shield, although effective against solar protons, would be useless for HZE particles unless the mass and size of the shield are increased by several orders of magnitude (to yield a shield comparable to those contemplated for permanent space stations).

  2. Universality of Poisson indicator and Fano factor of transport event statistics in ion channels and enzyme kinetics.

    PubMed

    Chaudhury, Srabanti; Cao, Jianshu; Sinitsyn, Nikolai A

    2013-01-17

    We consider a generic stochastic model of ion transport through a single channel with arbitrary internal structure and kinetic rates of transitions between internal states. This model is also applicable to describe kinetics of a class of enzymes in which turnover events correspond to conversion of substrate into product by a single enzyme molecule. We show that measurement of statistics of single molecule transition time through the channel contains only restricted information about internal structure of the channel. In particular, the most accessible flux fluctuation characteristics, such as the Poisson indicator (P) and the Fano factor (F) as function of solute concentration, depend only on three parameters in addition to the parameters of the Michaelis-Menten curve that characterizes average current through the channel. Nevertheless, measurement of Poisson indicator or Fano factor for such renewal processes can discriminate reactions with multiple intermediate steps as well as provide valuable information about the internal kinetic rates.

  3. A time-dependent gyro-kinetic model of thermal ion upflows in the high-latitude F region

    NASA Technical Reports Server (NTRS)

    Loranc, M.; St.-Maurice, J.-P.

    1994-01-01

    Ample evidence supports the significance of the high-latitude ionospheric contribution to magnetospheric plasma. Assuming flux conservation along a flux tube, the upward field-aligned ion flows observed in the magnetosphere require high-latitude ionospheric field-aligned ion upflows of the order of 10(exp 8) to 10(exp 9)/sq cm/s. Since radar and satellite observations of high-latitude F region flows at times exceed this flux requirement by an order of magnitude, the thermal ionospheric upflows are not simply the ionospheric response to a magnetospheric flux requirement. Several ionospheric ion upflow mechanisms have been proposed, but simulations based on fluid theory do not reproduce all the observed features of ionospheric ion upflows. Certain asymmetries in the statistical morphology of high-latitude F region ion upflows suggest that the ion upflows may be generated by ion-neutral frictional heating. We developed a single-component (O(+)), time-dependent gyro-kinetic model of the high-latitude F region response to frictional heating in which the neutral exobase is a discontinuous boundary between fully collisional and collisionless plasmas. The concept of a discontinuous neutreal exobase and the assumption of a constant and uniform polarization electric field reduce the ion velocity distribution function, from which we can compute the ion density, parallel velocity, parallel and perpendicular temperature, and parallel flux. Using our model, we simulated the response of a convecting flux tube between 500 km and 2500 km to various frictional heating inputs; the results were both qualitatively and quantitatively different from fluid model results, which may indicate an inadequacy of the fluid theory approach. The gyro-kinetic frictional heating model responses to the various simulations were qualitatively similar: (1) initial perturbations of all the modeled parameters propagated rapidly up the flux tube, (2) transient values of the ion parallel velocity

  4. Kinetics of chemotaxis, cytokine, and chemokine release of NR8383 macrophages after exposure to inflammatory and inert granular insoluble particles.

    PubMed

    Schremmer, I; Brik, A; Weber, D G; Rosenkranz, N; Rostek, A; Loza, K; Brüning, T; Johnen, G; Epple, M; Bünger, J; Westphal, G A

    2016-11-30

    Accumulation of macrophages and neutrophil granulocytes in the lung are key events in the inflammatory response to inhaled particles. The present study aims at the time course of chemotaxis in vitro in response to the challenge of various biopersistent particles and its functional relation to the transcription of inflammatory mediators. NR8383 rat alveolar macrophages were challenged with particles of coarse quartz, barium sulfate, and nanosized silica for one, four, and 16h and with coarse and nanosized titanium dioxide particles (rutile and anatase) for 16h only. The cell supernatants were used to investigate the chemotaxis of unexposed NR8383 macrophages. The transcription of inflammatory mediators in cells exposed to quartz, silica, and barium sulfate was analyzed by quantitative real-time PCR. Challenge with quartz, silica, and rutile particles induced significant chemotaxis of unexposed NR8383 macrophages. Chemotaxis caused by quartz and silica was accompanied by an elevated transcription of CCL3, CCL4, CXCL1, CXCL3, and TNFα. Quartz exposure showed an earlier onset of both effects compared to the nanosized silica. The strength of this response roughly paralleled the cytotoxic effects. Barium sulfate and anatase did not induce chemotaxis and barium sulfate as well caused no elevated transcription. In conclusion, NR8383 macrophages respond to the challenge with inflammatory particles with the release of chemotactic compounds that act on unexposed macrophages. The kinetics of the response differs between the various particles.

  5. A particle-hole calculation for pion production in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Norbury, J. W.; Deutchman, P. A.; Townsend, L. W.

    1985-02-01

    A differential cross section for pi-meson production in peripheral heavy-ion collisions is formulated within the context of a particle-hole model in the Tamm-Dancoff approximation. This is the first attempt at a fully quantum-mechanical particle-hole calculation for pion production in relativistic heavy-ion collisions. The particular reaction studied is an O-16 projectile colliding with a C-12 target at rest. In the projectile a linear combination of isobar-hole states is formed, with the possibility of a coherent isobar giant resonance. The target can be excited to its giant M1 resonance (J-pi = 1(+), T = 1) at 15.11 MeV, or to its isobar analog neighbors, B-12 at 13.4 MeV and N-12 at 17.5 MeV. The theory is compared to recent experimental results.

  6. Continuum modeling of particle redeposition during ion-beam erosion. One-dimensional case

    NASA Astrophysics Data System (ADS)

    Diddens, Christian; Linz, Stefan J.

    2013-09-01

    We present a detailed analysis of a laterally one-dimensional continuum model for target particle redeposition during ion-beam erosion under normal incidence. We show that the redeposition mechanism can be approximated by a Taylor expansion around the mean surface height and clarify the impact of redeposition on nano-scale patterning. Most importantly, we show that stable well-ordered periodic patterns can result in a common Kuramoto-Sivashinsky-like continuum model for ion-beam erosion in cooperation with the model for particle redeposition and identify parameter ranges where they appear. Supplementary material in the form of one mp4 file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2013-40555-7

  7. A particle-hole calculation for pion production in relativistic heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Deutchman, P. A.; Townsend, L. W.

    1985-01-01

    A differential cross section for pi-meson production in peripheral heavy-ion collisions is formulated within the context of a particle-hole model in the Tamm-Dancoff approximation. This is the first attempt at a fully quantum-mechanical particle-hole calculation for pion production in relativistic heavy-ion collisions. The particular reaction studied is an O-16 projectile colliding with a C-12 target at rest. In the projectile a linear combination of isobar-hole states is formed, with the possibility of a coherent isobar giant resonance. The target can be excited to its giant M1 resonance (J-pi = 1(+), T = 1) at 15.11 MeV, or to its isobar analog neighbors, B-12 at 13.4 MeV and N-12 at 17.5 MeV. The theory is compared to recent experimental results.

  8. Characteristics of Water-Soluble Inorganic Ions in Aerosol Particles in Jingjinji-Mega Typical Cities

    NASA Astrophysics Data System (ADS)

    Wang, Li

    2013-06-01

    Aerosol has important effects on climate, environment and human health and water-soluble ions are important chemical composition in aerosol. It is important to study concentration levels, sources and size distributions of water-soluble ions in aerosol. In recent years, with the increasing of energy consumption and the amount of automobile, regional pollution has become more serious in Beijing-Tianjin-Hebei Region. Especially since the haze happened frequently in Beijing-Tianjin-Hebei Region, it is an imminent study about water-soluble ions in aerosol.To investigate the concentration levels, sources and size distributions of water soluble inorganic ions (WSI), size-segregated aerosol samples were collected using Andersen cascade sampler from Aug2010to Aug2011in Beijing, Tianjin, Tangshan and Baoding. The WSI were analyzed by ion chromatography(IC).The results indicated that the order of total WSI (TWSI) concentration of TSP in the region was Tianjin-Baoding-Beijing-Tangshan. The order of TWSI of the fine particles in the region was Baoding-Tianjin-Beijing-Tangshan. The annual mean concentrations of TWSI in the coarse mode were 41.36±15.76,48.04±15.79,39.40±11.03,40.49±13.32μg m-3in Beijing, Tianjin, Tangshan and Baoding, respectively. The annual mean concentrations of TWSI in the fine mode were 66.54±47.95,69.12±34.85, 61.80±44.63,71.73±45.12μg m-3in Beijing, Tianjin, Tangshan and Baoding, respectively. All the annual mean concentrations of TWSIin the fine mode in the four sites had exceeded averaged concentration of PM2.5in the environmental quality standards (35μg m-3), which indicated that the pollution of TWSI was serious. Secondary water-soluble ions (SWSI)(SO42-, NO3-and NH4+) and Cl-were the main components, and were mainly found in the fine particles in the four sites of Beijing-Tianjin-Hebei Region. In the coarse particles, NO3-Ca2+ and SO42-were the dominant contributions to WSI. Almost all water-soluble ions in fine particles are similar

  9. Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Weil, J.; Steinberg, V.; Staudenmaier, J.; Pang, L. G.; Oliinychenko, D.; Mohs, J.; Kretz, M.; Kehrenberg, T.; Goldschmidt, A.; Bäuchle, B.; Auvinen, J.; Attems, M.; Petersen, H.

    2016-11-01

    The microscopic description of heavy-ion reactions at low beam energies is achieved within hadronic transport approaches. In this article a new approach called "Simulating Many Accelerated Strongly interacting Hadrons" (SMASH) is introduced and applied to study the production of nonstrange particles in heavy-ion reactions at Ekin=0.4 A -2 A GeV. First, the model is described including details about the collision criterion, the initial conditions and the resonance formation and decays. To validate the approach, equilibrium properties such as detailed balance are presented and the results are compared to experimental data for elementary cross sections. Finally results for pion and proton production in C+C and Au+Au collisions is confronted with data from the high-acceptance dielectron spectrometer (HADES) and FOPI. Predictions for particle production in π +A collisions are made.

  10. Non-modal theory of the kinetic ion temperature gradient driven instability of plasma shear flows across the magnetic field

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2016-06-01

    The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. The solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.

  11. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    NASA Astrophysics Data System (ADS)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  12. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-08-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas-phase Master Chemical Mechanism version 3.2 (MCMv3.2), an aerosol dynamics and particle-phase chemistry module (which considers acid-catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion-limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study (1) the evaporation of liquid dioctyl phthalate (DOP) particles, (2) the slow and almost particle-size-independent evaporation of α-pinene ozonolysis secondary organic aerosol (SOA) particles, (3) the mass-transfer-limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), and (4) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. In the smog chamber experiments, these salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar-like amorphous-phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if the concentration of low-volatility and viscous oligomerized SOA material at the particle surface increases upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass-transfer-limited uptake of condensable organic compounds

  13. Distributed drift chamber design for rare particle detection in relativistic heavy ion collisions

    SciTech Connect

    Bellwied, R.; Bennett, M.J.; Bernardo, V.; Caines, H.; Christie, W.; Costa, S.; Crawford, H.J.; Cronqvist, M.; Debbe, R.; Dinnwiddie, R.; Engelage, J.; Flores, I.; Fuzesy, R.; Greiner, L.; Hallman, T.; Hoffmann, G.; Huang, H.Z.; Jensen, P.; Judd, E.G.; Kainz, K.; Kaplan, M.; Kelly, S.; Lindstrom, P.J; Llope, W.J.; LoCurto, G.; Longacre, R.; Milosevich, Z.; Mitchell, J.T.; Mitchell, J.W.; Mogavero, E.; Mutchler, G.; Paganis, S.; Platner, E.; Potenza, R.; Rotondo, F.; Russ, D.; Sakrejda, I.; Saulys, A.; Schambach, J.; Sheen, J.; Smirnoff, N.; Stokeley, C.; Tang, J.; Trattner, A.L.; Trentalange, S.; Visser, G.; Whitfield, J.P.; Witharm, F.; Witharm, R.; Wright, M.

    2001-10-02

    This report describes a multi-plane drift chamber that was designed and constructed to function as a topological detector for the BNL AGSE896 rare particle experiment. The chamber was optimized for good spatial resolution, two track separation, and a high uniform efficiency while operating in a 1.6 Tesla magnetic field and subjected to long term exposure from a 11.6 GeV/nucleon beam of 10**6 Au ions per second.

  14. Particle simulations of ion generation and transport in microelectromechanical systems and microthrusters

    NASA Astrophysics Data System (ADS)

    Ayyaswamy, Venkattraman

    Field emission and evaporation are processes of electron and ion generation due to intense electric fields. This work presents a particle-based computational approach using the particle-in-cell/Monte Carlo collisions (PIC/MCC) and the direct simulation Monte Carlo (DSMC) method to study ion generation and transport in microelectromechanical systems (MEMS) and field emission electric propulsion (FEEP) microthrusters. Electrostatically actuated MEMS operate in intense electric fields > 107 V/m thereby resulting in electron emission from the cathode that has important implications on reliability and performance of these devices. The PIC/MCC method is used to develop compact models to provide closure to a mathematical model for the modified Paschen law which bridges breakdown in macroscale gaps with field emission driven breakdown at nano/microscales. The models have the capability to account for the influence of operating parameters including pressure, composition and cathode properties making it suitable for the analysis and design of electrostatic MEMS. This work also deals with the modeling of field emission ion thrusters used for in-space propulsion. Particle simulations are used to study performance parameters such as thrust and plume characteristics by comparison with experiments. While PIC simulations predict thrust values in excellent agreement with measurements, comparisons with measurements of current distribution in the plume indicate that ion-neutral collisions become increasingly important as the current increases. Good agreement for current distribution is obtained if the elastic scattering of ions by background neutrals in the vacuum chamber is included thereby providing a numerical framework for the design and optimization of these thrusters.

  15. Burst of energetic O/sup +/ ions during an upstream particle event

    SciTech Connect

    Moebius, E.; Hovestadt, D.; Klecker, B.; Scholer, M.; Ipavich, F.M.; Carlson, C.W.; Lin, R.P.

    1986-12-01

    During an extended energetic particle event upstream of the earth's bow shock on September 5, 1984, a brief burst of energetic O/sup +/ ions have been observed using the time-of-flight spectrometer SULEICA on the AMPTE/IRM spacecraft. The event occurred during very active geomagnetic conditions. The onset of the O/sup +/ event coincides with a brief electron burst. O/sup +/ is predominantly streaming into the sunward direction, while the H/sup +/ and He/sup 2 +/ ions exhibit a net flow toward the bow shock with a second order anisotropy perpendicular to the interplanetary magnetic field (which was almost radial throughout the whole event). The energy spectrum of O/sup +/ is significantly harder than those of H/sup +/, He/sup 2 +/ and CNO (Q>2). The observations of two particle populations, different in temporal evolution, anisotropies and energy spectra, are discussed in terms of bow shock accelerated ions over the entire time period accompanied by a brief injection of magnetospher