NASA Astrophysics Data System (ADS)
Javad Azarhoosh, Mohammad; Halladj, Rouein; Askari, Sima
2017-10-01
In this study, a new kinetic model for methanol to light olefins (MTO) reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism was presented and the kinetic parameters was obtained using a genetic algorithm (GA) and genetic programming (GP). Several kinetic models for the MTO reactions have been presented. However, due to the complexity of the reactions, most reactions are considered lumped and elementary, which cannot be deemed a completely accurate kinetic model of the process. Therefore, in this study, the LHHW mechanism is presented as kinetic models of MTO reactions. Because of the non-linearity of the kinetic models and existence of many local optimal points, evolutionary algorithms (GA and GP) are used in this study to estimate the kinetic parameters in the rate equations. Via the simultaneous connection of the code related to modelling the reactor and the GA and GP codes in the MATLAB R2013a software, optimization of the kinetic models parameters was performed such that the least difference between the results from the kinetic models and experiential results was obtained and the best kinetic parameters of MTO process reactions were achieved. A comparison of the results from the model with experiential results showed that the present model possesses good accuracy.
Modelling dimercaptosuccinic acid (DMSA) plasma kinetics in humans.
van Eijkeren, Jan C H; Olie, J Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Meulenbelt, Jan; Hunault, Claudine C
2016-11-01
No kinetic models presently exist which simulate the effect of chelation therapy on lead blood concentrations in lead poisoning. Our aim was to develop a kinetic model that describes the kinetics of dimercaptosuccinic acid (DMSA; succimer), a commonly used chelating agent, that could be used in developing a lead chelating model. This was a kinetic modelling study. We used a two-compartment model, with a non-systemic gastrointestinal compartment (gut lumen) and the whole body as one systemic compartment. The only data available from the literature were used to calibrate the unknown model parameters. The calibrated model was then validated by comparing its predictions with measured data from three different experimental human studies. The model predicted total DMSA plasma and urine concentrations measured in three healthy volunteers after ingestion of DMSA 10 mg/kg. The model was then validated by using data from three other published studies; it predicted concentrations within a factor of two, representing inter-human variability. A simple kinetic model simulating the kinetics of DMSA in humans has been developed and validated. The interest of this model lies in the future potential to use it to predict blood lead concentrations in lead-poisoned patients treated with DMSA.
Cotten, Cameron; Reed, Jennifer L
2013-01-30
Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets.
2013-01-01
Background Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. Results In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. Conclusions This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets. PMID:23360254
Large scale structures in the kinetic gravity braiding model that can be unbraided
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Rampei; Yamamoto, Kazuhiro, E-mail: rampei@theo.phys.sci.hiroshima-u.ac.jp, E-mail: kazuhiro@hiroshima-u.ac.jp
2011-04-01
We study cosmological consequences of a kinetic gravity braiding model, which is proposed as an alternative to the dark energy model. The kinetic braiding model we study is characterized by a parameter n, which corresponds to the original galileon cosmological model for n = 1. We find that the background expansion of the universe of the kinetic braiding model is the same as the Dvali-Turner's model, which reduces to that of the standard cold dark matter model with a cosmological constant (ΛCDM model) for n equal to infinity. We also find that the evolution of the linear cosmological perturbation inmore » the kinetic braiding model reduces to that of the ΛCDM model for n = ∞. Then, we focus our study on the growth history of the linear density perturbation as well as the spherical collapse in the nonlinear regime of the density perturbations, which might be important in order to distinguish between the kinetic braiding model and the ΛCDM model when n is finite. The theoretical prediction for the large scale structure is confronted with the multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky survey. We also discuss future prospects of constraining the kinetic braiding model using a future redshift survey like the WFMOS/SuMIRe PFS survey as well as the cluster redshift distribution in the South Pole Telescope survey.« less
A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR
NASA Astrophysics Data System (ADS)
Stanojlović, Rodoljub D.; Sokolović, Jovica M.
2014-10-01
In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.
Deschamps, Kevin; Eerdekens, Maarten; Desmet, Dirk; Matricali, Giovanni Arnoldo; Wuite, Sander; Staes, Filip
2017-08-16
Recent studies which estimated foot segment kinetic patterns were found to have inconclusive data on one hand, and did not dissociate the kinetics of the chopart and lisfranc joint. The current study aimed therefore at reproducing independent, recently published three-segment foot kinetic data (Study 1) and in a second stage expand the estimation towards a four-segment model (Study 2). Concerning the reproducibility study, two recently published three segment foot models (Bruening et al., 2014; Saraswat et al., 2014) were reproduced and kinetic parameters were incorporated in order to calculate joint moments and powers of paediatric cohorts during gait. Ground reaction forces were measured with an integrated force/pressure plate measurement set-up and a recently published proportionality scheme was applied to determine subarea total ground reaction forces. Regarding Study 2, moments and powers were estimated with respect to the Instituto Ortopedico Rizzoli four-segment model. The proportionality scheme was expanded in this study and the impact of joint centre location on kinetic data was evaluated. Findings related to Study 1 showed in general good agreement with the kinetic data published by Bruening et al. (2014). Contrarily, the peak ankle, midfoot and hallux powers published by Saraswat et al. (2014) are disputed. Findings of Study 2 revealed that the chopart joint encompasses both power absorption and generation, whereas the Lisfranc joint mainly contributes to power generation. The results highlights the necessity for further studies in the field of foot kinetic models and provides a first estimation of the kinetic behaviour of the Lisfranc joint. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Eunyoung; Cumberbatch, Jewel; Wang, Meng; Zhang, Qiong
2017-03-01
Anaerobic co-digestion has a potential to improve biogas production, but limited kinetic information is available for co-digestion. This study introduced regression-based models to estimate the kinetic parameters for the co-digestion of microalgae and Waste Activated Sludge (WAS). The models were developed using the ratios of co-substrates and the kinetic parameters for the single substrate as indicators. The models were applied to the modified first-order kinetics and Monod model to determine the rate of hydrolysis and methanogenesis for the co-digestion. The results showed that the model using a hyperbola function was better for the estimation of the first-order kinetic coefficients, while the model using inverse tangent function closely estimated the Monod kinetic parameters. The models can be used for estimating kinetic parameters for not only microalgae-WAS co-digestion but also other substrates' co-digestion such as microalgae-swine manure and WAS-aquatic plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid
2015-05-07
Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.
Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.
Liang, Yuzhen; Tian, Lei; Lu, Yang; Peng, Lanfang; Wang, Pei; Lin, Jingyi; Cheng, Tao; Dang, Zhi; Shi, Zhenqing
2018-05-15
The kinetics of Cd(ii) adsorption/desorption on ferrihydrite is an important process affecting the fate, transport, and bioavailability of Cd(ii) in the environment, which was rarely systematically studied and understood at quantitative levels. In this work, a combination of stirred-flow kinetic experiments, batch adsorption equilibrium experiments, high-resolution transmission electron microscopy (HR-TEM), and mechanistic kinetic modeling were used to study the kinetic behaviors of Cd(ii) adsorption/desorption on ferrihydrite. HR-TEM images showed the open, loose, and sponge-like structure of ferrihydrite. The batch adsorption equilibrium experiments revealed that higher pH and initial metal concentration increased Cd(ii) adsorption on ferrihydrite. The stirred-flow kinetic results demonstrated the increased adsorption rate and capacity as a result of the increased pH, influent concentration, and ferrihydrite concentration. The mechanistic kinetic model successfully described the kinetic behaviors of Cd(ii) during the adsorption and desorption stages under various chemistry conditions. The model calculations showed that the adsorption rate coefficients varied as a function of solution chemistry, and the relative contributions of the weak and strong ferrihydrite sites for Cd(ii) binding varied with time at different pH and initial metal concentrations. Our model is able to quantitatively assess the contributions of each individual ferrihydrite binding site to the overall Cd(ii) adsorption/desorption kinetics. This study provided insights into the dynamic behavior of Cd(ii) and a predictive modeling tool for Cd(ii) adsorption/desorption kinetics when ferrihydrite is present, which may be helpful for the risk assessment and management of Cd contaminated sites.
Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi
2017-09-19
Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.
A study of the kinetic energy generation with general circulation models
NASA Technical Reports Server (NTRS)
Chen, T.-C.; Lee, Y.-H.
1983-01-01
The history data of winter simulation by the GLAS climate model and the NCAR community climate model are used to examine the generation of atmospheric kinetic energy. The contrast between the geographic distributions of the generation of kinetic energy and divergence of kinetic energy flux shows that kinetic energy is generated in the upstream side of jets, transported to the downstream side and destroyed there. The contributions from the time-mean and transient modes to the counterbalance between generation of kinetic energy and divergence of kinetic energy flux are also investigated. It is observed that the kinetic energy generated by the time-mean mode is essentially redistributed by the time-mean flow, while that generated by the transient flow is mainly responsible for the maintenance of the kinetic energy of the entire atmospheric flow.
Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong
2015-01-01
Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. Copyright © 2014. Published by Elsevier B.V.
Modeling of autocatalytic hydrolysis of adefovir dipivoxil in solid formulations.
Dong, Ying; Zhang, Yan; Xiang, Bingren; Deng, Haishan; Wu, Jingfang
2011-04-01
The stability and hydrolysis kinetics of a phosphate prodrug, adefovir dipivoxil, in solid formulations were studied. The stability relationship between five solid formulations was explored. An autocatalytic mechanism for hydrolysis could be proposed according to the kinetic behavior which fits the Prout-Tompkins model well. For the classical kinetic models could hardly describe and predict the hydrolysis kinetics of adefovir dipivoxil in solid formulations accurately when the temperature is high, a feedforward multilayer perceptron (MLP) neural network was constructed to model the hydrolysis kinetics. The build-in approaches in Weka, such as lazy classifiers and rule-based learners (IBk, KStar, DecisionTable and M5Rules), were used to verify the performance of MLP. The predictability of the models was evaluated by 10-fold cross-validation and an external test set. It reveals that MLP should be of general applicability proposing an alternative efficient way to model and predict autocatalytic hydrolysis kinetics for phosphate prodrugs.
Modelling nifedipine photodegradation, photostability and actinometric properties.
Maafi, Wassila; Maafi, Mounir
2013-11-01
The photodegradation of drugs obeying unimolecular mechanisms such as that of nifedipine (NIF) were usually characterised in the literature by zero-, first- and second-order kinetics. This approach has been met with varying success. This paper addresses this issue and proposes a novel approach for unimolecular photodegradation kinetics. The photodegradation of the cardiovascular drug nifedipine is investigated within this framework. Experimental kinetic data of nifedipine photodegradation were obtained by continuous monochromatic irradiation and DAD analysis. Fourth-order Runge-Kutta calculated kinetic data served for the validation of the new semi-empirical integrated rate-law model proposed in this study. A new model equation has been developed and proposed which faithfully describes the kinetic behaviour of NIF in solution for non-isosbestic irradiations at wavelengths where both NIF and its photoproduct absorb. NIF absolute quantum yield values were determined and found to increase with irradiation wavelength according to a defined sigmoid relationship. The effects of increasing NIF or excipients' concentrations on NIF kinetics were successfully modelled and found to improve NIF photostability. The potential of NIF for actinometry has been explored and evaluated. A new reaction order (the so-called Φ-order) has been identified and specifically proposed for unimolecular photodegradation reactions. The semi-empirical and integrated rate-law models facilitated reliable kinetic studies of NIF photodegradation as an example of AB(1Φ) unimolecular reactions. It allowed filling a gap in kinetic studies of drugs since, thus far, thermal first-order or a combination of first- and zero- order kinetic equations were generally applied for drug photoreactions in the literature. Also, a new reaction order, the "Φ-order", has been evidenced and proposed as a specific alternative for photodegradation kinetics. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerhout, R.W.J.; Balk, R.H.P.; Meijer, R.
1997-08-01
A screen heater with a gas sweep was developed and applied to study the pyrolysis kinetics of low density polyethene (LDPE) and polypropene (PP) at temperatures ranging from 450 to 530 C. The aim of this study was to examine the applicability of screen heaters to measure these kinetics. On-line measurement of the rate of volatiles formation using a hydrocarbon analyzer was applied to enable the determination of the conversion rate over the entire conversion range on the basis of a single experiment. Another important feature of the screen heater used in this study is the possibility to measure pyrolysismore » kinetics under nearly isothermal conditions. The kinetic constants for LDPE and PP pyrolysis were determined, using a first order model to describe the conversion rate in the 70--90% conversion range and the random chain dissociation model for the entire conversion range. In addition to the experimental work two single particle models have been developed which both incorporate a mass and a (coupled) enthalpy balance, which were used to assess the influence of internal and external heat transfer processes on the pyrolysis process. The first model assumes a variable density and constant volume during the pyrolysis process, whereas the second model assumes a constant density and a variable volume. An important feature of these models is that they can accommodate kinetic models for which no analytical representation of the pyrolysis kinetics is available.« less
Simple Model of Macroscopic Instability in XeCl Discharge Pumped Lasers
NASA Astrophysics Data System (ADS)
Ahmed, Belasri; Zoheir, Harrache
2003-10-01
The aim of this work is to study the development of the macroscopic non uniformity of the electron density of high pressure discharge for excimer lasers and eventually its propagation because of the medium kinetics phenomena. This study is executed using a transverse mono-dimensional model, in which the plasma is represented by a set of resistance's in parallel. This model was employed using a numerical code including three strongly coupled parts: electric circuit equations, electron Boltzmann equation, and kinetics equations (chemical kinetics model). The time variations of the electron density in each plasma element are obtained by solving a set of ordinary differential equations describing the plasma kinetics and external circuit. The use of the present model allows a good comprehension of the halogen depletion phenomena, which is the principal cause of laser ending and allows a simple study of a large-scale non uniformity in preionization density and its effects on electrical and chemical plasma properties. The obtained results indicate clearly that about 50consumed at the end of the pulse. KEY WORDS Excimer laser, XeCl, Modeling, Cold plasma, Kinetic, Halogen depletion, Macroscopic instability.
Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.
Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat
2016-02-01
In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.
NASA Astrophysics Data System (ADS)
Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing
2018-03-01
Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.
Study on kinetics of adsorption of humic acid modified by ferric chloride on U(VI)
NASA Astrophysics Data System (ADS)
Zhang, Y. Y.; Lv, J. W.; Song, Y.; Dong, X. J.; Fang, Q.
2017-11-01
In order to reveal the adsorption mechanism of the ferric chloride modified humic acid on uranium, the influence of pH value and contact time of adsorption on uranium was studied through a series of batch experiments. Meanwhile, the adsorption kinetics was analyzed with pseudo-first order kinetic model and pseudo-second order kinetic model. The results show that adsorption is affected by the pH value of the solution and by contract time, and the best condition for adsorption on uranium is at pH=5 and the adsorption equilibrium time is about 80 min. Kinetics of HA-Fe adsorption on uranium accords with pseudo-second order kinetic model. The adsorption is mainly chemical adsorption, and complexes were produced by the reaction between uranium ions and the functional groups on the surface of HA-Fe, which can provide reference for further study of humic acid effecting on the migration of U(VI) in soil.
Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.
Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G
2015-01-01
Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seapan, M.; Crynes, B.L.; Dale, S.
The objectives of this study were to analyze alternate crudes kinetic hydrotreatment data in the literature, develop a mathematical model for interpretation of these data, develop an experimental procedure and apparatus to collect accurate kinetic data, and finally, to combine the model and experimental data to develop a general model which, with a few experimental parameters, could be used in design of future hydrotreatment processes. These objectives were to cover a four year program (1980 to 1984) and were subjective to sufficient funding. Only partial funding has been available thus far to cover activities for two years. A hydrotreatment datamore » base is developed which contains over 2000 citations, stored in a microcomputer. About 50% of these are reviewed, classified and can be identified by feedstock, catalyst, reactor type and other process characteristics. Tests of published hydrodesulfurization data indicate the problems with simple n-th order, global kinetic models, and point to the value of developing intrinsic reaction kinetic models to describe the reaction processes. A Langmuir-Hinshelwood kinetic model coupled with a plug flow reactor design equation has been developed and used for published data evaluation. An experimental system and procedure have been designed and constructed, which can be used for kinetic studies. 30 references, 4 tables.« less
Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models.
Li, Zhengqi; Zhao, Wei; Meng, Baihong; Liu, Chunlong; Zhu, Qunyi; Zhao, Guangbo
2008-11-01
With heating rates of 20, 50 and 100 K min(-1), the thermal decomposition of corn straw samples (corn stalks skins, corn stalks cores, corn bracts and corn leaves) were studied using thermogravimetric analysis. The maximum pyrolysis rates increased with the heating rate increasing and the temperature at the peak pyrolysis rate also increased. Assuming the addition of three independent parallel reactions, corresponding to three pseudocomponents linked to the hemicellulose, cellulose and lignin, two different three-pseudocomponent models were used to simulate the corn straw pyrolysis. Model parameters of pyrolysis were given. It was found that the three-pseudocomponent model with n-order kinetics was more accurate than the model with first-order kinetics at most cases. It showed that the model with n-order kinetics was more accurate to describe the pyrolysis of the hemicellulose.
Effect of electrolyte nature on kinetics of remazol yellow G removal by electrocoagulation
NASA Astrophysics Data System (ADS)
Rajabi, M.; Bagheri-Roochi, M.; Asghari, A.
2011-10-01
The present study describes an electrocoagulation process for the removal of remazol yellow G from dye solutions using Iron as the anode and Steel as the cathode. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to analyze the kinetic data obtained at different concentrations in different conditions. The adsorption kinetics was well described by the pseudo-second-order kinetic model.
Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.
Vaghetti, Julio C P; Lima, Eder C; Royer, Betina; da Cunha, Bruna M; Cardoso, Natali F; Brasil, Jorge L; Dias, Silvio L P
2009-02-15
In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.
Mitra, Ruchira; Chaudhuri, Surabhi; Dutta, Debjani
2017-01-01
In the present investigation, growth kinetics of Kocuria marina DAGII during batch production of β-Cryptoxanthin (β-CRX) was studied by considering the effect of glucose and maltose as a single and binary substrate. The importance of mixed substrate over single substrate has been emphasised in the present study. Different mathematical models namely, the Logistic model for cell growth, the Logistic mass balance equation for substrate consumption and the Luedeking-Piret model for β-CRX production were successfully implemented. Model-based analyses for the single substrate experiments suggested that the concentrations of glucose and maltose higher than 7.5 and 10.0 g/L, respectively, inhibited the growth and β-CRX production by K. marina DAGII. The Han and Levenspiel model and the Luong product inhibition model accurately described the cell growth in glucose and maltose substrate systems with a R 2 value of 0.9989 and 0.9998, respectively. The effect of glucose and maltose as binary substrate was further investigated. The binary substrate kinetics was well described using the sum-kinetics with interaction parameters model. The results of production kinetics revealed that the presence of binary substrate in the cultivation medium increased the biomass and β-CRX yield significantly. This study is a first time detailed investigation on kinetic behaviours of K. marina DAGII during β-CRX production. The parameters obtained in the study might be helpful for developing strategies for commercial production of β-CRX by K. marina DAGII.
A physiologically based model of chromium kinetics in the rat.
O'Flaherty, E J
1996-05-01
A physiologically based model of chromium kinetics in rats has been developed. The general structure of the model is similar to that of a model of lead kinetics in rats. Like lead chromium exchanges between plasma and the bone surfaces in contact with plasma, and also like lead, although with much lower efficiency, it can become incorporated into actively mineralizing bone. Both processes are included in the model. Parallel absorption and disposition schemes for chromium(VI) and chromium(III) are linked in the model by reduction processes occurring throughout the body, including the lung and gastrointestinal tract. Examination of a number of data sets from studies in which chromium salts were administered to rats intravenously, orally, or by intratracheal instillation established that intravenous administration, on the one hand, and oral or pulmonary administration, on the other hand, result in different disposition patterns. The model was calibrated based on published oral and intratracheal kinetic studies in rats given soluble chromium(III) and chromium(VI) salts. In the most complete of these studies, chromium concentrations were monitored in individual tissues for 42 days following intratracheal administration of a soluble chromium(VI) salt. Inclusion in the model of a urinary excretion delay was necessary in order to fit excretion data from two other intratracheal studies. Model predictions of blood chromium concentrations are compared with the results of a published kinetic study in which rats were administered a soluble chromium(VI) salt by inhalation.
NASA Astrophysics Data System (ADS)
Khazri, Hassen; Ghorbel-Abid, Ibtissem; Kalfat, Rafik; Trabelsi-Ayadi, Malika
2017-10-01
This study aimed to describe the adsorption of three pharmaceuticals compounds (ibuprofen, naproxen and carbamazepine) onto natural clay on the basis of equilibrium parameters such as a function of time, effect of pH, varying of the concentration and the temperature. Adsorption kinetic data were modeled using the Lagergren's first-order and the pseudo-second-order kinetic equations. The kinetic results of adsorption are described better using the pseudo-second order model. The isotherm results were tested in the Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters obtained indicate that the adsorption of pharmaceuticals on the clay is a spontaneous and endothermic process.
Wang, Guobao; Corwin, Michael T; Olson, Kristin A; Badawi, Ramsey D; Sarkar, Souvik
2018-05-30
The hallmark of nonalcoholic steatohepatitis is hepatocellular inflammation and injury in the setting of hepatic steatosis. Recent work has indicated that dynamic 18F-FDG PET with kinetic modeling has the potential to assess hepatic inflammation noninvasively, while static FDG-PET did not show a promise. Because the liver has dual blood supplies, kinetic modeling of dynamic liver PET data is challenging in human studies. The objective of this study is to evaluate and identify a dual-input kinetic modeling approach for dynamic FDG-PET of human liver inflammation. Fourteen human patients with nonalcoholic fatty liver disease were included in the study. Each patient underwent one-hour dynamic FDG-PET/CT scan and had liver biopsy within six weeks. Three models were tested for kinetic analysis: traditional two-tissue compartmental model with an image-derived single-blood input function (SBIF), model with population-based dual-blood input function (DBIF), and modified model with optimization-derived DBIF through a joint estimation framework. The three models were compared using Akaike information criterion (AIC), F test and histopathologic inflammation reference. The results showed that the optimization-derived DBIF model improved the fitting of liver time activity curves and achieved lower AIC values and higher F values than the SBIF and population-based DBIF models in all patients. The optimization-derived model significantly increased FDG K1 estimates by 101% and 27% as compared with traditional SBIF and population-based DBIF. K1 by the optimization-derived model was significantly associated with histopathologic grades of liver inflammation while the other two models did not provide a statistical significance. In conclusion, modeling of DBIF is critical for kinetic analysis of dynamic liver FDG-PET data in human studies. The optimization-derived DBIF model is more appropriate than SBIF and population-based DBIF for dynamic FDG-PET of liver inflammation. © 2018 Institute of Physics and Engineering in Medicine.
Garrido, M; Larrechi, M S; Rius, F X
2006-02-01
This study describes the combination of multivariate curve resolution-alternating least squares with a kinetic modeling strategy for obtaining the kinetic rate constants of a curing reaction of epoxy resins. The reaction between phenyl glycidyl ether and aniline is monitored by near-infrared spectroscopy under isothermal conditions for several initial molar ratios of the reagents. The data for all experiments, arranged in a column-wise augmented data matrix, are analyzed using multivariate curve resolution-alternating least squares. The concentration profiles recovered are fitted to a chemical model proposed for the reaction. The selection of the kinetic model is assisted by the information contained in the recovered concentration profiles. The nonlinear fitting provides the kinetic rate constants. The optimized rate constants are in agreement with values reported in the literature.
What can we learn from relaxation measurements of a laser-perturbed atmosphere? A modeling study
NASA Technical Reports Server (NTRS)
Clericetti, Agostino; Vandenbergh, Hubert; Rossi, Michel J.
1994-01-01
The chemical kinetic aspects of a transient increase in OH and HO2 by several orders of magnitude are explored in three model tropospheres. This chemical kinetic modeling effort was undertaken to support the operation of a pump-and-probe LIDAR instrument. A powerful excimer laser pulse perturbs the troposphere after which its relaxation back to steady state is examined by remote sensing, for example by DIAL or LIF. Instead of probing ambient levels of key free radicals, a study of the relaxation kinetics in real time enables chemical mechanistic studies in situ.
NASA Astrophysics Data System (ADS)
Petrus, H. T. B. M.; Diga, A.; Rhamdani, A. R.; Warmada, I. W.; Yuliansyah, A. T.; Perdana, I.
2017-04-01
The performance and kinetic of nickel laterite reduction were studied. In this work, the reduction of nickel laterite ores by anthracite coal, representing the high-grade carbon content matter, and lamtoro charcoal, representing the bioreductor, were conducted in air and CO2 atmosphere, within the temperature ranged from 800°C and 1000°C. XRD analysis was applied to observe the performance of anthracite and lamtoro as a reductor. Two models were applied, sphere particle geometry model and Ginstling-Brounhstein diffusion model, to study the kinetic parameters. The results indicated that the type of reductant and the reduction atmosphere used greatly influence the kinetic parameters. The obtained values of activation energy vary in the range of 13.42-18.12 kcal/mol.
NASA Astrophysics Data System (ADS)
Malinov, S.; Guo, Z.; Sha, W.; Wilson, A.
2001-04-01
The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the β ⇒ α transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling-transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson-Mehl-Avrami (JMA) theory and by applying the “concept of additivity.” The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the β ⇒ α transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D.
Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamicmore » computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.« less
Okoli, Chukwunonso P; Ofomaja, Augustine E
2018-07-15
The realization that the observed kinetic coefficient (k obs ) varies with time in most real-time adsorption system, as against the constant value conceived in the most widely-applied adsorption kinetic models, have attracted much attention in recent time. Understanding the factors that control the extent/degree of time dependency (otherwise known as fractal-like kinetics), is therefore central in taking manipulative advantage of this phenomenon in critical adsorption applications. This study therefore deployed non-fractal-like and fractal-like kinetic approach to study the adsorption of tetracycline on monodispersed starch-stabilized magnetite nanocomposite (MSM). MSM was synthesized by in-situ coprecipitation of magnetite in the presence of starch, and successfully characterized with classical solid-state techniques. Isotherm studies indicated that MSM has heterogenous surface adsorption sites. Equilibrium and kinetic data indicated the existence of π-cation interaction as the underlying mechanism, while pH study revealed that tetracycline was adsorbed in its zwitterion form. Though the non-fractal kinetic models exhibited some level of relevance in explaining the tetracycline adsorption interactions, the best fitting of the fractal-like pseudo second order model to the adsorption kinetic data, indicated that the real-time adsorption kinetics occurred in fractal-like manner. The study also revealed that the degree of time dependency of k obs had negative correlation with the initial tetracycline concentration. Apart from developing a low-cost strategy for addressing tetracycline water pollution, the result of this study serves a positive step towards gaining manipulative control of adsorption mechanism in potential application of MSM for targeted drug delivery and controlled release of tetracycline antibiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zarghami, Zabihullah; Akbari, Ahmad; Latifi, Ali Mohammad; Amani, Mohammad Ali
2016-04-01
In this research, different generations of PAMAM-grafted chitosan as integrated biosorbents were successfully synthesized via step by step divergent growth approach of dendrimer. The synthesized products were utilized as adsorbents for heavy metals (Pb(2+) in this study) removing from aqueous solution and their reactive Pb(2+) removal potential was evaluated. The results showed that as-synthesized products with higher generations of dendrimer, have more adsorption capacity compared to products with lower generations of dendrimer and sole chitosan. Adsorption capacity of as-prepared product with generation 3 of dendrimer is 18times more than sole chitosan. Thermodynamic and kinetic studies were performed for understanding equilibrium data of the uptake capacity and kinetic rate uptake, respectively. Thermodynamic and kinetic studies showed that Langmuir isotherm model and pseudo second order kinetic model are more compatible for describing equilibrium data of the uptake capacity and kinetic rate of the Pb(2+) uptake, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.
Maugans, Clayton B; Akgerman, Aydin
2003-01-01
Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.
NASA Astrophysics Data System (ADS)
Rofiqah, U.; Djalal, R. A.; Sutrisno, B.; Hidayat, A.
2018-05-01
Esterification with heterogeneous catalysts is believed to have advantages compared to homogeneous catalysts. Palm Fatty Acid Distillate (PFAD) was esterified by ZrO2 -SO4 2-/natural zeolite at temperature variation of 55°C, 60°C, and 65°C to produce biodiesel. Determination of reaction kinetics was done by experiment and modeling. Kinetic study was approached using pseudo-homogeneous model of first order. For experiment, reaction kinetics were 0.0031 s-1, 0.0054 s-1, and 0.00937 s-1 for a temperature of 55 °C, 60 °C and 65 °C, respectively. For modelling, reaction kinetics were 0.0030 s-1, 0.0055 s-1, and 0.0090 s-1 for a temperature of 55°C, 60°C and 65°C, respectively. Rate and conversion of reaction are getting increased by increasing temperature.
Kinetics study of palm oil hydrolysis using immobilized lipase Candida rugosa in packed bed reactor.
Min, C S; Bhatia, S; Kamaruddin, A H
1999-01-01
Continuous hydrolysis of palm oil triglyceride in organic solvent using immobilized Candida rugosa on the Amberlite MB-1 as a source of immobilized lipase was studied in packed bed reactor. The enzymatic kinetics of hydrolysis reaction was studied by changing the substrate concentration, reaction temperature and residence time(tau) in the reactor. At 55 degrees C, the optimum water concentration was found to be 15 % weight per volume of solution (%w/v). The Michaelis-Menten kinetic model was used to obtain the reaction parameters, Km(app) and V max(app). The activation energies were found to be quite low indicating that the lipase-catalyzed process is controlled by diffusion of substrates. The Michaelis-Menten kinetic model was found to be suitable at low water concentration 10-15 %w/v of solution. At higher water concentration, substrate inhibition model was used for data analysis. Reactor operation was found to play an important role in the palm oil hydrolysis kinetic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolinina, E.S.; Parfenyuk, E.V., E-mail: terrakott37@mail.ru
2014-01-15
Adsorption kinetics of molsidomine on mesoporous silica material (UMS), the phenyl- (PhMS) and mercaptopropyl-functionalized (MMS) derivatives from solution with different pH and 298 K was studied. The adsorption kinetics was found to follow the pseudo-second-order kinetic model for all studied silica materials and pH. Effects of surface functional groups and pH on adsorption efficiency and kinetic adsorption parameters were investigated. At all studied pH, the highest molsidomine amount is adsorbed on PhMS due to π–π interactions and hydrogen bonding between surface groups of PhMS and molsidomine molecules. An increase of pH results in a decrease of the amounts of adsorbedmore » molsidomine onto the silica materials. Furthermore, the highest adsorption rate kinetically evaluated using a pseudo-second-order model, is observed onto UMS and it strongly depends on pH. The mechanism of the adsorption process was determined from the intraparticle diffusion and Boyd kinetic film–diffusion models. The results showed that the molsidomine adsorption on the silica materials is controlled by film diffusion. Effect of pH on the diffusion parameters is discussed. - Graphical abstract: The kinetic study showed that the k{sub 2} value, the rate constant of pseudo-second order kinetic model, is the highest for molsidomine adsorption on UMS and strongly depends on pH because it is determined by availability and accessibility of the reaction sites of the adsorbents molsidomine binding. Display Omitted - Highlights: • The adsorption capacities of UMS, PhMS and MMS were dependent on the pH. • At all studied pH, the highest molsidomine amount is adsorbed on PhMS. • The highest adsorption rate, k{sub 2}, is observed onto UMS and strongly depends on pH. • Film diffusion was the likely rate-limiting step in the adsorption process.« less
A Rate-Theory-Phase-Field Model of Irradiation-Induced Recrystallization in UMo Nuclear Fuels
NASA Astrophysics Data System (ADS)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
2017-12-01
In this work, we developed a recrystallization model to study the effect of microstructures and radiation conditions on recrystallization kinetics in UMo fuels. The model integrates the rate theory of intragranular gas bubble and interstitial loop evolutions and a phase-field model of recrystallization zone evolution. A first passage method is employed to describe one-dimensional diffusion of interstitials with a diffusivity value several orders of magnitude larger than that of fission gas xenons. With the model, the effect of grain sizes on recrystallization kinetics is simulated. The results show that (1) recrystallization in large grains starts earlier than that in small grains, (2) the recrystallization kinetics (recrystallization volume fraction) decrease as the grain size increases, (3) the predicted recrystallization kinetics are consistent with the experimental results, and (4) the recrystallization kinetics can be described by the modified Avrami equation, but the parameters of the Avrami equation strongly depend on the grain size.
Assessment of kinetic models on Fe adsorption in groundwater using high-quality limestone
NASA Astrophysics Data System (ADS)
Akbar, N. A.; Kamil, N. A. F. Mohd; Zin, N. S. Md; Adlan, M. N.; Aziz, H. A.
2018-04-01
During the groundwater pumping process, dissolved Fe2+ is oxidized into Fe3+ and produce rust-coloured iron mineral. Adsorption kinetic models are used to evaluate the performance of limestone adsorbent and describe the mechanism of adsorption and the diffusion processes of Fe adsorption in groundwater. This work presents the best kinetic model of Fe adsorption, which was chosen based on a higher value of coefficient correlation, R2. A batch adsorption experiment was conducted for various contact times ranging from 0 to 135 minutes. From the results of the batch study, three kinetic models were analyzed for Fe removal onto limestone sorbent, including the pseudo-first order (PFO), pseudo-second order (PSO) and intra-particle diffusion (IPD) models. Results show that the adsorption kinetic models follow the sequence: PSO > PFO > IPD, where the values of R2 are 0.997 > 0.919 > 0.918. A high value of R2 (0.997) reveals better fitted experimental data. Furthermore, the value of qe cal in the PSO kinetic model is very near to qe exp rather than that in other models. This finding therefore suggests that the PSO kinetic model has the good fitted with the experimental data which involved chemisorption process of divalent Fe removal in groundwater solution. Thus, limestone adsorbent media found to be an alternative and effective treatment of Fe removal from groundwater.
Limitations of bootstrap current models
Belli, Emily A.; Candy, Jefferey M.; Meneghini, Orso; ...
2014-03-27
We assess the accuracy and limitations of two analytic models of the tokamak bootstrap current: (1) the well-known Sauter model and (2) a recent modification of the Sauter model by Koh et al. For this study, we use simulations from the first-principles kinetic code NEO as the baseline to which the models are compared. Tests are performed using both theoretical parameter scans as well as core- to-edge scans of real DIII-D and NSTX plasma profiles. The effects of extreme aspect ratio, large impurity fraction, energetic particles, and high collisionality are studied. In particular, the error in neglecting cross-species collisional couplingmore » – an approximation inherent to both analytic models – is quantified. Moreover, the implications of the corrections from kinetic NEO simulations on MHD equilibrium reconstructions is studied via integrated modeling with kinetic EFIT.« less
NASA Astrophysics Data System (ADS)
Idris, M. A.; Jami, M. S.; Hammed, A. M.
2017-05-01
This paper presents the statistical optimization study of disinfection inactivation parameters of defatted Moringa oleifera seed extract on Pseudomonas aeruginosa bacterial cells. Three level factorial design was used to estimate the optimum range and the kinetics of the inactivation process was also carried. The inactivation process involved comparing different disinfection models of Chicks-Watson, Collins-Selleck and Homs models. The results from analysis of variance (ANOVA) of the statistical optimization process revealed that only contact time was significant. The optimum disinfection range of the seed extract was 125 mg/L, 30 minutes and 120rpm agitation. At the optimum dose, the inactivation kinetics followed the Collin-Selleck model with coefficient of determination (R2) of 0.6320. This study is the first of its kind in determining the inactivation kinetics of pseudomonas aeruginosa using the defatted seed extract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin
2011-06-15
Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less
Kotasidis, F A; Mehranian, A; Zaidi, H
2016-05-07
Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.
NASA Astrophysics Data System (ADS)
Kotasidis, F. A.; Mehranian, A.; Zaidi, H.
2016-05-01
Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.
Topological and kinetic determinants of the modal matrices of dynamic models of metabolism
2017-01-01
Large-scale kinetic models of metabolism are becoming increasingly comprehensive and accurate. A key challenge is to understand the biochemical basis of the dynamic properties of these models. Linear analysis methods are well-established as useful tools for characterizing the dynamic response of metabolic networks. Central to linear analysis methods are two key matrices: the Jacobian matrix (J) and the modal matrix (M-1) arising from its eigendecomposition. The modal matrix M-1 contains dynamically independent motions of the kinetic model near a reference state, and it is sparse in practice for metabolic networks. However, connecting the structure of M-1 to the kinetic properties of the underlying reactions is non-trivial. In this study, we analyze the relationship between J, M-1, and the kinetic properties of the underlying network for kinetic models of metabolism. Specifically, we describe the origin of mode sparsity structure based on features of the network stoichiometric matrix S and the reaction kinetic gradient matrix G. First, we show that due to the scaling of kinetic parameters in real networks, diagonal dominance occurs in a substantial fraction of the rows of J, resulting in simple modal structures with clear biological interpretations. Then, we show that more complicated modes originate from topologically-connected reactions that have similar reaction elasticities in G. These elasticities represent dynamic equilibrium balances within reactions and are key determinants of modal structure. The work presented should prove useful towards obtaining an understanding of the dynamics of kinetic models of metabolism, which are rooted in the network structure and the kinetic properties of reactions. PMID:29267329
Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N
2017-01-25
This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.
A study of the kinetics of isothermal nicotine desorption from silicon dioxide
NASA Astrophysics Data System (ADS)
Adnadjevic, Borivoj; Lazarevic, Natasa; Jovanovic, Jelena
2010-12-01
The isothermal kinetics of nicotine desorption from silicon dioxide (SiO 2) was investigated. The isothermal thermogravimetric curves of nicotine at temperatures of 115 °C, 130 °C and 152 °C were recorded. The kinetic parameters ( Ea, ln A) of desorption of nicotine were calculated using various methods (stationary point, model constants and differential isoconversion method). By applying the "model-fitting" method, it was found that the kinetic model of nicotine desorption from silicon dioxide was a phase boundary controlled reaction (contracting volume). The values of the kinetic parameters, Ea,α and ln Aα, complexly change with changing degree of desorption and a compensation effect exists. A new mechanism of activation for the desorption of the absorbed molecules of nicotine was suggested in agreement with model of selective energy transfer.
Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Eckel, Andrew J.; Cawley, James D.
1999-01-01
Previous stressed oxidation tests of C/SiC composites at elevated temperatures (350 C to 1500 C) and sustained stresses (69 MPa and 172 MPa) have led to the development of a finite difference cracked matrix model. The times to failure in the samples suggest oxidation occurred in two kinetic regimes defined by the rate controlling mechanisms (i.e. diffusion controlled and reaction controlled kinetics). Microstructural analysis revealed preferential oxidation along as-fabricated, matrix microcracks and also suggested two regimes of oxidation kinetics dependent on the oxidation temperature. Based on experimental results, observation, and theory, a finite difference model was developed. The model simulates the diffusion of oxygen into a matrix crack bridged by carbon fibers. The model facilitates the study of the relative importance of temperature, the reaction rate constant, and the diffusion coefficient on the overall oxidation kinetics.
Chattoraj, Sayantan; Bhugra, Chandan; Li, Zheng Jane; Sun, Changquan Calvin
2014-12-01
The nonisothermal crystallization kinetics of amorphous materials is routinely analyzed by statistically fitting the crystallization data to kinetic models. In this work, we systematically evaluate how the model-dependent crystallization kinetics is impacted by variations in the heating rate and the selection of the kinetic model, two key factors that can lead to significant differences in the crystallization activation energy (Ea ) of an amorphous material. Using amorphous felodipine, we show that the Ea decreases with increase in the heating rate, irrespective of the kinetic model evaluated in this work. The model that best describes the crystallization phenomenon cannot be identified readily through the statistical fitting approach because several kinetic models yield comparable R(2) . Here, we propose an alternate paired model-fitting model-free (PMFMF) approach for identifying the most suitable kinetic model, where Ea obtained from model-dependent kinetics is compared with those obtained from model-free kinetics. The most suitable kinetic model is identified as the one that yields Ea values comparable with the model-free kinetics. Through this PMFMF approach, nucleation and growth is identified as the main mechanism that controls the crystallization kinetics of felodipine. Using this PMFMF approach, we further demonstrate that crystallization mechanism from amorphous phase varies with heating rate. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Baghel, Shrawan; Cathcart, Helen; Redington, Wynette; O'Reilly, Niall J
2016-07-01
Amorphous drug formulations have great potential to enhance solubility and thus bioavailability of BCS class II drugs. However, the higher free energy and molecular mobility of the amorphous form drive them towards the crystalline state which makes them unstable. Accurate determination of the crystallization tendency/kinetics is the key to the successful design and development of such systems. In this study, dipyridamole (DPM) and cinnarizine (CNZ) have been selected as model compounds. Thermodynamic fragility (mT) was measured from the heat capacity change at the glass transition temperature (Tg) whereas dynamic fragility (mD) was evaluated using methods based on extrapolation of configurational entropy to zero [Formula: see text] , and heating rate dependence of Tg [Formula: see text] . The mean relaxation time of amorphous drugs was calculated from the Vogel-Tammann-Fulcher (VTF) equation. Furthermore, the correlation between fragility and glass forming ability (GFA) of the model drugs has been established and the relevance of these parameters to crystallization of amorphous drugs is also assessed. Moreover, the crystallization kinetics of model drugs under isothermal conditions has been studied using Johnson-Mehl-Avrami (JMA) approach to determine the Avrami constant 'n' which provides an insight into the mechanism of crystallization. To further probe into the crystallization mechanism, the non-isothermal crystallization kinetics of model systems were also analysed by statistically fitting the crystallization data to 15 different kinetic models and the relevance of model-free kinetic approach has been established. The crystallization mechanism for DPM and CNZ at each extent of transformation has been predicted. The calculated fragility, glass forming ability (GFA) and crystallization kinetics are found to be in good correlation with the stability prediction of amorphous solid dispersions. Thus, this research work involves a multidisciplinary approach to establish fragility, GFA and crystallization kinetics as stability predictors for amorphous drug formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Lei; Shi, Zhenqing; Lu, Yang
Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all fourmore » metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.« less
Kumar, K Vasanth
2006-10-11
Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.
Kinetic modeling of antimony(III) oxidation and sorption in soils.
Cai, Yongbing; Mi, Yuting; Zhang, Hua
2016-10-05
Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model. Copyright © 2016 Elsevier B.V. All rights reserved.
Integrated and spectral energetics of the GLAS general circulation model
NASA Technical Reports Server (NTRS)
Tenenbaum, J.
1982-01-01
Integrated and spectral error energetics of the GLAS General circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level, particularly above strong initial jet streams associated in part with regions of steep terrain. The spectral error growth study represents the first comparison of general circulation model spectral energetics predictions with the corresponding observational spectra on a day by day basis. The major conclusion is that eddy kinetics energy can be correct while significant errors occur in the kinetic energy of wavenumber 3. Both the model and observations show evidence of single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetics and potential energy.
Kinetic operational models of agonism for G-protein-coupled receptors.
Hoare, Samuel R J; Pierre, Nicolas; Moya, Arturo Gonzalez; Larson, Brad
2018-06-07
The application of kinetics to research and therapeutic development of G-protein-coupled receptors has become increasingly valuable. Pharmacological models provide the foundation of pharmacology, providing concepts and measurable parameters such as efficacy and potency that have underlain decades of successful drug discovery. Currently there are few pharmacological models that incorporate kinetic activity in such a way as to yield experimentally-accessible drug parameters. In this study, a kinetic model of pharmacological response was developed that provides a kinetic descriptor of efficacy (the transduction rate constant, k τ ) and allows measurement of receptor-ligand binding kinetics from functional data. The model assumes: (1) receptor interacts with a precursor of the response ("Transduction potential") and converts it to the response. (2) The response can decay. Familiar response vs time plots emerge, depending on whether transduction potential is depleted and/or response decays. These are the straight line, the "association" exponential curve, and the rise-and-fall curve. Convenient, familiar methods are described for measuring the model parameters and files are provided for the curve-fitting program Prism (GraphPad Software) that can be used as a guide. The efficacy parameter k τ is straightforward to measure and accounts for receptor reserve; all that is required is measurement of response over time at a maximally-stimulating concentration of agonist. The modular nature of the model framework allows it to be extended. Here this is done to incorporate antagonist-receptor binding kinetics and slow agonist-receptor equilibration. In principle, the modular framework can incorporate other cellular processes, such as receptor desensitization. The kinetic response model described here can be applied to measure kinetic pharmacological parameters than can be used to advance the understanding of GPCR pharmacology and optimize new and improved therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Multi Water Bag model of drift kinetic electron plasmaa
NASA Astrophysics Data System (ADS)
Morel, Pierre; Ghiro, Florent Dreydemy; Berionni, Vincent; Coulette, David; Besse, Nicolas; Gürcan, Özgür D.
2014-08-01
A Multi Water Bag model is proposed for describing drift kinetic plasmas in a magnetized cylindrical geometry, relevant for various experimental devices, solar wind modeling... The Multi Water Bag (MWB) model is adapted to the description of a plasma with kinetic electrons as well as an arbitrary number of kinetic ions. This allows to describe the kinetic dynamics of the electrons, making possible the study of electron temperature gradient (ETG) modes, in addition to the effects of non adiabatic electrons on the ion temperature gradient (ITG) modes, that are of prime importance in the magnetized plasmas micro-turbulence [X. Garbet, Y. Idomura, L. Villard, T.H. Watanabe, Nucl. Fusion 50, 043002 (2010); J.A. Krommes, Ann. Rev. Fluid Mech. 44, 175 (2012)]. The MWB model is shown to link kinetic and fluid descriptions, depending on the number of bags considered. Linear stability of the ETG modes is presented and compared to the existing results regarding cylindrical ITG modes [P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, W. Garbet, Ph. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)].
Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oboh, I., E-mail: innocentoboh@uniuyo.edu.ng; Aluyor, E.; Audu, T.
The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used tomore » predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.« less
Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica
NASA Astrophysics Data System (ADS)
Oboh, I.; Aluyor, E.; Audu, T.
2015-03-01
The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R2), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
Experiments showed that recrystallization dramatically speeds up the gas bubble swelling kinetics in metallic UMo fuels. In this work a recrystallization model is developed to study the effect of microstructures and radiation conditions on recrystallization kinetics. The model integrates the rate theory of intra-granular gas bubble and interstitial loop evolution and a phase field model of recrystallization zone evolution. A fast passage method is employed to describe one dimensional diffusion of interstitials which have diffusivity several order magnitude larger than that of the fission gas Xe. With the model, the effect of grain sizes on recrystallization kinetics is simulated.
Influence of mass transfer resistance on overall nitrate removal rate in upflow sludge bed reactors.
Ting, Wen-Huei; Huang, Ju-Sheng
2006-09-01
A kinetic model with intrinsic reaction kinetics and a simplified model with apparent reaction kinetics for denitrification in upflow sludge bed (USB) reactors were proposed. USB-reactor performance data with and without sludge wasting were also obtained for model verification. An independent batch study showed that the apparent kinetic constants k' did not differ from the intrinsic k but the apparent Ks' was significantly larger than the intrinsic Ks suggesting that the intra-granule mass transfer resistance can be modeled by changes in Ks. Calculations of the overall effectiveness factor, Thiele modulus, and Biot number combined with parametric sensitivity analysis showed that the influence of internal mass transfer resistance on the overall nitrate removal rate in USB reactors is more significant than the external mass transfer resistance. The simulated residual nitrate concentrations using the simplified model were in good agreement with the experimental data; the simulated results using the simplified model were also close to those using the kinetic model. Accordingly, the simplified model adequately described the overall nitrate removal rate and can be used for process design.
NASA Astrophysics Data System (ADS)
Yunardi, Y.; Darmadi, D.; Hisbullah, H.; Fairweather, M.
2011-12-01
This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistry schemes on soot formation and destruction in turbulent non-premixed flames. A two-equation soot model representing soot particle nucleation, growth, coagulation and oxidation, was incorporated into the CMC model. The turbulent flow-field of both flames is described using the Favre-averaged fluid-flow equations, applying a standard k-ɛ turbulence model. A number of five reaction kinetic mechanisms having 50-100 species and 200-1000 elementary reactions called ABF, Miller-Bowman, GRI-Mech3.0, Warnatz, and Qin were employed to study the effect of combustion chemistry schemes on soot predictions. The results showed that of various kinetic schemes being studied, each yields similar accuracy in temperature prediction when compared with experimental data. With respect to soot prediction, the kinetic scheme containing benzene elementary reactions tends to result in a better prediction on soot concentrations in comparison to those contain no benzene elementary reactions. Among five kinetic mechanisms being studied, the Qin combustion scheme mechanism turned to yield the best prediction on both flame temperature and soot levels.
Karimi, Safoora; Dadvar, Mitra; Modarress, Hamid; Dabir, Bahram
2013-01-01
Oxidation of low-density lipoprotein (LDL) is one of the major factors in atherogenic process. Trapped oxidized LDL (Ox-LDL) in the subendothelial matrix is taken up by macrophage and leads to foam cell generation creating the first step in atherosclerosis development. Many researchers have studied LDL oxidation using in vitro cell-induced LDL oxidation model. The present study provides a kinetic model for LDL oxidation in intima layer that can be used in modeling of atherosclerotic lesions development. This is accomplished by considering lipid peroxidation kinetic in LDL through a system of elementary reactions. In comparison, characteristics of our proposed kinetic model are consistent with the results of previous experimental models from other researches. Furthermore, our proposed LDL oxidation model is added to the mass transfer equation in order to predict the LDL concentration distribution in intima layer which is usually difficult to measure experimentally. According to the results, LDL oxidation kinetic constant is an important parameter that affects LDL concentration in intima layer so that existence of antioxidants that is responsible for the reduction of initiating rates and prevention of radical formations, have increased the concentration of LDL in intima by reducing the LDL oxidation rate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Theoretical study of gas hydrate decomposition kinetics--model development.
Windmeier, Christoph; Oellrich, Lothar R
2013-10-10
In order to provide an estimate of the order of magnitude of intrinsic gas hydrate dissolution and dissociation kinetics, the "Consecutive Desorption and Melting Model" (CDM) is developed by applying only theoretical considerations. The process of gas hydrate decomposition is assumed to comprise two consecutive and repetitive quasi chemical reaction steps. These are desorption of the guest molecule followed by local solid body melting. The individual kinetic steps are modeled according to the "Statistical Rate Theory of Interfacial Transport" and the Wilson-Frenkel approach. All missing required model parameters are directly linked to geometric considerations and a thermodynamic gas hydrate equilibrium model.
Removal of humic acid from aqueous solution using dual PMMA/PVDF composite nanofiber: kinetics study
NASA Astrophysics Data System (ADS)
Zulfikar, M. A.; Afrianingsih, I.; Bahri, A.; Nasir, M.; Alni, A.; Setiyanto, H.
2018-05-01
The removal of humic acid from aqueous solution using dual poly(methyl methacrylate)/polyvinyl difluoride composite nanofiber under the influence of concentration has been studied. The experiments were performed using humic acid (HA) as an adsorbate at concentration in the range of 50-200 mg/L. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were used to describe the kinetic data and the rate constants were evaluated. It was observed that the amount of humic acid removed decrease with increasing concentration. The kinetic study revealed that pseudo-second order model fitted well the kinetic data, while the external diffusion or boundary layer diffusion was the main rate determining step in the removal process.
Fluctuating bottleneck model studies on kinetics of DNA escape from α-hemolysin nanopores
NASA Astrophysics Data System (ADS)
Bian, Yukun; Wang, Zilin; Chen, Anpu; Zhao, Nanrong
2015-11-01
We have proposed a fluctuation bottleneck (FB) model to investigate the non-exponential kinetics of DNA escape from nanometer-scale pores. The basic idea is that the escape rate is proportional to the fluctuating cross-sectional area of DNA escape channel, the radius r of which undergoes a subdiffusion dynamics subjected to fractional Gaussian noise with power-law memory kernel. Such a FB model facilitates us to obtain the analytical result of the averaged survival probability as a function of time, which can be directly compared to experimental results. Particularly, we have applied our theory to address the escape kinetics of DNA through α-hemolysin nanopores. We find that our theoretical framework can reproduce the experimental results very well in the whole time range with quite reasonable estimation for the intrinsic parameters of the kinetics processes. We believe that FB model has caught some key features regarding the long time kinetics of DNA escape through a nanopore and it might provide a sound starting point to study much wider problems involving anomalous dynamics in confined fluctuating channels.
Production of furfural from palm oil empty fruit bunches: kinetic model comparation
NASA Astrophysics Data System (ADS)
Panjaitan, J. R. H.; Monica, S.; Gozan, M.
2017-05-01
Furfural is a chemical compound that can be applied to pharmaceuticals, cosmetics, resins and cleaning compound which can be produced by acid hydrolysis of biomass. Indonesia’s demand for furfural in 2010 reached 790 tons that still imported mostly 72% from China. In this study, reaction kinetic models of furfural production from oil palm empty fruit bunches with submitting acid catalyst at the beginning of the experiment will be determine. Kinetic data will be obtained from hydrolysis of empty oil palm bunches using sulfuric acid catalyst 3% at temperature 170°C, 180°C and 190°C for 20 minutes. From this study, the kinetic model to describe the production of furfural is the kinetic model where generally hydrolysis reaction with an acid catalyst in hemicellulose and furfural will produce the same decomposition product which is formic acid with different reaction pathways. The activation energy obtained for the formation of furfural, the formation of decomposition products from furfural and the formation of decomposition products from hemicellulose is 8.240 kJ/mol, 19.912 kJ/mol and -39.267 kJ / mol.
Liquefaction chemistry and kinetics: Hydrogen utilization studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V.
1995-12-31
The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.
Development of high performance particle in cell code for the exascale age
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Amaya, Jorge; Gonzalez, Diego; Deep-Est H2020 Consortium Collaboration
2017-10-01
Magnetized plasmas are most effectively described by magneto-hydrodynamics, MHD, a fluid theory based on describing some fields defined in space: electromagnetic fields, density, velocity and temperature of the plasma. However, microphysics processes need kinetic theory, where statistical distributions of particles are governed by the Boltzmann equation. While fluid models are based on the ordinary space and time, kinetic models require a six dimensional space, called phase space, besides time. The two methods are not separated but rather interact to determine the system evolution. Arriving at a single self-consistent model is the goal of our research. We present a new approach developed with the goal of extending the reach of kinetic models to the fluid scales. Kinetic models are a higher order description and all fluid effects are included in them. However, the cost in terms of computing power is much higher and it has been so far prohibitively expensive to treat space weather events fully kinetically. We have now designed a new method capable of reducing that cost by several orders of magnitude making it possible for kinetic models to study macroscopic systems. H2020 Deep-EST consortium (European Commission).
Enceladus' Plumes Reflectance. Particle-in-Cell Model Parametric Study
NASA Astrophysics Data System (ADS)
Kotlarz, J. P.; Zalewska, N. E.
2018-06-01
In our work we are using kinetic numerical model to describe plumes curtain forms as a result of kinetic and thermodynamic processes: a) in the ocean, b) inside Tiger Stripes icy forms and c) over moon's surface.
Olmez, Hülya Kaptan; Aran, Necla
2005-02-01
Mathematical models describing the growth kinetic parameters (lag phase duration and growth rate) of Bacillus cereus as a function of temperature, pH, sodium lactate and sodium chloride concentrations were obtained in this study. In order to get a residual distribution closer to a normal distribution, the natural logarithm of the growth kinetic parameters were used in modeling. For reasons of parsimony, the polynomial models were reduced to contain only the coefficients significant at a level of p
Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus
NASA Astrophysics Data System (ADS)
Dhaundiyal, Alok; Singh, Suraj B.; Hanon, Muammel M.; Rawat, Rekha
2018-02-01
A kinetic study of pyrolysis process of Parthenium hysterophorous is carried out by using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation and determination of the kinetic parameters such as activation E and the frequency factor A using model-free methods given by Flynn Wall and Ozawa (FWO), Kissinger-Akahira-Sonuse (KAS) and Kissinger, and model-fitting (Coats Redfern). The results derived from thermal decomposition process demarcate decomposition of Parthenium hysterophorous among the three main stages, such as dehydration, active and passive pyrolysis. It is shown through DTG thermograms that the increase in the heating rate caused temperature peaks at maximum weight loss rate to shift towards higher temperature regime. The results are compared with Coats Redfern (Integral method) and experimental results have shown that values of kinetic parameters obtained from model-free methods are in good agreement. Whereas the results obtained through Coats Redfern model at different heating rates are not promising, however, the diffusion models provided the good fitting with the experimental data.
Villegas, Manuel; Huiliñir, Cesar
2014-12-01
This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying. Copyright © 2014 Elsevier Ltd. All rights reserved.
Saponification reaction system: a detailed mass transfer coefficient determination.
Pečar, Darja; Goršek, Andreja
2015-01-01
The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.
Dimitrakis, Dimitrios A; Syrigou, Maria; Lorentzou, Souzana; Kostoglou, Margaritis; Konstandopoulos, Athanasios G
2017-10-11
This study aims at developing a kinetic model that can adequately describe solar thermochemical water and carbon dioxide splitting with nickel ferrite powder as the active redox material. The kinetic parameters of water splitting of a previous study are revised to include transition times and new kinetic parameters for carbon dioxide splitting are developed. The computational results show a satisfactory agreement with experimental data and continuous multicycle operation under varying operating conditions is simulated. Different test cases are explored in order to improve the product yield. At first a parametric analysis is conducted, investigating the appropriate duration of the oxidation and the thermal reduction step that maximizes the hydrogen yield. Subsequently, a non-isothermal oxidation step is simulated and proven as an interesting option for increasing the hydrogen production. The kinetic model is adapted to simulate the production yields in structured solar reactor components, i.e. extruded monolithic structures, as well.
Systematic Construction of Kinetic Models from Genome-Scale Metabolic Networks
Smallbone, Kieran; Klipp, Edda; Mendes, Pedro; Liebermeister, Wolfram
2013-01-01
The quantitative effects of environmental and genetic perturbations on metabolism can be studied in silico using kinetic models. We present a strategy for large-scale model construction based on a logical layering of data such as reaction fluxes, metabolite concentrations, and kinetic constants. The resulting models contain realistic standard rate laws and plausible parameters, adhere to the laws of thermodynamics, and reproduce a predefined steady state. These features have not been simultaneously achieved by previous workflows. We demonstrate the advantages and limitations of the workflow by translating the yeast consensus metabolic network into a kinetic model. Despite crudely selected data, the model shows realistic control behaviour, a stable dynamic, and realistic response to perturbations in extracellular glucose concentrations. The paper concludes by outlining how new data can continuously be fed into the workflow and how iterative model building can assist in directing experiments. PMID:24324546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Burkes, Douglas; Lavender, Curt A.
2016-11-01
A three dimensional microstructure dependent swelling model is developed for studying the fission gas swelling kinetics in irradiated nuclear fuels. The model is extended from the Booth model [1] in order to investigate the effect of heterogeneous microstructures on gas bubble swelling kinetics. As an application of the model, the effect of grain morphology, fission gas diffusivity, and spatial dependent fission rate on swelling kinetics are simulated in UMo fuels. It is found that the decrease of grain size, the increase of grain aspect ratio for the grain having the same volume, and the increase of fission gas diffusivity (fissionmore » rate) cause the increase of swelling kinetics. Other heterogeneities such as second phases and spatial dependent thermodynamic properties including diffusivity of fission gas, sink and source strength of defects could be naturally integrated into the model to enhance the model capability.« less
A kinetic model for the transport of electrons in a graphene layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fermanian Kammerer, Clotilde, E-mail: Clotilde.Fermanian@u-pec.fr; Méhats, Florian, E-mail: florian.mehats@univ-rennes1.fr
In this article, we propose a new numerical scheme for the computation of the transport of electrons in a graphene device. The underlying quantum model for graphene is a massless Dirac equation, whose eigenvalues display a conical singularity responsible for non-adiabatic transitions between the two modes. We first derive a kinetic model which takes the form of two Boltzmann equations coupled by a collision operator modeling the non-adiabatic transitions. This collision term includes a Landau–Zener transfer term and a jump operator whose presence is essential in order to ensure a good energy conservation during the transitions. We propose an algorithmicmore » realization of the semi-group solving the kinetic model, by a particle method. We give analytic justification of the model and propose a series of numerical experiments studying the influences of the various sources of errors between the quantum and the kinetic models.« less
Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches.
Smith, Stephen; Grima, Ramon
2018-05-21
Models of chemical kinetics that incorporate both stochasticity and diffusion are an increasingly common tool for studying biology. The variety of competing models is vast, but two stand out by virtue of their popularity: the reaction-diffusion master equation and Brownian dynamics. In this review, we critically address a number of open questions surrounding these models: How can they be justified physically? How do they relate to each other? How do they fit into the wider landscape of chemical models, ranging from the rate equations to molecular dynamics? This review assumes no prior knowledge of modelling chemical kinetics and should be accessible to a wide range of readers.
Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy
Le, A.; Daughton, W.; Karimabadi, H.; ...
2016-03-16
We present the first hybrid simulations with kinetic ions and recently developed equations of state for the electron fluid appropriate for reconnection with a guide field. The equations of state account for the main anisotropy of the electron pressure tensor.Magnetic reconnection is studied in two systems, an initially force-free current sheet and a Harris sheet. The hybrid model with the equations of state is compared to two other models, hybrid simulations with isothermal electrons and fully kinetic simulations. Including the anisotropicequations of state in the hybrid model provides a better match to the fully kinetic model. In agreement with fullymore » kinetic results, the main feature captured is the formation of an electron current sheet that extends several ion inertial lengths. This electron current sheet modifies the Hall magnetic field structure near the X-line, and it is not observed in the standard hybrid model with isotropic electrons. The saturated reconnection rate in this regime nevertheless remains similar in all three models. Here, implications for global modeling are discussed.« less
A general theory of kinetics and thermodynamics of steady-state copolymerization.
Shu, Yao-Gen; Song, Yong-Shun; Ou-Yang, Zhong-Can; Li, Ming
2015-06-17
Kinetics of steady-state copolymerization has been investigated since the 1940s. Irreversible terminal and penultimate models were successfully applied to a number of comonomer systems, but failed for systems where depropagation is significant. Although a general mathematical treatment of the terminal model with depropagation was established in the 1980s, a penultimate model and higher-order terminal models with depropagation have not been systematically studied, since depropagation leads to hierarchically-coupled and unclosed kinetic equations which are hard to solve analytically. In this work, we propose a truncation method to solve the steady-state kinetic equations of any-order terminal models with depropagation in a unified way, by reducing them into closed steady-state equations which give the exact solution of the original kinetic equations. Based on the steady-state equations, we also derive a general thermodynamic equality in which the Shannon entropy of the copolymer sequence is explicitly introduced as part of the free energy dissipation of the whole copolymerization system.
Kinetic modeling of kraft delignification of Eucalyptus globulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, A.; Rodriguez, F.; Gilarranz, M.A.
1997-10-01
A kinetic model for the kraft pulping delignification of Eucalyptus globulus is proposed. This model is discriminated among some kinetic expressions often used in the literature, and the kinetic parameters are determined by fitting of experimental results. A total of 25 isothermal experiments at liquor-to-wood ratios of 50 and 5 L/kg have been carried out. Initial, bulk, and residual delignification stages have been observed during the lignin removal, the transitions being, referring to the lignin initial content, about 82 and 3%. Carbohydrate removal and effective alkali-metal and hydrosulfide consumption have been related with the lignin removal by means of effectivemore » stoichiometric coefficients for each stage, coefficients also being calculated by fitting of the experimental data. The kinetic model chosen has been used to simulate typical kraft pulping experiments carried out at nonisothermal conditions, using a temperature ramp. The model yields simulated values close to those obtained experimentally for the wood studied and also ably reproduces the trends of the literature data.« less
Kinetics and mechanism of olefin catalytic hydroalumination by organoaluminum compounds
NASA Astrophysics Data System (ADS)
Koledina, K. F.; Gubaidullin, I. M.
2016-05-01
The complex reaction mechanism of α-olefin catalytic hydroalumination by alkylalanes is investigated via mathematical modeling that involves plotting the kinetic models for the individual reactions that make up a complex system and a separate study of their principles. Kinetic parameters of olefin catalytic hydroalumination are estimated. Activation energies of the possible steps of the schemes of complex reaction mechanisms are compared and possible reaction pathways are determined.
Reverse Stability Kinetics of Meat Pigment Oxidation in Aqueous Extract from Fresh Beef.
Frelka, John C; Phinney, David M; Wick, Macdonald P; Heldman, Dennis R
2017-12-01
The use of kinetic models is an evolving approach to describing quality changes in foods during processes, including storage. Previous studies indicate that the oxidation rate of myoglobin is accelerated under frozen storage conditions, a phenomenon termed reverse stability. The goal of this study was to develop a model for meat pigment oxidation to incorporate the phenomenon of reverse stability. In this investigation, the model system was an aqueous extract from beef which was stored under a range of temperatures, both unfrozen and frozen. The kinetic analysis showed that in unfrozen solutions, the temperature dependence of oxidation rate followed Arrhenius kinetics. However, under in frozen solutions the rate of oxidation increased with decreasing temperature until reaching a local maximum around -20 °C. The addition of NaCl to the model system increased oxidation rates at all temperatures, even above the initial freezing temperature. This observation suggests that this reaction is dependent on the ionic strength of the solution as well as temperature. The mechanism of this deviant kinetic behavior is not fully understood, but this study shows that the interplay of temperature and composition on the rate of oxidation of meat pigments is complicated and may involve multiple mechanisms. A better understanding of the kinetics of quality loss in a meat system allows for a re-examination of the current recommendations for frozen storage. The deviant kinetic behavior observed in this study indicates that the relationship between quality loss and temperature in a frozen food is not as simple as once thought. Product-specific recommendations could be implemented in the future that would allow for a decrease in energy consumption without a significant loss of quality. © 2017 Institute of Food Technologists®.
Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin
2013-07-20
Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.
Modelling and kinetics studies of a corn-rape blend combustion in an oxy-fuel atmosphere.
López, R; Fernández, C; Martínez, O; Sánchez, M E
2015-05-01
A kinetic oxy-combustion study of a previously optimized lignocellulose blend is proposed. Kinetic and diffusion control mechanism are considered. The proposed correlations fit properly with the experimental results and diffusion effects are identified as be important enough to be taken into account. Afterwards, with the results obtained in the kinetic study, a detailed consecutive and parallel kinetic scheme is proposed for modelling the oxy-combustion of the blend. A discussion of the temperature and concentration profiles are included. Variation of products final distribution is considered. Smaller particles than 0.001 m are proposed for reducing temperature and concentration profiles and obtaining a good final product distribution. CO2-char reaction is identified as one of the most important step to be optimized for obtaining the lowest final residue. In this study, char is mainly oxidised at 950 K and this situation is attributed to an optimized blending of the bioresidues. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Podder, M. S.; Majumder, C. B.
2016-01-01
The main objective of the present study was to investigate the efficiency of Corynebacterium glutamicum MTCC 2745 immobilized on granular activated carbon/MnFe2O4 (GAC/MnFe2O4) composite to treat high concentration of arsenic bearing wastewater. Non-linear regression analysis was done for determining the best-fit kinetic model on the basis of three correlation coefficients and three error functions and also for predicting the parameters involved in kinetic models. The results showed that Fractal-like mixed 1,2 order model for As(III) and Brouser-Weron-Sototlongo as well as Fractal-like pseudo second order models for As(V) were proficient to provide realistic description of biosorption/bioaccumulation kinetic. Applicability of mechanistic models in the current study exhibited that the rate governing step in biosorption/bioaccumulation of both As(III) and As(V) was film diffusion rather than intraparticle diffusion. The evaluated thermodynamic parameters ΔG0, ΔH0 and ΔS0 revealed that biosorption/bioaccumulation of both As(III) and As(V) was feasible, spontaneous and exothermic under studied conditions.
NASA Astrophysics Data System (ADS)
Thallam Thattai, A.; van Biert, L.; Aravind, P. V.
2017-12-01
Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.
Intercomparison of granular stress and turbulence models for unidirectional sheet flow applications
NASA Astrophysics Data System (ADS)
Chauchat, J.; Cheng, Z.; Hsu, T. J.
2016-12-01
The intergranular stresses are one of the key elements in two-phase sediment transport models. There are two main existing approaches, the kinetic theory of granular flows (Jenkins and Hanes, 1998; Hsu et al., 2004) and the phenomenological rheology such as the one proposed by Bagnold (Hanes and Bowen, 1985) or the μ(I) dense granular flow rheology (Revil-Baudard and Chauchat, 2013). Concerning the turbulent Reynolds stress, mixing length and k-ɛ turbulence models have been validated by previous studies (Revil-Baudard and Chauchat, 2013; Hsu et al., 2004). Recently, sedFoam was developed based on kinetic theory of granular flows and k-ɛ turbulence models (Cheng and Hsu, 2014). In this study, we further extended sedFoam by implementing the mixing length and the dense granular flow rheology by following Revil-Baudard and Chauchat (2013). This allows us to objectively compare the different combinations of intergranular stresses (kinetic theory or the dense granular flow rheology) and turbulence models (mixing length or k-ɛ) under unidirectional sheet flow conditions. We found that the calibrated mixing length and k-ɛ models predicts similar velocity and concentration profiles. The differences observed between the kinetic theory and the dense granular flow rheology requires further investigation. In particular, we hypothesize that the extended kinetic theory proposed by Berzi (2011) would probably improve the existing combination of the kinetic theory with a simple Coulomb frictional model in sedFoam. A semi-analytical solution proposed by Berzi and Fraccarollo(2013) for sediment transport rate and sheet layer thickness versus the Shields number is compared with the results obtained by using the dense granular flow rheology and the mixing length model. The results are similar which demonstrate that both the extended kinetic theory and the dense granular flow rheology can be used to model intergranular stresses under sheet flow conditions.
Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.
Chen, J Paul; Wang, Lin
2004-01-01
Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.
Kinetic mechanism for modeling of electrochemical reactions.
Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil
2012-04-01
We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.
NASA Astrophysics Data System (ADS)
Tikhomirov, S. G.; Pyatakov, Y. V.; Karmanova, O. V.; Maslov, A. A.
2018-03-01
The studies of the vulcanization kinetics of elastomers were carried out using a Truck tyre tread rubber compound. The formal kinetic scheme of vulcanization of rubbers sulfur-accelerator curing system was used which generalizes the set of reactions occurring in the curing process. A mathematical model is developed for determining the thermal parameters vulcanizable mixture comprising algorithms for solving direct and inverse problems for system of equations of heat conduction and kinetics of the curing process. The performance of the model is confirmed by the results of numerical experiments on model examples.
NASA Astrophysics Data System (ADS)
Peng, Yongli; Xiao, Wenzheng
2017-06-01
A novel curing agent Thoreau modified 3, 5-Dimethyl-thioltoluenediamine was synthesized and its molecular structure was characterized by FTIR and DSC. The curing kinetics of a high toughness and low volume shrinkage ratio epoxy system (modified DMTDA/DGEBA) was studied by differential scanning calorimetry (DSC) under noni so thermal conditions. The data were fitted to an order model and autocatalytic model respectively. The results indicate that in order model deviates significantly from experimental data. Malik’s method was used to prove that the curing kinetics of the system concerned follow single-step autocatalytic model, and a “single-point model-free” approach was employed to calculate meaningful kinetic parameters. The DSC curves derived from autocatalytic model gave satisfactory agreement with that of experiment in the range 5K/min∼25K/min. As the heating rate increased, the predicted DSC curves deviated from experimental curves, and the total exothermic enthalpy declined owing to the transition of competition relationship between kinetics control and diffusion control.
The Einstein-Vlasov System/Kinetic Theory.
Andréasson, Håkan
2005-01-01
The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e. to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e. fluid models). This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.
The Einstein-Vlasov System/Kinetic Theory.
Andréasson, Håkan
2002-01-01
The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e. to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e. fluid models). This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.
Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi
2018-08-01
The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Alan A; Zhao, Ji-Cheng; Riggi, Adrienne
The objective of the proposed study is to establish a scientific foundation on kinetic modeling of diffusion, phase precipitation, and casting/solidification, in order to accelerate the design and optimization of cast magnesium (Mg) alloys for weight reduction of U.S. automotive fleet. The team has performed the following tasks: 1) study diffusion kinetics of various Mg-containing binary systems using high-throughput diffusion multiples to establish reliable diffusivity and mobility databases for the Mg-aluminum (Al)-zinc (Zn)-tin (Sn)-calcium (Ca)-strontium (Sr)-manganese (Mn) systems; 2) study the precipitation kinetics (nucleation, growth and coarsening) using both innovative dual-anneal diffusion multiples and cast model alloys to provide largemore » amounts of kinetic data (including interfacial energy) and microstructure atlases to enable implementation of the Kampmann-Wagner numerical model to simulate phase transformation kinetics of non-spherical/non-cuboidal precipitates in Mg alloys; 3) implement a micromodel to take into account back diffusion in the solid phase in order to predict microstructure and microsegregation in multicomponent Mg alloys during dendritic solidification especially under high pressure die-casting (HPDC) conditions; and, 4) widely disseminate the data, knowledge and information using the Materials Genome Initiative infrastructure (http://www.mgidata.org) as well as publications and digital data sharing to enable researchers to identify new pathways/routes to better cast Mg alloys.« less
Local reaction kinetics by imaging☆
Suchorski, Yuri; Rupprechter, Günther
2016-01-01
In the present contribution we present an overview of our recent studies using the “kinetics by imaging” approach for CO oxidation on heterogeneous model systems. The method is based on the correlation of the PEEM image intensity with catalytic activity: scaled down to the μm-sized surface regions, such correlation allows simultaneous local kinetic measurements on differently oriented individual domains of a polycrystalline metal-foil, including the construction of local kinetic phase diagrams. This allows spatially- and component-resolved kinetic studies and, e.g., a direct comparison of inherent catalytic properties of Pt(hkl)- and Pd(hkl)-domains or supported μm-sized Pd-powder agglomerates, studies of the local catalytic ignition and the role of defects and grain boundaries in the local reaction kinetics. PMID:26865736
Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.
Liu, Baoshun; Zhao, Xiujian; Terashima, Chiaki; Fujishima, Akira; Nakata, Kazuya
2014-05-21
Since the report of the Honda-Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir-Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct-indirect (D-I) kinetic model were reviewed and compared. Some applications of the D-I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.
A CFD model for biomass fast pyrolysis in fluidized-bed reactors
NASA Astrophysics Data System (ADS)
Xue, Qingluan; Heindel, T. J.; Fox, R. O.
2010-11-01
A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.
NASA Astrophysics Data System (ADS)
Elbeih, Ahmed; Abd-Elghany, Mohamed; Elshenawy, Tamer
2017-03-01
Vacuum stability test (VST) is mainly used to study compatibility and stability of energetic materials. In this work, VST has been investigated to study thermal decomposition kinetics of four cyclic nitramines, 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (ε-HNIW, CL-20), bonded by polyurethane matrix based on hydroxyl terminated polybutadiene (HTPB). Model fitting and model free (isoconversional) methods have been applied to determine the decomposition kinetics from VST results. For comparison, the decomposition kinetics were determined isothermally by ignition delay technique and non-isothermally by Advanced Kinetics and Technology Solution (AKTS) software. The activation energies for thermolysis obtained by isoconversional method based on VST technique of RDX/HTPB, HMX/HTPB, BCHMX/HTPB and CL20/HTPB were 157.1, 203.1, 190.0 and 176.8 kJ mol-1 respectively. Model fitting method proved that the mechanism of thermal decomposition of BCHMX/HTPB is controlled by the nucleation model while all the other studied PBXs are controlled by the diffusion models. A linear relationship between the ignition temperatures and the activation energies was observed. BCHMX/HTPB is interesting new PBX in the research stage.
NASA Astrophysics Data System (ADS)
Laborda, Eduardo; Wang, Yijun; Henstridge, Martin C.; Martínez-Ortiz, Francisco; Molina, Angela; Compton, Richard G.
2011-08-01
The Marcus-Hush and Butler-Volmer kinetic electrode models are compared experimentally by studying the reduction of 2-methyl-2-nitropropane in acetonitrile at mercury microelectrodes using Reverse Scan Square Wave Voltammetry. This technique is found to be very sensitive to the electrode kinetics and to permit critical comparison of the two models. The Butler-Volmer model satisfactorily fits the experimental data whereas Marcus-Hush does not quantitatively describe this redox system.
Model-Independent Bounds on Kinetic Mixing
Hook, Anson; Izaguirre, Eder; Wacker, Jay G.
2011-01-01
New Abelimore » an vector bosons can kinetically mix with the hypercharge gauge boson of the Standard Model. This letter computes the model-independent limits on vector bosons with masses from 1 GeV to 1 TeV. The limits arise from the numerous e + e − experiments that have been performed in this energy range and bound the kinetic mixing by ϵ ≲ 0.03 for most of the mass range studied, regardless of any additional interactions that the new vector boson may have.« less
NASA Astrophysics Data System (ADS)
Romanenko, Yu. E.; Merkin, A. A.; Komarov, A. A.; Lefedova, O. V.
2014-08-01
The kinetics of the hydrogenation of intermediates in the reduction of nitrobenzene in aqueous 2-propanol with acetic acid and sodium hydroxide additions on nickel catalysts was studied. A kinetic description of liquid-phase hydrogenation of azobenzene and phenylhydroxylamine was suggested. A kinetic model was developed. The dependences that characterize the variation of the amounts of the starting compound, reaction product, and absorbed hydrogen during the reaction were calculated. The calculated values were shown to be in satisfactory agreement with the experimental values under different reaction conditions.
Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies
NASA Astrophysics Data System (ADS)
Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad
2018-02-01
Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.
Bach, Quang-Vu; Chen, Wei-Hsin
2017-12-01
Pyrolysis is a promising route for biofuels production from microalgae at moderate temperatures (400-600°C) in an inert atmosphere. Depending on the operating conditions, pyrolysis can produce biochar and/or bio-oil. In practice, knowledge for thermal decomposition characteristics and kinetics of microalgae during pyrolysis is essential for pyrolyzer design and pyrolysis optimization. Recently, the pyrolysis kinetics of microalgae has become a crucial topic and received increasing interest from researchers. Thermogravimetric analysis (TGA) has been employed as a proven technique for studying microalgae pyrolysis in a kinetic control regime. In addition, a number of kinetic models have been applied to process the TGA data for kinetic evaluation and parameters estimation. This paper aims to provide a state-of-the art review on recent research activities in pyrolysis characteristics and kinetics of various microalgae. Common kinetic models predicting the thermal degradation of microalgae are examined and their pros and cons are illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the biophysics and kinetics of toehold-mediated DNA strand displacement
Srinivas, Niranjan; Ouldridge, Thomas E.; Šulc, Petr; Schaeffer, Joseph M.; Yurke, Bernard; Louis, Ard A.; Doye, Jonathan P. K.; Winfree, Erik
2013-01-01
Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems. PMID:24019238
On the biophysics and kinetics of toehold-mediated DNA strand displacement.
Srinivas, Niranjan; Ouldridge, Thomas E; Sulc, Petr; Schaeffer, Joseph M; Yurke, Bernard; Louis, Ard A; Doye, Jonathan P K; Winfree, Erik
2013-12-01
Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.
Wang, Jack P.; Naik, Punith P.; Chen, Hsi-Chuan; Shi, Rui; Lin, Chien-Yuan; Liu, Jie; Shuford, Christopher M.; Li, Quanzi; Sun, Ying-Hsuan; Tunlaya-Anukit, Sermsawat; Williams, Cranos M.; Muddiman, David C.; Ducoste, Joel J.; Sederoff, Ronald R.; Chiang, Vincent L.
2014-01-01
We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants. PMID:24619611
A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.
Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J
2015-12-15
Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kinetics model of bainitic transformation with stress
NASA Astrophysics Data System (ADS)
Zhou, Mingxing; Xu, Guang; Hu, Haijiang; Yuan, Qing; Tian, Junyu
2018-01-01
Thermal simulations were conducted on a Gleeble 3800 simulator. The main purpose is to investigate the effects of stress on the kinetics of bainitic transformation in a Fe-C-Mn-Si advanced high strength bainitic steel. Previous studies on modeling the kinetics of stress affected bainitic transformation only considered the stress below the yield strength of prior austenite. In the present study, the stress above the yield strength of prior austenite is taken into account. A new kinetics model of bainitic transformation dependent on the stress (including the stresses below and above the yield strength of prior austenite) and the transformation temperature is proposed. The new model presents a good agreement with experimental results. In addition, it is found that the acceleration degree of stress on bainitic transformation increases with the stress whether its magnitude is below or above the yield strength of austenite, but the increasing rate gradually slows down when the stress is above the yield strength of austenite.
TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis
NASA Astrophysics Data System (ADS)
Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.
2016-02-01
In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.
Chavan, Abhijit R; Raghunathan, Anuradha; Venkatesh, K V
2009-04-01
Simultaneous saccharification and fermentation (SSF) is a combined process of saccharification of a renewable bioresource and fermentation process to produce products, such as lactic acid and ethanol. Recently, SSF has been extensively used to convert various sources of cellulose and starch into fermentative products. Here, we present a study on production of buttery flavors, namely diacetyl and acetoin, by growing Lactobacillus rhamnosus on a starch medium containing the enzyme glucoamylase. We further develop a structured kinetics for the SSF process, which includes enzyme and growth kinetics. The model was used to simulate the effect of pH and temperature on the SSF process so as to obtain optimum operating conditions. The model was experimentally verified by conducting SSF using an initial starch concentration of 100 g/L. The study demonstrated that the developed kinetic was able to suggest strategies for improved productivities. The developed model was able to accurately predict the enhanced productivity of flavors in a three stage process with intermittent addition of starch. Experimental and simulations demonstrated that citrate addition can also lead to enhanced productivity of flavors. The developed optimal model for SSF was able to capture the dynamics of SSF in batch mode as well as in a three stage process. The structured kinetics was also able to quantify the effect of multiple substrates present in the medium. The study demonstrated that structured kinetic models can be used in the future for design and optimization of SSF as a batch or a fed-batch process.
NASA Astrophysics Data System (ADS)
Venkatakrishnan, Vaidehi
1995-01-01
Physical and mathematical models provide a systematic means of looking at biological systems. Radioactive tracer kinetic studies open a unique window to study complex tracee systems such as protein metabolism in humans. This research deals with compartmental modeling of tracer kinetic data on leucine and apolipoprotein metabolism obtained using an endogenous tritiated leucine tracer administered as a bolus, and application of compartmental modeling techniques for dosimetric evaluation of metabolic studies of radioiodinated apolipoproteins. Dr. Waldo R. Fisher, Department of Medicine, was the coordinating research supervisor and the work was carried out in his laboratory. A compartmental model for leucine kinetics in humans has been developed that emphasizes its recycling pathways which were examined over two weeks. This model builds on a previously published model of Cobelli et al, that analyzed leucine kinetic data up to only eight hours. The proposed model includes different routes for re-entry of leucine from protein breakdown into plasma accounting for proteins which turn over at different rates. This new model successfully incorporates published models of three secretory proteins: albumin, apoA-I, and VLDL apoB, in toto thus increasing its validity and utility. The published model of apoA-I, based on an exogenous radioiodinated tracer, was examined with data obtained using an endogenous leucine tracer using compartmental techniques. The analysis concludes that the major portion of apoA-I enters plasma by a fast pathway but the major fraction of apoA-I in plasma resides with a second slow pathway; further the study is suggestive of a precursor-product relationship between the two plasma apoA-I pools. The possible relevance of the latter suggestion to the aberrant kinetics of apoA-I in Tangier disease is discussed. The analysis of apoA-II data resulted in similar conclusions. A methodology for evaluating the dosimetry of radioiodinated apolipoproteins by combining kinetic models of iodine and apolipoprotein metabolism has been developed. Residence times for source organs, whole body, thyroid, bladder, and red bone marrow obtained with this analysis, were used to calculate the cumulated activities and thus doses arising from these organs. The influence of the duration of the thyroid blocking period using stable iodine on the dose to the thyroid has been demonstrated.
Lin, Yan; Chen, Zhihao; Dai, Minquan; Fang, Shiwen; Liao, Yanfen; Yu, Zhaosheng; Ma, Xiaoqian
2018-07-01
In this study, the kinetic models of bagasse, sewage sludge and their mixture were established by the multiple normal distributed activation energy model. Blending with sewage sludge, the initial temperature declined from 437 K to 418 K. The pyrolytic species could be divided into five categories, including analogous hemicelluloses I, hemicelluloses II, cellulose, lignin and bio-char. In these species, the average activation energies and the deviations situated at reasonable ranges of 166.4673-323.7261 kJ/mol and 0.1063-35.2973 kJ/mol, respectively, which were conformed to the references. The kinetic models were well matched to experimental data, and the R 2 were greater than 99.999%y. In the local sensitivity analysis, the distributed average activation energy had stronger effect on the robustness than other kinetic parameters. And the content of pyrolytic species determined which series of kinetic parameters were more important. Copyright © 2018 Elsevier Ltd. All rights reserved.
Souto, Juan Carlos; Yustos, Pedro; Ladero, Miguel; Garcia-Ochoa, Felix
2011-02-01
In this work, a phenomenological study of the isomerisation and disproportionation of rosin acids using an industrial 5% Pd on charcoal catalyst from 200 to 240°C is carried out. Medium composition is determined by elemental microanalysis, GC-MS and GC-FID. Dehydrogenated and hydrogenated acid species molar amounts in the final product show that dehydrogenation is the main reaction. Moreover, both hydrogen and non-hydrogen concentration considering kinetic models are fitted to experimental data using a multivariable non-linear technique. Statistical discrimination among the proposed kinetic models lead to the conclusion hydrogen considering models fit much better to experimental results. The final kinetic model involves first-order isomerisation reactions of neoabietic and palustric acids to abietic acid, first-order dehydrogenation and hydrogenation of this latter acid, and hydrogenation of pimaric acids. Hydrogenation reactions are partial first-order regarding the acid and hydrogen. Copyright © 2010 Elsevier Ltd. All rights reserved.
Stoichio-Kinetic Modeling of Fenton Chemistry in a Meat-Mimetic Aqueous-Phase Medium.
Oueslati, Khaled; Promeyrat, Aurélie; Gatellier, Philippe; Daudin, Jean-Dominique; Kondjoyan, Alain
2018-05-31
Fenton reaction kinetics, which involved an Fe(II)/Fe(III) oxidative redox cycle, were studied in a liquid medium that mimics meat composition. Muscle antioxidants (enzymes, peptides, and vitamins) were added one by one in the medium to determine their respective effects on the formation of superoxide and hydroxyl radicals. A stoichio-kinetic mathematical model was used to predict the formation of these radicals under different iron and H 2 O 2 concentrations and temperature conditions. The difference between experimental and predicted results was mainly due to iron reactivity, which had to be taken into account in the model, and to uncertainties on some of the rate constant values introduced in the model. This stoichio-kinetic model will be useful to predict oxidation during meat processes, providing it can be completed to take into account the presence of myoglobin in the muscle.
Barnes, Samuel R; Ng, Thomas S C; Santa-Maria, Naomi; Montagne, Axel; Zlokovic, Berislav V; Jacobs, Russell E
2015-06-16
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising technique to characterize pathology and evaluate treatment response. However, analysis of DCE-MRI data is complex and benefits from concurrent analysis of multiple kinetic models and parameters. Few software tools are currently available that specifically focuses on DCE-MRI analysis with multiple kinetic models. Here, we developed ROCKETSHIP, an open-source, flexible and modular software for DCE-MRI analysis. ROCKETSHIP incorporates analyses with multiple kinetic models, including data-driven nested model analysis. ROCKETSHIP was implemented using the MATLAB programming language. Robustness of the software to provide reliable fits using multiple kinetic models is demonstrated using simulated data. Simulations also demonstrate the utility of the data-driven nested model analysis. Applicability of ROCKETSHIP for both preclinical and clinical studies is shown using DCE-MRI studies of the human brain and a murine tumor model. A DCE-MRI software suite was implemented and tested using simulations. Its applicability to both preclinical and clinical datasets is shown. ROCKETSHIP was designed to be easily accessible for the beginner, but flexible enough for changes or additions to be made by the advanced user as well. The availability of a flexible analysis tool will aid future studies using DCE-MRI. A public release of ROCKETSHIP is available at https://github.com/petmri/ROCKETSHIP .
Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor.
Manassero, Agustina; Satuf, María Lucila; Alfano, Orlando Mario
2015-01-01
A kinetic study of the photocatalytic degradation of the pharmaceutical clofibric acid is presented. Experiments were carried out under UV radiation employing titanium dioxide in water suspension. The main reaction intermediates were identified and quantified. Intrinsic expressions to represent the kinetics of clofibric acid and the main intermediates were derived. The modeling of the radiation field in the reactor was carried out by Monte Carlo simulation. Experimental runs were performed by varying the catalyst concentration and the incident radiation. Kinetic parameters were estimated from the experiments by applying a non-linear regression procedure. Good agreement was obtained between model predictions and experimental data, with an error of 5.9 % in the estimations of the primary pollutant concentration.
Lashina, Elena A; Kaichev, Vasily V; Saraev, Andrey A; Vinokurov, Zakhar S; Chumakova, Nataliya A; Chumakov, Gennadii A; Bukhtiyarov, Valerii I
2017-09-21
The self-sustained kinetic oscillations in the oxidation of CH 4 over Ni foil have been studied at atmospheric pressure using an X-ray diffraction technique and mass spectrometry. It has been shown that the regular oscillations appear under oxygen-deficient conditions; CO, CO 2 , H 2 , and H 2 O are detected as the products. According to in situ X-ray diffraction measurements, nickel periodically oxidizes to NiO initiating the reaction-rate oscillations. To describe the oscillations, we have proposed a five-stage mechanism of the partial oxidation of methane over Ni and a corresponding three-variable kinetic model. The mechanism considers catalytic methane decomposition, dissociative adsorption of oxygen, transformation of chemisorbed oxygen to surface nickel oxide, and reaction of adsorbed carbon and oxygen species to form CO. Analysis of the kinetic model indicates that the competition of two processes, i.e., the oxidation and the carbonization of the catalyst surface, is the driving force of the self-sustained oscillations in the oxidation of methane. We have compared this mechanism with the detailed 18-stage mechanism described previously by Lashina et al. (Kinetics and Catalysis 2012, 53, 374-383). It has been shown that both kinetic mechanisms coupled with a continuous stirred-tank reactor model describe well the oscillatory behavior in the oxidation of methane under non-isothermal conditions.
Comparison of kinetic model for biogas production from corn cob
NASA Astrophysics Data System (ADS)
Shitophyta, L. M.; Maryudi
2018-04-01
Energy demand increases every day, while the energy source especially fossil energy depletes increasingly. One of the solutions to overcome the energy depletion is to provide renewable energies such as biogas. Biogas can be generated by corn cob and food waste. In this study, biogas production was carried out by solid-state anaerobic digestion. The steps of biogas production were the preparation of feedstock, the solid-state anaerobic digestion, and the measurement of biogas volume. This study was conducted on TS content of 20%, 22%, and 24%. The aim of this research was to compare kinetic models of biogas production from corn cob and food waste as a co-digestion using the linear, exponential equation, and first-kinetic models. The result showed that the exponential equation had a better correlation than the linear equation on the ascending graph of biogas production. On the contrary, the linear equation had a better correlation than the exponential equation on the descending graph of biogas production. The correlation values on the first-kinetic model had the smallest value compared to the linear and exponential models.
Kinetics of enzymatic trans-esterification of glycerides for biodiesel production.
Calabrò, Vincenza; Ricca, Emanuele; De Paola, Maria Gabriela; Curcio, Stefano; Iorio, Gabriele
2010-08-01
In this paper, the reaction of enzymatic trans-esterification of glycerides with ethanol in a reaction medium containing hexane at a temperature of 37 degrees C has been studied. The enzyme was Lipase from Mucor miehei, immobilized on ionic exchange resin, aimed at achieving high catalytic specific surface and recovering, regenerating and reusing the biocatalyst. A kinetic analysis has been carried out to identify the reaction path; the rate equation and kinetic parameters have been also calculated. The kinetic model has been validated by comparison between predicted and experimental results. Mass transport resistances estimation was undertaken in order to verify that the kinetics found was intrinsic. Model potentialities in terms of reactors design and optimization are also shown.
Chang, Qigang; Lin, Wei; Ying, Wei-Chi
2012-06-01
Iron-impregnated granular activated carbons (Fe-GAC) can remove arsenic effectively from water. In this study, Fe-GACs with iron content of 1.64 to 28.90% were synthesized using a new multi-step procedure for the investigation of effects of iron amount on arsenic adsorption capacities and kinetics. Langmuir model satisfactorily fit arsenic adsorption on Fe-GACs. The maximum arsenic adsorption capacity (q(m)) increased significantly with iron impregnation and reached 1,867 to 1,912 microg/g with iron content of 9.96 to 13.59%. Further increase of iron content (> 13.59%) caused gradual decrease of q(m). It was found that the amount of impregnated iron showed little impact on the affinity for arsenate. Kinetic study showed that the amount of impregnated iron affected the arsenic intraparticle diffusion rate greatly. The pseudo-second-order kinetic model fit arsenic adsorption kinetics on Fe-GACs better than the pseudo-first-order model. The arsenic adsorption rate increased with increasing of iron content from 1.64% to 13.59%, and then decreased with more impregnated iron (13.59 to 28.90%).
Wilbaux, M; Tod, M; De Bono, J; Lorente, D; Mateo, J; Freyer, G; You, B; Hénin, E
2015-01-01
Assessment of treatment efficacy in metastatic castration-resistant prostate cancer (mCRPC) is limited by frequent nonmeasurable bone metastases. The count of circulating tumor cells (CTCs) is a promising surrogate marker that may replace the widely used prostate-specific antigen (PSA). The purpose of this study was to quantify the dynamic relationships between the longitudinal kinetics of these markers during treatment in patients with mCRPC. Data from 223 patients with mCRPC treated by chemotherapy and/or hormonotherapy were analyzed for up to 6 months of treatment. A semimechanistic model was built, combining the following several pharmacometric advanced features: (1) Kinetic-Pharmacodynamic (K-PD) compartments for treatments (chemotherapy and hormonotherapy); (2) a latent variable linking both marker kinetics; (3) modeling of CTC kinetics with a cell lifespan model; and (4) a negative binomial distribution for the CTC random sampling. Linked with survival, this model would potentially be useful for predicting treatment efficacy during drug development or for therapeutic adjustment in treated patients. PMID:26225253
Mannan, Ahmad A.; Toya, Yoshihiro; Shimizu, Kazuyuki; McFadden, Johnjoe; Kierzek, Andrzej M.; Rocco, Andrea
2015-01-01
An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-‘omics’ steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population. PMID:26469081
Theoretical study of gas hydrate decomposition kinetics: model predictions.
Windmeier, Christoph; Oellrich, Lothar R
2013-11-27
In order to provide an estimate of intrinsic gas hydrate dissolution and dissociation kinetics, the Consecutive Desorption and Melting Model (CDM) was developed in a previous publication (Windmeier, C.; Oellrich, L. R. J. Phys. Chem. A 2013, 117, 10151-10161). In this work, an extensive summary of required model data is given. Obtained model predictions are discussed with respect to their temperature dependence as well as their significance for technically relevant areas of gas hydrate decomposition. As a result, an expression for determination of the intrinsic gas hydrate decomposition kinetics for various hydrate formers is given together with an estimate for the maximum possible rates of gas hydrate decomposition.
Chen, Tao; Lian, Guoping; Kattou, Panayiotis
2016-07-01
The purpose was to develop a mechanistic mathematical model for predicting the pharmacokinetics of topically applied solutes penetrating through the skin and into the blood circulation. The model could be used to support the design of transdermal drug delivery systems and skin care products, and risk assessment of occupational or consumer exposure. A recently reported skin penetration model [Pharm Res 32 (2015) 1779] was integrated with the kinetic equations for dermis-to-capillary transport and systemic circulation. All model parameters were determined separately from the molecular, microscopic and physiological bases, without fitting to the in vivo data to be predicted. Published clinical studies of nicotine were used for model demonstration. The predicted plasma kinetics is in good agreement with observed clinical data. The simulated two-dimensional concentration profile in the stratum corneum vividly illustrates the local sub-cellular disposition kinetics, including tortuous lipid pathway for diffusion and the "reservoir" effect of the corneocytes. A mechanistic model for predicting transdermal and systemic kinetics was developed and demonstrated with published clinical data. The integrated mechanistic approach has significantly extended the applicability of a recently reported microscopic skin penetration model by providing prediction of solute concentration in the blood.
Mateus, Maria-L; Lindinger, Christian; Gumy, Jean-C; Liardon, Remy
2007-12-12
The present work shows the possibilities and limitations in modeling release kinetics of volatile organic compounds (VOCs) from roasted and ground coffee by applying physical and empirical models such as the diffusion and Weibull models. The release kinetics of VOCs were measured online by proton transfer reaction-mass spectrometry (PTR-MS). Compounds were identified by GC-MS, and the contribution of the individual compounds to different mass fragments was elucidated by GC/PTR-MS. Coffee samples roasted to different roasting degrees and ground to different particle sizes were studied under dry and wet stripping conditions. To investigate the accuracy of modeling the VOC release kinetics recorded using PTR-MS, online kinetics were compared with kinetics reconstituted from purge and trap samplings. Results showed that uncertainties in ion intensities due to the presence of isobaric species may prevent the development of a robust mathematical model. Of the 20 identified compounds, 5 were affected to a lower extent as their contribution to specific m/z intensity varied by <15% over the stripping time. The kinetics of these compounds were fitted using physical and statistical models, respectively, the diffusion and Weibull models, which helped to identify the underlying release mechanisms. For dry stripping, the diffusion model allowed a good representation of the release kinetics, whereas for wet stripping conditions, release patterns were very complex and almost specific for each compound analyzed. In the case of prewetted coffee, varying particle size (approximately 400-1200 microm) had no significant effect on the VOC release rate, whereas for dry coffee, the release was faster for smaller particles. The absence of particle size effect in wet coffee was attributed to the increase of opened porosity and compound diffusivity by solubilization and matrix relaxation. To conclude, the accurate modeling of VOC release kinetics from coffee allowed small variations in compound release to be discriminated. Furthermore, it evidenced the different aroma compositions that may be obtained depending on the time when VOCs are recovered.
Vecino, Xanel; Devesa-Rey, Rosa; Villagrasa, Salvador; Cruz, Jose M; Moldes, Ana B
2015-12-01
In this work a comparative bioadsorption study between a biocomposite consisting of hydrolysed vineyard pruning waste entrapped in calcium alginate spheres and non entrapped vineyard residue was carried out. Results have demonstrated that the biocomposite based on lignocellulose-calcium alginate spheres removed 77.3% of dyes, while non entrapped lignocellulose eliminated only removed 27.8% of colour compounds. The experimental data were fitted to several kinetic models (pseudo-first order, pseudo-second order, Chien-Clayton model, intraparticle diffusion model and Bangham model); being pseudo-second order the kinetic model that better described the adsorption of dyes onto both bioadsorbents. In addition, a morphological study (roughness and shape) of alginate-vineyard biocomposite was established under extreme conditions, observing significant differences between hydrated and dehydrated alginate-vineyard biocomposite. The techniques used to carry out this morphological study consisted of scanning electron microscopy (SEM), perfilometry and 3D surface analysis. Copyright © 2015. Published by Elsevier B.V.
Experiment of Enzyme Kinetics Using Guided Inquiry Model for Enhancing Generic Science Skills
NASA Astrophysics Data System (ADS)
Amida, N.; Supriyanti, F. M. T.; Liliasari
2017-02-01
This study aims to enhance generic science skills of students using guided inquiry model through experiments of enzyme kinetics. This study used quasi-experimental methods, with pretest-posttestnonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry lab course, consisted of 18 students in experimental class and 19 students in control class. Instrument in this study were essay test that involves 5 indicators of generic science skills (i.e. direct observation, causality, symbolic language, mathematical modeling, and concepts formation) and also student worksheets. The results showed that the experiments of kinetics enzyme using guided inquiry model have been enhance generic science skills in high category with a value of
Roopavathi, K V; Shanthakumar, S
2016-09-01
In the present study, Curcuma longa (turmeric plant) was used as an adsorbent to remove Basic Green 1 (BG) dye. Batch study was carried out to evaluate the adsorption potential of C. longa and influencing factors such as pH (4-10), adsorbent dose (0.2-5 g l-1), initial dye concentration (50-250 mg l-1) and temperature (30-50°C) on dye removal were analysed. The characterisation of adsorbent was carried out using fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) method. Isotherm models that included Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich, and kinetic models such as pseudo first order, pseudo second-order, Elovich and intraparticle diffusion models were studied. A maximum removal percentage (82.76%) of BG dye from aqueous solution was obtained with optimum conditions of pH 7, 1g l-1 adsorbent dose and 30°C temperature, for 100 mg l-1 initial dye concentration. The equilibrium and kinetic study revealed that the experimental data fitted suitably the Freundlich isotherm and Pseudo second order kinetic model. Thermodynamic analysis proved that adsorption system in this study was spontaneous, feasible and endothermic in nature.
Vasilescu, Catalin; Olteanu, Mircea; Flondor, Paul; Calin, George A
2013-09-14
The response to endotoxin (LPS), and subsequent signal transduction lead to the production of cytokines such as tumor necrosis factor-α (TNF-α) by innate immune cells. Cells or organisms pretreated with endotoxin enter into a transient state of hyporesponsiveness, referred to as endotoxin tolerance (ET) which represents a particular case of negative preconditioning. Despite recent progress in understanding the molecular basis of ET, there is no consensus yet on the primary mechanism responsible for ET and for the more complex cases of cross tolerance. In this study, we examined the consequences of the macromolecular crowding (MMC) and of fractal-like kinetics (FLK) of intracellular enzymatic reactions on the LPS signaling machinery. We hypothesized that this particular type of enzyme kinetics may explain the development of ET phenomenon. Our aim in the present study was to characterize the chemical kinetics framework in ET and determine whether fractal-like kinetics explains, at least in part, ET. We developed an ordinary differential equations (ODE) mathematical model that took into account the links between the MMC and the LPS signaling machinery leading to ET. We proposed that the intracellular fractal environment (MMC) contributes to ET and developed two mathematical models of enzyme kinetics: one based on Kopelman's fractal-like kinetics framework and the other based on Savageau's power law model. Kopelman's model provides a good image of the potential influence of a fractal intracellular environment (MMC) on ET. The Savageau power law model also partially explains ET. The computer simulations supported the hypothesis that MMC and FLK may play a role in ET. The model highlights the links between the organization of the intracellular environment, MMC and the LPS signaling machinery leading to ET. Our FLK-based model does not minimize the role of the numerous negative regulatory factors. It simply draws attention to the fact that macromolecular crowding can contribute significantly to the induction of ET by imposing geometric constrains and a particular chemical kinetic for the intracellular reactions.
Kinetics study of carbon raiser on the reduction of nickel laterite from Pomalaa, Southeast Sulawesi
NASA Astrophysics Data System (ADS)
Petrus, H. T. B. M.; Rhamdani, A. R.; Putera, A. D. P.; Warmada, I. W.; Yuliansyad, A. T.; Perdana, I.
2016-11-01
As one of the top ten on nickel laterite ore resources in the world, Indonesia must have been initiating the nickel processing in total amount of about 1.5 million tonnes. In regard to the low nickel laterite processing, one of the possible product is nickel pig iron (NPI) needed for the stainless steel industries. In this study carbon raiser that is waste from oil industries was used to replace metalurgical coke. The kinetic of nickel laterite reduction using carbon raiser was studied and compared with anthrasite coal. In this work, the author conducted the reduction of nickel laterite ores by both carbon raiser and anthrasite coal as reductant, in air and CO2 atmosphere, within the temperature ranged from 800°C and 1000°C. Two models were applied, sphere particle geometry model and Ginstling-Brounhstein diffusion model, to study the kinetic parameters. The results indicated that type of reductants and reduction atmosphere greatly influence the kinetic parameters. The obtained values of activation energy were varied between 17.44-18.12 kcal/mol.
Bullich, Santiago; Barthel, Henryk; Koglin, Norman; Becker, Georg A; De Santi, Susan; Jovalekic, Aleksandar; Stephens, Andrew W; Sabri, Osama
2017-11-24
Accurate amyloid PET quantification is necessary for monitoring amyloid-beta accumulation and response to therapy. Currently, most of the studies are analyzed using the static standardized uptake value ratio (SUVR) approach because of its simplicity. However, this approach may be influenced by changes in cerebral blood flow (CBF) or radiotracer clearance. Full tracer kinetic models require arterial blood sampling and dynamic image acquisition. The objectives of this work were: (1) to validate a non-invasive kinetic modeling approach for 18 F-florbetaben PET using an acquisition protocol with the best compromise between quantification accuracy and simplicity and (2) to assess the impact of CBF changes and radiotracer clearance on SUVRs and non-invasive kinetic modeling data in 18 F-florbetaben PET. Methods: Data from twenty subjects (10 patients with probable Alzheimer's dementia/ 10 healthy volunteers) were used to compare the binding potential (BP ND ) obtained from the full kinetic analysis to the SUVR and to non-invasive tracer kinetic methods (simplified reference tissue model (SRTM), and multilinear reference tissue model 2 (MRTM2)). Different approaches using shortened or interrupted acquisitions were compared to the results of the full acquisition (0-140 min). Simulations were carried out to assess the effect of CBF and radiotracer clearance changes on SUVRs and non-invasive kinetic modeling outputs. Results: A 0-30 and 120-140 min dual time-window acquisition protocol using appropriate interpolation of the missing time points provided the best compromise between patient comfort and quantification accuracy. Excellent agreement was found between BP ND obtained using full and dual time-window (2TW) acquisition protocols (BP ND,2TW =0.01+ 1.00 BP ND,FULL , R2=0.97 (MRTM2); BP ND,2TW = 0.05+ 0.92·BP ND,FULL , R2=0.93 (SRTM)). Simulations showed a limited impact of CBF and radiotracer clearance changes on MRTM parameters and SUVRs. Conclusion: This study demonstrates accurate non-invasive kinetic modeling of 18 F-florbetaben PET data using a dual time-window acquisition protocol, thus providing a good compromise between quantification accuracy, scan duration and patient burden. The influence of CBF and radiotracer clearance changes on amyloid-beta load estimates was small. For most clinical research applications, the SUVR approach is appropriate. However, for longitudinal studies in which a maximum quantification accuracy is desired, this non-invasive dual time-window acquisition protocol and kinetic analysis is recommended. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Modeling and Classification of Kinetic Patterns of Dynamic Metabolic Biomarkers in Physical Activity
Breit, Marc; Netzer, Michael
2015-01-01
The objectives of this work were the classification of dynamic metabolic biomarker candidates and the modeling and characterization of kinetic regulatory mechanisms in human metabolism with response to external perturbations by physical activity. Longitudinal metabolic concentration data of 47 individuals from 4 different groups were examined, obtained from a cycle ergometry cohort study. In total, 110 metabolites (within the classes of acylcarnitines, amino acids, and sugars) were measured through a targeted metabolomics approach, combining tandem mass spectrometry (MS/MS) with the concept of stable isotope dilution (SID) for metabolite quantitation. Biomarker candidates were selected by combined analysis of maximum fold changes (MFCs) in concentrations and P-values resulting from statistical hypothesis testing. Characteristic kinetic signatures were identified through a mathematical modeling approach utilizing polynomial fitting. Modeled kinetic signatures were analyzed for groups with similar behavior by applying hierarchical cluster analysis. Kinetic shape templates were characterized, defining different forms of basic kinetic response patterns, such as sustained, early, late, and other forms, that can be used for metabolite classification. Acetylcarnitine (C2), showing a late response pattern and having the highest values in MFC and statistical significance, was classified as late marker and ranked as strong predictor (MFC = 1.97, P < 0.001). In the class of amino acids, highest values were shown for alanine (MFC = 1.42, P < 0.001), classified as late marker and strong predictor. Glucose yields a delayed response pattern, similar to a hockey stick function, being classified as delayed marker and ranked as moderate predictor (MFC = 1.32, P < 0.001). These findings coincide with existing knowledge on central metabolic pathways affected in exercise physiology, such as β-oxidation of fatty acids, glycolysis, and glycogenolysis. The presented modeling approach demonstrates high potential for dynamic biomarker identification and the investigation of kinetic mechanisms in disease or pharmacodynamics studies using MS data from longitudinal cohort studies. PMID:26317529
An investigation on the modelling of kinetics of thermal decomposition of hazardous mercury wastes.
Busto, Yailen; M G Tack, Filip; Peralta, Luis M; Cabrera, Xiomara; Arteaga-Pérez, Luis E
2013-09-15
The kinetics of mercury removal from solid wastes generated by chlor-alkali plants were studied. The reaction order and model-free method with an isoconversional approach were used to estimate the kinetic parameters and reaction mechanism that apply to the thermal decomposition of hazardous mercury wastes. As a first approach to the understanding of thermal decomposition for this type of systems (poly-disperse and multi-component), a novel scheme of six reactions was proposed to represent the behaviour of mercury compounds in the solid matrix during the treatment. An integration-optimization algorithm was used in the screening of nine mechanistic models to develop kinetic expressions that best describe the process. The kinetic parameters were calculated by fitting each of these models to the experimental data. It was demonstrated that the D₁-diffusion mechanism appeared to govern the process at 250°C and high residence times, whereas at 450°C a combination of the diffusion mechanism (D₁) and the third order reaction mechanism (F3) fitted the kinetics of the conversions. The developed models can be applied in engineering calculations to dimension the installations and determine the optimal conditions to treat a mercury containing sludge. Copyright © 2013 Elsevier B.V. All rights reserved.
Wellman, Tyler J.; Winkler, Tilo; Vidal Melo, Marcos F.
2015-01-01
18F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary 18F-FDG kinetics do not account for delays in 18F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of 18F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic 18F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n=6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. 13NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of 18F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0–13.6s, averaging 6.4±2.9s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on 13NN-PET (R2=0.92, p<0.001). By incorporating local vascular transports delays, this model of pulmonary 18F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation. PMID:25940652
Kinetics of steel slag leaching: Batch tests and modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr; Chaurand, Perrine; Rose, Jerome
2011-02-15
Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can bemore » used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.« less
Sorption kinetics of diuron on volcanic ash derived soils.
Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente
2013-10-15
Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.
Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.
Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L
2012-04-01
Kinematic multi-segment foot models are still evolving, but have seen increased use in clinical and research settings. The addition of kinetics may increase knowledge of foot and ankle function as well as influence multi-segment foot model evolution; however, previous kinetic models are too complex for clinical use. In this study we present a three-segment kinetic foot model and thorough evaluation of model performance during normal gait. In this first of two companion papers, model reference frames and joint centers are analyzed for repeatability, joint translations are measured, segment rigidity characterized, and sample joint angles presented. Within-tester and between-tester repeatability were first assessed using 10 healthy pediatric participants, while kinematic parameters were subsequently measured on 17 additional healthy pediatric participants. Repeatability errors were generally low for all sagittal plane measures as well as transverse plane Hindfoot and Forefoot segments (median<3°), while the least repeatable orientations were the Hindfoot coronal plane and Hallux transverse plane. Joint translations were generally less than 2mm in any one direction, while segment rigidity analysis suggested rigid body behavior for the Shank and Hindfoot, with the Forefoot violating the rigid body assumptions in terminal stance/pre-swing. Joint excursions were consistent with previously published studies. Copyright © 2012 Elsevier B.V. All rights reserved.
The Einstein-Vlasov System/Kinetic Theory.
Andréasson, Håkan
2011-01-01
The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.
Different enzyme kinetic models.
Seibert, Eleanore; Tracy, Timothy S
2014-01-01
As described in Chapter 2 , a large number of enzymatic reactions can be adequately described by Michaelis-Menten kinetics. The Michaelis-Menten equation represents a rectangular hyperbola, with a y-asymptote at the V max value. In many cases, more complex kinetic models are required to explain the observed data. Atypical kinetic profiles are believed to arise from the simultaneous binding of multiple molecules within the active site of the enzyme (Tracy and Hummel, Drug Metab Rev 36:231-242, 2004). Several cytochromes P450 have large active sites that enable binding of multiple molecules (Wester et al. J Biol Chem 279:35630-35637, 2004; Yano et al. J Biol Chem 279:38091-38094, 2004). Thus, atypical kinetics are not uncommon in in vitro drug metabolism studies. This chapter covers enzyme kinetic reactions in which a single enzyme has multiple binding sites for substrates and/or inhibitors as well as reactions catalyzed by multiple enzymes.
Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion.
Meca, Esteban; Shenoy, Vivek B; Lowengrub, John
2013-11-01
In the present article, we introduce a phase-field model for thin-film growth with anisotropic step energy, attachment kinetics, and diffusion, with second-order (thin-interface) corrections. We are mainly interested in the limit in which kinetic anisotropy dominates, and hence we study how the expected shape of a crystallite, which in the long-time limit is the kinetic Wulff shape, is modified by anisotropic diffusion. We present results that prove that anisotropic diffusion plays an important, counterintuitive role in the evolving crystal shape, and we add second-order corrections to the model that provide a significant increase in accuracy for small supersaturations. We also study the effect of different crystal symmetries and discuss the influence of the deposition rate.
Application of global kinetic models to HMX beta-delta transition and cookoff processes.
Wemhoff, Aaron P; Burnham, Alan K; Nichols, Albert L
2007-03-08
The reduction of the number of reactions in kinetic models for both the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia instrumented thermal ignition (SITI) and scaled thermal explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on one-dimensional time to explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as well with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multistep Arrhenius model and can contain up to 90% fewer chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from differential scanning calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multistep Arrhenius approach, and up to 11% using a Prout-Tompkins cookoff model.
Truong, Lisa; Ouedraogo, Gladys; Pham, LyLy; Clouzeau, Jacques; Loisel-Joubert, Sophie; Blanchet, Delphine; Noçairi, Hicham; Setzer, Woodrow; Judson, Richard; Grulke, Chris; Mansouri, Kamel; Martin, Matthew
2018-02-01
In an effort to address a major challenge in chemical safety assessment, alternative approaches for characterizing systemic effect levels, a predictive model was developed. Systemic effect levels were curated from ToxRefDB, HESS-DB and COSMOS-DB from numerous study types totaling 4379 in vivo studies for 1247 chemicals. Observed systemic effects in mammalian models are a complex function of chemical dynamics, kinetics, and inter- and intra-individual variability. To address this complex problem, systemic effect levels were modeled at the study-level by leveraging study covariates (e.g., study type, strain, administration route) in addition to multiple descriptor sets, including chemical (ToxPrint, PaDEL, and Physchem), biological (ToxCast), and kinetic descriptors. Using random forest modeling with cross-validation and external validation procedures, study-level covariates alone accounted for approximately 15% of the variance reducing the root mean squared error (RMSE) from 0.96 log 10 to 0.85 log 10 mg/kg/day, providing a baseline performance metric (lower expectation of model performance). A consensus model developed using a combination of study-level covariates, chemical, biological, and kinetic descriptors explained a total of 43% of the variance with an RMSE of 0.69 log 10 mg/kg/day. A benchmark model (upper expectation of model performance) was also developed with an RMSE of 0.5 log 10 mg/kg/day by incorporating study-level covariates and the mean effect level per chemical. To achieve a representative chemical-level prediction, the minimum study-level predicted and observed effect level per chemical were compared reducing the RMSE from 1.0 to 0.73 log 10 mg/kg/day, equivalent to 87% of predictions falling within an order-of-magnitude of the observed value. Although biological descriptors did not improve model performance, the final model was enriched for biological descriptors that indicated xenobiotic metabolism gene expression, oxidative stress, and cytotoxicity, demonstrating the importance of accounting for kinetics and non-specific bioactivity in predicting systemic effect levels. Herein, we generated an externally predictive model of systemic effect levels for use as a safety assessment tool and have generated forward predictions for over 30,000 chemicals.
A two-fluid study of oblique tearing modes in a force-free current sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William; Lukin, Vyacheslav S.
2016-01-15
Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less
A two-fluid study of oblique tearing modes in a force-free current sheet
Akçay, Cihan; Daughton, William; Lukin, Vyacheslav S.; ...
2016-01-01
Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Because kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. As a results this theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less
Kinetic study of alkaline protease 894 for the hydrolysis of the pearl oyster Pinctada martensii
NASA Astrophysics Data System (ADS)
Chen, Xin; Chen, Hua; Cai, Bingna; Liu, Qingqin; Sun, Huili
2013-05-01
A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.
Tosun, İsmail
2012-01-01
The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients. PMID:22690177
Syafiuddin, Achmad; Salmiati, Salmiati; Jonbi, Jonbi; Fulazzaky, Mohamad Ali
2018-07-15
It is the first time to do investigation the reliability and validity of thirty kinetic and isotherm models for describing the behaviors of adsorption of silver nanoparticles (AgNPs) onto different adsorbents. The purpose of this study is therefore to assess the most reliable models for the adsorption of AgNPs onto feasibility of an adsorbent. The fifteen kinetic models and fifteen isotherm models were used to test secondary data of AgNPs adsorption collected from the various data sources. The rankings of arithmetic mean were estimated based on the six statistical analysis methods of using a dedicated software of the MATLAB Optimization Toolbox with a least square curve fitting function. The use of fractal-like mixed 1, 2-order model for describing the adsorption kinetics and that of Fritz-Schlunder and Baudu models for describing the adsorption isotherms can be recommended as the most reliable models for AgNPs adsorption onto the natural and synthetic adsorbent materials. The application of thirty models have been identified for the adsorption of AgNPs to clarify the usefulness of both groups of the kinetic and isotherm equations in the rank order of the levels of accuracy, and this significantly contributes to understandability and usability of the proper models and makes to knowledge beyond the existing literatures. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tosun, Ismail
2012-03-01
The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.
The kinetics of thermal generation of flavour.
Parker, Jane K
2013-01-01
Control and optimisation of flavour is the ultimate challenge for the food and flavour industry. The major route to flavour formation during thermal processing is the Maillard reaction, which is a complex cascade of interdependent reactions initiated by the reaction between a reducing sugar and an amino compound. The complexity of the reaction means that researchers turn to kinetic modelling in order to understand the control points of the reaction and to manipulate the flavour profile. Studies of the kinetics of flavour formation have developed over the past 30 years from single- response empirical models of binary aqueous systems to sophisticated multi-response models in food matrices, based on the underlying chemistry, with the power to predict the formation of some key aroma compounds. This paper discusses in detail the development of kinetic models of thermal generation of flavour and looks at the challenges involved in predicting flavour. Copyright © 2012 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Yu, Zhou
Silicon oxides thermally grown on Si surface are the core gate materials of metal-oxide-semiconductor field effect transistor (MOSFET). This thin oxide layer insulates the gate terminals and the transistors substrate which make MOSFET has certain advantages over those conventional junctions, such as field-effect transistor (FET) and junction field effect transistor (JFET). With an oxide insulating layer, MOSFET is able to sustain higher input impedance and the corresponding gate leakage current can be minimized. Today, though the oxidation process on Si substrate is popular in industry, there are still some uncertainties about its oxidation kinetics. On a path to clarify and modeling the oxidation kinetics, a study of initial oxidation kinetics on Si (001) surface has attracted attentions due to having a relatively low surface electron density and few adsorption channels compared with other Si surface direction. Based on previous studies, there are two oxidation models of Si (001) that extensively accepted, which are dual oxide species mode and autocatalytic reaction model. These models suggest the oxidation kinetics on Si (001) mainly relies on the metastable oxygen atom on the surface and the kinetic is temperature dependent. Professor Yuji Takakuwa's group, Surface Physics laboratory, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, observed surface strain existed during the oxidation kinetics on Si (001) and this is the first time that strain was discovered during Si oxidation. Therefore, it is necessary to explain where the strain comes from since none of previous model research included the surface strain (defects generation) into considerations. Moreover, recent developing of complementary metal-oxide-semiconductor (CMOS) requires a simultaneous oxidation process on p- and n-type Si substrate. However, none of those previous models included the dopant factor into the oxidation kinetic modeling. All of these points that further work is necessary to update and modify the traditional Si (001) oxidation models that had been accepted for several decades. To update and complement the Si (001) oxidation kinetics, an understanding of the temperature and dopant factor during initial oxidation kinetics on Si (001) is our first step. In this study, real-time photoelectron spectroscopy is applied to characterize the oxidized (001) surface and surface information was collected by ultraviolet photoelectron spectroscopy technique. By analyzing parameters such as O 2p spectra uptake, change of work function and the surface state in respect of p- and n- type Si (001) substrate under different temperature, the oxygen adsorption structure and the dopant factor can be determined. In this study, experiments with temperature gradients on p-type Si (001) were conducted and this aims to clarify the temperature dependent characteristic of Si (001) surface oxidation. A comparison of the O 2p uptake, change of work function and surface state between p-and n-type Si (001) is made under a normal temperature and these provides with the data to explain how the dopant factor impacts the oxygen adsorption structure on the surface. In the future, the study of the oxygen adsorption structure will lead to an explanation of the surface strain that discovered; therefore, fundamental of the initial oxidation on Si (001) would be updated and complemented, which would contribute to the future gate technology in MOSFET and CMOS.
Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon
NASA Astrophysics Data System (ADS)
Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira
2018-04-01
Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.
A global resource allocation strategy governs growth transition kinetics of Escherichia coli
Erickson, David W; Schink, Severin J.; Patsalo, Vadim; Williamson, James R.; Gerland, Ulrich; Hwa, Terence
2018-01-01
A grand challenge of systems biology is to predict the kinetic responses of living systems to perturbations starting from the underlying molecular interactions. Changes in the nutrient environment have long been used to study regulation and adaptation phenomena in microorganisms1–3 and they remain a topic of active investigation4–11. Although much is known about the molecular interactions that govern the regulation of key metabolic processes in response to applied perturbations12–17, they are insufficiently quantified for predictive bottom-up modelling. Here we develop a top-down approach, expanding the recently established coarse-grained proteome allocation models15,18–20 from steady-state growth into the kinetic regime. Using only qualitative knowledge of the underlying regulatory processes and imposing the condition of flux balance, we derive a quantitative model of bacterial growth transitions that is independent of inaccessible kinetic parameters. The resulting flux-controlled regulation model accurately predicts the time course of gene expression and biomass accumulation in response to carbon upshifts and downshifts (for example, diauxic shifts) without adjustable parameters. As predicted by the model and validated by quantitative proteomics, cells exhibit suboptimal recovery kinetics in response to nutrient shifts owing to a rigid strategy of protein synthesis allocation, which is not directed towards alleviating specific metabolic bottlenecks. Our approach does not rely on kinetic parameters, and therefore points to a theoretical framework for describing a broad range of such kinetic processes without detailed knowledge of the underlying biochemical reactions. PMID:29072300
NASA Astrophysics Data System (ADS)
Basuki, Rahmat; Santosa, Sri Juari; Rusdiarso, Bambang
2017-03-01
Humic acid from dry horse dung powder has been prepared and this horse dung humic acid (HD-HA) was then applied as a sorbent to adsorb Cadmium(II) from a solution. Characterization of HD-HA was conducted by detection of its functional group, UV-Vis spectra, ash level, and total acidity. Result of the work showed that HD-HA had similar character compared with peat soil humic acid (PS-HA) and previous researchers. The adsorption study of this work was investigated by batch experiment in pH 5. The thermodynamics parameters in this work were determined by the Langmuir isotherm model for monolayer sorption and Freundlich isotherm model multilayer sorption. Monolayer sorption capacity (b) for HD-HA was 1.329 × 10-3 mol g-1, equilibrium constant (K) was 5.651 (mol/L)-1, and multilayer sorption capacity was 2.646 × 10-2 mol g-1. The kinetics parameters investigated in this work were determined by the novel kinetics expression resulted from the mathematical derivation the availability of binding sites of sorbent. Adsorption rate constant (ka) from this novel expression was 43.178 min-1 (mol/L)-1 and desorption rate constant (kd) was 1.250 × 10-2 min-1. Application of the kinetics model on sorption Cd(II) onto HD-HA showed the nearly all of models gave a good linearity. However, only this proposed kinetics expression has good relation with Langmuir model. The novel kinetics expression proposed in this paper seems to be more realistic and reasonable and close to the experimental real condition because the value of ka/kd (3452 (mol/L)-1) was fairly close with K from Langmuir isotherm model (5651 (mol/L)-1). Comparison of this novel kinetics expression with well-known Lagergren pseudo-first order kinetics and Ho pseudo-second order kinetics was also critically discussed in this paper.
A new class of enhanced kinetic sampling methods for building Markov state models
NASA Astrophysics Data System (ADS)
Bhoutekar, Arti; Ghosh, Susmita; Bhattacharya, Swati; Chatterjee, Abhijit
2017-10-01
Markov state models (MSMs) and other related kinetic network models are frequently used to study the long-timescale dynamical behavior of biomolecular and materials systems. MSMs are often constructed bottom-up using brute-force molecular dynamics (MD) simulations when the model contains a large number of states and kinetic pathways that are not known a priori. However, the resulting network generally encompasses only parts of the configurational space, and regardless of any additional MD performed, several states and pathways will still remain missing. This implies that the duration for which the MSM can faithfully capture the true dynamics, which we term as the validity time for the MSM, is always finite and unfortunately much shorter than the MD time invested to construct the model. A general framework that relates the kinetic uncertainty in the model to the validity time, missing states and pathways, network topology, and statistical sampling is presented. Performing additional calculations for frequently-sampled states/pathways may not alter the MSM validity time. A new class of enhanced kinetic sampling techniques is introduced that aims at targeting rare states/pathways that contribute most to the uncertainty so that the validity time is boosted in an effective manner. Examples including straightforward 1D energy landscapes, lattice models, and biomolecular systems are provided to illustrate the application of the method. Developments presented here will be of interest to the kinetic Monte Carlo community as well.
Organosolv delignification of Eucalyptus globulus: Kinetic study of autocatalyzed ethanol pulping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliet, M.; Rodriguez, F.; Santos, A.
2000-01-01
The autocatalyzed delignification of Eucalyptus globulus in 50% ethanol (w/w) was modeled as the irreversible and consecutive dissolution of initial, bulk, and residual lignin. Their respective contributions to total lignin was estimated as 9, 75, and 16%. Isothermal pulping experiments were carried out to evaluate an empirical kinetic model among eight proposals corresponding to different reaction schemes. The calculated activation energy was found to be 96.5, 98.5, and 40.8 kJ/mol for initial, bulk, and residual delignification, respectively. The influence of hydrogen ion concentration was expressed by a power-law function model. The kinetic model developed here was validated using data frommore » nonisothermal pulping runs.« less
Multicompartment models with constant fractional transfer rates have been fitted to experimental data on lead metabolism in four subjects studied by M. B. Rabinowitz, G. W. Wetherill, and J. D. Kopple (Science 182, 725-727, 1973; Environ. Health Perspect. 7, 145-153, 1974; Arch. ...
Kirtania, Kawnish; Bhattacharya, Sankar
2012-03-01
Apart from capturing carbon dioxide, fresh water algae can be used to produce biofuel. To assess the energy potential of Chlorococcum humicola, the alga's pyrolytic behavior was studied at heating rates of 5-20K/min in a thermobalance. To model the weight loss characteristics, an algorithm was developed based on the distributed activation energy model and applied to experimental data to extract the kinetics of the decomposition process. When the kinetic parameters estimated by this method were applied to another set of experimental data which were not used to estimate the parameters, the model was capable of predicting the pyrolysis behavior, in the new set of data with a R(2) value of 0.999479. The slow weight loss, that took place at the end of the pyrolysis process, was also accounted for by the proposed algorithm which is capable of predicting the pyrolysis kinetics of C. humicola at different heating rates. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Onal, Y; Akmil-Başar, C; Sarici-Ozdemir, C
2007-09-30
In this study, activated carbon (WA11Zn5) was prepared from waste apricot, which is waste in apricot plants in Malatya, by chemical activation with ZnCl(2). BET surface area of activated carbon is determined as 1060 m(2)/g. The ability of WA11Zn5, to remove naproxen sodium from effluent solutions by adsorption has been studied. Equilibrium isotherms for the adsorption of naproxen sodium on activated carbon were measured experimentally. Results were analyzed by the Langmiur, Freundlich equation using linearized correlation coefficient at 298 K. The characteristic parameters for each isotherm have been determined. Langmiur equation is found to best represent the equilibrium data for naproxen sodium-WA11Zn5 systems. The monolayer adsorption capacity of WA11Zn5 for naproxen sodium was found to be 106.38 mg/g at 298 K. The process was favorable and spontaneous. The kinetics of adsorption of naproxen sodium have been discussed using three kinetic models, i.e., the pseudo first-order model, the pseudo second-order model, the intraparticle diffusion model. Kinetic parameters and correlation coefficients were determined. It was shown that the pseudo second-order kinetic equation could describe the adsorption kinetics for naproxen sodium onto WA11Zn5. The thermodynamic parameters, such as DeltaG degrees , DeltaS degrees and DeltaH degrees, were calculated. The thermodynamics of naproxen sodium-WA11Zn5 system indicates endothermic process.
Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads.
Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng
2013-12-01
Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH(0), ΔS(0) and ΔG(0) were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.
Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M
2016-08-01
Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed. Copyright © 2016. Published by Elsevier Ltd.
Studies of ion kinetic effects in OMEGA shock-driven implosions using fusion burn imaging
NASA Astrophysics Data System (ADS)
Rosenberg, M. J.; Seguin, F. H.; Rinderknecht, H. G.; Sio, H.; Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Zimmerman, G.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Marshall, F. J.; Seka, W.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Meyerhofer, D. D.; Atzeni, S.; Nikroo, A.
2014-10-01
Ion kinetic effects have been inferred in a series of shock-driven implosions at OMEGA from an increasing yield discrepancy between observations and hydrodynamic simulations as the ion-ion mean free path increases. To more precisely identify the nature and impact of ion kinetic effects, spatial burn profile measurements of DD and D3He reactions in these D3He-filled shock-driven implosions are presented and contrasted to both purely hydrodynamic models and models that include ion kinetic effects. It is shown that in implosions where the ion mean free path is equal to or greater than the size of the fuel region, purely hydrodynamic models fail to capture the observed burn profiles, while a model that includes ion diffusion is able to recover the observed burn profile shape. These results further elucidate the ion kinetic mechanisms that are present under long mean-free-path conditions after shock convergence in both shock-driven and ablatively-driven implosions. This work was supported in part by the U.S. DOE, NLUF, LLE, and LLNL.
Kinetics model development of cocoa bean fermentation
NASA Astrophysics Data System (ADS)
Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny
2015-12-01
Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.
A systematic study of multiple minerals precipitation modelling in wastewater treatment.
Kazadi Mbamba, Christian; Tait, Stephan; Flores-Alsina, Xavier; Batstone, Damien J
2015-11-15
Mineral solids precipitation is important in wastewater treatment. However approaches to minerals precipitation modelling are varied, often empirical, and mostly focused on single precipitate classes. A common approach, applicable to multi-species precipitates, is needed to integrate into existing wastewater treatment models. The present study systematically tested a semi-mechanistic modelling approach, using various experimental platforms with multiple minerals precipitation. Experiments included dynamic titration with addition of sodium hydroxide to synthetic wastewater, and aeration to progressively increase pH and induce precipitation in real piggery digestate and sewage sludge digestate. The model approach consisted of an equilibrium part for aqueous phase reactions and a kinetic part for minerals precipitation. The model was fitted to dissolved calcium, magnesium, total inorganic carbon and phosphate. Results indicated that precipitation was dominated by the mineral struvite, forming together with varied and minor amounts of calcium phosphate and calcium carbonate. The model approach was noted to have the advantage of requiring a minimal number of fitted parameters, so the model was readily identifiable. Kinetic rate coefficients, which were statistically fitted, were generally in the range 0.35-11.6 h(-1) with confidence intervals of 10-80% relative. Confidence regions for the kinetic rate coefficients were often asymmetric with model-data residuals increasing more gradually with larger coefficient values. This suggests that a large kinetic coefficient could be used when actual measured data is lacking for a particular precipitate-matrix combination. Correlation between the kinetic rate coefficients of different minerals was low, indicating that parameter values for individual minerals could be independently fitted (keeping all other model parameters constant). Implementation was therefore relatively flexible, and would be readily expandable to include other minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale
2005-03-22
Efforts during this first year focused on four areas: (1) searching/summarizing published FTS mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) construction of mass spectrometer-TPD and Berty CSTR reactor systems; (3) preparation and characterization of unsupported iron and alumina-supported iron catalysts at various iron loadings (4) Determination of thermochemical parameters such as binding energies of reactive intermediates, heat of FTS elementary reaction steps, and kinetic parameters such as activation energies, and frequency factors of FTS elementary reaction steps on a number of model surfaces. Literature describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts wasmore » compiled in a draft review. Construction of the mass spectrometer-TPD system is 90% complete and of a Berty CSTR reactor system 98% complete. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by nonaqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2}, thus ideal for kinetic and mechanistic studies. The alumina-supported iron catalysts will be used for kinetic and mechanistic studies. In the coming year, adsorption/desorption properties, rates of elementary steps, and global reaction rates will be measured for these catalysts, with and without promoters, providing a database for understanding effects of dispersion, metal loading, and support on elementary kinetic parameters and for validation of computational models that incorporate effects of surface structure and promoters. Furthermore, using state-of-the-art self-consistent Density Functional Theory (DFT) methods, we have extensively studied the thermochemistry and kinetics of various elementary steps on three different model surfaces: (1) Fe(110), (2) Fe(110) modified by subsurface C, and (3) Fe surface modified with Pt adatoms. These studies have yielded valuable insights into the reactivity of Fe surfaces for FTS, and provided accurate estimates for the effect of Fe modifiers such as subsurface C and surface Pt.« less
Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent--silkworm pupa.
Noroozi, B; Sorial, G A; Bahrami, H; Arami, M
2007-01-02
In this work the use of silkworm pupa, which is the waste of silk spinning industries has been investigated as an adsorbent for the removal of C.I. Basic Blue 41. The amino acid nature of the pupa provided a reasonable capability for dye removal. Equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of the dye could be described reasonably well by either Langmuir or Freundlich models. The characteristic parameters for each isotherm have been determined. The monolayer adsorption capacity was determined to be 555 mg/g. Kinetic studies indicated that the adsorption follows pseudo-second-order kinetics with a rate constant of 0.0434 and 0.0572 g/min mg for initial dye concentration of 200 mg/l at 20 and 40 degrees C, respectively. Kinetic studies showed that film diffusion and intra-particle diffusion were simultaneously operating during the adsorption process. The rate constant for intra-particle diffusion was estimated to be 1.985 mg/g min(0.5).
Modeling the kinetics of survival of Staphylococcus aureus in regional yogurt from goat's milk.
Bednarko-Młynarczyk, E; Szteyn, J; Białobrzewski, I; Wiszniewska-Łaszczych, A; Liedtke, K
2015-01-01
The aim of this study was to determine the kinetics of the survival of the test strain of Staphylococcus aureus in the product investigated. Yogurt samples were contaminated with S. aure to an initial level of 10(3)-10(4) cfu/g. The samples were then stored at four temperatures: 4, 6, 20, 22°C. During storage, the number of S. aureus forming colonies in a gram of yogurt was determined every two hours. Based on the results of the analysis culture the curves of survival were plotted. Three primary models were selected to describe the kinetics of changes in the count of bacteria: Cole's model, a modified model of Gompertz and the model of Baranyi and Roberts. Analysis of the model fit carried out based on the average values of Pearson's correlation coefficient, between the modeled and measured values, showed that the Cole's model had the worst fit. The modified Gompertz model showed the count of S. aureus as a negative value. These drawbacks were not observed in the model of Baranyi and Roberts. For this reason, this model best reflects the kinetics of changes in the number of staphylococci in yogurt.
NASA Astrophysics Data System (ADS)
Demiray, Engin; Tulek, Yahya
2017-05-01
Rehydration, which is a complex process aimed at the restoration of raw material properties when dried material comes in contact with water. In the present research, studies were conducted to probe the kinetics of rehydration of sun-dried red peppers. The kinetics associated with rehydrating sun-dried red peppers was studied at three different temperatures (25, 35 and 45 °C). To describe the rehydration kinetics, four different models, Peleg's, Weibull, first order and exponential association, were considered. Between these four models proposed Weibull model gave a better fit for all rehydration conditions applied. The effective moisture diffusivity values of red peppers increased as water rehydration temperature increased. The values of the effective moisture diffusivity of red peppers were in the range 1.37 × 10-9-1.48 × 10-9 m2 s-1. On the other hand, the activation energy for rehydration kinetic was also calculated using Arrhenius equation and found as 3.17 kJ mol-1.
Schneiderman, Steven J; Johnson, Roger W; Menkhaus, Todd J; Gilcrease, Patrick C
2015-03-01
While softwoods represent a potential feedstock for second generation ethanol production, compounds present in their hydrolysates can inhibit fermentation. In this study, a novel Design of Experiments (DoE) approach was used to identify significant inhibitory effects on Saccharomyces cerevisiae D5A for the purpose of guiding kinetic model development. Although acetic acid, furfural and 5-hydroxymethyl furfural (HMF) were present at potentially inhibitory levels, initial factorial experiments only identified ethanol as a significant rate inhibitor. It was hypothesized that high ethanol levels masked the effects of other inhibitors, and a subsequent factorial design without ethanol found significant effects for all other compounds. When these non-ethanol effects were accounted for in the kinetic model, R¯(2) was significantly improved over an ethanol-inhibition only model (R¯(2)=0.80 vs. 0.76). In conclusion, when ethanol masking effects are removed, DoE is a valuable tool to identify significant non-ethanol inhibitors and guide kinetic model development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Irreversible thermodynamics of Poisson processes with reaction.
Méndez, V; Fort, J
1999-11-01
A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.
NASA Astrophysics Data System (ADS)
Singh, Neetu; Balomajumder, Chandrajit
2017-10-01
In this study, simultaneous removal of phenol and cyanide by a microorganism S. odorifera (MTCC 5700) immobilized onto coconut shell activated carbon surface (CSAC) was studied in batch reactor from mono and binary component aqueous solution. Activated carbon was derived from coconut shell by chemical activation method. Ferric chloride (Fecl3), used as surface modification agents was applied to biomass. Optimum biosorption conditions were obtained as a function of biosorbent dosage, pH, temperature, contact time and initial phenol and cyanide concentration. To define the equilibrium isotherms, experimental data were analyzed by five mono component isotherm and six binary component isotherm models. The higher uptake capacity of phenol and cyanide onto CSAC biosorbent surface was 450.02 and 2.58 mg/g, respectively. Nonlinear regression analysis was used for determining the best fit model on the basis of error functions and also for calculating the parameters involved in kinetic and isotherm models. The kinetic study results revealed that Fractal-like mixed first second order model and Brouser-Weron-Sototlongo models for phenol and cyanide were capable to offer accurate explanation of biosorption kinetic. According to the experimental data results, CSAC with immobilization of bacterium S. odorifera (MTCC 5700) seems to be an alternative and effective biosorbent for the elimination of phenol and cyanide from binary component aqueous solution.
Tang, Y; Stephenson, J L; Othmer, H G
1996-01-01
We study the models for calcium (Ca) dynamics developed in earlier studies, in each of which the key component is the kinetics of intracellular inositol-1,4,5-trisphosphate-sensitive Ca channels. After rapidly equilibrating steps are eliminated, the channel kinetics in these models are represented by a single differential equation that is linear in the state of the channel. In the reduced kinetic model, the graph of the steady-state fraction of conducting channels as a function of log10(Ca) is a bell-shaped curve. Dynamically, a step increase in inositol-1,4,5-trisphosphate induces an incremental increase in the fraction of conducting channels, whereas a step increase in Ca can either potentiate or inhibit channel activation, depending on the Ca level before and after the increase. The relationships among these models are discussed, and experimental tests to distinguish between them are given. Under certain conditions the models for intracellular calcium dynamics are reduced to the singular perturbed form epsilon dx/d tau = f(x, y, p), dy/d tau = g(x, y, p). Phase-plane analysis is applied to a generic form of these simplified models to show how different types of Ca response, such as excitability, oscillations, and a sustained elevation of Ca, can arise. The generic model can also be used to study frequency encoding of hormonal stimuli, to determine the conditions for stable traveling Ca waves, and to understand the effect of channel properties on the wave speed.
Wellman, Tyler J; Winkler, Tilo; Vidal Melo, Marcos F
2015-11-01
¹⁸F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary ¹⁸F-FDG kinetics do not account for delays in ¹⁸F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of ¹⁸F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic ¹⁸F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n = 6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. ¹³NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of ¹⁸F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0 to 13.6 s, averaging 6.4 ± 2.9 s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on ¹³NN-PET (R² = 0.92, p < 0.001). By incorporating local vascular transports delays, this model of pulmonary ¹⁸F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation.
Continuum kinetic and multi-fluid simulations of classical sheaths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cagas, P.; Hakim, A.; Juno, J.
The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum kinetic code, Gkeyll, which directly solves the Vlasov-Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin scheme that conserves energy in the continuous-time limit. The fields are computed using Maxwell equations. Ionizationmore » and scattering collisions are included; however, surface effects are neglected. The aim of this work is to introduce the continuum kinetic method and compare its results with those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the sheath to form without specifying wall fluxes, so the fluids and fields adjust self-consistently at the wall. Our work demonstrates that the kinetic and fluid results are in agreement for the momentum flux, showing that in certain regimes, a multifluid model can be a useful approximation for simulating the plasma boundary. There are differences in the electrostatic potential between the fluid and kinetic results. Further, the direct solutions of the distribution function presented here highlight the non-Maxwellian distribution of electrons in the sheath, emphasizing the need for a kinetic model. The densities, velocities, and the potential show a good agreement between the kinetic and fluid results. But, kinetic physics is highlighted through higher moments such as parallel and perpendicular temperatures which provide significant differences from the fluid results in which the temperature is assumed to be isotropic. Besides decompression cooling, the heat flux is shown to play a role in the temperature differences that are observed, especially inside the collisionless sheath. Published by AIP Publishing.« less
Continuum kinetic and multi-fluid simulations of classical sheaths
Cagas, P.; Hakim, A.; Juno, J.; ...
2017-02-21
The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum kinetic code, Gkeyll, which directly solves the Vlasov-Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin scheme that conserves energy in the continuous-time limit. The fields are computed using Maxwell equations. Ionizationmore » and scattering collisions are included; however, surface effects are neglected. The aim of this work is to introduce the continuum kinetic method and compare its results with those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the sheath to form without specifying wall fluxes, so the fluids and fields adjust self-consistently at the wall. Our work demonstrates that the kinetic and fluid results are in agreement for the momentum flux, showing that in certain regimes, a multifluid model can be a useful approximation for simulating the plasma boundary. There are differences in the electrostatic potential between the fluid and kinetic results. Further, the direct solutions of the distribution function presented here highlight the non-Maxwellian distribution of electrons in the sheath, emphasizing the need for a kinetic model. The densities, velocities, and the potential show a good agreement between the kinetic and fluid results. But, kinetic physics is highlighted through higher moments such as parallel and perpendicular temperatures which provide significant differences from the fluid results in which the temperature is assumed to be isotropic. Besides decompression cooling, the heat flux is shown to play a role in the temperature differences that are observed, especially inside the collisionless sheath. Published by AIP Publishing.« less
New model for colour kinetics of plum under infrared vacuum condition and microwave drying.
Chayjan, Reza Amiri; Alaei, Behnam
2016-01-01
Quality of dried foods is affected by the drying method and physiochemical changes in tissue. The drying method affects properties such as colour. The colour of processed food is one of the most important quality indices and plays a determinant role in consumer acceptability of food materials and the processing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantified by the tri-stimulus L* (whiteness/darkness), a* (redness/greenness) and b* (yellowness/blueness) model, which is an international standard for color measurement developed by the Commission Internationale d'Eclairage (CIE). These values were also used to calculate total colour change (∆E), chroma, hue angle, and browning index (BI). A new model was used for mathematical modelling of colour change kinetics. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and first-order kinetics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and microwave power for initial slow drying of plum slices and provided the desired results for colour change.
Kinetic modeling of cell metabolism for microbial production.
Costa, Rafael S; Hartmann, Andras; Vinga, Susana
2016-02-10
Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.
Spectral method for a kinetic swarming model
Gamba, Irene M.; Haack, Jeffrey R.; Motsch, Sebastien
2015-04-28
Here we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. Lastly, we observe that the kinetic model captures key features such as vortex formation and traveling waves.
Is cancer a pure growth curve or does it follow a kinetics of dynamical structural transformation?
González, Maraelys Morales; Joa, Javier Antonio González; Cabrales, Luis Enrique Bergues; Pupo, Ana Elisa Bergues; Schneider, Baruch; Kondakci, Suleyman; Ciria, Héctor Manuel Camué; Reyes, Juan Bory; Jarque, Manuel Verdecia; Mateus, Miguel Angel O'Farril; González, Tamara Rubio; Brooks, Soraida Candida Acosta; Cáceres, José Luis Hernández; González, Gustavo Victoriano Sierra
2017-03-07
Unperturbed tumor growth kinetics is one of the more studied cancer topics; however, it is poorly understood. Mathematical modeling is a useful tool to elucidate new mechanisms involved in tumor growth kinetics, which can be relevant to understand cancer genesis and select the most suitable treatment. The classical Kolmogorov-Johnson-Mehl-Avrami as well as the modified Kolmogorov-Johnson-Mehl-Avrami models to describe unperturbed fibrosarcoma Sa-37 tumor growth are used and compared with the Gompertz modified and Logistic models. Viable tumor cells (1×10 5 ) are inoculated to 28 BALB/c male mice. Modified Gompertz, Logistic, Kolmogorov-Johnson-Mehl-Avrami classical and modified Kolmogorov-Johnson-Mehl-Avrami models fit well to the experimental data and agree with one another. A jump in the time behaviors of the instantaneous slopes of classical and modified Kolmogorov-Johnson-Mehl-Avrami models and high values of these instantaneous slopes at very early stages of tumor growth kinetics are observed. The modified Kolmogorov-Johnson-Mehl-Avrami equation can be used to describe unperturbed fibrosarcoma Sa-37 tumor growth. It reveals that diffusion-controlled nucleation/growth and impingement mechanisms are involved in tumor growth kinetics. On the other hand, tumor development kinetics reveals dynamical structural transformations rather than a pure growth curve. Tumor fractal property prevails during entire TGK.
Rios-Iribe, Erika Y; Hernández-Calderón, Oscar M; Reyes-Moreno, C; Contreras-Andrade, I; Flores-Cotera, Luis B; Escamilla-Silva, Eleazar M
2013-01-01
A nonstructured model was used to study the dynamics of gibberellic acid production in a stirred tank bioreactor. Experimental data were obtained from submerged batch cultures of Gibberella fujikuroi (CDBB H-984) grown in varying ratios of glucose-corn oil as the carbon source. The nitrogen depletion effect was included in mathematical model by considering the specific kinetic constants as a linear function of the normalized nitrogen consumption rate. The kinetics of biomass growth and consumption of phosphate and nitrogen were based on the logistic model. The traditional first-order kinetic model was used to describe the specific consumption of glucose and corn oil. The nitrogen effect was solely included in the phosphate and corn oil consumption and biomass growth. The model fit was satisfactory, revealing the dependence of the kinetics with respect to the nitrogen assimilation rate. Through simulations, it was possible to make diagrams of specific growth rate and specific rate of substrate consumptions, which was a powerful tool for understanding the metabolic interactions that occurred during the various stages of fermentation process. This kinetic analysis provided the proposal of a possible mechanism of regulation on growth, substrate consumptions, and production of gibberellic acid (GA3 ) in G. fujikuroi. © 2013 American Institute of Chemical Engineers.
Chatterjee, Tanaya; Chatterjee, Barun K; Majumdar, Dipanwita; Chakrabarti, Pinak
2015-02-01
An alternative to conventional antibiotics is needed to fight against emerging multiple drug resistant pathogenic bacteria. In this endeavor, the effect of silver nanoparticle (Ag-NP) has been studied quantitatively on two common pathogenic bacteria Escherichia coli and Staphylococcus aureus, and the growth curves were modeled. The effect of Ag-NP on bacterial growth kinetics was studied by measuring the optical density, and was fitted by non-linear regression using the Logistic and modified Gompertz models. Scanning Electron Microscopy and fluorescence microscopy were used to study the morphological changes of the bacterial cells. Generation of reactive oxygen species for Ag-NP treated cells were measured by fluorescence emission spectra. The modified Gompertz model, incorporating cell death, fits the observed data better than the Logistic model. With increasing concentration of Ag-NP, the growth kinetics of both bacteria shows a decline in growth rate with simultaneous enhancement of death rate constants. The duration of the lag phase was found to increase with Ag-NP concentration. SEM showed morphological changes, while fluorescence microscopy using DAPI showed compaction of DNA for Ag-NP-treated bacterial cells. E. coli was found to be more susceptible to Ag-NP as compared to S. aureus. The modified Gompertz model, using a death term, was found to be useful in explaining the non-monotonic nature of the growth curve. The modified Gompertz model derived here is of general nature and can be used to study any microbial growth kinetics under the influence of antimicrobial agents. Copyright © 2014 Elsevier B.V. All rights reserved.
Revisiting the Landau fluid closure.
NASA Astrophysics Data System (ADS)
Hunana, P.; Zank, G. P.; Webb, G. M.; Adhikari, L.
2017-12-01
Advanced fluid models that are much closer to the full kinetic description than the usual magnetohydrodynamic description are a very useful tool for studying astrophysical plasmas and for interpreting solar wind observational data. The development of advanced fluid models that contain certain kinetic effects is complicated and has attracted much attention over the past years. Here we focus on fluid models that incorporate the simplest possible forms of Landau damping, derived from linear kinetic theory expanded about a leading-order (gyrotropic) bi-Maxwellian distribution function f_0, under the approximation that the perturbed distribution function f_1 is gyrotropic as well. Specifically, we focus on various Pade approximants to the usual plasma response function (and to the plasma dispersion function) and examine possibilities that lead to a closure of the linear kinetic hierarchy of fluid moments. We present re-examination of the simplest Landau fluid closures.
NASA Astrophysics Data System (ADS)
Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun
2018-04-01
A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.
Onal, Yunus
2006-10-11
Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl(2). Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as DeltaG, DeltaH and DeltaS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process.
NASA Astrophysics Data System (ADS)
Li, Min; Meng, Xiaojing; Yuan, Jinhai; Deng, Wenwen; Liang, Xiuke
2018-01-01
In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of various experimental parameters such as pH value, contact time and initial concentration on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. Equilibrium isotherms for the adsorption of cadmium (II) ion were analyzed by Freundlich and Langmuir isotherm models, the results indicate that Langmuir isotherm model was found to be credible to express the data for cadmium (II) ion from aqueous solution onto the SG-MCF. Various thermodynamics parameters of the adsorption process, including free energy of adsorption (ΔG0 ), the enthalpy of adsorption (ΔH0 ) and standard entropy changes (ΔS0 ), were calculated to predict the nature of adsorption. The positive value of the enthalpy change and the negative value of free energy change indicate that the process is endothermic and spontaneous process.
Kinetic model of water vapour adsorption by gluten-free starch
NASA Astrophysics Data System (ADS)
Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena
2015-01-01
This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.
Ito, Hiroshi; Ikoma, Yoko; Seki, Chie; Kimura, Yasuyuki; Kawaguchi, Hiroshi; Takuwa, Hiroyuki; Ichise, Masanori; Suhara, Tetsuya; Kanno, Iwao
2017-05-01
Objectives In PET studies for neuroreceptors, tracer kinetics are described by the two-tissue compartment model (2-TCM), and binding parameters, including the total distribution volume (V T ), non-displaceable distribution volume (V ND ), and binding potential (BP ND ), can be determined from model parameters estimated by kinetic analysis. The stability of binding parameter estimates depends on the kinetic characteristics of radioligands. To describe these kinetic characteristics, we previously developed a two-phase graphic plot analysis in which V ND and V T can be estimated from the x-intercept of regression lines for early and delayed phases, respectively. In this study, we applied this graphic plot analysis to visual evaluation of the kinetic characteristics of radioligands for neuroreceptors, and investigated a relationship between the shape of these graphic plots and the stability of binding parameters estimated by the kinetic analysis with 2-TCM in simulated brain tissue time-activity curves (TACs) with various binding parameters. Methods 90-min TACs were generated with the arterial input function and assumed kinetic parameters according to 2-TCM. Graphic plot analysis was applied to these simulated TACs, and the curvature of the plot for each TAC was evaluated visually. TACs with several noise levels were also generated with various kinetic parameters, and the bias and variation of binding parameters estimated by kinetic analysis were calculated in each TAC. These bias and variation were compared with the shape of graphic plots. Results The graphic plots showed larger curvature for TACs with higher specific binding and slower dissociation of specific binding. The quartile deviations of V ND and BP ND determined by kinetic analysis were smaller for radioligands with slow dissociation. Conclusions The larger curvature of graphic plots for radioligands with slow dissociation might indicate a stable determination of V ND and BP ND by kinetic analysis. For investigation of the kinetics of radioligands, such kinetic characteristics should be considered.
Estarellas Martin, Carolina; Seira Castan, Constantí; Luque Garriga, F Javier; Bidon-Chanal Badia, Axel
2015-10-01
Residue conformational changes and internal cavity migration processes play a key role in regulating the kinetics of ligand migration and binding events in globins. Molecular dynamics simulations have demonstrated their value in the study of these processes in different haemoglobins, but derivation of kinetic data demands the use of more complex techniques like enhanced sampling molecular dynamics methods. This review discusses the different methodologies that are currently applied to study the ligand migration process in globins and highlight those specially developed to derive kinetic data. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fugit, Kyle D; Anderson, Bradley D
2017-04-01
Actively loaded liposomal formulations of anticancer agents have been widely explored due to their high drug encapsulation efficiencies and prolonged drug retention. Mathematical models to predict and optimize drug loading and release kinetics from these nanoparticle formulations would be useful in their development and may allow researchers to tune release profiles. Such models must account for the driving forces as influenced by the physicochemical properties of the drug and the microenvironment, and the liposomal barrier properties. This study employed mechanistic modeling to describe the active liposomal loading and release kinetics of the anticancer agent topotecan (TPT). The model incorporates ammonia transport resulting in generation of a pH gradient, TPT dimerization, TPT lactone ring-opening and -closing interconversion kinetics, chloride transport, and transport of TPT-chloride ion-pairs to describe the active loading and release kinetics of TPT in the presence of varying chloride concentrations. Model-based predictions of the kinetics of active loading at varying loading concentrations of TPT and release under dynamic dialysis conditions were in reasonable agreement with experiments. These findings identify key attributes to consider in optimizing and predicting loading and release of liposomal TPT that may also be applicable to liposomal formulations of other weakly basic pharmaceuticals. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Macedo, Jeremias de Souza; da Costa Júnior, Nivan Bezerra; Almeida, Luis Eduardo; Vieira, Eunice Fragoso da Silva; Cestari, Antonio Reinaldo; Gimenez, Iara de Fátima; Villarreal Carreño, Neftali Lênin; Barreto, Ledjane Silva
2006-06-15
Mesoporous activated carbon has been prepared from coconut coir dust as support for adsorption of some model dye molecules from aqueous solutions. The methylene blue (MB) and remazol yellow (RY) molecules were chosen for study of the adsorption capacity of cationic and anionic dyes onto prepared activated carbon. The adsorption kinetics was studied with the Lagergren first- and pseudo-second-order kinetic models as well as the intraparticle diffusion model. The results for both dyes suggested a multimechanism sorption process. The adsorption mechanisms in the systems dyes/AC follow pseudo-second-order kinetics with a significant contribution of intraparticle diffusion. The samples simultaneously present acidic and basic sites able to act as anchoring sites for basic and acidic dyes, respectively. Calorimetric studies reveal that dyes/AC interaction forces are correlated with the pH of the solution, which can be related to the charge distribution on the AC surface. These AC samples also exhibited very short equilibrium times for the adsorption of both dyes, which is an economically favorable requisite for the activated carbon described in this work, in addition to the local abundance of the raw material.
Espinosa, G; Rodríguez, R; Gil, J M; Suzuki-Vidal, F; Lebedev, S V; Ciardi, A; Rubiano, J G; Martel, P
2017-03-01
Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.
NASA Astrophysics Data System (ADS)
Espinosa, G.; Rodríguez, R.; Gil, J. M.; Suzuki-Vidal, F.; Lebedev, S. V.; Ciardi, A.; Rubiano, J. G.; Martel, P.
2017-03-01
Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.
Singh, Jasmeet; Ranganathan, Radha; Hajdu, Joseph
2008-12-25
Activity at micellar interfaces of bacterial phospholipase C from Bacillus cereus on phospholipids solubilized in micelles was investigated with the goal of elucidating the role of the interface microstructure and developing further an existing kinetic model. Enzyme kinetics and physicochemical characterization of model substrate aggregates were combined, thus enabling the interpretation of kinetics in the context of the interface. Substrates were diacylphosphatidylcholine of different acyl chain lengths in the form of mixed micelles with dodecyldimethylammoniopropanesulfonate. An early kinetic model, reformulated to reflect the interfacial nature of the kinetics, was applied to the kinetic data. A better method of data treatment is proposed, use of which makes the presence of microstructure effects quite transparent. Models for enzyme-micelle binding and enzyme-lipid binding are developed, and expressions incorporating the microstructural properties are derived for the enzyme-micelle dissociation constant K(s) and the interface Michaelis-Menten constant, K(M). Use of these expressions in the interface kinetic model brings excellent agreement between the kinetic data and the model. Numerical values for the thermodynamic and kinetic parameters are determined. Enzyme-lipid binding is found to be an activated process with an acyl chain length dependent free energy of activation that decreases with micelle lipid molar fraction with a coefficient of about -15RT and correlates with the tightness of molecular packing in the substrate aggregate. Thus, the physical insight obtained includes a model for the kinetic parameters that shows that these parameters depend on the substrate concentration and acyl chain length of the lipid. Enzyme-micelle binding is indicated to be hydrophobic and solvent mediated with a dissociation constant of 1.2 mM.
Adsorption kinetic and desorption studies of Cd2+ on Multi-Carboxylic-Functionalized Silica Gel
NASA Astrophysics Data System (ADS)
Li, Min; Wei, Jian; Meng, Xiaojing; Wu, Zhuqiang; Liang, Xiuke
2018-01-01
In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed cadmium (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of cadmium (II) ion didn’t present an obvious decrease after five cycles.
Adsorption kinetic and desorption studies of Cu2+ on Multi-Carboxylic-Functionalized Silica Gel
NASA Astrophysics Data System (ADS)
Li, Min; Meng, Xiaojing; Liu, Yushuang; Hu, Xinju; Liang, Xiuke
2018-01-01
In the present study, the adsorption behavior of copper (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of copper (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed copper (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of copper (II) ion didn’t present an obvious decrease after five cycles.
A kinetics database and scripts for PHREEQC
NASA Astrophysics Data System (ADS)
Hu, B.; Zhang, Y.; Teng, Y.; Zhu, C.
2017-12-01
Kinetics of geochemical reactions has been increasingly used in numerical models to simulate coupled flow, mass transport, and chemical reactions. However, the kinetic data are scattered in the literature. To assemble a kinetic dataset for a modeling project is an intimidating task for most. In order to facilitate the application of kinetics in geochemical modeling, we assembled kinetics parameters into a database for the geochemical simulation program, PHREEQC (version 3.0). Kinetics data were collected from the literature. Our database includes kinetic data for over 70 minerals. The rate equations are also programmed into scripts with the Basic language. Using the new kinetic database, we simulated reaction path during the albite dissolution process using various rate equations in the literature. The simulation results with three different rate equations gave difference reaction paths at different time scale. Another application involves a coupled reactive transport model simulating the advancement of an acid plume in an acid mine drainage site associated with Bear Creek Uranium tailings pond. Geochemical reactions including calcite, gypsum, and illite were simulated with PHREEQC using the new kinetic database. The simulation results successfully demonstrated the utility of new kinetic database.
Studies of Methane Counterflow Flames at Low Pressures
NASA Astrophysics Data System (ADS)
Burrell, Robert Roe
Methane is the smallest hydrocarbon molecule, the fuel most widely studied in fundamental flame structure studies, and a major component of natural gas. Despite many decades of research into the fundamental chemical kinetics involved in methane oxidation, ongoing advancements in research suggest that more progress can be made. Though practical combustors of industrial and commercial significance operate at high pressures and turbulent flow conditions, fundamental understanding of combustion chemistry in flames is more readily obtained for low pressure and laminar flow conditions. Measurements were performed from 1 to 0.1 atmospheres for premixed methane/air and non-premixed methane-nitrogen/oxygen flames in a counterflow. Comparative modeling with quasi-one-dimensional strained flame codes revealed bias-induced errors in measured velocities up to 8% at 0.1 atmospheres due to tracer particle phase velocity slip in the low density gas reacting flow. To address this, a numerically-assisted correction scheme consisting of direct simulation of the particle phase dynamics in counterflow was implemented. Addition of reactions describing the prompt dissociation of formyl radicals to an otherwise unmodified USC Mech II kinetic model was found to enhance computed flame reactivity and substantially improve the predictive capability of computed results for measurements at the lowest pressures studied. Yet, the same modifications lead to overprediction of flame data at 1 atmosphere where results from the unmodified USC Mech II kinetic mechanism agreed well with ambient pressure flame data. The apparent failure of a single kinetic model to capture pressure dependence in methane flames motivates continued skepticism regarding the current understanding of pressure dependence in kinetic models, even for the simplest fuels.
Kinetic Modeling of a Heterogeneous Fenton Oxidative Treatment of Petroleum Refining Wastewater
Basheer Hasan, Diya'uddeen; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri
2014-01-01
The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k 2′), their final oxidation step (k 1′), and the direct conversion to endproducts step (k 3′) were 10.12, 3.78, and 0.24 min−1 for GKM; 0.98, 0.98, and nil min−1 for GLKM; and nil, nil, and >0.005 min−1 for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics. PMID:24592152
3D Hall MHD-EPIC Simulations of Ganymede's Magnetosphere
NASA Astrophysics Data System (ADS)
Zhou, H.; Toth, G.; Jia, X.
2017-12-01
Fully kinetic modeling of a complete 3D magnetosphere is still computationally expensive and not feasible on current computers. While magnetohydrodynamic (MHD) models have been successfully applied to a wide range of plasma simulation, they cannot capture some important kinetic effects. We have recently developed a new modeling tool to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) magnetohydrodynamic model. This results in a kinetic model of the regions where kinetic effects are important. In addition to the MHD-EPIC modeling of the magnetosphere, the improved model presented here is now able to represent the moon as a resistive body. We use a stretched spherical grid with adaptive mesh refinement (AMR) to capture the resistive body and its boundary. A semi-implicit scheme is employed for solving the magnetic induction equation to allow time steps that are not limited by the resistivity. We have applied the model to Ganymede, the only moon in the solar system known to possess a strong intrinsic magnetic field, and included finite resistivity beneath the moon`s surface to model the electrical properties of the interior in a self-consistent manner. The kinetic effects of electrons and ions on the dayside magnetopause and tail current sheet are captured with iPIC3D. Magnetic reconnections under different upstream background conditions of several Galileo flybys are simulated to study the global reconnection rate and the magnetospheric dynamics
NASA Astrophysics Data System (ADS)
Rout, Bapin Kumar; Brooks, Geoffrey; Akbar Rhamdhani, M.; Li, Zushu; Schrama, Frank N. H.; Overbosch, Aart
2018-06-01
In a previous study by the authors (Rout et al. in Metall Mater Trans B 49:537-557, 2018), a dynamic model for the BOF, employing the concept of multizone kinetics was developed. In the current study, the kinetics of decarburization reaction is investigated. The jet impact and slag-metal emulsion zones were identified to be primary zones for carbon oxidation. The dynamic parameters in the rate equation of decarburization such as residence time of metal drops in the emulsion, interfacial area evolution, initial size, and the effects of surface-active oxides have been included in the kinetic rate equation of the metal droplet. A modified mass-transfer coefficient based on the ideal Langmuir adsorption equilibrium has been proposed to take into account the surface blockage effects of SiO2 and P2O5 in slag on the decarburization kinetics of a metal droplet in the emulsion. Further, a size distribution function has been included in the rate equation to evaluate the effect of droplet size on reaction kinetics. The mathematical simulation indicates that decarburization of the droplet in the emulsion is a strong function of the initial size and residence time. A modified droplet generation rate proposed previously by the authors has been used to estimate the total decarburization rate by slag-metal emulsion. The model's prediction shows that about 76 pct of total carbon is removed by reactions in the emulsion, and the remaining is removed by reactions at the jet impact zone. The predicted bath carbon by the model has been found to be in good agreement with the industrially measured data.
NASA Astrophysics Data System (ADS)
Rout, Bapin Kumar; Brooks, Geoffrey; Akbar Rhamdhani, M.; Li, Zushu; Schrama, Frank N. H.; Overbosch, Aart
2018-03-01
In a previous study by the authors (Rout et al. in Metall Mater Trans B 49:537-557, 2018), a dynamic model for the BOF, employing the concept of multizone kinetics was developed. In the current study, the kinetics of decarburization reaction is investigated. The jet impact and slag-metal emulsion zones were identified to be primary zones for carbon oxidation. The dynamic parameters in the rate equation of decarburization such as residence time of metal drops in the emulsion, interfacial area evolution, initial size, and the effects of surface-active oxides have been included in the kinetic rate equation of the metal droplet. A modified mass-transfer coefficient based on the ideal Langmuir adsorption equilibrium has been proposed to take into account the surface blockage effects of SiO2 and P2O5 in slag on the decarburization kinetics of a metal droplet in the emulsion. Further, a size distribution function has been included in the rate equation to evaluate the effect of droplet size on reaction kinetics. The mathematical simulation indicates that decarburization of the droplet in the emulsion is a strong function of the initial size and residence time. A modified droplet generation rate proposed previously by the authors has been used to estimate the total decarburization rate by slag-metal emulsion. The model's prediction shows that about 76 pct of total carbon is removed by reactions in the emulsion, and the remaining is removed by reactions at the jet impact zone. The predicted bath carbon by the model has been found to be in good agreement with the industrially measured data.
Computational study of RNA folding kinetics and thermodynamics
NASA Astrophysics Data System (ADS)
Morgan, Steven Robert
RNA in its many forms is involved in the processes of protein manufacture, gene splicing, catalysis and gene regulation. It is also the store of genetic information in some viruses. The function of the RNA is determined by its structure, and it is the purpose of this thesis to investigate kinetic and thermodynamic properties of RNA secondary structures in order to obtain a better understanding of their formation and function. Our main tenet is that kinetic formation of RNA structure is necessary to explain features found in natural RNA structures, as well as aspects of the biological function of RNA. Firstly we show that examination of the energies of fragments of RNA secondary structure provides evidence for kinetic formation of structure. Local regions of RNA of length less than about 100 nucleotides adopt a conformation with energy near or equal to the minimum possible for those regions, whilst the energies of larger domains are much further from the their respective minima. This is consistent with the patterns that would be expected if RNA structure is folded Idneticatic during transcription. A Monte-Carlo algorithm is then used to model the kinetic folding of RNA during transcriptional growth. The algorithm is capable of finding the correct structure of a natural RNA for which the minimum free energy approach is unsuccessful. In the viral phage MS2 Idneticatic formed RNA structure plays an important role in the regulation of gene expression. The folding algorithm can accurately model this by IdneticaUy controlling access to the gene initiation region. The algorithm is also successfully used to model the control of replication in the ColEl plasmid. Taking a different approach, we then use a simplified model of RNA secondary structure to investigate the size of energy barriers between degenerate minimum energy structures. This model has much in common with physical systems such as spin glasses, and in fact shows similar behaviour to these systems in that energy barriers between structures grow quickly with the length of the RNA sequence. These barriers will serve to trap RNA in non-optimal structures. Together these studies demonstrate the necessity of studying RNA secondary structure from a kinetic point of view, and provide clear directions in which further work may be taken. Kinetic models of RNA secondary structure should continue to prove useful in modelling the structure and function of RNA.
Robust fitting for neuroreceptor mapping.
Chang, Chung; Ogden, R Todd
2009-03-15
Among many other uses, positron emission tomography (PET) can be used in studies to estimate the density of a neuroreceptor at each location throughout the brain by measuring the concentration of a radiotracer over time and modeling its kinetics. There are a variety of kinetic models in common usage and these typically rely on nonlinear least-squares (LS) algorithms for parameter estimation. However, PET data often contain artifacts (such as uncorrected head motion) and so the assumptions on which the LS methods are based may be violated. Quantile regression (QR) provides a robust alternative to LS methods and has been used successfully in many applications. We consider fitting various kinetic models to PET data using QR and study the relative performance of the methods via simulation. A data adaptive method for choosing between LS and QR is proposed and the performance of this method is also studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rather, Sami ullah, E-mail: rathersami@gmail.com; Taimoor, Aqeel Ahmad; Muhammad, Ayyaz
Highlights: • Hydrogen adsorption comparisons of commercial, milled, and MgH{sub 2} composite. • Hydrogen adsorption capacity and kinetics improves tremendously by CNT embedding. • Unsteady state modeling and simulation of adsorption kinetics. - Abstract: Magnesium hydride (MgH{sub 2})–carbon nanotubes (CNT) composite has been prepared by high-energy ball milling method and their experimental and kinetic hydrogen adsorption studies was assessed. Hydrogen adsorption studies were performed by Sievert’s volumetric apparatus and kinetic evaluation was conducted by surface chemistry and Langmuir–Hinshelwood–Hougen–Watson (LHHW) type mode. Powder X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were performed. Hydrogen adsorption capacity of commercial MgH{submore » 2}, milled MgH{sub 2}, and MgH{sub 2}/CNT composite are found to be 0.04, 0.057, and 0.059 g (H{sub 2})/g (MgH{sub 2}) at 673 K and hydrogen pressure of 4.6 MPa. Addition of 5 wt% of CNTs to MgH{sub 2} proved to be very critical to enhance hydrogen adsorption as well as to improve its kinetics. It was observed that hydrogen adsorption is not in quasi-state equilibrium and is modeled using kinetic rate laws.« less
Waldeck, H.; Kao, W. J.
2013-01-01
Characterization of the degradation mechanisms and resulting products of biodegradable materials is critical in understanding the behavior of the material including solute transport and biological response. Previous mathematical analyses of a semi-interpenetrating network (sIPN) containing both labile gelatin and a stable cross-linked poly(ethylene glycol) (PEG) network found that diffusion-based models alone were unable to explain the release kinetics of solutes from the system. In this study, degradation of the sIPN and its effect on solute release and swelling kinetics were investigated. The kinetics of the primary mode of degradation, gelatin dissolution, was dependent on temperature, preparation methods, PEGdA and gelatin concentration, and the weight ratio between the gelatin and PEG. The gelatin dissolution rate positively correlated with both matrix swelling and the release kinetics of high-molecular-weight model compound, FITC-dextran. Coupled with previous in vitro studies, the kinetics of sIPN degradation provided insights into the time-dependent changes in cellular response including adhesion and protein expression. These results provide a facile guide in material formulation to control the delivery of high-molecular-weight compounds with concomitant modulation of cellular behavior. PMID:21801489
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Futrell, Jean H.
2015-02-01
We introduce a new approach for studying the kinetics of large ion fragmentation in the gas phase by coupling surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer with resonant ejection of selected fragment ions using a relatively short (5 ms) ejection pulse. The approach is demonstrated for singly protonated angiotensin III ions excited by collisions with a self-assembled monolayer of alkylthiol on gold (HSAM). The overall decomposition rate and rate constants of individual reaction channels are controlled by varying the kinetic energy of the precursor ion in a range of 65–95 eV. The kinetics of peptidemore » fragmentation are probed by varying the delay time between resonant ejection and fragment ion detection at a constant total reaction time. RRKM modeling indicates that the shape of the kinetics plots is strongly affected by the shape and position of the energy deposition function (EDF) describing the internal energy distribution of the ion following ion-surface collision. Modeling of the kinetics data provides detailed information on the shape of the EDF and energy and entropy effects of individual reaction channels.« less
, reaction kinetics, computational modeling, photochemistry, and molecular spectroscopy. Nimlos has served as Chemical reaction energetics and kinetics Biomass pyrolysis and gasification Heterogeneous catalysis in zeolites Quantum modeling and kinetic modeling of reaction Molecular dynamics modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dash, Satyakam; Khodayari, Ali; Zhou, Jilai
Background. Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. Results. In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances,more » and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis–Menten kinetic parameters. Conclusions. The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k-ctherm118 and suggest additional experiments to improve kinetic model prediction fidelity. Overall, the study quantitatively assesses the advantages of EM-based kinetic modeling towards improved prediction of C. thermocellum metabolism and develops a predictive kinetic model which can be used to design biofuel-overproducing strains.« less
Dash, Satyakam; Khodayari, Ali; Zhou, Jilai; ...
2017-05-02
Background. Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. Results. In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances,more » and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis–Menten kinetic parameters. Conclusions. The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k-ctherm118 and suggest additional experiments to improve kinetic model prediction fidelity. Overall, the study quantitatively assesses the advantages of EM-based kinetic modeling towards improved prediction of C. thermocellum metabolism and develops a predictive kinetic model which can be used to design biofuel-overproducing strains.« less
Rapid photogeneration of silver nanoparticles in ethanolic solution: a kinetic study.
Yahyaei, Bahareh; Azizian, Saeid
2013-01-15
Ag nanoparticles have been synthesized via UV irradiation of ethanolic solution of AgNO3 in presence of pluronic F127 surfactant. This study is aimed at developing a rapid, simple and green method to prepare Ag nanoparticles and understanding its generation kinetics. The formation dependency of silver nanoparticles on the concentration of reactants, UV exposure time and temperature has been investigated by using UV-vis spectroscopy. The 2D map technique has been used for the first time to estimate the switching time between the nucleation and growth of Ag nanoparticles. Appropriate kinetic models were used for modelling of both stages. Copyright © 2012 Elsevier B.V. All rights reserved.
Leypoldt, John K; Agar, Baris U; Akonur, Alp; Gellens, Mary E; Culleton, Bruce F
2012-11-01
Mathematical models of phosphorus kinetics and mass balance during hemodialysis are in early development. We describe a theoretical phosphorus steady state mass balance model during hemodialysis based on a novel pseudo one-compartment kinetic model. The steady state mass balance model accounted for net intestinal absorption of phosphorus and phosphorus removal by both dialysis and residual kidney function. Analytical mathematical solutions were derived to describe time-dependent intradialytic and interdialytic serum phosphorus concentrations assuming hemodialysis treatments were performed symmetrically throughout a week. Results from the steady state phosphorus mass balance model are described for thrice weekly hemodialysis treatment prescriptions only. The analysis predicts 1) a minimal impact of dialyzer phosphorus clearance on predialysis serum phosphorus concentration using modern, conventional hemodialysis technology, 2) variability in the postdialysis-to-predialysis phosphorus concentration ratio due to differences in patient-specific phosphorus mobilization, and 3) the importance of treatment time in determining the predialysis serum phosphorus concentration. We conclude that a steady state phosphorus mass balance model can be developed based on a pseudo one-compartment kinetic model and that predictions from this model are consistent with previous clinical observations. The predictions from this mass balance model are theoretical and hypothesis-generating only; additional prospective clinical studies will be required for model confirmation.
Kinetic model for astaxanthin aggregation in water-methanol mixtures
NASA Astrophysics Data System (ADS)
Giovannetti, Rita; Alibabaei, Leila; Pucciarelli, Filippo
2009-07-01
The aggregation of astaxanthin in hydrated methanol was kinetically studied in the temperature range from 10 °C to 50 °C, at different astaxanthin concentrations and solvent composition. A kinetic model for the formation and transformation of astaxanthin aggregated has been proposed. Spectrophotometric studies showed that monomeric astaxanthin decayed to H-aggregates that after-wards formed J-aggregates when water content was 50% and the temperature lower than 20 °C; at higher temperatures, very stable J-aggregates were formed directly. Monomer formed very stable H-aggregates when the water content was greater than 60%; in these conditions H-aggregates decayed into J-aggregates only when the temperature was at least 50 °C. Through these findings it was possible to establish that the aggregation reactions took place through a two steps consecutive reaction with first order kinetic constants and that the values of these depended on the solvent composition and temperature.
Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture
Buehler, Edward A.; Mesbah, Ali
2016-01-01
Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663
Chatterjee, Abhijit; Bhattacharya, Swati
2015-09-21
Several studies in the past have generated Markov State Models (MSMs), i.e., kinetic models, of biomolecular systems by post-analyzing long standard molecular dynamics (MD) calculations at the temperature of interest and focusing on the maximally ergodic subset of states. Questions related to goodness of these models, namely, importance of the missing states and kinetic pathways, and the time for which the kinetic model is valid, are generally left unanswered. We show that similar questions arise when we generate a room-temperature MSM (denoted MSM-A) for solvated alanine dipeptide using state-constrained MD calculations at higher temperatures and Arrhenius relation — the main advantage of such a procedure being a speed-up of several thousand times over standard MD-based MSM building procedures. Bounds for rate constants calculated using probability theory from state-constrained MD at room temperature help validate MSM-A. However, bounds for pathways possibly missing in MSM-A show that alternate kinetic models exist that produce the same dynamical behaviour at short time scales as MSM-A but diverge later. Even in the worst case scenario, MSM-A is found to be valid longer than the time required to generate it. Concepts introduced here can be straightforwardly extended to other MSM building techniques.
Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere
NASA Astrophysics Data System (ADS)
Chen, Zhiyuan; Morita, Kazuki
2018-03-01
We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.
Kurata, Hiroyuki; Sugimoto, Yurie
2018-02-01
Many kinetic models of Escherichia coli central metabolism have been built, but few models accurately reproduced the dynamic behaviors of wild type and multiple genetic mutants. In 2016, our latest kinetic model improved problems of existing models to reproduce the cell growth and glucose uptake of wild type, ΔpykA:pykF and Δpgi in a batch culture, while it overestimated the glucose uptake and cell growth rates of Δppc and hardly captured the typical characteristics of the glyoxylate and TCA cycle fluxes for Δpgi and Δppc. Such discrepancies between the simulated and experimental data suggested biological complexity. In this study, we overcame these problems by assuming critical mechanisms regarding the OAA-regulated isocitrate dehydrogenase activity, aceBAK gene regulation and growth suppression. The present model accurately predicts the extracellular and intracellular dynamics of wild type and many gene knockout mutants in batch and continuous cultures. It is now the most accurate, detailed kinetic model of E. coli central carbon metabolism and will contribute to advances in mathematical modeling of cell factories. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere
NASA Astrophysics Data System (ADS)
Chen, Zhiyuan; Morita, Kazuki
2018-06-01
We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.
Kinetics of Methylmercury Production Revisited
Olsen, Todd A.; Muller, Katherine A.; Painter, Scott L.; ...
2018-01-27
Laboratory measurements of the biologically mediated methylation of mercury (Hg) to the neurotoxin monomethylmercury (MMHg) often exhibit kinetics that are inconsistent with first-order kinetic models. Using time-resolved measurements of filter passing Hg and MMHg during methylation/demethylation assays, a multisite kinetic sorption model, and reanalyses of previous assays, we show in this paper that competing kinetic sorption reactions can lead to time-varying availability and apparent non-first-order kinetics in Hg methylation and MMHg demethylation. The new model employing a multisite kinetic sorption model for Hg and MMHg can describe the range of behaviors for time-resolved methylation/demethylation data reported in the literature includingmore » those that exhibit non-first-order kinetics. Additionally, we show that neglecting competing sorption processes can confound analyses of methylation/demethylation assays, resulting in rate constant estimates that are systematically biased low. Finally, simulations of MMHg production and transport in a hypothetical periphyton biofilm bed illustrate the implications of our new model and demonstrate that methylmercury production may be significantly different than projected by single-rate first-order models.« less
Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol.
Vaden, Timothy D; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla
2011-02-08
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of "spectator" organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models.
Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol
Vaden, Timothy D.; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla
2011-01-01
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of “spectator” organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models. PMID:21262848
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willemin, Marie-Emilie; Lumen, Annie, E-mail: Anni
Thyroid homeostasis can be disturbed due to thiocyanate exposure from the diet or tobacco smoke. Thiocyanate inhibits both thyroidal uptake of iodide, via the sodium-iodide symporter (NIS), and thyroid hormone (TH) synthesis in the thyroid, via thyroid peroxidase (TPO), but the mode of action of thiocyanate is poorly quantified in the literature. The characterization of the link between intra-thyroidal thiocyanate concentrations and dose of exposure is crucial for assessing the risk of thyroid perturbations due to thiocyanate exposure. We developed a PBPK model for thiocyanate that describes its kinetics in the whole-body up to daily doses of 0.15 mmol/kg, withmore » a mechanistic description of the thyroidal kinetics including NIS, passive diffusion, and TPO. The model was calibrated in a Bayesian framework using published studies in rats. Goodness-of-fit was satisfactory, especially for intra-thyroidal thiocyanate concentrations. Thiocyanate kinetic processes were quantified in vivo, including the metabolic clearance by TPO. The passive diffusion rate was found to be greater than NIS-mediated uptake rate. The model captured the dose-dependent kinetics of thiocyanate after acute and chronic exposures. Model behavior was evaluated using a Morris screening test. The distribution of thiocyanate into the thyroid was found to be determined primarily by the partition coefficient, followed by NIS and passive diffusion; the impact of the latter two mechanisms appears to increase at very low doses. Extrapolation to humans resulted in good predictions of thiocyanate kinetics during chronic exposure. The developed PBPK model can be used in risk assessment to quantify dose-response effects of thiocyanate on TH. - Highlights: • A PBPK model of thiocyanate (SCN{sup −}) was calibrated in rats in a Bayesian framework. • The intra-thyroidal kinetics of thiocyanate including NIS and TPO was modeled. • Passive diffusion rate for SCN{sup −} seemed to be greater than the NIS-mediated uptake. • The dose-dependent kinetics of SCN{sup −} was captured after an acute and chronic exposure. • The PBPK model of thiocyanate was successfully extrapolated to humans.« less
NASA Astrophysics Data System (ADS)
Ganje, Mohammad; Jafari, Seid Mahdi; Farzaneh, Vahid; Malekjani, Narges
2018-06-01
To study the kinetics of color degradation, the tomato paste was designed to be processed at three different temperatures including 60, 70 and 80 °C for 25, 50, 75 and 100 min. a/b ratio, total color difference, saturation index and hue angle were calculated with the use of three main color parameters including L (lightness), a (redness-greenness) and b (yellowness-blueness) values. Kinetics of color degradation was developed by Arrhenius equation and the alterations were modelled with the use of response surface methodology (RSM). It was detected that all of the studied responses followed a first order reaction kinetics with an exception in TCD parameter (zeroth order). TCD and a/b respectively with the highest and lowest activation energy presented the highest sensitivity to the temperature alterations. The maximum and minimum rates of alterations were observed by TCD and b parameters, respectively. It was obviously determined that all of the studied parameters (responses) were affected by the selected independent parameters.
Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas
2014-01-01
Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.
Dancik, Yuri; Bigliardi, Paul L; Bigliardi-Qi, Mei
2015-12-01
Animal-based developmental and reproductive toxicological studies involving skin exposure rarely incorporate information on skin permeation kinetics. For practical reasons, animal studies cannot investigate the many factors which can affect human skin permeation and systemic uptake kinetics in real-life scenarios. Traditional route-to-route extrapolation is based on the same types of experiments and requires assumptions regarding route similarity. Pharmacokinetic modeling based on skin physiology and structure is the most efficient way to incorporate the variety of intrinsic skin and exposure-dependent parameters occurring in clinical and occupational settings into one framework. Physiologically-based pharmacokinetic models enable the integration of available in vivo, in vitro and in silico data to quantitatively predict the kinetics of uptake at the site of interest, as needed for 21st century toxicology and risk assessment. As demonstrated herein, proper interpretation and integration of these data is a multidisciplinary endeavor requiring toxicological, risk assessment, mathematical, pharmaceutical, biological and dermatological expertise. Copyright © 2015 Elsevier Inc. All rights reserved.
Rodríguez, Araceli; García, Juan; Ovejero, Gabriel; Mestanza, María
2009-12-30
Activated carbon was utilized as adsorbent to remove anionic dye, Orange II (OII), and cationic dye, Methylene blue (MB), from aqueous solutions by adsorption. Batch experiments were conducted to study the effects of temperature (30-65 degrees C), initial concentration of adsorbate (300-500 mg L(-1)) and pH (3.0-9.0) on dyes adsorption. Equilibrium adsorption isotherms and kinetics were investigated. The equilibrium experimental data were analyzed by the Langmuir, Freundlich, Toth and Redlich-Peterson models. The kinetic data obtained with different carbon mass were analyzed using a pseudo-first order, pseudo-second order, intraparticle diffusion, Bangham and Chien-Clayton equations. The best results were achieved with the Langmuir isotherm equilibrium model and with the pseudo-second order kinetic model. The activated carbon was found to be very effective as adsorbent for MB and OII from aqueous solutions.
Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives
NASA Astrophysics Data System (ADS)
Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark
2011-06-01
Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.
Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.
Deepanraj, B; Sivasubramanian, V; Jayaraj, S
2015-11-01
In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.
A kinetic study of struvite precipitation recycling technology with NaOH/Mg(OH)2 addition.
Yu, Rongtai; Ren, Hongqiang; Wang, Yanru; Ding, Lili; Geng, Jingji; Xu, Ke; Zhang, Yan
2013-09-01
Struvite precipitation recycling technology is received wide attention in removal ammonium and phosphate out of wastewater. While past study focused on process efficiency, and less on kinetics. The kinetic study is essential for the design and optimization in the application of struvite precipitation recycling technology. The kinetics of struvite with NaOH/Mg(OH)2 addition were studied by thermogravimetry analysis with three rates (5, 10, 20 °C/min), using Friedman method and Ozawa-Flynn-Wall method, respectively. Degradation process of struvite with NaOH/Mg(OH)2 addition was three steps. The stripping of ammonia from struvite was mainly occurred at the first step. In the first step, the activation energy was about 70 kJ/mol, which has gradually declined as the reaction progress. By model fitting studies, the proper mechanism function for struvite decomposition process with NaOH/Mg(OH)2 addition was revealed. The mechanism function was f(α)=α(α)-(1-α)(n), a Prout-Tompkins nth order (Bna) model. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kinetic study of nickel laterite reduction roasting by palm kernel shell charcoal
NASA Astrophysics Data System (ADS)
Sugiarto, E.; Putera, A. D. P.; Petrus, H. T. B. M.
2017-05-01
Demand to process nickel-bearing laterite ore increase as continuous depletion of high-grade nickel-bearing sulfide ore takes place. Due to its common nickel association with iron, processing nickel laterite ore into nickel pig iron (NPI) has been developed by some industries. However, to achieve satisfying nickel recoveries, the process needs massive high-grade metallurgical coke consumption. Concerning on the sustainability of coke supply and positive carbon emission, reduction of nickel laterite ore using biomass-based reductor was being studied.In this study, saprolitic nickel laterite ore was being reduced by palm kernel shell charcoal at several temperatures (800-1000 °C). Variation of biomass-laterite composition was also conducted to study the reduction mechanism. X-ray diffraction and gravimetry analysis were applied to justify the phenomenon and predict kinetic model of the reduction. Results of this study provide information that palm kernel shell charcoal has similar reducing result compared with the conventional method. Reduction, however, was carried out by carbon monoxide rather than solid carbon. Regarding kinetics, Ginstling-Brouhnstein kinetic model provides satisfying results to predict the reduction phenomenon.
Collective thermal transport in pure and alloy semiconductors.
Torres, Pol; Mohammed, Amr; Torelló, Àlvar; Bafaluy, Javier; Camacho, Juan; Cartoixà, Xavier; Shakouri, Ali; Alvarez, F Xavier
2018-03-07
Conventional models for predicting thermal conductivity of alloys usually assume a pure kinetic regime as alloy scattering dominates normal processes. However, some discrepancies between these models and experiments at very small alloy concentrations have been reported. In this work, we use the full first principles kinetic collective model (KCM) to calculate the thermal conductivity of Si 1-x Ge x and In x Ga 1-x As alloys. The calculated thermal conductivities match well with the experimental data for all alloy concentrations. The model shows that the collective contribution must be taken into account at very low impurity concentrations. For higher concentrations, the collective contribution is suppressed, but normal collisions have the effect of significantly reducing the kinetic contribution. The study thus shows the importance of the proper inclusion of normal processes even for alloys for accurate modeling of thermal transport. Furthermore, the phonon spectral distribution of the thermal conductivity is studied in the framework of KCM, providing insights to interpret the superdiffusive regime introduced in the truncated Lévy flight framework.
Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system.
Xiao, Ya-Dong; Huang, Wu-Yang; Li, Da-Jing; Song, Jiang-Feng; Liu, Chun-Quan; Wei, Qiu-Yu; Zhang, Min; Yang, Qiu-Ming
2018-01-15
Thermal degradation kinetics of lutein, zeaxanthin, β-cryptoxanthin, β-carotene was studied at 25, 35, and 45°C in a model system. Qualitative and quantitative analyses of all-trans- and cis-carotenoids were conducted using HPLC-DAD-MS technologies. Kinetic and thermodynamic parameters were calculated by non-linear regression. A total of 29 geometrical isomers and four oxidation products were detected, including all-trans-, keto compounds, mono-cis- and di-cis-isomers. Degradations of all-trans-lutein, zeaxanthin, β-cryptoxanthin, and β-carotene were described by a first-order kinetic model, with the order of rate constants as k β -carotene >k β -cryptoxanthin >k lutein >k zeaxanthin . Activation energies of zeaxanthin, lutein, β-cryptoxanthin, and β-carotene were 65.6, 38.9, 33.9, and 8.6kJ/moL, respectively. cis-carotenoids also followed with the first-order kinetic model, but they did not show a defined sequence of degradation rate constants and activation energies at different temperatures. A possible degradation pathway of four carotenoids was identified to better understand the mechanism of carotenoid degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Viral kinetic modeling: state of the art
Canini, Laetitia; Perelson, Alan S.
2014-06-25
Viral kinetic modeling has led to increased understanding of the within host dynamics of viral infections and the effects of therapy. Here we review recent developments in the modeling of viral infection kinetics with emphasis on two infectious diseases: hepatitis C and influenza. We review how viral kinetic modeling has evolved from simple models of viral infections treated with a drug or drug cocktail with an assumed constant effectiveness to models that incorporate drug pharmacokinetics and pharmacodynamics, as well as phenomenological models that simply assume drugs have time varying-effectiveness. We also discuss multiscale models that include intracellular events in viralmore » replication, models of drug-resistance, models that include innate and adaptive immune responses and models that incorporate cell-to-cell spread of infection. Overall, viral kinetic modeling has provided new insights into the understanding of the disease progression and the modes of action of several drugs. In conclusion, we expect that viral kinetic modeling will be increasingly used in the coming years to optimize drug regimens in order to improve therapeutic outcomes and treatment tolerability for infectious diseases.« less
NASA Astrophysics Data System (ADS)
Adeogun, Abideen Idowu; Babu, Ramesh Balakrishnan
2015-07-01
Calcium phosphate hydroxyapatite (Ca-Hap) synthesized from CaCO3 and H3PO5, it was characterized by scanning electron microscopy, Fourier transform infrared, and X-ray diffraction. The Ca-Hap was used for the removal of Alizarin Red S dye from its aqueous solution. The kinetics, equilibrium, and thermodynamic of the adsorption of the dye onto the Ca-Hap were investigated. The effects of contact time, initial dye concentration, pH as well as temperature on adsorption capacity of Ca-Hap were studied. Experimental data were analyzed using six model equations: Langmuir, Freudlinch, Redlich-Peterson, Temkin, Dubinin-Radushkevich, and Sips isotherms and it was found that the data fitted well with Sips and Dubinin-Radushkevich isotherm models. Pseudo-first-order, pseudo-second-order, Elovic, and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic adsorption process and it was found that pseudo-second-order model best fit the data. The calculated thermodynamics parameters (∆G°, ∆H° and ∆S°) indicated that the process is spontaneous and endothermic in nature.
Experimental and modeling study on decomposition kinetics of methane hydrates in different media.
Liang, Minyan; Chen, Guangjin; Sun, Changyu; Yan, Lijun; Liu, Jiang; Ma, Qinglan
2005-10-13
The decomposition kinetic behaviors of methane hydrates formed in 5 cm3 porous wet activated carbon were studied experimentally in a closed system in the temperature range of 275.8-264.4 K. The decomposition rates of methane hydrates formed from 5 cm3 of pure free water and an aqueous solution of 650 g x m(-3) sodium dodecyl sulfate (SDS) were also measured for comparison. The decomposition rates of methane hydrates in seven different cases were compared. The results showed that the methane hydrates dissociate more rapidly in porous activated carbon than in free systems. A mathematical model was developed for describing the decomposition kinetic behavior of methane hydrates below ice point based on an ice-shielding mechanism in which a porous ice layer was assumed to be formed during the decomposition of hydrate, and the diffusion of methane molecules through it was assumed to be one of the control steps. The parameters of the model were determined by correlating the decomposition rate data, and the activation energies were further determined with respect to three different media. The model was found to well describe the decomposition kinetic behavior of methane hydrate in different media.
Effects of sorption kinetics on the fate and transport of pharmaceuticals in estuaries.
Liu, Dong; Lung, Wu-Seng; Colosi, Lisa M
2013-08-01
Many current fate and transport models based on the assumption of instantaneous sorption equilibrium of contaminants in the water column may not be valid for certain pharmaceuticals with long times to reach sorption equilibrium. In this study, a sorption kinetics model was developed and incorporated into a water quality model for the Patuxent River Estuary to evaluate the effect of sorption kinetics. Model results indicate that the assumption of instantaneous sorption equilibrium results in significant under-prediction of water column concentrations for some pharmaceuticals. The relative difference between predicted concentrations for the instantaneous versus kinetic approach is as large as 150% at upstream locations in the Patuxent Estuary. At downstream locations, where sorption processes have had sufficient time to reach equilibrium, the relative difference decreases to roughly 25%. This indicates that sorption kinetics affect a model's ability to capture accumulation of pharmaceuticals into riverbeds and the transport of pharmaceuticals in estuaries. These results offer strong evidence that chemicals are not removed from the water column as rapidly as has been assumed on the basis of equilibrium-based analyses. The findings are applicable not only for pharmaceutical compounds, but also for diverse contaminants that reach sorption equilibrium slowly. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sprynskyy, Myroslav; Krzemień-Konieczka, Iwona; Gadzała-Kopciuch, Renata; Buszewski, Bogusław
2018-01-01
The objective of the study was to examine adsorption of the aflatoxin B1 from synthetic gastric fluid and synthetic intestinal fluid by talc, raw and calcined diatomite. The kinetic and equilibrium adsorption processes were studied in the batch adsorption experiments applying high performance liquid chromatography for the aflatoxin B1 determination. The kinetic study showed a very fast adsorption of the aflatoxin B1 onto the selected adsorbents from the both physiological fluids with reaching equilibrium within 1-15min. The aflatoxin B1 was almost completely adsorbed in initial linear step of the kinetic process that can be described well by the zero-order kinetics model. The experimental data of the equilibrium adsorption were characterized using the Langmuir and Freundlich isotherm models. The high adsorption effectiveness was found in a range of 90%-100% and 60%-100% for the diatomite samples and the talc respectively at the initial concentrations of the aflatoxin B1 as 31-300ng/mL. The possible mechanisms of the aflatoxin adsorption onto the used mineral adsorbents are also discussed in the work. Copyright © 2017 Elsevier B.V. All rights reserved.
Coruh, Semra; Ergun, Osman Nuri
2010-01-15
Increasing amounts of residues and waste materials coming from industrial activities in different processes have become an increasingly urgent problem for the future. The release of large quantities of heavy metals into the environment has resulted in a number of environmental problems. The present study investigated the safe disposal of the zinc leach residue waste using industrial residues such as fly ash, phosphogypsum and red mud. In the study, leachability of heavy metals from the zinc leach residue has been evaluated by mine water leaching procedure (MWLP) and toxicity characteristic leaching procedure (TCLP). Zinc removal from leachate was studied using fly ash, phosphogypsum and red mud. The adsorption capacities and adsorption efficiencies were determined. The adsorption rate data was analyzed according to the pseudo-second-order kinetic, Elovich kinetic and intra-particle diffusion kinetic models. The pseudo-second-order kinetic was the best fit kinetic model for the experimental data. The results show that addition of fly ash, phosphogypsum and red mud to the zinc leach residue drastically reduces the heavy metal content in the leachate and could be used as liner materials.
Study of subgrid-scale velocity models for reacting and nonreacting flows
NASA Astrophysics Data System (ADS)
Langella, I.; Doan, N. A. K.; Swaminathan, N.; Pope, S. B.
2018-05-01
A study is conducted to identify advantages and limitations of existing large-eddy simulation (LES) closures for the subgrid-scale (SGS) kinetic energy using a database of direct numerical simulations (DNS). The analysis is conducted for both reacting and nonreacting flows, different turbulence conditions, and various filter sizes. A model, based on dissipation and diffusion of momentum (LD-D model), is proposed in this paper based on the observed behavior of four existing models. Our model shows the best overall agreements with DNS statistics. Two main investigations are conducted for both reacting and nonreacting flows: (i) an investigation on the robustness of the model constants, showing that commonly used constants lead to a severe underestimation of the SGS kinetic energy and enlightening their dependence on Reynolds number and filter size; and (ii) an investigation on the statistical behavior of the SGS closures, which suggests that the dissipation of momentum is the key parameter to be considered in such closures and that dilatation effect is important and must be captured correctly in reacting flows. Additional properties of SGS kinetic energy modeling are identified and discussed.
Growth kinetics of Staphylococcus aureus on Brie and Camembert cheeses.
Lee, Heeyoung; Kim, Kyungmi; Lee, Soomin; Han, Minkyung; Yoon, Yohan
2014-05-01
In this study, we developed mathematical models to describe the growth kinetics of Staphylococcus aureus on natural cheeses. A five-strain mixture of Staph. aureus was inoculated onto 15 g of Brie and Camembert cheeses at 4 log CFU/g. The samples were then stored at 4, 10, 15, 25, and 30 °C for 2-60 d, with a different storage time being used for each temperature. Total bacterial and Staph. aureus cells were enumerated on tryptic soy agar and mannitol salt agar, respectively. The Baranyi model was fitted to the growth data of Staph. aureus to calculate kinetic parameters such as the maximum growth rate in log CFU units (r max; log CFU/g/h) and the lag phase duration (λ; h). The effects of temperature on the square root of r max and on the natural logarithm of λ were modelled in the second stage (secondary model). Independent experimental data (observed data) were compared with prediction and the respective root mean square error compared with the RMSE of the fit on the original data, as a measure of model performance. The total growth of bacteria was observed at 10, 15, 25, and 30 °C on both cheeses. The r max values increased with storage temperature (P<0·05), but a significant effect of storage temperature on λ values was only observed between 4 and 15 °C (P<0·05). The square root model and linear equation were found to be appropriate for description of the effect of storage temperature on growth kinetics (R 2=0·894-0·983). Our results indicate that the models developed in this study should be useful for describing the growth kinetics of Staph. aureus on Brie and Camembert cheeses.
Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.
2011-01-01
Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.
Acheampong, Mike A; Pereira, Joana P C; Meulepas, Roel J W; Lens, Piet N L
2012-01-01
Adsorption kinetic studies are of great significance in evaluating the performance of a given adsorbent and gaining insight into the underlying mechanism. This work investigated the sorption kinetics of Cu(II) on to coconut shell and Moringa oleifera seeds using batch techniques. To understand the mechanisms of the biosorption process and the potential rate-controlling steps, kinetic models were used to fit the experimental data. The results indicate that kinetic data were best described by the pseudo-second-order model with correlation coefficients (R2) of 0.9974 and 0.9958 for the coconut shell and Moringa oleifera seeds, respectively. The initial sorption rates obtained for coconut shell and Moringa oleifera seeds were 9.6395 x 10(-3) and 8.3292 x 10(-2) mg g(-1) min(-1), respectively. The values of the mass transfer coefficients obtained for coconut shell (1.2106 x 10(-3) cm s(-1)) and Moringa oleifera seeds (8.965 x 10(-4) cm s(-1)) indicate that the transport of Cu(II) from the bulk liquid to the solid phase was quite fast for both materials investigated. The results indicate that intraparticle diffusion controls the rate of sorption in this study; however, film diffusion cannot be neglected, especially at the initial stage of sorption.
Jing, Liang; Chen, Bing; Wen, Diya; Zheng, Jisi; Zhang, Baiyu
2018-01-01
In this study, a UV/O 3 hybrid advanced oxidation system was used to remove chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N), and atrazine (ATZ) from ATZ production wastewater. The removal of COD and NH 3 -N, under different UV and O 3 conditions, was found to follow pseudo-first-order kinetics with rate constants ranging from 0.0001-0.0048 and 0.0015-0.0056 min -1 , respectively. The removal efficiency of ATZ was over 95% after 180 min treatment, regardless the level of UV power. A kinetic model was further proposed to simulate the removal processes and to quantify the individual roles and contributions of photolysis, direct O 3 oxidation, and hydroxyl radical (OH·) induced oxidation. The experimental and kinetic modeling results agreed reasonably well with deviations of 12.2 and 13.1% for the removal of COD and NH 3 -N, respectively. Photolysis contributed appreciably to the degradation of ATZ, while OH· played a dominant role for the removal of both COD and NH 3 -N, especially in alkaline environments. This study provides insights into the treatment of ATZ containing wastewater using UV/O 3 and broadens the knowledge of kinetics of ozone-based advanced oxidation processes.
A minimal kinetic model for a viral DNA packaging machine.
Yang, Qin; Catalano, Carlos Enrique
2004-01-20
Terminase enzymes are common to both eukaryotic and prokaryotic double-stranded DNA viruses. These enzymes possess ATPase and nuclease activities that work in concert to "package" a viral genome into an empty procapsid, and it is likely that terminase enzymes from disparate viruses utilize a common packaging mechanism. Bacteriophage lambda terminase possesses a site-specific nuclease activity, a so-called helicase activity, a DNA translocase activity, and multiple ATPase catalytic sites that function to package viral DNA. Allosteric interactions between the multiple catalytic sites have been reported. This study probes these catalytic interactions using enzyme kinetic, photoaffinity labeling, and vanadate inhibition studies. The ensemble of data forms the basis for a minimal kinetic model for lambda terminase. The model incorporates an ADP-driven conformational reorganization of the terminase subunits assembled on viral DNA, which is central to the activation of a catalytically competent packaging machine. The proposed model provides a unifying mechanism for allosteric interaction between the multiple catalytic sites of the holoenzyme and explains much of the kinetic data in the literature. Given that similar packaging mechanisms have been proposed for viruses as dissimilar as lambda and the herpes viruses, the model may find general utility in our global understanding of the enzymology of virus assembly.
Lin, Yii-Lih; Huang, Yen-Jun; Teerapanich, Pattamon; Leïchlé, Thierry
2016-01-01
Nanofluidic devices promise high reaction efficiency and fast kinetic responses due to the spatial constriction of transported biomolecules with confined molecular diffusion. However, parallel detection of multiple biomolecules, particularly proteins, in highly confined space remains challenging. This study integrates extended nanofluidics with embedded protein microarray to achieve multiplexed real-time biosensing and kinetics monitoring. Implementation of embedded standard-sized antibody microarray is attained by epoxy-silane surface modification and a room-temperature low-aspect-ratio bonding technique. An effective sample transport is achieved by electrokinetic pumping via electroosmotic flow. Through the nanoslit-based spatial confinement, the antigen-antibody binding reaction is enhanced with ∼100% efficiency and may be directly observed with fluorescence microscopy without the requirement of intermediate washing steps. The image-based data provide numerous spatially distributed reaction kinetic curves and are collectively modeled using a simple one-dimensional convection-reaction model. This study represents an integrated nanofluidic solution for real-time multiplexed immunosensing and kinetics monitoring, starting from device fabrication, protein immobilization, device bonding, sample transport, to data analysis at Péclet number less than 1. PMID:27375819
The study of zinc ions binding to casein.
Pomastowski, P; Sprynskyy, M; Buszewski, B
2014-08-01
The presented research was focused on physicochemical study of casein properties and the kinetics of zinc ions binding to the protein. Moreover, a fast and simple method of casein extraction from cow's milk has been proposed. Casein isoforms, zeta potential (ζ) and particle size of the separated caseins were characterized with the use of capillary electrophoresis, zeta potential analysis and field flow fractionation (FFF) technique, respectively. The kinetics of the metal-binding process was investigated in batch adsorption experiments. Intraparticle diffusion model, first-order and zero-order kinetic models were applied to test the kinetic experimental data. Analysis of changes in infrared bands registered for casein before and after zinc binding was also performed. The obtained results showed that the kinetic process of zinc binding to casein is not homogeneous but is expressed with an initial rapid stage with about 70% of zinc ions immobilized by casein and with a much slower second step. Maximum amount of bound zinc in the experimental conditions was 30.04mgZn/g casein. Copyright © 2014 Elsevier B.V. All rights reserved.
Morphological stability and kinetics in crystal growth from vapors
NASA Technical Reports Server (NTRS)
Rosenberger, Franz
1990-01-01
The following topics are discussed: (1) microscopy image storage and processing system; (2) growth kinetics and morphology study with carbon tetrabromide; (3) photothermal deflection vapor growth setup; (4) bridgman growth of iodine single crystals; (5) vapor concentration distribution measurement during growth; and (6) Monte Carlo modeling of anisotropic growth kinetics and morphology. A collection of presentations and publications of these results are presented.
Evaluation of a non-Arrhenius model for therapeutic monoclonal antibody aggregation.
Kayser, Veysel; Chennamsetty, Naresh; Voynov, Vladimir; Helk, Bernhard; Forrer, Kurt; Trout, Bernhardt L
2011-07-01
Understanding antibody aggregation is of great significance for the pharmaceutical industry. We studied the aggregation of five different therapeutic monoclonal antibodies (mAbs) with size-exclusion chromatography-high-performance liquid chromatography (SEC-HPLC), fluorescence spectroscopy, electron microscopy, and light scattering methods at various temperatures with the aim of gaining insight into the aggregation process and developing models of it. In particular, we find that the kinetics can be described by a second-order model and are non-Arrhenius. Thus, we develop a non-Arrhenius model to connect accelerated aggregation experiments at high temperature to long-term storage experiments at low temperature. We evaluate our model by predicting mAb aggregation and comparing it with long-term behavior. Our results suggest that the number of monomers and mAb conformations within aggregates vary with the size and age of the aggregates, and that only certain sizes of aggregates are populated in the solution. We also propose a kinetic model based on conformational changes of proteins and monomer peak loss kinetics from SEC-HPLC. This model could be employed for a detail analysis of mAb aggregation kinetics. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association
Anhydrous Weight Loss Prediction of Meranti Sawdust during Torrefaction using Rousset Model
NASA Astrophysics Data System (ADS)
Harun, Nur Hazirah Huda Mohd; Samad, Noor Asma Fazli Abdul; Saleh, Suriyati
2018-03-01
In torrefaction, the mass loss distribution is evaluated in terms of anhydrous weight loss (AWL). Since temperature gives significant effects on AWL and the behaviour of biomass is highly associated with the AWL, therefore a suitable model for estimating the reaction kinetics is necessary for describing the thermal degradation and predicting the AWL in order to improve its process. In this study, the kinetic parameters of Meranti sawdust are estimated by applying three-parallel reaction models namely the Rousset Model for torrefaction of Meranti sawdust at temperatures of 240°C, 270°C and 300°C. All kinetic parameters are estimated according to the degradation of biomass constituents which are lignin, cellulose and hemicellulose by following the Arrhenius Law. The result shows that AWL estimation using the kinetic parameters predicted from the Rousset model is in good agreement with the experimental result as the R2 value obtained is 0.99. It shows that the Rousset Model successfully described the degradation of lignin, cellulose and hemicellulose as well as the formation of char, volatile, tar and intermediate compound. Therefore it can be concluded that the Rousset Model is applicable to represent the torrefaction behaviour.
Using gamma distribution to determine half-life of rotenone, applied in freshwater.
Rohan, Maheswaran; Fairweather, Alastair; Grainger, Natasha
2015-09-15
Following the use of rotenone to eradicate invasive pest fish, a dynamic first-order kinetic model is usually used to determine the half-life and rate at which rotenone dissipated from the treated waterbody. In this study, we investigate the use of a stochastic gamma model for determining the half-life and rate at which rotenone dissipates from waterbodies. The first-order kinetic and gamma models produced similar values for the half-life (4.45 days and 5.33 days respectively) and days to complete dissipation (51.2 days and 52.48 days respectively). However, the gamma model fitted the data better and was more flexible than the first-order kinetic model, allowing us to use covariates and to predict a possible range for the half-life of rotenone. These benefits are particularly important when examining the influence that different environmental factors have on rotenone dissipation and when trying to predict the rate at which rotenone will dissipate during future operations. We therefore recommend that in future the gamma distribution model is used when calculating the half-life of rotenone in preference to the dynamic first-order kinetics model. Copyright © 2015 Elsevier B.V. All rights reserved.
Kinetic particle simulation of discharge and wall erosion of a Hall thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Shinatora; Komurasaki, Kimiya; Arakawa, Yoshihiro
2013-06-15
The primary lifetime limiting factor of Hall thrusters is the wall erosion caused by the ion induced sputtering, which is predominated by dielectric wall sheath and pre-sheath. However, so far only fluid or hybrid simulation models were applied to wall erosion and lifetime studies in which this non-quasi-neutral and non-equilibrium area cannot be treated directly. Thus, in this study, a 2D fully kinetic particle-in-cell model was presented for Hall thruster discharge and lifetime simulation. Because the fully kinetic lifetime simulation was yet to be achieved so far due to the high computational cost, the semi-implicit field solver and the techniquemore » of mass ratio manipulation was employed to accelerate the computation. However, other artificial manipulations like permittivity or geometry scaling were not used in order to avoid unrecoverable change of physics. Additionally, a new physics recovering model for the mass ratio was presented for better preservation of electron mobility at the weakly magnetically confined plasma region. The validity of the presented model was examined by various parametric studies, and the thrust performance and wall erosion rate of a laboratory model magnetic layer type Hall thruster was modeled for different operation conditions. The simulation results successfully reproduced the measurement results with typically less than 10% discrepancy without tuning any numerical parameters. It is also shown that the computational cost was reduced to the level that the Hall thruster fully kinetic lifetime simulation is feasible.« less
Kinetic Monte Carlo simulations of nucleation and growth in electrodeposition.
Guo, Lian; Radisic, Aleksandar; Searson, Peter C
2005-12-22
Nucleation and growth during bulk electrodeposition is studied using kinetic Monte Carlo (KMC) simulations. Ion transport in solution is modeled using Brownian dynamics, and the kinetics of nucleation and growth are dependent on the probabilities of metal-on-substrate and metal-on-metal deposition. Using this approach, we make no assumptions about the nucleation rate, island density, or island distribution. The influence of the attachment probabilities and concentration on the time-dependent island density and current transients is reported. Various models have been assessed by recovering the nucleation rate and island density from the current-time transients.
NASA Astrophysics Data System (ADS)
Komarneni, Mallikharjuna Rao
Surface science investigations of model catalysts have contributed significantly to heterogeneous catalysis over the past several decades. The unique properties of nanomaterials are being exploited in catalysis for the development of highly active and selective catalysts. Surface science investigations of model catalysts such as inorganic fullerene-like (IF) nanoparticles (NP), inorganic nanotubes (INT), and the oxide-supported nanoclusters are included in this dissertation. Thermal desorption spectroscopy and molecular beam scattering were respectively utilized to study the adsorption kinetics and dynamics of gas phase molecules on catalyst surfaces. In addition, ambient pressure kinetics experiments were performed to characterize the catalytic activity of hydrodesulfurization (HDS) nanocatalysts. The nanocatalysts were characterized with a variety of techniques, including Auger electron spectroscopy, x-ray photoelectron spectroscopy, electron microscopy, and x-ray diffraction. The adsorption kinetics studies of thiophene on novel HDS catalysts provided the first evidence for the presence of different adsorption sites on INT-WS2. Additionally, the adsorption sites on IF-MoS2 NP and silica-supported Mo clusters (Mo/silica) were characterized. Furthermore, the C-S bond activation energy of thiophene on Mo/silica was determined. These studies finally led to the fabrication of Ni/Co coated INT-WS2, which showed good catalytic activity towards HDS of thiophene. The studies of methanol synthesis catalysts include the adsorption kinetics and dynamics studies of CO and CO2 on Cu/silica and silica-supported EBL-fabricated Cu/CuOx nanoclusters. The adsorption dynamics of CO on Cu/silica are modeled within the frame work of the capture zone model (CZM), and the active sites of the silica-supported Au/Cu catalysts are successfully mapped. Studies on EBL model catalysts identify the rims of the CuOx nanoclusters as catalytically active sites. This observation has implications for new methanol catalyst design.
A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes
Smallbone, Kieran; Messiha, Hanan L.; Carroll, Kathleen M.; Winder, Catherine L.; Malys, Naglis; Dunn, Warwick B.; Murabito, Ettore; Swainston, Neil; Dada, Joseph O.; Khan, Farid; Pir, Pınar; Simeonidis, Evangelos; Spasić, Irena; Wishart, Jill; Weichart, Dieter; Hayes, Neil W.; Jameson, Daniel; Broomhead, David S.; Oliver, Stephen G.; Gaskell, Simon J.; McCarthy, John E.G.; Paton, Norman W.; Westerhoff, Hans V.; Kell, Douglas B.; Mendes, Pedro
2013-01-01
We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a “cycle of knowledge” strategy, identifying the steps with most control over flux. Kinetic parameters of the individual isoenzymes within these steps are measured experimentally under a standardised set of conditions. Experimental strategies are applied to establish a set of in vivo concentrations for isoenzymes and metabolites. The data are integrated into a mathematical model that is used to predict a new set of metabolite concentrations and reevaluate the control properties of the system. This bottom-up modelling study reveals that control over the metabolic network most directly involved in yeast glycolysis is more widely distributed than previously thought. PMID:23831062
Effects of Different PER Translational Kinetics on the Dynamics of a Core Circadian Clock Model
Nieto, Paula S.; Revelli, Jorge A.; Garbarino-Pico, Eduardo; Condat, Carlos A.; Guido, Mario E.; Tamarit, Francisco A.
2015-01-01
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis. PMID:25607544
Effects of different per translational kinetics on the dynamics of a core circadian clock model.
Nieto, Paula S; Revelli, Jorge A; Garbarino-Pico, Eduardo; Condat, Carlos A; Guido, Mario E; Tamarit, Francisco A
2015-01-01
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.
Kinetic models of controllable pore growth of anodic aluminum oxide membrane
NASA Astrophysics Data System (ADS)
Huang, Yan; Zeng, Hong-yan; Zhao, Ce; Qu, Ye-qing; Zhang, Pin
2012-06-01
An anodized Al2O3 (AAO) membrane with apertures about 72 nm in diameter was prepared by two-step anodic oxidation. The appearance and pore arrangement of the AAO membrane were characterized by energy dispersive x-ray spectroscopy and scanning electron microscopy. It was confirmed that the pores with high pore aspect ratio were parallel, well-ordered, and uniform. The kinetics of pores growth in the AAO membrane was derived, and the kinetic models showed that pores stopped developing when the pressure ( σ) trended to equal the surface tension at the end of anodic oxidation. During pore expansion, the effects of the oxalic acid concentration and expansion time on the pore size were investigated, and the kinetic behaviors were explained with two kinetic models derived in this study. They showed that the pore size increased with extended time ( r= G· t+ G'), but decreased with increased concentration ( r = - K·ln c- K') through the derived mathematic formula. Also, the values of G, G', K, and K' were derived from our experimental data.
NASA Astrophysics Data System (ADS)
Peigney, B. E.; Larroche, O.; Tikhonchuk, V.
2014-12-01
In this article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal α-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A typical hot-spot ignition design is considered. Compared with fluid simulations where a multi-group diffusion scheme is applied to model α transport, the full ion-kinetic approach reveals significant non-local effects on the transport of energetic α-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are pre-heated by the escaping α-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of fusion products leads to a significant reduction of the fusion yield.
Integrated Modeling of Time Evolving 3D Kinetic MHD Equilibria and NTV Torque
NASA Astrophysics Data System (ADS)
Logan, N. C.; Park, J.-K.; Grierson, B. A.; Haskey, S. R.; Nazikian, R.; Cui, L.; Smith, S. P.; Meneghini, O.
2016-10-01
New analysis tools and integrated modeling of plasma dynamics developed in the OMFIT framework are used to study kinetic MHD equilibria evolution on the transport time scale. The experimentally observed profile dynamics following the application of 3D error fields are described using a new OMFITprofiles workflow that directly addresses the need for rapid and comprehensive analysis of dynamic equilibria for next-step theory validation. The workflow treats all diagnostic data as fundamentally time dependent, provides physics-based manipulations such as ELM phase data selection, and is consistent across multiple machines - including DIII-D and NSTX-U. The seamless integration of tokamak data and simulation is demonstrated by using the self-consistent kinetic EFIT equilibria and profiles as input into 2D particle, momentum and energy transport calculations using TRANSP as well as 3D kinetic MHD equilibrium stability and neoclassical transport modeling using General Perturbed Equilibrium Code (GPEC). The result is a smooth kinetic stability and NTV torque evolution over transport time scales. Work supported by DE-AC02-09CH11466.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peigney, B. E.; Larroche, O.; Tikhonchuk, V.
2014-12-15
In this article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal α-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A typical hot-spot ignition design is considered. Compared with fluid simulations where a multi-group diffusion scheme is applied to model α transport, the full ion-kinetic approach reveals significant non-local effectsmore » on the transport of energetic α-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are pre-heated by the escaping α-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of fusion products leads to a significant reduction of the fusion yield.« less
Fan, Zhen; Calsolaro, Valeria; Atkinson, Rebecca A; Femminella, Grazia D; Waldman, Adam; Buckley, Christopher; Trigg, William; Brooks, David J; Hinz, Rainer; Edison, Paul
2016-11-01
Neuroinflammation is associated with neurodegenerative disease. PET radioligands targeting the 18-kDa translocator protein (TSPO) have been used as in vivo markers of neuroinflammation, but there is an urgent need for novel probes with improved signal-to-noise ratio. Flutriciclamide ( 18 F-GE180) is a recently developed third-generation TSPO ligand. In this first study, we evaluated the optimum scan duration and kinetic modeling strategies for 18 F-GE180 PET in (older) healthy controls. Ten healthy controls, 6 TSPO high-affinity binders, and 4 mixed-affinity binders were recruited. All subjects underwent detailed neuropsychologic tests, MRI, and a 210-min 18 F-GE180 dynamic PET/CT scan using metabolite-corrected arterial plasma input function. We evaluated 5 different kinetic models: irreversible and reversible 2-tissue-compartment models, a reversible 1-tissue model, and 2 models with an extra irreversible vascular compartment. The minimal scan duration was established using 210-min scan data. The feasibility of generating parametric maps was also investigated using graphical analysis. 18 F-GE180 concentration was higher in plasma than in whole blood during the entire scan duration. The volume of distribution (V T ) was 0.17 in high-affinity binders and 0.12 in mixed-affinity binders using the kinetic model. The model that best represented brain 18 F-GE180 kinetics across regions was the reversible 2-tissue-compartment model (2TCM4k), and 90 min resulted as the optimum scan length required to obtain stable estimates. Logan graphical analysis with arterial input function gave a V T highly consistent with V T in the kinetic model, which could be used for voxelwise analysis. We report for the first time, to our knowledge, the kinetic properties of the novel third-generation TSPO PET ligand 18 F-GE180 in humans: 2TCM4k is the optimal method to quantify the brain uptake, 90 min is the optimal scan length, and the Logan approach could be used to generate parametric maps. Although these control subjects have shown relatively low V T , the methodology presented here forms the basis for quantification for future PET studies using 18 F-GE180 in different pathologies. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Maulidah, Rifa'atul; Purqon, Acep
2016-08-01
Mendong (Fimbristylis globulosa) has a potentially industrial application. We investigate a predictive model for heat and mass transfer in drying kinetics during drying a Mendong. We experimentally dry the Mendong by using a microwave oven. In this study, we analyze three mathematical equations and feed forward neural network (FNN) with back propagation to describe the drying behavior of Mendong. Our results show that the experimental data and the artificial neural network model has a good agreement and better than a mathematical equation approach. The best FNN for the prediction is 3-20-1-1 structure with Levenberg- Marquardt training function. This drying kinetics modeling is potentially applied to determine the optimal parameters during mendong drying and to estimate and control of drying process.
Reproducing Phenomenology of Peroxidation Kinetics via Model Optimization
NASA Astrophysics Data System (ADS)
Ruslanov, Anatole D.; Bashylau, Anton V.
2010-06-01
We studied mathematical modeling of lipid peroxidation using a biochemical model system of iron (II)-ascorbate-dependent lipid peroxidation of rat hepatocyte mitochondrial fractions. We found that antioxidants extracted from plants demonstrate a high intensity of peroxidation inhibition. We simplified the system of differential equations that describes the kinetics of the mathematical model to a first order equation, which can be solved analytically. Moreover, we endeavor to algorithmically and heuristically recreate the processes and construct an environment that closely resembles the corresponding natural system. Our results demonstrate that it is possible to theoretically predict both the kinetics of oxidation and the intensity of inhibition without resorting to analytical and biochemical research, which is important for cost-effective discovery and development of medical agents with antioxidant action from the medicinal plants.
Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.
Dolinina, Ekaterina S; Parfenyuk, Elena V
2017-01-01
Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions.
Peng, Cheng; Anabaraonye, Benaiah U; Crawshaw, John P; Maitland, Geoffrey C; Trusler, J P Martin
2016-10-20
We report experimental measurements of the dissolution rate of several carbonate minerals in CO 2 -saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO 2 -saturated NaCl brines with molalities of up to 5 mol kg -1 . The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO 2 -saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO 2 -saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO 2 -injection into carbonate-mineral saline aquifers.
On the Evaporation Kinetics and Phase of Laboratory and Ambient Secondary Organic Aerosol
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Vaden, T.; Imre, D. G.; Beránek, J.; Shrivastava, M.
2010-12-01
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort that is focused on finding additional SOA sources, but leaves many of the fundamental assumptions that are used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets that form instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using an accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory generated α-pinene SOA and ambient atmospheric SOA. The experimental setup was first tested by measuring the evaporation kinetics of single component organic particles of known vapor pressure. We show that, as expected for liquid droplets, smaller particles evaporate faster, and that these data yield the correct vapor pressure. We then study the evaporation kinetics of α-pinene SOA and find that evaporation proceeds in two stages: a fast stage, during which 50% of the particle volume evaporates in ~100 minutes, followed by a slower stage, when additional 25% evaporate in 1400 minutes, which is in sharp contrast to the ~10 minutes timescale predicted by current kinetic models. α-pinene SOA formed in the presence of “spectator” hydrophobic organic vapors like dioctyl phthalate, dioctyl sebacate, pyrene, or their mixture, were shown to adsorb noticeable amounts of these organics, forming what we term here ‘coated’ SOA particles. We show that these adsorbed coatings reduce evaporation rates of SOA particles. Moreover, aging of coated SOA particles dramatically reduces evaporation rates, and in some cases nearly stops it. For example, aging of SOA with adsorbed pyrene reduces evaporation rate to the point that only ~11% of the particle volume evaporates within 24 hrs. For all cases studied in this work, SOA evaporation behavior is size-independent and does not follow the evaporation kinetics of liquid droplets, which is in sharp contrast with model assumptions. To address the question of how closely the laboratory observations described above reflect reality in the atmosphere we characterized the evaporation kinetics of size-selected atmospheric SOA particles sampled in-situ during the recent Carbonaceous Aerosols and Radiative Effects Study (CARES) field campaign. We find that the evaporation of ambient SOA is very similar to that of coated and aged laboratory-generated α-pinene SOA. Ambient SOA particles in Sacramento, CA lose between 17% and 25% of their volume in 6 hours. Like laboratory SOA, their evaporation is size-independent and does not follow the kinetics of liquid droplets. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging - all indicate the need to reformulate the way SOA formation and evaporation are treated by models.
Enzymatic Kinetic Isotope Effects from First-Principles Path Sampling Calculations.
Varga, Matthew J; Schwartz, Steven D
2016-04-12
In this study, we develop and test a method to determine the rate of particle transfer and kinetic isotope effects in enzymatic reactions, specifically yeast alcohol dehydrogenase (YADH), from first-principles. Transition path sampling (TPS) and normal mode centroid dynamics (CMD) are used to simulate these enzymatic reactions without knowledge of their reaction coordinates and with the inclusion of quantum effects, such as zero-point energy and tunneling, on the transferring particle. Though previous studies have used TPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. The calculated primary H/D kinetic isotope effect agrees with previously reported experimental results, within experimental error. The kinetic isotope effects calculated with this method correspond to the kinetic isotope effect of the transfer event itself. The results reported here show that the kinetic isotope effects calculated from first-principles, purely for barrier passage, can be used to predict experimental kinetic isotope effects in enzymatic systems.
Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Fontana, Angelo; Panico, Antonio; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni
2016-08-01
The aim of the present study was to develop a kinetic model for a recently proposed unique and novel metabolic process called capnophilic (CO2-requiring) lactic fermentation (CLF) pathway in Thermotoga neapolitana. The model was based on Monod kinetics and the mathematical expressions were developed to enable the simulation of biomass growth, substrate consumption and product formation. The calibrated kinetic parameters such as maximum specific uptake rate (k), semi-saturation constant (kS), biomass yield coefficient (Y) and endogenous decay rate (kd) were 1.30 h(-1), 1.42 g/L, 0.1195 and 0.0205 h(-1), respectively. A high correlation (>0.98) was obtained between the experimental data and model predictions for both model validation and cross validation processes. An increase of the lactate production in the range of 40-80% was obtained through CLF pathway compared to the classic dark fermentation model. The proposed kinetic model is the first mechanistically based model for the CLF pathway. This model provides useful information to improve the knowledge about how acetate and CO2 are recycled back by Thermotoga neapolitana to produce lactate without compromising the overall hydrogen yield. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Xinyan; Rein, Guillermo
2013-04-01
Smouldering combustion of soil organic matter (SOM) such as peatlands leads to the largest fires on Earth and posses a possible positive feedback mechanism to climate change. In this work, a kinetic model, including 3-step chemical reactions and 1-step water evaporation is proposed to describe drying, pyrolysis and oxidation behaviour of peat. Peat is chosen as the most important type of SOM susceptible to smoudering, and a Chinese boreal peat sample is selected from the literature. A lumped model of mass loss based on four Arrhenius-type reactions is developed to predict its thermal and oxidative degradation under a range of heating rates. A genetic algorithm is used to solve the inverse problem, and find a group of kinetic and stoichiometric parameters for this peat that provides the best match to the thermogravimetric (TG) data from literature. A multi-objective fitness function is defined using the measurements of both mass loss and mass-loss rate in inert and normal atmospheres under a range of heating rates. Piece-wise optimization is conducted to separate the low temperature drying (<450 K) from the higher temperature pyrolysis and oxidation reaction (>450 K). Modelling results shows the proposed 3-step chemistry is the unique simplest scheme to satisfy all given TG data of this particular peat type. Afterward, this kinetic model and its kinetic parameters are incorporated into a simple one-dimensional species model to study the relative position of each reaction inside a smoulder front. Computational results show that the species model agrees with experimental observations. This is the first time that the smouldering kinetics of SOM is explained and predicted, thus helping to understanding this important natural and widespread phenomenon.
Center for Extended Magnetohydrodynamics Modeling - Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Scott
This project funding supported approximately 74 percent of a Ph.D. graduate student, not including costs of travel and supplies. We had a highly successful research project including the development of a second-order implicit electromagnetic kinetic ion hybrid model [Cheng 2013, Sturdevant 2016], direct comparisons with the extended MHD NIMROD code and kinetic simulation [Schnack 2013], modeling of slab tearing modes using the fully kinetic ion hybrid model and finally, modeling global tearing modes in cylindrical geometry using gyrokinetic simulation [Chen 2015, Chen 2016]. We developed an electromagnetic second-order implicit kinetic ion fluid electron hybrid model [Cheng 2013]. As a firstmore » step, we assumed isothermal electrons, but have included drift-kinetic electrons in similar models [Chen 2011]. We used this simulation to study the nonlinear evolution of the tearing mode in slab geometry, including nonlinear evolution and saturation [Cheng 2013]. Later, we compared this model directly to extended MHD calculations using the NIMROD code [Schnack 2013]. In this study, we investigated the ion-temperature-gradient instability with an extended MHD code for the first time and got reasonable agreement with the kinetic calculation in terms of linear frequency, growth rate and mode structure. We then extended this model to include orbit averaging and sub-cycling of the ions and compared directly to gyrokinetic theory [Sturdevant 2016]. This work was highlighted in an Invited Talk at the International Conference on the Numerical Simulation of Plasmas in 2015. The orbit averaging sub-cycling multi-scale algorithm is amenable to hybrid architectures with GPUS or math co-processors. Additionally, our participation in the Center for Extend Magnetohydrodynamics motivated our research on developing the capability for gyrokinetic simulation to model a global tearing mode. We did this in cylindrical geometry where the results could be benchmarked with existing eigenmode calculations. First, we developed a gyrokinetic code capable of simulating long wavelengths using a fluid electron model [Chen 2015]. We benchmarked this code with an eigenmode calculation. Besides having to rewrite the field solver due to the breakdown in the gyrokinetic ordering for long wavelengths, very high radial resolution was required. We developed a technique where we used the solution from the eigenmode solver to specify radial boundary conditions allowing for a very high radial resolution of the inner solution. Using this technique enabled us to use our direct algorithm with gyrokinetic ions and drift kinetic electrons [Chen 2016]. This work was highlighted in an Invited Talk at the American Physical Society - Division of Plasma Physics in 2015.« less
NASA Astrophysics Data System (ADS)
Lin, Hai; Han, Shaoke; Dong, Yingbo; He, Yinhai
2017-08-01
A low-cost anion adsorbent for Cr(VI) effectively removing was synthesized by hyperbranched polyamide modified corncob (HPMC). Samples were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy, Fourier transform infrared (FTIR) and zeta potential analysis. Kinetics, isotherms and thermodynamics studies of HPMC for Cr(VI) adsorption were investigated in batch static experiments, in the temperature range of 25-45 °C, pH = 2.0. Results showed that the adsorption was rapid and stable, with the uptake capacity higher than 80% after 30 min. Adsorption behavior and rate-controlling mechanisms were analyzed using three kinetic models (pseudo-first order, pseudo-second order, intra-particle kinetic model). Kinetic studies showed that the adsorption of HPMC to Cr(VI) relied the pseudo-second-order model, and controlled both by the intra-particle diffusion and film diffusion. Equilibrium data was tested by Langmuir and Freundlich adsorption isotherm models. Langmuir model was more suitable to indicate a homogeneous distribution of active sites on HPMC and monolayer adsorption. The maximum adsorption capacity from the Langmuir model, qmax, was 131.6 mg/g at pH 2.0 and 45 °C for HPMC. Thermodynamic parameters revealed spontaneous and endothermic nature of the Cr(VI) adsorption onto HPMC.
Model calibration and validation for OFMSW and sewage sludge co-digestion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, G., E-mail: giovanni.esposito@unicas.it; Frunzo, L., E-mail: luigi.frunzo@unina.it; Panico, A., E-mail: anpanico@unina.it
2011-12-15
Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Watermore » Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.« less
Low Temperature Kinetics of the First Steps of Water Cluster Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgalais, J.; Roussel, V.; Capron, M.
2016-03-01
We present a combined experimental and theoretical low temperature kinetic study of water cluster formation. Water cluster growth takes place in low temperature (23-69 K) supersonic flows. The observed kinetics of formation of water clusters are reproduced with a kinetic model based on theoretical predictions for the first steps of clusterization. The temperature-and pressure-dependent association and dissociation rate coefficients are predicted with an ab initio transition state theory based master equation approach over a wide range of temperatures (20-100 K) and pressures (10(-6) - 10 bar).
Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz
2015-11-01
In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.
Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth
NASA Astrophysics Data System (ADS)
Zhang, Hong; Zuo, Ran; Zhang, Guoyi
2017-11-01
In the modeling of the reaction-transport process in GaN MOVPE growth, the selections of kinetic parameters (activation energy Ea and pre-exponential factor A) for gas reactions are quite uncertain, which cause uncertainties in both gas reaction path and growth rate. In this study, numerical modeling of the reaction-transport process for GaN MOVPE growth in a vertical rotating disk reactor is conducted with varying kinetic parameters for main reaction paths. By comparisons of the molar concentrations of major Ga-containing species and the growth rates, the effects of kinetic parameters on gas reaction paths are determined. The results show that, depending on the values of the kinetic parameters, the gas reaction path may be dominated either by adduct/amide formation path, or by TMG pyrolysis path, or by both. Although the reaction path varies with different kinetic parameters, the predicted growth rates change only slightly because the total transport rate of Ga-containing species to the substrate changes slightly with reaction paths. This explains why previous authors using different chemical models predicted growth rates close to the experiment values. By varying the pre-exponential factor for the amide trimerization, it is found that the more trimers are formed, the lower the growth rates are than the experimental value, which indicates that trimers are poor growth precursors, because of thermal diffusion effect caused by high temperature gradient. The effective order for the contribution of major species to growth rate is found as: pyrolysis species > amides > trimers. The study also shows that radical reactions have little effect on gas reaction path because of the generation and depletion of H radicals in the chain reactions when NH2 is considered as the end species.
NASA Astrophysics Data System (ADS)
Obe, Ibidapo; Fashanu, T. A.; Idialu, Peter O.; Akintola, Tope O.; Abhulimen, Kingsley E.
2017-06-01
An improved produced water reinjection (PWRI) model that incorporates filtration, geochemical reaction, molecular transport, and mass adsorption kinetics was developed to predict cake deposition and injectivity performance in hydrocarbon aquifers in Nigeria oil fields. Thus, the improved PWRI model considered contributions of geochemical reaction, adsorption kinetics, and hydrodynamic molecular dispersion mechanism to alter the injectivity and deposition of suspended solids on aquifer wall resulting in cake formation in pores during PWRI and transport of active constituents in hydrocarbon reservoirs. The injectivity decline and cake deposition for specific case studies of hydrocarbon aquifers in Nigeria oil fields were characterized with respect to its well geometry, lithology, and calibrations data and simulated in COMSOL multiphysics software environment. The PWRI model was validated by comparisons to assessments of previous field studies based on data and results supplied by operator and regulator. The results of simulation showed that PWRI performance was altered because of temporal variations and declinations of permeability, injectivity, and cake precipitation, which were observed to be dependent on active adsorption and geochemical reaction kinetics coupled with filtration scheme and molecular dispersion. From the observed results and findings, transition time t r to cake nucleation and growth were dependent on aquifer constituents, well capacity, filtration coefficients, particle-to-grain size ratio, water quality, and more importantly, particle-to-grain adsorption kinetics. Thus, the results showed that injectivity decline and permeability damage were direct contributions of geochemical reaction, hydrodynamic molecular diffusion, and adsorption kinetics to the internal filtration mechanism, which are largely dependent on the initial conditions of concentration of active constituents of produced water and aquifer capacity.
Global fully kinetic models of planetary magnetospheres with iPic3D
NASA Astrophysics Data System (ADS)
Gonzalez, D.; Sanna, L.; Amaya, J.; Zitz, A.; Lembege, B.; Markidis, S.; Schriver, D.; Walker, R. J.; Berchem, J.; Peng, I. B.; Travnicek, P. M.; Lapenta, G.
2016-12-01
We report on the latest developments of our approach to model planetary magnetospheres, mini magnetospheres and the Earth's magnetosphere with the fully kinetic, electromagnetic particle in cell code iPic3D. The code treats electrons and multiple species of ions as full kinetic particles. We review: 1) Why a fully kinetic model and in particular why kinetic electrons are needed for capturing some of the most important aspects of the physics processes of planetary magnetospheres. 2) Why the energy conserving implicit method (ECIM) in its newest implementation [1] is the right approach to reach this goal. We consider the different electron scales and study how the new IECIM can be tuned to resolve only the electron scales of interest while averaging over the unresolved scales preserving their contribution to the evolution. 3) How with modern computing planetary magnetospheres, mini magnetosphere and eventually Earth's magnetosphere can be modeled with fully kinetic electrons. The path from petascale to exascale for iPiC3D is outlined based on the DEEP-ER project [2], using dynamic allocation of different processor architectures (Xeon and Xeon Phi) and innovative I/O technologies.Specifically results from models of Mercury are presented and compared with MESSENGER observations and with previous hybrid (fluid electrons and kinetic ions) simulations. The plasma convection around the planets includes the development of hydrodynamic instabilities at the flanks, the presence of the collisionless shocks, the magnetosheath, the magnetopause, reconnection zones, the formation of the plasma sheet and the magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. Given the full kinetic nature of our approach we focus on detailed particle dynamics and distribution at locations that can be used for comparison with satellite data. [1] Lapenta, G. (2016). Exactly Energy Conserving Implicit Moment Particle in Cell Formulation. arXiv preprint arXiv:1602.06326.[2] www.deep-er.eu
Kinetic Model of Growth of Arthropoda Populations
NASA Astrophysics Data System (ADS)
Ershov, Yu. A.; Kuznetsov, M. A.
2018-05-01
Kinetic equations were derived for calculating the growth of crustacean populations ( Crustacea) based on the biological growth model suggested earlier using shrimp ( Caridea) populations as an example. The development cycle of successive stages for populations can be represented in the form of quasi-chemical equations. The kinetic equations that describe the development cycle of crustaceans allow quantitative prediction of the development of populations depending on conditions. In contrast to extrapolation-simulation models, in the developed kinetic model of biological growth the kinetic parameters are the experimental characteristics of population growth. Verification and parametric identification of the developed model on the basis of the experimental data showed agreement with experiment within the error of the measurement technique.
AFOSR/ONR Contractors Meeting - Combustion, Rocket Propulsion, Diagnostics of Reacting Flow
1990-06-15
GASIFICATION KINETICS OF SOLID BORON AND PYROLITIC GRAPHrrE Because of the energetic potential of boron as a solid fuel (or fuel additive) and the likely...87 Kinetic Studies of Metal Combustion in Propulsion, A. Fontijn, P. M. Futerko and A. G. Slavejkov .............................. 90...Measurements and Chemical Kinetic Simulation of the Structure of Model Propellant Flames, M. C. Branch and H. Dindi .......... 94 High-Rate Thermal
Trojanowicz, Karol; Wójcik, Włodzimierz
2011-01-01
The article presents a case-study on the calibration and verification of mathematical models of organic carbon removal kinetics in biofilm. The chosen Harremöes and Wanner & Reichert models were calibrated with a set of model parameters obtained both during dedicated studies conducted at pilot- and lab-scales for petrochemical wastewater conditions and from the literature. Next, the models were successfully verified through studies carried out utilizing a pilot ASFBBR type bioreactor installed in an oil-refinery wastewater treatment plant. During verification the pilot biofilm reactor worked under varying surface organic loading rates (SOL), dissolved oxygen concentrations and temperatures. The verification proved that the models can be applied in practice to petrochemical wastewater treatment engineering for e.g. biofilm bioreactor dimensioning.
Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca
2009-12-01
The six-flux absorption-scattering model (SFM) of the radiation field in the photoreactor, combined with reaction kinetics and fluid-dynamic models, has proved to be suitable to describe the degradation of water pollutants in heterogeneous photocatalytic reactors, combining simplicity and accuracy. In this study, the above approach was extended to model the photocatalytic mineralization of a commercial herbicides mixture (2,4-D, diuron, and ametryne used in Colombian sugar cane crops) in a solar, pilot-scale, compound parabolic collector (CPC) photoreactor using a slurry suspension of TiO(2). The ray-tracing technique was used jointly with the SFM to determine the direction of both the direct and diffuse solar photon fluxes and the spatial profile of the local volumetric rate of photon absorption (LVRPA) in the CPC reactor. Herbicides mineralization kinetics with explicit photon absorption effects were utilized to remove the dependence of the observed rate constants from the reactor geometry and radiation field in the photoreactor. The results showed that the overall model fitted the experimental data of herbicides mineralization in the solar CPC reactor satisfactorily for both cloudy and sunny days. Using the above approach kinetic parameters independent of the radiation field in the reactor can be estimated directly from the results of experiments carried out in a solar CPC reactor. The SFM combined with reaction kinetics and fluid-dynamic models proved to be a simple, but reliable model, for solar photocatalytic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, K.; Tonks, M.; Zhang, Y.
A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared tomore » the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.« less
Zvimba, John N; Siyakatshana, Njabulo; Mathye, Matlhodi
2017-03-01
This study investigated passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material over 90 days, with monitoring of the parameters' quality and assessment of their removal kinetics. The quality was observed to significantly improve over time with most parameters removed from the influent during the first 10 days. In this regard, removal of acidity, Fe(II), Mn, Co, Ni and Zn was characterized by fast kinetics while removal kinetics for Mg and SO 4 2- were observed to proceed slowly. The fast removal kinetics of acidity was attributed to fast release of alkalinity from slag minerals under mildly acidic conditions of the influent water. The removal of acidity through generation of alkalinity from the passive treatment system was also observed to generally govern the removal of metallic parameters through hydroxide formation, with overall percentage removals of 88-100% achieved. The removal kinetics for SO 4 2- was modelled using two approaches, yielding rate constant values of 1.56 and 1.53 L/(day mol) respectively, thereby confirming authenticity of SO 4 2- removal kinetics experimental data. The study findings provide insights into better understanding of the potential use of slags and their limitations, particularly in mine closure, as part of addressing this challenge in South Africa.
Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen
2014-01-01
Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.
Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai
2018-06-13
An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.
A nonlocal fluid closure for antiparallel reconnection
NASA Astrophysics Data System (ADS)
Ng, J.; Hakim, A.; Bhattacharjee, A.
2016-12-01
The integration of kinetic effects in fluid models is an important problem in global simulations of the Earth's magnetosphere and space weather modelling. In particular, it has been shown that ion kinetics play an important role in the dynamics of large reconnecting systems, and that fluid models can account of some of these effects[1,2] . Here we introduce a new fluid model and closure for collisionless magnetic reconnection and more general applications. Taking moments of the kinetic equation, we evolve the full pressure tensor for electrons and ions, which includes the off diagonal terms necessary for reconnection. Kinetic effects are recovered by using a nonlocal heat flux closure, which approximates linear Landau damping in the fluid framework [3]. Using the island coalescence problem as a test, we show how the nonlocal ion closure improves on the typical collisional closures used for ten-moment models and circumvents the need for a colllisional free parameter. Finally, we extend the closure to study guide-field reconnection and discuss the implementation of a twenty-moment model.[1] A. Stanier et al. Phys Rev Lett (2015)[2] J. Ng et al. Phys Plasmas (2015)[3] G. Hammett et al. Phys Rev Lett (1990)
A Model for the Estimation of Hepatic Insulin Extraction After a Meal.
Piccinini, Francesca; Dalla Man, Chiara; Vella, Adrian; Cobelli, Claudio
2016-09-01
Quantitative assessment of hepatic insulin extraction (HE) after an oral glucose challenge, e.g., a meal, is important to understand the regulation of carbohydrate metabolism. The aim of the current study is to develop a model of system for estimating HE. Nine different models, of increasing complexity, were tested on data of 204 normal subjects, who underwent a mixed meal tolerance test, with frequent measurement of plasma glucose, insulin, and C-peptide concentrations. All these models included a two-compartment model of C-peptide kinetics, an insulin secretion model, a compartmental model of insulin kinetics (with number of compartments ranging from one to three), and different HE descriptions, depending on plasma glucose and insulin. Model performances were compared on the basis of data fit, precision of parameter estimates, and parsimony criteria. The three-compartment model of insulin kinetics, coupled with HE depending on glucose concentration, showed the best fit and a good ability to precisely estimate the parameters. In addition, the model calculates basal and total indices of HE ( HE b and HE tot , respectively), and provides an index of HE sensitivity to glucose ( S G HE ). A new physiologically based HE model has been developed, which allows an improved quantitative description of glucose regulation. The use of the new model provides an in-depth description of insulin kinetics, thus enabling a better understanding of a given subject's metabolic state.
Huang, Lihan
2018-05-01
The objective of this study was to investigate the growth kinetics of Clostridium botulinum LNT01, a non-toxigenic mutant of C. botulinum 62A, in cooked ground beef. The spores of C. botulinum LNT01 were inoculated to ground beef and incubated anaerobically under different temperature conditions to observe growth and develop growth curves. A one-step kinetic analysis method was used to analyze the growth curves simultaneously to minimize the global residual error. The data analysis was performed using the USDA IPMP-Global Fit, with the Huang model as the primary model and the cardinal parameters model as the secondary model. The results of data analysis showed that the minimum, optimum, and maximum growth temperatures of this mutant are 11.5, 36.4, and 44.3 °C, and the estimated optimum specific growth rate is 0.633 ln CFU/g per h, or 0.275 log CFU/g per h. The maximum cell density is 7.84 log CFU/g. The models and kinetic parameters were validated using additional isothermal and dynamic growth curves. The resulting residual errors of validation followed a Laplace distribution, with about 60% of the residual errors within ±0.5 log CFU/g of experimental observations, suggesting that the models could predict the growth of C. botulinum LNT01 in ground beef with reasonable accuracy. Comparing with C. perfringens, C. botulinum LNT01 grows at much slower rates and with much longer lag times. Its growth kinetics is also very similar to C. sporogenes in ground beef. The results of computer simulation using kinetic models showed that, while prolific growth of C. perfringens may occur in ground beef during cooling, no growth of C. botulinum LNT01 or C. sporogenes would occur under the same cooling conditions. The models developed in this study may be used for prediction of the growth and risk assessments of proteolytic C. botulinum in cooked meats. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemhoff, A P; Burnham, A K; Nichols III, A L
The reduction of the number of reactions in kinetic models for both the HMX beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia Instrumented Thermal Ignition (SITI) and Scaled Thermal Explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on One-Dimensional Time to Explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as wellmore » with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model, yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multi-step Arrhenius model, and can contain up to 90% less chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from Differential Scanning Calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multi-step Arrhenius approach, while up to 11% using a Prout-Tompkins cookoff model.« less
Miskovic, Ljubisa; Alff-Tuomala, Susanne; Soh, Keng Cher; Barth, Dorothee; Salusjärvi, Laura; Pitkänen, Juha-Pekka; Ruohonen, Laura; Penttilä, Merja; Hatzimanikatis, Vassily
2017-01-01
Recent advancements in omics measurement technologies have led to an ever-increasing amount of available experimental data that necessitate systems-oriented methodologies for efficient and systematic integration of data into consistent large-scale kinetic models. These models can help us to uncover new insights into cellular physiology and also to assist in the rational design of bioreactor or fermentation processes. Optimization and Risk Analysis of Complex Living Entities (ORACLE) framework for the construction of large-scale kinetic models can be used as guidance for formulating alternative metabolic engineering strategies. We used ORACLE in a metabolic engineering problem: improvement of the xylose uptake rate during mixed glucose-xylose consumption in a recombinant Saccharomyces cerevisiae strain. Using the data from bioreactor fermentations, we characterized network flux and concentration profiles representing possible physiological states of the analyzed strain. We then identified enzymes that could lead to improved flux through xylose transporters (XTR). For some of the identified enzymes, including hexokinase (HXK), we could not deduce if their control over XTR was positive or negative. We thus performed a follow-up experiment, and we found out that HXK2 deletion improves xylose uptake rate. The data from the performed experiments were then used to prune the kinetic models, and the predictions of the pruned population of kinetic models were in agreement with the experimental data collected on the HXK2 -deficient S. cerevisiae strain. We present a design-build-test cycle composed of modeling efforts and experiments with a glucose-xylose co-utilizing recombinant S. cerevisiae and its HXK2 -deficient mutant that allowed us to uncover interdependencies between upper glycolysis and xylose uptake pathway. Through this cycle, we also obtained kinetic models with improved prediction capabilities. The present study demonstrates the potential of integrated "modeling and experiments" systems biology approaches that can be applied for diverse applications ranging from biotechnology to drug discovery.
KINETIC AND DYNAMIC ASPECTS OF ARSENIC TOXICITY
This project integrates research on aspects of the kinetic and dynamic behavior of arsenic. A PBPK model for arsenic will be developed using metabolism and disposition data from studies in mice. Retention of arsenic in the tissues following exposure to arsenic will be investigate...
Hu, Mian; Chen, Zhihua; Guo, Dabin; Liu, Cuixia; Xiao, Bo; Hu, Zhiquan; Liu, Shiming
2015-02-01
The pyrolysis process of two microalgae, Chlorella pyrenoidosa (CP) and bloom-forming cyanobacteria (CB) was examined by thermo-gravimetry to investigate their thermal decomposition behavior under non-isothermal conditions. It has found that the pyrolysis of both microalgae consists of three stages and stage II is the major mass reduction stage with mass loss of 70.69% for CP and 64.43% for CB, respectively. The pyrolysis kinetics of both microalgae was further studied using single-step global model (SSGM) and distributed activation energy model (DAEM). The mean apparent activation energy of CP and CB in SSGM was calculated as 143.71 and 173.46 kJ/mol, respectively. However, SSGM was not suitable for modeling pyrolysis kinetic of both microalgae due to the mechanism change during conversion. The DAEM with 200 first-order reactions showed an excellent fit between simulated data and experimental results. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon.
Silva-Medeiros, Flávia V; Consolin-Filho, Nelson; Xavier de Lima, Mateus; Bazzo, Fernando Previato; Barros, Maria Angélica S D; Bergamasco, Rosângela; Tavares, Célia R G
2016-12-01
The presence of silver in the natural water environment has been of great concern because of its toxicity, especially when it is in the free ion form (Ag(+)). This paper aims to study the adsorption kinetics of silver ions from an aqueous solution onto coconut shell activated carbon using batch methods. Batch kinetic data were fitted to the first-order model and the pseudo-second-order model, and this last equation fits correctly the experimental data. Equilibrium experiments were carried out at 30°C, 40°C, and 50°C. The adsorption isotherms were reasonably fit using Langmuir model, and the adsorption process was slightly influenced by changes in temperature. Thermodynamic parameters (ΔH°, ΔG°, and ΔS°) were determined. The adsorption process seems to be non-favorable, exothermic, and have an increase in the orderness.
NASA Astrophysics Data System (ADS)
Quimque, Mark Tristan J.; Jimenez, Marvin C.; Acas, Meg Ina S.; Indoc, Danrelle Keth L.; Gomez, Enjelyn C.; Tabuñag, Jenny Syl D.
2017-01-01
Manganese is a common contaminant in drinking water along with other metal pollutants. This paper investigates the use of chitin, extracted from crab shells obtained as restaurant throwaway, as an adsorbent in removing manganese ions from aqueous medium. In particular, this aims to optimize the adsorption parameters and look into the kinetics of the process. The adsorption experiments done in this study employed the batch equilibration method. In the optimization, the following parameters were considered: pH and concentration of Mn (II) sorbate solution, particle size and dosage of adsorbent chitin, and adsorbent-adsorbate contact time. At the optimal condition, the order of the adsorption reaction was estimated using kinetic models which describes the process best. It was found out that the adsorption of aqueous Mn (II) ions onto chitin obeys the pseudo-second order model. This model assumes that the adsorption occurred via chemisorption
Helbert, Anne-Laure; Moya, Alice; Jil, Tomas; Andrieux, Michel; Ignat, Michel; Brisset, François; Baudin, Thierry
2015-10-01
In this paper, the traceability of copper from the anode to the cathode and then the wire rod has been studied in terms of impurity content, microstructure, texture, recrystallization kinetics, and ductility. These characterizations were obtained based on secondary ion mass spectrometry, differential scanning calorimetry (DSC), X-ray diffraction, HV hardness, and electron backscattered diffraction. It is shown that the recrystallization was delayed by the total amount of impurities. From tensile tests performed on cold drawn and subsequently annealed wires for a given time, a simplified model has been developed to link tensile elongation to the chemical composition. This model allowed quantification of the contribution of some additional elements, present in small quantity, on the recrystallization kinetics. The proposed model adjusted for the cold-drawn wires was also validated on both the cathode and wire rod used for the study of traceability.
Removal of Rhodamine B from aqueous solution using magnetic NiFe nanoparticles.
Liu, Yan; Liu, Kaige; Zhang, Lin; Zhang, Zhaowen
2015-01-01
Surface-modified magnetic nano alloy particles Ni2.33Fe were prepared using a hydrothermal method and they were utilized for removing Rhodamine B (RhB) from aqueous solution. The magnetic nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy, which confirmed that the surface of the magnetic product with a face-centered cubic-type structure was successfully modified by sodium citrate. Kinetics studies were conducted. The pseudo-second-order kinetic model was used for fitting the kinetic data successfully. The Freundlich and Langmuir adsorption models were employed for the mathematical description of adsorption equilibrium. It was found that the adsorption isotherm can be very satisfactorily fitted by the Freundlich model.
Interfacial mixing in high energy-density matter with a multiphysics kinetic model
NASA Astrophysics Data System (ADS)
Haack, Jeff; Hauck, Cory; Murillo, Michael
2017-10-01
We have extended a recently-developed multispecies, multitemperature BGK model to include multiphysics capability that allows modeling of a wider range of plasma conditions. In particular, we have extended the model to describe one spatial dimension, and included a multispecies atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the new model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, similar to a recent molecular dynamics study, but for larger length and time scales and for much higher temperatures. From our numerical results we are able to explore a variety of phenomena, including hydrogen jetting, kinetic effects (non-Maxwellian and anisotropic distributions), plasma physics (size, persistence and role of electric fields) and transport (relative sizes of Fickean diffision, electrodiffusion and barodiffusion). As compared with the recent molecular dynamics work the kinetic model greatly extends the accessible physical domains we are able to model.
Controlling Release Kinetics of PLG Microspheres Using a Manufacturing Technique
NASA Astrophysics Data System (ADS)
Berchane, Nader
2005-11-01
Controlled drug delivery offers numerous advantages compared with conventional free dosage forms, in particular: improved efficacy and patient compliance. Emulsification is a widely used technique to entrap drugs in biodegradable microspheres for controlled drug delivery. The size of the formed microspheres has a significant influence on drug release kinetics. Despite the advantages of controlled drug delivery, previous attempts to achieve predetermined release rates have seen limited success. This study develops a tool to tailor desired release kinetics by combining microsphere batches of specified mean diameter and size distribution. A fluid mechanics based correlation that predicts the average size of Poly(Lactide-co-Glycolide) [PLG] microspheres from the manufacturing technique, is constructed and validated by comparison with experimental results. The microspheres produced are accurately represented by the Rosin-Rammler mathematical distribution function. A mathematical model is formulated that incorporates the microsphere distribution function to predict the release kinetics from mono-dispersed and poly-dispersed populations. Through this mathematical model, different release kinetics can be achieved by combining different sized populations in different ratios. The resulting design tool should prove useful for the pharmaceutical industry to achieve designer release kinetics.
Carotene Degradation and Isomerization during Thermal Processing: A Review on the Kinetic Aspects.
Colle, Ines J P; Lemmens, Lien; Knockaert, Griet; Van Loey, Ann; Hendrickx, Marc
2016-08-17
Kinetic models are important tools for process design and optimization to balance desired and undesired reactions taking place in complex food systems during food processing and preservation. This review covers the state of the art on kinetic models available to describe heat-induced conversion of carotenoids, in particular lycopene and β-carotene. First, relevant properties of these carotenoids are discussed. Second, some general aspects of kinetic modeling are introduced, including both empirical single-response modeling and mechanism-based multi-response modeling. The merits of multi-response modeling to simultaneously describe carotene degradation and isomerization are demonstrated. The future challenge in this research field lies in the extension of the current multi-response models to better approach the real reaction pathway and in the integration of kinetic models with mass transfer models in case of reaction in multi-phase food systems.
NASA Astrophysics Data System (ADS)
Vecil, Francesco; Lafitte, Pauline; Rosado Linares, Jesús
2013-10-01
We study at particle and kinetic level a collective behavior model based on three phenomena: self-propulsion, friction (Rayleigh effect) and an attractive/repulsive (Morse) potential rescaled so that the total mass of the system remains constant independently of the number of particles N. In the first part of the paper, we introduce the particle model: the agents are numbered and described by their position and velocity. We identify five parameters that govern the possible asymptotic states for this system (clumps, spheres, dispersion, mills, rigid-body rotation, flocks) and perform a numerical analysis on the 3D setting. Then, in the second part of the paper, we describe the kinetic system derived as the limit from the particle model as N tends to infinity; we propose, in 1D, a numerical scheme for the simulations, and perform a numerical analysis devoted to trying to recover asymptotically patterns similar to those emerging for the equivalent particle systems, when particles originally evolved on a circle.
Zhang, Yuling; Xu, Wenjing; Duan, Pengpeng; Cong, Yaohui; An, Tingting; Yu, Na; Zou, Hongtao; Dang, Xiuli; An, Jing; Fan, Qingfeng; Zhang, Yulong
2017-01-01
Background Understanding the nitrogen (N) mineralization process and applying appropriate model simulation are key factors in evaluating N mineralization. However, there are few studies of the N mineralization characteristics of paddy soils in Mollisols area of Northeast China. Materials and methods The soils were sampled from the counties of Qingan and Huachuan, which were located in Mollisols area of Northeast China. The sample soil was incubated under waterlogged at 30°C in a controlled temperature cabinet for 161 days (a 2: 1 water: soil ratio was maintained during incubation). Three models, i.e. the single first-order kinetics model, the double first-order kinetics model and the mixed first-order and zero-order kinetics model were used to simulate the cumulative mineralised N (NH4+-N and TSN) in the laboratory and waterlogged incubation. Principal results During 161 days of waterlogged incubation, the average cumulative total soluble N (TSN), ammonium N (NH4+-N), and soluble organic N (SON) was 122.2 mg kg-1, 85.9 mg kg-1, and 36.3 mg kg-1, respectively. Cumulative NH4+-N was significantly (P < 0.05) positively correlated with organic carbon (OC), total N (TN), pH, and exchangeable calcium (Ca), and cumulative TSN was significantly (P < 0.05) positively correlated with OC, TN, and exchangeable Ca, but was not significantly (P > 0.05) correlated with C/N ratio, cation exchange capacity (CEC), extractable iron (Fe), clay, and sand. When the cumulative NH4+-N and TSN were simulated, the single first-order kinetics model provided the least accurate simulation. The parameter of the double first-order kinetics model also did not represent the actual data well, but the mixed first-order and zero-order kinetics model provided the most accurate simulation, as demonstrated by the estimated standard error, F statistic values, parameter accuracy, and fitting effect. Conclusions Overall, the results showed that SON was involved with N mineralization process, and the mixed first-order and zero-order kinetics model accurately simulates the N mineralization process of paddy soil in Mollisols area of Northeast China under waterlogged incubation. PMID:28170409
Zhang, Yuling; Xu, Wenjing; Duan, Pengpeng; Cong, Yaohui; An, Tingting; Yu, Na; Zou, Hongtao; Dang, Xiuli; An, Jing; Fan, Qingfeng; Zhang, Yulong
2017-01-01
Understanding the nitrogen (N) mineralization process and applying appropriate model simulation are key factors in evaluating N mineralization. However, there are few studies of the N mineralization characteristics of paddy soils in Mollisols area of Northeast China. The soils were sampled from the counties of Qingan and Huachuan, which were located in Mollisols area of Northeast China. The sample soil was incubated under waterlogged at 30°C in a controlled temperature cabinet for 161 days (a 2: 1 water: soil ratio was maintained during incubation). Three models, i.e. the single first-order kinetics model, the double first-order kinetics model and the mixed first-order and zero-order kinetics model were used to simulate the cumulative mineralised N (NH4+-N and TSN) in the laboratory and waterlogged incubation. During 161 days of waterlogged incubation, the average cumulative total soluble N (TSN), ammonium N (NH4+-N), and soluble organic N (SON) was 122.2 mg kg-1, 85.9 mg kg-1, and 36.3 mg kg-1, respectively. Cumulative NH4+-N was significantly (P < 0.05) positively correlated with organic carbon (OC), total N (TN), pH, and exchangeable calcium (Ca), and cumulative TSN was significantly (P < 0.05) positively correlated with OC, TN, and exchangeable Ca, but was not significantly (P > 0.05) correlated with C/N ratio, cation exchange capacity (CEC), extractable iron (Fe), clay, and sand. When the cumulative NH4+-N and TSN were simulated, the single first-order kinetics model provided the least accurate simulation. The parameter of the double first-order kinetics model also did not represent the actual data well, but the mixed first-order and zero-order kinetics model provided the most accurate simulation, as demonstrated by the estimated standard error, F statistic values, parameter accuracy, and fitting effect. Overall, the results showed that SON was involved with N mineralization process, and the mixed first-order and zero-order kinetics model accurately simulates the N mineralization process of paddy soil in Mollisols area of Northeast China under waterlogged incubation.
Grajales-González, E; Monge-Palacios, M; Sarathy, S Mani
2018-04-12
The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with its favorable blend properties and low hygroscopicity. Although C 4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Enols are important intermediates in the combustion of C 4 alcohols, as well as in atmospheric processes. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular tautomerism of propen-2-ol ↔ acetone, which is included in butanol combustion kinetic models, is assigned rate parameters based on the tautomerism vinyl alcohol ↔ acetaldehyde as an analogy. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the titled reaction was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) ab initio calculations, with multistructural torsional anharmonicity and variational transition state theory considerations in a wide temperature and pressure range (200-3000 K; 0.1-10 8 kPa). Results differ from vinyl alcohol ↔ acetaldehyde analogue reaction, which shows lower rate constant values. It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption.
Estimating kinetic mechanisms with prior knowledge I: Linear parameter constraints.
Salari, Autoosa; Navarro, Marco A; Milescu, Mirela; Milescu, Lorin S
2018-02-05
To understand how ion channels and other proteins function at the molecular and cellular levels, one must decrypt their kinetic mechanisms. Sophisticated algorithms have been developed that can be used to extract kinetic parameters from a variety of experimental data types. However, formulating models that not only explain new data, but are also consistent with existing knowledge, remains a challenge. Here, we present a two-part study describing a mathematical and computational formalism that can be used to enforce prior knowledge into the model using constraints. In this first part, we focus on constraints that enforce explicit linear relationships involving rate constants or other model parameters. We develop a simple, linear algebra-based transformation that can be applied to enforce many types of model properties and assumptions, such as microscopic reversibility, allosteric gating, and equality and inequality parameter relationships. This transformation converts the set of linearly interdependent model parameters into a reduced set of independent parameters, which can be passed to an automated search engine for model optimization. In the companion article, we introduce a complementary method that can be used to enforce arbitrary parameter relationships and any constraints that quantify the behavior of the model under certain conditions. The procedures described in this study can, in principle, be coupled to any of the existing methods for solving molecular kinetics for ion channels or other proteins. These concepts can be used not only to enforce existing knowledge but also to formulate and test new hypotheses. © 2018 Salari et al.
Multiple lesion track structure model
NASA Technical Reports Server (NTRS)
Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.
1992-01-01
A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions.
Detonation initiation in a model of explosive: Comparative atomistic and hydrodynamics simulations
NASA Astrophysics Data System (ADS)
Murzov, S. A.; Sergeev, O. V.; Dyachkov, S. A.; Egorova, M. S.; Parshikov, A. N.; Zhakhovsky, V. V.
2016-11-01
Here we extend consistent simulations to reactive materials by the example of AB model explosive. The kinetic model of chemical reactions observed in a molecular dynamics (MD) simulation of self-sustained detonation wave can be used in hydrodynamic simulation of detonation initiation. Kinetic coefficients are obtained by minimization of difference between profiles of species calculated from the kinetic model and observed in MD simulations of isochoric thermal decomposition with a help of downhill simplex method combined with random walk in multidimensional space of fitting kinetic model parameters.
NASA Astrophysics Data System (ADS)
Bencheikh, imane; el hajjaji, souad; abourouh, imane; Kitane, Said; Dahchour, Abdelmalek; El M'Rabet, Mohammadine
2017-04-01
Wastewater treatment is the subject of several studies through decades. Interest is continuously oriented to provide cheaper and efficient methods of treatment. Several methods of treatment exit including coagulation flocculation, filtration, precipitation, ozonation, ion exchange, reverse osmosis, advanced oxidation process. The use of these methods proved limited because of their high investment and operational cost. Adsorption can be an efficient low-cost process to remove pollutants from wastewater. This method of treatment calls for an solid adsorbent which constitutes the purification tool. Agricultural wastes have been widely exploited in this case .As we know the agricultural wastes are an important source of water pollution once discharged into the aquatic environment (river, sea ...). The valorization of such wastes and their use allows the prevention of this problem with an economic and environment benefits. In this context our study aimed testing the wastewater treatment capacity by adsorption onto holocellulose resulting from the valorization of an agriculture waste. In this study, methylene blue (MB) and methyl orange (MO) are selected as models pollutants for evaluating the holocellulose adsorbent capacity. The kinetics of adsorption is performed using UV-visible spectroscopy. In order to study the effect of the main parameters for the adsorption process and their mutual interaction, a full factorial design (type nk) has been used.23 full factorial design analysis was performed to screen the parameters affecting dye removal efficiency. Using the experimental results, a linear mathematical model representing the influence of the different parameters and their interactions was obtained. The parametric study showed that efficiency of the adsorption system (Dyes/ Holocellulose) is mainly linked to pH variation. The best yields were observed for MB at pH=10 and for MO at pH=2.The kinetic data was analyzed using different models , namely , the pseudo-first- order kinetic model the pseudo-second-order kinetic model , and the Intraparticule diffusion model . It was observed that the pseudo -second -order model was the best model describing the adsorption behavior of MB and MO onto holocellulose. This suggested that the adsorption mechanism might be a chemisorptions process. In general, the results indicated that holocellulose is suitable as sorbent material for adsorption of MO and MB from aqueous solutions for its high effectiveness and low cost.
Biophysical synaptic dynamics in an analog VLSI network of Hodgkin-Huxley neurons.
Yu, Theodore; Cauwenberghs, Gert
2009-01-01
We study synaptic dynamics in a biophysical network of four coupled spiking neurons implemented in an analog VLSI silicon microchip. The four neurons implement a generalized Hodgkin-Huxley model with individually configurable rate-based kinetics of opening and closing of Na+ and K+ ion channels. The twelve synapses implement a rate-based first-order kinetic model of neurotransmitter and receptor dynamics, accounting for NMDA and non-NMDA type chemical synapses. The implemented models on the chip are fully configurable by 384 parameters accounting for conductances, reversal potentials, and pre/post-synaptic voltage-dependence of the channel kinetics. We describe the models and present experimental results from the chip characterizing single neuron dynamics, single synapse dynamics, and multi-neuron network dynamics showing phase-locking behavior as a function of synaptic coupling strength. The 3mm x 3mm microchip consumes 1.29 mW power making it promising for applications including neuromorphic modeling and neural prostheses.
Symmetry breaking patterns for inflation
NASA Astrophysics Data System (ADS)
Klein, Remko; Roest, Diederik; Stefanyszyn, David
2018-06-01
We study inflationary models where the kinetic sector of the theory has a non-linearly realised symmetry which is broken by the inflationary potential. We distinguish between kinetic symmetries which non-linearly realise an internal or space-time group, and which yield a flat or curved scalar manifold. This classification leads to well-known inflationary models such as monomial inflation and α-attractors, as well as a new model based on fixed couplings between a dilaton and many axions which non-linearly realises higher-dimensional conformal symmetries. In this model, inflation can be realised along the dilatonic direction, leading to a tensor-to-scalar ratio r ˜ 0 .01 and a spectral index n s ˜ 0 .975. We refer to the new model as ambient inflation since inflation proceeds along an isometry of an anti-de Sitter ambient space-time, which fully determines the kinetic sector.
Owamah, H I; Izinyon, O C
2015-10-01
Biogas kinetic models are often used to characterize substrate degradation and prediction of biogas production potential. Most of these existing models are however difficult to apply to substrates they were not developed for since their applications are usually substrate specific. Biodegradability kinetic (BIK) model and maximum biogas production potential and stability assessment (MBPPSA) model were therefore developed in this study for better understanding of the anaerobic co-digestion of food waste and maize husk for biogas production. Biodegradability constant (k) was estimated as 0.11 d(-1) using the BIK model. The results of maximum biogas production potential (A) obtained using the MBPPSA model were found to be in good correspondence, both in value and trend with the results obtained using the popular but complex modified Gompertz model for digesters B-1, B-2, B-3, B-4, and B-5. The (If) value of MBPPSA model also showed that digesters B-3, B-4, and B-5 were stable, while B-1 and B-2 were inhibited/unstable. Similar stability observation was also obtained using the modified Gompertz model. The MBPPSA model can therefore be used as an alternative model for anaerobic digestion feasibility studies and plant design. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kinetic Description of the Impedance Probe
NASA Astrophysics Data System (ADS)
Oberrath, Jens; Lapke, Martin; Mussenbrock, Thomas; Brinkmann, Ralf
2011-10-01
Active plasma resonance spectroscopy is a well known diagnostic method. Many concepts of this method are theoretically investigated and realized as a diagnostic tool, one of which is the impedance probe (IP). The application of such a probe in plasmas with pressures of a few Pa raises the question whether kinetic effects have to be taken into account or not. To address this question a kinetic model is necessary. A general kinetic model for an electrostatic concept of active plasma spectroscopy was presented by R.P. Brinkmann and can be used to describe the multipole resonance probe (MRP). In principle the IP is interpretable as a special case of the MRP in lower order. Thus, we are able to describe the IP by the kinetic model of the MRP. Based on this model we derive a solution to investigate the influence of kinetic effects to the resonance behavior of the IP. Active plasma resonance spectroscopy is a well known diagnostic method. Many concepts of this method are theoretically investigated and realized as a diagnostic tool, one of which is the impedance probe (IP). The application of such a probe in plasmas with pressures of a few Pa raises the question whether kinetic effects have to be taken into account or not. To address this question a kinetic model is necessary. A general kinetic model for an electrostatic concept of active plasma spectroscopy was presented by R.P. Brinkmann and can be used to describe the multipole resonance probe (MRP). In principle the IP is interpretable as a special case of the MRP in lower order. Thus, we are able to describe the IP by the kinetic model of the MRP. Based on this model we derive a solution to investigate the influence of kinetic effects to the resonance behavior of the IP. The authors acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) via the Ruhr University Research School and the Federal Ministry of Education and Research in frame of the PluTO project.
Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches
Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe
2016-01-01
ABSTRACT Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations. PMID:26932506
Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches.
Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe
2016-01-01
Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations.
Kinetic Models for Topological Nearest-Neighbor Interactions
NASA Astrophysics Data System (ADS)
Blanchet, Adrien; Degond, Pierre
2017-12-01
We consider systems of agents interacting through topological interactions. These have been shown to play an important part in animal and human behavior. Precisely, the system consists of a finite number of particles characterized by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of its closest neighbor, the leader. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit kinetic equation is a non-standard spatial diffusion equation for the particle distribution function. We also study the case wherein the particles interact with their K closest neighbors and show that the corresponding kinetic equation is the same. Finally, we prove that these models can be seen as a singular limit of the smooth rank-based model previously studied in Blanchet and Degond (J Stat Phys 163:41-60, 2016). The proofs are based on a combinatorial interpretation of the rank as well as some concentration of measure arguments.
Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U
2016-12-01
This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.
1988-06-30
consists of three submodels for the electron kinetics, plasma chemistry , and surface deposition kinetics for a-Si:H deposited from radio frequency...properties. Plasma enhanced, Chemical vapor deposition, amorphous silicon, Modeling, Electron kinetics, Plasma chemistry , Deposition kinetics, Rf discharge, Silane, Film properties, Silicon.
Berhane, Tedros M; Levy, Jonathan; Krekeler, Mark P S; Danielson, Neil D
2017-06-01
Kinetic sorption of bisphenol A (BPA), carbamazepine (CMZ) and ciprofloxacin (CIP) by three palygorskite-montmorillonite (Pal-Mt) granule sizes was studied. For BPA, CMZ and CIP, apparent sorption equilibrium was reached within about 3, 5 and 16 h, respectively. The highest and the lowest sorption capacities were by the small and the large granule sizes, respectively. Experimental results were compared to various sorption kinetics models to gain insights regarding the sorption processes and achieve a predictive capacity. The pseudo-second order (PSO) and the Elovich models performed the best while the pseudo-first order (PFO) model was only adequate for CMZ. The intraparticle-diffusion (IPD) model showed a two-step linear plot of BPA, CMZ and CIP sorption versus square root of time that was indicative of surface-sorption followed by IPD as a rate-limiting process before equilibrium was reached. Using the pseudo-first order (PFO) and the pseudo-second order (PSO) rate constants combined with previously-established Langmuir equilibrium sorption models, the kinetic sorption (k a ) and desorption (k d ) Langmuir kinetic rate constants were theoretically calculated for BPA and CIP. Kinetic sorption was then simulated using these theoretically calculated k a and k d values, and the simulations were compared to the observed behavior. The simulations fit the observed sorbed concentrations better during the early part of the experiments; the observed sorption during later times occurred more slowly than expected, supporting the hypothesis that IPD becomes a rate-limiting process during the course of the experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.
A note on the maintenance of the atmospheric kinetic energy
NASA Technical Reports Server (NTRS)
Chen, T.-C.; Lee, Y.-H.
1982-01-01
The winter simulations of the GLAS climate model and the NCAR community climate model are used to examine the maintenance of the atmospheric kinetic energy. It is found that the kinetic energy is generated in the lower latitudes south of the maximum westerlies, transported northward and then, destroyed in the midlatitudes north of the maximum westerlies. Therefore, the atmospheric kinetic energy is maintained by the counterbalance between the divergence (convergence) of kinetic energy flux and generation (destruction) of kinetic energy in lower (middle) latitudes.
Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB
Munir, Ahsan; Waseem, Hassan; Williams, Maggie R.; Stedtfeld, Robert D.; Gulari, Erdogan; Tiedje, James M.; Hashsham, Syed A.
2017-01-01
Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131). PMID:28555058
Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB.
Munir, Ahsan; Waseem, Hassan; Williams, Maggie R; Stedtfeld, Robert D; Gulari, Erdogan; Tiedje, James M; Hashsham, Syed A
2017-05-29
Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R² = 0.8131).
Makeev, Alexei G; Kurkina, Elena S; Kevrekidis, Ioannis G
2012-06-01
Kinetic Monte Carlo simulations are used to study the stochastic two-species Lotka-Volterra model on a square lattice. For certain values of the model parameters, the system constitutes an excitable medium: travelling pulses and rotating spiral waves can be excited. Stable solitary pulses travel with constant (modulo stochastic fluctuations) shape and speed along a periodic lattice. The spiral waves observed persist sometimes for hundreds of rotations, but they are ultimately unstable and break-up (because of fluctuations and interactions between neighboring fronts) giving rise to complex dynamic behavior in which numerous small spiral waves rotate and interact with each other. It is interesting that travelling pulses and spiral waves can be exhibited by the model even for completely immobile species, due to the non-local reaction kinetics.
Sabio, E; Zamora, F; González-García, C M; Ledesma, B; Álvarez-Murillo, A; Román, S
2016-12-01
In this work, the adsorption kinetics of p-nitrophenol (PNP) onto several commercial activated carbons (ACs) with different textural and geometrical characteristics was studied. For this aim, a homogeneous diffusion solid model (HDSM) was used, which does take the adsorbent shape into account. The HDSM was solved by means of the finite element method (FEM) using the commercial software COMSOL. The different kinetic patterns observed in the experiments carried out can be described by the developed model, which shows that the sharp drop of adsorption rate observed in some samples is caused by the formation of a concentration wave. The model allows one to visualize the changes in concentration taking place in both liquid and solid phases, which enables us to link the kinetic behaviour with the main features of the carbon samples.
Tarazona, J V; Rodríguez, C; Alonso, E; Sáez, M; González, F; San Andrés, M D; Jiménez, B; San Andrés, M I
2015-01-22
This article describes the toxicokinetics of perfluorooctane sulfonate (PFOS) in birds under low repeated dosing, equivalent to 0.085 μg/kg per day, representing environmentally realistic exposure conditions. The best fitting was provided by a simple pseudo monocompartmental first-order kinetics model, regulated by two rates, with a pseudo first-order dissipation half-life of 230 days, accounting for real elimination as well as binding of PFOS to non-exchangeable structures. The calculated assimilation efficiency was 0.66 with confidence intervals of 0.64 and 0.68. The model calculations confirmed that the measured maximum concentrations were still far from the steady state situation, which for this dose regime, was estimated at a value of about 65 μg PFOS/L serum achieved after a theoretical 210 weeks continuous exposure. The results confirm a very different kinetics than that observed in single-dose experiments confirming clear dose-related differences in apparent elimination rates in birds, as described for humans and monkeys; suggesting that a capacity-limited saturable process should also be considered in the kinetic behavior of PFOS in birds. Pseudo first-order kinetic models are highly convenient and frequently used for predicting bioaccumulation of chemicals in livestock and wildlife; the study suggests that previous bioaccumulation models using half-lives obtained at high doses are expected to underestimate the biomagnification potential of PFOS. The toxicokinetic parameters presented here can be used for higher-tier bioaccumulation estimations of PFOS in chickens and as surrogate values for modeling PFOS kinetics in wild bird species. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dana, Saswati; Nakakuki, Takashi; Hatakeyama, Mariko; Kimura, Shuhei; Raha, Soumyendu
2011-01-01
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. 2011 Elsevier Ireland Ltd. All rights reserved.
Theoretical studies of solar lasers and converters
NASA Technical Reports Server (NTRS)
Heinbockel, John
1988-01-01
The geometry and setup for the n-C3F7I iodine laser are illustrated. The mathematical modeling of this system is described. The chemical kinetics are summarized. A sensitivity analysis was performed on the parameters occurring in the differential equations describing the chemical kinetics.
Mathematical modeling and growth kinetics of Clostridium sporogenes in cooked beef
USDA-ARS?s Scientific Manuscript database
Clostridium sporogenes PA 3679 is a common surrogate for proteolytic Clostridium botulinum for thermal process development and validation. However, little information is available concerning the growth kinetics of C. sporogenes in food. Therefore, the objective of this study was to investigate the...
An Undergraduate Laboratory Exercise for Studying Kinetics of Batch Crystallization
ERIC Educational Resources Information Center
Louhi-Kultanen, Marjatta; Han, Bing; Nurkka, Annikka; Hatakka, Henry
2015-01-01
The present work describes an undergraduate laboratory exercise for improving understanding of fundamental phenomena in cooling crystallization. The exercise of nucleation and crystal growth kinetics supports learning of theories and models presented in lectures and calculation exercises. The teaching methodology incorporates precepts the…
NASA Astrophysics Data System (ADS)
Klein, R.; Gravier, E.; Morel, P.; Besse, N.; Bertrand, P.
2009-08-01
Describing turbulent transport in fusion plasmas is a major concern in magnetic confinement fusion. It is now widely known that kinetic and fluid descriptions can lead to significantly different properties. Although more accurate, the kinetic calculation of turbulent transport is much more demanding of computer resources than fluid simulations. An alternative approach is based on a water-bag representation of the distribution function that is not an approximation but rather a special class of initial conditions, allowing one to reduce the full kinetic Vlasov equation into a set of hydrodynamics equations while keeping its kinetic character [P. Morel, E. Gravier, N. Besse et al., Phys. Plasmas 14, 112109 (2007)]. In this paper, the water-bag concept is used in a gyrokinetic context to study finite Larmor radius effects with the possibility of using the full Larmor radius distribution instead of an averaged Larmor radius. The resulting model is used to study the ion temperature gradient (ITG) instability.
Farobie, Obie; Matsumura, Yukihiko
2017-10-01
In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.
Nonlinear isotherm and kinetics of adsorption of copper from aqueous solutions on bentonite
NASA Astrophysics Data System (ADS)
Sadeghalvad, Bahareh; Khosravi, Sara; Azadmehr, Amir Reza
2016-11-01
Bentonite is one of the most significant of clay minerals that has been studied extensively due to its potential applications in removal of various environmental pollutants. This ability is related to its high ionic exchange capacity and high specific surface area. Copper is one of the important elements of non-ferrous metals found in industrial waste waters. In the present work, the removal of copper from aqueous solutions with Iranian bentonite (from Birjand area, southeastern Iran) used without any chemical pretreatment, was studied. The experimental results were fitted by adsorption isotherms equations with two or three parameters, which include Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Redlich-Peterson, Khan, and Toth models. The best correlation coefficient ( r 2) is 0.9879 observed for Langmuir model, maximum adsorption capacity of bentonite was 55.71 mg/g. The first-order and pseudo-second-order kinetic equations were used to describe the kinetics of adsorption. The experimental data were well fitted by the pseudo-second-order kinetics.
Kebede, Biniam T; Grauwet, Tara; Magpusao, Johannes; Palmers, Stijn; Michiels, Chris; Hendrickx, Marc; Loey, Ann Van
2015-07-15
To have a better understanding of chemical reactions during shelf-life, an integrated analytical and engineering toolbox: "fingerprinting-kinetics" was used. As a case study, a thermally sterilised carrot puree was selected. Sterilised purees were stored at four storage temperatures as a function of time. Fingerprinting enabled selection of volatiles clearly changing during shelf-life. Only these volatiles were identified and studied further. Next, kinetic modelling was performed to investigate the suitability of these volatiles as quality indices (markers) for accelerated shelf-life testing (ASLT). Fingerprinting enabled selection of terpenoids, phenylpropanoids, fatty acid derivatives, Strecker aldehydes and sulphur compounds as volatiles clearly changing during shelf-life. The amount of Strecker aldehydes increased during storage, whereas the rest of the volatiles decreased. Out of the volatiles, based on the applied kinetic modelling, myristicin, α-terpinolene, β-pinene, α-terpineol and octanal were identified as potential markers for ASLT. Copyright © 2015 Elsevier Ltd. All rights reserved.
Equilibrium and Kinetic Studies of Cd2+ Biosorption by the Brown Algae Sargassum fusiforme
Zou, Hui-Xi; Li, Nan; Wang, Li-Hua; Yu, Ping; Yan, Xiu-Feng
2014-01-01
A fundamental investigation of the biosorption of Cd2+ from aqueous solution by the edible seaweed Sargassum fusiforme was performed under batch conditions. The influences of experimental parameters, such as the initial pH, sorption time, temperature, and initial Cd2+ concentration, on Cd2+ uptake by S. fusiforme were evaluated. The results indicated that the biosorption of Cd2+ depended on the initial Cd2+ concentration, as well as the pH. The uptake of Cd2+ could be described by the Langmuir isotherm model, and both the Langmuir biosorption equilibrium constant and the maximum biosorption capacity of the monolayer decreased with increasing temperature, thereby confirming the exothermic character of the sorption process. The biosorption kinetics follows the pseudo-second-order kinetic model, and intraparticle diffusion is the sole rate-limiting step for the entire biosorption period. These fundamental equilibrium and kinetic results can support further studies to the removal of cadmium from S. fusiforme harvested from cadmium-polluted waters. PMID:24736449
NASA Technical Reports Server (NTRS)
Frenklach, M.; Clary, D. W.; Ramachandra, M. K.
1985-01-01
Soot formation in oxidation of allene, 1,3-butadiene, vinylacetylene and chlorobenzene and in pyrolysis of ethylene, vinylacetylene, 1-butene, chlorobenzene, acetylen-hydrogen, benzene-acetylene, benzene-butadiene and chlorobenzene-acetylene argon-diluted mixtures was studied behind reflected shock waves. The results are rationalized within the framework of the conceptual models. It is shown that vinylacetylene is much less sooty than allene, which indicates that conjugation by itself is not a sufficient factor for determining the sooting tendency of a molecule. Structural reactivity in the context of the chemical kinetics is the dominant factor in soot formation. Detailed chemical kinetic modeling of soot formation in pyrolysis of acetylene is reported. The main mass growth was found to proceed through a single dominant route composed of conventional radical reactions. The practically irreversible formation reactions of the fused polycyclic aromatics and the overshoot by hydrogen atom over its equilibrium concentration are the g-driving kinetic forces for soot formation.
Study of the ion kinetic effects in ICF run-away burn using a quasi-1D hybrid model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Cheng -Kun; Molvig, Kim; Albright, Brian James
Here, the loss of fuel ions in the Gamow peak and other kinetic effects related to the α particles during ignition, run-away burn, and disassembly stages of an inertial confinement fusion D-T capsule are investigated with a quasi-1D hybrid volume ignition model that includes kinetic ions, fluid electrons, Planckian radiation photons, and a metallic pusher. The fuel ion loss due to the Knudsen effect at the fuel-pusher interface is accounted for by a local-loss model by with an albedo model for ions returning from the pusher wall. The tail refilling and relaxation of the fuel ion distribution are captured withmore » a nonlinear Fokker-Planck solver. Alpha heating of the fuel ions is modeled kinetically while simple models for finite alpha range and electron heating are used. This dynamical model is benchmarked with a 3 T hydrodynamic burn model employing similar assumptions. For an energetic pusher (~40 kJ) that compresses the fuel to an areal density of ~1.07g/cm 2 at ignition, the simulation shows that the Knudsen effect can substantially limit ion temperature rise in runaway burn. While the final yield decreases modestly from kinetic effects of the α particles, large reduction of the fuel reactivity during ignition and runaway burn may require a higher Knudsen loss rate compared to the rise time of the temperatures above ~25 keV when the broad D-T Gamow peak merges into the bulk Maxwellian distribution.« less
Study of the ion kinetic effects in ICF run-away burn using a quasi-1D hybrid model
Huang, Cheng -Kun; Molvig, Kim; Albright, Brian James; ...
2017-02-21
Here, the loss of fuel ions in the Gamow peak and other kinetic effects related to the α particles during ignition, run-away burn, and disassembly stages of an inertial confinement fusion D-T capsule are investigated with a quasi-1D hybrid volume ignition model that includes kinetic ions, fluid electrons, Planckian radiation photons, and a metallic pusher. The fuel ion loss due to the Knudsen effect at the fuel-pusher interface is accounted for by a local-loss model by with an albedo model for ions returning from the pusher wall. The tail refilling and relaxation of the fuel ion distribution are captured withmore » a nonlinear Fokker-Planck solver. Alpha heating of the fuel ions is modeled kinetically while simple models for finite alpha range and electron heating are used. This dynamical model is benchmarked with a 3 T hydrodynamic burn model employing similar assumptions. For an energetic pusher (~40 kJ) that compresses the fuel to an areal density of ~1.07g/cm 2 at ignition, the simulation shows that the Knudsen effect can substantially limit ion temperature rise in runaway burn. While the final yield decreases modestly from kinetic effects of the α particles, large reduction of the fuel reactivity during ignition and runaway burn may require a higher Knudsen loss rate compared to the rise time of the temperatures above ~25 keV when the broad D-T Gamow peak merges into the bulk Maxwellian distribution.« less
NASA Astrophysics Data System (ADS)
Sciazko, Anna; Komatsu, Yosuke; Brus, Grzegorz; Kimijima, Shinji; Szmyd, Janusz S.
2014-09-01
For a mathematical model based on the result of physical measurements, it becomes possible to determine their influence on the final solution and its accuracy. However, in classical approaches, the influence of different model simplifications on the reliability of the obtained results are usually not comprehensively discussed. This paper presents a novel approach to the study of methane/steam reforming kinetics based on an advanced methodology called the Orthogonal Least Squares method. The kinetics of the reforming process published earlier are divergent among themselves. To obtain the most probable values of kinetic parameters and enable direct and objective model verification, an appropriate calculation procedure needs to be proposed. The applied Generalized Least Squares (GLS) method includes all the experimental results into the mathematical model which becomes internally contradicted, as the number of equations is greater than number of unknown variables. The GLS method is adopted to select the most probable values of results and simultaneously determine the uncertainty coupled with all the variables in the system. In this paper, the evaluation of the reaction rate after the pre-determination of the reaction rate, which was made by preliminary calculation based on the obtained experimental results over a Nickel/Yttria-stabilized Zirconia catalyst, was performed.
NASA Technical Reports Server (NTRS)
Koontz, Steve; Atwell, William; Reddell, Brandon; Rojdev, Kristina
2010-01-01
Analysis of both satellite and surface neutron monitor data demonstrate that the widely utilized Exponential model of solar particle event (SPE) proton kinetic energy spectra can seriously underestimate SPE proton flux, especially at the highest kinetic energies. The more recently developed Band model produces better agreement with neutron monitor data ground level events (GLEs) and is believed to be considerably more accurate at high kinetic energies. Here, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event environments (SEE) behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i. e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations have fully three dimensions with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. The effects are reported for both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. Our results, in agreement with previous studies, show that use of the Exponential form of the event
Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste
Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming
2017-01-01
This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste. PMID:28546964
Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste.
Feng, Lei; Gao, Yuan; Kou, Wei; Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming
2017-01-01
This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste.
Reconnection in the Martian Magnetotail: Hall-MHD With Embedded Particle-in-Cell Simulations
NASA Astrophysics Data System (ADS)
Ma, Yingjuan; Russell, Christopher T.; Toth, Gabor; Chen, Yuxi; Nagy, Andrew F.; Harada, Yuki; McFadden, James; Halekas, Jasper S.; Lillis, Rob; Connerney, John E. P.; Espley, Jared; DiBraccio, Gina A.; Markidis, Stefano; Peng, Ivy Bo; Fang, Xiaohua; Jakosky, Bruce M.
2018-05-01
Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations show clear evidence of the occurrence of the magnetic reconnection process in the Martian plasma tail. In this study, we use sophisticated numerical models to help us understand the effects of magnetic reconnection in the plasma tail. The numerical models used in this study are (a) a multispecies global Hall-magnetohydrodynamic (HMHD) model and (b) a global HMHD model two-way coupled to an embedded fully kinetic particle-in-cell code. Comparison with MAVEN observations clearly shows that the general interaction pattern is well reproduced by the global HMHD model. The coupled model takes advantage of both the efficiency of the MHD model and the ability to incorporate kinetic processes of the particle-in-cell model, making it feasible to conduct kinetic simulations for Mars under realistic solar wind conditions for the first time. Results from the coupled model show that the Martian magnetotail is highly dynamic due to magnetic reconnection, and the resulting Mars-ward plasma flow velocities are significantly higher for the lighter ion fluid, which are quantitatively consistent with MAVEN observations. The HMHD with Embedded Particle-in-Cell model predicts that the ion loss rates are more variable but with similar mean values as compared with HMHD model results.
A Model for Dissolution of Lime in Steelmaking Slags
NASA Astrophysics Data System (ADS)
Sarkar, Rahul; Roy, Ushasi; Ghosh, Dinabandhu
2016-08-01
In a previous study by Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015), a dynamic model of the LD steelmaking was developed. The prediction of the previous model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) for the bath (metal) composition matched well with the plant data (Cicutti et al. in Proceedings of 6th International Conference on Molten Slags, Fluxes and Salts, Stockholm City, 2000). However, with respect to the slag composition, the prediction was not satisfactory. The current study aims to improve upon the previous model Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015) by incorporating a lime dissolution submodel into the earlier one. From the industrial point of view, the understanding of the lime dissolution kinetics is important to meet the ever-increasing demand of producing low-P steel at a low basicity. In the current study, three-step kinetics for the lime dissolution is hypothesized on the assumption that a solid layer of 2CaO·SiO2 should form around the unreacted core of the lime. From the available experimental data, it seems improbable that the observed kinetics should be controlled singly by any one kinetic step. Accordingly, a general, mixed control model has been proposed to calculate the dissolution rate of the lime under varying slag compositions and temperatures. First, the rate equation for each of the three rate-controlling steps has been derived, for three different lime geometries. Next, the rate equation for the mixed control kinetics has been derived and solved to find the dissolution rate. The model predictions have been validated by means of the experimental data available in the literature. In addition, the effects of the process conditions on the dissolution rate have been studied, and compared with the experimental results wherever possible. Incorporation of this submodel into the earlier global model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) enables the prediction of the lime dissolution rate in the dynamic system of LD steelmaking. In addition, with the inclusion of this submodel, significant improvement in the prediction of the slag composition during the main blow period has been observed.
Realistic kinetic loading of the jaw system during single chewing cycles: a finite element study.
Martinez Choy, S E; Lenz, J; Schweizerhof, K; Schmitter, M; Schindler, H J
2017-05-01
Although knowledge of short-range kinetic interactions between antagonistic teeth during mastication is of essential importance for ensuring interference-free fixed dental reconstructions, little information is available. In this study, the forces on and displacements of the teeth during kinetic molar biting simulating the power stroke of a chewing cycle were investigated by use of a finite-element model that included all the essential components of the human masticatory system, including an elastic food bolus. We hypothesised that the model can approximate the loading characteristics of the dentition found in previous experimental studies. The simulation was a transient analysis, that is, it considered the dynamic behaviour of the jaw. In particular, the reaction forces on the teeth and joints arose from contact, rather than nodal forces or constraints. To compute displacements of the teeth, the periodontal ligament (PDL) was modelled by use of an Ogden material model calibrated on the basis of results obtained in previous experiments. During the initial holding phase of the power stroke, bite forces were aligned with the roots of the molars until substantial deformation of the bolus occurred. The forces tilted the molars in the bucco-lingual and mesio-distal directions, but as the intrusive force increased the teeth returned to their initial configuration. The Ogden material model used for the PDL enabled accurate prediction of the displacements observed in experimental tests. In conclusion, the comprehensive kinetic finite element model reproduced the kinematic and loading characteristics of previous experimental investigations. © 2017 John Wiley & Sons Ltd.
An experimental and kinetic modeling study on dimethyl carbonate (DMC) pyrolysis and combustion
Sun, Wenyu; Yang, Bin; Hansen, Nils; ...
2015-12-08
Because of the absence of C–C bonds and the large oxygen content in its molecular structure, dimethyl carbonate (DMC) is a promising oxygenated additive or substitute for hydrocarbon fuels. In order to understand its chemical oxidation and combustion kinetics, flow reactor pyrolysis at different pressures (40, 200 and 1040 mbar) and low-pressure laminar premixed flames with different equivalence ratios (1.0 and 1.5) were investigated. Mole fraction profiles of many reaction intermediates and products were obtained within estimated experimental uncertainties. From theoretical calculations and estimations, a detailed kinetic model for DMC pyrolysis and high-temperature combustion consisting of 257 species and 1563more » reactions was developed. The performance of the kinetic model was then analyzed using detailed chemical composition information, primarily from the present measurements. In addition, it was examined against the chemical structure of an opposed-flow diffusion flame, relying on global combustion properties such as the ignition delay times and laminar burning velocities. Furthermore, these extended comparisons yielded overall satisfactory agreement, demonstrating the applicability of the present model over a wide range of high-temperature conditions.« less
Biosorption of lead (II) ions by NaOH-activated apple (Malus domestica) juice residue
NASA Astrophysics Data System (ADS)
Arimurti, Devita Dwi; Heraldy, Eddy; Lestari, Witri Wahyu
2016-02-01
This research studied the removal of Pb(II) ions from aqueous solutions using NaOH-activated apple (Malus domestica) juice residue. Biosorbent was characterized with Fourier Transform Infrared Spectrophotometer (FTIR), and Surface Area Analyzer (SAA). The effects of biosorbent dosage, pH, contact time and initial metal ion concentration had been investigated in batch-adsorption method. The biosorption kinetic data were analyzed by pseudo-first-order and pseudo-second-order kinetics model. Freundlich and Langmuir's isotherm were used to describe the biosorption process. The optimum conditions of Pb(II) adsorption was observed at 60 min of contact time, pH 4, and 0.1 g biosorbent dosage in 25 ml solution. The biosorption kinetics followed the pseudo-second-order kinetic model, resulted biosorption constant rate of 0.184 g.mg-1.min-1. The Langmuir isotherm model exhibited the best fit to experimental data. The maximum biosorption capacity of Pb(II) determined according to the Langmuir model was 90.90 mg.g-1 at 302 K, with the adsorption energy of 26.429 kJ.mol-1.
NASA Astrophysics Data System (ADS)
Widayatno, Tri
2015-12-01
Electrodeposition of nickel onto copper in a system of low Ni2+ concentration and at a narrow interelectrode gap has been carried out. This electrochemical system was required for maskless pattern transfer through electroplating (Enface technique). Kinetics of Electrochemical reaction of Nickel is relatively slow, where such electrochemical system has never been used in this technology. Study on the kinetics of the electrochemical reaction of nickel in such system is essential due to the fact that the quality of an electrodeposited nickel is affected by kinetics. Analytical and graphical methods were utilised to determine kinetic parameters. The kinetic model was approximated by Butler-Volmer and j-η equation. Kinetic parameters such as exchange current density (j0) and charge transfer coefficient (α) were also graphically determined using the plot of η vs. log|j| known as Tafel plot. The polarisation data for an unstirred 0.19 M nickel sulfamate solution at 0.5 mV/s scan rate and RDE system was used. The results indicate that both methods are fairly accurate. For the analytical, the Tafel slope, the exchange current density, and charge transfer coefficient were found to be 149 mV/dec, 1.60 × 10-4 mA/cm2, and 0.39 respectively, whilst for the graphical method were 159 mV/dec, 3.16 × 10-4 mA/cm2, and 0.37. The kinetics parameters in this current study were also compared to those in literature. Significant differences were observed which might be due to the effect of composition and concentration of the electrolytes, operating temperature, and pH leading to the different reaction mechanism. However, the results obtained in this work are in the range of acceptable values. These kinetic parameters will then be used in further study of nickel deposition by modelling and simulation
Le Moullec, Y; Potier, O; Gentric, C; Leclerc, J P
2011-05-01
This paper presents an experimental and numerical study of an activated sludge channel pilot plant. Concentration profiles of oxygen, COD, NO(3) and NH(4) have been measured for several operating conditions. These profiles have been compared to the simulated ones with three different modelling approaches, namely a systemic approach, CFD and compartmental modelling. For these three approaches, the kinetics model was the ASM-1 model (Henze et al., 2001). The three approaches allowed a reasonable simulation of all the concentration profiles except for ammonium for which the simulations results were far from the experimental ones. The analysis of the results showed that the role of the kinetics model is of primary importance for the prediction of activated sludge reactors performance. The fact that existing kinetics parameters in the literature have been determined by parametric optimisation using a systemic model limits the reliability of the prediction of local concentrations and of the local design of activated sludge reactors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ramirez, Ivan; Mottet, Alexis; Carrère, Hélène; Déléris, Stéphane; Vedrenne, Fabien; Steyer, Jean-Philippe
2009-08-01
Anaerobic digestion disintegration and hydrolysis have been traditionally modeled according to first-order kinetics assuming that their rates do not depend on disintegration/hydrolytic biomass concentrations. However, the typical sigmoid-shape increase in time of the disintegration/hydrolysis rates cannot be described with first-order models. For complex substrates, first-order kinetics should thus be modified to account for slowly degradable material. In this study, a slightly modified IWA ADM1 model is presented to simulate thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Contois model is first included for disintegration and hydrolysis steps instead of first-order kinetics and Hill function is then used to model ammonia inhibition of aceticlastic methanogens instead of a non-competitive function. One batch experimental data set of anaerobic degradation of a raw waste activated sludge is used to calibrate the proposed model and three additional data sets from similar sludge thermally pretreated at three different temperatures are used to validate the parameters values.
Deng, De-Ming; Chang, Cheng-Hung
2015-05-14
Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.
Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo
2015-01-01
The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g(-1). Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater.
Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo
2015-01-01
The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g-1. Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater. PMID:26352933
Li, Xiangrong; Wang, Kaiwei; Peng, Yanru
2018-04-25
The interaction of nanoparticles (NPs) with proteins is a topic of high relevance for the medical application of nanomaterials. In the study, a comprehensive investigation was performed for the binding properties of silver nanoparticles (AgNPs) to pepsin. The results indicate that the binding of AgNPs to pepsin may be a static quenching mechanism. Thermodynamic analysis reveals that AgNPs binds to pepsin is synergistically driven by enthalpy and entropy, and the major driving forces are hydrophobic and electrostatic interactions. Synchronous fluorescence spectroscopy shows that AgNPs may induce microenvironmental changes of pepsin. The hydrophobicity of Trp is increased while the hydrophility of Tyr is increased. The adsorption of pepsin on AgNPs was analyzed by Langmuir and Freundlich models, suggesting that the equilibrium adsorption data fit well with Freundlich model. The equilibrium adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. The results indicate that pseudo-second-order kinetic equation better describes the adsorption kinetics. The study provides an accurate and full basic data for clarifying the binding mechanism, adsorption isotherms and kinetic behaviors of AgNPs with pepsin. These fundamental works will provide some new insights into the safe and effective application of AgNPs in biological and medical areas. Copyright © 2018 Elsevier B.V. All rights reserved.
Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua
2017-03-07
Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.
Microbial Kinetic Model for the Degradation of Poorly Soluble Organic Materials
A novel mechanistic model is presented that describes the aerobic biodegradation kinetics of soybean biodiesel and petroleum diesel in batch experiments. The model was built on the assumptions that biodegradation takes place in the aqueous phase according to Monod kinetics, and ...
Xu, Li-Jian; Liu, Yuan-Shuai; Zhou, Li-Gang; Wu, Jian-Yong
2011-09-01
Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20-50 g l(-1) glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l(-1)) than in the batch culture (194 mg l(-1)). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.
Determining Kinetic Parameters for Isothermal Crystallization of Glasses
NASA Technical Reports Server (NTRS)
Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.
2006-01-01
Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.
The fractional diffusion limit of a kinetic model with biochemical pathway
NASA Astrophysics Data System (ADS)
Perthame, Benoît; Sun, Weiran; Tang, Min
2018-06-01
Kinetic-transport equations that take into account the intracellular pathways are now considered as the correct description of bacterial chemotaxis by run and tumble. Recent mathematical studies have shown their interest and their relations to more standard models. Macroscopic equations of Keller-Segel type have been derived using parabolic scaling. Due to the randomness of receptor methylation or intracellular chemical reactions, noise occurs in the signaling pathways and affects the tumbling rate. Then comes the question to understand the role of an internal noise on the behavior of the full population. In this paper we consider a kinetic model for chemotaxis which includes biochemical pathway with noises. We show that under proper scaling and conditions on the tumbling frequency as well as the form of noise, fractional diffusion can arise in the macroscopic limits of the kinetic equation. This gives a new mathematical theory about how long jumps can be due to the internal noise of the bacteria.
Kocadağlı, Tolgahan; Gökmen, Vural
2016-11-15
The study describes the kinetics of the formation and degradation of α-dicarbonyl compounds in glucose/wheat flour system heated under low moisture conditions. Changes in the concentrations of glucose, fructose, individual free amino acids, lysine and arginine residues, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural, glyoxal, methylglyoxal and diacetyl concentrations were determined to form a multiresponse kinetic model for isomerisation and degradation reactions of glucose. Degradation of Amadori product mainly produced 1-deoxyglucosone. Formation of 3-deoxyglucosone proceeded directly from glucose and also Amadori product degradation. Glyoxal formation was predominant from glucosone while methylglyoxal and diacetyl originated from 1-deoxyglucosone. Formation of 5-hydroxymethyl-2-furfural from fructose was found to be a key step. Multi-response kinetic modelling of Maillard reaction and caramelisation simultaneously indicated quantitatively predominant parallel and consecutive pathways and rate limiting steps by estimating the reaction rate constants. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Welch, Dale; Font, Gabriel; Mitchell, Robert; Rose, David
2017-10-01
We report on particle-in-cell developments of the study of the Compact Fusion Reactor. Millisecond, two and three-dimensional simulations (cubic meter volume) of confinement and neutral beam heating of the magnetic confinement device requires accurate representation of the complex orbits, near perfect energy conservation, and significant computational power. In order to determine initial plasma fill and neutral beam heating, these simulations include ionization, elastic and charge exchange hydrogen reactions. To this end, we are pursuing fast electromagnetic kinetic modeling algorithms including a two implicit techniques and a hybrid quasi-neutral algorithm with kinetic ions. The kinetic modeling includes use of the Poisson-corrected direct implicit, magnetic implicit, as well as second-order cloud-in-cell techniques. The hybrid algorithm, ignoring electron inertial effects, is two orders of magnitude faster than kinetic but not as accurate with respect to confinement. The advantages and disadvantages of these techniques will be presented. Funded by Lockheed Martin.
Kinetic Model for 1D aggregation of yeast ``prions''
NASA Astrophysics Data System (ADS)
Kunes, Kay; Cox, Daniel; Singh, Rajiv
2004-03-01
Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeast have proteins which can undergo similar reconformation and aggregation processes to PrP; yeast forms are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein(1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics(2). The model assumes reconformation only upon aggregation, and includes aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates. We will compare to a more realistic stochastic kinetics model and present prelimary attempts to describe recent experiments on SUP35 strains. *-Supported by U.S. Army Congressionally Mandated Research Fund. 1) P. Chien and J.S. Weissman, Nature 410, 223 (2001); http://online.kitp.ucsb.edu/online/bionet03/collins/. 2) J. Masel, V.A.> Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999).
Kinetics of Eucalyptus globulus delignification in a methanol-water medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilarranz, M.A.; Rodriguez, F.; Santos, A.
1999-09-01
The kinetics of Eucalyptus Globulus delignification in methanol-water pulping has been studied. A total of 17 isothermal runs at a liquor-to-wood ratio of 50 L/kg were carried out to develop the kinetic model describing the system. In a first series of experiments, eight models were considered to study the influence of temperature on the delignification rate. The most suitable model, which was discriminated according to statistical criteria, describes delignification as the consecutive dissolution of three lignin species: initial, bulk, and residual lignin, their content in wood being 10, 69, and 21%, respectively. Initial and residual delignification were considered as irreversiblemore » reactions and bulk delignification as reversible. The influence of hydrogen ion concentration was taken into account by means of a general power-law expression. The model proposed was taken into account by means of a general power-law expression. The model proposed was validated by reproducing the experimental data from four runs carried out under nonisothermal conditions and a liquor-to-wood ratio of 7 L/kg, which are closer to industrial operating conditions.« less
Phuah, Eng-Tong; Lee, Yee-Ying; Tang, Teck-Kim
2018-01-01
Diacylglycerol (DAG) and monoacylglycerol (MAG) are two natural occurring minor components found in most edible fats and oils. These compounds have gained increasing market demand owing to their unique physicochemical properties. Enzymatic glycerolysis in solvent-free system might be a promising approach in producing DAG and MAG-enriched oil. Understanding on glycerolysis mechanism is therefore of great importance for process simulation and optimization. In this study, a commercial immobilized lipase (Lipozyme TL IM) was used to catalyze the glycerolysis reaction. The kinetics of enzymatic glycerolysis reaction between triacylglycerol (TAG) and glycerol (G) were modeled using rate equation with unsteady-state assumption. Ternary complex, ping-pong bi-bi and complex ping-pong bi-bi models were proposed and compared in this study. The reaction rate constants were determined using non-linear regression and sum of square errors (SSE) were minimized. Present work revealed satisfactory agreement between experimental data and the result generated by complex ping-pong bi-bi model as compared to other models. The proposed kinetic model would facilitate understanding on enzymatic glycerolysis for DAG and MAG production and design optimization of a pilot-scale reactor. PMID:29401481
Dickie, Ben R; Banerji, Anita; Kershaw, Lucy E; McPartlin, Andrew; Choudhury, Ananya; West, Catharine M; Rose, Chris J
2016-10-01
To improve the accuracy and precision of tracer kinetic model parameter estimates for use in dynamic contrast enhanced (DCE) MRI studies of solid tumors. Quantitative DCE-MRI requires an estimate of precontrast T1 , which is obtained prior to fitting a tracer kinetic model. As T1 mapping and tracer kinetic signal models are both a function of precontrast T1 it was hypothesized that its joint estimation would improve the accuracy and precision of both precontrast T1 and tracer kinetic model parameters. Accuracy and/or precision of two-compartment exchange model (2CXM) parameters were evaluated for standard and joint fitting methods in well-controlled synthetic data and for 36 bladder cancer patients. Methods were compared under a number of experimental conditions. In synthetic data, joint estimation led to statistically significant improvements in the accuracy of estimated parameters in 30 of 42 conditions (improvements between 1.8% and 49%). Reduced accuracy was observed in 7 of the remaining 12 conditions. Significant improvements in precision were observed in 35 of 42 conditions (between 4.7% and 50%). In clinical data, significant improvements in precision were observed in 18 of 21 conditions (between 4.6% and 38%). Accuracy and precision of DCE-MRI parameter estimates are improved when signal models are fit jointly rather than sequentially. Magn Reson Med 76:1270-1281, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Role of spatial inhomogenity in GPCR dimerisation predicted by receptor association-diffusion models
NASA Astrophysics Data System (ADS)
Deshpande, Sneha A.; Pawar, Aiswarya B.; Dighe, Anish; Athale, Chaitanya A.; Sengupta, Durba
2017-06-01
G protein-coupled receptor (GPCR) association is an emerging paradigm with far reaching implications in the regulation of signalling pathways and therapeutic interventions. Recent super resolution microscopy studies have revealed that receptor dimer steady state exhibits sub-second dynamics. In particular the GPCRs, muscarinic acetylcholine receptor M1 (M1MR) and formyl peptide receptor (FPR), have been demonstrated to exhibit a fast association/dissociation kinetics, independent of ligand binding. In this work, we have developed a spatial kinetic Monte Carlo model to investigate receptor homo-dimerisation at a single receptor resolution. Experimentally measured association/dissociation kinetic parameters and diffusion coefficients were used as inputs to the model. To test the effect of membrane spatial heterogeneity on the simulated steady state, simulations were compared to experimental statistics of dimerisation. In the simplest case the receptors are assumed to be diffusing in a spatially homogeneous environment, while spatial heterogeneity is modelled to result from crowding, membrane micro-domains and cytoskeletal compartmentalisation or ‘corrals’. We show that a simple association-diffusion model is sufficient to reproduce M1MR association statistics, but fails to reproduce FPR statistics despite comparable kinetic constants. A parameter sensitivity analysis is required to reproduce the association statistics of FPR. The model reveals the complex interplay between cytoskeletal components and their influence on receptor association kinetics within the features of the membrane landscape. These results constitute an important step towards understanding the factors modulating GPCR organisation.
Ho, Yuh-Shan
2006-01-01
A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.
Chen, Yingying; Wu, Ying; Zhu, Baotong; Zhang, Guanyu; Wei, Na
2018-01-01
Efficient conversion of cellulosic sugars in cellulosic hydrolysates is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge. The present study reports a new approach for simultaneous fermentation of cellobiose and xylose by using the co-culture consisting of recombinant Saccharomyces cerevisiae specialist strains. The co-culture system can provide competitive advantage of modularity compared to the single culture system and can be tuned to deal with fluctuations in feedstock composition to achieve robust and cost-effective biofuel production. This study characterized fermentation kinetics of the recombinant cellobiose-consuming S. cerevisiae strain EJ2, xylose-consuming S. cerevisiae strain SR8, and their co-culture. The motivation for kinetic modeling was to provide guidance and prediction of using the co-culture system for simultaneous fermentation of mixed sugars with adjustable biomass of each specialist strain under different substrate concentrations. The kinetic model for the co-culture system was developed based on the pure culture models and incorporated the effects of product inhibition, initial substrate concentration and inoculum size. The model simulations were validated by results from independent fermentation experiments under different substrate conditions, and good agreement was found between model predictions and experimental data from batch fermentation of cellobiose, xylose and their mixtures. Additionally, with the guidance of model prediction, simultaneous co-fermentation of 60 g/L cellobiose and 20 g/L xylose was achieved with the initial cell densities of 0.45 g dry cell weight /L for EJ2 and 0.9 g dry cell weight /L SR8. The results demonstrated that the kinetic modeling could be used to guide the design and optimization of yeast co-culture conditions for achieving simultaneous fermentation of cellobiose and xylose with improved ethanol productivity, which is critically important for robust and efficient renewable biofuel production from lignocellulosic biomass.
Experimental and theoretical study of diesel soot reactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcuccilli, F; Gilot, P.; Stanmore, B.
1994-12-31
In order to provide data for modelling the performance of a regenerative soot filter, a study of the oxidation kinetics of diesel soot in the temperature range from 600 C to 800 C was undertaken. Isothermal burning rates at a number of temperatures were measured in rectangular soot beds within a thermobalance. The technique was easy to use, but the combustion rate was found to depend on bed mass. The oxidation process was thus limited by mass transfer effects. A two-dimensional mathematical model of oxygen transfer was developed to extract the true kinetic rates from experimental data. The two-dimensional approachmore » was required because significant oxygen depletion occurred along both axes. Using assumed kinetic rates, oxygen concentration profiles in the gas phase above the bed and within the bed were calculated. The true kinetics at a number of temperatures were, then established by matching predicted oxygen consumption with measured consumption. Application of the model required values of the effective diffusion coefficient for oxygen within the bed. Accordingly, the structure and properties of the soot aggregates were determined. A supplements study was carried out to identify the appropriate primary reaction products. The measured kinetic rates were then used in a simpler, monodimensional model to evaluate the mean oxygen mass transfer coefficients to the surface of the bed. The results show that burning below about 730 C is in regime 1 and can be described by K = 6.9 {times} 10{sup 12} exp ({minus}207,000/RT) (s{sup {minus}1}) with R = 8.314 J/mol {times} K. Above, 730 C, there is a decrease in apparent activation energy, probably due to thermal ``annealing,`` which changes the microstructure of the carbon. As a result, the inherent reactivity declines and/or the bed becomes less accessible to oxygen.« less
Koseki, Shigenobu; Nakamura, Nobutaka; Shiina, Takeo
2015-01-01
Bacterial pathogens such as Listeria monocytogenes, Escherichia coli O157:H7, Salmonella enterica, and Cronobacter sakazakii have demonstrated long-term survival in/on dry or low-water activity (aw) foods. However, there have been few comparative studies on the desiccation tolerance among these bacterial pathogens separately in a same food matrix. In the present study, the survival kinetics of the four bacterial pathogens separately inoculated onto powdered infant formula as a model low-aw food was compared during storage at 5, 22, and 35°C. No significant differences in the survival kinetics between E. coli O157:H7 and L. monocytogenes were observed. Salmonella showed significantly higher desiccation tolerance than these pathogens, and C. sakazakii demonstrated significantly higher desiccation tolerance than all other three bacteria studied. Thus, the desiccation tolerance was represented as C. sakazakii > Salmonella > E. coli O157:H7 = L. monocytogenes. The survival kinetics of each bacterium was mathematically analyzed, and the observed kinetics was successfully described using the Weibull model. To evaluate the variability of the inactivation kinetics of the tested bacterial pathogens, the Monte Carlo simulation was performed using assumed probability distribution of the estimated fitted parameters. The simulation results showed that the storage temperature significantly influenced survival of each bacterium under the dry environment, where the bacterial inactivation became faster with increasing storage temperature. Furthermore, the fitted rate and shape parameters of the Weibull model were successfully modelled as a function of temperature. The numerical simulation of the bacterial inactivation was realized using the functions of the parameters under arbitrary fluctuating temperature conditions.
Graphene-a promising material for removal of perchlorate (ClO4-) from water.
Lakshmi, Jothinathan; Vasudevan, Subramanyan
2013-08-01
A batch adsorption process was applied to investigate the removal of perchlorate (ClO4 (-)) from water by graphene. In doing so, the thermodynamic adsorption isotherm and kinetic studies were also carried out. Graphene was prepared by a facile liquid-phase exfoliation. Graphene was characterized by Raman spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscope, and zeta potential measurements. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. The adsorption efficiency of graphene was 99.2 %, suggesting that graphene is an excellent adsorbent for ClO4 (-) removal from water. The rate constants for all these kinetic models were calculated, and the results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of ClO4 (-). Equilibrium data were well described by the typical Langmuir adsorption isotherm. The experimental results showed that graphene is an excellent perchlorate adsorbent with an adsorbent capacity of up to 0.024 mg/g at initial perchlorate concentration of 2 mg/L and temperature of 298 K. Thermodynamic studies revealed that the adsorption reaction was a spontaneous and endothermic process. Graphene removed the perchlorate present in the water and reduced it to a permissible level making it drinkable.
NASA Astrophysics Data System (ADS)
Xu, Huan-Yan; Wang, Yuan; Shi, Tian-Nuo; Zhao, Hang; Tan, Qu; Zhao, Bo-Chao; He, Xiu-Lan; Qi, Shu-Yan
2018-03-01
The kinetics and Fenton-like mechanism are two challenging tasks for heterogeneous Fenton-like catalytic oxidation of organic pollutants. In this study, three kinetic models were used for the kinetic studies of Fe3O4/MWCNTs-H2O2 Fenton-like reaction for MO degradation. The results indicated that this reaction followed the first-order kinetic model. The relationship of reaction rate constant and temperature followed the Arrhenius equation. The activation energy and frequency factor of this system were calculated as 8.2 kJ·mol-1 and 2.72 s-1, respectively. The quantifications of Fe ions dissolution and •OH radicals generation confirmed that the homogeneous and heterogeneous catalyses were involved in Fe3O4/MWCNTs-H2O2 Fenton-like reaction. The reaction rate constant was closely related with Fe ions dissolution and •OH radicals generation. Fe3O4/MWCNTs nanocomposites had typical ferromagnetic property and could be easily separated from solution by an external magnet after being used. Furthermore, Fe3O4/MWCNTs nanocomposites exhibited good stability and recyclability. Finally, the Fenton-like mechanisms on homogeneous and heterogeneous catalyses were described.
Wehmiller, J.F.; Harris, W.B.; Boutin, B.S.; Farrell, K.M.
2012-01-01
The use of amino acid racemization (AAR) for estimating ages of Quaternary fossils usually requires a combination of kinetic and effective temperature modeling or independent age calibration of analyzed samples. Because of limited availability of calibration samples, age estimates are often based on model extrapolations from single calibration points over wide ranges of D/L values. Here we present paired AAR and 87Sr/ 86Sr results for Pleistocene mollusks from the North Carolina Coastal Plain, USA. 87Sr/ 86Sr age estimates, derived from the lookup table of McArthur et al. [McArthur, J.M., Howarth, R.J., Bailey, T.R., 2001. Strontium isotopic stratigraphy: LOWESS version 3: best fit to the marine Sr-isotopic curve for 0-509 Ma and accompanying Look-up table for deriving numerical age. Journal of Geology 109, 155-169], provide independent age calibration over the full range of amino acid D/L values, thereby allowing comparisons of alternative kinetic models for seven amino acids. The often-used parabolic kinetic model is found to be insufficient to explain the pattern of racemization, although the kinetic pathways for valine racemization and isoleucine epimerization can be closely approximated with this function. Logarithmic and power law regressions more accurately represent the racemization pathways for all amino acids. The reliability of a non-linear model for leucine racemization, developed and refined over the past 20 years, is confirmed by the 87Sr/ 86Sr age results. This age model indicates that the subsurface record (up to 80m thick) of the North Carolina Coastal Plain spans the entire Quaternary, back to ???2.5Ma. The calibrated kinetics derived from this age model yield an estimate of the effective temperature for the study region of 11??2??C., from which we estimate full glacial (Last Glacial Maximum - LGM) temperatures for the region on the order of 7-10??C cooler than present. These temperatures compare favorably with independent paleoclimate information for the region. ?? 2011 Elsevier B.V.
Sorption kinetics of Zn (II) ion by thermally treated rice husk
NASA Astrophysics Data System (ADS)
Ong, K. K.; Tarmizi, A. F. A.; Wan Yunus W. M., Z.; Safidin, K. M.; Fitrianto, A.; Hussin, A. G. A.; Azmi, F. M.
2015-05-01
Agricultural wastes such as orange peels, tea leave waste, rice husk and corn cobs have been widely studied as sorbents for heavy metal ion removal from various wastewaters. In order to understand their sorption mechanism, the adsorption kinetics is studied. This report describes the kinetics study of a thermally treated rice husk to adsorb Zn (II) ion from an aqueous solution. The adsorbent was obtained by heating the rice husk in a furnace at 500°C for two hours. Increase the contact period improved percentage of the removal of Zn (II) ion until an equilibrium was reached. The data obtained showed that the adsorption of Zn (II) ion by thermally treated rice husk obeyed pseudo-second order kinetics model, which is in agreement with chemisorption as the rate limiting mechanism.
Optimization of kinetic parameters for the degradation of plasmid DNA in rat plasma
NASA Astrophysics Data System (ADS)
Chaudhry, Q. A.
2014-12-01
Biotechnology is a rapidly growing area of research work in the field of pharmaceutical sciences. The study of pharmacokinetics of plasmid DNA (pDNA) is an important area of research work. It has been observed that the process of gene delivery faces many troubles on the transport of pDNA towards their target sites. The topoforms of pDNA has been termed as super coiled (S-C), open circular (O-C) and linear (L), the kinetic model of which will be presented in this paper. The kinetic model gives rise to system of ordinary differential equations (ODEs), the exact solution of which has been found. The kinetic parameters, which are responsible for the degradation of super coiled, and the formation of open circular and linear topoforms have a great significance not only in vitro but for modeling of further processes as well, therefore need to be addressed in great detail. For this purpose, global optimization techniques have been adopted, thus finding the optimal results for the said model. The results of the model, while using the optimal parameters, were compared against the measured data, which gives a nice agreement.
USDA-ARS?s Scientific Manuscript database
Kinetic models enable nutrient needs and kinetic behaviors to be quantified and provide mechanistic insights into metabolism. Therefore, we modeled and quantified the kinetics, bioavailability and metabolism of RRR-alpha-tocopherol in 12 healthy adults. Six men and six women, aged 27 ± 6 y, each i...
Teodoro, Filipe Simões; Elias, Megg Madonyk Cota; Ferreira, Gabriel Max Dias; Adarme, Oscar Fernando Herrera; Savedra, Ranylson Marcello Leal; Siqueira, Melissa Fabíola; da Silva, Luis Henrique Mendes; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius Alves
2018-02-15
In the third part of this series of studies, the adsorption of the basic textile dyes auramine-O (AO) and safranin-T (ST) on a carboxylated cellulose derivative (CTA) were evaluated in mono- and bi-component spiked aqueous solutions. Adsorption studies were developed as a function of solution pH, contact time, and initial dye concentration. Adsorption kinetic data were modeled by monocomponent kinetic models of pseudo-first- (PFO), pseudo-second-order (PSO), intraparticle diffusion, and Boyd, while the competitive kinetic model of Corsel was used to model bicomponent kinetic data. Monocomponent adsorption equilibrium data were modeled by the Langmuir, Sips, Fowler-Guggenhein, Hill de-Boer, and Konda models, while the IAST and RAST models were used to model bicomponent equilibrium data. Monocomponent maximum adsorption capacities for AO and ST at pH 4.5 were 2.841 and 3.691 mmol g -1 , and at pH 7.0 were 5.443 and 4.074 mmol g -1 , respectively. Bicomponent maximum adsorption capacities for AO and ST at pH 7.0 were 1.230 and 3.728 mmol g -1 . Adsorption enthalpy changes (Δ ads H) were obtained using isothermal titration calorimetry. The values of Δ ads H ranged from -18.83 to -5.60 kJ mol -1 , suggesting that physisorption controlled the adsorption process. Desorption and re-adsorption of CTA was also evaluated. Copyright © 2017 Elsevier Inc. All rights reserved.
Kinetically governed polymorphism of d(G₄T₄G₃) quadruplexes in K+ solutions.
Prislan, Iztok; Lah, Jurij; Milanic, Matija; Vesnaver, Gorazd
2011-03-01
It has been generally recognized that understanding the molecular basis of some important cellular processes is hampered by the lack of knowledge of forces that drive spontaneous formation/disruption of G-quadruplex structures in guanine-rich DNA sequences. According to numerous biophysical and structural studies G-quadruplexes may occur in the presence of K(+) and Na(+) ions as polymorphic structures formed in kinetically governed processes. The reported kinetic models suggested to describe this polymorphism should be considered inappropriate since, as a rule, they include bimolecular single-step associations characterized by negative activation energies. In contrast, our approach in studying polymorphic behavior of G-quadruplexes is based on model mechanisms that involve only elementary folding/unfolding transitions and structural conversion steps that are characterized by positive activation energies. Here, we are investigating a complex polymorphism of d(G(4)T(4)G(3)) quadruplexes in K(+) solutions. On the basis of DSC, circular dichroism and UV spectroscopy and polyacrylamide gel electrophoresis experiments we propose a kinetic model that successfully describes the observed thermally induced conformational transitions of d(G(4)T(4)G(3)) quadruplexes in terms of single-step reactions that involve besides single strands also one tetramolecular and three bimolecular quadruplex structures.
Study of Asorption Kinetics of Surfactants onto Polyethersulfone Membrane Surface Using QCM-D
USDA-ARS?s Scientific Manuscript database
The adsorption kinetics of surfactants onto the crystal surface spin-coated with a thin layer of a model membrane material, polyethersulfone was monitored through measurements of frequency and dissipation shifts simultaneously using a quartz crystal microbalance with dissipation (QCM-D) device. In ...
Kinetics of piroxicam release from low-methylated pectin/zein hydrogel microspheres
USDA-ARS?s Scientific Manuscript database
The kinetics of a model drug (piroxicam) release from pectin/zein hydrogel microspheres was studied under conditions simulating the gastrointestinal tract. It is established that the rate-limiting step in the release mechanism is drug diffusion out of the microspheres rather than its dissolution. ...
Dynamic Metabolic Model Building Based on the Ensemble Modeling Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, James C.
2016-10-01
Ensemble modeling of kinetic systems addresses the challenges of kinetic model construction, with respect to parameter value selection, and still allows for the rich insights possible from kinetic models. This project aimed to show that constructing, implementing, and analyzing such models is a useful tool for the metabolic engineering toolkit, and that they can result in actionable insights from models. Key concepts are developed and deliverable publications and results are presented.
An improved kinetics approach to describe the physical stability of amorphous solid dispersions.
Yang, Jiao; Grey, Kristin; Doney, John
2010-01-15
The recrystallization of amorphous solid dispersions may lead to a loss in the dissolution rate, and consequently reduce bioavailability. The purpose of this work is to understand factors governing the recrystallization of amorphous drug-polymer solid dispersions, and develop a kinetics model capable of accurately predicting their physical stability. Recrystallization kinetics was measured using differential scanning calorimetry for initially amorphous efavirenz-polyvinylpyrrolidone solid dispersions stored at controlled temperature and relative humidity. The experimental measurements were fitted by a new kinetic model to estimate the recrystallization rate constant and microscopic geometry of crystal growth. The new kinetics model was used to illustrate the governing factors of amorphous solid dispersions stability. Temperature was found to affect efavirenz recrystallization in an Arrhenius manner, while recrystallization rate constant was shown to increase linearly with relative humidity. Polymer content tremendously inhibited the recrystallization process by increasing the crystallization activation energy and decreasing the equilibrium crystallinity. The new kinetic model was validated by the good agreement between model fits and experiment measurements. A small increase in polyvinylpyrrolidone resulted in substantial stability enhancements of efavirenz amorphous solid dispersion. The new established kinetics model provided more accurate predictions than the Avrami equation.
The Impacts of Numerical Schemes on Asymmetric Hurricane Intensification
NASA Astrophysics Data System (ADS)
Guimond, S.; Reisner, J. M.; Marras, S.; Giraldo, F.
2015-12-01
The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different numerical models. Attempts at reproducing the results of previous work, which used the community atmospheric model WRF (Nolan and Grasso 2003; NG03), revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification whereas NG03 and other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other numerical models. Spectral kinetic energy budgets show that this anomalous damping is due to the increased removal of kinetic energy from the convergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time. For very large thermal amplitudes (~ 50 K and above), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller resulting in little differences between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy are responsible for these differences, with potentially important impacts for the understanding and prediction of TC intensification.
Maksin, Danijela D; Nastasović, Aleksandra B; Milutinović-Nikolić, Aleksandra D; Suručić, Ljiljana T; Sandić, Zvjezdana P; Hercigonja, Radmila V; Onjia, Antonije E
2012-03-30
Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25-70°C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q(max), at pH 1.8 and 25°C was 143 mg g(-1) for PGME2-deta (sample with the highest amino group concentration) while at 70°C Q(max) reached the high value of 198 mg g(-1). Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lie-Svendsen, O.; Leer, E.
1995-01-01
We have studied the evolution of the velocity distribution function of a test population of electrons in the solar corona and inner solar wind region, using a recently developed kinetic model. The model solves the time dependent, linear transport equation, with a Fokker-Planck collision operator to describe Coulomb collisions between the 'test population' and a thermal background of charged particles, using a finite differencing scheme. The model provides information on how non-Maxwellian features develop in the distribution function in the transition region from collision dominated to collisionless flow. By taking moments of the distribution the evolution of higher order moments, such as the heat flow, can be studied.
Understanding the kinetic mechanism of RNA single base pair formation
Xu, Xiaojun; Yu, Tao; Chen, Shi-Jie
2016-01-01
RNA functions are intrinsically tied to folding kinetics. The most elementary step in RNA folding is the closing and opening of a base pair. Understanding this elementary rate process is the basis for RNA folding kinetics studies. Previous studies mostly focused on the unfolding of base pairs. Here, based on a hybrid approach, we investigate the folding process at level of single base pairing/stacking. The study, which integrates molecular dynamics simulation, kinetic Monte Carlo simulation, and master equation methods, uncovers two alternative dominant pathways: Starting from the unfolded state, the nucleotide backbone first folds to the native conformation, followed by subsequent adjustment of the base conformation. During the base conformational rearrangement, the backbone either retains the native conformation or switches to nonnative conformations in order to lower the kinetic barrier for base rearrangement. The method enables quantification of kinetic partitioning among the different pathways. Moreover, the simulation reveals several intriguing ion binding/dissociation signatures for the conformational changes. Our approach may be useful for developing a base pair opening/closing rate model. PMID:26699466
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.
2014-12-01
A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.
Virus Neutralisation: New Insights from Kinetic Neutralisation Curves
Magnus, Carsten
2013-01-01
Antibodies binding to the surface of virions can lead to virus neutralisation. Different theories have been proposed to determine the number of antibodies that must bind to a virion for neutralisation. Early models are based on chemical binding kinetics. Applying these models lead to very low estimates of the number of antibodies needed for neutralisation. In contrast, according to the more conceptual approach of stoichiometries in virology a much higher number of antibodies is required for virus neutralisation by antibodies. Here, we combine chemical binding kinetics with (virological) stoichiometries to better explain virus neutralisation by antibody binding. This framework is in agreement with published data on the neutralisation of the human immunodeficiency virus. Knowing antibody reaction constants, our model allows us to estimate stoichiometrical parameters from kinetic neutralisation curves. In addition, we can identify important parameters that will make further analysis of kinetic neutralisation curves more valuable in the context of estimating stoichiometries. Our model gives a more subtle explanation of kinetic neutralisation curves in terms of single-hit and multi-hit kinetics. PMID:23468602
Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R
2000-01-01
Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.
Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation.
Cha, Tae-Gon; Pan, Jing; Chen, Haorong; Robinson, Heather N; Li, Xiang; Mao, Chengde; Choi, Jong Hyun
2015-07-29
Dynamic DNA enzyme-based walkers complete their stepwise movements along the prescribed track through a series of reactions, including hybridization, enzymatic cleavage, and strand displacement; however, their overall translocation kinetics is not well understood. Here, we perform mechanistic studies to elucidate several key parameters that govern the kinetics and processivity of DNA enzyme-based walkers. These parameters include DNA enzyme core type and structure, upper and lower recognition arm lengths, and divalent metal cation species and concentration. A theoretical model is developed within the framework of single-molecule kinetics to describe overall translocation kinetics as well as each reaction step. A better understanding of kinetics and design parameters enables us to demonstrate a walker movement near 5 μm at an average speed of ∼1 nm s(-1). We also show that the translocation kinetics of DNA walkers can be effectively controlled by external light stimuli using photoisomerizable azobenzene moieties. A 2-fold increase in the cleavage reaction is observed when the hairpin stems of enzyme catalytic cores are open under UV irradiation. This study provides general design guidelines to construct highly processive, autonomous DNA walker systems and to regulate their translocation kinetics, which would facilitate the development of functional DNA walkers.
Parameter Balancing in Kinetic Models of Cell Metabolism†
2010-01-01
Kinetic modeling of metabolic pathways has become a major field of systems biology. It combines structural information about metabolic pathways with quantitative enzymatic rate laws. Some of the kinetic constants needed for a model could be collected from ever-growing literature and public web resources, but they are often incomplete, incompatible, or simply not available. We address this lack of information by parameter balancing, a method to complete given sets of kinetic constants. Based on Bayesian parameter estimation, it exploits the thermodynamic dependencies among different biochemical quantities to guess realistic model parameters from available kinetic data. Our algorithm accounts for varying measurement conditions in the input data (pH value and temperature). It can process kinetic constants and state-dependent quantities such as metabolite concentrations or chemical potentials, and uses prior distributions and data augmentation to keep the estimated quantities within plausible ranges. An online service and free software for parameter balancing with models provided in SBML format (Systems Biology Markup Language) is accessible at www.semanticsbml.org. We demonstrate its practical use with a small model of the phosphofructokinase reaction and discuss its possible applications and limitations. In the future, parameter balancing could become an important routine step in the kinetic modeling of large metabolic networks. PMID:21038890
Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.
Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip
2017-04-01
In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2 > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.
Sfakiotakis, Stelios; Vamvuka, Despina
2015-12-01
The pyrolysis of six waste biomass samples was studied and the fuels were kinetically evaluated. A modified independent parallel reactions scheme (IPR) and a distributed activation energy model (DAEM) were developed and their validity was assessed and compared by checking their accuracy of fitting the experimental results, as well as their prediction capability in different experimental conditions. The pyrolysis experiments were carried out in a thermogravimetric analyzer and a fitting procedure, based on least squares minimization, was performed simultaneously at different experimental conditions. A modification of the IPR model, considering dependence of the pre-exponential factor on heating rate, was proved to give better fit results for the same number of tuned kinetic parameters, comparing to the known IPR model and very good prediction results for stepwise experiments. Fit of calculated data to the experimental ones using the developed DAEM model was also proved to be very good. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plasma Assisted Combustion: Flame Regimes and Kinetic Studies
2015-01-05
Kinetic model Fuel: Dimethyl ether Oxidizer= (1-x)O2 + xO3, x=0 - 0.1, p=1 atm Ozone chemistry & Dimethyl ether model ...diffusional cool flames • A heated counterflow burner integrated with vaporization system1 • n-heptane/nitrogen vs. oxygen/ ozone • Ozone generator...micro-DBD) produces 2- 5 % of ozone in oxygen stream, depending on oxygen flow rate • Speciation profiles by using a micro-probe sampling with a
Chlorination kinetics of glyphosate and its by-products: modeling approach.
Brosillon, Stephan; Wolbert, Dominique; Lemasle, Marguerite; Roche, Pascal; Mehrsheikh, Akbar
2006-06-01
Chlorination reactions of glyphosate, glycine, and sodium cyanate were conducted in well-agitated reactors to generate experimental kinetic measurements for the simulation of chlorination kinetics under the conditions of industrial water purification plants. The contribution of different by-products to the overall degradation of glyphosate during chlorination has been identified. The kinetic rate constants for the chlorination of glyphosate and its main degradation products were either obtained by calculation according to experimental data or taken from published literature. The fit of the kinetic constants with experimental data allowed us to predict consistently the concentration of the majority of the transitory and terminal chlorination products identified in the course of the glyphosate chlorination process. The simulation results conducted at varying aqueous chlorine/glyphosate molar ratios have shown that glyphosate is expected to degrade in fraction of a second under industrial aqueous chlorination conditions. Glyphosate chlorination products are not stable under the conditions of drinking water chlorination and are degraded to small molecules common to the degradation of amino acids and other naturally occurring substances in raw water. The kinetic studies of the chlorination reaction of glyphosate, together with calculations based on kinetic modeling in conditions close to those at real water treatment plants, confirm the reaction mechanism that we have previously suggested for glyphosate chlorination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manos Mavrikakis; James Dumesic; Rahul Nabar
2008-09-29
This work focuses on (1) searching/summarizing published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) preparation and characterization of unsupported iron catalysts with/without potassium/platinum promoters; (3) measurement of H{sub 2} and CO adsorption/dissociation kinetics on iron catalysts using transient methods; (3) analysis of the transient rate data to calculate kinetic parameters of early elementary steps in FTS; (4) construction of a microkinetic model of FTS on iron, and (5) validation of the model from collection of steady-state rate data for FTS on iron catalysts. Three unsupported iron catalysts and three alumina-supported iron catalysts weremore » prepared by non-aqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, temperature-programmed reduction (TPR), extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2} and thus ideal for kinetic and mechanistic studies. Kinetic parameters for CO adsorption, CO dissociation, and surface carbon hydrogenation on these catalysts were determined from temperature-programmed desorption (TPD) of CO and temperature programmed surface hydrogenation (TPSR), temperature-programmed hydrogenation (TPH), and isothermal, transient hydrogenation (ITH). A microkinetic model was constructed for the early steps in FTS on polycrystalline iron from the kinetic parameters of elementary steps determined experimentally in this work and from literature values. Steady-state rate data were collected in a Berty reactor and used for validation of the microkinetic model. These rate data were fitted to 'smart' Langmuir-Hinshelwood rate expressions derived from a sequence of elementary steps and using a combination of fitted steady-state parameters and parameters specified from the transient measurements. The results provide a platform for further development of microkinetic models of FTS on Fe and a basis for more precise modeling of FTS activity of Fe catalysts. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on various realistic models of industrial, Fe-based FTS catalysts. Close-packed, most stable Fe(110) facet was analyzed and subsequently carbide formation was found to be facile leading to the choice of the FeC(110) model representing a Fe facet with a sub-surface C atom. The Pt adatom (Fe{sup Pt}(110)) was found to be the most stable model for our studies into Pt promotion and finally the role of steps was elucidated by recourse to the defected Fe(211) facet. Binding Energies(BEs), preferred adsorption sites and geometries for all FTS relevant stable species and intermediates were evaluated on each model catalyst facet. A mechanistic model (comprising of 32 elementary steps involving 19 species) was constructed and each elementary step therein was fully characterized with respect to its thermochemistry and kinetics. Kinetic calculations involved evaluation of the Minimum Energy Pathways (MEPs) and activation energies (barriers) for each step. Vibrational frequencies were evaluated for the preferred adsorption configuration of each species with the aim of evaluating entropy-changes, pre exponential factors and serving as a useful connection with experimental surface science techniques. Comparative analysis among these four facets revealed important trends in their relative behavior and roles in FTS catalysis. Overall the First Principles Calculations afforded us a new insight into FTS catalysis on Fe and modified-Fe catalysts.« less
77 FR 61604 - Exposure Modeling Public Meeting; Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
..., birds, reptiles, and amphibians: Model Parameterization and Knowledge base Development. 4. Standard Operating Procedure for calculating degradation kinetics. 5. Aquatic exposure modeling using field studies...
3D CFD Modeling of the LMF System: Desulfurization Kinetics
NASA Astrophysics Data System (ADS)
Cao, Qing; Pitts, April; Zhang, Daojie; Nastac, Laurentiu; Williams, Robert
A fully transient 3D CFD modeling approach capable of predicting the three phase (gas, slag and steel) fluid flow characteristics and behavior of the slag/steel interface in the argon gas bottom stirred ladle with two off-centered porous plugs (Ladle Metallurgical Furnace or LMF) has been recently developed. The model predicts reasonably well the fluid flow characteristics in the LMF system and the observed size of the slag eyes for both the high-stirring and low-stirring conditions. A desulfurization reaction kinetics model considering metal/slag interface characteristics is developed in conjunction with the CFD modeling approach. The model is applied in this study to determine the effects of processing time, and gas flow rate on the efficiency of desulfurization in the studied LMF system.
Evaluation of Deltamethrin Kinetics and Dosimetry in the Maturing Rat using a PBPK Model
Immature rats are more susceptible than adults to the acute neurotoxicity of pyrethroid insecticides like deltamethrin (DLM). A companion kinetics study revealed that blood and brain levels of the neuroactive parent compound were inversely related to age in rats 10, 21, 40 and 90...
Imperfect dark energy from kinetic gravity braiding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy
2010-10-01
We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding,more » the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.« less
Strakova, Eva; Zikova, Alice; Vohradsky, Jiri
2014-01-01
A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.
Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Ramachandran, Narayanan
1998-01-01
The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.
History and Philosophy of Science through Models: The Case of Chemical Kinetics
NASA Astrophysics Data System (ADS)
Justi, Rosária; Gilbert, John K.
The case for a greater role for the history and philosophy of science in science education is reviewed. It is argued that such a role can only be realised if it is based on both a credible analytical approach to the history and philosophy of science and if the evolution of a sufficient number of major themes in science is known in suitable detail. Adopting Lakatos' Theory of Scientific Research Programmes as the analytical approach, it is proposed that the development, use, and replacement, of specific models forms the core of such programmes.Chemical kinetics was selected as an exemplar major topic in chemistry. Eight models which have played a central role in the evolution of the study of chemical kinetics were identified by an analysis of the literature. The implications that these models have for the teaching and learning of chemistry today are discussed.
Sato, Tatsuhiko; Furusawa, Yoshiya
2012-10-01
Estimation of the survival fractions of cells irradiated with various particles over a wide linear energy transfer (LET) range is of great importance in the treatment planning of charged-particle therapy. Two computational models were developed for estimating survival fractions based on the concept of the microdosimetric kinetic model. They were designated as the double-stochastic microdosimetric kinetic and stochastic microdosimetric kinetic models. The former model takes into account the stochastic natures of both domain and cell nucleus specific energies, whereas the latter model represents the stochastic nature of domain specific energy by its approximated mean value and variance to reduce the computational time. The probability densities of the domain and cell nucleus specific energies are the fundamental quantities for expressing survival fractions in these models. These densities are calculated using the microdosimetric and LET-estimator functions implemented in the Particle and Heavy Ion Transport code System (PHITS) in combination with the convolution or database method. Both the double-stochastic microdosimetric kinetic and stochastic microdosimetric kinetic models can reproduce the measured survival fractions for high-LET and high-dose irradiations, whereas a previously proposed microdosimetric kinetic model predicts lower values for these fractions, mainly due to intrinsic ignorance of the stochastic nature of cell nucleus specific energies in the calculation. The models we developed should contribute to a better understanding of the mechanism of cell inactivation, as well as improve the accuracy of treatment planning of charged-particle therapy.
NASA Astrophysics Data System (ADS)
Coppa, G. G.; Ricci, Paolo
2002-10-01
This work deals with a noncollisional kinetic model for non-neutral plasmas in a Penning trap. Using the spatial coordinates r, θ, z and the axial velocity vz as phase-space variables, a kinetic model is developed starting from the kinetic equation for the distribution function f(r,θ,z,vz,t). In order to reduce the complexity of the model, the kinetic equations are integrated along the axial direction by assuming an ergodic distribution in the phase space (z,vz) for particles of the same axial energy ɛ and the same planar position. In this way, a kinetic equation for the z-integrated electron distribution F(r,θ,ɛ,t) is obtained taking into account implicitly the three-dimensionality of the problem. The general properties of the model are discussed, in particular the conservation laws. The model is also related to the fluid model that was introduced by Finn et al. [Phys. Plasmas 6, 3744 (1999); Phys. Rev. Lett. 84, 2401 (2000)] and developed by Coppa et al. [Phys. Plasmas 8, 1133 (2001)]. Finally, numerical investigations are presented regarding the stationary solutions of the model.
Rayleigh-Benard Simulation using Gas-Kinetic BGK Scheme in the Incompressible Limit
NASA Technical Reports Server (NTRS)
Xu, Kun; Lui, Shiu-Hong
1998-01-01
In this paper, a gas-kinetic BGK model is constructed for the Rayleigh-Benard thermal convection in the incompressible flow limit, where the flow field and temperature field are described by two coupled BGK models. Since the collision times and pseudo-temperature in the corresponding BGK models can be different, the Prandtl number can be changed to any value instead of a fixed Pr=1 in the original BGK model. The 2D Rayleigh-Benard thermal convection is studied and numerical results are compared with theoretical ones as well as other simulation results.
Online kinetic studies on intermediates of laccase-catalyzed reaction in reversed micelle.
Liu, Zhi-Hong; Shao, Mei; Cai, Ru-Xiu; Shen, Ping
2006-02-01
Using water/AOT/n-octane reversed micelle as the medium, the optical signal of the reactive intermediate of laccase-catalyzed oxidation of o-phenylenediamine, which was indetectable in aqueous solutions, was successfully captured. Thus online kinetic studies of the intermediate were accomplished. Two-way kinetic spectral data were acquired with stopped-flow technique. By resolving the data with global analysis software, both the kinetic curves and the absorption spectra of the components involved in the reaction process were simultaneously obtained. The whole reaction in the reversed micelle was proved to be composed of two successive steps, an enzymatic generation of the intermediate and a following nonenzymatic decay of the intermediate. A consecutive first-order kinetic model of the whole reaction was confirmed. The influences of microenvironmental factors of the medium (such as the pH value of the water pool and the water/AOT ratio) on the detection of the intermediate were also investigated.
Jødal, Lars; Jensen, Svend B; Nielsen, Ole L; Afzelius, Pia; Borghammer, Per; Alstrup, Aage K O; Hansen, Søren B
2017-01-01
Positron emission tomography (PET) is increasingly applied for infection imaging using [ 18 F]FDG as tracer, but uptake is unspecific. The present study compares the kinetics of [ 18 F]FDG and three other PET tracers with relevance for infection imaging. A juvenile porcine osteomyelitis model was used. Eleven pigs underwent PET/CT with 60-minute dynamic PET imaging of [ 18 F]FDG, [ 68 Ga]Ga-citrate, [ 11 C]methionine, and/or [ 11 C]donepezil, along with blood sampling. For infectious lesions, kinetic modelling with one- and two-tissue-compartment models was conducted for each tracer. Irreversible uptake was found for [ 18 F]FDG and [ 68 Ga]Ga-citrate; reversible uptake was found for [ 11 C]methionine (two-tissue model) and [ 11 C]donepezil (one-tissue model). The uptake rate for [ 68 Ga]Ga-citrate was slow and diffusion-limited. For the other tracers, the uptake rate was primarily determined by perfusion (flow-limited uptake). Net uptake rate for [ 18 F]FDG and distribution volume for [ 11 C]methionine were significantly higher for infectious lesions than for correspondingly noninfected tissue. For [ 11 C]donepezil in pigs, labelled metabolite products appeared to be important for the analysis. The kinetics of the four studied tracers in infection was characterized. For clinical applications, [ 18 F]FDG remains the first-choice PET tracer. [ 11 C]methionine may have a potential for detecting soft tissue infections. [ 68 Ga]Ga-citrate and [ 11 C]donepezil were not found useful for imaging of osteomyelitis.
Three-dimensional hybrid modeling of ion kinetic instabilities in space plasma
NASA Astrophysics Data System (ADS)
Ofman, L.
2017-12-01
Ion kinetic instabilities in space plasma are believed to play an imprortant role in energy transport, heating, dissipation of turbulence, as well as in generating of spectrum of magnetic fluctuations in the kinetic frequency range. The velocity distribution functions (VDFs) of unstable ion populations are generally non-Maxwellian and provide the free energy source that drives the waves. The VDFs were measured in-situ by satellites such as Helios, WIND, and would be obtained in the future Parkers' Solar Probe close to the Sun. In particular, temperature anisotropy provides a measure of VDF non-equilibroum structure, that together with parallel-beta determine the threshold of kinetic instabilities, such as mirror, ion-cyclotron, and firehose. Drifting population of alphas with respect to protons lead to the magnetosonic instability. So far, these isntabilities were studied primaraly using 1.5D or 2.5D particle-in-cell (PIC) or hybrid models (where electrons are modeled as a fluid), i.e., in 1 or 2 spatial dimensions with 3 components of velocity and magnetic field. I will present the results of recent full 3D hybrid models that studies these instabilities for heliospheric conditions and compare to previous modeling results. I will discuss the agreement and the differences between the 3D and more approximate models of the VDFs, the magnetic fluctuations spectra, and the temporal evolution of the anisotropy for typical instabilities relevant for space plasma. I will duscuss the use of the modeled VDFs for diagnostic of the physical processes that lead to space plasma energization from the observed VDFs in the heliospheric and magnetospheric plasma.
Recrystallization and Grain Growth Kinetics in Binary Alpha Titanium-Aluminum Alloys
NASA Astrophysics Data System (ADS)
Trump, Anna Marie
Titanium alloys are used in a variety of important naval and aerospace applications and often undergo thermomechanical processing which leads to recrystallization and grain growth. Both of these processes have a significant impact on the mechanical properties of the material. Therefore, understanding the kinetics of these processes is crucial to being able to predict the final properties. Three alloys are studied with varying concentrations of aluminum which allows for the direct quantification of the effect of aluminum content on the kinetics of recrystallization and grain growth. Aluminum is the most common alpha stabilizing alloying element used in titanium alloys, however the effect of aluminum on these processes has not been previously studied. This work is also part of a larger Integrated Computational Materials Engineering (ICME) effort whose goal is to combine both computational and experimental efforts to develop computationally efficient models that predict materials microstructure and properties based on processing history. The static recrystallization kinetics are measured using an electron backscatter diffraction (EBSD) technique and a significant retardation in the kinetics is observed with increasing aluminum concentration. An analytical model is then used to capture these results and is able to successfully predict the effect of solute concentration on the time to 50% recrystallization. The model reveals that this solute effect is due to a combination of a decrease in grain boundary mobility and a decrease in driving force with increasing aluminum concentration. The effect of microstructural inhomogeneities is also experimentally quantified and the results are validated with a phase field model for recrystallization. These microstructural inhomogeneities explain the experimentally measured Avrami exponent, which is lower than the theoretical value calculated by the JMAK model. Similar to the effect seen in recrystallization, the addition of aluminum also significantly slows downs the grain growth kinetics. This is generally attributed to the solute drag effect due to segregation of solute atoms at the grain boundaries, however aluminum segregation is not observed in these alloys. The mechanism for this result is explained and is used to validate the prediction of an existing model for solute drag.
Biosorption Behavior of Ciprofloxacin onto Enteromorpha prolifera: Isotherm and Kinetic Studies.
Wu, Shaoling; Li, Yanhui; Zhao, Xindong; Du, Qiuju; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua
2015-01-01
The studies aimed at the feasibility of using Enteromorpha prolifera for the removal of ciprofloxacin from aqueous solutions. Batch experiments were carried out for the biosorption of ciprofloxacin onto Enteromorpha prolifera. The factors affecting the biosorption process such as the initial concentration, dosage, pH and the contact time were studied. Enteromorpha prolifera exhibited a maximum biosorption capacity of 21.7 mg/g. The pseudo-second-order kinetic model described the ciprofloxacin biosorption process with a good fitting. The optimum pH of ciprofloxacin adsorbed by Enteromorpha prolifera was 10. Biosorption equilibrium studies demonstrated that the biosorption followed Freundlich isotherm model, which implied a heterogeneous biosorption phenomenon.
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Ying, S.-J.
1990-01-01
Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.
Cluster kinetics model for mixtures of glassformers
NASA Astrophysics Data System (ADS)
Brenskelle, Lisa A.; McCoy, Benjamin J.
2007-10-01
For glassformers we propose a binary mixture relation for parameters in a cluster kinetics model previously shown to represent pure compound data for viscosity and dielectric relaxation as functions of either temperature or pressure. The model parameters are based on activation energies and activation volumes for cluster association-dissociation processes. With the mixture parameters, we calculated dielectric relaxation times and compared the results to experimental values for binary mixtures. Mixtures of sorbitol and glycerol (seven compositions), sorbitol and xylitol (three compositions), and polychloroepihydrin and polyvinylmethylether (three compositions) were studied.
The initial value problem in Lagrangian drift kinetic theory
NASA Astrophysics Data System (ADS)
Burby, J. W.
2016-06-01
> Existing high-order variational drift kinetic theories contain unphysical rapidly varying modes that are not seen at low orders. These unphysical modes, which may be rapidly oscillating, damped or growing, are ushered in by a failure of conventional high-order drift kinetic theory to preserve the structure of its parent model's initial value problem. In short, the (infinite dimensional) system phase space is unphysically enlarged in conventional high-order variational drift kinetic theory. I present an alternative, `renormalized' variational approach to drift kinetic theory that manifestly respects the parent model's initial value problem. The basic philosophy underlying this alternate approach is that high-order drift kinetic theory ought to be derived by truncating the all-orders system phase-space Lagrangian instead of the usual `field particle' Lagrangian. For the sake of clarity, this story is told first through the lens of a finite-dimensional toy model of high-order variational drift kinetics; the analogous full-on drift kinetic story is discussed subsequently. The renormalized drift kinetic system, while variational and just as formally accurate as conventional formulations, does not support the troublesome rapidly varying modes.
Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi
2015-09-07
Photosystem II (PS II) is a protein complex which evolves oxygen and drives charge separation for photosynthesis employing electron and excitation-energy transfer processes over a wide timescale range from picoseconds to milliseconds. While the fluorescence emitted by the antenna pigments of this complex is known as an important indicator of the activity of photosynthesis, its interpretation was difficult because of the complexity of PS II. In this study, an extensive kinetic model which describes the complex and multi-timescale characteristics of PS II is analyzed through the use of the hierarchical coarse-graining method proposed in the authors׳ earlier work. In this coarse-grained analysis, the reaction center (RC) is described by two states, open and closed RCs, both of which consist of oxidized and neutral special pairs being in quasi-equilibrium states. Besides, the PS II model at millisecond scale with three-state RC, which was studied previously, could be derived by suitably adjusting the kinetic parameters of electron transfer between tyrosine and RC. Our novel coarse-grained model of PS II can appropriately explain the light-intensity dependent change of the characteristic patterns of fluorescence induction kinetics from O-J-I-P, which shows two inflection points, J and I, between initial point O and peak point P, to O-J-D-I-P, which shows a dip D between J and I inflection points. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tao, Yang; Zhang, Zhihang; Sun, Da-Wen
2014-09-01
The enhancement of release of oak-related compounds from oak chips during wine aging with oak chips may interest the winemaking industry. In this study, the 25-kHz ultrasound waves were used to intensify the mass transfer of phenolics from oak chips into a model wine. The influences of acoustic energy density (6.3-25.8 W/L) and temperature (15-25 °C) on the release kinetics of total phenolics were investigated systematically. The results exhibited that the total phenolic yield released was not affected by acoustic energy density significantly whereas it increased with the increase of temperature during sonication. Furthermore, to describe the mechanism of mass transfer of phenolics in model wine under ultrasonic field, the release kinetics of total phenolics was simulated by both a second-order kinetic model and a diffusion model. The modeling results revealed that the equilibrium concentration of total phenolics in model wine, the initial release rate and effective diffusivity of total phenolics generally increased with acoustic energy density and temperature. In addition, temperature had a negative effect on the second-order release rate constant whereas acoustic energy density had an opposite effect. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Ye Chan; Min, Hyunsung; Hong, Sungyong; Wang, Mei; Sun, Hanna; Park, In-Kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Moon, Hyungpil; Kim, Kwang J.; Suhr, Jonghwan; Nam, Jae-Do
2017-08-01
As packaging technologies are demanded that reduce the assembly area of substrate, thin composite laminate substrates require the utmost high performance in such material properties as the coefficient of thermal expansion (CTE), and stiffness. Accordingly, thermosetting resin systems, which consist of multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs, are extremely complicated and closely associated with rheological properties, which depend on the temperature cycles for cure. For the process control of these complex systems, it is usually required to obtain a reliable kinetic model that could be used for the complex thermal cycles, which usually includes both the isothermal and dynamic-heating segments. In this study, an ultra-thin prepreg with highly loaded silica beads and glass fibers in the epoxy/amine resin system was investigated as a model system by isothermal/dynamic heating experiments. The maximum degree of cure was obtained as a function of temperature. The curing kinetics of the model prepreg system exhibited a multi-step reaction and a limited conversion as a function of isothermal curing temperatures, which are often observed in epoxy cure system because of the rate-determining diffusion of polymer chain growth. The modified kinetic equation accurately described the isothermal behavior and the beginning of the dynamic-heating behavior by integrating the obtained maximum degree of cure into the kinetic model development.
Effect of Slag Composition on the Crystallization Kinetics of Synthetic CaO-SiO2-Al2O3-MgO Slags
NASA Astrophysics Data System (ADS)
Esfahani, Shaghayegh; Barati, Mansoor
2018-04-01
The crystallization kinetics of CaO-SiO2-Al2O3-MgO (CSAM) slags was studied with the aid of single hot thermocouple technique (SHTT). Kinetic parameters such as the Avrami exponent ( n), rate coefficient ( K), and effective activation energy of crystallization ( E A ) were obtained by kinetic analysis of data obtained from in situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In an attempt to predict crystallization rate under non-isothermal conditions, a mathematical model was developed that employs the rate data of isothermal transformation. The model was validated by reproducing an experimental continuous cooling transformation diagram purely from isothermal data.
Comparison of Forecast and Observed Energetics
NASA Technical Reports Server (NTRS)
Baker, W. E.; Brin, Y.
1984-01-01
An energetics analysis scheme was developed to compare the observed kinetic energy balance over North America with that derived from forecast fields of the GLAS fourth order model for the 13 to 15 January 1979 cyclone case. It is found that: (1) the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. The eddy conversion which is stronger in the 12 h forecast than in observations and may be due to several factors is studied; (2) vertical profiles of kinetic energy generation and dissipation exhibit lower and upper tropospheric maxima in both the forecast and observations; (3) a lag in the observational analysis with the maximum in the observed kinetic energy occurring at 0000 GMT 14 January over the same region as the maximum ddy conversion 12 h earlier is noted.
Kinetics and Equilibrium of Fe3+ Ions Adsorption on Carbon Nanofibers
NASA Astrophysics Data System (ADS)
Alimin; Agusu, La; Ahmad, L. O.; Kadidae, L. O.; Ramadhan, L.; Nurdin, M.; Isdayanti, N.; Asria; Aprilia M, P.; Hasrudin
2018-05-01
Generally, the interaction between metal ions and adsorbent is governed by many factors including; concentration of metal ions, interaction time and solution pH. In this work, we applied liquid phase adsorption for studying the interaction between Fe3+ ions and Carbon Nanofibers (CNFs) irradiated by ultrasonic waves. Kinetics and isotherms model of the Fe3+ ion adsorption was investigated by varying contact time and pH. We found that the Fe3+ ions were efficiently adsorbed on CNFs for 0.5 h in acidic pH of around 5. In order to obtain the best-fitted isotherms model, Langmuir and Freundlich’s isotherms were used in this work. The adsorption equilibrium Fe3+ metal ions on CNFs tend to follow Langmuir. Adsorption kinetics of Fe3+ ions on CNFs were investigated by using both pseudo-first and pseudo-second orders. The adsorption kinetics coincided well with the pseudo-second-order.
Kinetic Phase Diagrams of Ternary Al-Cu-Li System during Rapid Solidification: A Phase-Field Study
Yang, Xiong; Zhang, Lijun; Sobolev, Sergey; Du, Yong
2018-01-01
Kinetic phase diagrams in technical alloys at different solidification velocities during rapid solidification are of great importance for guiding the novel alloy preparation, but are usually absent due to extreme difficulty in performing experimental measurements. In this paper, a phase-field model with finite interface dissipation was employed to construct kinetic phase diagrams in the ternary Al-Cu-Li system for the first time. The time-elimination relaxation scheme was utilized. The solute trapping phenomenon during rapid solidification could be nicely described by the phase-field simulation, and the results obtained from the experiment measurement and/or the theoretical model were also well reproduced. Based on the predicted kinetic phase diagrams, it was found that with the increase of interface moving velocity and/or temperature, the gap between the liquidus and solidus gradually reduces, which illustrates the effect of solute trapping and tendency of diffusionless solidification. PMID:29419753
O'Sullivan, Finbarr; Muzi, Mark; Mankoff, David A; Eary, Janet F; Spence, Alexander M; Krohn, Kenneth A
2014-06-01
Most radiotracers used in dynamic positron emission tomography (PET) scanning act in a linear time-invariant fashion so that the measured time-course data are a convolution between the time course of the tracer in the arterial supply and the local tissue impulse response, known as the tissue residue function. In statistical terms the residue is a life table for the transit time of injected radiotracer atoms. The residue provides a description of the tracer kinetic information measurable by a dynamic PET scan. Decomposition of the residue function allows separation of rapid vascular kinetics from slower blood-tissue exchanges and tissue retention. For voxel-level analysis, we propose that residues be modeled by mixtures of nonparametrically derived basis residues obtained by segmentation of the full data volume. Spatial and temporal aspects of diagnostics associated with voxel-level model fitting are emphasized. Illustrative examples, some involving cancer imaging studies, are presented. Data from cerebral PET scanning with 18 F fluoro-deoxyglucose (FDG) and 15 O water (H2O) in normal subjects is used to evaluate the approach. Cross-validation is used to make regional comparisons between residues estimated using adaptive mixture models with more conventional compartmental modeling techniques. Simulations studies are used to theoretically examine mean square error performance and to explore the benefit of voxel-level analysis when the primary interest is a statistical summary of regional kinetics. The work highlights the contribution that multivariate analysis tools and life-table concepts can make in the recovery of local metabolic information from dynamic PET studies, particularly ones in which the assumptions of compartmental-like models, with residues that are sums of exponentials, might not be certain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitz, William J.; McNenly, Matt J.; Whitesides, Russell
Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.
Integrated and spectral energetics of the GLAS general circulation model
NASA Technical Reports Server (NTRS)
Tenenbaum, J.
1981-01-01
Integrated and spectral error energetics of the Goddard Laboratory for Atmospheric Sciences (GLAS) general circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level. General circulation model spectral energetics predictions are compared with the corresponding observational spectra on a day by day basis. Eddy kinetic energy can be correct while significant errors occur in the kinetic energy of wavenumber three. Single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetic and potential energy are demonstrated.
Prasad, Kumar Suranjit; Amin, Yesha; Selvaraj, Kaliaperumal
2014-07-15
The present study reports a novel approach for synthesis of Zr nanoparticles using aqueous extract of Aloe vera. Resulting nanoparticles were embedded into chitosan biopolymer and termed as CNZr composite. The composite was subjected to detailed adsorption studies for removal of fluoride from aqueous solution. The synthesized Zr nanoparticles showed UV-vis absorption peak at 420nm. TEM result showed the formation of polydispersed, nanoparticles ranging from 18nm to 42nm. SAED and XRD analysis suggested an fcc (face centered cubic) Zr crystallites. EDAX analysis suggested that Zr was an integral component of synthesized nanoparticles. FT-IR study indicated that functional group like NH, CO, CN and CC were involved in particle formation. The adsorption of fluoride on to CNZr composite worked well at pH 7.0, where ∼99% of fluoride was found to be adsorbed on adsorbent. Langmuir isotherm model best fitted the equilibrium data since it presented higher R(2) value than Freundlich model. In comparison to pseudo-first order kinetic model, the pseudo-second order model could explain adsorption kinetic behavior of F(-) onto CNZr composite satisfactorily with a good correlation coefficient. The present study revealed that CNZr composite may work as an effective tool for removal of fluoride from contaminated water. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhihui; Ma, Qiang; Wu, Junlin
2014-12-09
Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinatemore » points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.« less
The logic of kinetic regulation in the thioredoxin system
2011-01-01
Background The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system. Results Analysis of a realistic computational model of the Escherichia coli thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models. Conclusions Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions. PMID:21266044
Wang, Tao; Wu, Jinhui; Qi, Jiancheng; Hao, Limei; Yi, Ying; Zhang, Zongxing
2016-05-15
Bacillus subtilis subsp. niger spore and Staphylococcus albus are typical biological indicators for the inactivation of airborne pathogens. The present study characterized and compared the behaviors of B. subtilis subsp. niger spores and S. albus in regard to inactivation by chlorine dioxide (ClO2) gas under different gas concentrations and relative humidity (RH) conditions. The inactivation kinetics under different ClO2 gas concentrations (1 to 5 mg/liter) were determined by first-order and Weibull models. A new model (the Weibull-H model) was established to reveal the inactivation tendency and kinetics for ClO2 gas under different RH conditions (30 to 90%). The results showed that both the gas concentration and RH were significantly (P < 0.05) and positively correlated with the inactivation of the two chosen indicators. There was a rapid improvement in the inactivation efficiency under high RH (>70%). Compared with the first-order model, the Weibull and Weibull-H models demonstrated a better fit for the experimental data, indicating nonlinear inactivation behaviors of the vegetative bacteria and spores following exposure to ClO2 gas. The times to achieve a six-log reduction of B. subtilis subsp. niger spore and S. albus were calculated based on the established models. Clarifying the kinetics of inactivation of B. subtilis subsp. niger spores and S. albus by ClO2 gas will allow the development of ClO2 gas treatments that provide an effective disinfection method. Chlorine dioxide (ClO2) gas is a novel and effective fumigation agent with strong oxidization ability and a broad biocidal spectrum. The antimicrobial efficacy of ClO2 gas has been evaluated in many previous studies. However, there are presently no published models that can be used to describe the kinetics of inactivation of airborne pathogens by ClO2 gas under different gas concentrations and RH conditions. The first-order and Weibull (Weibull-H) models established in this study can characterize and compare the behaviors of Bacillus subtilis subsp. niger spores and Staphylococcus albus in regard to inactivation by ClO2 gas, determine the kinetics of inactivation of two chosen strains under different conditions of gas concentration and RH, and provide the calculated time to achieve a six-log reduction. These results will be useful to determine effective conditions for ClO2 gas to inactivate airborne pathogens in contaminated air and other environments and thus prevent outbreaks of airborne illness. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Wang, Tao; Wu, Jinhui; Hao, Limei; Yi, Ying; Zhang, Zongxing
2016-01-01
ABSTRACT Bacillus subtilis subsp. niger spore and Staphylococcus albus are typical biological indicators for the inactivation of airborne pathogens. The present study characterized and compared the behaviors of B. subtilis subsp. niger spores and S. albus in regard to inactivation by chlorine dioxide (ClO2) gas under different gas concentrations and relative humidity (RH) conditions. The inactivation kinetics under different ClO2 gas concentrations (1 to 5 mg/liter) were determined by first-order and Weibull models. A new model (the Weibull-H model) was established to reveal the inactivation tendency and kinetics for ClO2 gas under different RH conditions (30 to 90%). The results showed that both the gas concentration and RH were significantly (P < 0.05) and positively correlated with the inactivation of the two chosen indicators. There was a rapid improvement in the inactivation efficiency under high RH (>70%). Compared with the first-order model, the Weibull and Weibull-H models demonstrated a better fit for the experimental data, indicating nonlinear inactivation behaviors of the vegetative bacteria and spores following exposure to ClO2 gas. The times to achieve a six-log reduction of B. subtilis subsp. niger spore and S. albus were calculated based on the established models. Clarifying the kinetics of inactivation of B. subtilis subsp. niger spores and S. albus by ClO2 gas will allow the development of ClO2 gas treatments that provide an effective disinfection method. IMPORTANCE Chlorine dioxide (ClO2) gas is a novel and effective fumigation agent with strong oxidization ability and a broad biocidal spectrum. The antimicrobial efficacy of ClO2 gas has been evaluated in many previous studies. However, there are presently no published models that can be used to describe the kinetics of inactivation of airborne pathogens by ClO2 gas under different gas concentrations and RH conditions. The first-order and Weibull (Weibull-H) models established in this study can characterize and compare the behaviors of Bacillus subtilis subsp. niger spores and Staphylococcus albus in regard to inactivation by ClO2 gas, determine the kinetics of inactivation of two chosen strains under different conditions of gas concentration and RH, and provide the calculated time to achieve a six-log reduction. These results will be useful to determine effective conditions for ClO2 gas to inactivate airborne pathogens in contaminated air and other environments and thus prevent outbreaks of airborne illness. PMID:26969707
Kinetic Risk Factors of Running-Related Injuries in Female Recreational Runners.
Napier, Christopher; MacLean, Christopher L; Maurer, Jessica; Taunton, Jack E; Hunt, Michael A
2018-05-30
Our objective was to prospectively investigate the association of kinetic variables with running-related injury (RRI) risk. Seventy-four healthy female recreational runners ran on an instrumented treadmill while 3D kinetic and kinematic data were collected. Kinetic outcomes were vertical impact transient, average vertical loading rate, instantaneous vertical loading rate, active peak, vertical impulse, and peak braking force (PBF). Participants followed a 15-week half-marathon training program. Exposure time (hours of running) was calculated from start of program until onset of injury, loss to follow-up, or end of program. After converting kinetic variables from continuous to ordinal variables based on tertiles, Cox proportional hazard models with competing risks were fit for each variable independently, before analysis in a forward stepwise multivariable model. Sixty-five participants were included in the final analysis, with a 33.8% injury rate. PBF was the only kinetic variable that was a significant predictor of RRI. Runners in the highest tertile (PBF <-0.27 BW) were injured at 5.08 times the rate of those in the middle tertile and 7.98 times the rate of those in the lowest tertile. When analyzed in the multivariable model, no kinetic variables made a significant contribution to predicting injury beyond what had already been accounted for by PBF alone. Findings from this study suggest PBF is associated with a significantly higher injury hazard ratio in female recreational runners and should be considered as a target for gait retraining interventions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Sensitivity of Polar Stratospheric Ozone Loss to Uncertainties in Chemical Reaction Kinetics
NASA Technical Reports Server (NTRS)
Kawa, S. Randolph; Stolarski, Richard S.; Douglass, Anne R.; Newman, Paul A.
2008-01-01
Several recent observational and laboratory studies of processes involved in polar stratospheric ozone loss have prompted a reexamination of aspect of out understanding for this key indicator of global change. To a large extent, our confidence in understanding and projecting changes in polar and global ozone is based on our ability to to simulate these process in numerical models of chemistry and transport. These models depend on laboratory-measured kinetic reaction rates and photlysis cross section to simulate molecular interactions. In this study we use a simple box-model scenario for Antarctic ozone to estimate the uncertainty in loss attributable to known reaction kinetic uncertainties. Following the method of earlier work, rates and uncertainties from the latest laboratory evaluation are applied in random combinations. We determine the key reaction and rates contributing the largest potential errors and compare the results to observations to evaluate which combinations are consistent with atmospheric data. Implications for our theoretical and practical understanding of polar ozone loss will be assessed.
Kinetic study of solid waste pyrolysis using distributed activation energy model.
Bhavanam, Anjireddy; Sastry, R C
2015-02-01
The pyrolysis characteristics of municipal solid waste, agricultural residues such as ground nut shell, cotton husk and their blends are investigated using non-isothermal thermogravimetric analysis (TGA) with in a temperature range of 30-900 °C at different heating rates of 10 °C, 30 °C and 50 °C/min in inert atmosphere. From the thermograms obtained from TGA, it is observed that the maximum rate of degradation occurred in the second stage of the pyrolysis process for all the solid wastes. The distributed activation energy model (DAEM) is used to study the pyrolysis kinetics of the solid wastes. The kinetic parameters E (activation energy), k0 (frequency factor) are calculated from this model. It is found that the range of activation energies for agricultural residues are lower than the municipal solid waste. The activation energies for the municipal solid waste pyrolysis process drastically decreased with addition of agricultural residues. The proposed DAEM is successfully validated with TGA experimental data. Copyright © 2014 Elsevier Ltd. All rights reserved.
Long charged macromolecule in an entropic trap with rough surfaces.
Mamasakhlisov, Yevgeni Sh; Hayryan, Shura; Hu, Chin-Kun
2012-11-01
The kinetics of the flux of a charged macromolecular solution through an environment of changing geometry with wide and constricted regions is investigated analytically. A model device consisting of alternating deep and shallow slits known as an "entropic trap" is used to represent the environment. The flux is supported by the external electrostatic field. The "wormlike chain" model is used for the macromolecule (dsDNA in the present study). The chain entropy in both the deep and the shallow slits, the work by the electric field, and the energy of the elastic bending of the chain are taken into account accurately. Based on the calculated free energy, the kinetics and the scaling behavior of the chain escaping from the entropic trap are studied. We find that the escape process occurs in two kinetic stages with different time scales and discuss the possible influence of the surface roughness. The scope of the accuracy of the proposed model is discussed.
Dynamo transition in low-dimensional models.
Verma, Mahendra K; Lessinnes, Thomas; Carati, Daniele; Sarris, Ioannis; Kumar, Krishna; Singh, Meenakshi
2008-09-01
Two low-dimensional magnetohydrodynamic models containing three velocity and three magnetic modes are described. One of them (nonhelical model) has zero kinetic and current helicity, while the other model (helical) has nonzero kinetic and current helicity. The velocity modes are forced in both these models. These low-dimensional models exhibit a dynamo transition at a critical forcing amplitude that depends on the Prandtl number. In the nonhelical model, dynamo exists only for magnetic Prandtl number beyond 1, while the helical model exhibits dynamo for all magnetic Prandtl number. Although the model is far from reproducing all the possible features of dynamo mechanisms, its simplicity allows a very detailed study and the observed dynamo transition is shown to bear similarities with recent numerical and experimental results.
Kinetic analysis of the effects of target structure on siRNA efficiency
NASA Astrophysics Data System (ADS)
Chen, Jiawen; Zhang, Wenbing
2012-12-01
RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.
NASA Astrophysics Data System (ADS)
Adeogun, Abideen Idowu; Balakrishnan, Ramesh Babu
2017-07-01
Electrocoagulation was used for the removal of basic dye rhodamine B from aqueous solution, and the process was carried out in a batch electrochemical cell with steel electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process, were investigated. Equilibrium was attained after 10 min at 30 °C. Pseudo-first-order, pseudo-second-order, Elovich and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic adsorption process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analysed using six model equations: Langmuir, Freudlinch, Redlich-Peterson, Temkin, Dubinin-Radushkevich and Sips isotherms and it was found that the data fitted well with Sips isotherm model. The study showed that the process depends on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (Δ G°, Δ H° and Δ S°) indicated that the process is spontaneous and endothermic in nature.
NASA Astrophysics Data System (ADS)
Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen
2015-04-01
This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive, nevertheless, the present GKUAs for kinetic model Boltzmann equations in conjunction with current available high-performance parallel computer power can provide a vital engineering tool for analyzing rarefied gas flows covering the whole range of flow regimes in aerospace engineering applications.
De Benedetti, Pier G; Fanelli, Francesca
2018-03-21
Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nilsson, Peter; Hansson, Per
2005-12-22
The kinetics of deswelling of sodium polyacrylate microgels (radius 30-140 microm) in aqueous solutions of dodecyltrimethylammonium bromide is investigated by means of micropipet-assisted light microscopy. The purpose of the study is to test a recent model (J. Phys. Chem. B 2003, 107, 9203) proposing that the rate of the volume change is controlled by the transport of surfactant from the solution to the gel core (ion exchange) via the surfactant-rich surface phase appearing in the gel during the volume transition. Equilibrium swelling characteristics of the gel network in surfactant-free solutions and with various amounts of surfactant present are presented and discussed with reference to related systems. A relationship between gel volume and degree of surfactant binding is determined and used in theoretical predictions of the deswelling kinetics. Experimental data for single gel beads observed during deswelling under conditions of forced convection are presented and compared with model calculations. It is demonstrated that the dependences of the kinetics on initial gel size, the surfactant concentration in the solution, and the liquid flow rate are well accounted for by the model. It is concluded that the deswelling rates of the studied gels are strongly influenced by the mass transport of surfactant between gel and solution (stagnant layer diffusion), but only to a minor extent by the transport through the surface phase. The results indicate that, during the volume transition, swelling equilibrium (network relaxation/transport of water) is established on a relatively short time scale and, therefore, can be treated as independent of the ion-exchange kinetics. Theoretical aspects of the kinetics and mechanisms of surfactant transport through the surface phase are discussed.
Choi, Sanghun; Choi, Jiwoong; Lin, Ching-Long
2018-01-01
The aim of this study was to investigate and quantify contributions of kinetic energy and viscous dissipation to airway resistance during inspiration and expiration at various flow rates in airway models of different bifurcation angles. We employed symmetric airway models up to the 20th generation with the following five different bifurcation angles at a tracheal flow rate of 20 L/min: 15 deg, 25 deg, 35 deg, 45 deg, and 55 deg. Thus, a total of ten computational fluid dynamics (CFD) simulations for both inspiration and expiration were conducted. Furthermore, we performed additional four simulations with tracheal flow rate values of 10 and 40 L/min for a bifurcation angle of 35 deg to study the effect of flow rate on inspiration and expiration. Using an energy balance equation, we quantified contributions of the pressure drop associated with kinetic energy and viscous dissipation. Kinetic energy was found to be a key variable that explained the differences in airway resistance on inspiration and expiration. The total pressure drop and airway resistance were larger during expiration than inspiration, whereas wall shear stress and viscous dissipation were larger during inspiration than expiration. The dimensional analysis demonstrated that the coefficients of kinetic energy and viscous dissipation were strongly correlated with generation number. In addition, the viscous dissipation coefficient was significantly correlated with bifurcation angle and tracheal flow rate. We performed multiple linear regressions to determine the coefficients of kinetic energy and viscous dissipation, which could be utilized to better estimate the pressure drop in broader ranges of successive bifurcation structures.
New techniques for positron emission tomography in the study of human neurological disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, D.E.
1992-07-01
The general goals of the physics and kinetic modeling projects are to: (1) improve the quantitative information extractable from PET images, and (2) develop, implement and optimize tracer kinetic models for new PET neurotransmitter/receptor ligands aided by computer simulations. Work towards improving PET quantification has included projects evaluating: (1) iterative reconstruction algorithms using supplemental boundary information, (2) automated registration of dynamic PET emission and transmission data using sinogram edge detection, and (3) automated registration of multiple subjects to a common coordinate system, including the use of non-linear warping methods. Simulation routines have been developed providing more accurate representation of datamore » generated from neurotransmitter/receptor studies. Routines consider data generated from complex compartmental models, high or low specific activity administrations, non-specific binding, pre- or post-injection of cold or competing ligands, temporal resolution of the data, and radiolabeled metabolites. Computer simulations and human PET studies have been performed to optimize kinetic models for four new neurotransmitter/receptor ligands, [{sup 11}C]TRB (muscarinic), [{sup 11}C]flumazenil (benzodiazepine), [{sup 18}F]GBR12909, (dopamine), and [{sup 11}C]NMPB (muscarinic).« less
New techniques for positron emission tomography in the study of human neurological disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, D.E.
1992-01-01
The general goals of the physics and kinetic modeling projects are to: (1) improve the quantitative information extractable from PET images, and (2) develop, implement and optimize tracer kinetic models for new PET neurotransmitter/receptor ligands aided by computer simulations. Work towards improving PET quantification has included projects evaluating: (1) iterative reconstruction algorithms using supplemental boundary information, (2) automated registration of dynamic PET emission and transmission data using sinogram edge detection, and (3) automated registration of multiple subjects to a common coordinate system, including the use of non-linear warping methods. Simulation routines have been developed providing more accurate representation of datamore » generated from neurotransmitter/receptor studies. Routines consider data generated from complex compartmental models, high or low specific activity administrations, non-specific binding, pre- or post-injection of cold or competing ligands, temporal resolution of the data, and radiolabeled metabolites. Computer simulations and human PET studies have been performed to optimize kinetic models for four new neurotransmitter/receptor ligands, ({sup 11}C)TRB (muscarinic), ({sup 11}C)flumazenil (benzodiazepine), ({sup 18}F)GBR12909, (dopamine), and ({sup 11}C)NMPB (muscarinic).« less
Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow
NASA Astrophysics Data System (ADS)
Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.
2012-05-01
Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.
Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciens BPD1.
Wu, Jiun-Yan; Liao, Jen-Hung; Shieh, Chwen-Jen; Hsieh, Feng-Chia; Liu, Yung-Chuan
2018-06-12
In this study, the precursor effect for iturin A production was quantitatively analyzed. A strain identified as Bacillus amyloliquefaciens BPD1 (Ba-BPD1) was selected due to its ability to produce iturin A. The enhancement of iturin A production in a submerged culture was tested using various additives, including palmitic acid, oils, and complex amino acids. Among these, complex amino acids triggered the highest yield at 559 mg/L. The respective amino acids that contribute to the structure of iturin A were used as precursors. In fact, it was found that the addition of l-proline, l-glutamine, l-asparagine and l-serine could improve iturin A yield in the defined medium. However, during the kinetic analysis, all the amino acids exhibited a lower saturation level than l-serine, which exhibited a high saturation level at 1.2% resulting in an iturin A yield of 914 mg/L. In contrast, a negative effect was observed following the addition of l-tyrosine. To analyze the kinetic behavior of l-serine, three kinetic models were adopted: the kinetic order equation, the Langmuir kinetic equation, and a modified logistic equation. The regression results showed that the modified logistic model was the best fit for the kinetic behavior of l-serine as the major precursor, which could be further referred to the biosynthesis pathway of iturin A. Among the proposed processes for iturin A production, this study achieved the highest iturin A levels as a result of the addition of precursors. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Royer, Betina; Cardoso, Natali F; Lima, Eder C; Vaghetti, Julio C P; Simon, Nathalia M; Calvete, Tatiana; Veses, Renato Cataluña
2009-05-30
The Brazilian pine-fruit shell (Araucaria angustifolia) is a food residue, which was used in natural and carbonized forms, as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. Chemical treatment of Brazilian pine-fruit shell (PW), with sulfuric acid produced a non-activated carbonaceous material (C-PW). Both PW and C-PW were tested as low-cost adsorbents for the removal of MB from aqueous effluents. It was observed that C-PW leaded to a remarkable increase in the specific surface area, average porous volume, and average porous diameter of the adsorbent when compared to PW. The effects of shaking time, adsorbent dosage and pH on adsorption capacity were studied. In basic pH region (pH 8.5) the adsorption of MB was favorable. The contact time required to obtain the equilibrium was 6 and 4h at 25 degrees C, using PW and C-PW as adsorbents, respectively. Based on error function values (F(error)) the kinetic data were better fitted to fractionary-order kinetic model when compared to pseudo-first order, pseudo-second order, and chemisorption kinetic models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. For MB dye the equilibrium data were better fitted to the Sips isotherm model using PW and C-PW as adsorbents.
Dennehy, Conor; Lawlor, Peadar G; Croize, Thomas; Jiang, Yan; Morrison, Liam; Gardiner, Gillian E; Zhan, Xinmin
2016-10-01
Anaerobic co-digestion of food waste (FW) and pig manure (PM) was undertaken in batch mode at 37°C in order to identify and quantify the synergistic effects of co-digestion on the specific methane yield (SMY) and reaction kinetics. The effects of the high initial volatile fatty acid (VFA) concentrations in PM on synergy observed during co-digestion, and on kinetic modelling were investigated. PM to FW mixing ratios of 1/0, 4/1, 3/2, 2/3, 1/4 and 0/1 (VS basis) were examined. No VFA or ammonia inhibition was observed. The highest SMY of 521±29ml CH4/gVS was achieved at a PM/FW mixing ratio of 1/4. Synergy in terms of both reaction kinetics and SMY occurred at PM/FW mixing ratios of 3/2, 2/3 and 1/4. Initial VFA concentrations did not explain the synergy observed. Throughout the study the conversion of butyric acid was inhibited. Due to the high initial VFA content of PM, conventional first order and Gompertz models were inappropriate for determining reaction kinetics. A dual pooled first order model was found to provide the best fit for the data generated in this study. The optimal mixing ratio in terms of both reaction kinetics and SMY was found at a PM/FW mixing ratio of 1/4. Copyright © 2016 Elsevier Ltd. All rights reserved.
A resource facility for kinetic analysis: modeling using the SAAM computer programs.
Foster, D M; Boston, R C; Jacquez, J A; Zech, L
1989-01-01
Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.
Thermodynamically Feasible Kinetic Models of Reaction Networks
Ederer, Michael; Gilles, Ernst Dieter
2007-01-01
The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts the concepts of potentials and forces from irreversible thermodynamics to kinetic modeling. In the proposed formalism, the thermokinetic potential of a compound is proportional to its concentration. The proportionality factor is a compound-specific parameter called capacity. The thermokinetic force of a reaction is a function of the potentials. Every reaction has a resistance that is the ratio of thermokinetic force and reaction rate. For mass-action type kinetics, the resistances are constant. Since it relies on the thermodynamic concept of potentials and forces, the TKM formalism structurally observes detailed balance for all values of capacities and resistances. Thus, it provides an easy way to formulate physically feasible, kinetic models of biological reaction networks. The TKM formalism is useful for modeling large biological networks that are subject to many detailed balance relations. PMID:17208985
Kinetic and Stochastic Models of 1D yeast ``prions"
NASA Astrophysics Data System (ADS)
Kunes, Kay
2005-03-01
Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeasts have proteins, which can undergo similar reconformation and aggregation processes to PrP; yeast ``prions" are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein (1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics along with our own stochastic approach (2). Both models assume reconformation only upon aggregation, and include aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates.
Kinetic modeling of liquefied petroleum gas (LPG) reduction of titania in MATLAB
NASA Astrophysics Data System (ADS)
Yin, Tan Wei; Ramakrishnan, Sivakumar; Rezan, Sheikh Abdul; Noor, Ahmad Fauzi Mohd; Izah Shoparwe, Noor; Alizadeh, Reza; Roohi, Parham
2017-04-01
In the present study, reduction of Titania (TiO2) by liquefied petroleum gas (LPG)-hydrogen-argon gas mixture was investigated by experimental and kinetic modelling in MATLAB. The reduction experiments were carried out in the temperature range of 1100-1200°C with a reduction time from 1-3 hours and 10-20 minutes of LPG flowing time. A shrinking core model (SCM) was employed for the kinetic modelling in order to determine the rate and extent of reduction. The highest experimental extent of reduction of 38% occurred at a temperature of 1200°C with 3 hours reduction time and 20 minutes of LPG flowing time. The SCM gave a predicted extent of reduction of 82.1% due to assumptions made in the model. The deviation between SCM and experimental data was attributed to porosity, thermodynamic properties and minute thermal fluctuations within the sample. In general, the reduction rates increased with increasing reduction temperature and LPG flowing time.
Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; Rehman, Aziz Ur
2015-07-08
The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy ( ∆G° ), enthalpy ( ∆H° ) and entropy ( ∆S° ) were calculated for the adsorption of congo red, indicating an exothermic process.
Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz
2015-01-01
The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430
AGN outflows and feedback twenty years on
NASA Astrophysics Data System (ADS)
Harrison, C. M.; Costa, T.; Tadhunter, C. N.; Flütsch, A.; Kakkad, D.; Perna, M.; Vietri, G.
2018-03-01
It is twenty years since the seminal works by Magorrian and co-authors and by Silk and Rees, which, along with other related work, ignited an explosion of publications connecting active galactic nucleus (AGN)-driven outflows to galaxy evolution. With a surge in observations of AGN outflows, studies are attempting to test AGN feedback models directly using the outflow properties. With a focus on outflows traced by optical and CO emission lines, we discuss significant challenges that greatly complicate this task, from both an observational and theoretical perspective. We highlight the observational uncertainties involved and the assumptions required when deriving kinetic coupling efficiencies (that is, outflow kinetic power as a fraction of AGN luminosity) from typical observations. Based on recent models we demonstrate that extreme caution should be taken when comparing observationally derived kinetic coupling efficiencies to coupling efficiencies from fiducial feedback models.
NASA Astrophysics Data System (ADS)
Gelß, Patrick; Matera, Sebastian; Schütte, Christof
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Uranium biosorption by Padina sp. algae biomass: kinetics and thermodynamics.
Khani, Mohammad Hassan
2011-11-01
Kinetic, thermodynamic, and equilibrium isotherms of the biosorption of uranium ions onto Padina sp., a brown algae biomass, in a batch system have been studied. The kinetic data were found to follow the pseudo-second-order model. Intraparticle diffusion is not the sole rate-controlling factor. The equilibrium experimental results were analyzed in terms of Langmuir isotherm depending with temperature. Equilibrium data fitted very well to the Langmuir model. The maximum uptakes estimated by using the Langmuir model were 434.8, 416.7, 400.0, and 370.4 mg/g at 10°C, 20°C, 30°C, and 40°C, respectively. Gibbs free energy was spontaneous for all interactions, and the adsorption process exhibited exothermic enthalpy values. Padina sp. algae were shown to be a favorable biosorbent for uranium removal from aqueous solutions.
Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Torres, Gonzalo E; Wagner, Amy K
2015-03-02
Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.
Highly resolved fluid flows: "liquid plasmas" at the kinetic level.
Morfill, Gregor E; Rubin-Zuzic, Milenko; Rothermel, Hermann; Ivlev, Alexei V; Klumov, Boris A; Thomas, Hubertus M; Konopka, Uwe; Steinberg, Victor
2004-04-30
Fluid flow around an obstacle was observed at the kinetic (individual particle) level using "complex (dusty) plasmas" in their liquid state. These "liquid plasmas" have bulk properties similar to water (e.g., viscosity), and a comparison in terms of similarity parameters suggests that they can provide a unique tool to model classical fluids. This allows us to study "nanofluidics" at the most elementary-the particle-level, including the transition from fluid behavior to purely kinetic transport. In this (first) experimental investigation we describe the kinetic flow topology, discuss our observations in terms of fluid theories, and follow this up with numerical simulations.
NASA Astrophysics Data System (ADS)
Lokoshchenko, A. M.
2014-01-01
Basic results of experimental and theoretical research of creep processes and long-term strength of metals obtained by researchers of the Institute of Mechanics at the Lomonosov Moscow State University are presented. These results further develop and refine the kinetic theory of creep and long-duration strength proposed by Yu. N. Rabotnov. Some problems arising in formulating various types of kinetic equations and describing experimental data for materials that can be considered as statically homogeneous materials (in studying the process of deformation and rupture of such materials, there is no need to study the evolution of individual cracks) are considered. The main specific features of metal creep models at constant and variable stresses, in uniaxial and complex stress states, and with allowance for one or two damage parameters are described. Criterial and kinetic approaches used to determine long-term strength under conditions of a complex stress state are considered. Methods of modeling the metal behavior in an aggressive medium are described. A possibility of using these models for solving engineering problems is demonstrated.
Pandiarajan, Aarthi; Kamaraj, Ramakrishnan; Vasudevan, Sudharshan; Vasudevan, Subramanyan
2018-08-01
This study presents the orange peel activated carbon (OPAC), derived from biowaste precursor (orange peel) by single step pyrolysis method and its application for the adsorption of chlorophenoxyacetic acid herbicides from the water. The OPAC exhibited the surface area of 592.471 m 2 g -1 , pore volume and pore diameter of 0.242 cc g -1 and 1.301 nm respectively. The adsorption kinetics and thermodynamic equilibrium modelling for all chlorophenoxyacetic acid herbicides were investigated. The various parametric effects such as pH and temperature were evaluated. A pseudo-second-order kinetic model was well fitted for all the herbicides. The Langmuir isotherm was obeyed for all the herbicides and the maximum Langmuir capacity of 574.71 mg g -1 was achieved. The thermodynamic studies revealed that the adsorption increases with increase in temperature. The results shows that the orange peel derived carbon (OPAC) as effective and efficient adsorbent material for the removal of chlorophenoxyacid herbicides from the water. Copyright © 2018 Elsevier Ltd. All rights reserved.
Growth morphologies of wax in the presence of kinetic inhibitors
NASA Astrophysics Data System (ADS)
Tetervak, Alexander A.
Driven by the need to prevent crystallization of normal alkanes from diesel fuels in cold climates, the petroleum industry has developed additives to slow the growth of these crystals and alter their morphologies. Although the utility of these kinetic inhibitors has been well demonstrated in the field, few studies have directly monitored their effect at microscopic morphology, and the mechanisms by which they act remain poorly understood. Here we present a study of the effects of such additives on the crystallization of long-chain n-alkanes from solution. The additives change the growth morphology from plate-like crystals to a microcrystalline mesh. When we impose a front velocity by moving the sample through a temperature gradient, the mesh growth may form a macroscopic banded pattern and also exhibit a burst-crystallization behavior. In this study, we characterize these crystallization phenomena and also two growth models: a continuum model that demonstrates the essential behavior of the banded crystallization, and a simple qualitative cellular automata model that captures basics of the burst-crystallization process. Keywords: solidification; mesh crystallization; kinetic inhibitor; burst growth.
NASA Astrophysics Data System (ADS)
Msaad, Asmaa; Belbahloul, Mounir; Zouhri, Abdeljalil
2018-05-01
Our activated carbon was prepared successfully using phosphoric acid as an activated agent. The activated carbon was characterized by Scanning Electron Micrograph (SEM), Brunauer-Emmett- Teller (BET), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The aim of our study is to evaluate the adsorption capacity of Methyl Orange (MO) on Ziziphus lotus activated carbon. Adsorption isotherms were studied according to Langmuir and Freundlich Model, and adsorption kinetics according to pseudo-first and second-order. Results show that the maximum adsorption was reached in the first 10min at ambient temperature with a yield of 96.31%. The Langmuir isotherm shows a correlation coefficient of 99.4 % higher than Freundlich model and the adsorption kinetic model follow a pseudo-second-order with a maximum adsorption capacity of 769.23 mg/g. FTIR and X-Ray spectroscopy indicate that our activated carbon has an amorphous structure with the presence of functional groups, where BET analysis revealed a high surface area of 553 mg/g, which facilitate the adsorption process
Da Porto, Carla; Natolino, Andrea
2018-08-30
Analysis of the extraction kinetic modelling for natural compounds is essential for industrial application. The second order rate model was applied to estimate the extraction kinetics of conventional solid-liquid extraction (CSLE), ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) of total polyphenols (TPC) from saffron floral bio-residues at different solid-to-liquid ratios (R S/L )(1:10, 1:20, 1:30, 1:50 g ml -1 ), ethanol 59% as solvent and 66 °C temperature. The optimum solid-to-liquid ratios for TPC kinetics were 1:20 for CLSE, 1:30 for UAE and 1:50 for MAE. The kinetics of total anthocyanins (TA) and antioxidant activity (AA) were investigated for the optimum R S/L for each method. The results showed a good prediction of the model for extraction kinetics in all experiments (R 2 > 0.99; NRMS 0.65-3.35%). The kinetic parameters were calculated and discussed. UAE, compared with the other methods, had the greater efficiency for TPC, TA and AA. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, Leticia N.; Dos Santos, Adimir
2015-07-01
Multiplying Subcritical Systems were for a long time poorly studied and its theoretical description remains with plenty open questions. Great interest on such systems arose partly due to the improvement of hybrid concepts, such as the Accelerator-Driven Systems (ADS). Along with the need for new technologies to be developed, further study and understanding of subcritical systems are essential also in more practical situations, such as in the case of a PWR criticalization in their physical startup tests. Point kinetics equations are fundamental to continuously monitor the reactivity behavior to a possible variation of external sources intensity. In this case, quicklymore » and accurately predicting power transients and reactivity becomes crucial. It is known that conventional Reactivity Meters cannot operate in subcritical levels nor describe the dynamics of multiplying systems in these conditions, by the very structure of the classical kinetic equations. Several theoretical models have been proposed to characterize the kinetics of such systems with special regard to the reactivity, as the one developed by Gandini and Salvatores among others. This work presents a discussion about the derivation of point kinetics equations for subcritical systems and the importance of considering the external source. From the point of view of the Gandini and Salvatores' point kinetics model and based on the experimental results provided by Lee and dos Santos, it was possible to develop an innovative approach. This article proposes an algorithm that describes the subcritical reactivity with external source, contributing to the advancement of studies in the field. (authors)« less
ERIC Educational Resources Information Center
Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H.
2018-01-01
Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…
Subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions
NASA Astrophysics Data System (ADS)
Sibatov, R. T.; Svetukhin, V. V.
2015-06-01
Based on fractional differential generalizations of the Ham and Aaron-Kotler precipitation models, we study the kinetics of subdiffusion-limited growth and dissolution of new-phase precipitates. We obtain the time dependence of the number of impurities and dimensions of new-phase precipitates. The solutions agree with the Monte Carlo simulation results.
The Harrison Diffusion Kinetics Regimes in Solute Grain Boundary Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belova, Irina; Fiedler, T; Kulkarni, Nagraj S
2012-01-01
Knowledge of the limits of the principal Harrison kinetics regimes (Type-A, B and C) for grain boundary diffusion is very important for the correct analysis of the depth profiles in a tracer diffusion experiment. These regimes for self-diffusion have been extensively studied in the past by making use of the phenomenological Lattice Monte Carlo (LMC) method with the result that the limits are now well established. The relationship of those self-diffusion limits to the corresponding ones for solute diffusion in the presence of solute segregation to the grain boundaries remains unclear. In the present study, the influence of solute segregationmore » on the limits is investigated with the LMC method for the well-known parallel grain boundary slab model by showing the equivalence of two diffusion models. It is shown which diffusion parameters are useful for identifying the limits of the Harrison kinetics regimes for solute grain boundary diffusion. It is also shown how the measured segregation factor from the diffusion experiment in the Harrison Type-B kinetics regime may differ from the global segregation factor.« less
Drift kinetic effects on the plasma response in high beta spherical tokamak experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.
The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less
Gurunathan, Baskar; Ravi, Aiswarya
2015-08-01
Heterogeneous nanocatalyst has become the choice of researchers for better transesterification of vegetable oils to biodiesel. In the present study, transesterification reaction was optimized and kinetics was studied for biodiesel production from neem oil using CZO nanocatalyst. The highly porous and non-uniform surface of the CZO nanocatalyst was confirmed by AFM analysis, which leads to the aggregation of CZO nanoparticles in the form of multi layered nanostructures. The 97.18% biodiesel yield was obtained in 60min reaction time at 55°C using 10% (w/w) CZO nanocatalyst and 1:10 (v:v) oil:methanol ratio. Biodiesel yield of 73.95% was obtained using recycled nanocatalyst in sixth cycle. The obtained biodiesel was confirmed using GC-MS and (1)H NMR analysis. Reaction kinetic models were tested on biodiesel production, first order kinetic model was found fit with experimental data (R(2)=0.9452). The activation energy of 233.88kJ/mol was required for transesterification of neem oil into biodiesel using CZO nanocatalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.
Drift kinetic effects on plasma response in high beta spherical tokamak experiments
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; Liu, Yueqiang; Kaye, Stanley M.; Gerhardt, Stefan
2018-01-01
The high β plasma response to rotating n=1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit (Troyon et al 1984 Plasma Phys. Control. Fusion 26 209). Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. The complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.
NASA Astrophysics Data System (ADS)
Kim, Y.; Herrmann, H. W.; Hoffman, N. M.; Schmitt, M. J.; Bradley, P. A.; Kagan, G.; Gales, S.; Horsfield, C. J.; Rubery, M.; Leatherland, A.; Gatu Johnson, M.; Glebov, V.; Seka, W.; Marshall, F.; Stoeckl, C.; Church, J.
2014-10-01
Kinetic plasma and turbulent mix effects on inertial confinement fusion have been studied using a series of DT-filled plastic-shell implosions at the OMEGA laser facility. Plastic capsules of 4 different shell thicknesses (7.4, 15, 20, 29 micron) were shot at 2 different fill pressures in order to vary the ion mean free path compared to the size of fuel region (i.e., Knudsen number). We varied the empirical Knudsen number by a factor of 25. Measurements were obtained from the burn-averaged ion temperature and fuel areal density. Preliminary results indicate that as the empirical Knudsen number increases, fusion performances (e.g., neutron yield) increasingly deviate from hydrodynamic simulations unless turbulent mix and ion kinetic terms (e.g., enhanced ion diffusion, viscosity, thermal conduction, as well as Knudsen-layer fusion reactivity reduction) are considered. We are developing two separate simulations: one is a reduced-ion-kinetics model and the other is turbulent mix model. Two simulation results will be compared with the experimental observables.
Drift kinetic effects on the plasma response in high beta spherical tokamak experiments
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; ...
2017-09-21
The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less
NASA Astrophysics Data System (ADS)
Kugele, Daniel; Dörr, Dominik; Wittemann, Florian; Hangs, Benjamin; Rausch, Julius; Kärger, Luise; Henning, Frank
2017-10-01
The combination of thermoforming processes of continuous-fiber reinforced thermoplastics and injection molding offers a high potential for cost-effective use in automobile mass production. During manufacturing, the thermoplastic laminates are initially heated up to a temperature above the melting point. This is followed by continuous cooling of the material during the forming process, which leads to crystallization under non-isothermal conditions. To account for phase change effects in thermoforming simulation, an accurate modeling of the crystallization kinetics is required. In this context, it is important to consider the wide range of cooling rates, which are observed during processing. Consequently, this paper deals with the experimental investigation of the crystallization at cooling rates varying from 0.16 K/s to 100 K/s using standard differential scanning calorimetry (DSC) and fast scanning calorimetry (Flash DSC). Two different modeling approaches (Nakamura model, modified Nakamura-Ziabicki model) for predicting crystallization kinetics are parameterized according to DSC measurements. It turns out that only the modified Nakamura-Ziabicki model is capable of predicting crystallization kinetics for all investigated cooling rates. Finally, the modified Nakamura-Ziabicki model is validated by cooling experiments using PA6-CF laminates with embedded temperature sensors. It is shown that the modified Nakamura-Ziabicki model predicts crystallization at non-isothermal conditions and varying cooling rates with a good accuracy. Thus, the study contributes to a deeper understanding of the non-isothermal crystallization and presents an overall method for modeling crystallization under process conditions.
Kinetic Behaviour of Failure Waves in a Filled Glass
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Bourne, N. K.
2007-12-01
Experimental stress and velocity profiles in a lead filled glass demonstrate a pronounced kinetic behaviour for failure waves in the material during shock loading. The present work summarises the experimental proofs of the kinetic behaviour obtained with stress and velocity gauges. The work describes a model for this behaviour employing a kinetic description used earlier for fracture waves in Pyrex glass. This model is part of a family of two-phase, strain-rate sensitive models describing the behaviour of damaged brittle materials. The modelling results describe well both the stress decay of the failure wave precursor in the stress profiles and main pulse attenuation in the velocity profiles. The influences of the kinetic mechanisms and wave interactions within the test assembly on the reduction of this behaviour are discussed.
Kinetic Analysis for Macrocyclizations Involving Anionic Template at the Transition State
Martí-Centelles, Vicente; Burguete, M. Isabel; Luis, Santiago V.
2012-01-01
Several kinetic models for the macrocyclization of a C2 pseudopeptide with a dihalide through a SN2 reaction have been developed. These models not only focus on the kinetic analysis of the main macrocyclization reaction, but also consider the competitive oligomerization/polymerization processes yielding undesired oligomeric/polymeric byproducts. The effect of anions has also been included in the kinetic models, as they can act as catalytic templates in the transition state reducing and stabilizing the transition state. The corresponding differential equation systems for each kinetic model can be solved numerically. Through a comprehensive analysis of these results, it is possible to obtain a better understanding of the different parameters that are involved in the macrocyclization reaction mechanism and to develop strategies for the optimization of the desired processes. PMID:22666148
Kondjoyan, Alain; Oillic, Samuel; Portanguen, Stéphane; Gros, Jean-Bernard
2013-10-01
A heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath. Afterwards, the performance of the combined model was determined in a fan-assisted oven under different air/steam conditions. Accurate knowledge of the heat transfer coefficient values and consideration of the retraction of the meat pieces are needed for the prediction of meat temperature. This is important since the temperature at the center of the product is often used to determine the cooking time. The combined model was also able to predict cooking losses from meat pieces of different sizes and subjected to different air/steam conditions. It was found that under the studied conditions, most of the water loss comes from the juice expelled by protein denaturation and contraction and not from evaporation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Muscular Oxygen Uptake Kinetics in Aged Adults.
Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U
2016-06-01
Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. © Georg Thieme Verlag KG Stuttgart · New York.
Kaur, Guneet; Srivastava, Ashok K; Chand, Subhash
2012-09-01
1,3-propanediol (1,3-PD) is a chemical compound of immense importance primarily used as a raw material for fiber and textile industry. It can be produced by the fermentation of glycerol available abundantly as a by-product from the biodiesel plant. The present study was aimed at determination of key kinetic parameters of 1,3-PD fermentation by Clostridium diolis. Initial experiments on microbial growth inhibition were followed by optimization of nutrient medium recipe by statistical means. Batch kinetic data from studies in bioreactor using optimum concentration of variables obtained from statistical medium design was used for estimation of kinetic parameters of 1,3-PD production. Direct use of raw glycerol from biodiesel plant without any pre-treatment for 1,3-PD production using this strain investigated for the first time in this work gave results comparable to commercial glycerol. The parameter values obtained in this study would be used to develop a mathematical model for 1,3-PD to be used as a guide for designing various reactor operating strategies for further improving 1,3-PD production. An outline of protocol for model development has been discussed in the present work.
Cure Kinetics of Benzoxazine/Cycloaliphatic Epoxy Resin by Differential Scanning Calorimetry
NASA Astrophysics Data System (ADS)
Gouni, Sreeja Reddy
Understanding the curing kinetics of a thermoset resin has a significant importance in developing and optimizing curing cycles in various industrial manufacturing processes. This can assist in improving the quality of final product and minimizing the manufacturing-associated costs. One approach towards developing such an understanding is to formulate kinetic models that can be used to optimize curing time and temperature to reach a full cure state or to determine time to apply pressure in an autoclave process. Various phenomenological reaction models have been used in the literature to successfully predict the kinetic behavior of a thermoset system. The current research work was designed to investigate the cure kinetics of Bisphenol-A based Benzoxazine (BZ-a) and Cycloaliphatic epoxy resin (CER) system under isothermal and nonisothermal conditions by Differential Scanning Calorimetry (DSC). The cure characteristics of BZ-a/CER copolymer systems with 75/25 wt% and 50/50 wt% have been studied and compared to that of pure benzoxazine under nonisothermal conditions. The DSC thermograms exhibited by these BZ-a/CER copolymer systems showed a single exothermic peak, indicating that the reactions between benzoxazine-benzoxazine monomers and benzoxazine-cycloaliphatic epoxy resin were interactive and occurred simultaneously. The Kissinger method and isoconversional methods including Ozawa-Flynn-Wall and Freidman were employed to obtain the activation energy values and determine the nature of the reaction. The cure behavior and the kinetic parameters were determined by adopting a single step autocatalytic model based on Kamal and Sourour phenomenological reaction model. The model was found to suitably describe the cure kinetics of copolymer system prior to the diffusion-control reaction. Analyzing and understanding the thermoset resin system under isothermal conditions is also important since it is the most common practice in the industry. The BZ-a/CER copolymer system with 75/25 wt% ratio which exhibited high glass transition temperature compared to polybenzoxazine was investigated under isothermal conditions. The copolymer system exhibited the maximum reaction rate at an intermediate degree of cure (20 to 40%), indicating that the reaction was autocatalytic. Similar to the nonisothermal cure kinetics, Kamal and Sourour phenomenological reaction model was adopted to determine the kinetic behavior of the system. The theoretical values based on the developed model showed a deviation from the obtained experimental values, which indicated the change in kinetics from a reaction-controlled mechanism to a diffusion-controlled mechanism with increasing reaction conversion. To substantiate the hypothesis, Fournier et al's diffusion factor was introduced into the model, resulting in an agreement between the theoretical and experimental values. The changes in cross-linking density and the glass transition temperature (Tg) with increasing epoxy concentration were investigated under Dynamic Mechanical Analyzer (DMA). The BZ-a/CER copolymer system with the epoxy content of less than 40 wt% exhibited the greatest Tg and cross-linking density compared to benzoxazine homopolymer and other ratios.
Instability, Turbulence, and Enhanced Transport in Collisionless Black-Hole Accretion Flows
NASA Astrophysics Data System (ADS)
Kunz, Matthew
Many astrophysical plasmas are so hot and diffuse that the collisional mean free path is larger than the system size. Perhaps the best examples of such systems are lowluminosity accretion flows onto black holes such as Sgr A* at the center of our own Galaxy, or M87 in the Virgo cluster. To date, theoretical models of these accretion flows are based on magnetohydrodynamics (MHD), a collisional fluid theory, sometimes (but rarely) extended with non-MHD features such as anisotropic (i.e. magnetic-field-aligned) viscosity and thermal conduction. While these extensions have been recognized as crucial, they require ad hoc assumptions about the role of microscopic kinetic instabilities (namely, firehose and mirror) in regulating the transport properties. These assumptions strongly affect the outcome of the calculations, and yet they have never been tested using more fundamental (i.e. kinetic) models. This proposal outlines a comprehensive first-principles study of the plasma physics of collisionless accretion flows using both analytic and state-of-the-art numerical models. The latter will utilize a new hybrid-kinetic particle-in-cell code, Pegasus, developed by the PI and Co-I specifically to study this problem. A comprehensive kinetic study of the 3D saturation of the magnetorotational instability in a collisionless plasma will be performed, in order to understand the interplay between turbulence, transport, and Larmor-scale kinetic instabilities such as firehose and mirror. Whether such instabilities alter the macroscopic saturated state, for example by limiting the transport of angular momentum by anisotropic pressure, will be addressed. Using these results, an appropriate "fluid" closure will be developed that can capture the multi-scale effects of plasma kinetics on magnetorotational turbulence, for use by the astrophysics community in building evolutionary models of accretion disks. The PI has already successfully performed the first three-dimensional kinetic simulation of the magnetorotational dynamo (publication in preparation). For the first time, global kinetic simulations of magnetorotational turbulence will be also performed, spanning more than two orders of magnitude in radius. These simulations will allow the global structure of collisionless accretion flows to be computed from first principles, and compared and contrasted with that found in prior MHD models. Special attention will be paid to whether vertical stratification results in the formation of a hot magnetized corona and to whether significant non-thermal particle acceleration occurs (as implied by non-thermal spectra observed in many systems). Finally, to make comparisons to existing and upcoming submillimeter and X-ray astronomical observations, the electron thermodynamics and emission will be modeled. This work compliments ongoing numerical studies using MHD in strong-field general relativity, which seek to directly connect the properties of simulated black-hole accretion flows in curved spacetime with the observed mm/sub-mm emission. What makes this ambitious proposal tenable is the widespread availability of HPC resources, the vast improvement in numerical algorithms for plasma kinetics, and the emerging consensus that the detailed plasma physics of the Universe must be understood in order to advance research in many frontier areas of theoretical astrophysics. The themes that this proposal tackles are broad and far-reaching: the nature of black-hole accretion, the material properties of high-beta magnetized plasmas, the acceleration of particles by turbulence, the efficiency of magnetic dynamo in a collisionless plasma, the interplay between fluid and kinetic scales, and the impact all of this physics has on the observed emission. But we believe that they are also addressable if a single physical process encapsulating these themes - namely, kinetic magnetorotational turbulence - is considered. This is what we propose to do.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, K. S.
1986-01-01
During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator were carried out before amplifier studies. The amplifier studies are postponed to the extended period after completing the parametric studies. In addition, the kinetic modeling of a solar-pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) a 10 W CW iodine laser pumped by a Vortek solar simulator; (2) kinetic modeling to predict the time to lasing threshold, lasing time, and energy output of solar-pumped iodine laser; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.
Eeshwarasinghe, Dinushika; Loganathan, Paripurnanda; Kalaruban, Mahatheva; Sounthararajah, Danious Pratheep; Kandasamy, Jaya; Vigneswaran, Saravanamuthu
2018-05-01
Polycyclic aromatic hydrocarbons (PAHs) constitute a group of highly persistent, toxic and widespread environmental micropollutants that are increasingly found in water. A study was conducted in removing five PAHs, specifically naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene, from water by adsorption onto granular activated carbon (GAC). The pseudo-first-order (PFO) model satisfactorily described the kinetics of adsorption of the PAHs. The Weber and Morris diffusion model's fit to the data showed that there were faster and slower rates of intra-particle diffusion probably into the mesopores and micropores of the GAC, respectively. These rates were negatively related to the molar volumes of the PAHs. Batch equilibrium adsorption data fitted well to the Langmuir, Freundlich and Dubinin-Radushkevich models, of which the Freundlich model exhibited the best fit. The adsorption affinities were related to the hydrophobicity of the PAHs as determined by the log K ow values. Free energies of adsorption calculated from the Dubinin-Radushkevich model and the satisfactory kinetic data fitting to the PFO model suggested physical adsorption of the PAHs. Adsorption of naphthalene, acenaphthylene and acenaphthene in fixed-bed columns containing a mixture of GAC (0.5 g) + sand (24.5 g) was satisfactorily simulated by the Thomas model.
Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T
2013-10-01
Ab initio calculations at the G3 level were used in a theoretical description of the kinetics and mechanism of the chlorine abstraction reactions from mono-, di-, tri- and tetra-chloromethane by chlorine atoms. The calculated profiles of the potential energy surface of the reaction systems show that the mechanism of the studied reactions is complex and the Cl-abstraction proceeds via the formation of intermediate complexes. The multi-step reaction mechanism consists of two elementary steps in the case of CCl4 + Cl, and three for the other reactions. Rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The temperature dependencies of the calculated rate constants can be expressed, in temperature range of 200-3,000 K as [Formula: see text]. The rate constants for the reverse reactions CH3/CH2Cl/CHCl2/CCl3 + Cl2 were calculated via the equilibrium constants derived theoretically. The kinetic equations [Formula: see text] allow a very good description of the reaction kinetics. The derived expressions are a substantial supplement to the kinetic data necessary to describe and model the complex gas-phase reactions of importance in combustion and atmospheric chemistry.
A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah Y.
Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Furthermore, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. New alternative isomerization pathways for peroxy-alkyl hydroperoxide (more » $$\\dot{O}$$OQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. Our experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.« less
A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics
Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah Y.; ...
2017-02-05
Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Furthermore, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. New alternative isomerization pathways for peroxy-alkyl hydroperoxide (more » $$\\dot{O}$$OQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. Our experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.« less
The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification
NASA Technical Reports Server (NTRS)
Guimond, Stephen R.; Reisner, Jon M.; Marras, Simone; Giraldo, Francis X.
2016-01-01
The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.
Kinetic Folding Mechanism of Erythropoietin
Banks, Douglas D.; Scavezze, Joanna L.; Siska, Christine C.
2009-01-01
This report describes what to our knowledge is the first kinetic folding studies of erythropoietin, a glycosylated four-helical bundle cytokine responsible for the regulation of red blood cell production. Kinetic responses for folding and unfolding reactions initiated by manual mixing were monitored by far-ultraviolet circular dichroism and fluorescence spectroscopy, and folding reactions initiated by stopped-flow mixing were monitored by fluorescence. The urea concentration dependence of the observed kinetics were best described by a three-state model with a transiently populated intermediate species that is on-pathway and obligatory. This folding scheme was further supported by the excellent agreement between the free energy of unfolding and m-value calculated from the microscopic rate constants derived from this model and these parameters determined from separate equilibrium unfolding experiments. Compared to the kinetics of other members of the four-helical bundle cytokine family, erythropoietin folding and unfolding reactions were slower and less susceptible to aggregation. We tentatively attribute these slower rates and protection from association events to the large amount of carbohydrate attached to erythropoietin at four sites. PMID:19450492
Kinetics of hydrophobic organic contaminant extraction from sediment by granular activated carbon.
Rakowska, M I; Kupryianchyk, D; Smit, M P J; Koelmans, A A; Grotenhuis, J T C; Rijnaarts, H H M
2014-03-15
Ex situ solid phase extraction with granular activated carbon (GAC) is a promising technique to remediate contaminated sediments. The methods' efficiency depends on the rate by which contaminants are transferred from the sediment to the surface of GAC. Here, we derive kinetic parameters for extraction of polycyclic aromatic hydrocarbons (PAH) from sediment by GAC, using a first-order multi-compartment kinetic model. The parameters were obtained by modeling sediment-GAC exchange kinetic data following a tiered model calibration approach. First, parameters for PAH desorption from sediment were calibrated using data from systems with 50% (by weight) GAC acting as an infinite sink. Second, the estimated parameters were used as fixed input to obtain GAC uptake kinetic parameters in sediment slurries with 4% GAC, representing the ex situ remediation scenario. PAH uptake rate constants (kGAC) by GAC ranged from 0.44 to 0.0005 d(-1), whereas GAC sorption coefficients (KGAC) ranged from 10(5.57) to 10(8.57) L kg(-1). These values are the first provided for GAC in the presence of sediment and show that ex situ extraction with GAC is sufficiently fast and effective to reduce the risks of the most available PAHs among those studied, such as fluorene, phenanthrene and anthracene. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fakour, Hoda; Lin, Tsair-Fuh
2014-01-01
Due to the importance of adsorption kinetics and redox transformation of arsenic (As) during the adsorption process, the present study elucidated natural organic matter (NOM) effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA) as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA), as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions. PMID:25325357
Mathematical model for internal pH control in immobilized enzyme particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liou, J.K.; Rousseau, I.
A mathematical model has been developed for the internal pH control in immobilized enzyme particles. This model describes the kinetics of a coupled system of two enzymes, immobilized in particles of either planar, cylindrical, or spherical shape. The enzyme kinetics are assumed to be of a mixed type, including Michaelis-Menten kinetics, uncompetitive substrate inhibition, and competitive and noncompetitive product inhibition. In a case study we have considered the enzyme combination urease and penicillin acylase, whose kinetics are coupled through the pH dependence of the kinetic parameters. The hydrolysis of urea by urease yields ammonia and carbon dioxide, whereas benzylpenicillin (Pen-G)more » is converted to 6-animo penicillanic acid and phenyl acetic acid by penicillin acylase. The production of acids by the latter enzyme will cause a decrease in pH. Because of the presence of the ammonia-carbon dioxide system, however, the pH may be kept under control. In order to obtain information about the optimum performance of this enzymatic pH controller, we have computed the effectiveness factor and the conversion in a CSTR at different enzyme loadings. The results of the computer simulations indicate that a high conversion of Pen-G may be achieved (80-90%) at bulk pH values of about 7.5 - 8. 27 references.« less
Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
Mishra, Ranjeet Kumar; Mohanty, Kaustubha
2018-03-01
The present study reports pyrolysis behavior of three waste biomass using thermogravimetric analysis to determine kinetic parameters at five different heating rates. Physiochemical characterization confirmed that these biomass have the potential for fuel and energy production. Pyrolysis experiments were carried out at five different heating rates (5-25 °C min -1 ). Five model-free methods such as Kissinger-Akahira-Sunose (KAS), Ozawa-Flynn-Wall (OFW), Friedman, Coats-Redfern, and distributed activation energy (DAEM) were used to calculate the kinetic parameters. The activation energy was found to be 171.66 kJ mol -1 , 148.44 kJ mol -1 , and 171.24 kJ mol -1 from KAS model; 179.29 kJ mol -1 , 156.58 kJ mol -1 , and 179.47 kJ mol -1 from OFW model; 168.58 kJ mol -1 , 181.53 kJ mol -1 , and 184.61 kJ mol -1 from Friedman model; and 206.62 kJ mol -1 , 171.63 kJ mol -1 , and 160.45 kJ mol -1 from DAEM model for PW, SW, AN biomass respectively. The calculated kinetic parameters are in good agreement with other reported biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ríos, Francisco; Lechuga, Manuela; Fernández-Arteaga, Alejandro; Jurado, Encarnación; Fernández-Serrano, Mercedes
2017-08-01
Recently, anaerobic degradation has become a prevalent alternative for the treatment of wastewater and activated sludge. Consequently, the anaerobic biodegradability of recalcitrant compounds such as some surfactants require a thorough study to avoid their presence in the environment. In this work, the anaerobic biodegradation of amine-oxide-based surfactants, which are toxic to several organisms, was studied by measuring of the biogas production in digested sludge. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R 12 ), Myristamine oxide (AO-R 14 ) and Cocamidopropylamine oxide (AO-cocoamido). Results show that AO-R 12 and AO-R 14 inhibit biogas production, inhibition percentages were around 90%. AO-cocoamido did not cause inhibition and it was biodegraded until reaching a percentage of 60.8%. Otherwise, we fitted the production of biogas to two kinetic models, to a pseudo first-order model and to a logistic model. Production of biogas during the anaerobic biodegradation of AO-cocoamido was pretty good adjusted to the logistics model. Kinetic parameters were also determined. This modelling is useful to predict their behaviour in wastewater treatment plants and under anaerobic conditions in the environment.
Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet
NASA Astrophysics Data System (ADS)
Oh, Tae-Min; Cho, Gye-Chun
2016-03-01
Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.
Thermal and high pressure inactivation kinetics of blueberry peroxidase.
Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis
2017-10-01
This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Quantitative kinetic theory of active matter
NASA Astrophysics Data System (ADS)
Ihle, Thomas; Chou, Yen-Liang
2014-03-01
Models of self-driven agents similar to the Vicsek model [Phys. Rev. Lett. 75 (1995) 1226] are studied by means of kinetic theory. In these models, particles try to align their travel directions with the average direction of their neighbours. At strong alignment a globally ordered state of collective motion forms. An Enskog-like kinetic theory is derived from the exact Chapman-Kolmogorov equation in phase space using Boltzmann's mean-field approximation of molecular chaos. The kinetic equation is solved numerically by a nonlocal Lattice-Boltzmann-like algorithm. Steep soliton-like waves are observed that lead to an abrupt jump of the global order parameter if the noise level is changed. The shape of the wave is shown to follow a novel scaling law and to quantitatively agree within 3 % with agent-based simulations at large particle speeds. This provides a mean-field mechanism to change the second-order character of the flocking transition to first order. Diagrammatic techniques are used to investigate small particle speeds, where the mean-field assumption of Molecular Chaos is invalid and where correlation effects need to be included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oang, Key Young; Yang, Cheolhee; Muniyappan, Srinivasan
Determination of the optimum kinetic model is an essential prerequisite for characterizing dynamics and mechanism of a reaction. Here, we propose a simple method, termed as singular value decomposition-aided pseudo principal-component analysis (SAPPA), to facilitate determination of the optimum kinetic model from time-resolved data by bypassing any need to examine candidate kinetic models. We demonstrate the wide applicability of SAPPA by examining three different sets of experimental time-resolved data and show that SAPPA can efficiently determine the optimum kinetic model. In addition, the results of SAPPA for both time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) data of themore » same protein reveal that global structural changes of protein, which is probed by TRXSS, may occur more slowly than local structural changes around the chromophore, which is probed by TA spectroscopy.« less
Coupling Fluid and Kineitc Effects in Space Weather: an interdisciplinary task
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; González-Herrero, Diego; Boella, Elisabetta; Siddi, Lorenzo; Cazzola, Emanuele
2017-04-01
Two agents are key to space weather: electromagentic fields and energetic particles. Magnetic fields carried by plasmas in the solar wind interact with the Earth magnetosphere and solar energetic particles produced by solar events or in cosmic rays affect the space environment. Describing both is challenging. Magnetized plasmas are most effectively described by magneto-hydrodynamics, MHD, a fluid theory based on describing some fields defined in space: electromagnetic fields, density, velocity and temperature of the plasma. High energy particles, instead need a more detailed approach , kinetic theory, where statistical distributions of particles are governed by the Boltzmann equation. While fluid models are based on the ordinary space and time, kinetic models require a six dimensional space, called phase space, besides time. The two methods are not separated, the processes leading to the production of energetic particles are the same that involve space plasamas and fields. Arriving at a single self-consistent model has been the goal of the Swiff project funded by the EC in FP7 and it is now a key goal of the ongoing DEEP-ER project. We present a new approach developed with the goal of extending the reach of kinetic models to the fluid scales. Kinetic models are a higher order description and all fluid effects are included in them. However, the cost in terms of computing power is much higher and it has been so far prohibitively expensive to treat space weather events fully kinetically. We have now designed a new method capable of reducing that cost by several orders of magnitude making it possible for kinetic models to study space weather events [1,2]. We will report the new methodology and show its application to space weather mdeling. [1] Giovanni Lapenta,Exactly Energy Conserving Semi-Implicit Particle in Cell Formulation, to appear, JCP, arXiv:1602.06326 [2] Giovanni Lapenta, Diego Gonzalez-Herrero, Elisabetta Boella, Multiple scale kinetic simulations with the energy conserving semi implicit particle in cell (PIC) method, submitted JPP, arXiv:1612.08289
Balbi, Pietro; Massobrio, Paolo; Hellgren Kotaleski, Jeanette
2017-09-01
Modelling ionic channels represents a fundamental step towards developing biologically detailed neuron models. Until recently, the voltage-gated ion channels have been mainly modelled according to the formalism introduced by the seminal works of Hodgkin and Huxley (HH). However, following the continuing achievements in the biophysical and molecular comprehension of these pore-forming transmembrane proteins, the HH formalism turned out to carry limitations and inconsistencies in reproducing the ion-channels electrophysiological behaviour. At the same time, Markov-type kinetic models have been increasingly proven to successfully replicate both the electrophysiological and biophysical features of different ion channels. However, in order to model even the finest non-conducting molecular conformational change, they are often equipped with a considerable number of states and related transitions, which make them computationally heavy and less suitable for implementation in conductance-based neurons and large networks of those. In this purely modelling study we develop a Markov-type kinetic model for all human voltage-gated sodium channels (VGSCs). The model framework is detailed, unifying (i.e., it accounts for all ion-channel isoforms) and computationally efficient (i.e. with a minimal set of states and transitions). The electrophysiological data to be modelled are gathered from previously published studies on whole-cell patch-clamp experiments in mammalian cell lines heterologously expressing the human VGSC subtypes (from NaV1.1 to NaV1.9). By adopting a minimum sequence of states, and using the same state diagram for all the distinct isoforms, the model ensures the lightest computational load when used in neuron models and neural networks of increasing complexity. The transitions between the states are described by original ordinary differential equations, which represent the rate of the state transitions as a function of voltage (i.e., membrane potential). The kinetic model, developed in the NEURON simulation environment, appears to be the simplest and most parsimonious way for a detailed phenomenological description of the human VGSCs electrophysiological behaviour.
Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.
Walkenhorst, W F; Green, S M; Roder, H
1997-05-13
The complex kinetic behavior commonly observed in protein folding studies suggests that a heterogeneous population of molecules exists in solution and that a number of discrete steps are involved in the conversion of unfolded molecules to the fully native form. A central issue in protein folding is whether any of these kinetic events represent conformational steps important for efficient folding rather than side reactions caused by slow steps such as proline isomerization or misfolding of the polypeptide chain. In order to address this question, we used stopped-flow fluorescence techniques to characterize the kinetic mechanism of folding and unfolding for a Pro- variant of SNase in which all six proline residues were replaced by glycines or alanines. Compared to the wild-type protein, which exhibits a series of proline-dependent slow folding phases, the folding kinetics of Pro- SNase were much simpler, which made quantitative kinetic analysis possible. Despite the absence of prolines or other complicating factors, the folding kinetics still contain several phases and exhibit a complex denaturant dependence. The GuHCl dependence of the major observable folding phase and a distinct lag in the appearance of the native state provide clear evidence for an early folding intermediate. The fluorescence of Trp140 in the alpha-helical domain is insensitive to the formation of this early intermediate, which is consistent with a partially folded state with a stable beta-domain and a largely disordered alpha-helical region. A second intermediate is required to model the kinetics of unfolding for the Pro- variant, which shows evidence for a denaturant-induced change in the rate-limiting unfolding step. With the inclusion of these two intermediates, we are able to completely model the major phase(s) in both folding and unfolding across a wide range of denaturant concentrations using a sequential four-state folding mechanism. In order to model the minor slow phase observed for the Pro- mutant, a six-state scheme containing a parallel pathway originating from a distinct unfolded state was required. The properties of this alternate unfolded conformation are consistent with those expected due to the presence of a non-prolyl cis peptide bond. To test the kinetic model, we used simulations based on the six-state scheme and were able to completely reproduce the folding kinetics for Pro- SNase across a range of denaturant concentrations.
NASA Astrophysics Data System (ADS)
Yang, Hee-Chul; Kim, Hyung-Ju; Lee, Si-Young; Yang, In-Hwan; Chung, Dong-Yong
2017-06-01
The thermochemical properties of uranium compounds have attracted much interest in relation to thermochemical treatments and the safe disposal of radioactive waste bearing uranium compounds. The characteristics of the thermal decomposition of uranium metaphosphate, U(PO3)4, into uranium pyrophosphate, UP2O7, have been studied from the view point of reaction kinetics and acting mechanisms. A mixture of U(PO3)4 and UP2O7 was prepared from the pyrolysis residue of uranium-bearing spent TBP. A kinetic analysis of the reaction of U(PO3)4 into UP2O7 was conducted using an isoconversional method and a master plot method on the basis of data from a non-isothermal thermogravimetric analysis. The thermal decomposition of U(PO3)4 into UP2O7 followed a single-step reaction with an activation energy of 175.29 ± 1.58 kJ mol-1. The most probable kinetic model was determined as a type of nucleation and nuclei-growth models, the Avrami-Erofeev model (A3), which describes that there are certain restrictions on nuclei growth of UP2O7 during the solid-state decomposition of U(PO3)4.