Klein-Gordon oscillator in Kaluza-Klein theory
NASA Astrophysics Data System (ADS)
Carvalho, Josevi; Carvalho, Alexandre M. de M.; Cavalcante, Everton; Furtado, Claudio
2016-07-01
In this contribution we study the Klein-Gordon oscillator on the curved background within the Kaluza-Klein theory. The problem of the interaction between particles coupled harmonically with topological defects in Kaluza-Klein theory is studied. We consider a series of topological defects, then we treat the Klein-Gordon oscillator coupled to this background, and we find the energy levels and corresponding eigenfunctions in these cases. We show that the energy levels depend on the global parameters characterizing these spacetimes. We also investigate a quantum particle described by the Klein-Gordon oscillator interacting with a cosmic dislocation in Som-Raychaudhuri spacetime in the presence of homogeneous magnetic field in a Kaluza-Klein theory. In this case, the energy spectrum is determined, and we observe that these energy levels represent themselves as the sum of the terms related with Aharonov-Bohm flux and of the parameter associated to the rotation of the spacetime.
Quadratic nonlinear Klein-Gordon equation in one dimension
NASA Astrophysics Data System (ADS)
Hayashi, Nakao; Naumkin, Pavel I.
2012-10-01
We study the initial value problem for the quadratic nonlinear Klein-Gordon equation vtt + v - vxx = λv2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ R, where v0 and v1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah ["Normal forms and quadratic nonlinear Klein-Gordon equations," Commun. Pure Appl. Math. 38, 685-696 (1985)], we obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data, which was assumed in the previous work of J.-M. Delort ["Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi-linéaire á données petites en dimension 1," Ann. Sci. Ec. Normale Super. 34(4), 1-61 (2001)].
Considerations on the hyperbolic complex Klein-Gordon equation
Ulrych, S.
2010-06-15
This article summarizes and consolidates investigations on hyperbolic complex numbers with respect to the Klein-Gordon equation for fermions and bosons. The hyperbolic complex numbers are applied in the sense that complex extensions of groups and algebras are performed not with the complex unit, but with the product of complex and hyperbolic unit. The modified complexification is the key ingredient for the theory. The Klein-Gordon equation is represented in this framework in the form of the first invariant of the Poincare group, the mass operator, in order to emphasize its geometric origin. The possibility of new interactions arising from hyperbolic complex gauge transformations is discussed.
Collapse threshold for a cosmological Klein-Gordon field
NASA Astrophysics Data System (ADS)
Hidalgo, Juan Carlos; De Santiago, Josué; German, Gabriel; Barbosa-Cendejas, Nandinii; Ruiz-Luna, Waldemar
2017-09-01
Oscillating scalar fields are useful to model a variety of matter components in the Universe. One or more scalar fields participate in the reheating process after inflation, while at much lower energies scalar fields are robust dark matter candidates. Pertaining to structure formation in these models, it is well known that inhomogeneities of the Klein-Gordon field are unstable above the characteristic de Broglie wavelength. In this paper we show that such instability implies the existence of a threshold amplitude for the collapse of primordial fluctuations. We use this threshold to correctly predict the cutoff scale of the matter power spectrum in the scalar field dark matter model. Furthermore, for a Klein-Gordon field during reheating we show that this same threshold allows for abundant production of structure (oscillons but not necessarily black holes). Looking at the production of primordial black holes (PBHs) in this scenario we note that the sphericity condition yields a much lower probability of PBH formation at the end of inflation. Remarkably, even after meeting a such stringent condition, we find that PBHs may be overproduced during reheating. We finally constrain the epochs at which an oscillating Klein-Gordon field could dominate the early universe.
Fractional Klein-Gordon Equations and Related Stochastic Processes
NASA Astrophysics Data System (ADS)
Garra, Roberto; Orsingher, Enzo; Polito, Federico
2014-03-01
This paper presents finite-velocity random motions driven by fractional Klein-Gordon equations of order α in (0,1] . A key tool in the analysis is played by the McBride's theory which converts fractional hyper-Bessel operators into Erdélyi-Kober integral operators. Special attention is payed to the fractional telegraph process whose space-dependent distribution solves a non-homogeneous fractional Klein-Gordon equation. The distribution of the fractional telegraph process for α = 1 coincides with that of the classical telegraph process and its driving equation converts into the homogeneous Klein-Gordon equation. Fractional planar random motions at finite velocity are also investigated, the corresponding distributions obtained as well as the explicit form of the governing equations. Fractionality is reflected into the underlying random motion because in each time interval a binomial number of deviations B(n,α ) (with uniformly-distributed orientation) are considered. The parameter n of B(n,α ) is itself a random variable with fractional Poisson distribution, so that fractionality acts as a subsampling of the changes of direction. Finally the behaviour of each coordinate of the planar motion is examined and the corresponding densities obtained. Extensions to N -dimensional fractional random flights are envisaged as well as the fractional counterpart of the Euler-Poisson-Darboux equation to which our theory applies.
Extended Klein-Gordon action, gravity and nonrelativistic fluid
Hassaiene, Mokhtar
2006-03-15
We consider a scalar field action for which the Lagrangian density is a power of the massless Klein-Gordon Lagrangian. The coupling of gravity to this matter action is considered. In this case, we show the existence of nontrivial scalar field configurations with vanishing energy-momentum tensor on any static, spherically symmetric vacuum solutions of the Einstein equations. These configurations in spite of being coupled to gravity do not affect the curvature of space-time. The properties of this particular matter action are also analyzed. For a particular value of the exponent, the extended Klein-Gordon action is shown to exhibit a conformal invariance without requiring the introduction of a nonminimal coupling. We also establish a correspondence between this action and a nonrelativistic isentropic fluid in one fewer dimension. This fluid can be identified with the (generalized) Chaplygin gas for a particular value of the power. It is also shown that the nonrelativistic fluid admits, apart from the Galileo symmetry, an additional symmetry whose action is a rescaling of the time.
Numerical computation of travelling breathers in Klein Gordon chains
NASA Astrophysics Data System (ADS)
Sire, Yannick; James, Guillaume
2005-05-01
We numerically study the existence of travelling breathers in Klein-Gordon chains, which consist of one-dimensional networks of nonlinear oscillators in an anharmonic on-site potential, linearly coupled to their nearest neighbors. Travelling breathers are spatially localized solutions having the property of being exactly translated by p sites along the chain after a fixed propagation time T (these solutions generalize the concept of solitary waves for which p=1). In the case of even on-site potentials, the existence of small amplitude travelling breathers superposed on a small oscillatory tail has been proved recently [G. James, Y. Sire, Travelling breathers with exponentially small tails in a chain of nonlinear oscillators, Commun. Math. Phys., 2005, in press (available online at http://www.springerlink.com)], the tail being exponentially small with respect to the central oscillation size. In this paper, we compute these solutions numerically and continue them into the large amplitude regime for different types of even potentials. We find that Klein-Gordon chains can support highly localized travelling breather solutions superposed on an oscillatory tail. We provide examples where the tail can be made very small and is difficult to detect at the scale of central oscillations. In addition, we numerically observe the existence of these solutions in the case of non-even potentials.
Dissipative effects in nonlinear Klein-Gordon dynamics
NASA Astrophysics Data System (ADS)
Plastino, A. R.; Tsallis, C.
2016-03-01
We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form e_qi(kx-wt) , involving the q-exponential function naturally arising within the nonextensive thermostatistics (e_qz \\equiv [1+(1-q)z]1/(1-q) , with e_1^z=ez ). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p=\\hbar k , E=\\hbar ω and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 = c^2p2 + m^2c4 . The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrödinger equation, and the power-law diffusion (porous-media) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency ω and a q-Gaussian square modulus profile.
Conservative difference methods for the Klein-Gordon-Zakharov equations
NASA Astrophysics Data System (ADS)
Wang, Tingchun; Chen, Juan; Zhang, Luming
2007-08-01
Firstly an implicit conservative finite difference scheme is presented for the initial-boundary problem of the one space dimensional Klein-Gordon-Zakharov (KGZ) equations. The existence of the difference solution is proved by Leray-Schauder fixed point theorem. It is proved by the discrete energy method that the scheme is uniquely solvable, unconditionally stable and second order convergent for U in l[infinity] norm, and for N in l2 norm on the basis of the priori estimates. Then an explicit difference scheme is proposed for the KGZ equations, on the basis of priori estimates and two important inequalities about norms, convergence of the difference solutions is proved. Because it is explicit and not coupled it can be computed by a parallel method. Numerical experiments with the two schemes are done for several test cases. Computational results demonstrate that the two schemes are accurate and efficient.
Approximate symmetry and solutions of the nonlinear Klein-Gordon equation with a small parameter
NASA Astrophysics Data System (ADS)
Rahimian, Mohammad; Toomanian, Megerdich; Nadjafikhah, Mehdi
In this paper, the Lie approximate symmetry analysis is applied to investigate new solutions of the nonlinear Klein-Gordon equation with a small parameter. The nonlinear Klein-Gordon equation is used to model many nonlinear phenomena. The hyperbolic function method and Riccati equation method are employed to solve some of the obtained reduced ordinary differential equations. We construct new analytical solutions with a small parameter which is effectively obtained by the proposed method.
A not so short note on the Klein Gordon equation at second order
NASA Astrophysics Data System (ADS)
Malik, Karim A.
2007-03-01
We give the governing equations for multiple scalar fields in a flat Friedmann Robertson Walker (FRW) background spacetime on all scales, allowing for metric and field perturbations up to second order. We then derive the Klein Gordon equation at second order in closed form in terms of gauge-invariant perturbations of the fields in the uniform curvature gauge. We also give a simplified form of the Klein Gordon equation using the slow-roll approximation.
Numerical solution of linear Klein-Gordon equation using FDAM scheme
NASA Astrophysics Data System (ADS)
Kasron, Noraini; Suharto, Erni Suryani; Deraman, Ros Fadilah; Othman, Khairil Iskandar; Nasir, Mohd Agos Salim
2017-05-01
Many scientific areas appear in a hyperbolic partial differential equation like the Klien-Gordon equation. The analytical solutions of the Klein-Gordon equation have been approximated by the suggested numerical approaches. However, the arithmetic mean (AM) method has not been studied on the Klein-Gordon equation. In this study, a new proposed scheme has utilized central finite difference formula in time and space (CTCS) incorporated with AM formula averaging of functional values for approximating the solutions of the Klein-Gordon equation. Three-point AM is considered to a linear inhomogeneous Klein-Gordon equation. The theoretical aspects of the numerical scheme for the Klein-Gordon equation are also considered. The stability analysis is analyzed by using von Neumann stability analysis and Miller Norm Lemma. Graphical results verify the necessary conditions of Miller Norm Lemma. Good results obtained relate to the theoretical aspects of the numerical scheme. The numerical experiments are examined to verify the theoretical analysis. Comparative study shows the new CTCS scheme incorporated with three-point AM method produced better accuracy and shown its reliable and efficient over the standard CTCS scheme.
Group invariant transformations for the Klein-Gordon equation in three dimensional flat spaces
NASA Astrophysics Data System (ADS)
Jamal, Sameerah; Paliathanasis, Andronikos
2017-07-01
We perform the complete symmetry classification of the Klein-Gordon equation in maximal symmetric spacetimes. The central idea is to find all possible potential functions V(t , x , y) that admit Lie and Noether symmetries. This is done by using the relation between the symmetry vectors of the differential equations and the elements of the conformal algebra of the underlying geometry. For some of the potentials, we use the admitted Lie algebras to determine corresponding invariant solutions to the Klein-Gordon equation. An integral part of this analysis is the problem of the classification of Lie and Noether point symmetries of the wave equation.
Hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit
NASA Astrophysics Data System (ADS)
Suárez, Abril; Chavanis, Pierre-Henri
2015-11-01
Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with an arbitrary potential of the form V(|ϕ|2). We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schrodinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit c → +∞.
Noncommutative Integrability of the Klein-Gordon and Dirac Equations in (2+1)-Dimensional Spacetime
NASA Astrophysics Data System (ADS)
Breev, A. I.; Shapovalov, A. V.
2017-03-01
Noncommutative integration of the Klein-Gordon and Dirac relativistic wave equations in (2+1)-dimensional Minkowski space is considered. It is shown that for all non-Abelian subalgebras of the (2+1)-dimensional Poincaré algebra the condition of noncommutative integrability is satisfied.
Stability of Schwarzschild-AdS for the Spherically Symmetric Einstein-Klein-Gordon System
NASA Astrophysics Data System (ADS)
Holzegel, Gustav; Smulevici, Jacques
2013-01-01
In this paper, we study the global behavior of solutions to the spherically symmetric coupled Einstein-Klein-Gordon (EKG) system in the presence of a negative cosmological constant. For the Klein-Gordon mass-squared satisfying a ≥ -1 (the Breitenlohner-Freedman bound being a > -9/8), we prove that the Schwarzschild-AdS spacetimes are asymptotically stable: Small perturbations of Schwarzschild-AdS initial data again lead to regular black holes, with the metric on the black hole exterior approaching, at an exponential rate, a Schwarzschild-AdS spacetime. The main difficulties in the proof arise from the lack of monotonicity for the Hawking mass and the asymptotically AdS boundary conditions, which render even (part of) the orbital stability intricate. These issues are resolved in a bootstrap argument on the black hole exterior, with the redshift effect and weighted Hardy inequalities playing the fundamental role in the analysis. Both integrated decay and pointwise decay estimates are obtained. As a corollary of our estimates on the Klein-Gordon field, one obtains in particular exponential decay in time of spherically-symmetric solutions to the linear Klein-Gordon equation on Schwarzschild-AdS.
The statistical properties of Klein-Gordon oscillator in noncommutative space
Hassanabadi, H. Hosseini, S. S.; Boumali, A.; Zarrinkamar, S.
2014-03-15
We study the relativistic spin-zero bosons influenced by the Klein-Gordon oscillator and an external magnetic field in noncommutative formulation. The problem is considered in two dimensions and is solved in an exact analytical manner. Having found the spectrum of the system, the statistical properties of an N-boson system are reported.
Group classification and conservation laws of the generalized Klein-Gordon-Fock equation
NASA Astrophysics Data System (ADS)
Muatjetjeja, B.
2016-08-01
In the present paper, we perform Lie and Noether symmetries of the generalized Klein-Gordon-Fock equation. It is shown that the principal Lie algebra, which is one-dimensional, has several possible extensions. It is further shown that several cases arise for which Noether symmetries exist. Exact solutions for some cases are also obtained from the invariant solutions of the investigated equation.
Scattering theory for the Klein-Gordon equation with nondecreasing potentials
Cruz, Maximino; Arredondo R, Juan H.
2008-11-15
The Klein-Gordon equation is considered in the case of nondecreasing potentials. The energy inner product is nonpositive on a subspace of infinite dimension, not consisting entirely of eigenvectors of the associated operator. A scattering theory for this case is developed and asymptotic completeness for generalized Moeller operators is proven.
The statistical properties of Klein-Gordon oscillator in noncommutative space
Hassanabadi, H. Hosseini, S. S.; Boumali, A.; Zarrinkamar, S.
2014-03-15
We study the relativistic spin-zero bosons influenced by the Klein-Gordon oscillator and an external magnetic field in noncommutative formulation. The problem is considered in two dimensions and is solved in an exact analytical manner. Having found the spectrum of the system, the statistical properties of an N-boson system are reported.
Kovalyov, Mikhail
2010-06-15
In this article the sets of solutions of the sine-Gordon equation and its linearization the Klein-Gordon equation are discussed and compared. It is shown that the set of solutions of the sine-Gordon equation possesses a richer structure which partly disappears during linearization. Just like the solutions of the Klein-Gordon equation satisfy the linear superposition principle, the solutions of the sine-Gordon equation satisfy a nonlinear superposition principle.
NASA Astrophysics Data System (ADS)
Zhang, Jinliang; Hu, Wuqiang; Ma, Yu
2016-12-01
In this paper, the famous Klein-Gordon-Zakharov equations are firstly generalized, the new special types of Klein-Gordon-Zakharov equations with the positive fractional power terms (gKGZE) are presented. In order to derive the exact solutions of new special gKGZE, the subsidiary higher order ordinary differential equations (sub-ODEs) with the positive fractional power terms are introduced, and with the aids of the Sub-ODE, the exact solutions of three special types of the gKGZE are derived, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of gKGZE satisfy certain constraint conditions.
Nonlinear self-adjointness and conservation laws of Klein-Gordon-Fock equation with central symmetry
NASA Astrophysics Data System (ADS)
Abdulwahhab, Muhammad Alim
2015-05-01
The concept of nonlinear self-adjointness, introduced by Ibragimov, has significantly extends approaches to constructing conservation laws associated with symmetries since it incorporates the strict self-adjointness, the quasi self-adjointness as well as the usual linear self-adjointness. Using this concept, the nonlinear self-adjointness condition for the Klein-Gordon-Fock equation was established and subsequently used to construct simplified but infinitely many nontrivial and independent conserved vectors. The Noether's theorem was further applied to the Klein-Gordon-Fock equation to explore more distinct first integrals, result shows that conservation laws constructed through this approach are exactly the same as those obtained under strict self-adjointness of Ibragimov's method.
Dark soliton solutions of Klein-Gordon-Zakharov equation in (1+2) dimensions
NASA Astrophysics Data System (ADS)
Demiray, Seyma Tuluce; Bulut, Hasan
2017-01-01
This study base on dark soliton solutions of Klein-Gordon-Zakharov (KGZ) equation in (1+2) dimensions. The generalized Kudryashov method (GKM) which is one of the analytical methods has been handled for finding exact solutions of KGZ equation in (1+2) dimensions. By using this method, dark soliton solutions of this equation have been obtained. Also, by using Mathematica Release 9, some graphical simulations were done to see the behavior of these solutions.
Generalized Klein-Gordon and Dirac Equations from Nonlocal Kinetic Approach
NASA Astrophysics Data System (ADS)
El-Nabulsi, Rami Ahmad
2016-09-01
In this note, I generalized the Klein-Gordon and the Dirac equations by using Suykens's nonlocal-in-time kinetic energy approach, which is motivated from Feynman's kinetic energy functional formalism where the position differences are shifted with respect to one another. I proved that these generalized equations are similar to those obtained in literature in the presence of minimal length based on the Quesne-Tkachuk algebra.
Statistical aspects of the Klein-Gordon oscillator in the frame work of GUP
NASA Astrophysics Data System (ADS)
Khosropour, B.
2017-07-01
Investigation in perturbative string theory and quantum gravity suggest that there is a measurable minimal length in nature. In this work, according to generalized uncertainty principle, we study the statistical characteristics of Klein-Gordon Oscillator (KLO). The modified energy spectrum of the KLO are obtained. The generalized thermodynamical quantities of the KLO such as partition function, mean energy and entropy are calculated by using the modified energy spectrum.
Solutions to the 1d Klein Gordon equation with cut-off Coulomb potentials
NASA Astrophysics Data System (ADS)
Hall, Richard L.
2007-12-01
In a recent paper by Barton [G. Barton, J. Phys. A: Math. Gen. 40 (2007) 1011], the 1-dimensional Klein Gordon equation was solved analytically for the non-singular Coulomb-like potential V(|x|)=-α/(|x|+a). In the present Letter, these results are completely confirmed by a numerical formulation that also allows a solution for an alternative cut-off Coulomb potential V(|x|)=-α/|x|, |x|>a, and otherwise V(|x|)=-α/a.
Klein-Gordon equations for energy-momentum of the relativistic particle in rapidity space
Yamaleev, R. M.
2013-10-15
The notion of four-rapidity is defined as a four-vector with one time-like and three space-like coordinates. It is proved, the energy and momentum defined in the space of four-rapidity obey Klein-Gordon equations constrained by the classical trajectory of a relativistic particle. It is shown, for small values of a proper mass influence of the constraint is weakened and the classical motion gains features of a wave motion.
NASA Astrophysics Data System (ADS)
Droz-Vincent, Philippe
2001-01-01
In order to reduce the Klein-Gordon equation (with minimal coupling), we introduce a generalization of the so-called `mode solutions' that are well known in the special case of a Robertson-Walker universe. After separation of the variables, we end up with a partial differential equation in lower dimension. A reduced version of the Gordon current arises and is conserved. When the first factor-manifold is Lorentzian, distinct modes appear as orthogonal in the sense of the sesquilinear form associated with the Gordon current. Moreover, a sesquilinear form is defined on the space of solutions to the reduced equation. Extension of this picture to curvature coupling is possible when the second factor manifold is of constant scalar curvature.
The Klein-Gordon equation on the toric AdS-Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Dunn, Jake; Warnick, Claude
2016-06-01
We consider the Klein-Gordon equation on the exterior of the toric anti de-Sitter Schwarzschild black hole with Dirichlet, Neumann and Robin boundary conditions at { I }. We define a non-degenerate energy for the equation which controls the renormalised H 1 norm of the field. We then establish both decay and integrated decay of this energy through vector field methods. Finally, we demonstrate the necessity of ‘losing a derivative’ in the integrated energy estimate through the construction of a Gaussian beam staying in the exterior of the event horizon for arbitrarily long coordinate time.
First Order Solutions for Klein-Gordon-Maxwell Equations in a Specific Curved Manifold Case
Murariu, Gabriel
2009-05-22
The aim of this paper is to study the SO(3,1)xU(1) gauge minimally coupled charged spinless field to a spherically symmetric curved space-time. It is derived the first order analytically approximation solution for the system of Klein-Gordon-Maxwell equations. Using these solutions, it evaluated the system electric charge density. The considered space -time manifold generalize an anterior studied one. The chosen space time configuration is of S diagonal type from the MAPLE GRTensor II metrics package.
Length scale competition in nonlinear Klein-Gordon models: A collective coordinate approach
Cuenda, Sara; Sanchez, Angel
2005-06-01
Working within the framework of nonlinear Klein-Gordon models as a paradigmatic example, we show that length scale competition, an instability of solitons subjected to perturbations of an specific length, can be understood by means of a collective coordinate approach in terms of soliton position and width. As a consequence, we provide a natural explanation of the phenomenon in much simpler terms than any previous treatment of the problem. Our technique allows us to study the existence of length scale competition in most soliton bearing nonlinear models and can be extended to coherent structures with more degrees of freedom.
Relativistic superfluidity and vorticity from the nonlinear Klein-Gordon equation
NASA Astrophysics Data System (ADS)
Xiong, Chi; Good, Michael R. R.; Guo, Yulong; Liu, Xiaopei; Huang, Kerson
2014-12-01
We investigate superfluidity, and the mechanism for creation of quantized vortices, in the relativistic regime. The general framework is a nonlinear Klein-Gordon equation in curved spacetime for a complex scalar field, whose phase dynamics gives rise to superfluidity. The mechanisms discussed are local inertial forces (Coriolis and centrifugal), and current-current interaction with an external source. The primary application is to cosmology, but we also discuss the reduction to the nonrelativistic nonlinear Schrödinger equation, which is widely used in describing superfluidity and vorticity in liquid helium and cold-trapped atomic gases.
Dispersion relation of the nonlinear Klein-Gordon equation through a variational method.
Amore, Paolo; Raya, Alfredo
2006-03-01
We derive approximate expressions for the dispersion relation of the nonlinear Klein-Gordon equation in the case of strong nonlinearities using a method based on the linear delta expansion. All the results obtained in this article are fully analytical, never involve the use of special functions, and can be used to obtain systematic approximations to the exact results to any desired degree of accuracy. We compare our findings with similar results in the literature and show that our approach leads to better and simpler results.
Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations
NASA Astrophysics Data System (ADS)
Pekmen, B.; Tezer-Sezgin, M.
2012-08-01
Differential quadrature method (DQM) is proposed to solve the one-dimensional quadratic and cubic Klein-Gordon equations, and two-dimensional sine-Gordon equation. We apply DQM in space direction and also blockwise in time direction. Initial and derivative boundary conditions are also approximated by DQM. DQM provides one to obtain numerical results with very good accuracy using considerably small number of grid points. Numerical solutions are obtained by using Gauss-Chebyshev-Lobatto (GCL) grid points in space intervals, and GCL grid points in each equally divided time blocks.
Dispersion estimates for one-dimensional Schrödinger and Klein-Gordon equations revisited
NASA Astrophysics Data System (ADS)
Egorova, I. E.; Kopylova, E. A.; Marchenko, V. A.; Teschl, G.
2016-06-01
It is shown that for a one-dimensional Schrödinger operator with a potential whose first moment is integrable the elements of the scattering matrix are in the unital Wiener algebra of functions with integrable Fourier transforms. This is then used to derive dispersion estimates for solutions of the associated Schrödinger and Klein-Gordon equations. In particular, the additional decay conditions are removed in the case where a resonance is present at the edge of the continuous spectrum. Bibliography: 29 titles.
The Klein-Gordon Operator on Möbius Strip Domains and the Klein Bottle in ℝ n
NASA Astrophysics Data System (ADS)
Kraußhar, Rolf Sören
2013-12-01
In this paper we present explicit formulas for the fundamental solution to the Klein-Gordon operator on some higher dimensional generalizations of the Möbius strip and the Klein bottle with values in distinct pinor bundles. The fundamental solution is described in terms of generalizations of the Weierstraß -function that are adapted to the context of these geometries. The explicit formulas for the kernel then allow us to express all solutions to the homogeneous and inhomogeneous Klein-Gordon problem with given boundary data in the context of these manifolds. In the case of the Klein bottle we are able to describe all null solutions of the Klein-Gordon equation in terms of finite linear combinations of the fundamental solution and its partial derivatives.
NASA Astrophysics Data System (ADS)
Jamal, Sameerah
In this paper, we study the geometric properties of generators for the Klein-Gordon equation on classes of space-time homogeneous Gödel-type metrics. Our analysis complements the study involving the “Symmetries of geodesic motion in Gödel-type spacetimes” by U. Camci (J. Cosmol. Astropart. Phys., doi:10.1088/1475-7516/2014/07/002). These symmetries or Killing vectors (KVs) are used to construct potential functions admitted by the Klein-Gordon equation. The criteria for the potential function originates from three primary sources, viz. through generators that are identically the Killing algebra, or with the KV fields that are recast into linear combinations and third, real subalgebras within the Killing algebra. This leads to a classification of the (1 + 3) Klein-Gordon equation according to the catalogue of infinitesimal Lie and Noether point symmetries admitted. A comprehensive list of group invariant functions is provided and their application to analytic solutions is discussed.
Efficient and accurate numerical methods for the Klein-Gordon-Schroedinger equations
Bao, Weizhu . E-mail: bao@math.nus.edu.sg; Yang, Li . E-mail: yangli@nus.edu.sg
2007-08-10
In this paper, we present efficient, unconditionally stable and accurate numerical methods for approximations of the Klein-Gordon-Schroedinger (KGS) equations with/without damping terms. The key features of our methods are based on: (i) the application of a time-splitting spectral discretization for a Schroedinger-type equation in KGS (ii) the utilization of Fourier pseudospectral discretization for spatial derivatives in the Klein-Gordon equation in KGS (iii) the adoption of solving the ordinary differential equations (ODEs) in phase space analytically under appropriate chosen transmission conditions between different time intervals or applying Crank-Nicolson/leap-frog for linear/nonlinear terms for time derivatives. The numerical methods are either explicit or implicit but can be solved explicitly, unconditionally stable, and of spectral accuracy in space and second-order accuracy in time. Moreover, they are time reversible and time transverse invariant when there is no damping terms in KGS, conserve (or keep the same decay rate of) the wave energy as that in KGS without (or with a linear) damping term, keep the same dynamics of the mean value of the meson field, and give exact results for the plane-wave solution. Extensive numerical tests are presented to confirm the above properties of our numerical methods for KGS. Finally, the methods are applied to study solitary-wave collisions in one dimension (1D), as well as dynamics of a 2D problem in KGS.
Unstable Mode Solutions to the Klein-Gordon Equation in Kerr-anti-de Sitter Spacetimes
NASA Astrophysics Data System (ADS)
Dold, Dominic
2017-03-01
For any cosmological constant {Λ = -3/ℓ2 < 0} and any {α < 9/4}, we find a Kerr-AdS spacetime {({M}, g_{KAdS})}, in which the Klein-Gordon equation {Box_{g_{KAdS}}ψ + α/ℓ2ψ = 0} has an exponentially growing mode solution satisfying a Dirichlet boundary condition at infinity. The spacetime violates the Hawking-Reall bound {r+2 > |a|ℓ}. We obtain an analogous result for Neumann boundary conditions if {5/4 < α < 9/4}. Moreover, in the Dirichlet case, one can prove that, for any Kerr-AdS spacetime violating the Hawking-Reall bound, there exists an open family of masses {α} such that the corresponding Klein-Gordon equation permits exponentially growing mode solutions. Our result adopts methods of Shlapentokh-Rothman developed in (Commun. Math. Phys. 329:859-891, 2014) and provides the first rigorous construction of a superradiant instability for negative cosmological constant.
NASA Astrophysics Data System (ADS)
Gérard, Christian; Wrochna, Michał
2017-08-01
We consider the massive Klein-Gordon equation on a class of asymptotically static spacetimes (in the long range sense) with Cauchy surface of bounded geometry. We prove the existence and Hadamard property of the in and out states constructed by scattering theory methods.
Klein-Gordon equation and reflection of Alfven waves in nonuniform media
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.
1992-01-01
A new analytical approach is presented for assessing the reflection of linear Alfven waves in smoothly nonuniform media. The general one-dimensional case in Cartesian coordinates is treated. It is shown that the wave equations, upon transformation into the form of the Klein-Gordon equation, display a local critical frequency for reflection. At any location in the medium, reflection becomes strong as the wave frequency descends past this characteristic frequency set by the local nonuniformity of the medium. This critical frequecy is given by the transformation as an explicit function of the Alfven velocity and its first and second derivatives, and hence as an explicit spatial function. The transformation thus directly yields, without solution of the wave equations, the location in the medium at which an Alfven wave of any given frequency becomes strongly reflected and has its propagation practically cut off.
Phase transition from the symmetry breaking of charged Klein-Gordon fields
NASA Astrophysics Data System (ADS)
Matos, T.; Castellanos, E.
2014-01-01
We analyze the phase transition associated with the U(1) symmetry breaking of the complex Klein-Gordon (KG) equation with a Mexican-hat scalar field potential up to one loop in perturbations immersed in a thermal bath. We show that the KG equation reduces to a Gross-Pitaevskii like-equation (GP), which also contains the entire information of the phase transition. Indeed, the thermal bath contributions, together with the corresponding U(1) local symmetry, allow us to interpret the resulting GP equation as a charged and finite temperature version of the system. Finally, we obtain the hydrodynamics and consequently, the corresponding thermodynamics, and show that breakdown of the U(1) local symmetry of the KG field into the new version of the GP equation corresponds, under certain circumstances, to a phase transition of the gas into a condensate, superfluid, and/or superconductor.
Analyses of PION-40Ca Elastic Scattering Data Using the Klein-Gordon Equation
NASA Astrophysics Data System (ADS)
Shehadeh, Zuhair F.
The elastic scattering data for incident pion energies of 130, 163.3, 180, and 230 MeV on 40Ca have been analyzed using the full Klein-Gordon equation (KGE), as opposed to its approximate form which renders it to the format of a Schrödinger equation with an energy-dependent potential (RSE). Calculated angular distributions, using KGE and RSE, for all four cases are nearly the same up to about 70° but differ significantly at larger angles. To fit the large-angle data of 163.3 MeV, the nature of the old potential determined by using RSE needs to be revised. The new potentials in four cases are presented and they are compatible with those determined from the inverse scattering theory at a fixed energy in the surface region.
Dirac and Klein-Gordon particles in one-dimensional periodic potentials
NASA Astrophysics Data System (ADS)
Barbier, Michaël; Peeters, F. M.; Vasilopoulos, P.; Pereira, J. Milton, Jr.
2008-03-01
We evaluate the dispersion relation for massless fermions, described by the Dirac equation, and for zero-spin bosons, described by the Klein-Gordon equation, moving in two dimensions and in the presence of a one-dimensional periodic potential. For massless fermions, the dispersion relation shows a zero gap for carriers with zero momentum in the direction parallel to the barriers in agreement with the well-known “Klein paradox.” Numerical results for the energy spectrum and the density of states are presented. Those for fermions are appropriate to graphene in which carriers behave relativistically with the “light speed” replaced by the Fermi velocity. In addition, we evaluate the transmission through a finite number of barriers for fermions and zero-spin bosons and relate it with that through a superlattice.
Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry
NASA Astrophysics Data System (ADS)
Gérard, Christian; Oulghazi, Omar; Wrochna, Michał
2017-06-01
We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.
Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry
NASA Astrophysics Data System (ADS)
Gérard, Christian; Oulghazi, Omar; Wrochna, Michał
2017-03-01
We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.
Eab, C. H.; Lim, S. C.; Teo, L. P.
2007-08-15
This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed.
On the Klein-Gordon equation using the dispersion relation of Doubly Special Relativity
NASA Astrophysics Data System (ADS)
Felipe, Yese J.
2017-01-01
The theory of Doubly Special Relativity or Deformed Special Relativity (DSR), proposes that there is a maximum energy scale and a minimum length scale that is invariant for all observers. These maximum energy and minimum length correspond to the Planck energy and the Planck length, respectively. As a consequence, the dispersion relation is modified to be E2 =p2c2 +m2c4 + λE3 + ... Previous work has been done to express Quantum Mechanics using the dispersion relation of DSR. Solutions of the free particle, the harmonic oscillator, and the Hydrogen atom have been obtained from the DSR Schrodinger equation. We explore how the DSR Klein-Gordon equation can be consistently approximated in the non-relativistic limit in order to derive the DSR Schrodinger equation.
Three-dimensional Einstein-Klein-Gordon system in characteristic numerical relativity
Barreto, W.; Silva, A. da; Lehner, L.; Gomez, R.; Rosales, L.; Winicour, J.
2005-03-15
We incorporate a massless scalar field into a three-dimensional code for the characteristic evolution of the gravitational field. The extended three-dimensional code for the Einstein-Klein-Gordon system is calibrated to be second-order convergent. It provides an accurate calculation of the gravitational and scalar radiation at infinity. As an application, we simulate the fully nonlinear evolution of an asymmetric scalar pulse of ingoing radiation propagating toward an interior Schwarzschild black hole and compute the backscattered scalar and gravitational outgoing radiation patterns. The amplitudes of the scalar and gravitational outgoing radiation modes exhibit the predicted power law scaling with respect to the amplitude of the initial data. For the scattering of an axisymmetric scalar field, the final ring down matches the complex frequency calculated perturbatively for the l=2 quasinormal mode.
NASA Astrophysics Data System (ADS)
Nakao, Mitsuhiro
We prove the existence of global decaying solutions to the exterior problem for the Klein-Gordon equation with a nonlinear localized dissipation and a derivative nonlinearity. To derive the required estimates of solutions we employ a 'loan' method.
NASA Astrophysics Data System (ADS)
Zhang, Qidi
2016-12-01
We show for almost every m > 0, the solution to the semi-linear Klein-Gordon equation with a quadratic potential in dimension one, exists over a longer time interval than the one given by local existence theory, using the normal form method. By using an Lp -Lq estimate for eigenfunctions of the harmonic oscillator and by carefully analysis on the nonlinearity, we improve the result obtained by the author before.
NASA Astrophysics Data System (ADS)
Arda, Altuğ; Tezcan, Cevdet; Sever, Ramazan
2017-02-01
We study some thermodynamics quantities for the Klein-Gordon equation with a linear plus inverse-linear, scalar potential. We obtain the energy eigenvalues with the help of the quantization rule from the biconfluent Heun's equation. We use a method based on the Euler-MacLaurin formula to analytically compute the thermal functions by considering only the contribution of positive part of the spectrum to the partition function.
Huygens' principle for the Klein-Gordon equation in the de Sitter spacetime
Yagdjian, Karen
2013-09-15
In this article we prove that the Klein-Gordon equation in the de Sitter spacetime obeys the Huygens' principle only if the physical mass m of the scalar field and the dimension n⩾ 2 of the spatial variable are tied by the equation m{sup 2}= (n{sup 2}−1)/4. Moreover, we define the incomplete Huygens' principle, which is the Huygens' principle restricted to the vanishing second initial datum, and then reveals that the massless scalar field in the de Sitter spacetime obeys the incomplete Huygens' principle and does not obey the Huygens' principle, for the dimensions n= 1, 3, only. Thus, in the de Sitter spacetime the existence of two different scalar fields (in fact, with m= 0 and m{sup 2}= (n{sup 2}−1)/4), which obey incomplete Huygens' principle, is equivalent to the condition n= 3, the spatial dimension of the physical world. In fact, Paul Ehrenfest in 1917 addressed the question: “Why has our space just three dimensions?”. For n= 3 these two values of the mass are the endpoints of the so-called in quantum field theory the Higuchi bound. The value m{sup 2}= (n{sup 2}−1)/4 of the physical mass allows us also to obtain complete asymptotic expansion of the solution for the large time.
A local energy-preserving scheme for Klein-Gordon-Schrödinger equations
NASA Astrophysics Data System (ADS)
Cai, Jia-Xiang; Wang, Jia-Lin; Wang, Yu-Shun
2015-05-01
A local energy conservation law is proposed for the Klein-Gordon-Schrödinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order 𝒪(τ2 + h2). The theoretical properties are verified by numerical experiments. Project supported by the National Natural Science Foundation of China (Grant Nos. 11201169, 11271195, and 41231173) and the Project of Graduate Education Innovation of Jiangsu Province, China (Grant No. CXLX13 366).
Final state problem for the cubic nonlinear Klein-Gordon equation
Hayashi, Nakao; Naumkin, Pavel I.
2009-10-15
We study the final state problem for the nonlinear Klein-Gordon equation, u{sub tt}+u-u{sub xx}={mu}u{sup 3}, t is an element of R,x is an element of R, where {mu} is an element of R. We prove the existence of solutions in the neighborhood of the approximate solutions 2 Re U(t)w{sub +}(t), where U(t) is the free evolution group defined by U(t)=F{sup -1}e{sup -it<{xi}}{sup >}F,
A Multiple Particle System Equation Underlying the Klein-Gordon-Dirac-Schrödinger Equations
NASA Astrophysics Data System (ADS)
Froedge, D. T.
2012-03-01
The purpose of this paper is to illustrate a fundamental, multiple particle, system equation for which the Klein-Gordon-Dirac-Schrödinger equations are single particle special cases. The basic concept is that there is a broader picture, based on a more general equation that includes the entire system of particles. The first part will be to postulate an equation, and then, by modifying the methods of Path Integrals, develop a solution which describes the internal dynamics as well as particle interactions of quantum particles. The complete function has both real and imaginary, as well as timelike and spacelike parts, each of which are separable into independent expressions that define particle properties. In the same manner that eigenvalues of the Schrödinger equation represents energy levels of an atomic system, particle are eigenvalues in an interacting universe of particles. The Dirac massive and massless equation and solution will be shown as factorable independent components. A clear distinction between the classical and quantum properties of particles is made, increasing the scope of QM. Located at http://www.arxdtf.org/css/system.pdf
NASA Astrophysics Data System (ADS)
LeFloch, Philippe G.; Ma, Yue
2016-09-01
The Hyperboloidal Foliation Method (introduced by the authors in 2014) is extended here and applied to the Einstein equations of general relativity. Specifically, we establish the nonlinear stability of Minkowski spacetime for self-gravitating massive scalar fields, while existing methods only apply to massless scalar fields. First of all, by analyzing the structure of the Einstein equations in wave coordinates, we exhibit a nonlinear wave-Klein-Gordon model defined on a curved background, which is the focus of the present paper. For this model, we prove here the existence of global-in-time solutions to the Cauchy problem, when the initial data have sufficiently small Sobolev norms. A major difficulty comes from the fact that the class of conformal Killing fields of Minkowski space is significantly reduced in the presence of a massive scalar field, since the scaling vector field is not conformal Killing for the Klein-Gordon operator. Our method relies on the foliation (of the interior of the light cone) of Minkowski spacetime by hyperboloidal hypersurfaces and uses Lorentz-invariant energy norms. We introduce a frame of vector fields adapted to the hyperboloidal foliation and we establish several key properties: Sobolev and Hardy-type inequalities on hyperboloids, as well as sup-norm estimates, which correspond to the sharp time decay for the wave and the Klein-Gordon equations. These estimates allow us to control interaction terms associated with the curved geometry and the massive field by distinguishing between two levels of regularity and energy growth and by a successive use of our key estimates in order to close a bootstrap argument.
Classical and quantum field-theoretical approach to the non-linear q-Klein-Gordon equation
NASA Astrophysics Data System (ADS)
Plastino, A.; Rocca, M. C.
2016-11-01
In the wake of efforts made Nobre and Rego-Monteiro in EPL, 97 (2012) 41001 and J. Math. Phys., 54 (2913) 103302, we extend them here by developing the conventional Lagrangian treatment of a classical field theory (FT) to the q-Klein-Gordon equation advanced in Phys. Rev. Lett., 106 (2011) 140601 and J. Math. Phys., 54 (2913) 103302 by the same authors, and the quantum theory corresponding to q=\\frac {3} {2} . This makes it possible to generate a putative conjecture regarding black matter. Our theory reduces to the usual FT for q→ 1 .
NASA Astrophysics Data System (ADS)
Ikot, A. N.; Lutfuoglu, B. C.; Ngwueke, M. I.; Udoh, M. E.; Zare, S.; Hassanabadi, H.
2016-12-01
In this paper we use the Nikiforov-Uvarov method to obtain the approximate solutions for the Klein-Gordon equation with the deformed five-parameter exponential-type potential (DFPEP) model. We also obtain solutions for the Schrödinger equation in the presence of DFPEP in non-relativistic limits. In addition, we calculate in the non-relativistic limits thermodynamics properties, such as vibrational mean energy U, free energy F and the specific heat capacity C. Special cases of the potential are also discussed.
Quantum mechanics of Klein-Gordon-type fields and quantum cosmology
NASA Astrophysics Data System (ADS)
Mostafazadeh, Ali
2004-01-01
With a view to address some of the basic problems of quantum cosmology, we formulate the quantum mechanics of the solutions of a Klein-Gordon-type field equation: (∂t2+D)ψ(t)=0, where t∈R and D is a positive-definite operator acting in a Hilbert space H~. In particular, we determine all the positive-definite inner products on the space H of the solutions of such an equation and establish their physical equivalence. This specifies the Hilbert space structure of H uniquely. We use a simple realization of the latter to construct the observables of the theory explicitly. The field equation does not fix the choice of a Hamiltonian operator unless it is supplemented by an underlying classical system and a quantization scheme supported by a correspondence principle. In general, there are infinitely many choices for the Hamiltonian each leading to a different notion of time-evolution in H. Among these is a particular choice that generates t-translations in H and identifies t with time whenever D is t-independent. For a t-dependent D, we show that regardless of the choice of the inner product the t-translations do not correspond to unitary evolutions in H, and t cannot be identified with time. We apply these ideas to develop a formulation of quantum cosmology based on the Wheeler-DeWitt equation for a Friedman-Robertson-Walker model coupled to a real scalar field with an arbitrary positive confining potential. In particular, we offer a complete solution of the Hilbert space problem, construct the observables, use a position-like observable to introduce the wave functions of the universe (which differ from the Wheeler-DeWitt fields), reformulate the corresponding quantum theory in terms of the latter, reduce the problem of the identification of time to the determination of a Hamiltonian operator acting in L2(R)⊕L2(R), show that the factor-ordering problem is irrelevant for the kinematics of the quantum theory, and propose a formulation of the dynamics. Our method is
NASA Astrophysics Data System (ADS)
Garcia, M. G.; de Castro, A. S.; Castro, L. B.; Alberto, P.
2017-03-01
New exact analytical bound-state solutions of the D-dimensional Klein-Gordon equation for a large set of couplings and potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generalized Morse potential. The eigenfunctions are expressed in terms of generalized Laguerre polynomials, and the eigenenergies are expressed in terms of solutions of irrational equations at the worst. Several analytical results found in the literature, including the so-called Klein-Gordon oscillator, are obtained as particular cases of this unified approach.
NASA Astrophysics Data System (ADS)
Suárez, Abril; Chavanis, Pierre-Henri
2015-07-01
Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with a λ |φ |4 potential. We study the evolution of the spatially homogeneous background in the fluid representation and derive the linearized equations describing the evolution of small perturbations in a static and in an expanding Universe. We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schrödinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit c →+∞. We study the evolution of the perturbations in the matter era using the nonrelativistic limit of our formalism. Perturbations whose wavelength is below the Jeans length oscillate in time while perturbations whose wavelength is above the Jeans length grow linearly with the scale factor as in the cold dark matter model. The growth of perturbations in the scalar field model is substantially faster than in the cold dark matter model. When the wavelength of the perturbations approaches the cosmological horizon (Hubble length), a relativistic treatment is mandatory. In that case, we find that relativistic effects attenuate or even prevent the growth of perturbations. This paper exposes the general formalism and provides illustrations in simple cases. Other applications of our formalism will be considered in companion papers.
NASA Astrophysics Data System (ADS)
Hack, Thomas-Paul
2014-11-01
We quantize the linearized Einstein-Klein-Gordon system on arbitrary on-shell backgrounds in a manifestly covariant and gauge-invariant manner. For the special case of perturbations in inflation, i.e. on-shell backgrounds of Friedmann-Lemaître-Robertson-Walker type, we compare our general quantization construction with the standard approach to the quantum theory of perturbations in inflation. We find that not all local quantum observables of the linearized Einstein-Klein-Gordon system can be split into local observables of scalar and tensor type as in the standard approach. However, we argue that this subclass of observables is sufficient for measuring perturbations that vanish at spatial infinity, which is in line with standard assumptions. Finally, we comment on a recent observation that, upon standard quantization, the quantum Bardeen potentials display a non-local behaviour and argue that a similar phenomenon occurs in any local quantum field theory. It is the hope of the author that the present work may constitute a bridge between the generally applicable and thus powerful framework of algebraic quantum field theory in curved spacetimes and the standard treatment of perturbations in inflation.
Quantum Gravitational Corrections to the Real Klein-Gordon Field in the Presence of a Minimal Length
NASA Astrophysics Data System (ADS)
Moayedi, S. K.; Setare, M. R.; Moayeri, H.
2010-09-01
The ( D+1)-dimensional ( β, β')-two-parameter Lorentz-covariant deformed algebra introduced by Quesne and Tkachuk (J. Phys., A Math. Gen. 39, 10909, 2006), leads to a nonzero minimal uncertainty in position (minimal length). The Klein-Gordon equation in a (3+1)-dimensional space-time described by Quesne-Tkachuk Lorentz-covariant deformed algebra is studied in the case where β'=2 β up to first order over deformation parameter β. It is shown that the modified Klein-Gordon equation which contains fourth-order derivative of the wave function describes two massive particles with different masses. We have shown that physically acceptable mass states can only exist for β<1/8m^{2c2} which leads to an isotropic minimal length in the interval 10-17 m<(Δ X i )0<10-15 m. Finally, we have shown that the above estimation of minimal length is in good agreement with the results obtained in previous investigations.
Sergyeyev, Artur; Krtous, Pavel
2008-02-15
We consider the Klein-Gordon equation in generalized higher-dimensional Kerr-NUT-(A)dS spacetime without imposing any restrictions on the functional parameters characterizing the metric. We establish commutativity of the second-order operators constructed from the Killing tensors found in [J. High Energy Phys. 02 (2007) 004] and show that these operators, along with the first-order operators originating from the Killing vectors, form a complete set of commuting symmetry operators (i.e., integrals of motion) for the Klein-Gordon equation. Moreover, we demonstrate that the separated solutions of the Klein-Gordon equation obtained in [J. High Energy Phys. 02 (2007) 005] are joint eigenfunctions for all of these operators. We also present an explicit form of the zero mode for the Klein-Gordon equation with zero mass. In the semiclassical approximation we find that the separated solutions of the Hamilton-Jacobi equation for geodesic motion are also solutions for a set of Hamilton-Jacobi-type equations which correspond to the quadratic conserved quantities arising from the above Killing tensors.
NASA Astrophysics Data System (ADS)
Hatami, N.; Setare, M. R.
2017-10-01
We present approximate analytical solutions of the Klein-Gordon equation with arbitrary l state for the Manning-Rosen potential using the Nikiforov-Uvarov method and adopting the approximation scheme for the centrifugal term. We provide the bound state energy spectrum and the wave function in terms of the hypergeometric functions.
NASA Astrophysics Data System (ADS)
Wu, Shu-Rui; Long, Zheng-Wen; Long, Chao-Yun; Wang, Bing-Quan; Liu, Yun
2017-09-01
The (2+1)-dimensional Klein-Gordon oscillator under a magnetic field in the presence of a minimal length in the noncommutative (NC) space is analyzed via the momentum space representation. Energy eigenvalue of the system is obtained by employing the Jacobi polynomials. In further steps, the special cases are discussed and the corresponding numerical results are depicted, respectively.
NASA Astrophysics Data System (ADS)
Khodja, A.; Kadja, A.; Benamira, F.; Guechi, L.
2017-07-01
The problem of a Klein-Gordon particle moving in equal vector and scalar Rosen-Morse-type potentials is solved in the framework of Feynman's path integral approach. Explicit path integration leads to a closed form for the radial Green's function associated with different shapes of the potentials. For q≤-1 , and 1/2α ln | q|
Benamira, F.; Guechi, L.; Mameri, S.; Sadoun, M. A.
2010-03-15
The Green's function for a Klein-Gordon particle under the action of vector plus scalar deformed Hulthen and Woods-Saxon potentials is evaluated by exact path integration. Explicit path integration leads to the Green's function for different shapes of the potentials. From the singularities of the latter Green's function, the bound states are extracted. For q{>=}1 and (1/{alpha})ln q
NASA Astrophysics Data System (ADS)
Khader, M. M.; Adel, M.
2016-09-01
In this paper, we implement the fractional complex transform method to convert the nonlinear fractional Klein-Gordon equation (FKGE) to an ordinary differential equation. We use the variational iteration method (VIM) to solve the resulting ODE. The fractional derivatives are presented in terms of the Caputo sense. Some numerical examples are presented to validate the proposed techniques. Finally, a comparison with the numerical solution using Runge-Kutta of order four is given.
NASA Astrophysics Data System (ADS)
Arya Nugraha, Dewanta; Suparmi, A.; Cari, C.; Nur Pratiwi, Beta
2017-01-01
Klein-Gordon equation for Trigonometric Pöschl-Teller Potential in D-dimensions was obtained within framework of a centrifugal term approximation. Asymptotic iteration method was used to obtain the relativistic energy spectrum and wave functions. The value of relativistic energy was calculated numerically and the results have shown that in higher dimension the energy level is increased with positive energy states. The wave functions were expressed in hypergeometric term.
NASA Astrophysics Data System (ADS)
Liu, Changying; Wu, Xinyuan
2017-07-01
In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.
NASA Astrophysics Data System (ADS)
Jamal, Sameerah; Shabbir, Ghulam
2017-02-01
We study the geometric properties of generators for the Klein-Gordon equation in Kantowski-Sachs and certain Bianchi-type spaces. Several versions of the Klein-Gordon equation are derived from its dependence on a potential function. The criteria for different versions of the (1+3) Klein-Gordon equation originates from analyzing three sources, viz. through generators that are identically the Killing algebra, or with the Killing vector fields that are recast into linear combinations and thirdly, real sub-algebras within the conformal algebra. In turn, these equations admit a catalogue of infinitesimal symmetries that are equivalent to the corresponding Killing vector fields in Kantowski-Sachs, Bianchi type III, IX, VIII, VI0 and VII0 space-times, with the exception of a linear vector W=upartialu in every case. The sheer number of results are displayed in appropriate tables. Subsequently, in application, we derive some Noetherian conservation laws and identify some exact solutions by quadratures.
NASA Astrophysics Data System (ADS)
Moreno, Carlos
1980-06-01
In a space-time (V n × R;g) with Vn closed ( n ≠ 2) satisfying certain global conditions, we can write the Klein-Gordon equation, relative to a suitable class of atlases, in the evolution form du/ dt = T-1( t) u, on Sobolev spaces Kl( Vn) = Hl( Vn) × Hl-1 ( Vn), where the spectrum of T-1( t) is imaginary. Following papers by T. Kato and J. Kisyński we prove the existence of the evolution operator for this equation. The space K {1}/{2}(V n) has a natural strongly-symplectic structure ω. We determine the explicit form of complex-structure-positive operators of this structure. We prove that any two such operators, say J1, J2, are symplectically equivalent, (i.e. there is a symplectic transformation S such that J2 = SJ1S-1). Spaces of positive and negative frequency solutions are then unique modulo symplectic equivalence. Each operator J determines a regular kernel on space-time which satisfies the properties of the kernel postulated by A. Lichnérowich in his program of quantization of fields in curved space-times. We carry out explicit calculations in the case of Robertson-Walker space-times. If an additional condition is satisfied by the given space-time, a unique complex-structure-positive operator can be selected in a natural way. This condition is satisfied by globally stationary space-times.
Several solutions of the Klein-Gordon equation in Kerr-Newman spacetime and the BSW effect
NASA Astrophysics Data System (ADS)
Yumisaki, Hikaru
2017-06-01
We investigate the radial part of the charged massive Klein-Gordon equation in Kerr-Newman spacetime, and in several specific situations, obtain exact solutions by means of essentially hypergeometric functions or their confluent types. Using these global solutions and generally obtained local solutions, we calculate a sort of intensity of the collision of two field excitations, which is a slight generalization of the trace of the stress tensor. We find that when the black hole is nonextremal, the intensity of the collision of two ingoing modes is bounded. However, in the extremal limit, more precisely \\hbar \\kappa_H \\rArr 0, the upper bound grows so that when the frequency of one of the two modes satisfies the critical relation, the intensity of the collision at the horizon becomes unboundedly large. Furthermore, the intensity of the collision of ingoing and outgoing modes is always unbounded, as well as in the classical particle theory. Our results suggest that the BSW effect is inherited by the quantum theory.
Gallet, Basile; Nazarenko, Sergey; Dubrulle, Bérengère
2015-07-01
In field theory, particles are waves or excitations that propagate on the fundamental state. In experiments or cosmological models, one typically wants to compute the out-of-equilibrium evolution of a given initial distribution of such waves. Wave turbulence deals with out-of-equilibrium ensembles of weakly nonlinear waves, and is therefore well suited to address this problem. As an example, we consider the complex Klein-Gordon equation with a Mexican-hat potential. This simple equation displays two kinds of excitations around the fundamental state: massive particles and massless Goldstone bosons. The former are waves with a nonzero frequency for vanishing wave number, whereas the latter obey an acoustic dispersion relation. Using wave-turbulence theory, we derive wave kinetic equations that govern the coupled evolution of the spectra of massive and massless waves. We first consider the thermodynamic solutions to these equations and study the wave condensation transition, which is the classical equivalent of Bose-Einstein condensation. We then focus on nonlocal interactions in wave-number space: we study the decay of an ensemble of massive particles into massless ones. Under rather general conditions, these massless particles accumulate at low wave number. We study the dynamics of waves coexisting with such a strong condensate, and we compute rigorously a nonlocal Kolmogorov-Zakharov solution, where particles are transferred nonlocally to the condensate, while energy cascades towards large wave numbers through local interactions. This nonlocal cascading state constitutes the intermediate asymptotics between the initial distribution of waves and the thermodynamic state reached in the long-time limit.
Song, Ming; Ahmed, Bouthina S; Zerrad, Essaid; Biswas, Anjan
2013-09-01
This paper studies the Klein-Gordon Zakharov equation with power law nonlinearity in (1+2)-dimensions. The ansatz method will be applied to obtain the 1-soliton solution, also known as domain wall solution, along with several constraint conditions that naturally fall out. Subsequently, the bifurcation analysis is carried out where the phase portrait is given. Additionally, this analysis leads to several solutions to the equation with the traveling wave scheme. This gives soliton solution as well as singular periodic solutions. Finally, the numerical simulations for the domain wall solution were obtained where the finite difference scheme is applied.
NASA Astrophysics Data System (ADS)
Kraniotis, G. V.
2016-11-01
Exact solutions of the Klein-Gordon-Fock (KGF) general relativistic equation that describe the dynamics of a massive, electrically charged scalar particle in the curved spacetime geometry of an electrically charged, rotating Kerr-Newman-(anti) de Sitter black hole are investigated. In the general case of a rotating, charged, cosmological black hole the solution of the KGF equation with the method of separation of variables results in Fuchsian differential equations for the radial and angular parts which for most of the parameter space contain more than three finite singularities and thereby generalise the Heun differential equations. For particular values of the physical parameters (i.e. mass of the scalar particle) these Fuchsian equations reduce to the case of the Heun equation and the closed form analytic solutions we derive are expressed in terms of Heun functions. For other values of the parameters some of the extra singular points are false singular points. We derive the conditions on the coefficients of the generalised Fuchsian equation such that a singular point is a false point. In such a case the exact solution of the Fuchsian equation can in principle be simplified and expressed in terms of Heun functions. This is the generalisation of the case of a Heun equation with a false singular point in which the exact solution of Heun’s differential equation is expressed in terms of Gauß hypergeometric function. We also derive the exact solutions of the radial and angular equations for a charged massive scalar particle in the Kerr-Newman spacetime. The analytic solutions are expressed in terms of confluent Heun functions. Moreover, we derived the constraints on the parameters of the theory such that the solution simplifies and expressed in terms of confluent Kummer hypergeometric functions. We also investigate the radial solutions in the KN case in the regions near the event horizon and far from the black hole. Finally, we construct several expansions of the
NASA Astrophysics Data System (ADS)
Li, Jibin
In this paper, we consider the exact explicit solutions for the famous generalized Hénon-Heiles (H-H) system. Corresponding to the three integrable cases, on the basis of the investigation of the dynamical behavior and level curves of the planar dynamical systems, we find all possible explicit exact parametric representations of solutions in the invariant manifolds of equilibrium points in the four-dimensional phase space. These solutions contain quasi-periodic solutions, homoclinic solutions, periodic solutions as well as blow-up solutions. Therefore, we answer the question: what are the flows in the center manifolds and homoclinic manifolds of the generalized Hénon-Heiles (H-H) system. As an application of the above results, we consider the traveling wave solutions for the coupled (n + 1)-dimensional Klein-Gordon-Schrödinger Equations with quadratic power nonlinearity.
NASA Astrophysics Data System (ADS)
Aggoun, L.; Benamira, F.; Guechi, L.; Sadoun, M. A.
2016-04-01
The Green's function associated with a Klein-Gordon particle moving in a D-dimensional space under the action of vector plus scalar q-deformed Hulthén potentials is constructed by path integration for {q ≥ 1} and {1/α ln q < r < infty}. An appropriate approximation of the centrifugal potential term and the technique of space-time transformation are used to reduce the path integral for the generalized Hulthén potentials into a path integral for q-deformed Rosen-Morse potential. Explicit path integration leads to the radial Green's function for any l state in closed form. The energy spectrum and the correctly normalized wave functions, for a state of orbital quantum number {l ≥ 0}, are obtained. Eventually, the vector q-deformed Hulthén potential and the Coulomb potentials in D dimensions are considered as special cases.
NASA Astrophysics Data System (ADS)
Encinas, A. H.; Gayoso-Martínez, V.; Martín Del Rey, A.; Martín-Vaquero, J.; Queiruga-Dios, A.
2016-03-01
In this paper, we discuss the problem of solving nonlinear Klein-Gordon equations (KGEs), which are especially useful to model nonlinear phenomena. In order to obtain more exact solutions, we have derived different fourth- and sixth-order, stable explicit and implicit finite difference schemes for some of the best known nonlinear KGEs. These new higher-order methods allow a reduction in the number of nodes, which is necessary to solve multi-dimensional KGEs. Moreover, we describe how higher-order stable algorithms can be constructed in a similar way following the proposed procedures. For the considered equations, the stability and consistency of the proposed schemes are studied under certain smoothness conditions of the solutions. In addition to that, we present experimental results obtained from numerical methods that illustrate the efficiency of the new algorithms, their stability, and their convergence rate.
NASA Astrophysics Data System (ADS)
Zaghou, N.; Benamira, F.; Guechi, L.
2017-01-01
Rigorous use of the SUSYQM approach applied for the Klein-Gordon equation with scalar and vector potentials is discussed. The method is applied to solve exactly, for bound states, two models with position-dependent masses and PT-symmetric vector potentials, depending on some parameters. The necessary conditions on the parameters to get physical solutions are described. Some special cases are also derived by adjusting the parameters of the models.
Yang, Linlin; Li, Nianbei; Li, Baowen
2014-12-01
The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.
NASA Astrophysics Data System (ADS)
Johansson, Magnus
2006-04-01
We analyze certain aspects of the classical dynamics of a one-dimensional discrete nonlinear Schrödinger model with inter-site as well as on-site nonlinearities. The equation is derived from a mixed Klein-Gordon/Fermi-Pasta-Ulam chain of anharmonic oscillators coupled with anharmonic inter-site potentials, and approximates the slow dynamics of the fundamental harmonic of discrete small-amplitude modulational waves. We give explicit analytical conditions for modulational instability of travelling plane waves, and find in particular that sufficiently strong inter-site nonlinearities may change the nature of the instabilities from long-wavelength to short-wavelength perturbations. Further, we describe thermodynamic properties of the model using the grand-canonical ensemble to account for two conserved quantities: norm and Hamiltonian. The available phase space is divided into two separated parts with qualitatively different properties in thermal equilibrium: one part corresponding to a normal thermalized state with exponentially small probabilities for large-amplitude excitations, and another part typically associated with the formation of high-amplitude localized excitations, interacting with an infinite-temperature phonon bath. A modulationally unstable travelling wave may exhibit a transition from one region to the other as its amplitude is varied, and thus modulational instability is not a sufficient criterion for the creation of persistent localized modes in thermal equilibrium. For pure on-site nonlinearities the created localized excitations are typically pinned to particular lattice sites, while for significant inter-site nonlinearities they become mobile, in agreement with well-known properties of localized excitations in Fermi-Pasta-Ulam-type chains.
NASA Astrophysics Data System (ADS)
Benamira, F.; Guechi, L.; Zouache, A.
2007-08-01
The supersymmetric quantum mechanical method employed by Gang Chen and co-workers to solve the problem of the s states of a Klein Gordon particle under the action of generalized vector plus scalar Hulthén-type potentials is shown inadequate since only one of their solutions remains valid for q⩾1 and 1αlnq
NASA Astrophysics Data System (ADS)
Bao, Weizhu; Zhao, Xiaofei
2016-12-01
A multiscale time integrator sine pseudospectral (MTI-SP) method is presented for discretizing the Klein-Gordon-Zakharov (KGZ) system with a dimensionless parameter 0 < ε ≤ 1, which is inversely proportional to the plasma frequency. In the high-plasma-frequency limit regime, i.e. 0 < ε ≪ 1, the solution of the KGZ system propagates waves with amplitude at O (1) and wavelength at O (ε2) in time and O (1) in space, which causes significantly numerical burdens due to the high oscillation in time. The main idea of the numerical method is to carry out a multiscale decomposition by frequency (MDF) to the electric field component of the solution at each time step and then apply the sine pseudospectral discretization for spatial derivatives followed by using the exponential wave integrator in phase space for integrating the MDF and the equation of the ion density component. The method is explicit and easy to be implemented. Extensive numerical results show that the MTI-SP method converges uniformly and optimally in space with exponential convergence rate if the solution is smooth, and uniformly in time with linear convergence rate at O (τ) for ε ∈ (0 , 1 ] with τ time step size and optimally with quadratic convergence rate at O (τ2) in the regime when either ε = O (1) or 0 < ε ≤ τ. Thus the meshing strategy requirement (or ε-scalability) of the MTI-SP for the KGZ system in the high-plasma-frequency limit regime is τ = O (1) and h = O (1) for 0 < ε ≪ 1, which is significantly better than classical methods in the literatures. Finally, we apply the MTI-SP method to study the convergence rates of the KGZ system to its limiting models in the high-plasma-frequency limit and the interactions of bright solitons of the KGZ system, and to identify certain parameter regimes that the solution of the KGZ system will be blow-up in one dimension.
NASA Astrophysics Data System (ADS)
Ikhdair, Sameer M.; Sever, Ramazan
2009-03-01
We present a new approximation scheme for the centrifugal term to obtain a quasi-exact analytical bound state solution within the framework of the position-dependent effective mass radial Klein-Gordon equation with the scalar and vector Hulthén potentials in any arbitrary D dimension and orbital angular momentum quantum numbers l. The Nikiforov-Uvarov (NU) method is used in the calculations. The relativistic real energy levels and corresponding eigenfunctions for the bound states with different screening parameters have been given in a closed form. It is found that the solutions in the case of constant mass and in the case of s-wave (l=0) are identical with the ones obtained in the literature.
A Klein-Gordon acoustic theory
Anno, P.D.
1992-12-01
Geophysicists do not associate traveltime variation with density variation in acoustic or elastic wavefield interpretation. Rather, given a constant index of refraction, density variation within the medium of propagation is associated only with amplitudes. This point of view prevails because density does not occur as a variable in classical results such as Snell's Law or the eikonal equation. Nevertheless, in this paper I predict, analytically, a continuum of density effects on acoustic wavefields-including a dispersive traveltime delay when density variation is rapid. I also examine the ability of a common imaging algorithm to cope with this time delay.
A Klein-Gordon acoustic theory
Anno, Phil D.
1992-12-01
Geophysicists do not associate traveltime variation with density variation in acoustic or elastic wavefield interpretation. Rather, given a constant index of refraction, density variation within the medium of propagation is associated only with amplitudes. This point of view prevails because density does not occur as a variable in classical results such as Snell`s Law or the eikonal equation. Nevertheless, in this paper I predict, analytically, a continuum of density effects on acoustic wavefields-including a dispersive traveltime delay when density variation is rapid. I also examine the ability of a common imaging algorithm to cope with this time delay.
Nonlinear instabilities of multi-site breathers in Klein-Gordon lattices
Cuevas-Maraver, Jesus; Kevrekidis, Panayotis G.; Pelinovsky, Dmitry E.
2016-08-01
Here, we explore the possibility of multi-site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and a hard (Φ^{4}) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi-site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi-site breather states are observed to be nonlinearly stable.
Kink topology control by high-frequency external forces in nonlinear Klein-Gordon models.
Alvarez-Nodarse, R; Quintero, N R; Mertens, F G
2014-10-01
A method of averaging is applied to study the dynamics of a kink in the damped double sine-Gordon equation driven by both external (nonparametric) and parametric periodic forces at high frequencies. This theoretical approach leads to the study of a double sine-Gordon equation with an effective potential and an effective additive force. Direct numerical simulations show how the appearance of two connected π kinks and of an individual π kink can be controlled via the frequency. An anomalous negative mobility phenomenon is also predicted by theory and confirmed by simulations of the original equation.
Aharonov-Bohm Effect and High-Momenta Inverse Scattering for the Klein-Gordon Equation
NASA Astrophysics Data System (ADS)
Ballesteros, Miguel; Weder, Ricardo
2016-10-01
We analyze spin-0 relativistic scattering of charged particles propagating in the exterior, $\\Lambda \\subset \\mathbb{R}^3$, of a compact obstacle $K \\subset \\mathbb{R}^3$. The connected components of the obstacle are handlebodies. The particles interact with an electro-magnetic field in $\\Lambda$ and an inaccessible magnetic field localized in the interior of the obstacle (through the Aharonov-Bohm effect). We obtain high-momenta estimates, with error bounds, for the scattering operator that we use to recover physical information: We give a reconstruction method for the electric potential and the exterior magnetic field and prove that, if the electric potential vanishes, circulations of the magnetic potential around handles (or equivalently, by Stokes' theorem, magnetic fluxes over transverse sections of handles) of the obstacle can be recovered, modulo $2 \\pi$. We additionally give a simple formula for the high-momenta limit of the scattering operator in terms of certain magnetic fluxes, in the absence of electric potential. If the electric potential does not vanish, the magnetic fluxes on the handles above referred can be only recovered modulo $\\pi$ and the simple expression of the high-momenta limit of the scattering operator does not hold true.
Klein-Gordon Fields and Bose-Einstein Condensates: Thermal Bath Contributions
NASA Astrophysics Data System (ADS)
Castellanos, E.; Matos, T.
2013-04-01
We analyze the consequences caused by a thermal bath upon the properties associated to the symmetry breaking of scalar fields with one-loop correction potential. Concerning the nonrelativistic regime associated with the aforementioned system, we calculate the shift in the condensation temperature caused by the thermal bath, assuming a harmonic oscillator type potential. We prove that the shift in the condensation temperature depends on the associated scale of the system. In addition, we obtain bounds associated to the scale that could lead to relevant corrections on the condensation temperature under typical conditions.
Nonlinear instabilities of multi-site breathers in Klein-Gordon lattices
Cuevas-Maraver, Jesus; Kevrekidis, Panayotis G.; Pelinovsky, Dmitry E.
2016-08-01
Here, we explore the possibility of multi-site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and amore » hard (Φ4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi-site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi-site breather states are observed to be nonlinearly stable.« less
Nonlinear instabilities of multi-site breathers in Klein-Gordon lattices
Cuevas-Maraver, Jesus; Kevrekidis, Panayotis G.; Pelinovsky, Dmitry E.
2016-08-01
Here, we explore the possibility of multi-site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and a hard (Φ^{4}) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi-site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi-site breather states are observed to be nonlinearly stable.
Perturbed Coulomb potentials in the Klein-Gordon equation via the asymptotic iteration method
Barakat, T.
2009-03-15
The asymptotic iteration method is used to construct the exact energy eigenvalues for a Lorentz vector or a Lorentz scalar, and an equally mixed Lorentz vector and Lorentz scalar Coulombic potentials. Highly accurate and rapidly converging ground-state energies for Lorentz vector Coulomb with a Lorentz vector or a Lorentz scalar linear potential, V(r)=-{lambda}{sub 1}/r+krandV(r)=-{lambda}{sub 1}/randW(r)=kr, respectively, are obtained.
Separability of Hamilton-Jacobi and Klein-Gordon equations in general Kerr-NUT-AdS spacetimes
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.; Krtous, Pavel; Kubiznák, David
2007-02-01
We demonstrate the separability of the Hamilton-Jacobi and scalar field equations in general higher dimensional Kerr-NUT-AdS spacetimes. No restriction on the parameters characterizing these metrics is imposed.
Baczewski, Andrew David; Vikram, Melapudi; Shanker, Balasubramaniam; ...
2010-08-27
Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as O(Ns2Nt2), where Ns and Nt are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation inmore » time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as O(NsNtlog2Nt). Furthermore, several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.« less
Baczewski, Andrew David; Vikram, Melapudi; Shanker, Balasubramaniam; Kempel, Leo
2010-08-27
Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as O(N_{s}^{2}N_{t}^{2}), where N_{s} and N_{t} are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as O(N_{s}N_{t}log^{2}N_{t}). Furthermore, several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.
Bialynicki-Birula, Iwo
2004-07-09
It is shown that electromagnetic vortices can act as beam guides for charged particles. The confinement in the transverse directions is due to the rotation of the electric and magnetic fields around the vortex line. A large class of exact solutions describing various types of relativistic beams formed by an electromagnetic wave with a simple vortex line is found both in the classical and in the quantum case. In the second case, the motion in the transverse direction is fully quantized. Particle trajectories trapped by a vortex are very similar to those in a helical undulator.
2010-06-01
Alex (Booga) and Jenna (Bean) who always make coming home the highlight of my day...BeE, Dx = Ne∧ e=1 Dex, Dy = Ne∧ e=1 Dey Lxx = Ne∧ e=1 Lexx, Lyy = Ne∧ e=1 Leyy, Lxy = Ne∧ e=1 Lexy, Lyx = Ne∧ e=1 Leyx, M b = Nb∧ b=1 mb, Db = Nb∧ b=1...Ωe ψi ∂ψj ∂x dΩe Dey ,ij = ∫ Ωe ψi ∂ψj ∂y dΩe L e xx,ij = ∫ Ωe ∂ψi ∂x ∂ψj ∂x dΩe L e yy,ij = ∫ Ωe ∂ψi ∂y ∂ψj ∂y dΩe Lexy,ij = ∫ Ωe ∂ψi ∂y ∂ψj ∂x
Cook, Richard D.
2016-05-25
The ParaDIS_lib software is a project that is funded by the DOE ASC Program. Its purpose is to provide visualization and analysis capabilities for the existing ParaDIS parallel dislocation dynamics simulation code.
Interactions among periodic waves and solitary waves of the (N+1)-dimensional sine-Gordon field
Lou, S.Y.; Hu Hengchun; Tang Xiaoyan
2005-03-01
Exact solutions of the (n+1)-dimensional sine-Gordon field equation are studied with help of those of the cubic nonlinear Klein-Gordon fields. The mapping relations among the sine-Gordon field equation and the cubic nonlinear Klein-Gordon fields are pure algebraic. By solving the cubic nonlinear Klein-Gordon equations, many new types of exact explicit solutions such as the periodic-periodic interaction waves, periodic-kink interaction waves, periodic perturbed 'snake' shape solitary waves, etc., are displayed both analytically and graphically.
NASA Astrophysics Data System (ADS)
Woltjer, L.
1987-06-01
En la reunion celebrada en diciembre dei ano pasado informe al Consejo de mi deseo de terminar mi contrato como Director General de la ESO una vez que fuera aprobado el proyecto dei VLT, que se espera sucedera hacia fines de este aAo. Cuando fue renovada mi designacion hace tres aAos, el Consejo conocia mi intencion de no completar los cinco aAos dei contrato debido a mi deseo de disponer de mas tiempo para otras actividades. Ahora, una vez terminada la fase preparatoria para el VLT, Y habiendose presentado el proyecto formalmente al Consejo el dia 31 de marzo, y esperando su muy probable aprobacion antes dei termino de este ano, me parece que el 10 de enero de 1988 presenta una excelente fecha para que se produzca un cambio en la administracion de la ESO.
NASA Astrophysics Data System (ADS)
Roy, Arpita; Mahadevan, S.; Chakraborty, A.; Pathan, F. M.; Anandarao, B. G.
2010-01-01
The Physical Research Laboratory Advanced Radial-velocity All-sky Search (PARAS) is an efficient fiber-fed cross-dispersed high-resolution echelle spectrograph that will see first light in early 2010. This instrument is being built at the Physical Research laboratory (PRL) and will be attached to the 1.2m telescope at Gurushikhar Observatory at Mt. Abu, India. PARAS has a single-shot wavelength coverage of 370nm to 850nm at a spectral resolution of R 70000 and will be housed in a vacuum chamber (at 1x10-2 mbar pressure) in a highly temperature controlled environment. This renders the spectrograph extremely suitable for exoplanet searches with high velocity precision using the simultaneous Thorium-Argon wavelength calibration method. We are in the process of developing an automated data analysis pipeline for echelle data reduction and precise radial velocity extraction based on the REDUCE package of Piskunov & Valenti (2002), which is especially careful in dealing with CCD defects, extraneous noise, and cosmic ray spikes. Here we discuss the current status of the PARAS project and details and tests of the data analysis procedure, as well as results from ongoing PARAS commissioning activities.
Noncommutativity and the Friedmann Equations
Sabido, M.; Socorro, J.; Guzman, W.
2010-07-12
In this paper we study noncommutative scalar field cosmology, we find the noncommutative Friedmann equations as well as the noncommutative Klein-Gordon equation, interestingly the noncommutative contributions are only present up to second order in the noncommutitive parameter.
How to Define a Unique Vacuum in Cosmology
NASA Astrophysics Data System (ADS)
Bel, Lluis
Klein-Gordon Equation Quantization of a Scalar Field Robertson-Walker Models Modes Reduction of the Evolution Equation Approximations to the Regular Solutions Critical Points at t = ∞ Special Cases Positive and Negative Energy Modes Concluding Remarks
On defining particles in Robertson-Walker space-times.
NASA Astrophysics Data System (ADS)
Dray, T.
The author considers the semi-classical quantization of the Klein-Gordon field on a Robertson-Walker background. He derives an expression for the density of particles created during an arbitrary time interval using an arbitrary particle definition.
Hawking Temperature of an Arbitrarily Accelerating Black Hole
NASA Astrophysics Data System (ADS)
Pan, Wei-Zhen; Liu, Wei
2014-09-01
Hawking temperature of an arbitrarily accelerating black hole with electric and magnetic charges are obtained based on the Klein-Gordon equation with a correct-dimension new tortoise coordinate transformation.
Quantum Radiation of a Non-stationary Kerr Newman Black Hole in de Sitter Space Time
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Yang, Shu-Zheng
2006-12-01
Hawking radiation of Klein-Gordon and Dirac particles in a non-stationary Kerr-Newman-de-Sitter black hole is studied by introducing a new tortoise coordinate transformation. The result shows that the Fermi-Dirac radiant spectrum displays a new term that represents the interaction between the spin of spinor particles and the rotation of black holes, which is absent in the Bose-Einstein distribution of Klein-Gordon particles.
Planar Para Algebras, Reflection Positivity
NASA Astrophysics Data System (ADS)
Jaffe, Arthur; Liu, Zhengwei
2017-05-01
We define a planar para algebra, which arises naturally from combining planar algebras with the idea of ZN para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects that are invariant under para isotopy. For each ZN, we construct a family of subfactor planar para algebras that play the role of Temperley-Lieb-Jones planar algebras. The first example in this family is the parafermion planar para algebra (PAPPA). Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras, which one can use in the study of quantum information. An important ingredient in planar para algebra theory is the string Fourier transform (SFT), which we use on the matrix algebra generated by the Pauli matrices. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivity by relating the two reflections through the string Fourier transform.
NASA Astrophysics Data System (ADS)
Medina-Tanco, G. A.; Opher, R.
1990-11-01
RESUMEN. Se presentan resultados numericos para un modelo hidrodinamico de cuatro componentes (plasma de fondo, particulas energeticas, ondas de Alfven autogeneradas y campo magnetico) para choques oblicuos. ABSTRACT. Numerical results of a four component hydrodynamic model (background plasma, energetic particles, self-generated Alfven waves and magnetic field) for oblique shocks are presented. Keq wo't : COSMIC RAY-GENERAL - PLASMAS - SHOCK WAVES
El astronauta de la NASA José Hernández alienta a los estudiantes a que sigan sus sueños. Hernández también habla acerca del papel que juegan los padres para ayudar a que sus hijos hagan realidad s...
Duality and helicity: the photon wave function approach
NASA Astrophysics Data System (ADS)
Elbistan, M.; Horváthy, P. A.; Zhang, P.-M.
2017-08-01
The photon wave equation proposed in terms of the Riemann-Silberstein vector is derived from a first-order Dirac/Weyl-type action principle. It is symmetric w.r.t. duality transformations, but the associated Noether quantity vanishes. Replacing the fields by potentials and using instead a quadratic Klein-Gordon-type Lagrangian allows us to recover the double-Chern-Simons expression of conserved helicity and is shown to be equivalent to recently proposed alternative frameworks. Applied to the potential-modified theory the Dirac/Weyl-type approach yields again zero conserved charge, whereas the Klein-Gordon-type approach applied to the original setting yields Lipkin's ;zilch;.
Exact solutions in 3D new massive gravity.
Ahmedov, Haji; Aliev, Alikram N
2011-01-14
We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the "square root" of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.
Scalar bosons under the influence of noninertial effects in the cosmic string spacetime
NASA Astrophysics Data System (ADS)
Santos, L. C. N.; Barros, C. C.
2017-03-01
In this paper we present two different classes of solutions for the Klein-Gordon equation in the presence of a scalar potential under the influence of noninertial effects in the cosmic string spacetime. We show that noninertial effects restrict the physical region of the spacetime where the particle can be placed, and furthermore that the energy levels are shifted by these effects. In addition, we show that the presence of a Coulomb-like scalar potential allows the formation of bound states when the Klein-Gordon equation is considered in this kind of spacetime.
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri; Matos, Tonatiuh
2017-01-01
We develop a hydrodynamic representation of the Klein-Gordon-Maxwell-Einstein equations. These equations combine quantum mechanics, electromagnetism, and general relativity. We consider the case of an arbitrary curved spacetime, the case of weak gravitational fields in a static or expanding background, and the nonrelativistic (Newtonian) limit. The Klein-Gordon-Maxwell-Einstein equations govern the evolution of a complex scalar field, possibly describing self-gravitating Bose-Einstein condensates, coupled to an electromagnetic field. They may find applications in the context of dark matter, boson stars, and neutron stars with a superfluid core.
Exact Solutions in 3D New Massive Gravity
Ahmedov, Haji; Aliev, Alikram N.
2011-01-14
We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the 'square root' of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.
Exact Solutions in 3D New Massive Gravity
NASA Astrophysics Data System (ADS)
Ahmedov, Haji; Aliev, Alikram N.
2011-01-01
We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the “square root” of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.
Programa de conservacion para aves migratorias neotropicales
Deborah Finch; Marcia Wilson; Roberto Roca
1992-01-01
Mas de 250 especies de aves terrestres migran a Norte America durante la epoca reproductiva para aprovechar los sistemas templados. No obstante, las aves migratorias neotropicales pasan la mayor parte de su ciclo de vida en los habitat tropicales y subtropicales de paises latinoamericanos y caribefios donde viven en una asociacion cercana con las aves residentes. Para...
Functional Expression of Drosophila para Sodium Channels
Warmke, Jeffrey W.; Reenan, Robert A.G.; Wang, Peiyi; Qian, Su; Arena, Joseph P.; Wang, Jixin; Wunderler, Denise; Liu, Ken; Kaczorowski, Gregory J.; Ploeg, Lex H.T. Van der; Ganetzky, Barry; Cohen, Charles J.
1997-01-01
The Drosophila para sodium channel α subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (Kd ≅ 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels. PMID:9236205
Using ParaPost Tenax fiberglass and ParaCore build-up material to restore severely damaged teeth.
Caicedo, Ricardo; Castellon, Paulino
2005-01-01
This article describes a technique using ParaPost Tenax Fiber White, ParaPost Cement, and ParaPost ParaCore build-up material to restore a tooth with a significant loss of tooth structure. After successful root canal therapy, the posts were bonded in the canals and the core was built using ParaPost ParaCore build-up material. At that point, the tooth was prepared to receive a conventional porcelain-fused-to-metal crown.
Calcineurin hydrolysis of para-nitrophenyl phosphorothioate.
Spannaus-Martin, Donna J; Martin, Bruce L
2004-04-01
para-Nitrophenyl phosphorothioate (pNPT) was hydrolyzed by calcineurin at initial rates slightly, but comparable to rates for para-nitrophenyl phosphate (pNPP). Kinetic characterization yielded higher estimates for both Km and Vmax compared to pNPP. Metal ion activation of phosphorothioate hydrolysis was more promiscuous. Unlike the hydrolysis of with pNPP, Ca2+, Mg2+, and Ba2+ activated calcineurin as well as Mn2+.
NASA Astrophysics Data System (ADS)
Dyckmanns, Malte; Vaughan, Owen
2017-06-01
We generalise the hyper-Kähler/quaternionic Kähler (HK/QK) correspondence to include para-geometries, and present a new concise proof that the target manifold of the HK/QK correspondence is quaternionic Kähler. As an application, we construct one-parameter deformations of the temporal and Euclidean supergravity c-map metrics and show that they are para-quaternionic Kähler.
Process for para-ethyltoluene dehydrogenation
Chu, C.C.
1986-06-03
A process is described of dehydrogenating para-ethyltoluene to selectively form para-methylstyrene comprising contacting to para-ethyltoluene under dehydrogenation reaction conditions with a catalyst composition comprising: (a) from about 30% to 60% by weight of iron oxide, calculated as ferric oxide; (b) from about 13% to 48% by weight of a potassium compound, calculated as potassium oxide; and (c) from about 0% to 5% by weight of a chromium compound, calculated as chromic oxide. The improvement is described comprising dehydrogenating the para-ethyltoluene with a catalyst composition comprising, in addition to the components (a), (b) and (c), a modifying component (d) capable of rendering the para-methylstyrene-containing dehydrogenation reaction effluent especially resistant to the subsequent formation of popcorn polymers when the dehydrogenation of para-ethyltoluene is conducted over the modified catalyst, the modifying component (d) being a bismuth compound present to the extent of from about 1% to 20% by weight of the catalyst composition, calculated as bismuth trioxide.
A note on para-holomorphic Riemannian-Einstein manifolds
NASA Astrophysics Data System (ADS)
Ida, Cristian; Ionescu, Alexandru; Manea, Adelina
2016-06-01
The aim of this note is the study of Einstein condition for para-holomorphic Riemannian metrics in the para-complex geometry framework. First, we make some general considerations about para-complex Riemannian manifolds (not necessarily para-holomorphic). Next, using a one-to-one correspondence between para-holomorphic Riemannian metrics and para-Kähler-Norden metrics, we study the Einstein condition for a para-holomorphic Riemannian metric and the associated real para-Kähler-Norden metric on a para-complex manifold. Finally, it is shown that every semi-simple para-complex Lie group inherits a natural para-Kählerian-Norden Einstein metric.
Nuevos aspectos en el estudio de la particula D en el experimento FOCUS de Fermilab
Quinones Gonzalez, Jose A.; /Puerto Rico U., Mayaguez
2005-01-01
The purpose of this work is to improve the reconstruction techniques of the decays of the particles that contain charm in the quark composition using the information of the Target Silicon Detector of the experiment E831 (FOCUS). That experiment runs during 1997 to 1998 in Fermilab National Laboratory. The objective of the experiment was improving the understanding of the particles that contain charm. Adding the Target Silicon Detector information in the reconstruction process of the primary vertex the position error. This reduction produces an improvement in the mass signal and the knowledge of the charm particles properties. This ad to the possibility's that in other analysis will use the techniques developed in this work.
The ParaScope parallel programming environment
NASA Technical Reports Server (NTRS)
Cooper, Keith D.; Hall, Mary W.; Hood, Robert T.; Kennedy, Ken; Mckinley, Kathryn S.; Mellor-Crummey, John M.; Torczon, Linda; Warren, Scott K.
1993-01-01
The ParaScope parallel programming environment, developed to support scientific programming of shared-memory multiprocessors, includes a collection of tools that use global program analysis to help users develop and debug parallel programs. This paper focuses on ParaScope's compilation system, its parallel program editor, and its parallel debugging system. The compilation system extends the traditional single-procedure compiler by providing a mechanism for managing the compilation of complete programs. Thus, ParaScope can support both traditional single-procedure optimization and optimization across procedure boundaries. The ParaScope editor brings both compiler analysis and user expertise to bear on program parallelization. It assists the knowledgeable user by displaying and managing analysis and by providing a variety of interactive program transformations that are effective in exposing parallelism. The debugging system detects and reports timing-dependent errors, called data races, in execution of parallel programs. The system combines static analysis, program instrumentation, and run-time reporting to provide a mechanical system for isolating errors in parallel program executions. Finally, we describe a new project to extend ParaScope to support programming in FORTRAN D, a machine-independent parallel programming language intended for use with both distributed-memory and shared-memory parallel computers.
Ortho-para-hydrogen equilibration on Jupiter
NASA Technical Reports Server (NTRS)
Carlson, Barbara E.; Lacis, Andrew A.; Rossow, William B.
1992-01-01
Voyager IRIS observations reveal that the Jovian para-hydrogen fraction is not in thermodynamic equilibrium near the NH3 cloud top, implying that a vertical gradient exists between the high-temperature equilibrium value of 0.25 at depth and the cloud top values. The height-dependent para-hydrogen profile is obtained using an anisotropic multiple-scattering radiative transfer model. A vertical correlation is found to exist between the location of the para-hydrogen gradient and the NH3 cloud, strongly suggesting that paramagnetic conversion on NH3 cloud particle surfaces is the dominant equilibration mechanism. Below the NH3 cloud layer, the para fraction is constant with depth and equal to the high-temperature equilibrium value of 0.25. The degree of cloud-top equilibration appears to depend on the optical depth of the NH3 cloud layer. Belt-zone variations in the para-hydrogen profile seem to be due to differences in the strength of the vertical mixing.
The hydrodynamic vortex: an exactly solvable black hole analogue
NASA Astrophysics Data System (ADS)
Ussembayev, Nail
2016-11-01
We consider the Cauchy problem for the Klein-Gordon equation on an effective Lorentzian manifold describing the sound propagation on a background flow undergoing a subsonic-supersonic transition. For the hydrodynamic vortex model, a particular case of a draining bathtub geometry with non-zero circulation and no draining, we derive an exact solution and discuss its properties.
A geometric description of Maxwell field in a Kerr spacetime
NASA Astrophysics Data System (ADS)
Jezierski, Jacek; Smołka, Tomasz
2016-06-01
We consider the Maxwell field in the exterior of a Kerr black hole. For this system, we propose a geometric construction of generalized Klein-Gordon equation called Fackerell-Ipser equation. Our model is based on conformal Yano-Killing tensor (CYK tensor). We present non-standard properties of CYK tensors in the Kerr spacetime which are useful in electrodynamics.
Relativistic Particle in Electromagnetic Fields with a Generalized Uncertainty Principle
NASA Astrophysics Data System (ADS)
Merad, M.; Zeroual, F.; Falek, M.
2012-05-01
In this paper, we propose to solve the relativistic Klein-Gordon and Dirac equations subjected to the action of a uniform electromagnetic field with a generalized uncertainty principle in the momentum space. In both cases, the energy eigenvalues and their corresponding eigenfunctions are obtained. The limit case is then deduced for a small parameter of deformation.
Perturbative Approaching for Boson Fields' System in a Lewis-Papapetrou Space-Time
Murariu, G.; Dariescu, M. A.; Dariescu, C.
2010-08-04
In this paper the first order solutions of a Klein--Gordon--Maxwell--Einstein coupled system equations were derived for boson fields in a Lewis Papapetrou space time. The results expand the previous static solutions obtained in literature. A main goal is represented by the symbolic script built for such approach.
New Traveling Wave Solutions for a Class of Nonlinear Evolution Equations
NASA Astrophysics Data System (ADS)
Bai, Cheng-Jie; Zhao, Hong; Xu, Heng-Ying; Zhang, Xia
The deformation mapping method is extended to solve a class of nonlinear evolution equations (NLEEs). Many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, and Jacobian elliptic function solutions, are obtained by a simple algebraic transformation relation between the solutions of the NLEEs and those of the cubic nonlinear Klein-Gordon (NKG) equation.
Resonant frequencies of the hydrodynamic vortex
NASA Astrophysics Data System (ADS)
Vieira, H. S.
We study the sound perturbation of the hydrodynamic vortex geometry and present an exact expression for the resonant frequencies (quasispectrum) of this geometry. Exact solution for the radial part of the covariant Klein-Gordon equation in this spacetime is obtained, and is given in terms of the double confluent Heun functions. We found that the resonant frequencies are complex number.
Oscillatons formed by nonlinear gravity
Obregon, Octavio; Urena-Lopez, L. Arturo; Schunck, Franz E.
2005-07-15
Oscillatons are solutions of the coupled Einstein-Klein-Gordon equations that are globally regular and asymptotically flat. By means of a Legendre transformation we are able to visualize the behavior of the corresponding objects in nonlinear gravity where the scalar field has been absorbed by means of the conformal mapping.
Creation of scalar and spin 1/2 particles in an expanding cosmological universe.
NASA Astrophysics Data System (ADS)
Villalba, V. M.; Percoco, U.
The authors find exact solutions to the Klein-Gordon and Dirac wave equations in an expanding Robertson-Walker universe with a positive cosmological constant associated to a universe filled with radiation. They analyze the process of particle creation for the massless solutions.
Numerical Solutions For Fields' Dynamical Evolution In The Robertson- Walker Space - Time
NASA Astrophysics Data System (ADS)
Murariu, Gabriel
2007-04-01
In this paper is considered a Klein-Gordon-Maxwell-Einstein interacting fields system for a complex scalar field minimally coupled to a spherically symmetric Robertson -Walker curved space - time. Time evolutions for the coupled boson system fields are evaluated using numerical methods.
Normal mode solutions of massless scalar field in standard cosmology.
NASA Astrophysics Data System (ADS)
Zecca, A.
1999-06-01
The generalized Klein-Gordon equation is reconsidered in the Robertson-Walker space-time. The separated time equation is integrated in the massless case by assuming the cosmological background of the standard cosmology. Normalized solutions are determined according to the requirement of a quantization procedure implemented by the Minkowski space.
Scalar solutions in spacetimes containing a cosmic string
NASA Astrophysics Data System (ADS)
Fernandes, Sandro G.; Marques, Geusa de A.; Bezerra, V. B.
2006-12-01
Scalar quantum particles are considered in the Kerr Newman, Gödel and Friedmann Robertson Walker spacetimes with a cosmic string passing through them. The solutions of the Klein Gordon equation in these backgrounds are obtained and some of their consequences are discussed, with emphasis on the role played by the presence of the cosmic string.
The Stochastic Nonlinear Damped Wave Equation
Barbu, V. Da Prato, G.
2002-12-19
We prove the existence of an invariant measure for the transition semigroup associated with a nonlinear damped stochastic wave equation in R{sup n} of the Klein-Gordon type. The uniqueness of the invariant measure and the structure of the corresponding Kolmogorov operator are also studied.
Orthogonality criterion for banishing hydrino states from standard quantum mechanics
NASA Astrophysics Data System (ADS)
de Castro, Antonio S.
2007-10-01
Orthogonality criterion is used to shown in a very simple and general way that anomalous bound-state solutions for the Coulomb potential (hydrino states) do not exist as bona fide solutions of the Schr\\"{o}dinger, Klein-Gordon and Dirac equations.
The hydrino and other unlikely states
NASA Astrophysics Data System (ADS)
Dombey, Norman
2006-12-01
We discuss the tightly bound (hydrino) solution of the Klein Gordon equation for the Coulomb potential in 3 dimensions. We show that a similar tightly bound state occurs for the Dirac equation for the Coulomb potential in 2 dimensions. These states are unphysical since they disappear if the nuclear charge distribution is taken to have an arbitrarily small but non-zero radius.
Scalar field conformally coupled to a charged BTZ black hole
NASA Astrophysics Data System (ADS)
Valtancoli, P.
2016-06-01
We study the Klein-Gordon equation of a scalar field conformally coupled to a charged BTZ black hole. The background metric is obtained by coupling a non-linear and conformal invariant Maxwell field to (2 + 1) gravity. We show that the radial part is generally solved by a Heun function and, in the pure gravity limit, by a hypergeometric function.
Vacuum effects in a spatially homogeneous and isotropic cosmological background
NASA Astrophysics Data System (ADS)
Villalba, Victor M.; Percoco, Umberto
1992-03-01
We obtain, by separation of variables, an exact solution to the Klein-Gordon and Dirac equations in a cosmological, spatially-closed, Robertson-Walker space-time with a positive cosmological constant Lambda. The model is associated with a universe filled with radiation. We analyze the phenomenon of particle creation for different values of the dimensionless coupling constant xi.
A new method dealing with hawking effects of evaporating black holes
Zhao, Z.; Dai, X. )
1992-06-28
This paper reports that, both the location and the temperature of event horizons of evaporating black holes can be easily given if one proposes the Klein-Gordon equation approaches the standard form of wave equation near event horizons by using tortoise-type coordinates.
Hawking Temperature of Acoustic Black Hole
NASA Astrophysics Data System (ADS)
Xie, Zhi Kun
2014-09-01
Using a new tortoise coordinate transformation, the Hawking radiation of the acoustic black hole was discussed by studying the Klein-Gordon equation of scalar particles in the curve space-time. It was found that the Hawking temperature is connected with time and position on the event horizon.
Stability properties of Q-stars
NASA Astrophysics Data System (ADS)
Becerril, R.; Bernal, A.; Guzmán, F. S.; Nucamendi, U.
2007-12-01
We present the evolution of Q-star configurations using numerical methods. We solve the full Einstein-Klein-Gordon system of equations and show that: Q-stars can be stable and unstable. The unstable branch is two fold: configurations with negative binding energy that collapse and form black holes, and others with positive binding energy that explode and release the scalar field.
Non-commutative relativistic equation with a Coulomb potential
Zaim, Slimane; Khodja, Lamine; Delenda, Yazid
2012-06-27
We improve the previous study of the Klein-Gordon equation in a non-commutative space-time as applied to the Hydrogen atom to extract the energy levels, by considering the secondorder corrections in the non-commutativity parameter. Phenomenologically we show that noncommutativity plays the role of spin.
Comparison Between Different Numerical Methods for Discretization of PDEs - A Short Review
Mehra, Mani; Patel, Nutan; Kumar, Rahul
2010-09-30
We compare three well known methods for solving the PDEs such as Finite Difference Method (FDM), Spectral Method, Wavelet Galerkin Method (WGM). We test all these methods on Advection Equation and Klein-Gordon Equation. We plot comparison and error graphs using MATLAB.
Lower bounds for sums of eigenvalues of elliptic operators and systems
Ilyin, Aleksei A
2013-04-30
Two-term lower bounds of Berzin-Li-Yau type are obtained for the sums of eigenvalues of elliptic operators and systems with constant coefficients and Dirichlet boundary conditions. The polyharmonic operator, the Stokes system and its generalizations, the two-dimensional buckling problem, and also the Klein-Gordon operator are considered. Bibliography: 32 titles.
Existence of Quasinormal Modes for Kerr-AdS Black Holes
NASA Astrophysics Data System (ADS)
Gannot, Oran
2017-08-01
This paper establishes the existence of quasinormal frequencies converging exponentially to the real axis for the Klein--Gordon equation on a Kerr-AdS spacetime when Dirichlet boundary conditions are imposed at the conformal boundary. The proof is adapted from results in Euclidean scattering about the existence of scattering poles generated by time-periodic approximate solutions to the wave equation.
Non-Hermitian interaction representation and its use in relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Znojil, Miloslav
2017-10-01
The textbook interaction-picture formulation of quantum mechanics is extended to cover the unitarily evolving systems in which the Hermiticity of the observables is guaranteed via an ad hoc amendment of the inner product in Hilbert space. These systems are sampled by the Klein-Gordon equation with a space- and time-dependent mass term.
Notes on oscillator-like interactions of various spin relativistic particles
NASA Technical Reports Server (NTRS)
Dvoeglazov, Valeri V.; Delsolmesa, Antonio
1995-01-01
The equations for various spin particles with oscillator-like interactions are discussed in this talk. Topics discussed include: (1) comment on 'The Klein-Gordon Oscillator'; (2) the Dirac oscillator in quaternion form; (3) the Dirac-Dowker oscillator; (4) the Weinberg oscillator; and (5) note on the two-body Dirac oscillator.
Para-methylstyrene from toluene and acetaldehyde
Innes, R.A.; Occelli, M.L.
1984-08-01
High yields of para-methylstyrene (PMS) were obtained in this study by coupling toluene and acetaldehyde then cracking the resultant 1,1-ditolylethane (DTE) to give equimolar amounts of PMS and toluene. In the first step, a total DTE and ''trimer'' yield of 98% on toluene and 93% on acetaldehyde was obtained using 98% sulfuric acid as catalyst at 5-10/sup 0/C. In the second step, a choline chloride-offretite cracked DTE with 84.0% conversion and 91% selectivity to PMS and toluene. Additional PMS can be obtained by cracking the by-product ''trimer'' formed by coupling DTE and toluene with acetaldehyde. Zeolite Rho was as active but yielded less PMS (86%) and produced more para-ethyltoluene (PET), an undesirable by-product.
Para Bombay phenotype--a case report.
Mathai, J; Sulochana, P V; Sathyabhama, S
1997-10-01
Bombay phenotype is peculiar in that red cells are not agglutinated by antisera A, B or H; while serum contains anti A, B and H. Existence of modifying genes at independent loci with variable expression of ABO genes is postulated. We report here a case of partial suppression where antigens could be detected by elution tests and unlike classical Bombay type, normal amount of appropriate blood group substances were present in saliva. This case of para Bombay phenotype was detected as a result of discrepancy in cell and serum group ng. This highlights the importance of both forward and reverse grouping in ABO testing.
On q-DEFORMED Para Oscillators and PARA-q Oscillators
NASA Astrophysics Data System (ADS)
Kumari, M. Krishna; Shanta, P.; Chaturvedi, S.; Srinivasan, V.
Three generalized commutation relations for a single mode of the harmonic oscillator which contains para-bose and q oscillator commutation relations are constructed. These are shown to be inequivalent. The coherent states of the annihilation operator for these three cases are also constructed.
Allergic contact dermatitis to para-phenylenediamine.
Jenkins, David; Chow, Elizabeth T
2015-02-01
Exposure to hair dye is the most frequent route of sensitisation to para-phenylenediamine (PPD), a common contact allergen. International studies have examined the profile of PPD, but Australian-sourced information is lacking. Patients are often dissatisfied with advice to stop dyeing their hair. This study examines patients' characteristics, patch test results and outcomes of PPD allergy from a single Australian centre, through a retrospective analysis of patch test data from 2006 to 2013 at the Liverpool Hospital Dermatology Department. It reviews the science of hair dye allergy, examines alternative hair dyes and investigates strategies for hair dyeing. Of 584 patients, 11 were allergic to PPD. Our PPD allergy prevalence rate of 2% is at the lower end of international reported rates. About half these patients also react to para-toluenediamine (PTD). Affected patients experience a significant lifestyle disturbance. In all, 78% tried alternative hair dyes after the patch test diagnosis and more than half continued to dye their hair. Alternative non-PPD hair dyes are available but the marketplace can be confusing. Although some patients are able to tolerate alternative hair dyes, caution is needed as the risk of developing an allergy to other hair dye ingredients, especially PTD, is high.
Sensitization to para-tertiary-butylphenolformaldehyde resin.
Massone, L; Anonide, A; Borghi, S; Usiglio, D
1996-03-01
Phenolformaldehyde resins, especially the para-tertiary-butylphenolformaldehyde resin (PTBP-FR), are widely used in industry and in numerous materials of everyday use, such as glues, adhesives, or inks. They can cause many occupational and nonoccupational cases of dermatitis. Forty-one patients with positive patch test results to PTBP-FR were selected for this study. They were patch-tested with a series of chemically related compounds and cross-reactions were noted. Phenolformaldehyde resin (PF-R) was frequently positive (65.8%), whereas other compounds gave a much smaller number of positive results. Cases of occupational exposure (24.4%), location of the dermatitis (hands were involved in 46.3% of cases), and possible sources of exposure (shoes were the responsible agent in 12.2% of cases) were evaluated. Phenolformaldehyde resins are an important cause of contact dermatitis and must be studied chemically and clinically to improve the prognosis of sensitized patients.
[Laparoscopic treatment of para-esophageal hernias].
Collet, D; Wagner, T; Sa Cunha, A; Rault, A; Masson, B
2006-10-01
This retrospective study aims at analyzing the functional results obtained in patients operated by laparoscopy for a para-esophageal hernia. From 1994 to 2004, 38 patients underwent a laparoscopic procedure for a symptomatic para-esophageal hiatal hernia of at least 3/4 of the proximal stomach: 27 females and 11 males, mean age 65 years (extreme: 22-84). There was no case on emergency, 4 patients had have at least one episode of intrathoracic volvulus. The operation consisted in gastric reduction into the abdominal cavity, excision of the sac, suture of the crura reinforced with a mesh in 6 patients and the construction of a gastric wrap. A postoperative barium swallow was performed on POD 3 in order to confirm the anatomical result. Mean operating time was 157 minutes (75-480), no case was converted into laparotomy. Four postoperative complications were observed (morbidity 10.8%): one gastric perforation diagnosed on POD 1, 2 severe dysphagias linked to the wrap, and one atelectasia. There was no death in this series. Functional results were evaluated by the mean of a questionnaire in 33 patients who had a follow up more than 6 months. Thirty-three questionnaires have been sent, 3 patients were lost and one was dead. Among the 29 patients analyzed, 14 were very satisfied, 11 were satisfied and 3 were deceived by the operation. Best results are obtained in patients with GERD, dysphagia or postprandial cardiothoracic symptoms. These results compared to the published data allow us to discuss about indications of surgery, the necessity to removal the hernia sac, and the advantages to reinforce the crura by the mean of a non absorbable mesh.
Time domain para hydrogen induced polarization.
Ratajczyk, Tomasz; Gutmann, Torsten; Dillenberger, Sonja; Abdulhussaein, Safaa; Frydel, Jaroslaw; Breitzke, Hergen; Bommerich, Ute; Trantzschel, Thomas; Bernarding, Johannes; Magusin, Pieter C M M; Buntkowsky, Gerd
2012-01-01
Para hydrogen induced polarization (PHIP) is a powerful hyperpolarization technique, which increases the NMR sensitivity by several orders of magnitude. However the hyperpolarized signal is created as an anti-phase signal, which necessitates high magnetic field homogeneity and spectral resolution in the conventional PHIP schemes. This hampers the application of PHIP enhancement in many fields, as for example in food science, materials science or MRI, where low B(0)-fields or low B(0)-homogeneity do decrease spectral resolution, leading to potential extinction if in-phase and anti-phase hyperpolarization signals cannot be resolved. Herein, we demonstrate that the echo sequence (45°-τ-180°-τ) enables the acquisition of low resolution PHIP enhanced liquid state NMR signals of phenylpropiolic acid derivatives and phenylacetylene at a low cost low-resolution 0.54 T spectrometer. As low field TD-spectrometers are commonly used in industry or biomedicine for the relaxometry of oil-water mixtures, food, nano-particles, or other systems, we compare two variants of para-hydrogen induced polarization with data-evaluation in the time domain (TD-PHIP). In both TD-ALTADENA and the TD-PASADENA strong spin echoes could be detected under conditions when usually no anti-phase signals can be measured due to the lack of resolution. The results suggest that the time-domain detection of PHIP-enhanced signals opens up new application areas for low-field PHIP-hyperpolarization, such as non-invasive compound detection or new contrast agents and biomarkers in low-field Magnetic Resonance Imaging (MRI). Finally, solid-state NMR calculations are presented, which show that the solid echo (90y-τ-90x-τ) version of the TD-ALTADENA experiment is able to convert up to 10% of the PHIP signal into visible magnetization.
The para-Bombay phenotype in Chinese persons.
Lin-Chu, M; Broadberry, R E; Tsai, S J; Chiou, P W
1987-01-01
The para-Bombay phenotype occurs more frequently in Oriental than in white populations. This report describes the immunohematologic findings in 20 cases of the para-Bombay phenotype detected over a period of about 15 months in the Chinese population of Taiwan.
Cooling by Para-to-Ortho-Hydrogen Conversion
NASA Technical Reports Server (NTRS)
Sherman, A.; Nast, T.
1983-01-01
Catalyst speeds conversion, increasing capacity of solid hydrogen cooling system. In radial-flow catalytic converter, para-hydrogen is converted to equilibrium mixture of para-hydrogen and ortho-hydrogen as it passes through porous cylinder of catalyst. Addition of catalyst increases capacity of hydrogen sublimation cooling systems for radiation detectors.
Requisitos para utilizar el enlace | Smokefree Español
Espanol.smokefree.gov ofrece apoyo y recursos para norteamericanos que hablan español y quieren dejar de fumar. Este sitio en la red fue creada por la División de Investigación para el Control del Tabaco del Instituto Nacional del Cáncer.
A nontraumatic para-aortic lymphocele complicating nephrolithiasis.
Hyson, E A; Belleza, N A; Lowman, R M
1977-09-01
Many cases of traumatic para-aortic lymphocele have been reported. Recently, a case of nontraumatic para-aortic lymphocele was investigated. The etiologic consideration for this lymphocele formation is either a localized inflammatory process, or fibrosis induced by prior passage of calculi.
Towards a double field theory on para-Hermitian manifolds
NASA Astrophysics Data System (ADS)
Vaisman, Izu
2013-12-01
In a previous paper, we have shown that the geometry of double field theory has a natural interpretation on flat para-Kähler manifolds. In this paper, we show that the same geometric constructions can be made on any para-Hermitian manifold. The field is interpreted as a compatible (pseudo-)Riemannian metric. The tangent bundle of the manifold has a natural, metric-compatible bracket that extends the C-bracket of double field theory. In the para-Kähler case, this bracket is equal to the sum of the Courant brackets of the two Lagrangian foliations of the manifold. Then, we define a canonical connection and an action of the field that correspond to similar objects of double field theory. Another section is devoted to the Marsden-Weinstein reduction in double field theory on para-Hermitian manifolds. Finally, we give examples of fields on some well-known para-Hermitian manifolds.
Towards a double field theory on para-Hermitian manifolds
Vaisman, Izu
2013-12-15
In a previous paper, we have shown that the geometry of double field theory has a natural interpretation on flat para-Kähler manifolds. In this paper, we show that the same geometric constructions can be made on any para-Hermitian manifold. The field is interpreted as a compatible (pseudo-)Riemannian metric. The tangent bundle of the manifold has a natural, metric-compatible bracket that extends the C-bracket of double field theory. In the para-Kähler case, this bracket is equal to the sum of the Courant brackets of the two Lagrangian foliations of the manifold. Then, we define a canonical connection and an action of the field that correspond to similar objects of double field theory. Another section is devoted to the Marsden-Weinstein reduction in double field theory on para-Hermitian manifolds. Finally, we give examples of fields on some well-known para-Hermitian manifolds.
a New Equation of State for Solid para-HYDROGEN
NASA Astrophysics Data System (ADS)
Wang, Lecheng; Le Roy, Robert J.; Roy, Pierre-Nicholas
2015-06-01
Solid para-H_2 is a popular accommodating host for impurity spectroscopy due to its unique softness and the spherical symmetry of para-H_2 in its J}=0 rotational level. To simulate the properties of impurity-doped solid para-H_2, a reliable model for the `soft' pure solid para-H_2 at different pressures is highly desirable. While a couple of experimental and theoretical studies aimed at elucidating the equation of state (EOS) of solid para-H_2 have been reported, the calculated EOS was shown to be heavily dependent on the potential energy surface (PES) between two para-H_2 that was used in the simulations. The current study also demonstrates that different choices of the parameters governing the Quantum Monte Carlo simulation could produce different EOS curves. To obtain a reliable model for pure solid para-H_2, we used a new 1-D para-H_2 PES reported by Faruk et al. that was obtained by averaging over Hinde's highly accurate 6-D H_2--H_2 PES. The EOS of pure solid para-H_2 was calculated using the PIMC algorithm with periodic boundary conditions (PBC). To precisely determine the equilibrium density of solid para-H_2, both the value of the PIMC time step (τ) and the number of particles in the PBC cell were extrapolated to convergence. The resulting EOS agreed well with experimental observations, and the hcp structured solid para-H_2 was found to be more stable than the fcc one at 4.2K, in agreement with experiment. The vibrational frequency shift of para-H_2 as a function of the density of the pure solid was also calculated, and the value of the shift at the equilibrium density is found to agree well with experiment. T. Momose, H. Honshina, M. Fushitani and H. Katsuki, Vib. Spectrosc. 34, 95(2004). M. E. Fajardo, J. Phys. Chem. A 117, 13504 (2013). I. F. Silvera, Rev. Mod. Phys. 52, 393(1980). F. Operetto and F. Pederiva, Phys. Rev. B 73, 184124(2006). T. Omiyinka and M. Boninsegni, Phys. Rev. B 88, 024112(2013). N. Faruk, M. Schmidt, H. Li, R. J. Le Roy, and P
ParaDiS-FEM dislocation dynamics simulation code primer
Tang, M; Hommes, G; Aubry, S; Arsenlis, A
2011-09-27
The ParaDiS code is developed to study bulk systems with periodic boundary conditions. When we try to perform discrete dislocation dynamics simulations for finite systems such as thin films or cylinders, the ParaDiS code must be extended. First, dislocations need to be contained inside the finite simulation box; Second, dislocations inside the finite box experience image stresses due to the free surfaces. We have developed in-house FEM subroutines to couple with the ParaDiS code to deal with free surface related issues in the dislocation dynamics simulations. This primer explains how the coupled code was developed, the main changes from the ParaDiS code, and the functions of the new FEM subroutines.
Cooling by conversion of para to ortho-hydrogen
NASA Technical Reports Server (NTRS)
Sherman, A. (Inventor)
1983-01-01
The cooling capacity of a solid hydrogen cooling system is significantly increased by exposing vapor created during evaporation of a solid hydrogen mass to a catalyst and thereby accelerating the endothermic para-to-ortho transition of the vapor to equilibrium hydrogen. Catalyst such as nickel, copper, iron or metal hydride gels of films in a low pressure drop catalytic reactor are suitable for accelerating the endothermic para-to-ortho conversion.
Ortho- and para-hydrogen in neutron thermalization
Daemen, L. L.; Brun, T. O.
1998-01-01
The large difference in neutron scattering cross-section at low neutron energies between ortho- and para-hydrogen was recognized early on. In view of this difference (more than an order of magnitude), one might legitimately ask whether the ortho/para ratio has a significant effect on the neutron thermalization properties of a cold hydrogen moderator. Several experiments performed in the 60`s and early 70`s with a variety of source and (liquid hydrogen) moderator configurations attempted to investigate this. The results tend to show that the ortho/para ratio does indeed have an effect on the energy spectrum of the neutron beam produced. Unfortunately, the results are not always consistent with each other and much unknown territory remains to be explored. The problem has been approached from a computational standpoint, but these isolated efforts are far from having examined the ortho/para-hydrogen problem in neutron moderation in all its complexity. Because of space limitations, the authors cannot cover, even briefly, all the aspects of the ortho/para question here. This paper will summarize experiments meant to investigate the effect of the ortho/para ratio on the neutron energy spectrum produced by liquid hydrogen moderators.
Bosonic pair creation and the Schiff-Snyder-Weinberg effect
NASA Astrophysics Data System (ADS)
Lv, Q. Z.; Bauke, Heiko; Su, Q.; Keitel, C. H.; Grobe, R.
2016-01-01
Interactions between different bound states in bosonic systems can lead to pair creation. We study this process in detail by solving the Klein-Gordon equation on space-time grids in the framework of time-dependent quantum field theory. By choosing specific external field configurations, two bound states can become pseudodegenerate, which is commonly referred to as the Schiff-Snyder-Weinberg effect. These pseudodegenerate bound states, which have complex energy eigenvalues, are related to the pseudo-Hermiticity of the Klein-Gordon Hamiltonian. In this work, the influence of the Schiff-Snyder-Weinberg effect on pair production is studied. A generalized Schiff-Snyder-Weinberg effect, where several pairs of pseudodegenerate states appear, is found in combined electric and magnetic fields. The generalized Schiff-Snyder-Weinberg effect likewise triggers pair creation. The particle number in these situations obeys an exponential growth law in time enhancing the creation of bosons, which cannot be found in fermionic systems.
Bose-Einstein condensates and scalar fields; exploring the similitudes
NASA Astrophysics Data System (ADS)
Castellanos, E.; Macías, A.; Núñez, D.
2014-01-01
We analyze the the remarkable analogy between the classical Klein-Gordon equation for a test scalar field in a flat and also in a curved background, and the Gross-Pitaevskii equation for a Bose-Einstein condensate trapped by an external potential. We stress here that the solution associated with the Klein-Gordon equation (KG) in a flat space time has the same mathematical structure, under certain circumstances, to those obtained for the Gross-Pitaevskii equation, that is, a static soliton solution. Additionally, Thomas-Fermi approximation is applied to the 3-dimensional version of this equation, in order to calculate some thermodynamical properties of the system in curved a space-time back ground. Finally, we stress the fact that a gravitational background provides, in some cases, a kind of confining potential for the scalar field, allowing us to remarks even more the possible connection between scalar fields and the phenomenon of Bose-Einstein condensation.
Photon mirror acceleration in the quantum regime
NASA Astrophysics Data System (ADS)
Mendonça, J. T.; Fedele, R.
2014-12-01
Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.
Relativistic effects in elastic scattering of electrons in TEM.
Rother, Axel; Scheerschmidt, Kurt
2009-01-01
Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.
Quantum particle probe of the Kerr naked singularity
NASA Astrophysics Data System (ADS)
Gurtug, O.; Halilsoy, M.
2017-01-01
We investigate Kerr's timelike naked singularity within the framework of quantum mechanics. A quantum particle in the form of a massive boson is sent in the plane θ = π/2 to the naked ring singularity of Kerr which develops for the overspinning case (a>M) to test it from a quantum picture. This singularity is analysed in two different coordinate systems. We show that the spatial operator of the Klein-Gordon equation both in Boyer-Lindquist and in the dragging coordinate systems has a unique self-adjoint extension. As a result, the classical Kerr's ring singularity becomes quantum regular, if it is probed with massive bosonic particles obeying the Klein-Gordon equation.
Strong-field Breit-Wheeler pair production in short laser pulses: Relevance of spin effects
NASA Astrophysics Data System (ADS)
Jansen, M. J. A.; Kamiński, J. Z.; Krajewska, K.; Müller, C.
2016-07-01
Production of electron-positron pairs in the collision of a high-energy photon with a high-intensity few-cycle laser pulse is studied. By utilizing the frameworks of laser-dressed spinor and scalar quantum electrodynamics, a comparison between the production of pairs of Dirac and Klein-Gordon particles is drawn. Positron energy spectra and angular distributions are presented for various laser parameters. We identify conditions under which predictions from Klein-Gordon theory either closely resemble or largely differ from those of the proper Dirac theory. In particular, we address the question to which extent the relevance of spin effects is influenced by the short duration of the laser pulse.
The two-dimensional Euler-Poisson system with spherical symmetry
NASA Astrophysics Data System (ADS)
Jang, Juhi
2012-02-01
This article concerns the global-in-time existence of smooth solutions with small amplitude to two space dimensional Euler-Poisson system. The main difficulty lies in the slow time decay (1 + t)-1 of the linear system. Inspired by the work of Ozawa et al., ["Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions," Math. Z. 222, 341-362 (1996), 10.1007/BF02621870; "Remarks on the Klein-Gordon equation with quadratic nonlinearity in two space dimensions," in Nonlinear Waves, Gakuto International Series: Mathematical Sciences and Applications Vol. 10 (Gakkotosho, Tokyo, 1997), pp. 383-392,] we show that such smooth solutions exist for radially symmetric flows.
On the adiabatic limit of Hadamard states
NASA Astrophysics Data System (ADS)
Drago, Nicolò; Gérard, Christian
2017-08-01
We consider the adiabatic limit of Hadamard states for free quantum Klein-Gordon fields, when the background metric and the field mass are slowly varied from their initial to final values. If the Klein-Gordon field stays massive, we prove that the adiabatic limit of the initial vacuum state is the (final) vacuum state, by extending to the symplectic framework the adiabatic theorem of Avron-Seiler-Yaffe. In cases when only the field mass is varied, using an abstract version of the mode decomposition method we can also consider the case when the initial or final mass vanishes, and the initial state is either a thermal state or a more general Hadamard state.
Photon mirror acceleration in the quantum regime
Mendonça, J. T.; Fedele, R.
2014-12-15
Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.
NASA Astrophysics Data System (ADS)
Sater, Julien
The theory of Artificial Boundary Conditions described by Antoine et al. [2,4-6] for the Schrodinger equation is applied to the Klein-Gordon (KG) in two-dimensions (2-D) for spinless particles subject to electromagnetic fields. We begin by providing definitions for a basic understanding of the theory of operators, differential geometry and wave front sets needed to discuss the factorization theorem thanks to Nirenberg and Hormander [14, 16]. The laser-free Klein-Gordon equation in 1-D is then discussed, followed by the case including electrodynamics potentials, concluding with the KG equation in 2-D space with electrodynamics potentials. We then consider numerical simulations of the laser-particle KG equation, which includes a brief analysis of a finite difference scheme. The conclusion integrates a discussion of the numerical results, the successful completion of the objective set forth, a declaration of the unanswered encountered questions and a suggestion of subjects for further research.
Geometric creation of quantum vorticity
NASA Astrophysics Data System (ADS)
Good, Michael R. R.; Xiong, Chi; Chua, Alvin J. K.; Huang, Kerson
2016-11-01
We consider superfluidity and quantum vorticity in rotating spacetimes. The system is described by a complex scalar satisfying a nonlinear Klein-Gordon equation. Rotation terms are identified and found to lead to the transfer of angular momentum of the spacetime to the scalar field. The scalar field responds by rotating, physically behaving as a superfluid, through the creation of quantized vortices. We demonstrate vortex nucleation through numerical simulation.
Spectral stability of periodic waves in the generalized reduced Ostrovsky equation
NASA Astrophysics Data System (ADS)
Geyer, Anna; Pelinovsky, Dmitry E.
2017-02-01
We consider stability of periodic travelling waves in the generalized reduced Ostrovsky equation with respect to co-periodic perturbations. Compared to the recent literature, we give a simple argument that proves spectral stability of all smooth periodic travelling waves independent of the nonlinearity power. The argument is based on the energy convexity and does not use coordinate transformations of the reduced Ostrovsky equations to the semi-linear equations of the Klein-Gordon type.
1988-09-01
decomposed into a series of associated aperiodic solitary waves, as can be achieved for solutions of the KdV equation [11], is still under investigation. 3...The organization of the paper is as follows: In Section 2, we discuss aperiodic and periodic solitary wave solutions of a model equation with...Periodic Solitary Wave Solutions of the Nonlinear Klein Gordon Equation without Dispersion We shall take, as our model equation , the nonlinear Klein
NASA Astrophysics Data System (ADS)
Hamzavi, Majid; Rajabi, Ali Akbar; Amirfakhrian, Majid
2013-09-01
The trigonometric Pöschl-Teller (PT) potential describes the diatomic molecular vibration. In this paper, we study the approximate solutions of the radial Klein-Gordon (KG) equation for the rotating trigonometric PT potential using the Nikiforov-Uvarov (NU) method. The energy eigenvalues and their corresponding eigenfunctions are calculated for arbitrary l-states in closed form. We obtain the non-relativistic limit and present some numerical results for both relativistic and non-relativistic cases.
Foundation of Hydrodynamics of Strongly Interacting Systems
Wong, Cheuk-Yin
2014-01-01
Hydrodynamics and quantum mechanics have many elements in common, as the density field and velocity fields are common variables that can be constructed in both descriptions. Starting with the Schroedinger equation and the Klein-Gordon for a single particle in hydrodynamical form, we examine the basic assumptions under which a quantum system of particles interacting through their mean fields can be described by hydrodynamics.
Quasinormal modes of a two-dimensional black hole
NASA Astrophysics Data System (ADS)
Estrada-Jiménez, S.; Gómez-Díaz, J. R.; López-Ortega, A.
2013-11-01
For a two-dimensional black hole we determine the quasinormal frequencies of the Klein-Gordon and Dirac fields. In contrast to the well known examples whose spectrum of quasinormal frequencies is discrete, for this black hole we find a continuous spectrum of quasinormal frequencies, but there are unstable quasinormal modes. In the framework of the Hod and Maggiore proposals we also discuss the consequences of these results on the form of the entropy spectrum for the two-dimensional black hole.
Blowup results for the KGS system with higher order Yukawa coupling
Shi, Qi-Hong; Li, Wan-Tong; Wang, Shu
2015-10-15
In this paper, we investigate the Klein-Gordon-Schrödinger (KGS) system with higher order Yukawa coupling in spatial dimensions N ≥ 3. We establish a perturbed virial type identity and prove blowup results relied on Lyapunov functionals for KGS system with a negative energy level. Additionally, we give a result with respect to the blowup rate in finite time for the radial solution in 3 spatial dimensions.
NASA Astrophysics Data System (ADS)
Abbassi, Amir H.; Khosravi, Sh.; Abbassi, Amir M.
We present our derivations for Kerr-de Sitter metric in a proper comoving coordinate system. It asymptotically approaches to the de Sitter metric in Robertson-Walker form. This has been done by considering the stationary axially-symmetric space-time in which motion of particle is integrable. That is the Hamilton-Jacobi and Klein-Gordon equations are separable. In this form it is asymptotically consistent with comoving frame.
Creation of Scalar and Dirac Particles in Asymptotically Flat Robertson-Walker Spacetimes
NASA Astrophysics Data System (ADS)
Moradi, Shahpoor
2008-11-01
In the present article we obtain the exact solutions of the Klein-Gordon and Dirac equations for two models of Robertson-Walker spaces with asymptotically Minkowskian regions. Using the obtained exact solutions we calculate the density of scalar and Dirac particles created through Bogolubov transformations technique. For Dirac field it is shown that the creation rate of particles and anti particles are equal.
Gauge-invariant perturbations at second order: multiple scalar fields on large scales
NASA Astrophysics Data System (ADS)
Malik, Karim A.
2005-11-01
We derive the governing equations for multiple scalar fields minimally coupled to gravity in a flat Friedmann Robertson Walker background spacetime on large scales. We include scalar perturbations up to second order and write the equations in terms of physically transparent gauge-invariant variables at first and second order. This allows us to write the perturbed Klein Gordon equation at second order solely in terms of the field fluctuations on flat slices at first and second order.
NASA Astrophysics Data System (ADS)
Haouat, S.; Chekireb, R.
2012-06-01
The influence of electromagnetic fields on the creation of scalar particles from vacuum in a flat Robertson-Walker space-time is studied. The Klein-Gordon equation with varying electric field and constant magnetic one is solved. The Bogoliubov transformation method is applied to calculate the pair creation probability and the number density of created particles. It is shown that the electric field amplifies the creation of scalar particles while the magnetic field minimizes it.
Lagrangian form of Schrödinger equation
NASA Astrophysics Data System (ADS)
Arsenović, D.; Burić, N.; Davidović, D. M.; Prvanović, S.
2014-07-01
Lagrangian formulation of quantum mechanical Schrödinger equation is developed in general and illustrated in the eigenbasis of the Hamiltonian and in the coordinate representation. The Lagrangian formulation of physically plausible quantum system results in a well defined second order equation on a real vector space. The Klein-Gordon equation for a real field is shown to be the Lagrangian form of the corresponding Schrödinger equation.
Model of Decaying Dark Energy Based on the Kaluza-Klein Theory
NASA Astrophysics Data System (ADS)
Zakirov, U. N.
2017-08-01
On the basis of a scalar potential associated with Beltrami's geometry - manifolds of constant negative curvature, the Klein-Gordon problem has been solved, making it possible, under the assumption of a physical structure of the fifth dimension (presumably a rich form of matter), to model on the basis of the Kaluza-Klein theory the hypothesis of decaying dark energy configuring the rates of expansion of the Universe.
Spectral stability of periodic waves in the generalized reduced Ostrovsky equation
NASA Astrophysics Data System (ADS)
Geyer, Anna; Pelinovsky, Dmitry E.
2017-07-01
We consider stability of periodic travelling waves in the generalized reduced Ostrovsky equation with respect to co-periodic perturbations. Compared to the recent literature, we give a simple argument that proves spectral stability of all smooth periodic travelling waves independent of the nonlinearity power. The argument is based on the energy convexity and does not use coordinate transformations of the reduced Ostrovsky equations to the semi-linear equations of the Klein-Gordon type.
Vacuum effects in a spatially homogeneous and isotropic cosmological background.
NASA Astrophysics Data System (ADS)
Villalba, V. M.; Percoco, U.
The authors obtain, by separation of variables, an exact solution to the Klein Gordon equation in a cosmological, spatially closed, Robertson-Walker space-time with a positive cosmological constant. The model is associated with a universe filled with radiation. The authors analyze the phenomenon of particle creation for different values of the dimensionless coupling constant. They discuss the relevance of the cosmological constant in this process.
On the tail problem in cosmology
NASA Astrophysics Data System (ADS)
Faraoni, Valerio; Sonego, Sebastiano
1992-11-01
The tail problem for the propagation of a scalar field is considered in a cosmological background, taking a Robertson-Walker spacetime as a specific example. The explicit radial dependence of the general solution of the Klein-Gordon equation with non-minimal coupling is derived, and the inapplicability of the standard calculation of the reflection and transmission coefficients to the study of scattering of waves by the cosmological curvature is discussed.
1982-12-01
Dirac matrices . Again, the Klein-Gordon equation can be replaced by the Proca equation, and this leads to the algebra of Duffin-Kemer matrices . A...interesting questions in algebra. In particular, the research has concerned network determinants Grassmann algebra, Wang algebra, matroids, and matrices ...equivalent matrices arising in linear programming. Various other types of network interconnections can be defined and this leads to associated sum operations
On the correspondence between quantum and classical variational principles
Ruiz, D. E.; Dodin, I. Y.
2015-06-10
Here, classical variational principles can be deduced from quantum variational principles via formal reparameterization of the latter. It is shown that such reparameterization is possible without invoking any assumptions other than classicality and without appealing to dynamical equations. As examples, first principle variational formulations of classical point-particle and cold-fluid motion are derived from their quantum counterparts for Schrodinger, Pauli, and Klein-Gordon particles.
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2014-03-01
I am grateful for this chance to return to Stockholm and speak in honor of a great theoretical physicist, Oskar Klein. All physicists know of Klein's famous contributions to quantum mechanics, recalled to us when we speak of the Klein-Nishina formula, the Klein paradox, and the Klein-Gordon equation. More than that, Klein seems to have had the gift of prophecy -- he could see farther into the future of physics than is given to most of us...
Rindler effect for a nonuniformly accelerating observer
Zhu Jian-yang; Bao Aidong; Zhao Zheng
1995-10-01
Both the Klein-Gordon equation and the Dirac equation are dealt with in the generalized Rindler space-time of a nonuniformly accelerating observer. Making use of a new method and introducing a tortoise-type coordinate transformation, it is proved that there exist an event horizon and thermal radiation depending on time in the space-time. The Hawking-Unruh temperature is proportional to the variable acceleration.
Exact Solutions of Relativistic Bound State Problem for Spinless Bosons
NASA Astrophysics Data System (ADS)
Aslanzadeh, M.; Rajabi, A. A.
2017-01-01
We investigated in detail the relativistic bound states of spin-zero bosons under the influence of Coulomb-plus-linear potentials with an arbitrary combination of scalar and vector couplings. Through an exact analytical solution of three-dimensional Klein-Gordon equation, closed form expressions were derived for energy eigenvalues and wave functions and some correlations between potential parameters were found. We also presented the relativistic description of bound states and nonrelativistic limit of the problem in some special cases.
Dynamics of nonrelativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Efthimiades, Spyros
2017-01-01
We show that the wavefunction of an electron interacting with an electric potential is accurately represented by the superposition of plane waves that fulfills the total energy relation. As a result, we explicitly derive the Schrödinger, Pauli, Klein-Gordon, and Dirac equations. While the traditional nonrelativistic quantum dynamics is based on postulates, the dynamics we introduce is theoretically justified, in agreement with experimental measurements, and consistent with the fundamental theory of quantum electrodynamics.
Equilibrium Configuration of Φ4 Oscillatons
NASA Astrophysics Data System (ADS)
Valdez-Alvarado, Susana; Becerril, Ricardo; Ureña-López, L. Arturo
2010-07-01
We search for equilibrium configurations of the (coupled) Einstein-Klein-Gordon equations for the case of a real scalar field endowed with a quartic self-interaction potential. The resulting solutions are the generalizations of the (massive) oscillating soliton stars, the so-called oscillatons. Among other parameters, we estimate the mass curve of the configurations, and determine their critical mass for different values of the quartic interaction.
Evolution of boson-fermion stars
NASA Astrophysics Data System (ADS)
Valdez-Alvarado, Susana; Palenzuela, Carlos; Alic, Daniela; Ureña-López, L. Arturo; Becerril, Ricardo
2012-08-01
The boson-fermion stars can be modeled with a complex scalar field coupled minimally to a perfect fluid (i.e., without viscosity and non-dissipative). We present a study of these solutions and their dynamical evolution by solving numerically the Einstein-Klein-Gordon-Hydrodynamic (EKGHD) system. It is shown that stable configurations exist, but stability of general configurations depends finely upon the number of bosons and fermions.
NASA Astrophysics Data System (ADS)
Liu, Hong-Zhun; Sun, Xiao-Quan; Chen, Li-Jiang
2014-07-01
This article shows that all novel exact solutions in the commented paper are not admitted by the original generalized Klein-Gordon equation and active-dissipative dispersive media equation. In addition, we present general solutions of certain auxiliary equation with sixth-degree nonlinear term. Then, based on above general solutions, we find that five cases in their Table 1 is shown to be incorrect.
Single-Particle Quantum Dynamics in a Magnetic Lattice
Venturini, Marco
2001-02-01
We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.
Equilibrium Configuration of {Phi}{sup 4} Oscillatons
Valdez-Alvarado, Susana; Urena-Lopez, L. Arturo; Becerril, Ricardo
2010-07-12
We search for equilibrium configurations of the (coupled) Einstein-Klein-Gordon equations for the case of a real scalar field endowed with a quartic self-interaction potential. The resulting solutions are the generalizations of the (massive) oscillating soliton stars, the so-called oscillatons. Among other parameters, we estimate the mass curve of the configurations, and determine their critical mass for different values of the quartic interaction.
ParaText : scalable text modeling and analysis.
Dunlavy, Daniel M.; Stanton, Eric T.; Shead, Timothy M.
2010-06-01
Automated processing, modeling, and analysis of unstructured text (news documents, web content, journal articles, etc.) is a key task in many data analysis and decision making applications. As data sizes grow, scalability is essential for deep analysis. In many cases, documents are modeled as term or feature vectors and latent semantic analysis (LSA) is used to model latent, or hidden, relationships between documents and terms appearing in those documents. LSA supplies conceptual organization and analysis of document collections by modeling high-dimension feature vectors in many fewer dimensions. While past work on the scalability of LSA modeling has focused on the SVD, the goal of our work is to investigate the use of distributed memory architectures for the entire text analysis process, from data ingestion to semantic modeling and analysis. ParaText is a set of software components for distributed processing, modeling, and analysis of unstructured text. The ParaText source code is available under a BSD license, as an integral part of the Titan toolkit. ParaText components are chained-together into data-parallel pipelines that are replicated across processes on distributed-memory architectures. Individual components can be replaced or rewired to explore different computational strategies and implement new functionality. ParaText functionality can be embedded in applications on any platform using the native C++ API, Python, or Java. The ParaText MPI Process provides a 'generic' text analysis pipeline in a command-line executable that can be used for many serial and parallel analysis tasks. ParaText can also be deployed as a web service accessible via a RESTful (HTTP) API. In the web service configuration, any client can access the functionality provided by ParaText using commodity protocols ... from standard web browsers to custom clients written in any language.
A Comparative Usage-Based Approach to the Reduction of the Spanish and Portuguese Preposition "Para"
ERIC Educational Resources Information Center
Gradoville, Michael Stephen
2013-01-01
This study examines the frequency effect of two-word collocations involving "para" "to," "for" (e.g. "fui para," "para que") on the reduction of "para" to "pa" (in Spanish) and "pra" (in Portuguese). Collocation frequency effects demonstrate that language speakers…
A Comparative Usage-Based Approach to the Reduction of the Spanish and Portuguese Preposition "Para"
ERIC Educational Resources Information Center
Gradoville, Michael Stephen
2013-01-01
This study examines the frequency effect of two-word collocations involving "para" "to," "for" (e.g. "fui para," "para que") on the reduction of "para" to "pa" (in Spanish) and "pra" (in Portuguese). Collocation frequency effects demonstrate that language speakers…
Hox and ParaHox genes: a review on molluscs.
Biscotti, Maria Assunta; Canapa, Adriana; Forconi, Mariko; Barucca, Marco
2014-12-01
Hox and ParaHox genes are involved in patterning the anterior-posterior body axis in metazoans during embryo development. Body plan evolution and diversification are affected by variations in the number and sequence of Hox and ParaHox genes, as well as by their expression patterns. For this reason Hox and ParaHox gene investigation in the phylum Mollusca is of great interest, as this is one of the most important taxa of protostomes, characterized by a high morphological diversity. The comparison of the works reviewed here indicates that species of molluscs, belonging to different classes, share a similar composition of Hox and ParaHox genes. Therefore evidence suggests that the wide morphological diversity of this taxon could be ascribed to differences in Hox gene interactions and expressions and changes in the Hox downstream genes rather than to Hox cluster composition. Moreover the data available on Hox and ParaHox genes in molluscs compared with those of other Lophotrochozoa shed light on the complex and controversial evolutionary histories that these genes have undergone within protostomes.
Detection of the MW Transition Between Ortho and Para States
NASA Astrophysics Data System (ADS)
Kanamori, Hideto; Dehghani, Zeinab Tafti; Mizoguchi, Asao; Endo, Yasuki
2017-06-01
Thorough the detailed analysis of the hyperfine resolved rotational transitions, we have been pointed out that there exists not a little interaction between ortho and para states in the molecular Hamiltonian of S_2Cl_2. Using the ortho-para mixed molecular wavefunctions derived from the Hamiltonian, we calculated the transition moment and frequency of the ortho-para forbidden transitions in the cm- and mm-wave region, and picked up some promising candidate transitions for the spectroscopic detection. In the experiment, the S_2Cl_2 vapor with Ar buffer gas in a supersonic jet condition was used with FTMW spectrometer at National Chiao Tung University. As a result, seven hyperfine resolved rotational transitions in the cm-wave region were detected as the ortho-para transition at the predicted frequency within the experimental error range. The observed intensity was 10^{-3} smaller than that of an allowed transition, which is also consistent with the prediction. This is the first time the electric dipole transition between ortho and para states has been detected in a free isolated molecule. A. Mizoguchi, S. Ota, H. Kanamori, Y. Sumiyoshi, and Y. Endo, J. Mol. Spectrosc, 250, 86 (2008) Z. T. Dehghani, S. Ota, A. Mizoguchi and H. Kanamori, J. Phys. Chem. A, 117(39), 10041, (2013)
Evolution of invertebrate deuterostomes and Hox/ParaHox genes.
Ikuta, Tetsuro
2011-06-01
Transcription factors encoded by Antennapedia-class homeobox genes play crucial roles in controlling development of animals, and are often found clustered in animal genomes. The Hox and ParaHox gene clusters have been regarded as evolutionary sisters and evolved from a putative common ancestral gene complex, the ProtoHox cluster, prior to the divergence of the Cnidaria and Bilateria (bilaterally symmetrical animals). The Deuterostomia is a monophyletic group of animals that belongs to the Bilateria, and a sister group to the Protostomia. The deuterostomes include the vertebrates (to which we belong), invertebrate chordates, hemichordates, echinoderms and possibly xenoturbellids, as well as acoelomorphs. The studies of Hox and ParaHox genes provide insights into the origin and subsequent evolution of the bilaterian animals. Recently, it becomes apparent that among the Hox and ParaHox genes, there are significant variations in organization on the chromosome, expression pattern, and function. In this review, focusing on invertebrate deuterostomes, I first summarize recent findings about Hox and ParaHox genes. Next, citing unsolved issues, I try to provide clues that might allow us to reconstruct the common ancestor of deuterostomes, as well as understand the roles of Hox and ParaHox genes in the development and evolution of deuterostomes.
Symmetries and unitary interactions of mass dimension one fermionic dark matter
NASA Astrophysics Data System (ADS)
Lee, Cheng-Yang
2016-12-01
The fermionic fields constructed from Elko have several unexpected properties. They satisfy the Klein-Gordon but not the Dirac equation and are of mass dimension one instead of three-half. Starting with the Klein-Gordon Lagrangian, we initiate a careful study of the symmetries and interactions of these fermions and their higher-spin generalizations. We find, although the fermions are of mass dimension one, the four-point fermionic self-interaction violates unitarity at high-energy so it cannot be a fundamental interaction of the theory. Using the optical theorem, we derive an explicit bound on energy for the fermion-scalar interaction. It follows that for the spin-half fermions, the demand of renormalizability and unitarity forbids four-point interactions and only allows for the Yukawa interaction. For fermions with spin j > 1 2, they have no renormalizable or unitary interactions. Since the theory is described by a Klein-Gordon Lagrangian, the interaction generated by the local U(1) gauge symmetry which contains a four-point interaction, is excluded by the demand of renormalizability. In the context of the Standard Model, these properties make the spin-half fermions natural dark matter candidates. Finally, we discuss the recent developments on the introduction of new adjoint and spinor duals which may allow us to circumvent the unitarity constraints on the interactions.
Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes
Unver, O.; Gurtug, O.
2010-10-15
Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence, the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.
β-Cyclodextrin- para-aminosalicylic acid inclusion complexes
NASA Astrophysics Data System (ADS)
Roik, N. V.; Belyakova, L. A.; Oranskaya, E. I.
2010-11-01
Complex formation of β-cyclodextrin with para-aminosalicylic acid in buffer solutions is studied by UV spectroscopy. It is found that the stoichiometric proportion of the components in the β-cyclodextrin-para-aminosalicylic acid inclusion complex is 1:1. The Ketelar equation is used to calculate the stability constants of the inclusion complexes at different temperatures. The thermodynamic parameters of the complex formation process (ΔG, ΔH, ΔS) are calculated using the van't Hoff equation. The 1:1 β-cyclodextrin-para-aminosalicylic acid inclusion complex is prepared in solid form and its characteristics are determined by IR spectroscopic and x-ray diffraction techniques.
Quantum simulation of driven para-Bose oscillators
NASA Astrophysics Data System (ADS)
Alderete, C. Huerta; Rodríguez-Lara, B. M.
2017-01-01
Quantum mechanics allows paraparticles with mixed Bose-Fermi statistics that have not been experimentally confirmed. We propose a trapped-ion scheme whose effective dynamics are equivalent to a driven para-Bose oscillator of even order. Our mapping suggest highly entangled vibrational and internal ion states as the laboratory equivalent of quantum simulated parabosons. Furthermore, we show the generation and reconstruction of coherent oscillations and para-Bose analogs of Gilmore-Perelomov coherent states from population inversion measurements in the laboratory frame. Our proposal, apart from demonstrating an analog quantum simulator of para-Bose oscillators, provides a quantum state engineering tool that foreshadows the potential use of paraparticle dynamics in the design of quantum information systems.
Una técnica para filtrar patrones de fringing
NASA Astrophysics Data System (ADS)
Ostrov, P. G.
Se presenta una nueva técnica para filtrar los patrones de fringing producidos en los CCDs tipo RCA. El método consiste en construir un mapa con los ángulos de inclinación de las franjas en cada punto de la imagen. Este mapa es ulteriormente utilizado para alinear con el patrón de interferencia una ventana estrecha, sobre la que se aplica un filtro de mediana. Este procedimiento permite eliminar la mayor parte del ruido del patrón de fringing sin destruirlo.
Ortho and para-armalcolite samples in Apollo 17.
NASA Technical Reports Server (NTRS)
Haggerty, S. E.
1973-01-01
Two paragenetically contrasting forms of armalcolite are present in basalts from the Apollo 17 Taurus-Littrow landing site. These armalcolites differ in optical properties, in crystal habit and in their distribution between coarse and fine grained rocks. It is proposed to call the two armalcolite forms ortho-armalcolite and para-armalcolite. Texural relationships and the evidence of experimental melting show that ortho-armalcolite is always the first crystalline phase to appear from unusually titanium rich magmas. The origin of para-armalcolite is not yet fully understood.
On some examples of para-Hermite and para-Kähler Einstein spaces with Λ ≠ 0
NASA Astrophysics Data System (ADS)
Chudecki, Adam
2017-02-01
Spaces equipped with two complementary (distinct) congruences of self-dual null strings and at least one congruence of anti-self-dual null strings are considered. It is shown that if such spaces are Einsteinian then the vacuum Einstein field equations can be reduced to a single nonlinear partial differential equation of the second order. Different forms of these equations are analyzed. Finally, several new explicit metrics of the para-Hermite and para-Kähler Einstein spaces with Λ ≠ 0 are presented. Some relation of that metrics to a modern approach to mechanical issues is discussed.
Utilice en forma segura los productos con cebo para roedores
Si se usan de manera inadecuada, los productos con veneno para ratas y ratones podrían hacerle daño a usted, a sus hijos o a sus mascotas. Siempre que use pesticidas lea la etiqueta del producto y siga todas las indicaciones.
Analyzing and Visualizing Cosmological Simulations with ParaView
Woodring, Jonathan; Heitmann, Katrin; Ahrens, James P; Fasel, Patricia; Hsu, Chung-Hsing; Habib, Salman; Pope, Adrian
2011-01-01
The advent of large cosmological sky surveys - ushering in the era of precision cosmology - has been accompanied by ever larger cosmological simulations. The analysis of these simulations, which currently encompass tens of billions of particles and up to a trillion particles in the near future, is often as daunting as carrying out the simulations in the first place. Therefore, the development of very efficient analysis tools combining qualitative and quantitative capabilities is a matter of some urgency. In this paper, we introduce new analysis features implemented within ParaView, a fully parallel, open-source visualization toolkit, to analyze large N-body simulations. A major aspect of ParaView is that it can live and operate on the same machines and utilize the same parallel power as the simulation codes themselves. In addition, data movement is in a serious bottleneck now and will become even more of an issue in the future; an interactive visualization and analysis tool that can handle data in situ is fast becoming essential. The new features in ParaView include particle readers and a very efficient halo finder that identifies friends-of-friends halos and determines common halo properties, including spherical overdensity properties. In combination with many other functionalities already existing within ParaView, such as histogram routines or interfaces to programming languages like Python, this enhanced version enables fast, interactive, and convenient analyses of large cosmological simulations. In addition, development paths are available for future extensions.
The total neutron cross section of liquid para-hydrogen
NASA Astrophysics Data System (ADS)
Celli, M.; Rhodes, N.; Soper, A. K.; Zoppi, M.
1999-12-01
We have measured, using the pulsed neutron source ISIS, the total neutron cross section of liquid para-hydrogen in the vicinity of the triple point. The experimental results compare only qualitatively with the results of the Young and Koppel theory. However, a much better agreement is found once modifications are included in the model which effectively take into account the intermolecular interactions.
"Espanol para ti": A Video Program That Works.
ERIC Educational Resources Information Center
Steele, Elena; Johnson, Holly
2000-01-01
Describes the development of "Espanol para ti," a video program for teaching Spanish at the elementary school level. The program was designed for use in Clark County, Nevada elementary schools and is taught by a certified Spanish teacher via video twice a week, utilizing comprehensible input through visuals, games, and songs that are conducive to…
Sistemas Correctores de Campo Para EL Telescopio Cassegrain IAC80
NASA Astrophysics Data System (ADS)
Galan, M. J.; Cobos, F. J.
1987-05-01
El proyecto de instrumentación de mayor importancia que ha tenido el Instituto de Astrofisica de Canarias en los últimos afios ha sido el diseflo y construcción del te1escopio IAC8O. Este requería del esfuerzo con junto en mec´nica, óptica y electrónica, lo que facilitó la estructuración y el crecimiento de los respectivos grupos de trabajo, que posteriormente se integraron en departamentos En su origen (1977), el telescopio IAC80 fue concebido como un sistema clásico tipo Cassegrain, con una razón focal F/i 1.3 para el sistema Casse grain y una razón focal F/20 para el sistema Coudé. Posteriormente, aunque se mantuvo la filosofia de que el sistema básico fuera el F/11.3, se consideró conveniente el diseño de secundarios para razones focales F/16 y F/32, y se eliminó el de F/20. Sin embargo, dada la importancia relativa que un foco estrictamente fotográfico tiene en un telescopio moderno, diseñado básicamente para fotometría fotoeléctrica y con un campo util mínimamente de 40 minutos de arco, se decídió Ilevar a cabo el diseño de un secundario F/8 con un sistema corrector de campo, pero que estuviera formado únicamente por lentes con superficies esféricas para que asl su construcción fuera posible en España ó en México. La creciente utilización de detectores bidimensionales para fines de investigación astron6mica y la viabilidad de que en un futuro cercano éstos tengan un área sensible cada vez mayor, hicieron atractiva la idea de tener diseñado un sistema corrector de campo para el foco primario (F/3), con un campo útil mínimo de un grado, y también con la limitante de que sus componentes tuvieron sólamente supérficies esféricas. Ambos diseños de los sis-temas correctores de campo se llevaron a cabo, en gran medida, como parte de un proyecto de colaboración e intercambio en el área de diseño y evaluación de sistemas ópticos.
Kit para aplicar la metodología de Lean en el gobierno
Este Kit para comenzar a aplicar la metodología Lean (Gobierno optimizado) ofrece información para ayudar a las agencias de protección ambiental a planificar e implementar iniciativas Lean exitosas.
Para-acetabular periarthritis calcarea: its radiographic manifestations.
Kawashima, A; Murayama, S; Ohuchida, T; Russell, W J
1988-01-01
On retrospective reviews of radiographs, periarthritis calcarea was distinguished from os acetabula by interval radiographic progression and regression. Among 59 men and 51 women, there were 137 instances of para-acetabular calcifications and ossifications, which were morphologically classified as 58 discrete, 58 amorphous, and 21 segmented types. Correlations with other radiographic abnormalities, symptoms, signs, and laboratory abnormalities were sought, but not established. Out of 93 serially imaged opacities, 90 changed, including 37 of the 40 instances (92.5%) of the discrete type and 53 instances (100%) of the amorphous and segmented types--due to periarthritis calcarea. At least 43 of 90 densities were newly developed. Mean age at first detection was 47.7 years. Three of the discrete densities were unchanged and represented os acetabula. Thus, recognition of para-acetabular periarthritis calcarea is not only of academic importance; it can facilitate proper treatment as well.
Focal para-hisian atrial tachycardia with dual exits
Lawrance Jesuraj, M.; Sharada, K.; Sridevi, C.; Narasimhan, C.
2013-01-01
Focal atrial tachycardias (AT) in the right atrium (RA) tend to cluster around the crista terminalis, coronary sinus (CS) region, tricuspid annulus, and para-hisian region. In most cases, the AT focus can be identified by careful activation mapping, and completely eliminated by radiofrequency (RF) catheter ablation. However, RF ablation near the His bundle (HB) carries a risk of inadvertent damage to the atrioventricular (AV) conduction system. Here we describe a patient with an AT originating in the vicinity of the AV node, which was successfully ablated earlier from non-coronary aortic cusp (NCC), and recurred with an exit from para-hisian location. Respiratory excursions of the catheter were associated with migration to the area of HIs. This was successfully ablated during controlled apnoea, using 3D electroanatomic mapping. PMID:23993015
Conversion of para and ortho hydrogen in the Jovian planets
NASA Technical Reports Server (NTRS)
Massie, S. T.; Hunten, D. M.
1982-01-01
A mechanism is proposed which partially equilibrates the para and ortho rotational levels of molecular hydrogen in the atmospheres of Jupiter, Saturn, and Uranus. Catalytic reactions between the free-radical surface sites of aerosol particles and hydrogen modecules yield significant equilibration near 1 bar pressure, if the efficiency of conversion per collision is between 10 to the -8th and 10 to the -10th and the effective eddy mixing coefficient is 10,000 sq cm/sec. At lower pressures the ortho-para ratio retains the value at the top of the cloud layer, except for a very small effect from conversion in the thermosphere. The influence of conversion on the specific heat and adiabatic lapse rate is also investigated. The effect is found to be generally small, though is can rise to 10% inside the aerosol layer.
Production Ratio for Para- and Ortho-Ps in Photodetachment of Ps^-
NASA Astrophysics Data System (ADS)
Igarashi, Akinori
2017-01-01
Para- and ortho-Ps atoms are formed in the photodetachment of positronium negative ion. Since the lifetime against the pair annihilation is much shorter for para-Ps( ns) than for ortho-Ps( ns), the production ratio of para- and ortho-Ps atoms is important for the photodetachment experiments. We have derived the ratio explicitly.
Synthesis of High Molecular Weight Para-Phenylene PBI
1974-11-01
give high molecular weight m-phenylene PBI (Reference 7). The polymer was completely soluble in methanesulfonic acid and 98% formic acid . Polymer with...mono- mer is a white crystalline solid which can be quantitatively hydrolized in an acid medium to give the free TAB. Stoichiometric quantities of IX...WEIGHT "PARA"-PHENYLENE PBI TECHNICAL REPORT AFML-TR-74-199 NOVEMBER 1974 Distribution limited to U.S.Government agencies only, test and evaluation
Photodissociation dynamics of the ortho- and para-xylyl radicals
NASA Astrophysics Data System (ADS)
Pachner, Kai; Steglich, Mathias; Hemberger, Patrick; Fischer, Ingo
2017-08-01
The photodissociation dynamics of the C8H9 isomers ortho- and para-xylyl are investigated in a free jet. The xylyl radicals are generated by flash pyrolysis from 2-(2-methylphenyl)- and 2-(4-methylphenyl) ethyl nitrite and are excited into the D3 state. REMPI- spectra show vibronic structure and the origin of the transition is identified at 32 291 cm-1 for the para- and at 32 132 cm-1 for the ortho-isomer. Photofragment H-atom action spectra show bands at the same energy and thus confirm H-atom loss from xylyl radicals. To gain further insight into the photodissociation dynamics, velocity map images of the hydrogen atom photofragments are recorded. Their angular distribution is isotropic and the translational energy release is in agreement with a dissociation to products in their electronic ground state. Photodissociation of para-xylyl leads to the formation of para-xylylene (C8H8), while the data for ortho-xylyl agree much better with the isomer benzocyclobutene as the dominant molecular fragment rather than ortho-xylylene. In computations we identified a new pathway for the reaction ortho-xylyl → benzocyclobutene + H with a barrier of 3.39 eV (27 340 cm-1), which becomes accessible at the employed excitation energy. It proceeds via a combination of scissoring and rotational motion of the -CH2 and -CH3 groups. However, the observed rate constants measured by delaying the excitation and ionization laser with respect to each other are significantly faster than computed ones, indicating intrinsic non-RRKM behaviour. A comparably high value of around 30% of the excess energy is released as translation of the H-atom photofragment.
Wave Dark Matter and Dwarf Spheroidal Galaxies
NASA Astrophysics Data System (ADS)
Parry, Alan R.
We explore a model of dark matter called wave dark matter (also known as scalar field dark matter and boson stars) which has recently been motivated by a new geometric perspective by Bray. Wave dark matter describes dark matter as a scalar field which satisfies the Einstein-Klein-Gordon equations. These equations rely on a fundamental constant Upsilon (also known as the "mass term'' of the Klein-Gordon equation). Specifically, in this dissertation, we study spherically symmetric wave dark matter and compare these results with observations of dwarf spheroidal galaxies as a first attempt to compare the implications of the theory of wave dark matter with actual observations of dark matter. This includes finding a first estimate of the fundamental constant Upsilon. In the introductory Chapter 1, we present some preliminary background material to define and motivate the study of wave dark matter and describe some of the properties of dwarf spheroidal galaxies. In Chapter 2, we present several different ways of describing a spherically symmetric spacetime and the resulting metrics. We then focus our discussion on an especially useful form of the metric of a spherically symmetric spacetime in polar-areal coordinates and its properties. In particular, we show how the metric component functions chosen are extremely compatible with notions in Newtonian mechanics. We also show the monotonicity of the Hawking mass in these coordinates. Finally, we discuss how these coordinates and the metric can be used to solve the spherically symmetric Einstein-Klein-Gordon equations. In Chapter 3, we explore spherically symmetric solutions to the Einstein-Klein-Gordon equations, the defining equations of wave dark matter, where the scalar field is of the form f(t, r) = eiotF(r) for some constant o ∈ R and complex-valued function F(r). We show that the corresponding metric is static if and only if F( r) = h(r)eia for some constant alpha ∈ R and real-valued function h(r). We describe the
Relative Contributions of Agricultural Drift, Para-Occupational ...
Background: Increased pesticide concentrations in house dust in agricultural areas have been attributed to several exposure pathways, including agricultural drift, para-occupational, and residential use. Objective: To guide future exposure assessment efforts, we quantified relative contributions of these pathways using meta-regression models of published data on dust pesticide concentrations. Methods: From studies in North American agricultural areas published from 1995-2015, we abstracted dust pesticide concentrations reported as summary statistics (e.g., geometric means (GM)). We analyzed these data using mixed-effects meta-regression models that weighted each summary statistic by its inverse variance. Dependent variables were either the log-transformed GM (drift) or the log-transformed ratio of GMs from two groups (para-occupational, residential use). Results: For the drift pathway, predicted GMs decreased sharply and nonlinearly, with GMs 64% lower in homes 250 m versus 23 m from fields (inter-quartile range of published data) based on 52 statistics from 7 studies. For the para-occupational pathway, GMs were 2.3 times higher (95% confidence interval [CI]: 1.5-3.3; 15 statistics, 5 studies) in homes of farmers who applied pesticides more versus less recently or frequently. For the residential use pathway, GMs were 1.3 (95%CI: 1.1-1.4) and 1.5 (95%CI: 1.2-1.9) times higher in treated versus untreated homes, when the probability that a pesticide was used for
TELEMEDICINA: UN DESAFÍO PARA AMÉRICA LATINA
Litewka, Sergio
2011-01-01
La telemedicina es una tendencia creciente en la prestación de los servicios médicos. Aunque la eficacia de esta práctica no ha estado bien establecida, es probable que los países en desarrollo compartirán este nuevo paradigma con los desarrollados. Los defensores de la telemedicina en América Latina sostienen que será una herramienta útil para reducir las disparidades y mejorar la accesibilidad de atención de salud. Aunque América Latina quizá se convierta en un lugar para la investigación e investigación de estos procedimientos, no está claro cómo la telemedicina podría contribuir a mejorar la accesibilidad para las poblaciones desfavorecidas, o coexistir con sistemas de atención de salud públicos crónicamente enfermos. Telemedicine is a growing trend in the provision of medical services. Although the effectiveness of this practice has not been well established, it is likely that developing countries will share this new paradigm with developed ones. Supporters of telemedicine in Latin America maintain that it will be a useful tool for reducing disparities and improving health care accessibility. Although Latin America might become a place for research and investigation of these procedures, it is not clear how telemedicine could contribute to improving accessibility for disadvantaged populations, or coexist with chronically ill-funded public healthcare systems. PMID:21625326
TELEMEDICINA: UN DESAFÍO PARA AMÉRICA LATINA.
Litewka, Sergio
2005-01-01
La telemedicina es una tendencia creciente en la prestación de los servicios médicos. Aunque la eficacia de esta práctica no ha estado bien establecida, es probable que los países en desarrollo compartirán este nuevo paradigma con los desarrollados. Los defensores de la telemedicina en América Latina sostienen que será una herramienta útil para reducir las disparidades y mejorar la accesibilidad de atención de salud. Aunque América Latina quizá se convierta en un lugar para la investigación e investigación de estos procedimientos, no está claro cómo la telemedicina podría contribuir a mejorar la accesibilidad para las poblaciones desfavorecidas, o coexistir con sistemas de atención de salud públicos crónicamente enfermos.Telemedicine is a growing trend in the provision of medical services. Although the effectiveness of this practice has not been well established, it is likely that developing countries will share this new paradigm with developed ones. Supporters of telemedicine in Latin America maintain that it will be a useful tool for reducing disparities and improving health care accessibility. Although Latin America might become a place for research and investigation of these procedures, it is not clear how telemedicine could contribute to improving accessibility for disadvantaged populations, or coexist with chronically ill-funded public healthcare systems.
Determination of the Ratio of Ortho Hydrogen and Para Hydrogen
NASA Astrophysics Data System (ADS)
Zhou, D.; Ihas, G. G.; Sullivan, N. S.
2003-03-01
The two different quantum states of hydrogen, ortho-hydrogen and para-hydrogen, possess different properties. The accurate determination of the ortho/para ratio in gaseous, liquid and solid state is important both for research needs and for applications in cryogenic engineering, such as H2 production, transport and storage. NMR can determine the ratio1 accurately, but it is cumbersome and often not practical. Cryogenic applications need a simple and reliable method. We report on the development of a thermal conductivity gauge employing a pure metal thin film that serves as both heater and thermometer for the detection of ortho-para hydrogen ratios in the gaseous state. This ratio-meter has been tested and found to have a nearly pressure-independent voltage response over a broad pressure range with a constant current. The thermal conductivity of hydrogen and nitrogen was measured and found to agree quantitatively with published data. The new development will be presented. *Thanks to Larry Phelps, Bill Malphurs, Stephen Wood, David Hernandez. # Supported by NASA Contract NAG3-2750 Ref. 1. D. Zhou, C. M. Edwards, and N. S. Sullivan, Phys. Rev. Lett. 62, 1528 (1989)
Surgical treatment of para-oesophageal hiatal hernia.
Rogers, M. L.; Duffy, J. P.; Beggs, F. D.; Salama, F. D.; Knowles, K. R.; Morgan, W. E.
2001-01-01
The development of laparoscopic antireflux surgery has stimulated interest in laparoscopic para-oesophageal hiatal hernia repair. This review of our practice over 10 years using a standard transthoracic technique was undertaken to establish the safety and effectiveness of the open technique to allow comparison. Sixty patients with para-oesophageal hiatal hernia were operated on between 1989 and 1999. There were 38 women and 22 men with a median age of 69.5 years. There were 47 elective and 13 emergency presentations. Operation consisted of a left thoracotomy, hernia reduction and crural repair. An antireflux procedure was added in selected patients. There were no deaths among the elective cases and one among the emergency cases. Median follow-up time was 19 months. There was one recurrence (1.5%). Seven patients (12%) required a single oesophagoscopy and dilatation up to 2 years postoperatively but have been asymptomatic since. Two patients (3%) developed symptomatic reflux which has been well controlled on proton-pump inhibitors. Transthoracic para-oesophageal hernia repair can be safely performed with minimal recurrence. PMID:11777134
Para rubber seed oil: new promising unconventional oil for cosmetics.
Lourith, Nattaya; Kanlayavattanakul, Mayuree; Sucontphunt, Apirada; Ondee, Thunnicha
2014-01-01
Para rubber seed was macerated in petroleum ether and n-hexane, individually, for 30 min. The extraction was additionally performed by reflux and soxhlet for 6 h with the same solvent and proportion. Soxhlet extraction by petroleum ether afforded the greatest extractive yield (22.90 ± 0.92%). Although antioxidant activity by means of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay was insignificantly differed in soxhleted (8.90 ± 1.15%) and refluxed (9.02 ± 0.71%) by n-hexane, soxhlet extraction by n-hexane was significantly (p < 0.05) potent scavenged 2,2'-azino-bis(3-ethylbenzothaiazoline)-6-sulfonic acid) or ABTS radical with trolox equivalent antioxidant capacity (TEAC) of 66.54 ± 6.88 mg/100 g oil. This extract was non cytotoxic towards normal human fibroblast cells. In addition, oleic acid and palmitic acid were determined at a greater content than in the seed of para rubber cultivated in Malaysia, although linoleic and stearic acid contents were not differed. This bright yellow extract was further evaluated on other physicochemical characters. The determined specific gravity, refractive index, iodine value, peroxide value and saponification value were in the range of commercialized vegetable oils used as cosmetic raw material. Therefore, Para rubber seed oil is highlighted as the promising ecological ingredient appraisal for cosmetics. Transforming of the seed that is by-product of the important industrial crop of Thailand into cosmetics is encouraged accordingly.
[Genetic analysis of an individual with para-Bombay phenotype].
Lin, Jia-jin; Huang, Ying; Zhu, Sui-yong
2013-04-01
To study genetic characteristics of an individual with para-Bombay phenotype and her family members. ABO and H antigens were detected with routine serological techniques.The entire coding region of FUT1 gene was amplified by polymerase chain reaction (PCR). PCR products was purified with enzymes digestion and directly sequenced. The RBCs of the proband did not agglutinate with H antibody. The proband therefore has a para-Bombay phenotype (Bmh). Direct sequencing indicated the FUT1 sequence of the proband contained a homozygous 547-552 del AG and heterozygous 814A>G mutation, which gave rise to two haplotypes of 547-552delAG, 547-552delAG and 814A>G. The ABO blood type of the proband' s mother and sisters were all B.Sequencing of the FUT1 gene has found heterozygous 547-552 del AG, 814A>G mutations in the mother and elder sister, and heterozygous 547-552 del AG mutation in her younger sister. The FUT1 547-552 del AG and 814 A>G mutations of the proband were inherited from her mother. A complex mutation of the FUT1 gene consisting of 547-55 del AG and 814 A>G has been identified in an individual with para-Bombay phenotype.
The Regulation of para-Nitrophenol Degradation in Pseudomonas putida DLL-E4.
Chen, Qiongzhen; Tu, Hui; Luo, Xue; Zhang, Biying; Huang, Fei; Li, Zhoukun; Wang, Jue; Shen, Wenjing; Wu, Jiale; Cui, Zhongli
2016-01-01
Pseudomonas putida DLL-E4 can efficiently degrade para-nitrophenol and its intermediate metabolite hydroquinone. The regulation of para-nitrophenol degradation was studied, and PNP induced a global change in the transcriptome of P. putida DLL-E4. When grown on PNP, the wild-type strain exhibited significant downregulation of 2912 genes and upregulation of 845 genes, whereas 2927 genes were downregulated and 891 genes upregulated in a pnpR-deleted strain. Genes related to two non-coding RNAs (ins1 and ins2), para-nitrophenol metabolism, the tricarboxylic acid cycle, the outer membrane porin OprB, glucose dehydrogenase Gcd, and carbon catabolite repression were significantly upregulated when cells were grown on para-nitrophenol plus glucose. pnpA, pnpR, pnpC1C2DECX1X2, and pnpR1 are key genes in para-nitrophenol degradation, whereas pnpAb and pnpC1bC2bDbEbCbX1bX2b have lost the ability to degrade para-nitrophenol. Multiple components including transcriptional regulators and other unknown factors regulate para-nitrophenol degradation, and the transcriptional regulation of para-nitrophenol degradation is complex. Glucose utilization was enhanced at early stages of para-nitrophenol supplementation. However, it was inhibited after the total consumption of para-nitrophenol. The addition of glucose led to a significant enhancement in para-nitrophenol degradation and up-regulation in the expression of genes involved in para-nitrophenol degradation and carbon catabolite repression (CCR). It seemed that para-nitrophenol degradation can be regulated by CCR, and relief of CCR might contribute to enhanced para-nitrophenol degradation. In brief, the regulation of para-nitrophenol degradation seems to be controlled by multiple factors and requires further study.
The Regulation of para-Nitrophenol Degradation in Pseudomonas putida DLL-E4
Chen, Qiongzhen; Tu, Hui; Luo, Xue; Zhang, Biying; Huang, Fei; Li, Zhoukun; Wang, Jue; Shen, Wenjing; Wu, Jiale; Cui, Zhongli
2016-01-01
Pseudomonas putida DLL-E4 can efficiently degrade para-nitrophenol and its intermediate metabolite hydroquinone. The regulation of para-nitrophenol degradation was studied, and PNP induced a global change in the transcriptome of P. putida DLL-E4. When grown on PNP, the wild-type strain exhibited significant downregulation of 2912 genes and upregulation of 845 genes, whereas 2927 genes were downregulated and 891 genes upregulated in a pnpR-deleted strain. Genes related to two non-coding RNAs (ins1 and ins2), para-nitrophenol metabolism, the tricarboxylic acid cycle, the outer membrane porin OprB, glucose dehydrogenase Gcd, and carbon catabolite repression were significantly upregulated when cells were grown on para-nitrophenol plus glucose. pnpA, pnpR, pnpC1C2DECX1X2, and pnpR1 are key genes in para-nitrophenol degradation, whereas pnpAb and pnpC1bC2bDbEbCbX1bX2b have lost the ability to degrade para-nitrophenol. Multiple components including transcriptional regulators and other unknown factors regulate para-nitrophenol degradation, and the transcriptional regulation of para-nitrophenol degradation is complex. Glucose utilization was enhanced at early stages of para-nitrophenol supplementation. However, it was inhibited after the total consumption of para-nitrophenol. The addition of glucose led to a significant enhancement in para-nitrophenol degradation and up-regulation in the expression of genes involved in para-nitrophenol degradation and carbon catabolite repression (CCR). It seemed that para-nitrophenol degradation can be regulated by CCR, and relief of CCR might contribute to enhanced para-nitrophenol degradation. In brief, the regulation of para-nitrophenol degradation seems to be controlled by multiple factors and requires further study. PMID:27191401
NASA Astrophysics Data System (ADS)
Uthrakumar, R.; Vesta, C.; Jose, M.; Sugandhi, K.; Krishnan, S.; Jerome Das, S.
2010-08-01
The unidirectional crystal growth technique has been employed for the bulk growth of semi-organic nonlinear optical barium bis-para-nitrophenolate para-nitrophenol tetra hydrate single crystals along the (2 2 0) direction with almost high solute-crystal conversion efficiency. The grown crystal was subjected to single crystal and powder XRD analyses in order to confirm the crystal identity. Optical absorption studies reveal very high transmittance in the entire visible and near IR region. The presence of various functional groups is confirmed by FTIR analysis. Low dielectric loss at high frequency region is indicative of enhanced optical quality with lesser defects. Photoconductivity measurements carried out on the grown crystal reveal the negative photoconducting nature.
ORTHO-PARA SELECTION RULES IN THE GAS-PHASE CHEMISTRY OF INTERSTELLAR AMMONIA
Faure, A.; Hily-Blant, P.; Le Gal, R.; Rist, C.
2013-06-10
The ortho-para chemistry of ammonia in the cold interstellar medium is investigated using a gas-phase chemical network. Branching ratios for the primary reaction chain involved in the formation and destruction of ortho- and para-NH{sub 3} were derived using angular momentum rules based on the conservation of the nuclear spin. We show that the 'anomalous' ortho-to-para ratio of ammonia ({approx}0.7) observed in various interstellar regions is in fact consistent with nuclear spin selection rules in a para-enriched H{sub 2} gas. This ratio is found to be independent of temperature in the range 5-30 K. We also predict an ortho-to-para ratio of {approx}2.3 for NH{sub 2}. We conclude that a low ortho-to-para ratio of H{sub 2} naturally drives the ortho-to-para ratios of nitrogen hydrides below the statistical values.
Amazon Land Wars in the South of Para
NASA Technical Reports Server (NTRS)
Simmons, Cynthia S.; Walker, Robert T.; Arima, Eugenio Y.; Aldrich, Stephen P.; Caldas, Marcellus M.
2007-01-01
The South of Para, located in the heart of the Brazilian Amazon, has become notorious for violent land struggle. Although land conflict has a long history in Brazil, and today impacts many parts of the country, violence is most severe and persistent here. The purpose of this article is to examine why. Specifically, we consider how a particular Amazonian place, the so-called South of Para has come to be known as Brazil's most dangerous badland. We begin by considering the predominant literature, which attributes land conflict to the frontier expansion process with intensified struggle emerging in the face of rising property values and demand for private property associated with capitalist development. From this discussion, we distill a concept of the frontier, based on notions of property rights evolution and locational rents. We then empirically test the persistence of place-based violence in the region, and assess the frontier movement through an analysis of transportation costs. The findings from the analyses indicate that the prevalent theorization of frontier violence in Amazonia does little to explain its persistent and pervasive nature in the South of Para. To fill this gap in understanding, we develop an explanation based the geographic conception of place, and we use contentious politics theory heuristically to elucidate the ways in which general processes interact with place specific history to engender a landscape of violence. In so doing, we focus on environmental, cognitive, and relational mechanisms (and implicated structures), and attempt to deploy them in an explanatory framework that allows direct observation of the accumulating layers of the region's tragic history. We end by placing our discussion within a political ecological context, and consider the implications of the Amazon Land War for the environment.
Amazon Land Wars in the South of Para
NASA Technical Reports Server (NTRS)
Simmons, Cynthia S.; Walker, Robert T.; Arima, Eugenio Y.; Aldrich, Stephen P.; Caldas, Marcellus M.
2007-01-01
The South of Para, located in the heart of the Brazilian Amazon, has become notorious for violent land struggle. Although land conflict has a long history in Brazil, and today impacts many parts of the country, violence is most severe and persistent here. The purpose of this article is to examine why. Specifically, we consider how a particular Amazonian place, the so-called South of Para has come to be known as Brazil's most dangerous badland. We begin by considering the predominant literature, which attributes land conflict to the frontier expansion process with intensified struggle emerging in the face of rising property values and demand for private property associated with capitalist development. From this discussion, we distill a concept of the frontier, based on notions of property rights evolution and locational rents. We then empirically test the persistence of place-based violence in the region, and assess the frontier movement through an analysis of transportation costs. The findings from the analyses indicate that the prevalent theorization of frontier violence in Amazonia does little to explain its persistent and pervasive nature in the South of Para. To fill this gap in understanding, we develop an explanation based the geographic conception of place, and we use contentious politics theory heuristically to elucidate the ways in which general processes interact with place specific history to engender a landscape of violence. In so doing, we focus on environmental, cognitive, and relational mechanisms (and implicated structures), and attempt to deploy them in an explanatory framework that allows direct observation of the accumulating layers of the region's tragic history. We end by placing our discussion within a political ecological context, and consider the implications of the Amazon Land War for the environment.
INTERVENCIÓN EDUCATIVA EFECTIVA EN VIH PARA MUJERES
Miner, Sarah; Poupin, Lauren; Bernales, Margarita; Ferrer, Lilian; Cianelli, Rosina
2016-01-01
RESUMEN En Chile se estima que aproximadamente 38 mil personas viven con el Virus de Inmunodeficiencia Humana [VIH]. En el año 2001, 1.092 mujeres chilenas vivían con VIH, actualmente se cree que hay más de 7.600 mujeres con el virus. Frente a estas cifras surge la necesidad de crear estrategias de prevención dirigidas a mujeres chilenas. Objetivo analizar los estudios ya realizados en la prevención de VIH para determinar qué aspectos se deben incluir en programas exitosos de prevención de VIH en mujeres. Diseño y Método se realizó una revisión de la literatura utilizando la base de datos Proquest, CINAHL, Pubmed y Scielo. Los límites comprendieron: textos completos, de los últimos 10 años, de acceso gratuito y escrito en español o inglés. Se seleccionaron 15 artículos para la revisión. Resultados todos los artículos comprenden la evaluación del efecto de una intervención sobre conocimiento y conductas relacionadas con VIH/SIDA. Catorce muestran resultados significativos en cambios positivos de conducta o conocimientos relacionados con la prevención de VIH. Conclusiones los programas de prevención de VIH en mujeres pueden ser efectivos para lograr cambios de conducta y de conocimiento. Las intervenciones exitosas son aquellas basadas en teorías o modelos de prevención y en cambios de conductas, todas adaptadas a la cultura de la población estudiada. PMID:27667897
RVA: A Plugin for ParaView 3.14
2015-09-04
RVA is a plugin developed for the 64-bit Windows version of the ParaView 3.14 visualization package. RVA is designed to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between
Para-hydrogen narrow filament evaporation at low temperature
NASA Astrophysics Data System (ADS)
Elizarova, T. G.; Gogolin, A. A.; Montero, S.
2012-11-01
Undercooling of liquid para-hydrogen (pH2) below its freezing point at equilibrium (13.8 K) has been shown recently in flowing micro-filaments evaporating in low density background gas [M. Kühnel et al, Phys. Rev. Lett. 106, 245301 (2011)]. An hydrodynamical model accounting for this process is reported here. Analytical expressions for the local temperature T of a filament, averaged over its cross section, are obtained as a function of distance z to the nozzle. Comparison with the experiment is shown. It is shown also that the thermocapillary forces induce a parabolic profile of velocity across the jet.
RVA: A Plugin for ParaView 3.14
2015-09-04
RVA is a plugin developed for the 64-bit Windows version of the ParaView 3.14 visualization package. RVA is designed to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between
Biodegradation of Para Amino Acetanilide by Halomonas sp. TBZ3
Hajizadeh, Nader; Sefidi Heris, Youssof; Zununi Vahed, Sepideh; Vallipour, Javad; Hejazi, Mohammad Amin; Golabi, Sayyed Mahdi; Asadpour-Zeynali, Karim; Hejazi, Mohammad Saeid
2015-01-01
Background: Aromatic compounds are known as a group of highly persistent environmental pollutants. Halomonas sp. TBZ3 was isolated from the highly salty Urmia Lake of Iran. In this study, characterization of a new Halomonas isolate called Halomonas sp. TBZ3 and its employment for biodegradation of para-amino acetanilide (PAA), as an aromatic environmental pollutant, is described. Objectives: This study aimed to characterize the TBZ3 isolate and to elucidate its ability as a biodegradative agent that decomposes PAA. Materials and Methods: Primarily, DNA-DNA hybridization between TBZ3, Halomonas denitrificans DSM18045T and Halomonas saccharevitans LMG 23976T was carried out. Para-amino acetanilide biodegradation was assessed using spectrophotometry and confirmed by gas chromatography-mass spectroscopy (GC-MS). Parameters effective on biodegradation of PAA were optimized by the Response Surface Methodology (RSM). Results: The DNA-DNA hybridization experiments between isolate TBZ3, H. denitrificans and H. saccharevitans revealed relatedness levels of 57% and 65%, respectively. According to GC-MS results, TBZ3 degrades PAA to benzene, hexyl butanoate, 3-methyl-1-heptanol and hexyl hexanoate. Temperature 32.92°C, pH 6.76, and salinity 14% are the optimum conditions for biodegradation with a confidence level of 95% (at level α = 0.05). Conclusions: According to our results, Halomonas sp. TBZ3 could be considered as a biological agent for bioremediation of PAA and possibly other similar aromatic compounds. PMID:26495103
Kilgore, Matthew B; Augustin, Megan M; May, Gregory D; Crow, John A; Kutchan, Toni M
2016-01-01
The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para', para-ortho', or ortho-para' regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para' C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS)-noroxomaritidine and (10bS,4aR)-noroxomaritidine from 4'-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho' phenol coupled product, N-demethylnarwedine, as less than 1% of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4'-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot.
Kilgore, Matthew B.; Augustin, Megan M.; May, Gregory D.; Crow, John A.; Kutchan, Toni M.
2016-01-01
The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para', para-ortho', or ortho-para' regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para' C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS)-noroxomaritidine and (10bS,4aR)-noroxomaritidine from 4′-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho' phenol coupled product, N-demethylnarwedine, as less than 1% of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4′-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot. PMID:26941773
Oropouche Virus. 3. Entomological Observations from Three Epidemics in Para, Brazil, 1975,
1979-10-06
by block number) OROPOUCHE VIRUS, CULICOIDES PARAENSIS, EPIDEMICS, BRAZIL, PARA I&2 ABSThAC (Cantmus = revers e e* I nessamy and idewtty by block nmbe...8217)URBAN EPIDEMTCS OF OROPOUCHE ORO FEVER IN THREE MUNICIPALITIES IN PARA, BR.tZIL WERE SrUDIED IN 1975. CULICOIDES PARAENSIS GOELDI WERE COLLECTED...Medicine and Hygiene OROPOUCHE VIRUS III. ENTOMOLOGICAL OBSERVATIONS FROM THREE EPIDEMICS IN PARA, BRAZIL, 1975* DONALD R. ROBERTS, ALFRED L. HOCH
NASA Astrophysics Data System (ADS)
Selvakumar, S.; Boobalan, Maria Susai; Anthuvan Babu, S.; Ramalingam, S.; Leo Rajesh, A.
2016-12-01
Single crystals of sodium para-nitrophenolate para-nitrophenol dihydrate (SPPD) were grown by slow evaporation technique and its structure has been studied by FT-IR, FT-Raman and single crystal X-ray diffraction techniques. The optical and electrical properties were characterized by UV-Vis spectrum, and dielectric studies respectively. SPPD was thermally stable up to 128 °C as determined by TG-DTA curves. Using the Kurtz-Perry powder method, the second-harmonic generation efficiency was found to be five times to that of KDP. Third-order nonlinear response was studied using Z-scan technique with a He-Ne laser (632.8 nm) and NLO parameters such as intensity dependent refractive index, nonlinear absorption coefficient and third-order susceptibility were also estimated. The molecular geometry from X-ray experiment in the ground state has been compared using density functional theory (DFT) with appropriate basis set. The first-order hyperpolarizability also calculated using DFT approaches. Stability of the molecule arising from hyperconjugative interactions leading to its nonlinear optical activity and charge delocalization were analyzed using natural bond orbital technique. HOMO-LUMO energy gap value suggests the possibility of charge transfer within the molecule. Based on optimized ground state geometries, Natural bond orbital (NBO) analysis was performed to study donor-acceptor interactions.
Ortho- and para-hydrogen in dense clouds, protoplanets, and planetary atmospheres
NASA Technical Reports Server (NTRS)
Decampli, W. M.; Cameron, A. G. W.; Bodenheimer, P.; Black, D. C.
1978-01-01
If ortho- and para-hydrogen achieve a thermal ratio on dynamical time scales in a molecular hydrogen cloud, then the specific heat is high enough in the temperature range 35-70 K to possibly induce hydrodynamic collapse. The ortho-para ratio in many interstellar cloud fragments is expected to meet this condition. The same may have been true for the primitive solar nebula. Detailed hydrodynamic and hydrostatic calculations are presented that show the effects of the assumed ortho-para ratio on the evolution of Jupiter during its protoplanetary phase. Some possible consequences of a thermalized ortho-para ratio in the atmospheres of the giant planets are also discussed.
Nuevos sistemas de frecuencia intermedia para el IAR
NASA Astrophysics Data System (ADS)
Olalde, J. C.; Perilli, D.; Larrarte, J. J.
Se presenta el diagrama en bloques de los nuevos sistemas de Frecuencia Intermedia para los dos radiómetros instalados en el IAR. Entre las características más importantes del sistema podemos mencionar la posibilidad de conectar cualquiera de las dos antenas a los ``backend" disponibles: analizador espectral de alta resolución (META II) de 0,05 Hz, autocorrelador de 1008 canales y contínuo. Se incorporan al sistema nuevos sintetizadores de frecuencia implementados con PLL y la moderna técnica de síntesis digital directa. Por último, el conjunto del sistema es susceptible de ser configurado por las computadoras de adquisición de datos, supervisadas por otra, que entrega el estado de funcionamiento actual y evita la selección de configuraciones incorrectas por parte del usuario.
Para-phenylenediamine allergy: current perspectives on diagnosis and management
Mukkanna, Krishna Sumanth; Stone, Natalie M; Ingram, John R
2017-01-01
Para-phenylenediamine (PPD) is the commonest and most well-known component of hair dyes. Oxidative hair dyes and dark henna temporary tattoos contain PPD. Individuals may be sensitized to PPD by temporary henna tattooing in addition to dyeing their hair. PPD allergy can cause severe reactions and may result in complications. In recent years, frequency of positive patch test reactions to PPD has been increasing. Cross-sensitization to other contact allergens may occur, in particular to other hair dye components. Hairdressers are at a high risk for PPD allergy and require counseling regarding techniques to minimize exposure and protective measures while handling hair dye. We focus this review on the current perspectives of diagnosis and management of PPD allergy. PMID:28176912
Pneumatic protection applied to an airbag for para-gliders
NASA Astrophysics Data System (ADS)
Raievski, V.; Valladas, G.
1998-02-01
We present a theory of pneumatic protection based on the laws of thermodynamics, elasticity and fluid mechanics. A general pneumatic protection system is made up of several communicating compartments, the differences in pressure of the compartments generating a transfer of mass and energy between them. The transfer offers interesting possibilities to improve the performance of the system. An example of this type of protection in aerial sport is the airbag for para-gliders, it is used in this paper to illustrate the theory. As the pressure in the airbag depends uniquely on its volume, the geometric model in the theory can be simplified. Experiments carried out with crash-test dummies equipped with sensors have confirmed the theoretical predictions.
Substrate mediated smooth growth of para-sexiphenyl on graphene
NASA Astrophysics Data System (ADS)
Poelsema, Bene; Hlawacek, Gregor; Khokhar, Fawad S.; van Gastel, Raoul; Teichert, Christian
2010-03-01
We report on the layer-by-layer growthof lying para-sexiphenyl (6P) molecules on metal supported graphene flakes. The formation of multilayers has been monitored in situ by means of LEEM. μ-LEED has been used to reveal a bulk-like structure of the submonolayer, monolayer and multilayer regime. Graphene is a flexible, highly conductive and transparent electrode material, making it a promising technological substrate for organic semiconductors. 6P is a blue light emitting molecule with a high charge carrier mobility. The combination of an established deposition technique with the unique properties of organic semiconductors and graphene is an enabler for future flexible and cost efficient devices based on small conjugated molecules.
Para-Hydrogen-Enhanced Gas-Phase Magnetic Resonance Imaging
Bouchard, Louis-S.; Kovtunov, Kirill V.; Burt, Scott R.; Anwar,M. Sabieh; Koptyug, Igor V.; Sagdeev, Renad Z.; Pines, Alexander
2007-02-23
Herein, we demonstrate magnetic resonance imaging (MRI) inthe gas phase using para-hydrogen (p-H2)-induced polarization. A reactantmixture of H2 enriched in the paraspin state and propylene gas is flowedthrough a reactor cell containing a heterogenized catalyst, Wilkinson'scatalyst immobilized on modified silica gel. The hydrogenation product,propane gas, is transferred to the NMR magnet and is spin-polarized as aresult of the ALTADENA (adiabatic longitudinal transport and dissociationengenders net alignment) effect. A polarization enhancement factor of 300relative to thermally polarized gas was observed in 1D1H NMR spectra.Enhancement was also evident in the magnetic resonance images. This isthe first demonstration of imaging a hyperpolarized gaseous productformed in a hydrogenation reaction catalyzed by a supported catalyst.This result may lead to several important applications, includingflow-through porous materials, gas-phase reaction kinetics and adsorptionstudies, and MRI in low fields, all using catalyst-free polarizedfluids.
Electron impact ionization dynamics of para-benzoquinone
NASA Astrophysics Data System (ADS)
Jones, D. B.; Ali, E.; Ning, C. G.; Colgan, J.; Ingólfsson, O.; Madison, D. H.; Brunger, M. J.
2016-10-01
Triple differential cross sections (TDCSs) for the electron impact ionization of the unresolved combination of the 4 highest occupied molecular orbitals (4b3g, 5b2u, 1b1g, and 2b3u) of para-benzoquinone are reported. These were obtained in an asymmetric coplanar geometry with the scattered electron being observed at the angles -7.5°, -10.0°, -12.5° and -15.0°. The experimental cross sections are compared to theoretical calculations performed at the molecular 3-body distorted wave level, with a marginal level of agreement between them being found. The character of the ionized orbitals, through calculated momentum profiles, provides some qualitative interpretation for the measured angular distributions of the TDCS.
ParaText : scalable text analysis and visualization.
Dunlavy, Daniel M.; Stanton, Eric T.; Shead, Timothy M.
2010-07-01
Automated analysis of unstructured text documents (e.g., web pages, newswire articles, research publications, business reports) is a key capability for solving important problems in areas including decision making, risk assessment, social network analysis, intelligence analysis, scholarly research and others. However, as data sizes continue to grow in these areas, scalable processing, modeling, and semantic analysis of text collections becomes essential. In this paper, we present the ParaText text analysis engine, a distributed memory software framework for processing, modeling, and analyzing collections of unstructured text documents. Results on several document collections using hundreds of processors are presented to illustrate the exibility, extensibility, and scalability of the the entire process of text modeling from raw data ingestion to application analysis.
Luttinger parameter of quasi-one-dimensional para -H2
NASA Astrophysics Data System (ADS)
Ferré, G.; Gordillo, M. C.; Boronat, J.
2017-02-01
We have studied the ground-state properties of para-hydrogen in one dimension and in quasi-one-dimensional configurations using the path-integral ground-state Monte Carlo method. This method produces zero-temperature exact results for a given interaction and geometry. The quasi-one-dimensional setup has been implemented in two forms: the inner channel inside a carbon nanotube coated with H2 and a harmonic confinement of variable strength. Our main result is the dependence of the Luttinger parameter on the density within the stable regime. Going from one dimension to quasi-one dimension, keeping the linear density constant, produces a systematic increase of the Luttinger parameter. This increase is, however, not enough to reach the superfluid regime and the system always remain in the quasicrystal regime, according to Luttinger liquid theory.
Sponges, Tubules and Modulated Phases of Para-Antinematic Membranes
NASA Astrophysics Data System (ADS)
Fournier, J. B.; Galatola, P.
1997-10-01
We theoretically analyze the behavior of membranes presenting a nematic susceptibility, induced by the presence of anisotropic phospholipids having a quadrupolar nematic symmetry. This kind of anisotropic phospholipids is either naturally found in some biological membranes, or can be chemically tailored by linking pairs of single surfactants at the level of their polar heads, giving rise to so-called “gemini” surfactants. We predict that such membranes can acquire a non-zero paranematic order induced by the membrane curvature, which in turn produces curvature instabilities. We call the resulting paranematic order para-antinematic, since it is opposite on opposite sides of the membrane. We find phase transitions toward sponges (L3), tubules, or modulated “egg-carton” phases.
Ortho-Para Mixing Hyperfine Interaction in the H2O+ Ion and Nuclear Spin Equilibration
NASA Astrophysics Data System (ADS)
Tanaka, Keiichi; Harada, Kensuke; Oka, Takeshi
2013-10-01
The ortho to para conversion of water ion, H2O+, due to the interaction between the magnetic moments of the unpaired electron and protons has been theoretically studied to calculate the spontaneous emission lifetime between the ortho- and para-levels. The electron spin-nuclear spin interaction term, Tab(Sa-Ib + Sb-Ia) mixes ortho (I = 1) and para (I = 0) levels to cause the -forbidden- ortho to para |-I| = 1 transition. The mixing term with Tab = 72.0 MHz is 4 orders of magnitude higher for H2O+ than for its neutral counterpart H2O where the magnetic field interacting with proton spins is by molecular rotation rather than the free electron. The resultant 108 increase of ortho to para conversion rate possibly makes the effect of conversion in H2O+ measurable in laboratories and possibly explains the anomalous ortho to para ratio recently reported by Herschel heterodyne instrument for the far-infrared (HIFI) observation. Results of our calculations show that the ortho - para mixings involving near-degenerate ortho and para levels are high (-10-3), but they tend to occur at high energy levels, -300 K. Because of the rapid spontaneous emission, such high levels are not populated in diffuse clouds unless the radiative temperature of the environment is very high. The low-lying 101 (para) and 111 (ortho) levels of H2O+ are mixed by -10-4 making the spontaneous emission lifetime for the para 101 - ortho 000 transition 520 years and 5200 years depending on the F value of the hyperfine structure. Thus the ortho - para conversion due to the unpaired electron is not likely to seriously affect thermalization of interstellar H2O+ unless either the radiative temperature is very high or number density of the cloud is very low.
The Ratio of Ortho- to Para-H2 in Photodissociation Regions
NASA Technical Reports Server (NTRS)
Sternberg, Amiel; Neufeld, David A.
1999-01-01
We discuss the ratio of ortho- to para-H2 in photodissociation regions (PDRs). We draw attention to an apparent confusion in the literature between the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited states and the total H2 ortho-to-para abundance ratio. These ratios are not the same because the process of FUV pumping of fluorescent H2 emission in PDRs occurs via optically thick absorption lines. Thus gas with an equilibrium ratio of ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are preferentially reduced by optical depth effects. Indeed, if the ortho and para pumping lines are on the "square root" part of the curve of growth, then the expected ratio of ortho and para vibrational line strengths is 3(sup 1/2) approximately 1.7, close to the typically observed value. Thus, contrary to what has sometimes been stated in the literature, most previous measurements of the ratio of ortho- to para-H2 in vibrationally excited states are entirely consistent with a total ortho-to-para ratio of 3, the equilibrium value for temperatures greater than 200 K. We present an analysis and several detailed models that illustrate the relationship between the total ratios of ortho- to para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent Infrared Space Observatory measurements of pure rotational and vibrational H2 emissions from the PDR in the star-forming region S140 provide strong observational support for our conclusions.
The Ratio of Ortho- to Para-H2 in Photodissociation Regions
NASA Technical Reports Server (NTRS)
Sternberg, Amiel; Neufeld, David A.
1999-01-01
We discuss the ratio of ortho- to para-H2 in photodissociation regions (PDRs). We draw attention to an apparent confusion in the literature between the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited states and the total H2 ortho-to-para abundance ratio. These ratios are not the same because the process of FUV pumping of fluorescent H2 emission in PDRs occurs via optically thick absorption lines. Thus gas with an equilibrium ratio of ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are preferentially reduced by optical depth effects. Indeed, if the ortho and para pumping lines are on the "square root" part of the curve of growth, then the expected ratio of ortho and para vibrational line strengths is 3(sup 1/2) approximately 1.7, close to the typically observed value. Thus, contrary to what has sometimes been stated in the literature, most previous measurements of the ratio of ortho- to para-H2 in vibrationally excited states are entirely consistent with a total ortho-to-para ratio of 3, the equilibrium value for temperatures greater than 200 K. We present an analysis and several detailed models that illustrate the relationship between the total ratios of ortho- to para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent Infrared Space Observatory measurements of pure rotational and vibrational H2 emissions from the PDR in the star-forming region S140 provide strong observational support for our conclusions.
Ortho-para mixing hyperfine interaction in the H2O+ ion and nuclear spin equilibration.
Tanaka, Keiichi; Harada, Kensuke; Oka, Takeshi
2013-10-03
The ortho to para conversion of water ion, H2O(+), due to the interaction between the magnetic moments of the unpaired electron and protons has been theoretically studied to calculate the spontaneous emission lifetime between the ortho- and para-levels. The electron spin-nuclear spin interaction term, Tab(SaΔIb + SbΔIa) mixes ortho (I = 1) and para (I = 0) levels to cause the "forbidden" ortho to para |ΔI| = 1 transition. The mixing term with Tab = 72.0 MHz is 4 orders of magnitude higher for H2O(+) than for its neutral counterpart H2O where the magnetic field interacting with proton spins is by molecular rotation rather than the free electron. The resultant 10(8) increase of ortho to para conversion rate possibly makes the effect of conversion in H2O(+) measurable in laboratories and possibly explains the anomalous ortho to para ratio recently reported by Herschel heterodyne instrument for the far-infrared (HIFI) observation. Results of our calculations show that the ortho ↔ para mixings involving near-degenerate ortho and para levels are high (∼10(-3)), but they tend to occur at high energy levels, ∼300 K. Because of the rapid spontaneous emission, such high levels are not populated in diffuse clouds unless the radiative temperature of the environment is very high. The low-lying 101 (para) and 111 (ortho) levels of H2O(+) are mixed by ∼10(-4) making the spontaneous emission lifetime for the para 101 → ortho 000 transition 520 years and 5200 years depending on the F value of the hyperfine structure. Thus the ortho ↔ para conversion due to the unpaired electron is not likely to seriously affect thermalization of interstellar H2O(+) unless either the radiative temperature is very high or number density of the cloud is very low.
USDA-ARS?s Scientific Manuscript database
En este articulo se reporta por primera vez para el Peru una especies del genero Nielsonia Young, 1977, de material procedente del Departamento de Tumbes. El genero ha sido reportada anteriormente de Ecuador, como unico registro para Sudamerica, y America Central. El unico especimen hembra encontra...
Guía para la evaluación del riesgo de los polinizadores
La Guía para la evaluación del riesgo de los polinizadores de la EPA es parte de una estrategia de la evaluación de los riesgos que presentan los pesticidas para las abejas a fin de mejorar la protección de los polinizadores.
Rate of para-aortic lymph node micrometastasis in patients with locally advanced cervical cancer
Zand, Behrouz; Euscher, Elizabeth D.; Soliman, Pamela T.; Schmeler, Kathleen M.; Coleman, Robert L.; Frumovitz, Michael; Jhingran, Anuja; Ramondetta, Lois M.; Ramirez, Pedro T.
2014-01-01
Objective Patients with micrometastasis to para-aortic lymph nodes may benefit from extended field chemoradiation. To determine the rate of para-aortic node micrometastasis in patients with locally advanced cervical cancer undergoing laparoscopic extraperitoneal para-aortic lymphadenectomy Methods We prospectively identified consecutive patients diagnosed with stage IB2-IVA biopsy-proven cervical cancer. Eligible patients included those who were candidates for treatment with radiotherapy and concurrent chemotherapy and had no evidence of para-aortic lymphadenopathy (all lymph nodes < 2 cm in diameter) by preoperative computed tomography or magnetic resonance imaging. All patients underwent preoperative positron emission tomography/computed tomography and laparoscopic extraperitoneal para-aortic lymphadenectomy. All lymph nodes were assessed for metastasis by routine hematoxylin-eosin (H&E) staining. Ultrastaging (serial sectioning) and immunohistochemical analysis were performed in H&E-negative specimens. Results Thirteen (22%) of 60 consecutive patients had para-aortic lymph node metastases detected on routine H&E staining. Of the remaining 47 patients, one (2.1%) had evidence of micrometastasis, which was detected by ultrastaging. This patient completed whole pelvic radiotherapy and chemotherapy but had a recurrence 27 months after completion of therapy. Conclusions The rate of para-aortic node micrometastasis in patients with locally advanced cervical cancer is low. The role of routine ultrastaging and immunohistochemical analysis in such patients remains uncertain. Future studies are needed to determine the clinical impact of para-aortic node micrometastasis in patients with locally advanced cervical cancer. PMID:20837355
The parA resolvase performs site-specific genomic excision in Arabidopsis
USDA-ARS?s Scientific Manuscript database
We have designed a site-specific excision detection system in Arabidopsis to study the in planta activity of the small serine recombinase ParA. Using a transient expression assay as well as stable transgenic plant lines, we show that the ParA recombinase is catalytically active and capable of perfo...
Norma para la Certificación de Aplicadores de Plaguicidas Revisada
La EPA emitió una propuesta para la revisión de la norma para la Certificación de Aplicadores de Plaguicidas. La norma ayudará a mantener nuestras comunidades seguras, salvaguardar el medio ambiente y reducir el riesgo a los que aplican los plaguicidas.
Overproduction and localization of Mycobacterium tuberculosis ParA and ParB proteins
Maloney, Erin; Madiraju, Murty; Rajagopalan, Malini
2011-01-01
SUMMARY The ParA and ParB family proteins are required for accurate partitioning of replicated chromosomes. The Mycobacterium tuberculosis genome contains parB, parA and two parA homologs, Rv1708 and Rv3213c. It is unknown if parA and its homologs are functionally related. To understand the roles of ParA and ParB proteins in M. tuberculosis cell cycle, we have evaluated the consequences of their overproduction and visualized their localization patterns in M. smegmatis. We show that cells overproducing of ParA, Rv1708 and Rv3213c and ParB are filamentous and multinucleoidal indicating defects in cell cycle progression. Visualization of green-fluorescent protein fusions of ParA and its homologues showed similar localization patterns with foci at poles, quarter-cell, midcell positions and spiral-like structures indicating that they are functionally related. On the other hand, the ParBGFP fusion protein localized only to the cell poles. The cyan and yellow fluorescent fusion proteins of ParA and ParB, respectively, colocalized at the cell poles indicating that these proteins interact and possibly associate with the chromosomal origin of replication. Collectively our results suggest that the M. tuberculosis Par proteins play important roles in cell cycle progression. PMID:20006309
Crookshanks-Newman, F K; Belshe, R B
1986-02-01
Parainfluenza virus type 3 (para 3) was adapted to replicate at 20 degrees C, a nonpermissive temperature for wild-type (wt) para 3. Serial passage at 20 degrees C resulted in the generation of cold-adapted (ca) and temperature-sensitive (ts) mutants. These mutant viruses have been characterized both in vitro and in vivo [Belshe and Hissom (1982): Journal of Medical Virology 10:235-242; Crookshanks and Belshe (1984): Journal of Medical Virology 13:243-249]. We now report the evaluation of three mutants (clone 1150, passaged 12 times in the cold [cp12], clone 1146, passaged 18 times in the cold [cp18], and clone 1328, passaged 45 times in the cold [cp45]) for their ability to protect hamsters from infection by wild-type para 3. Ether-anesthetized male syrian hamsters were intranasally vaccinated with either wt para 3 (clone 127) or one of the ca para 3 mutants and on day 28 post-vaccination; each animal was intranasally challenged with 10(5.0) pfu of wt para 3. On days 1, 2, 3, and 4 post-challenge, 4 to 13 hamsters from each group were sacrificed, and the quantity of para 3 in the nasal turbinates and lungs was determined. Wt virus induced protection from challenge. cp12, cp18, and cp45 reduced the peak titer of wt replication in the lungs by greater than 100-fold, tenfold, and tenfold, respectively. The duration of virus replication was shortened also by intranasal vaccination with the mutants. These data give evidence of an inverse relationship between the degree of protection induced by vaccination with cold-adapted mutants and the number of passages of the virus in the cold.
DYNA3D/ParaDyn Regression Test Suite Inventory
Lin, J I
2011-01-25
The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of production release 10.1 in September 2010. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark in the corresponding column. The definition of ''feature'' has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to a particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds, compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.
Conformation of ionizable poly Para phenylene ethynylene in dilute solutions
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...
2015-11-03
The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less
Evidence for para dechlorination of polychlorobiphenyls by methanogenic bacteria
Ye, D.; Quensen, J.F.; Tiedje, J.M.
1995-06-01
When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia. 27 refs., 5 figs., 1 tab.
DYNA3D/ParaDyn Regression Test Suite Inventory
Lin, Jerry I.
2016-09-01
The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of preliminary release 16.1 in September 2016. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark (√) in the corresponding column. The definition of “feature” has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to a particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors, except problems involving features only available in serial mode. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds; compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.
Para-hydrogen induced polarization in heterogeneous hydrogenationreactions
Koptyug, Igor V.; Kovtunov, Kirill; Burt, Scott R.; Anwar, M.Sabieh; Hilty, Christian; Han, Song-I; Pines, Alexander; Sagdeev, Renad Z.
2007-01-31
We demonstrate the creation and observation ofpara-hydrogen-induced polarization in heterogeneous hydrogenationreactions. Wilkinson's catalyst, RhCl(PPh3)3, supported on eithermodified silica gel or a polymer, is shown to hydrogenate styrene intoethylbenzene and to produce enhanced spin polarizations, observed throughNMR, when the reaction was performed with H2 gas enriched in the paraspinisomer. Furthermore, gaseous phase para-hydrogenation of propylene topropane with two catalysts, the Wilkinson's catalyst supported onmodified silica gel and Rh(cod)(sulfos) (cod = cycloocta-1,5-diene;sulfos) - O3S(C6H4)CH2C(CH2PPh2)3) supported on silica gel, demonstratesheterogeneous catalytic conversion resulting in large spin polarizations.These experiments serve as a direct verification of the mechanism ofheterogeneous hydrogenation reactions involving immobilized metalcomplexes and can be potentially developed into a practical tool forproducing catalyst-free fluids with highly polarized nuclear spins for abroad range of hyperpolarized NMR and MRI applications.
ERIC Educational Resources Information Center
California State Polytechnic Univ., Pomona.
The Intermediate Science Curriculum Study Spanish language science instruction manual for the intermediate grades focuses on energy of many types. The soft bound volume uses self-pacing and individualized learning to guide the students through a series of experiments. Basically, the students are asked to think about what they do and see, evaluate…
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, F.H.; Moore, J.C.
1999-05-25
A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, Frances H.; Moore, Jeffrey C.
1998-01-01
A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, Frances H.; Moore, Jeffrey C.
1999-01-01
A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, F.H.; Moore, J.C.
1998-04-21
A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases. These enzymes exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.
Bourne, Godfrey R; Breden, Felix; Allen, Teresa C
2003-09-01
The first results of female preference and chosen male mating success in a new model organism, the pentamorphic livebearing fish, Poecilia parae, are presented. Poecilia parae is a relative of the guppy, P. reticulata, and is assumed to have similar reproductive behavior. We tested the hypothesis that P. parae females, like female guppies, prefer carotenoid colored males as mates. Here we show that the time a female spent with males was significantly greater for carotenoid coloration in red and yellow melanzona, but time with these two morphs did not differ. The preferred red and yellow males mated significantly more often with their choosing females than did the non-preferred blue and parae males. The few blue melanzona and parae males that mated did so without performing courtship displays. Some females mated with all phenotypes including immaculata males during open group trials. Female P. parae clearly preferred males with carotenoid coloration, thereby corroborating the hypothesis. Alternative male mating tactics by blue melanzona, parae, and immaculata morphs and promiscuous mating by females also resembled features of reproductive behaviors exhibited by guppies.
Quantum fluctuations increase the self-diffusive motion of para-hydrogen in narrow carbon nanotubes.
Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester
2011-05-28
Quantum fluctuations significantly increase the self-diffusive motion of para-hydrogen adsorbed in narrow carbon nanotubes at 30 K comparing to its classical counterpart. Rigorous Feynman's path integral calculations reveal that self-diffusive motion of para-hydrogen in a narrow (6,6) carbon nanotube at 30 K and pore densities below ∼29 mmol cm(-3) is one order of magnitude faster than the classical counterpart. We find that the zero-point energy and tunneling significantly smoothed out the free energy landscape of para-hydrogen molecules adsorbed in a narrow (6,6) carbon nanotube. This promotes a delocalization of the confined para-hydrogen at 30 K (i.e., population of unclassical paths due to quantum effects). Contrary the self-diffusive motion of classical para-hydrogen molecules in a narrow (6,6) carbon nanotube at 30 K is very slow. This is because classical para-hydrogen molecules undergo highly correlated movement when their collision diameter approached the carbon nanotube size (i.e., anomalous diffusion in quasi-one dimensional pores). On the basis of current results we predict that narrow single-walled carbon nanotubes are promising nanoporous molecular sieves being able to separate para-hydrogen molecules from mixtures of classical particles at cryogenic temperatures.
ERIC Educational Resources Information Center
Raval, Harini; McKenney, Susan; Pieters, Jules
2012-01-01
The appointment of para-professionals to overcome skill shortages and/or make efficient use of expensive resources is well established in both developing and developed countries. The present research concerns para-teachers in India. The literature on para-teachers is dominated by training for special needs settings, largely in developed societies.…
Irradiation of Pelvic and Para-Aortic Nodes in Carcinoma of the Cervix.
Rotman; Aziz; Eifel
1994-01-01
Extended-field irradiation offers a significant chance of cure for patients with para-aortic node metastases if pelvic disease can be controlled. Prognosis is best for patients with microscopic para-aortic disease or with a single enlarged node. Complications of extended-field irradiation can be minimized with careful radiation therapy technique that uses multiple fields and high-energy beams of 18 MV or greater and by avoiding transperitoneal surgical staging. Although the role of prophylactic para-aortic irradiation is still being defined, randomized trials suggest that extended fields do benefit some patients with locoregionally advanced disease.
Endovascular Treatment of a Ruptured Para-Anastomotic Aneurysm of the Abdominal Aorta
Sfyroeras, Giorgos S.; Lioupis, Christos Bessias, Nikolaos; Maras, Dimitris; Pomoni, Maria; Andrikopoulos, Vassilios
2008-07-15
We report a case of a ruptured para-anastomotic aortic aneurysm treated with implantation of a bifurcated stent-graft. A 72-year-old patient, who had undergone aortobifemoral bypass for aortoiliac occlusive disease 16 years ago, presented with a ruptured para-anastomotic aortic aneurysm. A bifurcated stent-graft was successfully deployed into the old bifurcated graft. This is the first report of a bifurcated stent-graft being placed through an 'end-to-side' anastomosed old aortobifemoral graft. Endovascular treatment of ruptured para-anastomotic aortic aneurysms can be accomplished successfully, avoiding open surgery which is associated with increased mortality and morbidity.
Measurement of the formaldehyde ortho to para ratio in three molecular clouds
NASA Technical Reports Server (NTRS)
Kahane, C.; Lucas, R.; Frerking, M. A.; Langer, W. D.; Encrenaz, P.
1984-01-01
Observations of ortho and para H2CO in two types of clouds, a warm cloud (Orion A) and two cold clouds (L183 and TMC1), are presented. The ortho to para ratio in Orion deduced from the H2(C-13)O data is about three, while that for TMC1 is about one and that for L183 is 1-2. The former value is in agreement with the value calculated from chemical models of ortho and para H2CO production. The values for the cold clouds are consistent with thermal equilibrium at a temperature slightly smaller than 10 K.
Barucca, Marco; Biscotti, Maria A; Olmo, Ettore; Canapa, Adriana
2006-03-15
The ParaHox gene cluster contains three homeobox genes, Gsx, Xlox and Cdx and has been demonstrated to be an evolutionary sister of the Hox gene cluster. Among deuterostomes the three genes are found in the majority of taxa, whereas among protostomes they have so far been isolated only in the phylum Sipuncula. We report the partial sequences of all three ParaHox genes in the polyplacophoran Nuttallochiton mirandus, the first species of the phylum Mollusca where all ParaHox genes have been isolated. This finding has phylogenetic implications for the phylum Mollusca and for its relationships with the other lophotrochozoan taxa.
Measurement of the formaldehyde ortho to para ratio in three molecular clouds
NASA Technical Reports Server (NTRS)
Kahane, C.; Lucas, R.; Frerking, M. A.; Langer, W. D.; Encrenaz, P.
1984-01-01
Observations of ortho and para H2CO in two types of clouds, a warm cloud (Orion A) and two cold clouds (L183 and TMC1), are presented. The ortho to para ratio in Orion deduced from the H2(C-13)O data is about three, while that for TMC1 is about one and that for L183 is 1-2. The former value is in agreement with the value calculated from chemical models of ortho and para H2CO production. The values for the cold clouds are consistent with thermal equilibrium at a temperature slightly smaller than 10 K.
Time is of the essence for ParaHox homeobox gene clustering
2013-01-01
ParaHox genes, and their evolutionary sisters the Hox genes, are integral to patterning the anterior-posterior axis of most animals. Like the Hox genes, ParaHox genes can be clustered and exhibit the phenomenon of colinearity - gene order within the cluster matching gene activation. Two new instances of ParaHox clustering provide the first examples of intact clusters outside chordates, with gene expression lending weight to the argument that temporal colinearity is the key to understanding clustering. See research articles: http://www.biomedcentral.com/1741-7007/11/68 and http://www.biomedcentral.com/1471-2148/13/129 PMID:23803337
Blood transfusion in the para-Bombay phenotype.
Lin-Chu, M; Broadberry, R E
1990-08-01
The H-deficient phenotypes found in Chinese so far, have all been secretors of soluble blood group substances in saliva. The corresponding isoagglutinin activity (e.g. anti-B in OB(Hm) persons) has been found to be weak in all cases. To determine the clinical significance of these weak isoagglutinins 51Cr red cell survival tests were performed on three OB(Hm) individuals transfused with small volumes (4 ml) of groups B and O RBC. Rapid destruction of most of the RBC occurred whether or not the isoagglutinins of the OB(Hm) individuals were indirect antiglobulin test (IAGT) reactive. When a larger volume (54 ml packed RBC) of group B cells (weakly incompatible by IAGT) was transfused to another OB(Hm) individual with IAGT active anti-HI, the survival of the transfused RBC was 93% at 24 h, with 30% of the RBC remaining in the circulation at 28 d in contrast to 76% as would be expected if the survival was normal. Therefore when whole units of blood of normal ABO blood groups, compatible by IAGT, are transfused, the survival is expected to be almost normal. These weak isoagglutinins may not be very clinically significant and we suggest that when para-Bombay blood is not available, the compatibility testing for OA(Hm) persons should be performed with group A and group O packed RBC; OB(Hm) with group B and group O packed RBC: OAB(Hm) with groups A, B, AB and O packed RBC. For cross matching, the indirect antiglobulin test by a prewarmed technique should be used.
Management of large para-esophageal hiatal hernias.
Collet, D; Luc, G; Chiche, L
2013-12-01
Para-esophageal hernias are relatively rare and typically occur in elderly patients. The various presenting symptoms are non-specific and often occur in combination. These include symptoms of gastro-esophageal reflux (GERD) in 26 to 70% of cases, microcytic anemia in 17 to 47%, and respiratory symptoms in 9 to 59%. Respiratory symptoms are not completely resolved by surgical intervention. Acute complications such as gastric volvulus with incarceration or strangulation are rare (estimated incidence of 1.2% per patient per year) but gastric ischemia leading to perforation is the main cause of mortality. Only patients with symptomatic hernias should undergo surgery. Prophylactic repair to prevent acute incarceration should only be undertaken in patients younger than 75 in good condition; surgical indications must be discussed individually beyond this age. The laparoscopic approach is now generally accepted. Resection of the hernia sac is associated with a lower incidence of recurrence. Repair of the hiatus can be reinforced with prosthetic material (either synthetic or biologic), but the benefit of prosthetic repair has not been clearly shown. Results of prosthetic reinforcement vary in different studies; it has been variably associated with four times fewer recurrences or with no measurable difference. A Collis type gastroplasty may be useful to lengthen a foreshortened esophagus, but no objective criteria have been defined to support this approach. The anatomic recurrence rate can be as high as 60% at 12years. But most recurrences are asymptomatic and do not affect the quality of life index. It therefore seems more appropriate to evaluate functional results and quality of life measures rather than to gauge success by a strict evaluation of anatomic hernia reduction.
NASA Astrophysics Data System (ADS)
Gaiolas, C.; Costa, A. P.; Santos Silva, M. J.; Belgacem, M. N.
2012-07-01
Cold-plasma-assisted treatment of additive-free hand sheet paper samples with styrene (ST), para-fluorostyrene (FST), para-fluoro-α-methylstyrene (FMST) and para-chloro-α-methylstyrene (ClMST) and para-bromostyrene (BrST) was studied and found that the grafting has occurred efficiently, as established by contact angle measurement. Thus, after solvent extraction of the modified substrates, in order to remove unbounded grafts, the contact angle value of a drop of water deposited at the surface of paper increased from 40° for unmodified substrate to 102, 99, 116, 100 and 107°, for ST-, FST- FMST-, ClMST- and BrST-treated samples, respectively, indicating that the surface has became totally hydrophobic. In fact, the polar component of the surface energy of treated samples decreased from 25 mJ/m2 to practically zero, indicating that treated surfaces were rendered totally non polar.
Successful Mnemonics for "por"/"para" and Affirmative Commands with Pronouns.
ERIC Educational Resources Information Center
Mason, Keith
1992-01-01
Two mnemonic devices, "4A Rule" and "PERFECT," are described to simplify the learning of two grammar points: the placement of object pronouns with respect to commands and the distinction between "por" and "para." (five references) (LB)
Genomic organisation of the seven ParaHox genes of coelacanths.
Mulley, John F; Holland, Peter W H
2014-09-01
Human and mouse genomes contain six ParaHox genes implicated in gut and neural patterning. In coelacanths and cartilaginous fish, an additional ParaHox gene exists-Pdx2-that dates back to the genome duplications in early vertebrate evolution. Here we examine the genomic arrangement and flanking genes of all ParaHox genes in coelacanths, to determine the full complement of these genes. We find that coelacanths have seven ParaHox genes in total, in four chromosomal locations, revealing that five gene losses occurred soon after vertebrate genome duplication. Comparison of intergenic sequences reveals that some Pdx1 regulatory regions associated with development of pancreatic islets are older than tetrapods, that Pdx1 and Pdx2 share few if any conserved non-coding elements, and that there is very high sequence conservation between coelacanth species.
Application of the three-dimensional telegraph equation to cosmic-ray transport
NASA Astrophysics Data System (ADS)
Tautz, Robert C.; Lerche, Ian
2016-10-01
An analytical solution to the three-dimensional telegraph equation is presented. This equation has recently received some attention but so far the treatment has been one-dimensional. By using the structural similarity to the Klein-Gordon equation, the telegraph equation can be solved in closed form. Illustrative examples are used to discuss the qualitative differences from the diffusion solution. A comparison with a numerical test-particle simulation reveals that some features of an intensity profile can be better explained using the telegraph approach.
Spinning Kerr black holes with stationary massive scalar clouds: the large-coupling regime
NASA Astrophysics Data System (ADS)
Hod, Shahar
2017-01-01
We study analytically the Klein-Gordon wave equation for stationary massive scalar fields linearly coupled to spinning Kerr black holes. In particular, using the WKB approximation, we derive a compact formula for the discrete spectrum of scalar field masses which characterize the stationary composed Kerr-black-hole-massive-scalar-field configurations in the large-coupling regime M μ ≫ 1 (here M and μ are respectively the mass of the central black hole and the proper mass of the scalar field). We confirm our analytically derived formula for the Kerr-scalar-field mass spectrum with numerical data that recently appeared in the literature.
Superradiance of a charged scalar field coupled to the Einstein-Maxwell equations
NASA Astrophysics Data System (ADS)
Baake, Olaf; Rinne, Oliver
2016-12-01
We consider the Einstein-Maxwell-Klein-Gordon equations for a spherically symmetric scalar field scattering off a Reissner-Nordström black hole in asymptotically flat spacetime. The equations are solved numerically using a hyperboloidal evolution scheme. For suitable frequencies of the initial data, superradiance is observed, leading to a substantial decrease of mass and charge of the black hole. We also derive a Bondi mass loss formula using the Kodama vector field and investigate the late-time decay of the scalar field.
Global Solutions to Repulsive Hookean Elastodynamics
NASA Astrophysics Data System (ADS)
Hu, Xianpeng; Masmoudi, Nader
2017-01-01
The global existence of classical solutions to the three dimensional repulsive Hookean elastodynamics around an equilibrium is considered. By linearization and Hodge's decomposition, the compressible part of the velocity, the density, and the compressible part of the transpose of the deformation gradient satisfy Klein-Gordon equations with speed {√{2}}, while the incompressible parts of the velocity and of the transpose of the deformation gradient satisfy wave equations with speed one. The space-time resonance method combined with the vector field method is used in a novel way to obtain the decay of the solution and hence global existence.
Nonexistence of small, odd breathers for a class of nonlinear wave equations
NASA Astrophysics Data System (ADS)
Kowalczyk, Michał; Martel, Yvan; Muñoz, Claudio
2016-11-01
In this note, we show that for a large class of nonlinear wave equations with odd nonlinearities, any globally defined odd solution which is small in the energy space decays to 0 in the local energy norm. In particular, this result shows nonexistence of small, odd breathers for some classical nonlinear Klein Gordon equations, such as the sine-Gordon equation and φ ^4 and φ ^6 models. It also partially answers a question of Soffer and Weinstein (Invent Math 136(1): 9-74, p 19 1999) about nonexistence of breathers for the cubic NLKG in dimension one.
Time-dependent scalar fields as candidates for dark matter
NASA Astrophysics Data System (ADS)
Malakolkalami, B.; Mahmoodzadeh, A.
2016-11-01
In this paper, we study some properties of what is called the oscillaton, a spherically symmetric object made of a real time-dependent scalar field. Using an exponential scalar potential instead of a quadratic one discussed in previous works, as a new choice, we investigate the oscillaton properties with this potential. Solving the differential equation system resulting from the Einstein-Klein-Gordon equations reveals the importance of the oscillatons as candidates for dark matter. Meanwhile, a simplification called the stationary limit procedure is also carried out.
Topological quantum scattering under the influence of a nontrivial boundary condition
NASA Astrophysics Data System (ADS)
Mota, Herondy
2016-04-01
We consider the quantum scattering problem of a relativistic particle in (2 + 1)-dimensional cosmic string spacetime under the influence of a nontrivial boundary condition imposed on the solution of the Klein-Gordon equation. The solution is then shifted as consequence of the nontrivial boundary condition and the role of the phase shift is to produce an Aharonov-Bohm-like effect. We examine the connection between this phase shift and the electromagnetic and gravitational analogous of the Aharonov-Bohm effect and compare the present results with previous ones obtained in the literature, also considering non-relativistic cases.
Superradiance from hydrodynamic vortices: A numerical study
Federici, F.; Tosi, M. P.; Cherubini, C.; Succi, S.
2006-03-15
The scattering of sound-wave perturbations from vortex excitations in hydrodynamic systems with typical Bose-Einstein-condensate (BEC) parameters is investigated by numerical integration of the associated Klein-Gordon equation. The simulations indicate that at sufficiently high angular speeds, in the perturbative limit where back-reaction effects can be neglected, sound wave packets can extract a sizable fraction of the vortex energy through a mechanism of superradiant scattering. It is conjectured that this superradiant regime may be detectable in BEC experiments.
Gravitational collapse, chaos in CFT correlators and the information paradox
NASA Astrophysics Data System (ADS)
Farahi, Arya; Pando Zayas, Leopoldo A.
2014-06-01
We consider gravitational collapse of a massless scalar field in asymptotically anti-de Sitter spacetime. Following the AdS/CFT dictionary we further study correlations in the field theory side by way of the Klein-Gordon equation of a probe scalar field in the collapsing background. We present evidence that in a certain regime the probe scalar field behaves chaotically, thus supporting Hawking's argument in the black hole information paradox proposing that although the information can be retrieved in principle, deterministic chaos impairs, in practice, the process of unitary extraction of information from a black hole. We emphasize that quantum chaos will change this picture. .
Canonical realization of (2 +1 )-dimensional Bondi-Metzner-Sachs symmetry
NASA Astrophysics Data System (ADS)
Batlle, Carles; Campello, Víctor; Gomis, Joaquim
2017-07-01
We construct canonical realizations of the (2+1)-dimensional Bondi-Metzner-Sachs (bm s 3 ) algebra as symmetry algebras of a free Klein-Gordon (KG) field in 2 +1 dimensions for both massive and massless cases. We consider two types of realizations, one on shell, written in terms of the Fourier modes of the scalar field, and the other off shell, with nonlocal transformations written in terms of the KG field and its momenta. These realizations contain both supertranslations and superrotations, for which we construct the corresponding Noether charges.
Relativity and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Brändas, Erkki J.
2007-12-01
The old dilemma of quantum mechanics versus the theory of relativity is reconsidered via a first principles relativistically invariant theory. By analytic extension of quantum mechanics into the complex plane one may (i) include dynamical features such as time- and length-scales and (ii) examine the possibility and flexibility of so-called general Jordan block formations. The present viewpoint asks for a new perspective on the age-old problem of quantum mechanics versus the theory of relativity. To bring these ideas together, we will establish the relation with the Klein-Gordon-Dirac relativistic theory and confirm some dynamical features of both the special and the general relativity theory.
Discrete-time quantum walks: Continuous limit and symmetries
NASA Astrophysics Data System (ADS)
di Molfetta, G.; Debbasch, F.
2012-12-01
The continuous limit of one-dimensional discrete-time quantum walks with time-and space-dependent coefficients is investigated. A given quantum walk does not generally admit a continuous limit but some families (1-jets) of quantum walks do. All families (1-jets) admitting a continuous limit are identified. The continuous limit is described by a Dirac-like equation or, alternately, a couple of Klein-Gordon equations. Variational principles leading to these equations are also discussed, together with local invariance properties.
New scale-relativistic derivations of Pauli and Dirac equations
NASA Astrophysics Data System (ADS)
Hammad, F.
2008-02-01
In scale relativity, quantum mechanics is recovered by transcribing the classical equations of motion to fractal spaces and demanding, as dictated by the principle of scale relativity, that the form of these equations be preserved. In the framework of this theory, however, the form of the classical energy equations both in the relativistic and nonrelativistic cases are not preserved. Aiming to get full covariance, i.e., to restore to these equations their classical forms, we show that the scale-relativistic form of the Schrödinger equation yields the Pauli equation, whilst the Pissondes's scale-relativistic form of the Klein-Gordon equation gives the Dirac equation.
Visinescu, M.
2012-10-15
Hidden symmetries in a covariant Hamiltonian framework are investigated. The special role of the Stackel-Killing and Killing-Yano tensors is pointed out. The covariant phase-space is extended to include external gauge fields and scalar potentials. We investigate the possibility for a higher-order symmetry to survive when the electromagnetic interactions are taken into account. Aconcrete realization of this possibility is given by the Killing-Maxwell system. The classical conserved quantities do not generally transfer to the quantized systems producing quantum gravitational anomalies. As a rule the conformal extension of the Killing vectors and tensors does not produce symmetry operators for the Klein-Gordon operator.
NASA Astrophysics Data System (ADS)
Feng, Zhongwen; Li, Guoping; Jiang, Pengying; Pan, Yang; Zu, Xiaotao
2016-07-01
In this paper, we derive the deformed Hamilton-Jacobi equations from the generalized Klein-Gordon equation and generalized Dirac equation. Then, we study the tunneling rate, Hawking temperature and entropy of the higher-dimensional Reissner-Nordström de Sitter black hole via the deformed Hamilton-Jacobi equation. Our results show that the deformed Hamilton-Jacobi equations for charged scalar particles and charged fermions have the same expressions. Besides, the modified Hawking temperatures and entropy are related to the mass and charge of the black hole, the cosmology constant, the quantum number of emitted particles, and the term of GUP effects β.
Stationary charged scalar clouds around black holes in string theory
NASA Astrophysics Data System (ADS)
Bernard, Canisius
2016-10-01
It was reported that Kerr-Newman black holes can support linear charged scalar fields in their exterior regions. These stationary massive charged scalar fields can form bound states, which are called stationary scalar clouds. In this paper, we show that Kerr-Sen black holes can also support stationary massive charged scalar clouds by matching the near- and far-region solutions of the radial part of the Klein-Gordon wave equation. We also review stationary scalar clouds within the background of static electrically charged black hole solutions in the low-energy limit of heterotic string field theory, namely, the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black holes.
NASA Astrophysics Data System (ADS)
Hamzavi, Majid; Ikhdair, Sameer M.; Rajabi, Ali Akbar
2013-12-01
We present analytical bound state solutions of the spin-zero particles in the Klein-Gordon (KG) equation in presence of an unequal mixture of scalar and vector Woods-Saxon potentials within the framework of the approximation scheme to the centrifugal potential term for any arbitrary l-state. The approximate energy eigenvalues and unnormalized wave functions are obtained in closed forms using a parametric Nikiforov-Uvarov (NU) method. Our numerical energy eigenvalues demonstrate the existence of inter-dimensional degeneracy amongst energy states of the KG-Woods-Saxon problem. The dependence of the energy levels on the dimension D is numerically discussed for spatial dimensions D = 2 - 6.
MAPLE Procedures For Boson Fields System On Curved Space - Time
Murariu, Gabriel
2007-04-23
Systems of interacting boson fields are an important subject in the last years. From the problem of dark matter to boson stars' study, boson fields are involved. In the general configuration, it is considered a Klein-Gordon-Maxwell-Einstein fields system for a complex scalar field minimally coupled to a gravitational one. The necessity of studying a larger number of space-time configurations and the huge volume of computations for each particular situation are some reasons for building a MAPLE procedures set for this kind of systems.
A quark transport theory to describe nucleon-nucleon collisions
NASA Astrophysics Data System (ADS)
Kalmbach, U.; Vetter, T.; Biró, T. S.; Mosel, U.
1993-11-01
On the basis of the Friedberg-Lee model we formulate a semiclassical transport theory to describe the phase-space evolution of nucleon-nucleon collisions on the quark level. The time evolution is given by a Vlasov equation for the quark phase-space distribution and a Klein-Gordon equation for the mean-field describing the nucleon as a soliton bag. The Vlasov equation is solved numerically using an extended test-particle method. We test the confinement mechanism and mean-field effects in (1 + 1)-dimensional simulations.
Wu, Shuang-Qing
2008-03-28
I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Gödel black hole backgrounds.
NASA Astrophysics Data System (ADS)
Sakalli, I.
2016-10-01
Charged massive scalar field perturbations are studied in the gravitational, electromagnetic, dilaton, and axion fields of rotating linear dilaton black holes. In this geometry, we separate the covariant Klein-Gordon equation into radial and angular parts and obtain the exact solutions of both the equations in terms of the confluent Heun functions. Using the radial solution, we study the problems of resonant frequencies, entropy/area quantization, and greybody factor. We also analyze the behavior of the wave solutions near the event horizon of the rotating linear dilaton black hole and derive its Hawking temperature via the Damour-Ruffini-Sannan method.
Localization on the landscape and eternal inflation
NASA Astrophysics Data System (ADS)
Mersini-Houghton, Laura; Perry, Malcolm J.
2014-11-01
We investigate the validity of the assertion that eternal inflation populates the landscape of string theory. We verify that bubble solutions do not satisfy the Klein-Gordon equation for the landscape potential. Solutions to the landscape potential within the formalism of quantum cosmology are Anderson localized wavefunctions. These are inconsistent with inflating bubble solutions. The physical reasons behind the failure of a relation between eternal inflation and the landscape are rooted in quantum phenomena such as interference between wavefunction concentrated around the various vacua in the landscape.
Stochastic eternal inflation in a Bianchi type I universe
NASA Astrophysics Data System (ADS)
Kohli, Ikjyot Singh; Haslam, Michael C.
2016-01-01
The phenomenon of stochastic eternal inflation is studied for a chaotic inflation potential in a Bianchi type I spacetime background. After deriving the appropriate stochastic Klein-Gordon equation, we give details on the conditions for eternal inflation. It is shown that for eternal inflation to occur, the amount of anisotropy must be small. In fact, it is shown that eternal inflation will only take place if the shear anisotropy variables take on values within a small region of the interior of the Kasner circle. We then calculate the probability of eternal inflation occurring based on techniques from stochastic calculus.
Elko and mass dimension one field of spin one-half: Causality and Fermi statistics
NASA Astrophysics Data System (ADS)
Ahluwalia, Dharam Vir; Nayak, Alekha Chandra
2014-03-01
We review how Elko arise as an extension of complex-valued four-component Majorana spinors. This is followed by a discussion that constrains certain elements of phase freedom. A proof is reviewed that unambiguously establishes that Elko, and for that matter the indicated Majorana spinors, cannot satisfy Dirac equation. They, however do, as they must, satisfy spinorial Klein-Gordon equation. We then introduce a quantum field with Elko as its expansion coefficients and show that it is causal, satisfies Fermi statistics, and then refer to the existing literature to remind that its mass dimension is one. We conclude by providing an up-to-date bibliography on the subject.
Relativistic spinless rotation-vibrational energies of carbon monoxide
NASA Astrophysics Data System (ADS)
Tang, Bin; Jia, Chun-Sheng
2017-09-01
We solve the Klein-Gordon equation with the simplified Pöschl-Teller potential model by employing the shape invariance technique, and present the relativistic spinless rotation-vibrational energy equation for diatomic molecules with nuclear spin of zero. It is found that the relativistic effects subject to the relative motion of the ions increase slightly the spinless vibrational energies of the ground electronic state of the carbon monoxide molecule in comparison to the nonrelativistic results. We observe that the variation of the relativistic spinless rotation-vibrational energies with respect to the vibrational quantum number in larger rotational quantum numbers holds similar to that with rotational quantum number of zero.
Quantum Tunneling Time: Relativistic Extensions
NASA Astrophysics Data System (ADS)
Xu, Dai-Yu; Wang, Towe; Xue, Xun
2013-11-01
Several years ago, in quantum mechanics, Davies proposed a method to calculate particle's traveling time with the phase difference of wave function. The method is convenient for calculating the sojourn time inside a potential step and the tunneling time through a potential hill. We extend Davies' non-relativistic calculation to relativistic quantum mechanics, with and without particle-antiparticle creation, using Klein-Gordon equation and Dirac Equation, for different forms of energy-momentum relation. The extension is successful only when the particle and antiparticle creation/annihilation effect is negligible.
Optical theorem in curved space-time quantum field theory
NASA Astrophysics Data System (ADS)
Audretsch, Jürgen
1989-09-01
A structural analysis is given of the optical theorem in the S-matrix approach to mutually interacting quantum fields in classical Robertson-Walker universes. As a case study, the φψ 2-interaction of conformally coupled massive ( φ) and massless ( φ) Klein-Gordon particles is studied. Based on the outgoing massless particles as indicator configuration, the physical interpretation is reduced to the corresponding added-up probabilities. Several examples are discussed in an in-in scheme which has the advantage that only a few non-Minkowskian in-in Feynman diagrams are involved.
On the scalar particle creation by electromagnetic fields in Robertson-Walker spacetime
NASA Astrophysics Data System (ADS)
Sogut, Kenan; Havare, Ali
2015-12-01
In the present paper, we obtained the scalar particle creation number density by using the Klein-Gordon equation coupled to the electromagnetic fields in the Robertson-Walker spacetime with the help of the Bogoliubov transformation method. We analyzed the resulting expression for the effect of a time-dependent electric field and a constant magnetic field on the particle production rate and found that the strong time-dependent electric field amplifies the particle creation and the magnetic field reduces the rate, in accordance with the previous findings.
Non-linear generalization of the relativistic Schrödinger equations.
NASA Astrophysics Data System (ADS)
Ochs, U.; Sorg, M.
1996-09-01
The theory of the relativistic Schrödinger equations is further developped and extended to non-linear field equations. The technical advantage of the relativistic Schroedinger approach is demonstrated explicitly by solving the coupled Einstein-Klein-Gordon equations including a non-linear Higgs potential in case of a Robertson-Walker universe. The numerical results yield the effect of dynamical self-diagonalization of the Hamiltonian which corresponds to a kind of quantum de-coherence being enabled by the inflation of the universe.
The free Bose gas on Robertson-Walker spacetimes
NASA Astrophysics Data System (ADS)
Trucks, M.; Keyl, M.
1997-02-01
In this letter we define a new state on the Weyl algebra of the Klein-Gordon field on Robertson-Walker spacetimes. This state approximates a thermal equilibrium state and opens the possibility to do quantum statistical mechanics on expanding universes. We explain why this state is believed to be a physically relevant state in the framework of algebraic quantum field theory. The methods used in the proof are shortly reviewed. We also explain how to describe the evolution of the state. It is shown that the inverse temperature of the state changes with the scale parameter in the Robertson-Walker metric.
On the Creation of Scalar Particles in a Flat Robertson-Walker Spacetime
NASA Astrophysics Data System (ADS)
Haouat, S.; Chekireb, R.
The problem of particle creation from vacuum in a flat Robertson-Walker spacetime is studied. Two sets of exact solutions for the Klein-Gordon equation are given when the scale factor is a2(η) = a+b tanh(λη)+c tanh2 (λη). Then the canonical method based on Bogoliubov transformation is applied to calculate the pair creation probability and the density number of created particles. Some particular cosmological models such as radiation dominated universe and Milne universe are discussed. For both cases the vacuum to vacuum transition probability is calculated and the imaginary part of the effective action is extracted.
Scalar field perturbations in Hořava-Lifshitz cosmology
NASA Astrophysics Data System (ADS)
Wang, Anzhong; Wands, David; Maartens, Roy
2010-03-01
We study perturbations of a scalar field cosmology in Hořava-Lifshitz gravity, adopting the most general setup without detailed balance but with the projectability condition. We derive the generalized Klein-Gordon equation, which is sixth-order in spatial derivatives. Then we investigate scalar field perturbations coupled to gravity in a flat Friedmann-Robertson-Walker background. In the sub-horizon regime, the metric and scalar field modes have independent oscillations with different frequencies and phases except in particular cases. On super-horizon scales, the perturbations become adiabatic during slow-roll inflation driven by a single field, and the comoving curvature perturbation is constant.
States of low energy in homogeneous and inhomogeneous expanding spacetimes
NASA Astrophysics Data System (ADS)
Them, Kolja; Brum, Marcos
2013-12-01
We construct states on the algebra of the Klein-Gordon field that minimize the energy density in homogeneous and in inhomogeneous spacetimes, both with compact Cauchy hypersurfaces. The energy density is measured by geodesic observers and smeared over a spacelike slab of spacetime, entirely containing a Cauchy hypersurface and extended in time. We further show that these states are Hadamard states. The present construction generalizes the construction of states of low energy in Robertson-Walker spacetimes presented by Olbermann (2007 Class. Quantum Grav. 24 5011).
U(1) gauge invariant field equations on k=1 Robertson-Walker Universe
NASA Astrophysics Data System (ADS)
Dariescu, C.; Dariescu, M.-A.
2001-09-01
We start with an U(1) gauge invariant tetradic formulation of the Klein-Gordon-Maxwell system of equations on spatially closed Robertson-Walker spacetimes. For the matter-dominated Universe, a compact timelike coordinate is introduced in analysing the general form of the complex scalar field solutions of Gordon equation. It technically follows that each parity given state is conformally built up of three Einateinian particle states (i.e. the ones unambigously defined in Einstein's static Universe). Finally, we derive non-trivial closed form solutions of the sourceless Maxwell equations, pointing out a kind of almost universal geometrodynamically generated burst of electromagnetic radiation.
Scalar field equation in Robertson-Walker space-time.
NASA Astrophysics Data System (ADS)
Zecca, A.
1997-06-01
The quantization of the scalar field is reconsidered in some of its basic elements in the context of the Robertson-Walker space-time. The integration of the generalized Klein-Gordon equation is performed by preliminary separation of the equation with the usual separation method. The orthonormal mode solutions are determined by the explicit integration of the resulting angular and radial equations and by standard properties of the time equation. The time evolution given by the standard cosmological model is briefly discussed.
Relativistic quantum chaos in Robertson-Walker cosmologies.
NASA Astrophysics Data System (ADS)
Tomaschitz, R.
1991-10-01
Open Robertson-Walker cosmologies of multiple spatial connectivity provide a challenging example for the possible influence of the global topological structure of space-time on the laws of microscopic motion. Free geodesic motion is investigated in such cosmologies in the context of first quantization. A unique localized wave field, a solution of the Klein-Gordon equation, is found as a consequence of the topological structure of the spacelike slices t = const of the manifold. This solution is closely related to the collection of the bounded chaotic trajectories.
Massive symmetric tensor field in curved spacetime
NASA Astrophysics Data System (ADS)
Higuchi, Atsushi
1989-03-01
The condition on the background spacetime is derived for the straightforward generalization of the massive symmetric tensor field (MSTF) equation to be possible. The MSTF in spatially flat Robertson-Walker spacetimes is studied in detail. The abovementioned condition in these spacetimes is verified by calculating the Klein-Gordon inner products among the solutions of the field equation. It is shown that the MSTF theory in some spacetimes has features which are probably undesirable even if the condition on the spacetime is satisfied.
Time-varying cosmological term
NASA Astrophysics Data System (ADS)
Socorro, J.; D'oleire, M.; Pimentel, Luis O.
2015-11-01
We present the case of time-varying cosmological term using the Lagrangian formalism characterized by a scalar field ϕ with standard kinetic energy and arbitrary potential V(ϕ). This model is applied to Friedmann-Robertson-Walker (FRW)cosmology. Exact solutions of the field equations are obtained by a special ansats to solve the Einstein-Klein-Gordon equation and a particular potential for the scalar field and barotropic perfect fluid. We present the evolution on this cosmological term with different scenarios.
States of low energy on Robertson Walker spacetimes
NASA Astrophysics Data System (ADS)
Olbermann, Heiner
2007-10-01
We construct a new class of physical states of the free Klein Gordon field in Robertson Walker spacetimes. This is done by minimizing the expectation value of smeared stress energy. We get an explicit expression for the state depending on the smearing function. We call it a state of low energy. States of low energy are an improvement of the concept of adiabatic vacua on Robertson Walker spacetimes. The latter are approximations of the former. It is shown that states of low energy are Hadamard states.
Schwinger Effect in a Robertson-Walker Space-Time
NASA Astrophysics Data System (ADS)
Haouat, S.; Chekireb, R.
2012-06-01
The problem of particle creation from vacuum in a flat Robertson-Walker space-time in the presence of a varying electric field is studied. The Klein Gordon equation is exactly solved when the scale factor is a( η)= A+ Btanh( λη). The canonical method based on Bogoliubov transformation is applied. The pair creation probability and the density number of created particles are calculated. The particular case of radiation dominated universe is considered where the total probability is written as a Schwinger-like series. It is shown that the electric field amplifies gravitational particle creation.
New Spherical Scalar Modes on the de Sitter Expanding Universe
NASA Astrophysics Data System (ADS)
Pascu, Gabriel
2012-07-01
New spherical scalar modes on the expanding part of Sitter spacetime, eigenfunctions of a conserved Hamiltonian-like operator are found by solving the Klein-Gordon equation in the appropriate coordinate chart, with the help of a time evolution picture technique specially developed for spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) charts. Transition coefficients are computed between these modes and the rest of the scalar spherical and plane wave modes, either momentum or energy eigenfunctions on the spatially flat FLRW chart.
Local quasiequivalence and adiabatic vacuum states
NASA Astrophysics Data System (ADS)
Lüders, Christian; Roberts, John E.
1990-11-01
The problem of determining the physically relevant states acquires a new dimension in curved spacetime where there is, in general, no natural definition of a vacuum state. It is argued that there is a unique local quasiequivalence class of physically relevant states and it is shown how this class can be specified for the free Klein-Gordon field on a Robertson-Walker spacetime by using the concept of an adiabatic vacuum state. Any two adiabatic vacuum states of order two are locally quasiequivalent.
Scalar field in standard cosmology: time equation.
NASA Astrophysics Data System (ADS)
Zecca, A.
1999-11-01
The separated time equation relative to the generalized Klein-Gordon equation in the Robertson-Walker space-time is integrated in the background of the standard cosmology. The solutions are given in terms of series that are obtained by the usual integration method of differential equations with regular singularity. The normalization of the solutions implied by the requirement of second quantization of the scalar field is performed. The result exhausts the requirement of providing an explicit complete set of normal mode solutions of the scalar field equation in standard cosmology.
Rotationally symmetric massless modes in closed Robertson-Walker universe.
NASA Astrophysics Data System (ADS)
Dariescu, C.; Dariescu, M.-A.
1999-06-01
The aim of the present paper is to investigate the minimally coupled rotationally symmetric scalar field configurations in spatially closed Friedmann-Robertson-Walker universe with incoherent dust. The authors have obtained the closed form solution of the Klein-Gordon equation in terms of two real-valued linearly independent hypergeometric functions. The orthonormal set of positive-frequency-like parity modes thereafter derived points out that each parity given state is conformally built up of three Einsteinian particle states and also leads to the explicit coordinate-representation of the field propagator.
Particle creation in asymptotically Minkowskian spacetimes
NASA Astrophysics Data System (ADS)
Moradi, Shahpoor
2009-02-01
Exact solutions of Klein-Gordon and Dirac equations are obtained for two classes of Robertson-Walker (RW) spacetimes with asymptotically Minkowskian regions. One class is Minkowskian in the remote past and future. In this class in and out vacua are well defined, because the scale factor reduces to a constant at the asymptotic regions. Another class is asymptotically flat only in the far past. Using the obtained exact solutions we calculate the density of scalar and Dirac particles created through the Bogolubov transformations technique. For Dirac field it is shown that the rates of creation of particles and antiparticles are equal.
Not all adiabatic vacua are physical states
NASA Astrophysics Data System (ADS)
Lindig, J.
1999-03-01
Adiabatic vacua are known to be Hadamard states. We show, however, that the energy-momentum tensor of a linear Klein-Gordon field on Robertson-Walker spaces develops a generic singularity on the initial hypersurface if the adiabatic vacuum is of order less than 4. Therefore, adiabatic vacua are physically reasonable only if their order is at least 4. A certain nonlocal large momentum expansion of the mode functions has recently been suggested to yield the subtraction terms needed to remove the ultraviolet divergences in the energy-momentum tensor. We find that this scheme fails to reproduce the trace anomaly and therefore is not equivalent to adiabatic regularization.
Effective photon mass and exact translating quantum relativistic structures
Haas, Fernando Manrique, Marcos Antonio Albarracin
2016-04-15
Using a variation of the celebrated Volkov solution, the Klein-Gordon equation for a charged particle is reduced to a set of ordinary differential equations, exactly solvable in specific cases. The new quantum relativistic structures can reveal a localization in the radial direction perpendicular to the wave packet propagation, thanks to a non-vanishing scalar potential. The external electromagnetic field, the particle current density, and the charge density are determined. The stability analysis of the solutions is performed by means of numerical simulations. The results are useful for the description of a charged quantum test particle in the relativistic regime, provided spin effects are not decisive.
NASA Astrophysics Data System (ADS)
Vitória, R. L. L.; Belich, H.; Bakke, K.
2017-01-01
We consider a background of the violation of the Lorentz symmetry determined by the tensor (KF)_{μναβ} which governs the Lorentz symmetry violation out of the Standard Model Extension, where this background gives rise to a Coulomb-type potential, and then, we analyse its effects on a relativistic quantum oscillator. Furthermore, we analyse the behaviour of the relativistic quantum oscillator under the influence of a linear scalar potential and this background of the Lorentz symmetry violation. We show in both cases that analytical solutions to the Klein-Gordon equation can be achieved.
Voltage-less alternating current (AC) Josephson effect in two-band superconductors
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Yamamori, H.; Yanagisawa, T.; Nishio, T.; Arisawa, S.
2017-07-01
The sliding motions of inter-band phase difference solitons (i-solitons) cause time-dependent superconducting phase variations in two-band superconductors. Two different voltages cannot exist at the same spatial location, although the conventional AC Josephson effect demands the presence of a voltage difference between the two bands at the same location, if the time-variation of the phase generates the voltage, for which a physical interpretation is not possible. Instead of the conventional AC Josephson effect, a non-linear Klein-Gordon equation (sine-Gordon equation) can enable the dissipationless movement of i-solitons, without voltage generation.
Statistical Entropy of Black Hole without Truncation Factor
NASA Astrophysics Data System (ADS)
Jiang, Ji-Jian; Li, Yu-Shan; Liu, Jing-Lun; Li, Chuan-An
2017-07-01
The scatting probability of scalar particles near the event horizon is obtained by solving Klein-Gordon equation in curved space-time. By considering the reaction of a black hole radiation in space-time background, we find that Hawking radiation is not a strictly pure thermal-spectrum and scatting probability is related to the B-H entropy change of black hole. The statistical entropy of black hole is calculated based on the relations between entropy and thermodynamic probability of a macroscopic state in statistical equilibrium. The results show that the statistical entropy of black hole without using any truncation factor is proportional to the area of event horizon.
Partially Strong Transparency Conditions and a Singular Localization Method In Geometric Optics
NASA Astrophysics Data System (ADS)
Lu, Yong; Zhang, Zhifei
2016-10-01
This paper focuses on the stability analysis of WKB approximate solutions in geometric optics with the absence of strong transparency conditions under the terminology of Joly, Métivier and Rauch. We introduce a compatible condition and a singular localization method which allows us to prove the stability of WKB solutions over long time intervals. This compatible condition is weaker than the strong transparency condition. The singular localization method allows us to do delicate analysis near resonances. As an application, we show the long time approximation of Klein-Gordon equations by Schrödinger equations in the non-relativistic limit regime.
Hawking Radiation of Scalar and Vector Particles from 5D Myers-Perry Black Holes
NASA Astrophysics Data System (ADS)
Jusufi, Kimet; Övgün, Ali
2017-02-01
In the present paper we explore the Hawking radiation as a quantum tunneling effect from a rotating 5 dimensional Myers-Perry black hole (5D-MPBH) with two independent angular momentum components. First, we investigate the Hawking temperature by considering the tunneling of massive scalar particles and spin-1 vector particles from the 5D-MPBH in the Painlevé coordinates and then in the corotating frames. More specifically, we solve the Klein-Gordon and Proca equations by applying the WKB method and Hamilton-Jacobi equation in both cases. Finally, we recover the Hawking temperature and show that coordinates systems do not affect the Hawking temperature.
Hawking Radiation of Scalar and Vector Particles from 5D Myers-Perry Black Holes
NASA Astrophysics Data System (ADS)
Jusufi, Kimet; Övgün, Ali
2017-06-01
In the present paper we explore the Hawking radiation as a quantum tunneling effect from a rotating 5 dimensional Myers-Perry black hole (5D-MPBH) with two independent angular momentum components. First, we investigate the Hawking temperature by considering the tunneling of massive scalar particles and spin-1 vector particles from the 5D-MPBH in the Painlevé coordinates and then in the corotating frames. More specifically, we solve the Klein-Gordon and Proca equations by applying the WKB method and Hamilton-Jacobi equation in both cases. Finally, we recover the Hawking temperature and show that coordinates systems do not affect the Hawking temperature.
Nonexistence of small, odd breathers for a class of nonlinear wave equations
NASA Astrophysics Data System (ADS)
Kowalczyk, Michał; Martel, Yvan; Muñoz, Claudio
2017-05-01
In this note, we show that for a large class of nonlinear wave equations with odd nonlinearities, any globally defined odd solution which is small in the energy space decays to 0 in the local energy norm. In particular, this result shows nonexistence of small, odd breathers for some classical nonlinear Klein Gordon equations, such as the sine-Gordon equation and φ ^4 and φ ^6 models. It also partially answers a question of Soffer and Weinstein (Invent Math 136(1): 9-74, p 19 1999) about nonexistence of breathers for the cubic NLKG in dimension one.
Gordon Decomposition of Dirac Spinors in Gravitational Background
NASA Astrophysics Data System (ADS)
Parashar, D.
The scheme outlined earlier is continued here to investigate the structure of Dirac spinors in the background of a gravitational field within the context of cosmological Robertson-Walker metric where the treatment is based on general considerations of spatially curved (non-flat) hypersurfaces embracing open as well as closed versions of the Universe. A Gordon decomposition of the generalized Dirac current is then carried out in terms of the polarization and the magnetization densities. We also take a look at the Klein-Gordon equation in the curved space formalism.
Tunnelling of relativistic particles from new type black hole in new massive gravity
Gecim, Ganim; Sucu, Yusuf E-mail: ysucu@akdeniz.edu.tr
2013-02-01
In the framework of the three dimensional New Massive Gravity theory introduced by Bergshoeff, Hohm and Townsend, we analyze the behavior of relativistic spin-1/2 and spin-0 particles in the New-type Black Hole backgroud, solution of the New Massive Gravity.We solve Dirac equation for spin-1/2 and Klein-Gordon equation for spin-0. Using Hamilton-Jacobi method, we discuss tunnelling probability and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. We observe that the tunnelling probability and Hawking temperature are same for the spin-1/2 and spin-0.
Tortoise Coordinates and Hawking Radiation in a Dynamical Spherically Symmetric Spacetime
NASA Astrophysics Data System (ADS)
Yang, Jian; Zhao, Zheng; Tian, Gui-Hua; Liu, Wen-Biao
2009-12-01
Hawking effect from dynamical spherical Vaidya black hole, Vaidya-Bonner black hole, and Vaidya-de Sitter black hole is investigated using the improved Damour-Ruffini method. After the new tortoise coordinate transformation in which the position r of event horizon is an undetermined function and the temperature parameter κ is an undetermined constant, the Klein-Gordon equation can be written as the standard form at the event horizon, and both r and κ can be determined automatically. Then extending the outgoing wave from outside to inside of the horizon analytically, the Hawking temperature can also be obtained automatically.
New tortoise coordinate transformation and Hawking's radiation in de Sitter space
NASA Astrophysics Data System (ADS)
Ibohal, N.; Ibungochouba, T.
2013-01-01
Hawking's radiation effect of Klein-Gordon equation, Dirac particles and Maxwell's electromagnetic fields in the non-stationary rotating de Sitter cosmological space-time is investigated by using a new method of generalized tortoise coordinate transformation. It is found that the new transformation produces constant additional terms in the expressions of the surface gravities and the Hawking's temperatures. If the constant terms are set to zero, then the surface gravities and Hawking's temperatures will be equal to those obtained from the old generalized tortoise coordinate transformations. This shows that the new transformations are more reasonable. The Fermionic spectrum of Dirac particles displays a new spin-rotation coupling effect.
The Invariant Operator Theory, and the Unification of the Fundamental Interactions
NASA Astrophysics Data System (ADS)
Nduka, Amagh
2002-10-01
This paper established explicitly and unambiguously that the Invariant Operator Theory is the most general physical theory that can be constructed in a pseudo-euclidean (space-time) background. Specifically, we show that the field theories of Isaac Newton, Clarke Maxwell, Erwin Schrodinger, Klein-Gordon, and Paul A. M. Dirac are mere derivatives of the new Theory. Finally we discuss the unification of the fundamental interactions. We find that the NEW Physics has succesfully resolved all the outstanding problems of Physics, with the exception of the problem of mass.
Noncompeting channel approach to pair creation in supercritical fields.
Lv, Q Z; Liu, Y; Li, Y J; Grobe, R; Su, Q
2013-11-01
The Dirac and Klein-Gordon equations are solved on a space-time grid to study the strong-field induced pair creation process for bosons and fermions from the vacuum. If the external field is sufficiently strong to induce bound states that are embedded in the negative energy continuum, a complex scaling technique of the Hamiltonian can predict the longtime behavior of the dynamics. In the case of multiple bound states this technique predicts the occurrence of a new collective time scale. The longtime behavior of the pair creation is not determined by a single (most important) channel, but collectively by the sum of all individual widths of the embedded states.
Evolution and stability Φ4 oscillatons
NASA Astrophysics Data System (ADS)
Ureña-López, L. Arturo; Valdez-Alvarado, Susana; Becerril, Ricardo
2012-03-01
We solve numerically the Einstein-Klein-Gordon (EKG) system, assuming spherical symmetry, for a real scalar field endowed with a quartic self-interaction potential, and obtain the so-called oscillatons: oscillating soliton stars. We obtain the equilibrium configurations for Φ4oscillatons. Also, we analyze numerically the evolution of the EKG equations to study the stability of such oscillatons. We present the influence of the quartic potential on the behavior of both the stable (S-oscillatons) and unstable (U-oscillatons) branches, under the influence of small and large radial perturbations.
Stochastic process leading to wave equations in dimensions higher than one.
Plyukhin, A V
2010-02-01
Stochastic processes are proposed whose master equations coincide with classical wave, telegraph, and Klein-Gordon equations. Similar to predecessors based on the Goldstein-Kac telegraph process, the model describes the motion of particles with constant speed and transitions between discreet allowed velocity directions. A new ingredient is that transitions into a given velocity state depend on spatial derivatives of other states populations, rather than on populations themselves. This feature requires the sacrifice of the single-particle character of the model, but allows to imitate the Huygens' principle and to recover wave equations in arbitrary dimensions.
Scalar particles emission from black holes with topological defects using Hamilton-Jacobi method
NASA Astrophysics Data System (ADS)
Jusufi, Kimet
2015-11-01
We study quantum tunneling of charged and uncharged scalar particles from the event horizon of Schwarzschild-de Sitter and Reissner-Nordström-de Sitter black holes pierced by an infinitely long spinning cosmic string and a global monopole. In order to find the Hawking temperature and the tunneling probability we solve the Klein-Gordon equation by using the Hamilton-Jacobi method and WKB approximation. We show that Hawking temperature is independent of the presence of topological defects in both cases.
Field theory on R× S 3 topology: Lagrangian formulation
NASA Astrophysics Data System (ADS)
Carmeli, M.; Malka, A.
1990-01-01
A brief description of the ordinary field theory, from the variational and Noether's theorem point of view, is outlined. A discussion is then given of the field equations of Klein-Gordon, Schrödinger, Dirac, Weyl, and Maxwell in their ordinary form on the Minkowskian space-time manifold as well as on the topological space-time manifold R × S3 as they were formulated by Carmeli and Malin, including the latter's most general solutions. We then formulate the general variational principle in the R × S3 topological space, from which we derive the field equations in this space.
Quantized scalar field as DM: the axion's case
Barranco, J.; Bernal, A.
2008-12-04
We derive a rough estimation of the radius and the mass of a self-gravitating system made of axions. The system is a stationary solution of the Einstein-Klein-Gordon equations with a source term given by the vacuum expectation value of the energy-momentum operator constructed from the axion field. We found that such system would have masses of the order of asteroids ({approx}10{sup -10} M{sub {center_dot}}) and radius of the order of few centimeters. Some implications of such type of objects are discussed.
Spacetime alternatives in the quantum mechanics of a relativistic particle
Whelan, J.T. Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge, CB3 0EH )
1994-11-15
Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities.
Energy Criterion for the Spectral Stability of Discrete Breathers.
Kevrekidis, Panayotis G; Cuevas-Maraver, Jesús; Pelinovsky, Dmitry E
2016-08-26
Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the discrete breather's energy as a function of the breather frequency. Our analysis suggests and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable in soft (hard) nonlinear potentials.
Thermal corrections to the Casimir energy in a general weak gravitational field
NASA Astrophysics Data System (ADS)
Nazari, Borzoo
2016-12-01
We calculate finite temperature corrections to the energy of the Casimir effect of a two conducting parallel plates in a general weak gravitational field. After solving the Klein-Gordon equation inside the apparatus, mode frequencies inside the apparatus are obtained in terms of the parameters of the weak background. Using Matsubara’s approach to quantum statistical mechanics gravity-induced thermal corrections of the energy density are obtained. Well-known weak static and stationary gravitational fields are analyzed and it is found that in the low temperature limit the energy of the system increases compared to that in the zero temperature case.
Nonlinear steady-state coupling of LH waves
Ko, K.; Krapchev, V.B.
1981-02-01
The coupling of lower hybrid waves at the plasma edge by a two waveguide array with self-consistent density modulation is solved numerically. For a linear density profile, the governing nonlinear Klein-Gordon equation for the electric field can be written as a system of nonlinearly modified Airy equations in Fourier k/sub z/-space. Numerical solutions to the nonlinear system satisfying radiation condition are obtained. Spectra broadening and modifications to resonance cone trajectories are observed with increase of incident power.
Relativistic Approximate Solutions for a Two-Term Potential: Riemann-Type Equation
NASA Astrophysics Data System (ADS)
Arda, Altug
2016-10-01
Approximate analytical solutions of a two-term potential are studied for the relativistic wave equations, namely, for the Klein-Gordon and Dirac equations. The results are obtained by solving of a Riemann-type equation whose solution can be written in terms of hypergeometric function 2F l(a,b; c; z). The energy eigenvalue equations and the corresponding normalized wave functions are given both for two wave equations. The results for some special cases including the Manning-Rosen potential, the Hulthen potential and the Coulomb potential are also discussed by setting the parameters as required.
Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters.
Zhang, Huixian; Ravi, Vydianathan; Tay, Boon-Hui; Tohari, Sumanty; Pillai, Nisha E; Prasad, Aravind; Lin, Qiang; Brenner, Sydney; Venkatesh, Byrappa
2017-08-22
ParaHox genes (Gsx, Pdx, and Cdx) are an ancient family of developmental genes closely related to the Hox genes. They play critical roles in the patterning of brain and gut. The basal chordate, amphioxus, contains a single ParaHox cluster comprising one member of each family, whereas nonteleost jawed vertebrates contain four ParaHox genomic loci with six or seven ParaHox genes. Teleosts, which have experienced an additional whole-genome duplication, contain six ParaHox genomic loci with six ParaHox genes. Jawless vertebrates, represented by lampreys and hagfish, are the most ancient group of vertebrates and are crucial for understanding the origin and evolution of vertebrate gene families. We have previously shown that lampreys contain six Hox gene loci. Here we report that lampreys contain only two ParaHox gene clusters (designated as α- and β-clusters) bearing five ParaHox genes (Gsxα, Pdxα, Cdxα, Gsxβ, and Cdxβ). The order and orientation of the three genes in the α-cluster are identical to that of the single cluster in amphioxus. However, the orientation of Gsxβ in the β-cluster is inverted. Interestingly, Gsxβ is expressed in the eye, unlike its homologs in jawed vertebrates, which are expressed mainly in the brain. The lamprey Pdxα is expressed in the pancreas similar to jawed vertebrate Pdx genes, indicating that the pancreatic expression of Pdx was acquired before the divergence of jawless and jawed vertebrate lineages. It is likely that the lamprey Pdxα plays a crucial role in pancreas specification and insulin production similar to the Pdx of jawed vertebrates.
1983-12-22
IN TRANS ATION ~TITLE: .SPANISH COASTAL PATROL SHIPS FOR ARGENTINA AND MEXICO GUARDACOSTAS EFPANOLES PARA ARGENTINA Y MEJICO AUTHOR: M; RAMIREZ...SHIPS FOR ARGENTINA AND MEXICO [Ramirez Gabarrus, M.; Guardacostas espaioles para Argentina y Mejico; Tecnologia Militar, No. 4, 1983; pP. 50, 53-54... Mexico , Mr. Alvarez de Vayo, signed a contract with the Mexican War Minister, General Cardenas, to build a series of 10 coastal patrol boats and five
Chordate Hox and ParaHox gene clusters differ dramatically in their repetitive element content.
Osborne, Peter W; Ferrier, David E K
2010-02-01
The ParaHox and Hox gene clusters control aspects of animal anterior-posterior development and are related as paralogous evolutionary sisters. Despite this relationship, it is not clear if the clusters operate in similar ways, with similar constraints. To compare clusters, we examined the transposable-element (TE) content of amphioxus and mammalian ParaHox and Hox clusters. Chordate Hox clusters are known to be largely devoid of TEs, possibly due to gene regulation and constraints on clustering in these animals. Here, we describe several novel amphioxus TEs and show that the amphioxus ParaHox cluster is a hotspot for TE insertion. TE contents of mammalian ParaHox loci are at background levels, in stark contrast to chordate Hox clusters. This marks a significant difference between Hox and ParaHox clusters. The presence of so many potentially disruptive elements implies selection constrains these ParaHox clusters as they have not dispersed despite 500 My of evolution for each lineage.
para-C-H Borylation of Benzene Derivatives by a Bulky Iridium Catalyst.
Saito, Yutaro; Segawa, Yasutomo; Itami, Kenichiro
2015-04-22
A highly para-selective aromatic C-H borylation has been accomplished. By a new iridium catalyst bearing a bulky diphosphine ligand, Xyl-MeO-BIPHEP, the C-H borylation of monosubstituted benzenes can be affected with para-selectivity up to 91%. This catalytic system is quite different from the usual iridium catalysts that cannot distinguish meta- and para-C-H bonds of monosubstituted benzene derivatives, resulting in the preferred formation of meta-products. The para-selectivity increases with increasing bulkiness of the substituent on the arene, indicating that the regioselectivity of the present reaction is primarily controlled by steric repulsion between substrate and catalyst. Caramiphen, an anticholinergic drug used in the treatment of Parkinson's disease, was converted into five derivatives via our para-selective borylation. The present [Ir(cod)OH]2/Xyl-MeO-BIPHEP catalyst represents a unique, sterically controlled, para-selective, aromatic C-H borylation system that should find use in streamlined, predictable chemical synthesis and in the rapid discovery and optimization of pharmaceuticals and materials.
Diffusion Monte Carlo Study of Para-Diiodobenzene Polymorphism Revisited.
Hongo, Kenta; Watson, Mark A; Iitaka, Toshiaki; Aspuru-Guzik, Alán; Maezono, Ryo
2015-03-10
We revisit our investigation of the diffusion Monte Carlo (DMC) simulation of para-diiodobenzene (p-DIB) molecular crystal polymorphism. [See J. Phys. Chem. Lett. 2010, 1, 1789-1794.] We perform, for the first time, a rigorous study of finite-size effects and choice of nodal surface on the prediction of polymorph stability in molecular crystals using fixed-node DMC. Our calculations are the largest that are currently feasible using the resources of the K-computer and provide insights into the formidable challenge of predicting such properties from first principles. In particular, we show that finite-size effects can influence the trial nodal surface of a small (1 × 1 × 1) simulation cell considerably. Therefore, we repeated our DMC simulations with a 1 × 3 × 3 simulation cell, which is the largest such calculation to date. We used a density functional theory (DFT) nodal surface generated with the PBE functional, and we accumulated statistical samples with ∼6.4 × 10(5) core hours for each polymorph. Our final results predict a polymorph stability that is consistent with experiment, but they also indicate that the results in our previous paper were somewhat fortuitous. We analyze the finite-size errors using model periodic Coulomb (MPC) interactions and kinetic energy corrections, according to the CCMH scheme of Chiesa, Ceperley, Martin, and Holzmann. We investigate the dependence of the finite-size errors on different aspect ratios of the simulation cell (k-mesh convergence) in order to understand how to choose an appropriate ratio for the DMC calculations. Even in the most expensive simulations currently possible, we show that the finite size errors in the DMC total energies are much larger than the energy difference between the two polymorphs, although error cancellation means that the polymorph prediction is accurate. Finally, we found that the T-move scheme is essential for these massive DMC simulations in order to circumvent population explosions and
The PARA-suite: PAR-CLIP specific sequence read simulation and processing
Kloetgen, Andreas; Borkhardt, Arndt; Hoell, Jessica I.
2016-01-01
Background Next-generation sequencing technologies have profoundly impacted biology over recent years. Experimental protocols, such as photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP), which identifies protein–RNA interactions on a genome-wide scale, commonly employ deep sequencing. With PAR-CLIP, the incorporation of photoactivatable nucleosides into nascent transcripts leads to high rates of specific nucleotide conversions during reverse transcription. So far, the specific properties of PAR-CLIP-derived sequencing reads have not been assessed in depth. Methods We here compared PAR-CLIP sequencing reads to regular transcriptome sequencing reads (RNA-Seq) to identify distinctive properties that are relevant for reference-based read alignment of PAR-CLIP datasets. We developed a set of freely available tools for PAR-CLIP data analysis, called the PAR-CLIP analyzer suite (PARA-suite). The PARA-suite includes error model inference, PAR-CLIP read simulation based on PAR-CLIP specific properties, a full read alignment pipeline with a modified Burrows–Wheeler Aligner algorithm and CLIP read clustering for binding site detection. Results We show that differences in the error profiles of PAR-CLIP reads relative to regular transcriptome sequencing reads (RNA-Seq) make a distinct processing advantageous. We examine the alignment accuracy of commonly applied read aligners on 10 simulated PAR-CLIP datasets using different parameter settings and identified the most accurate setup among those read aligners. We demonstrate the performance of the PARA-suite in conjunction with different binding site detection algorithms on several real PAR-CLIP and HITS-CLIP datasets. Our processing pipeline allowed the improvement of both alignment and binding site detection accuracy. Availability The PARA-suite toolkit and the PARA-suite aligner are available at https://github.com/akloetgen/PARA-suite and https://github.com/akloetgen/PARA
Spontaneous Emission Between - and Para-Levels of Water-Ion H_2O^+
NASA Astrophysics Data System (ADS)
Tanaka, Keiichi; Harada, Kensuke; Nanbu, Shinkoh; Oka, Takeshi
2012-06-01
Nuclear spin conversion interaction of water ion, H_2O^+, has been studied to derive spontaneous emission lifetime between ortho- and para-levels. H_2O^+ is a radical ion with the ^2B_1 electronic ground state. Its off-diagonal electron spin-nuclear spin interaction term, Tab(S_aΔ I_b + S_bΔ I_a), connects para and ortho levels, because Δ I = I_1 - I_2 has nonvanishing matrix elements between I = 0 and 1. The mixing by this term with Tab = 72 MHz predicted by ab initio theory in the MRD-CI/Bk level, is many orders of magnitude larger than for closed shell molecules because of the large magnetic interaction due to the un-paired electron. Using the molecular constants reported by Mürtz et al. by FIR-LMR, we searched for ortho and para coupling channels below 1000 cm-1 with accidental near degeneracy between para and ortho levels. For example, hyperfine components of the 42,2(ortho) and 33,0(para) levels mix by 1.2 × 10-3 due to their near degeneracy (Δ E = 0.417 cm-1), and give the ortho-para spontaneous emission lifetime of about 0.63 year. The most significant low lying 10,1(para) and 11,1(ortho) levels, on the contrary, mix only by 8.7 × 10-5 because of their large separation (Δ E = 16.267 cm-1) and give the spontaneous emission lifetime from 10,1(para) to 00,0(ortho) of about 100 year.These results qualitatively help to understand the observed high ortho- to para- H_2O^+ ratio of 4.8 ± 0.5 toward Sgr B2 but they are too slow to compete with the conversion by collision unless the number density of the region is very low (n ˜1 cm-3) or radiative temperature is very high (T_r > 100 K). M. Staikova, B. Engels, M. Peric, and S.D. Peyerimhoff, Mol. Phys. 80, 1485 (1993) P. Mürtz, L.R. Zink, K.M. Evenson, and J.M. Brown J. Chem. Phys. 109, 9744 (1998). LP. Schilke, et al., A&A 521, L11 (2010).
Vesicular erythema multiforme-like reaction to para-phenylenediamine in a henna tattoo.
Sidwell, Rachel U; Francis, Nick D; Basarab, Tamara; Morar, Nilesh
2008-01-01
Allergic contact dermatitis reaction to topical "black henna" tattoo is usually described secondary to the organic dye para-phenylenediamine, a derivative of analine. Allergic contact dermatitis reactions to para-phenylenediamine are well recognized and most commonly involve an eczematous reaction that may become generalized and an acute angio-edema. Only four previous instances have been reported of an erythema multiforme-like reaction to para-phenylenediamine and its derivatives, including only one mild reaction to a tattoo. A vesicular erythema multiforme-like reaction has not been reported. An erythema multiforme-like reaction to contact allergens is usually caused by potent allergens including plant quinolones in Compositae and sesquiterpene lactones in exotic woods, and it is also reported to topical drugs, epoxy resin, metals (particularly nickel), and various chemicals. A generalized vesicular erythema multiforme-like reaction is unusual, and rarely reported. We describe a 6-year-old boy who developed a localized, eczematous and severe generalized vesicular erythema multiforme-like contact allergy to para-phenylenediamine secondary to a henna tattoo. As henna tattoos are becoming increasingly popular, one should be aware of the possibility of such a reaction. This presentation also highlights the call to ban the use of para-phenylenediamine and its derivatives in dyes.
Estimation of Carbon Storage in Para Rubber Plantation in Eastern Thailand
NASA Astrophysics Data System (ADS)
Charoenjit, K.; Zuddas, P.; Allemand, P.
2012-12-01
This study aims to estimate the carbon stock and sequestration in Para rubber plantation of East Thailand using the THAICHOTE (Thailand Earth Observation System data). For that purpose we identify the area of every stage class Para rubber plantation by the analysis of different image objects (i.e., rule base and multiple regression classifications) and we map the carbon stock and sequestration of each Para rubber class using biomass allometric regressions and carbon content equations. THAICHOTE data include Multispectral image (4 bands at 15x15 m spatial resolution), Panchromatic image (2x2 m spatial resolution) and Stereo image, data acquisition from December 2011-April 2012. The preliminary investigated area is located in Wangchun, (Eastern, Thailand) and covers about 20 Km2. Calibrating the class stage, by image analysis that integrated edge-based segmentation, reflectance, remote sensing indices, texture analysis and canopy height model (CHM), we found that best classification was obtained by multiple regression (accuracy of 80%) compared to rule base logical operation (accuracy 70%) suggesting that manual 3D stereo measurements or Light Detection And Ranging (LiDAR) both are able to construct the CHM. The results of this study indicate that for a total Para rubber biomass of 14,651 tons, the amount of stored carbon is of 7,326 tons. Mature stage of Para rubber plantations exhibits the highest capacity of sequestering with a global flux of 0.21 tons C/ Km2/year.
The ortho/para ratio of water vapor in Comet Halley
NASA Technical Reports Server (NTRS)
Mumma, Michael J.; Larson, Harold P.; Weaver, Harold A.
1986-01-01
The ortho/para ratio of H2O is shown to be an invariant in the cometary coma. The dependence of ortho-para ratio on temperature in thermal equilibrium is given, and the nuclear-spin-temperature is defined. Its relation to the physical temperature of the cometary ices is discussed, and the prospects for using the observed ortho/para ratio to infer properties of the cometary nucleus are explored. The ortho/para ratio in Halley's comet is derived from high resolution infrared spectra of near 2.7 microns wavelength. On UT December 24.1, 1985 it was 2.73 + or - 0.17, and on UT March 22.7, 1986 it was 3.23 + or - 0.37. The nuclear-spin-temperature was 35 K (+9 K, -5 K) pre-perihelion, and less than 40 K post-perihelion, at the 67% confidence limit. Both numbers are consistent with modeled values of the equilibrium temperature of the cometary nucleus at aphelion (47 K). However, at the 95% confidence limit they are also fully consistent with temperatures less than 50 K, corresponding to an ortho/para ratio of about 3.0.
The formaldehyde ortho/para ratio as a probe of dark cloud chemistry and evolution
NASA Technical Reports Server (NTRS)
Dickens, J. E.; Irvine, W. M.
1999-01-01
We present measurements of the H2CO ortho/para ratio toward four star-forming cores, L723, L1228, L1527, and L43, and one quiescent core, L1498. Combining these data with earlier results by Minh et al., three quiescent cores are found to have ortho/para ratios near 3, the ratio of statistical weights expected for gas-phase formation processes. In contrast, ortho/para ratios are 1.5-2.1 in five star-forming cores, suggesting thermalization at a kinetic temperature of 10 K. We attribute modification of the ortho/para ratio in the latter cores to formation and/or equilibration of H2CO on grains with sub-sequent release back into the gas phase due to the increased energy inputs from the forming star and outflow. We see accompanying enhancements in the H2CO abundance relative to H, to support this idea. The results suggest that the formaldehyde ortho/para ratio can differentiate between quiescent cores and those in which low-mass star formation has occurred.
Influence of Molecular Oxygen on Ortho-Para Conversion of Water Molecules
NASA Astrophysics Data System (ADS)
Valiev, R. R.; Minaev, B. F.
2017-07-01
The mechanism of influence of molecular oxygen on the probability of ortho-para conversion of water molecules and its relation to water magnetization are considered within the framework of the concept of paramagnetic spin catalysis. Matrix elements of the hyperfine ortho-para interaction via the Fermi contact mechanism are calculated, as well as the Maliken spin densities on water protons in H2O and O2 collisional complexes. The mechanism of penetration of the electron spin density into the water molecule due to partial spin transfer from paramagnetic oxygen is considered. The probability of ortho-para conversion of the water molecules is estimated by the quantum chemistry methods. The results obtained show that effective ortho-para conversion of the water molecules is possible during the existence of water-oxygen dimers. An external magnetic field affects the ortho-para conversion rate given that the wave functions of nuclear spin sublevels of the water protons are mixed in the complex with oxygen.
The formaldehyde ortho/para ratio as a probe of dark cloud chemistry and evolution
NASA Technical Reports Server (NTRS)
Dickens, J. E.; Irvine, W. M.
1999-01-01
We present measurements of the H2CO ortho/para ratio toward four star-forming cores, L723, L1228, L1527, and L43, and one quiescent core, L1498. Combining these data with earlier results by Minh et al., three quiescent cores are found to have ortho/para ratios near 3, the ratio of statistical weights expected for gas-phase formation processes. In contrast, ortho/para ratios are 1.5-2.1 in five star-forming cores, suggesting thermalization at a kinetic temperature of 10 K. We attribute modification of the ortho/para ratio in the latter cores to formation and/or equilibration of H2CO on grains with sub-sequent release back into the gas phase due to the increased energy inputs from the forming star and outflow. We see accompanying enhancements in the H2CO abundance relative to H, to support this idea. The results suggest that the formaldehyde ortho/para ratio can differentiate between quiescent cores and those in which low-mass star formation has occurred.
Sistemas Correctores de Campo Para EL Telescopio Ritchey-Chretien UNAM212
NASA Astrophysics Data System (ADS)
Cobos, F. J.; Galan, M. J.
1987-05-01
El telescopio UNAM2l2 fue inaugurado hace siete años y concebido para trabajar en las razones focales: f/7.5, F/13.5, F/27 y F/98. El diseño Ritchey-Chretién corresponde a la razón focal F/7.5 y el foco primario (F/2.286) no se consideró como utilizable para fotografía directa. En el Instituto de Astronomía de la UNAM, se diseñó y construyó un sistema corrector de campo para la razón focal F/7.5, que actualmente está en funcionamiento. Dentro de un programa de colaboración en diseflo y evaluación de sistemas ópticos, entre el Instituto de Astrofísica de Canarias y el Instituto de Astronomía de la UNAM, decidimos intentar el diseño de una correctora de campo para el foco primario del tȩlescopio UNAM212 bajo la consideración de que no son insalvables los problemas que implicaría su instalación y de que es muy posible que, en un futuro relativamente cercano, podamom tener un detector bidimenmional tipo Mepsicrón cuya área sensible haga tentadora la idea de construir la cámara directa para foco primario
Modelos Teoricos de Linhas de Recombinacao EM Radio Frequencias Para Regioes H II
NASA Astrophysics Data System (ADS)
Abraham, Z.; Cancoro, A. C. O.
1987-05-01
Foram feitos modelos de linhas de recombinção provenientes de regiões HII nas frequências de rádio para distintos números quãnticos. Estes modelos consideram regrões H II esfericamente simétricas com variações radiais na densidade e temperatura eletrônica, efeitos de colisoes inelásticas dos eletrons (alargarnento por pressão), e afastarnento do equiliíbrio termodinâmico local. 0 bojetivo é construir o perfil da linha para cada ponto da nuvern e obter o valor médio resultante da sua convoluçã com o feixe da antena de tarnanho comparável corn o tarnanho angular da nuvern para posterIor cornpara o corn
Allergic contact dermatitis to para-phenylenediamine in a tattoo: a case report.
Turan, Hakan; Okur, Mesut; Kaya, Ertugrul; Gun, Emrah; Aliagaoglu, Cihangir
2013-06-01
It is highly popular among children and young adults to have temporary henna tattoos on their bodies in different colors and figures. Henna is a greenish natural powder obtained from the flowers and dry leaves of Lawsonia alba plant and its allergenicity is very low. Henna is also used in combination with other coloring substances such as para-phenylenediamine in order to darken the color and create a permanent tattoo effect. Para-phenylenediamine is a substance with high allergenicity potential and may cause serious allergic reactions. Here, we aimed to draw attention to the potential harms of para-phenylenediamine containing temporary tattoos by presenting a child patient who developed allergic contact dermatitis after having a scorpion-shaped temporary tattoo on his forearm.
The School of Posture as a postural training method for Paraíba Telecommunications Operators.
Cardia, M C; Soares Màsculo, F
2001-01-01
This work proposes to show the experience of posture training accomplished in the Paraíba State Telecommunication Company, using the knowledge of the Back School. The sample was composed of 12 operators, employees of the company, representing 31% of this population. The model applied in TELPA (Paraíba Telecommunication Company, Brazil) was based on the models of Sherbrooke, Canada, and of the School of Posture of Paraìba Federal University. Fifty-eight point four percent of participants showed a reduction of column pain, 25% improved the quality of the rest and the received training was considered enough for the learning of correct postures at work in 75% of the cases. The whole population approved of the training, and 83.3% of the cases considered that this training influenced their lives very positively.
Sobre la terapia génica para enfermedades de la retina.
Fischer, M Dominik
2017-07-11
Las mutaciones en un gran número de genes provocan degeneración de la retina y ceguera sin que exista actualmente cura alguna. En las últimas décadas, la terapia génica para enfermedades de la retina ha evolucionado y se ha convertido en un nuevo y prometedor paradigma terapéutico para estas enfermedades poco comunes. Este artículo refleja las ideas y los conceptos que parten de la ciencia básica hacia la aplicabilidad de la terapia génica en el ámbito clínico. Se describen los avances y las reflexiones actuales sobre la eficacia de los ensayos clínicos en la actualidad y se discuten los posibles obstáculos y soluciones de cara al futuro de la terapia génica para enfermedades de la retina. © 2017 S. Karger AG, Basel.
Complications of pelvic and para-aortic lymphadenectomy in patients with endometrial cancer.
Arduino, S; Leo, L; Febo, G; Tessarolo, M; Wierdis, T; Lanza, A
1997-01-01
The International Federation of Gynecology and Obstetrics (FIGO) changed the staging criteria for endometrial cancer in 1988 and adopted a surgical-pathological staging involving also pelvic and/or para-aortic lymphadenectomy. A total of 236 patients were treated for endometrial adenocarcinoma at Department B of the Gynecologic and Obstetrics Institute, University of Turin, between January 1976 and December 1995. Our protocol for surgical staging always entails pelvic and para-aortic lymphadenectomy and a simple total hysterectomy and bilateral adnexectomy with removal of the upper third of the vagina. The aim of this study was to carry out a retrospective evaluation of the morbidity in patients with endometrial cancer after surgical treatment, either TAH-BSO alone or TAH-BSO with pelvic and para-aortic lymphadenectomy.
Production and characterization of para-hydrogen gas for matrix isolation infrared spectroscopy
NASA Astrophysics Data System (ADS)
Sundararajan, K.; Sankaran, K.; Ramanathan, N.; Gopi, R.
2016-08-01
Normal hydrogen (n-H2) has 3:1 ortho/para ratio and the production of enriched para-hydrogen (p-H2) from normal hydrogen is useful for many applications including matrix isolation experiments. In this paper, we describe the design, development and fabrication of the ortho-para converter that is capable of producing enriched p-H2. The p-H2 thus produced was probed using infrared and Raman techniques. Using infrared measurement, the thickness and the purity of the p-H2 matrix were determined. The purity of p-H2 was determined to be >99%. Matrix isolation infrared spectra of trimethylphosphate (TMP) and acetylene (C2H2) were studied in p-H2 and n-H2 matrices and the results were compared with the conventional inert matrices.
Evidence for disequilibrium of ortho and para hydrogen on Jupiter from Voyager IRIS measurements
NASA Technical Reports Server (NTRS)
Conrath, B. J.; Gierasch, P. J.
1983-01-01
Preliminary results of an analysis of the ortho state/para state ratio (parallel/antiparallel) for molecular H2 in the Jovian atmosphere using Voyager IR spectrometer (IRIS) data are reported. The study was undertaken to expand the understanding of the thermodynamics of a predominantly H2 atmosphere, which takes about 100 million sec to reach equilibrium. IRIS data provided 4.3/cm resolution in the 300-700/cm spectral range dominated by H2 lines. Approximately 600 spectra were examined to detect any disequilibrium between the hydrogen species. The results indicate that the ortho-para ratio is not in an equilibrium state in the upper Jovian troposphere. A thorough mapping of the para-state molecules in the upper atmosphere could therefore aid in mapping the atmospheric flowfield.
Evidence for disequilibrium of ortho and para hydrogen on Jupiter from Voyager IRIS measurements
NASA Technical Reports Server (NTRS)
Conrath, B. J.; Gierasch, P. J.
1983-01-01
Preliminary results of an analysis of the ortho state/para state ratio (parallel/antiparallel) for molecular H2 in the Jovian atmosphere using Voyager IR spectrometer (IRIS) data are reported. The study was undertaken to expand the understanding of the thermodynamics of a predominantly H2 atmosphere, which takes about 100 million sec to reach equilibrium. IRIS data provided 4.3/cm resolution in the 300-700/cm spectral range dominated by H2 lines. Approximately 600 spectra were examined to detect any disequilibrium between the hydrogen species. The results indicate that the ortho-para ratio is not in an equilibrium state in the upper Jovian troposphere. A thorough mapping of the para-state molecules in the upper atmosphere could therefore aid in mapping the atmospheric flowfield.
Electrical detection of ortho-para conversion in fullerene-encapsulated water
NASA Astrophysics Data System (ADS)
Meier, Benno; Mamone, Salvatore; Concistrè, Maria; Alonso-Valdesueiro, Javier; Krachmalnicoff, Andrea; Whitby, Richard J.; Levitt, Malcolm H.
2015-08-01
Water exists in two spin isomers, ortho and para, that have different nuclear spin states. In bulk water, rapid proton exchange and hindered molecular rotation obscure the direct observation of two spin isomers. The supramolecular endofullerene H2O@C60 provides freely rotating, isolated water molecules even at cryogenic temperatures. Here we show that the bulk dielectric constant of this substance depends on the ortho/para ratio, and changes slowly in time after a sudden temperature jump, due to nuclear spin conversion. The attribution of the effect to ortho-para conversion is validated by comparison with nuclear magnetic resonance and quantum theory. The change in dielectric constant is consistent with an electric dipole moment of 0.51+/-0.05 Debye for an encapsulated water molecule, indicating the partial shielding of the water dipole by the encapsulating cage. The dependence of bulk dielectric constant on nuclear spin isomer composition appears to be a previously unreported physical phenomenon.
Identificación de Intervenciones para el Desarrollo Positivo de la Juventud
Sardiñas, Lili M.; Padilla, Viviana; Aponte, Mari; Boscio, Ana Morales; Pedrogo, Coralee Pérez; Santiago, Betzaida; Morales, Ángela Pérez; Dávila, Paloma Torres; Cesáreo, Marizaida Sánchez
2017-01-01
Resumen En el mundo hay más personas en la etapa de la juventud que en cualquier otra etapa del desarrollo. La juventud en Puerto Rico enfrenta muchas situaciones que inciden en su desarrollo y preparación para la adultez. Por lo tanto, es imperante identificar intervenciones para el desarrollo positivo de la juventud que han demostrado ser basadas en la evidencia. Además, a partir de dicha identificación, desarrollar prácticas que ayuden a los jóvenes a desarrollarse para prevenir situaciones adversas, promover experiencias positivas y propiciar que los niños y jóvenes estén involucrados y comprometidos. Se identificaron 147 intervenciones a través de una revisión tradicional de la literatura científica estadounidense. Los resultados reflejan que las intervenciones atienden la reducción de factores de riesgo y el incremento de factores de protección. Sin embargo, ninguna intervención propicia que los niños y jóvenes estén involucrados y comprometidos con su desarrollo óptimo y con sus comunidades. No obstante, todas brindan herramientas que podrían ser de utilidad para fomentar dichas prácticas en el contexto de Puerto Rico. De las 147 intervenciones identificadas seis están diseñadas para la población puertorriqueña residente en la Isla. Con el propósito de hacer la información accesible a los profesionales y la comunidad se expandió la colección del Archivo de Programas y Prácticas Basadas en Evidencia para la Prevención. PMID:28919943
Bonano, J S; Banks, M L; Kolanos, R; Sakloth, F; Barnier, M L; Glennon, R A; Cozzi, N V; Partilla, J S; Baumann, M H; Negus, S S
2015-01-01
Background and Purpose Methcathinone (MCAT) is a potent monoamine releaser and parent compound to emerging drugs of abuse including mephedrone (4-CH3 MCAT), the para-methyl analogue of MCAT. This study examined quantitative structure–activity relationships (QSAR) for MCAT and six para-substituted MCAT analogues on (a) in vitro potency to promote monoamine release via dopamine and serotonin transporters (DAT and SERT, respectively), and (b) in vivo modulation of intracranial self-stimulation (ICSS), a behavioural procedure used to evaluate abuse potential. Neurochemical and behavioural effects were correlated with steric (Es), electronic (σp) and lipophilic (πp) parameters of the para substituents. Experimental Approach For neurochemical studies, drug effects on monoamine release through DAT and SERT were evaluated in rat brain synaptosomes. For behavioural studies, drug effects were tested in male Sprague-Dawley rats implanted with electrodes targeting the medial forebrain bundle and trained to lever-press for electrical brain stimulation. Key Results MCAT and all six para-substituted analogues increased monoamine release via DAT and SERT and dose- and time-dependently modulated ICSS. In vitro selectivity for DAT versus SERT correlated with in vivo efficacy to produce abuse-related ICSS facilitation. In addition, the Es values of the para substituents correlated with both selectivity for DAT versus SERT and magnitude of ICSS facilitation. Conclusions and Implications Selectivity for DAT versus SERT in vitro is a key determinant of abuse-related ICSS facilitation by these MCAT analogues, and steric aspects of the para substituent of the MCAT scaffold (indicated by Es) are key determinants of this selectivity. PMID:25438806
Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes.
Fortunato, Sofia A V; Adamski, Marcin; Ramos, Olivia Mendivil; Leininger, Sven; Liu, Jing; Ferrier, David E K; Adamska, Maja
2014-10-30
Sponges are simple animals with few cell types, but their genomes paradoxically contain a wide variety of developmental transcription factors, including homeobox genes belonging to the Antennapedia (ANTP) class, which in bilaterians encompass Hox, ParaHox and NK genes. In the genome of the demosponge Amphimedon queenslandica, no Hox or ParaHox genes are present, but NK genes are linked in a tight cluster similar to the NK clusters of bilaterians. It has been proposed that Hox and ParaHox genes originated from NK cluster genes after divergence of sponges from the lineage leading to cnidarians and bilaterians. On the other hand, synteny analysis lends support to the notion that the absence of Hox and ParaHox genes in Amphimedon is a result of secondary loss (the ghost locus hypothesis). Here we analysed complete suites of ANTP-class homeoboxes in two calcareous sponges, Sycon ciliatum and Leucosolenia complicata. Our phylogenetic analyses demonstrate that these calcisponges possess orthologues of bilaterian NK genes (Hex, Hmx and Msx), a varying number of additional NK genes and one ParaHox gene, Cdx. Despite the generation of scaffolds spanning multiple genes, we find no evidence of clustering of Sycon NK genes. All Sycon ANTP-class genes are developmentally expressed, with patterns suggesting their involvement in cell type specification in embryos and adults, metamorphosis and body plan patterning. These results demonstrate that ParaHox genes predate the origin of sponges, thus confirming the ghost locus hypothesis, and highlight the need to analyse the genomes of multiple sponge lineages to obtain a complete picture of the ancestral composition of the first animal genome.
Superfluid Effects in PARA-H_2 Clusters Probed by CO_2 Rotation-Vibration Transitions
NASA Astrophysics Data System (ADS)
Li, Hui; Le Roy, Robert J.; Roy, Pierre-Nicholas; McKellar, A. R. W.
2010-06-01
The prospect of directly observing superfluidity in para-H_2 is a tantalizing but elusive goal. Like ^4He, para-H_2 is a light zero-spin boson. However, H_2-H_2 intermolecular interactions, though weak, are stronger than He-He interactions, and hydrogen is a solid below about 14 K. This makes detection of superfluidity in bulk hydrogen problematical, to say the least. But there are still possibilities for para-H_2 in the form of clusters or in nano-confined environments, and superfluid transition temperatures as high as ˜6 K have been predicted. Spectroscopic observations of (para-H_2)_N-CO_2 clusters were at first very difficult to interpret for N > 5. However, with the help of path integral Monte Carlo simulations and an accurate new H_2-CO_2 intermolecular potential surface which explicitly incorporates dependence on the CO_2 νb{3} asymmetric stretch, it is now possible to achieve a remarkably consistent picture of (para-H_2)_N-CO_2 clusters in the size range N = 1 ˜ 20. By combining the experimental spectroscopic measurements and theoretical simulations, we determine the size evolution of the superfluid response of the CO_2-doped para-H_2 clusters, which peaks for the "magic" number N = 12. V. L. Ginzburg and A. A. Sobyanin, JETP Lett. 15, 343 (1972). A. R. W. McKellar, Paper WH04, 63rd OSU International Symposium on Molecular Spectroscopy, June 16-20, 2008. H. Li, P.-N. Roy, and R. J. Le Roy, J. Chem. Phys., submitted.
Evaluation of an immobilized cell bioreactor for degradation of meta- and para-nitrobenzoate
NASA Astrophysics Data System (ADS)
Peretti, Steven W.; Thomas, Stuart M.
1994-01-01
Meta- and para-nitrobenzoic acid are pollutants found in waste streams from metal-stripping processes using cyanide-free solvents. The Kelly AFB industrial Waste Treatment Plant (IWTP) is currently incapable of removing these compounds from its wastewaters because of the presence of significant quantities of ethylenediamine, a preferred substrate and upper limit of 4-5 hours on the hydraulic residence time in the IWTP. This report describes the enrichment and preliminary characterization of a microbial consortium capable of utilizing both Meta- and Para-Nitrobenzoate as sole carbon sources.
Quantum rotation of ortho and para-water encapsulated in a fullerene cage
Beduz, Carlo; Carravetta, Marina; Chen, Judy Y.-C.; Concistrè, Maria; Denning, Mark; Frunzi, Michael; Horsewill, Anthony J.; Johannessen, Ole G.; Lawler, Ronald; Lei, Xuegong; Levitt, Malcolm H.; Li, Yongjun; Mamone, Salvatore; Murata, Yasujiro; Nagel, Urmas; Nishida, Tomoko; Ollivier, Jacques; Rols, Stéphane; Rõõm, Toomas; Sarkar, Riddhiman; Turro, Nicholas J.; Yang, Yifeng
2012-01-01
Inelastic neutron scattering, far-infrared spectroscopy, and cryogenic nuclear magnetic resonance are used to investigate the quantized rotation and ortho–para conversion of single water molecules trapped inside closed fullerene cages. The existence of metastable ortho-water molecules is demonstrated, and the interconversion of ortho-and para-water spin isomers is tracked in real time. Our investigation reveals that the ground state of encapsulated ortho water has a lifted degeneracy, associated with symmetry-breaking of the water environment. PMID:22837402
Experiments at Scale with In-Situ Visualization Using ParaView/Catalyst in RAGE
Kares, Robert John
2014-10-31
In this paper I describe some numerical experiments performed using the ParaView/Catalyst in-situ visualization infrastructure deployed in the Los Alamos RAGE radiation-hydrodynamics code to produce images from a running large scale 3D ICF simulation on the Cielo supercomputer at Los Alamos. The detailed procedures for the creation of the visualizations using ParaView/Catalyst are discussed and several images sequences from the ICF simulation problem produced with the in-situ method are presented. My impressions and conclusions concerning the use of the in-situ visualization method in RAGE are discussed.
Quantum rotation of ortho and para-water encapsulated in a fullerene cage.
Beduz, Carlo; Carravetta, Marina; Chen, Judy Y-C; Concistrè, Maria; Denning, Mark; Frunzi, Michael; Horsewill, Anthony J; Johannessen, Ole G; Lawler, Ronald; Lei, Xuegong; Levitt, Malcolm H; Li, Yongjun; Mamone, Salvatore; Murata, Yasujiro; Nagel, Urmas; Nishida, Tomoko; Ollivier, Jacques; Rols, Stéphane; Rõõm, Toomas; Sarkar, Riddhiman; Turro, Nicholas J; Yang, Yifeng
2012-08-07
Inelastic neutron scattering, far-infrared spectroscopy, and cryogenic nuclear magnetic resonance are used to investigate the quantized rotation and ortho-para conversion of single water molecules trapped inside closed fullerene cages. The existence of metastable ortho-water molecules is demonstrated, and the interconversion of ortho-and para-water spin isomers is tracked in real time. Our investigation reveals that the ground state of encapsulated ortho water has a lifted degeneracy, associated with symmetry-breaking of the water environment.
ERIC Educational Resources Information Center
Marcato, Carla
1997-01-01
Describes and analyzes the language of young people in Italy today. Particular focus is on the expressions using "para" (e.g., "in para totale" = to be very bored or worried) and the phrase "una cosa da panico" (something terrible or its opposite something wonderful). (CFM)
ERIC Educational Resources Information Center
Marcato, Carla
1997-01-01
Describes and analyzes the language of young people in Italy today. Particular focus is on the expressions using "para" (e.g., "in para totale" = to be very bored or worried) and the phrase "una cosa da panico" (something terrible or its opposite something wonderful). (CFM)
[Fut1 gene mutation for para-bombay blood type individual in Fujian Province of China].
Huang, Hao-Bou; Fan, Li-Ping; Wai, Shi-Jin; Zeng, Feng; Lin, Hai-Yan; Zhang, Rong
2010-10-01
This study was aimed to investigate the molecular mechanisms for para-Bombay blood type individual in Fujian Province of China. The para-Bombay blood type of this individual was identified by routine serological techniques. The full coding region of alpha (1,2) fucosyltransferase (FUT1) gene of this individual was amplified by polymerase chain reaction (PCR), then the PCR product was cloned into T vector. The mutation in coding region of fut1 gene was identified by TA cloning, so as to explore the molecular mechanisms for para-Bombay blood type individual. The results indicated that the full coding region of fut1 gene was successfully amplified by PCR. AG deletion at position 547-552 on 2 homologous chromosomes was detected by TA cloning method, leading to a reading frame shift and a premature stop codon. It is concluded that genetic mutation of fut1 gene in this para-bombay blood type individual was h1h1 homozygotic type.
Performance characteristics of magnesium/para-nitrophenol cells in 2:1 magnesium electrolytes
Kumar, G.; Sivashanugam, A.; Sridharan, R. )
1993-11-01
1 V/1 Ah magnesium/para-nitrophenol (PNP) reserve cells were fabricated and their performance was evaluated in different electrolytes [2M aqueous solutions of Mg(C1O[sub 4])[sub 2], MgCl[sub 2], and MgBr[sub 2
Factor Structure of the "Escala de Autoeficacia para la Depresion en Adolescentes" (EADA)
ERIC Educational Resources Information Center
Diaz-Santos, Mirella; Cumba-Aviles, Eduardo; Bernal, Guillermo; Rivera-Medina, Carmen
2011-01-01
The current concept and measures of self-efficacy for depression in adolescents do not consider developmental and cultural aspects essential to understand and assess this construct in Latino youth. We examined the factor structure of the "Escala de Autoeficacia para la Depresion en Adolescentes" (EADA), a Spanish instrument designed to…
Factor Structure of the "Escala de Autoeficacia para la Depresion en Adolescentes" (EADA)
ERIC Educational Resources Information Center
Diaz-Santos, Mirella; Cumba-Aviles, Eduardo; Bernal, Guillermo; Rivera-Medina, Carmen
2011-01-01
The current concept and measures of self-efficacy for depression in adolescents do not consider developmental and cultural aspects essential to understand and assess this construct in Latino youth. We examined the factor structure of the "Escala de Autoeficacia para la Depresion en Adolescentes" (EADA), a Spanish instrument designed to…
Para-Professionals in Further Education: Changing Roles in Vocational Delivery
ERIC Educational Resources Information Center
Scott, Gill
2005-01-01
Roles and structures within further education colleges seem to be in constant change and development; roles are becoming blurred, and lecturers are taking on more management tasks. Alongside this has been the development of para-professional roles, using non-lecturers to undertake teaching tasks. This can allow for the greater involvement of…
Ortho-para conversion of endohedral water in the fullerene C60 at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Shugai, Anna; Nagel, U.; Rõõm, T.; Mamone, S.; Concistrè, M.; Meier, B.; Krachmalnicoff, A.; Whitby, R. J.; Levitt, M. H.; Lei, Xuegong; Li, Yongjun; Turro, N. J.
2015-03-01
Water displays the phenomenon of spin isomerism in which the two proton spins either couple to form a triplet (ortho water, I = 1) or a singlet nuclear spin state (para water, I = 0). Here we study the interconversion of para and ortho water. The exact mechanism of this process is still not fully understood. In order to minimize interactions between molecules we use a sample where a single H2O is trapped in the C60 molecular cage (H2O@C60)andH2O@C60iscrystallized.H2O@C60 has long-lived ortho state and ortho-para conversion kinetics is non-exponential at LHeT. We studied mixtures of H2O@C60, D2O@C60 and C60 using IR absorption, NMR and dielectric measurements. We saw the speeding up of the interconversion with the growth of H2O@C60 concentration in C60 or when D2O@C60 was added. At some temperatures the kinetics is exponential. Models are discussed in order to explain the T and concentration dependence of ortho-para interconversion kinetics. This work was supported by institutional research funding IUT23-3 of the Estonian Ministry of Education and Research.
Autoguía para el telescopio 2,15 mts de CASLEO
NASA Astrophysics Data System (ADS)
Aballay, J. A.; Casagrande, A. R.; Pereyra, P. F.; Marún, A. H.
Se está desarrollando un sistema de autoguía para el telescopio de 2,15 mts. El mismo se realizará aprovechando el Offset Guider. Al ocular móvil de éste se vinculará alguna cámara digital (ST4-ST7-CH250) para lograr la visión del objeto. El funcionamiento del equipo será el siguiente: primero, dadas las coordenadas del objeto a observar, se tomarán las coordenadas del telescopio para que, a través de una base de datos, se determine un campo de objetos que sirvan para la cámara de visión, luego, la PC obtendrá el offset entre la estrella de observación y la estrella seleccionada como guía, este valor será trasladado a los motores que posicionarán en forma automática el ocular. Una vez que la estrella es visualizada en la cámara (monitor de PC ) se correrá el programa que guiará el telescopio automáticamente.
UPLC-ESI-MS/MS analysis of Sudan dyes and Para Red in food.
Li, C; Wu, Y L; Shen, J Z
2010-09-01
An analytical method for the simultaneous determination of Sudan dyes (Sudan Red G, Sudan I, Sudan II, Sudan III, Sudan Red 7B and Sudan IV) and Para Red in food by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) was developed. Samples were extracted with acetonitrile, and water added into the extract. The supernatant was analysed by UPLC-MS/MS after refrigeration and centrifugation. The sample was separated on an Acquity BEH C(18) column, and detected by MS/MS with the multiple reaction monitoring mode. Matrix calibration was used for quantitative testing of the method. The linear matrix calibrations of Sudan dyes and Para Red were 2-50 and 10-250 ng g(-1), respectively, and the regression coefficients were >0.9945. The recoveries were 83.4-112.3% with good coefficients of variation of 2.0-10.8%. The limits of detection were between 0.3 and 1.4 ng g(-1) for the six Sudan dyes, and between 3.7 and 6.0 ng g(-1) for Para Red. The limits of quantification were between 0.9 and 4.8 ng g(-1) for the six Sudan dyes, and between 12.2 and 19.8 ng g(-1) for Para Red.
Can para-aryl-dithiols cross-link two plasmonic noble nanoparticles as monolayer dithiolate spacers
USDA-ARS?s Scientific Manuscript database
Para-aryl-dithiols (PADTs, HS-(C6H4)n-SH, n = 1, 2, and 3) have been used extensively in molecular electronics, surface-enhanced Raman spectroscopy (SERS), and quantum electron tunneling between two gold or silver nanoparticles (AuNPs and AgNPs). One popular belief is that these dithiols cross-link ...
An Analysis of Interlanguage Development Over Time: Part 1, "por" and "para".
ERIC Educational Resources Information Center
Guntermann, Gail
1992-01-01
The first part of a larger planned investigation, this study examines the use of "por" and "para" by nine Peace Corps volunteers in oral interviews at the end of training and roughly one year later, to trace their acquisition over time, in two learning contexts. (24 references) (LB)
ERIC Educational Resources Information Center
Lafford, Barbara A.; Ryan, John M.
1995-01-01
Examination of the development of form/function relations of the prepositions "por" and "para" at different levels of proficiency in the interlanguage of study-abroad students in Granada, Spain, revealed "noncanonical" as well as "canonical" uses of these prepositions. The most common noncanonical uses were…
Energia Renovable para Centros de Salud Rurales (Renewable Energy for Rural Health Clinics)
Jimenez, T.; Olson, K.
1999-07-28
Esta es la primera de una serie de guias de aplicaciones que el Programa de Energia de Villas de NREL esta comisionando para acoplar sistemas comerciales renovables con aplicaciones rurales, incluyendo agua, escuelas rurales y micro empresas. La guia esta complementada por las actividades de desarrollo del Programa de Energia de Villas de NREL, proyectos pilotos internacionales y programas de visitas profesionales.
ERIC Educational Resources Information Center
Paolantonio, Mario Di
2011-01-01
Recently, a few buildings within the "Espacio para la memoria" in Buenos Aires have been designated as a UNESCO Centre where, amongst other educational activities, evidentiary materials of the past repression are to be stored and displayed. Another building in the complex houses a Community Centre operated by the Mothers of the Plaza de…
Irradiation of para-aortic lymph node metastases from carcinoma of the cervix or endometrium
Komaki, R.; Mattingly, R.F.; Hoffman, R.G.; Barber, S.W.; Satre, R.; Greenberg, M.
1983-04-01
Twenty-two patients with biopsy-proved para-aortic lymph node metastases from carcinoma of the cervix (15 patients) or endometrium (7 patients) received a median dose of 5,000 rad/25 fractions. Para-aortic nodal metastases were controlled in 77% of cases. Control was significantly lower following radical retroperitoneal lymph node dissection than less extensive sampling procedures. Obstruction of the small bowel developed in 3 patients with tumor recurrence in the para-aortic region. Eight of the 10 patients who were disease-free at 2 years received >5,000 rad. Three patients were still alive without disease at 129, 63, and 60 months, respectively. The 5-year disease-free survival rate was 40% for cervical cancer and 60% for endometrial cancer: in the former group, it was significantly different depending on whether the para-aortic nodes were irradiated (40%) or not (0%). The authors suggest that 5,000-5,500 rad in 5-5.5 weeks is well tolerated and can control aortic nodal metastases in cervical and possibly endometrial cancer.
ERIC Educational Resources Information Center
Paolantonio, Mario Di
2011-01-01
Recently, a few buildings within the "Espacio para la memoria" in Buenos Aires have been designated as a UNESCO Centre where, amongst other educational activities, evidentiary materials of the past repression are to be stored and displayed. Another building in the complex houses a Community Centre operated by the Mothers of the Plaza de…
Anuncios de servicio público para proteger a los trabajadores de plaguicidas
Estos archivos de anuncios de servicio público se pueden descargar libremente para su uso en la formación, transmisiones de audio, etc.(These public service announcement files can be freely downloaded for use in training, audio broadcasts, etc.)
Malík, Ivan; Bukovský, Marián; Andriamainty, Fils; Gališinová, Jana
2013-01-01
In current research, nine basic esters of para-alkoxyphenylcarbamic acid with incorporated 4-(4-fluoro-/3-trifluoromethylphenyl)piperazin-1-yl fragment, 6i–6m and 8f–8i, were screened for their in vitro antimicrobial activity against Candida albicans, Staphylococcus aureus and Escherichia coli, respectively. Taking into account the minimum inhibitory concentration assay (MIC), as the most active against given yeast was evaluated 8i (MIC = 0.20 mg/mL), the most lipophilic structure containing para-butoxy and trifluoromethyl substituents. Investigating the efficiency of the compounds bearing only a single atom of fluorine and appropriate para-alkoxy side chain against Candida albicans, the cut-off effect was observed. From evaluated homological series, the maximum of the effectiveness was noticed for the stucture 6 k (MIC = 0.39 mg/mL), containing para-propoxy group attached to phenylcarbamoyloxy fragment, beyond which the compounds ceased to be active. On the contrary, all the tested molecules were against Staphylococcus aureus and Escherichia coli (MICs > 1.00 mg/mL) practically inactive. PMID:24294237
Fabrication and Evaluation of New Resins. Volume 1. Synthesis of Para- Ordered Aromatic Polymers
1978-04-01
identify by block number) Para-ordered Polymers Polybenzobisthiazoles Poly (diphenylbenzobisimidazoles) Polybenzobisoxazoles Thermally Stable Polymers...linear polybenzobisoxazole (PBO) , but with improved solubility, higher molecular weight, and increased thermooxidative stability. PBO PBO is soluble to...order to develop high strength in the oriented film or fiber this molecular weight may have to be increased. Although the thermooxidative stability of
Development of High-Activity Para- to Ortho-Hydrogen Conversion Catalysts. Volume 2
1989-09-28
and Loeb1, E. M., J. Phys. Chem. 73, 894 (1969). G. C. Michael , Ph.D. thesis, The Pennsylvania State Univ., University Park, 1969. Misono, M., and...hydrogen. Zhavoronkova, K. N.; Peshkov, A. V.; Spivak ,, N. A. Tr. - M’osk. Khim.-Tekhnol. Inst. im. 0. I. Mendeleeva, 99, 89-92 (1978). Ortho-para
NASA Astrophysics Data System (ADS)
Mishra, Piyush; Hewett, Daniel M.; Zwier, Timothy S.
2017-06-01
This talk focuses on the single-conformation spectroscopy of small-chain para-dialkylbenzenes. This work builds on previous studies from our group on long-chain n-alkylbenzenes that identified the first folded structure in octylbenzene. The dialkylbenzenes are representative of a class of molecules that are common components of coal and aviation fuel and are known to be present in vehicle exhaust. We bring the molecules para-diethylbenzene, para-dipropylbenzene and para-dibutylbenzene into the gas phase and cool the molecules in a supersonic expansion. The jet-cooled molecules are then interrogated using laser-induced fluorescence excitation, fluorescence dip IR spectroscopy (FDIRS) and dispersed fluorescence. The LIF spectra in the S_{0}-S_{1} origin region show dramatic increases in the number of resolved transitions with increasing length of alkyl chains, reflecting an explosion in the number of unique low-energy conformations formed when two independent alkyl chains are present. Since the barriers to isomerization of the alkyl chain are similar in size, this results in an 'egg carton' shape to the potential energy surface. We use a combination of electronic frequency shift and alkyl CH stretch infrared spectra to generate a consistent set of conformational assignments.
Vínculos observacionais para o processo-S em estrelas gigantes de Bário
NASA Astrophysics Data System (ADS)
Smiljanic, R. H. S.; Porto de Mello, G. F.; da Silva, L.
2003-08-01
Estrelas de bário são gigantes vermelhas de tipo GK que apresentam excessos atmosféricos dos elementos do processo-s. Tais excessos são esperados em estrelas na fase de pulsos térmicos do AGB (TP-AGB). As estrelas de bário são, no entanto, menos massivas e menos luminosas que as estrelas do AGB, assim, não poderiam ter se auto-enriquecido. Seu enriquecimento teria origem em uma estrela companheira, inicialmente mais massiva, que evolui pelo TP-AGB, se auto-enriquece com os elementos do processo-s e transfere material contaminado para a atmosfera da atual estrela de bário. A companheira evolui então para anã branca deixando de ser observada diretamente. As estrelas de bário são, portanto, úteis como testes observacionais para teorias de nucleossíntese pelo processo-s, convecção e perda de massa. Análises detalhadas de abundância com dados de alta qualidade para estes objetos são ainda escassas na literatura. Neste trabalho construímos modelos de atmosferas e, procedendo a uma análise diferencial, determinamos parâmetros atmosféricos e evolutivos de uma amostra de dez gigantes de bário e quatro normais. Determinamos seus padrões de abundância para Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu e Gd, concluindo que algumas estrelas classificadas na literatura como gigantes de bário são na verdade gigantes normais. Comparamos dois padrões médios de abundância, para estrelas com grandes excessos e estrelas com excessos moderados, com modelos teóricos de enriquecimento pelo processo-s. Os dois grupos de estrelas são ajustados pelos mesmos parâmetros de exposição de nêutrons. Tal resultado sugere que a ocorrência do fenômeno de bário com diferentes intensidades não se deve a diferentes exposições de nêutrons. Discutimos ainda efeitos nucleossintéticos, ligados ao processo-s, sugeridos na literatura para os elementos Cu, Mn, V e Sc.
Mothcakes made of para-dichlorobenzene have been widely available for the general population to be used as a moth repellant to protect garments from insect damage. Usually, a mothcake is expected to last for weeks or even months during which the para-dichlorobenzene emits slowly ...
Mothcakes made of para-dichlorobenzene have been widely available for the general population to be used as a moth repellant to protect garments from insect damage. Usually, a mothcake is expected to last for weeks or even months during which the para-dichlorobenzene emits slowly ...
Hox and ParaHox gene expression in early body plan patterning of polyplacophoran mollusks
Fritsch, Martin; Wollesen, Tim
2016-01-01
ABSTRACT Molecular developmental studies of various bilaterians have shown that the identity of the anteroposterior body axis is controlled by Hox and ParaHox genes. Detailed Hox and ParaHox gene expression data are available for conchiferan mollusks, such as gastropods (snails and slugs) and cephalopods (squids and octopuses), whereas information on the putative conchiferan sister group, Aculifera, is still scarce (but see Fritsch et al., 2015 on Hox gene expression in the polyplacophoran Acanthochitona crinita). In contrast to gastropods and cephalopods, the Hox genes in polyplacophorans are expressed in an anteroposterior sequence similar to the condition in annelids and other bilaterians. Here, we present the expression patterns of the Hox genes Lox5, Lox4, and Lox2, together with the ParaHox gene caudal (Cdx) in the polyplacophoran A. crinita. To localize Hox and ParaHox gene transcription products, we also investigated the expression patterns of the genes FMRF and Elav, and the development of the nervous system. Similar to the other Hox genes, all three Acr‐Lox genes are expressed in an anteroposterior sequence. Transcripts of Acr‐Cdx are seemingly present in the forming hindgut at the posterior end. The expression patterns of both the central class Acr‐Lox genes and the Acr‐Cdx gene are strikingly similar to those in annelids and nemerteans. In Polyplacophora, the expression patterns of the Hox and ParaHox genes seem to be evolutionarily highly conserved, while in conchiferan mollusks these genes are co‐opted into novel functions that might have led to evolutionary novelties, at least in gastropods and cephalopods. PMID:27098677
Hox and ParaHox gene expression in early body plan patterning of polyplacophoran mollusks.
Fritsch, Martin; Wollesen, Tim; Wanninger, Andreas
2016-03-01
Molecular developmental studies of various bilaterians have shown that the identity of the anteroposterior body axis is controlled by Hox and ParaHox genes. Detailed Hox and ParaHox gene expression data are available for conchiferan mollusks, such as gastropods (snails and slugs) and cephalopods (squids and octopuses), whereas information on the putative conchiferan sister group, Aculifera, is still scarce (but see Fritsch et al., 2015 on Hox gene expression in the polyplacophoran Acanthochitona crinita). In contrast to gastropods and cephalopods, the Hox genes in polyplacophorans are expressed in an anteroposterior sequence similar to the condition in annelids and other bilaterians. Here, we present the expression patterns of the Hox genes Lox5, Lox4, and Lox2, together with the ParaHox gene caudal (Cdx) in the polyplacophoran A. crinita. To localize Hox and ParaHox gene transcription products, we also investigated the expression patterns of the genes FMRF and Elav, and the development of the nervous system. Similar to the other Hox genes, all three Acr-Lox genes are expressed in an anteroposterior sequence. Transcripts of Acr-Cdx are seemingly present in the forming hindgut at the posterior end. The expression patterns of both the central class Acr-Lox genes and the Acr-Cdx gene are strikingly similar to those in annelids and nemerteans. In Polyplacophora, the expression patterns of the Hox and ParaHox genes seem to be evolutionarily highly conserved, while in conchiferan mollusks these genes are co-opted into novel functions that might have led to evolutionary novelties, at least in gastropods and cephalopods.
Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria.
Finnerty, J R; Martindale, M Q
1999-01-01
Among the bilaterally symmetrical, triploblastic animals (the Bilateria), a conserved set of developmental regulatory genes are known to function in patterning the anterior-posterior (AP) axis. This set includes the well-studied Hox cluster genes, and the recently described genes of the ParaHox cluster, which is believed to be the evolutionary sister of the Hox cluster (Brooke et al. 1998). The conserved role of these axial patterning genes in animals as diverse as frogs and flies is believed to reflect an underlying homology (i.e., all bilaterians derive from a common ancestor which possessed an AP axis and the developmental mechanisms responsible for patterning the axis). However, the origin and early evolution of Hox genes and ParaHox genes remain obscure. Repeated attempts have been made to reconstruct the early evolution of Hox genes by analyzing data from the triphoblastic animals, the Bilateria (Schubert et al. 1993; Zhang and Nei 1996). A more precise dating of Hox origins has been elusive due to a lack of sufficient information from outgroup taxa such as the phylum Cnidaria (corals, hydras, jellyfishes, and sea anemones). In combination with outgroup taxa, another potential source of information about Hox origins is outgroup genes (e.g., the genes of the ParaHox cluster). In this article, we present cDNA sequences of two Hox-like genes (anthox2 and anthox6) from the sea anemone, Nematostella vectensis. Phylogenetic analysis indicates that anthox2 (= Cnox2) is homologous to the GSX class of ParaHox genes, and anthox6 is homologous to the anterior class of Hox genes. Therefore, the origin of Hox genes and ParaHox genes occurred prior to the evolutionary split between the Cnidaria and the Bilateria and predated the evolution of the anterior-posterior axis of bilaterian animals. Our analysis also suggests that the central Hox class was invented in the bilaterian lineage, subsequent to their split from the Cnidaria.
Rotational excitation of HCN by para- and ortho-H{sub 2}
Vera, Mario Hernández; Kalugina, Yulia; Denis-Alpizar, Otoniel; Stoecklin, Thierry; Lique, François
2014-06-14
Rotational excitation of the hydrogen cyanide (HCN) molecule by collisions with para-H{sub 2}( j = 0, 2) and ortho-H{sub 2}( j = 1) is investigated at low temperatures using a quantum time independent approach. Both molecules are treated as rigid rotors. The scattering calculations are based on a highly correlated ab initio 4-dimensional (4D) potential energy surface recently published. Rotationally inelastic cross sections among the 13 first rotational levels of HCN were obtained using a pure quantum close coupling approach for total energies up to 1200 cm{sup −1}. The corresponding thermal rate coefficients were computed for temperatures ranging from 5 to 100 K. The HCN rate coefficients are strongly dependent on the rotational level of the H{sub 2} molecule. In particular, the rate coefficients for collisions with para-H{sub 2}( j = 0) are significantly lower than those for collisions with ortho-H{sub 2}( j = 1) and para-H{sub 2}( j = 2). Propensity rules in favor of even Δj transitions were found for HCN in collisions with para-H{sub 2}( j = 0) whereas propensity rules in favor of odd Δj transitions were found for HCN in collisions with H{sub 2}( j ⩾ 1). The new rate coefficients were compared with previously published HCN-para-H{sub 2}( j = 0) rate coefficients. Significant differences were found due the inclusion of the H{sub 2} rotational structure in the scattering calculations. These new rate coefficients will be crucial to improve the estimation of the HCN abundance in the interstellar medium.
The breakdown of one-dimensional fermionic and bosonic vaccua in strong fields
NASA Astrophysics Data System (ADS)
Ware, M.; Cheng, T.; Su, Q.; Grobe, R.
2009-11-01
We compare the creation rates for particle-antiparticle pairs produced by a supercritical force field for fermionic and bosonic model systems. The rates obtained from the Dirac and Klein-Gordon equations can be computed directly from the quantum mechanical transmission coefficients describing the scattering of an incoming particle with the supercritical potential barrier. We provide a unified framework that shows that the bosonic rates can exceed the fermionic ones, as one could expect from the Pauli exclusion principle for the fermion system. This imbalance for small but supercritical forces is associated with the occurrence of negative bosonic transmission coefficients of arbitrary size for the Klein-Gordon system, while the Dirac coefficient is positive and bound by unity. We confirm the transmission coefficients with time-dependent scattering simulations. For large forces, however, the fermionic and bosonic pair creation rates are surprisingly close to each other. The predicted pair-creation rates also match the slopes of the time-dependent particle probabilities obtained from large-scale ab initio numerical simulations based on quantum field theory.
A fractional Dirac equation and its solution
NASA Astrophysics Data System (ADS)
Muslih, Sami I.; Agrawal, Om P.; Baleanu, Dumitru
2010-02-01
This paper presents a fractional Dirac equation and its solution. The fractional Dirac equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives. By applying the variational principle to a fractional action S, we obtain the fractional Euler-Lagrange equations of motion. We present a Lagrangian and a Hamiltonian for the fractional Dirac equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Dirac equation which is the same as that obtained using the fractional variational principle. Eigensolutions of this equation are presented which follow the same approach as that for the solution of the standard Dirac equation. We also provide expressions for the path integral quantization for the fractional Dirac field which, in the limit α → 1, approaches to the path integral for the regular Dirac field. It is hoped that the fractional Dirac equation and the path integral quantization of the fractional field will allow further development of fractional relativistic quantum mechanics.
Pair creation rates for one-dimensional fermionic and bosonic vacua
NASA Astrophysics Data System (ADS)
Cheng, T.; Ware, M. R.; Su, Q.; Grobe, R.
2009-12-01
We compare the creation rates for particle-antiparticle pairs produced by a supercritical force field for fermionic and bosonic model systems. The rates obtained from the Dirac and Klein-Gordon equations can be computed directly from the quantum-mechanical transmission coefficients describing the scattering of an incoming particle with the supercritical potential barrier. We provide a unified framework that shows that the bosonic rates can exceed the fermionic ones, as one could expect from the Pauli-exclusion principle for the fermion system. This imbalance for small but supercritical forces is associated with the occurrence of negative bosonic transmission coefficients of arbitrary size for the Klein-Gordon system, while the Dirac coefficient is positive and bound by unity. We confirm the transmission coefficients with time-dependent scattering simulations. For large forces, however, the fermionic and bosonic pair-creation rates are surprisingly close to each other. The predicted pair creation rates also match the slopes of the time-dependent particle probabilities obtained from large-scale ab initio numerical simulations based on quantum field theory.
Self-gravitating black hole scalar wigs
NASA Astrophysics Data System (ADS)
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Núñez, Darío; Sarbach, Olivier
2017-07-01
It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.
Tsunami runup in u and v shaped bays
NASA Astrophysics Data System (ADS)
Garayshin, Viacheslav V.
Tsunami runup can be effectively modeled using the shallow water wave equations. In 1958 Carrier and Greenspan in their work "Water waves of finite amplitude on a sloping beach" used this system to model tsunami runup on a uniformly sloping plane beach. They linearized this problem using a hodograph type transformation and obtained the Klein-Gordon equation which could be explicitly solved by using the Fourier-Bessel transform. In 2011, Efim Pelinovsky and Ira Didenkulova in their work "Runup of Tsunami Waves in U-Shaped Bays" used a similar hodograph type transformation and linearized the tsunami problem for a sloping bay with parabolic cross-section. They solved the linear system by using the D'Alembert formula. This method was generalized to sloping bays with cross-sections parameterized by power functions. However, an explicit solution was obtained only for the case of a bay with a quadratic cross-section. In this paper we will show that the Klein-Gordon equation can be solved by a spectral method for any inclined bathymetry with power function for any positive power. The result can be used to estimate tsunami runup in such bays with minimal numerical computations. This fact is very important because in many cases our numerical model can be substituted for full-scale numerical models which are computationally expensive, and time consuming, and not feasible to investigate tsunami behavior in the Alaskan coastal zone, due to the low population density in this area.
Quantum dynamics of spinless particles on a brane coupled to a bulk gauge field
NASA Astrophysics Data System (ADS)
Brandt, F. T.; Sánchez-Monroy, J. A.
2017-04-01
We investigate the effective dynamics for spinless charged particles, in the presence of Abelian gauge field, constrained to an m-dimensional curved pseudo-Riemannian submanifold (brane) of an n-dimensional pseudo-Riemannian manifold (bulk). We employ the confining potential approach and a perturbative expansion for the Klein-Gordon and Schrödinger equations is derived. This allows us to obtain the effective Klein-Gordon and Schrödinger equations on a brane, in terms of the extrinsic curvatures, the intrinsic curvature and the extrinsic torsion. We show that the presence of a bulk gauge field induces a Zeeman coupling whenever the codimension is greater than one, even if the brane and the bulk are flat. The effect of a non-minimal coupling with the Ricci scalar curvature of the bulk is also considered. The results presented here can be applied in at least two physical scenarios: brane gravity, when the brane is four-dimensional, and condensed matter, when the bulk is a four-dimensional flat manifold and the brane is three- or two-dimensional.
On Energy and Momentum in Contemporary Physics
NASA Astrophysics Data System (ADS)
Sujak, Peter
2014-03-01
This paper analyzes the quantities of energy and momentum in the definitional relationship of classical mechanics and relativistic mechanics, in the de Broglie momentum hypothesis and in the Klein-Gordon, Dirac and Schrodinger equation. The results of analysis shows that λ designated in the de Broglie hypothesis λ = h / mv as the wave of matter with rest state value λ = ∞ must be connected with a real dimension of a particle with rest state value λ =lo = h /mo c and that on this basis we can come to the fundamental equations of quantum mechanics that are the Klein-Gordon, Dirac and Schrodinger equation without the necessity of the wave functions. Energies in relativistic mechanics as mc2 , mvc , and moc2 , and energy of a photon hν do not represent quantities of energies, but quantity of momentums intentionally multiplied by c, so mc . c , mv . c , mo c . c , hν / c . c and merely the dimension of such quantities equals in dimension the quantity of energy.
NASA Astrophysics Data System (ADS)
Banda Guzmán, V. M.; Kirchbach, M.
2016-09-01
A boson of spin j≥ 1 can be described in one of the possibilities within the Bargmann-Wigner framework by means of one sole differential equation of order twice the spin, which however is known to be inconsistent as it allows for non-local, ghost and acausally propagating solutions, all problems which are difficult to tackle. The other possibility is provided by the Fierz-Pauli framework which is based on the more comfortable to deal with second-order Klein-Gordon equation, but it needs to be supplemented by an auxiliary condition. Although the latter formalism avoids some of the pathologies of the high-order equations, it still remains plagued by some inconsistencies such as the acausal propagation of the wave fronts of the (classical) solutions within an electromagnetic environment. We here suggest a method alternative to the above two that combines their advantages while avoiding the related difficulties. Namely, we suggest one sole strictly D^{(j,0)oplus (0,j)} representation specific second-order differential equation, which is derivable from a Lagrangian and whose solutions do not violate causality. The equation under discussion presents itself as the product of the Klein-Gordon operator with a momentum-independent projector on Lorentz irreducible representation spaces constructed from one of the Casimir invariants of the spin-Lorentz group. The basis used is that of general tensor-spinors of rank 2 j.
Metric emerging to massive modes in quantum cosmological space-times
NASA Astrophysics Data System (ADS)
Dapor, Andrea; Lewandowski, Jerzy
2013-03-01
We consider a massive quantum test Klein-Gordon field probing a homogeneous isotropic quantum cosmological space-time in the background. In particular, we derive a semiclassical space-time which emerges to a mode of the field. The method consists of a comparison between quantum field theory on a quantum background and quantum field theory on a classical curved space-time, giving rise to an emergent metric tensor (its components being computed from the equation of propagation of the quantum Klein-Gordon field in the test field approximation). If the field is massless the emergent metric is of the Friedmann-Robertson-Walker form, but if a mass term is considered it turns out that the simplest emergent metric that displays the symmetries of the system is of the Bianchi I type, deformed in the direction of propagation of the particle. This anisotropy is of a quantum nature: it is proportional to ℏ and “dresses” the isotropic classical space-time obtained in the classical limit.
Quantum Perturbative Approach to Discrete Redshift
NASA Astrophysics Data System (ADS)
Roberts, Mark D.
On the largest scales there is evidence of discrete structure, examples of this are superclusters and voids and also by redshift taking discrete values. In this paper it is proposed that discrete redshift can be explained by using the spherical harmonic integer l; this occurs both in the metric or density perturbations and also in the solution of wave equations in Robertson-Walker spacetime. It is argued that the near conservation of energy implies that l varies regularly for wave equations in Robertson-Walker spacetime, whereas for density perturbations l cannot vary regularly. Once this is assumed then perhaps the observed value of discrete redshift provides the only observational or experimental data that directly requires an explanation using both gravitational and quantum theory. In principle a model using this data could predict the scale factor R (or equivalently the deceleration parameter q). Solutions of the Klein-Gordon equation in Robertson-Walker spacetimes are used to devise models which have redshift taking discrete values, but they predict a microscopic value for R. A model in which the stress of the Klein-Gordon equation induces a metrical perturbation of Robertson-Walker spacetime is devised. Calculations based upon this model predict that the Universe is closed with 2_q0 - 1=10^-4.
Dmitriev, S V; Kevrekidis, P G; Yoshikawa, N; Frantzeskakis, D J
2006-10-01
We propose a generalization of the discrete Klein-Gordon models free of the Peierls-Nabarro barrier derived in Spreight [Nonlinearity 12, 1373 (1999)] and Barashenkov [Phys. Rev. E 72, 035602(R) (2005)], such that they support not only kinks but a one-parameter set of exact static solutions. These solutions can be obtained iteratively from a two-point nonlinear map whose role is played by the discretized first integral of the static Klein-Gordon field, as suggested by Dmitriev [J. Phys. A 38, 7617 (2005)]. We then discuss some discrete phi4 models free of the Peierls-Nabarro barrier and identify for them the full space of available static solutions, including those derived recently by Cooper [Phys. Rev. E 72, 036605 (2005)] but not limited to them. These findings are also relevant to standing wave solutions of discrete nonlinear Schrödinger models. We also study stability of the obtained solutions. As an interesting aside, we derive the list of solutions to the continuum phi4 equation that fill the entire two-dimensional space of parameters obtained as the continuum limit of the corresponding space of the discrete models.
Separability in cohomogeneity-2 Kerr-NUT-AdS metrics
NASA Astrophysics Data System (ADS)
Chen, Wei; Lü, Hong; Pope, Christopher N.
2006-04-01
The remarkable and unexpected separability of the Hamilton-Jacobi and Klein-Gordon equations in the background of a rotating four-dimensional black hole played an important role in the construction of generalisations of the Kerr metric, and in the uncovering of hidden symmetries associated with the existence of Killing tensors. In this paper, we show that the Hamilton-Jacobi and Klein-Gordon equations are separable in Kerr-AdS backgrounds in all dimensions, if one specialises the rotation parameters so that the metrics have cohomogeneity 2. Furthermore, we show that this property of separability extends to the NUT generalisations of these cohomogeneity-2 black holes that we obtained in a recent paper. In all these cases, we also construct the associated irreducible rank-2 Killing tensor whose existence reflects the hidden symmetry that leads to the separability. We also consider some cohomogeneity-1 specialisations of the new Kerr-NUT-AdS metrics, showing how they relate to previous results in the literature.
Quantum Gowdy T{sup 3} model: A unitary description
Corichi, Alejandro; Cortez, Jeronimo; Mena Marugan, Guillermo A.
2006-04-15
The quantization of the family of linearly polarized Gowdy T{sup 3} spacetimes is discussed in detail, starting with a canonical analysis in which the true degrees of freedom are described by a scalar field that satisfies a Klein-Gordon type equation in a fiducial time-dependent background. A time-dependent canonical transformation, which amounts to a change of the basic (scalar) field of the model, brings the system to a description in terms of a Klein-Gordon equation on a background that is now static, although subject to a time-dependent potential. The system is quantized by means of a natural choice of annihilation and creation operators. The quantum time evolution is considered and shown to be unitary, so that both the Schroedinger and Heisenberg pictures can be consistently constructed. This has to be contrasted with previous treatments for which time evolution failed to be implementable as a unitary transformation. Possible implications for both canonical quantum gravity and quantum field theory in curved spacetime are noted.
NASA Astrophysics Data System (ADS)
Procopio, Lorenzo M.; Rozema, Lee A.; Dakić, Borivoje; Walther, Philip
2017-09-01
In his recent article [Phys. Rev. A 95, 060101(R) (2017), 10.1103/PhysRevA.95.060101], Adler questions the usefulness of the bound found in our experimental search for genuine effects of hypercomplex quantum mechanics [Nat. Commun. 8, 15044 (2017), 10.1038/ncomms15044]. Our experiment was performed using a black-box (instrumentalist) approach to generalized probabilistic theories; therefore, it does not assume a priori any particular underlying mechanism. From that point of view our experimental results do indeed place meaningful bounds on the possible effects of "postquantum theories," including quaternionic quantum mechanics. In his article, Adler compares our experiment to nonrelativistic and Möller formal scattering theories within quaternionic quantum mechanics. With a particular set of assumptions, he finds that quaternionic effects would likely not manifest themselves in general. Although these assumptions are justified in the nonrelativistic case, a proper calculation for relativistic particles is still missing. Here, we provide a concrete relativistic example of Klein-Gordon scattering wherein the quaternionic effects persist. We note that when the Klein-Gordon equation is formulated using a Hamiltonian formalism it displays a so-called "indefinite metric," a characteristic feature of relativistic quantum wave equations. In Adler's example this is directly forbidden by his assumptions, and therefore our present example is not in contradiction to his work. In complex quantum mechanics this problem of an indefinite metric is solved in a second quantization. Unfortunately, there is no known algorithm for canonical field quantization in quaternionic quantum mechanics.
Boson Stars with Vector Meson Exchange Repulsive Interaction
NASA Astrophysics Data System (ADS)
Fitrah, M.; Rangga Sakti, Alfian; Sulaksono, Anto
2016-08-01
Spherically symmetric static boson stars are solutions of the system of equations of Klein-Gordon equation which is coupled to the Einstein and Proca equation with complex scalar field with U(1) gauge symmetry. In this work, we do not solve these equations directly but first we solve simultaneous equations Klein-Gordon and Proca in flat space-time numerically to obtain interacting boson equation of state (EOS), then we ”boost” the corresponding EOS to curved space-time so that, we can solve Einstein equations. If we assume that the distribution of boson in boson stars is inhomogeneous, the boosted EOS is anisotropic in the sense that the pressure to the tangential direction is not the same as the one in the radial direction. We find numerically solutions to see the EOS which are formed in boson stars as the consequence of inhomogeneous assumption. We have found that there is no physically stable solution for inhomogeneous EOS. However, if we assume that the distribution of bosons in matter is homogeneous, we can get a stable solution for static boson stars.
Quasi-exactly solvable relativistic soft-core Coulomb models
Agboola, Davids Zhang, Yao-Zhong
2012-09-15
By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.
The necessity of the Hadamard condition
NASA Astrophysics Data System (ADS)
Fewster, Christopher J.; Verch, Rainer
2013-12-01
Hadamard states are generally considered as the physical states for linear quantized fields on curved spacetimes, for several good reasons. Here, we provide a new motivation for the Hadamard condition: for ‘ultrastatic slab spacetimes’ with compact Cauchy-surface, we show that the Wick squares of all time-derivatives of the quantized Klein-Gordon field have finite fluctuations only if the Wick-ordering is defined with respect to a Hadamard state. This provides a converse to an important result of Brunetti and Fredenhagen. The recently proposed ‘S-J (Sorkin-Johnston) states’ are shown, generically, to give infinite fluctuations for the Wick square of the time-derivative of the field, further limiting their utility as reasonable states. Motivated by the S-J construction, we also study the general question of extending states that are pure (or given by density matrices relative to a pure state) on a double-cone region of Minkowski space. We prove a result for general quantum field theories showing that such states cannot be extended to any larger double cone without encountering singular behaviour at the spacelike boundary of the inner region. In the context of the Klein-Gordon field this shows that even if an S-J state is Hadamard within the double cone, this must fail at the boundary.
On a class of synchronized observers attached to the Lorentzian structures
NASA Astrophysics Data System (ADS)
Coll, Bartolomé; Moreno, Carlos
1983-05-01
The first-order evolution form for the Klein-Gordon equation is characterized by an operator T(t) which, for inertial observers in the Minkowski space-time, is skew-self-adjoint with respect to the energy product. This fact is essential for a rigorous treatment of the equation. We prove here that, in arbitrary Lorentzian structures, there always exists a class of ``synchronized observers'' (equivalence class of physically admissible local charts), here called adjoint systems, for which this property of T(t) remains true. They are completely determined by the Lorentzian structure, and, in this sense, they appear as a suitable generalization of the Killing vector fields. We obtain the definition equations for such observers and state some of their properties. A particular class of them, here called simple adjoint systems, has already been introduced by one of us (C.M.) for the study of the Klein-Gordon equation in arbitrary space-times, according with Lichnerowicz's quantization program.
Kay, Bernard S.; Larkin, Peter
2008-06-15
We construct a symplectic isomorphism h from classical Klein Gordon solutions of mass m on (d+1)-dimensional Lorentzian anti-de Sitter space (equipped with the usual symplectic form) to a certain symplectic space of functions on its conformal boundary (only) for all integer and half-integer {delta} (=(d/2)+(1/2)(d{sup 2}+4m{sup 2}){sup 1/2}). h induces a large family of new examples of Rehren's algebraic holography in which the net of local quantum Klein Gordon algebras in AdS is seen to map to a suitably defined net of local algebras for the (generalized free) scalar conformal field with anomalous dimension {delta} on d-dimensional Minkowski space (the AdS boundary). Relatedly, we show for these models that Bertola et al.'s boundary-limit holography becomes a quantum duality (only) if the test functions for boundary Wightman distributions are restricted in a particular way.
Wagner, Shawn
2014-06-01
To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.
NASA Astrophysics Data System (ADS)
Tuttle, William Duncan; Gardner, Adrian M.; Whalley, Laura E.; Wright, Timothy G.
2017-06-01
We have employed resonance-enhanced multiphoton ionisation (REMPI) spectroscopy and zero-kinetic-energy (ZEKE) spectroscopy to investigate the first excited electronic singlet (S_{1}) state and the cationic ground state (D_{0}^{+}) of para-fluorotoluene (pFT) and para-xylene (pXyl). Spectra have been recorded via a large number of selected intermediate levels, to support assignment of the vibration and vibration-torsion levels in these molecules and to investigate possible couplings. The study of levels in this region builds upon previous work on the lower energy regions of pFT and pXyl and here we are interested in how vibration-torsion (vibtor) levels might combine and interact with vibrational ones, and so we consider the possible couplings which occur. Comparisons between the spectra of the two molecules show a close correspondence, and the influence of the second methyl rotor in para-xylene on the onset of intramolecular vibrational redistribution (IVR) in the S_{1} state is a point of interest. This has bearing on future work which will need to consider the role of both more flexible side chains of substituted benzene molecules, and multiple side chains. A. M. Gardner, W. D. Tuttle, L. Whalley, A. Claydon, J. H. Carter and T. G. Wright, J. Chem. Phys., 145, 124307 (2016). A. M. Gardner, W. D. Tuttle, P. Groner and T. G. Wright, J. Chem. Phys., (2017, in press). W. D. Tuttle, A. M. Gardner, K. O'Regan, W. Malewicz and T. G. Wright, J. Chem. Phys., (2017, in press).
Takiar, Vinita; Fontanilla, Hiral P.; Eifel, Patricia J.; Jhingran, Anuja; Kelly, Patrick; Iyer, Revathy B.; Levenback, Charles F.; Zhang, Yongbin; Dong, Lei; Klopp, Ann
2013-03-15
Purpose: Conformal treatment of para-aortic lymph nodes (PAN) in cervical cancer allows dose escalation and reduces normal tissue toxicity. Currently, data documenting the precise location of involved PAN are lacking. We define the spatial distribution of this high-risk nodal volume by analyzing fluorodeoxyglucose (FDG)-avid lymph nodes (LNs) on positron emission tomography/computed tomography (PET/CT) scans in patients with cervical cancer. Methods and Materials: We identified 72 PANs on pretreatment PET/CT of 30 patients with newly diagnosed stage IB-IVA cervical cancer treated with definitive chemoradiation. LNs were classified as left-lateral para-aortic (LPA), aortocaval (AC), or right paracaval (RPC). Distances from the LN center to the closest vessel and adjacent vertebral body were calculated. Using deformable image registration, nodes were mapped to a template computed tomogram to provide a visual impression of nodal frequencies and anatomic distribution. Results: We identified 72 PET-positive para-aortic lymph nodes (37 LPA, 32 AC, 3 RPC). All RPC lymph nodes were in the inferior third of the para-aortic region. The mean distance from aorta for all lymph nodes was 8.3 mm (range, 3-17 mm), and from the inferior vena cava was 5.6 mm (range, 2-10 mm). Of the 72 lymph nodes, 60% were in the inferior third, 36% were in the middle third, and 4% were in the upper third of the para-aortic region. In all, 29 of 30 patients also had FDG-avid pelvic lymph nodes. Conclusions: A total of 96% of PET positive nodes were adjacent to the aorta; PET positive nodes to the right of the IVC were rare and were all located distally, within 3 cm of the aortic bifurcation. Our findings suggest that circumferential margins around the vessels do not accurately define the nodal region at risk. Instead, the anatomical extent of the nodal basin should be contoured on each axial image to provide optimal coverage of the para-aortic nodal compartment.
NASA Astrophysics Data System (ADS)
Fletcher, Leigh N.; Irwin, Patrick G.; Sinclair, James; Giles, Rohini; Barstow, Joanna; Achterberg, Richard K.; Orton, Glenn S.
2014-11-01
Cassini/CIRS observations of Saturn’s 10-1400 cm-1 spectrum have been inverted to construct a global record of tropospheric temperature and para-hydrogen variability over the ten-year span of the Cassini mission. The data record the slow reversal of seasonal asymmetries in tropospheric conditions from northern winter (2004, Ls=293), through northern spring equinox (2009, Ls=0) to the present day (2014, Ls=60). Mid-latitude tropospheric temperatures have cooled by approximately 4-6 K in the south and warmed by 2-4 K in the north, with the seasonal contrast decreasing with depth. CIRS detected the north polar minimum 100-mbar temperatures 6-8 years after winter solstice, whereas the south polar maximum occurred 1-2 years after summer solstice, consistent with the lag times predicted by radiative equilibrium models. Warm polar cyclones and the northern hexagon persist throughout the mission, suggesting that they are permanent features of Saturn’s tropospheric circulation. The 200-mbar thermal enhancement (“knee”) that was strongest in the summer but weak or absent in winter in 2004-2006 (Fletcher et al., 2007, Icarus 189, p.457-478) has now shifted northward and is present globally in 2014, suggestive of radiative heating in Saturn’s tropospheric haze layer. Saturn’s para-H2 fraction, which serves as a tracer of both tropospheric mixing and the efficiency of re-equilibration between the ortho- and para-hydrogen states, is slowly altering: super-equilibrium conditions (para-H2 fraction exceeding equilibrium expectations and suggestive of subsiding airmasses) that dominated the southern summer hemisphere are now weakening, whereas the sub-equilibrium conditions (suggestive of uplift) of the northern winter are being replaced by equilibrium or super-equilibrium conditions in spring. The thermal ‘knee’ and the para-H2 distribution are tracking both the increased spring illumination and the increasing tropospheric haze opacity of the springtime hemisphere
Astronomia para/com crianças carentes em Limeira
NASA Astrophysics Data System (ADS)
Bretones, P. S.; Oliveira, V. C.
2003-08-01
Em 2001, o Instituto Superior de Ciências Aplicadas (ISCA Faculdades de Limeira) iniciou um projeto pelo qual o Observatório do Morro Azul empreendeu uma parceria com o Centro de Promoção Social Municipal (CEPROSOM), instituição mantida pela Prefeitura Municipal de Limeira para atender crianças e adolescentes carentes. O CEPROSOM contava com dois projetos: Projeto Centro de Convivência Infantil (CCI) e Programa Criança e Adolescente (PCA), que atendiam crianças e adolescentes em Centros Comunitários de diversas áreas da cidade. Esses projetos têm como prioridades estabelecer atividades prazerosas para as crianças no sentido de retirá-las das ruas. Assim sendo, as crianças passaram a ter mais um tipo de atividade - as visitas ao observatório. Este painel descreve as várias fases do projeto, que envolveu: reuniões de planejamento, curso de Astronomia para as orientadoras dos CCIs e PCAs, atividades relacionadas a visitas das crianças ao Observatório, proposta de construção de gnômons e relógios de Sol nos diversos Centros Comunitários de Limeira e divulgação do projeto na imprensa. O painel inclui discussões sobre a aprendizagem de crianças carentes, relatos que mostram a postura das orientadoras sobre a pertinência do ensino de Astronomia, relatos do monitor que fez o atendimento no Observatório e o que o número de crianças atendidas representou para as atividades da instituição desde o início de suas atividades e, em particular, em 2001. Os resultados são baseados na análise de relatos das orientadoras e do monitor do Observatório, registros de visitas e matérias da imprensa local. Conclui com uma avaliação do que tal projeto representou para as Instituições participantes. Para o Observatório, em particular, foi feita uma análise com relação às outras modalidades de atendimentos que envolvem alunos de escolas e público em geral. Também é abordada a questão do compromisso social do Observatório na educação do
Two prevalent h alleles in para-Bombay haplotypes among 250,000 Taiwanese.
Chen, Ding-Ping; Tseng, Ching-Ping; Wang, Wei-Ting; Peng, Chien-Ting; Tsao, Kuo-Chien; Wu, Tsu-Lan; Lin, Kuan-Tsou; Sun, Chien-Feng
2004-01-01
Alpha(1,2)-fucosyltransferase catalyzes the transfer of fucose to the C-2 position of galactose on type II precursor substrate Gal beta1-4GlcNAc beta1-R. It plays an important biological role in the formation of H antigen, a precursor oligosaccharide for both A and B antigens on red blood cells. Aberration of alpha(1,2)-fucosyltransferase activity by gene mutations results in decreased synthesis of H antigen, leading to the para-Bombay phenotype. In this study, we collected about 250,000 blood samples in Taiwan during 5 yr and identified the subjects with para-Bombay phenotype. Then we analyzed the sequence of the alpha(1,2)-fucosyltransferase gene by direct sequencing and gene cloning methods, using the blood samples of 30 para-Bombay individuals and 30 control subjects who were randomly selected. The goals of this study were to search for new h alleles, to determine the h allele frequencies, and to test whether the sporadic theory is applicable in Taiwan. Six different h alleles (ha, 547-548 AG-del; hb, 880-881 TT-del; hc, R220C; hd, R220H; he, F174L; and hf, N327T) were observed. Two h alleles, he and hf, were newly discovered in Taiwan. The he allele has a nucleotide 522C>A point mutation, predicting the amino acid 174 substitution of Phe to Leu; the hf allele has missense mutation of nucleotide 980A>C, predicting the amino acid 327 substitution of Asn to Thr. Frequencies of the 6 alleles are ha 46.67%, hb 38.33%, hc 5.00%, hd 1.67%, he 3.33%, and hf 5.00%, respectively. These findings in the Taiwanese population confirm previous observations in other populations that the Bombay and para-Bombay phenotypes are due to diverse, sporadic, nonfunctional alleles, predominantly ha and hb, leading to H deficiency of red blood cells. In contrast to previous reports of non-prevalent associations of h alleles with para-Bombay phenotype, our results suggest a regional allele preference associated with para-Bombay individuals in Taiwan.
Warmke, J W; Reenan, R A; Wang, P; Qian, S; Arena, J P; Wang, J; Wunderler, D; Liu, K; Kaczorowski, G J; Van der Ploeg, L H; Ganetzky, B; Cohen, C J
1997-08-01
The Drosophila para sodium channel alpha subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (Kd congruent with 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels.
Hui, Jerome H L; Holland, Peter W H; Ferrier, David E K
2008-01-01
The Hox gene cluster is renowned for its role in developmental patterning of embryogenesis along the anterior-posterior axis of bilaterians. Its supposed evolutionary sister or paralog, the ParaHox cluster, is composed of Gsx, Xlox, and Cdx, and also has important roles in anterior-posterior development. There is a debate as to whether the cnidarians, as an outgroup to bilaterians, contain true Hox and ParaHox genes, or instead the Hox-like gene complement of cnidarians arose from independent duplications to those that generated the genes of the bilaterian Hox and ParaHox clusters. A recent whole genome analysis of the cnidarian Nematostella vectensis found conserved synteny between this cnidarian and vertebrates, including a region of synteny between the putative Hox cluster of N. vectensis and the Hox clusters of vertebrates. No syntenic region was identified around a potential cnidarian ParaHox cluster. Here we use different approaches to identify a genomic region in N. vectensis that is syntenic with the bilaterian ParaHox cluster. This proves that the duplication that gave rise to the Hox and ParaHox regions of bilaterians occurred before the origin of cnidarians, and the cnidarian N. vectensis has bona fide Hox and ParaHox loci.
Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara
2016-04-01
In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins.
Osborne, Peter W; Benoit, Gérard; Laudet, Vincent; Schubert, Michael; Ferrier, David E K
2009-03-01
The ParaHox cluster is the evolutionary sister to the Hox cluster. Like the Hox cluster, the ParaHox cluster displays spatial and temporal regulation of the component genes along the anterior/posterior axis in a manner that correlates with the gene positions within the cluster (a feature called collinearity). The ParaHox cluster is however a simpler system to study because it is composed of only three genes. We provide a detailed analysis of the amphioxus ParaHox cluster and, for the first time in a single species, examine the regulation of the cluster in response to a single developmental signalling molecule, retinoic acid (RA). Embryos treated with either RA or RA antagonist display altered ParaHox gene expression: AmphiGsx expression shifts in the neural tube, and the endodermal boundary between AmphiXlox and AmphiCdx shifts its anterior/posterior position. We identified several putative retinoic acid response elements and in vitro assays suggest some may participate in RA regulation of the ParaHox genes. By comparison to vertebrate ParaHox gene regulation we explore the evolutionary implications. This work highlights how insights into the regulation and evolution of more complex vertebrate arrangements can be obtained through studies of a simpler, unduplicated amphioxus gene cluster.
Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta
2016-01-01
In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces. To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins. PMID:27248800
Charaka, Vijaya Kumar; Mehta, Kruti P; Misra, H S
2013-09-01
Bacterial genome segregation and cell division has been studied mostly in bacteria harbouring single circular chromosome and low-copy plasmids. Deinococcus radiodurans, a radiation-resistant bacterium, harbours multipartite genome system. Chromosome I encodes majority of the functions required for normal growth while other replicons encode mostly the proteins involved in secondary functions. Here, we report the characterization of putative P-loop ATPase (ParA2) encoded on chromosome II of D. radiodurans. Recombinant ParA2 was found to be a DNA-binding ATPase. E. coli cells expressing ParA2 showed cell division inhibition and mislocalization of FtsZ-YFP and those expressing ParA2-CFP showed multiple CFP foci formation on the nucleoid. Although, in trans expression of ParA2 failed to complement SlmA loss per se, it could induce unequal cell division in slmAminCDE double mutant. These results suggested that ParA2 is a nucleoid-binding protein, which could inhibits cell division in E. coli by affecting the correct localization of FtsZ and thereby cytokinesis. Helping slmAminCDE mutant to produce minicells, a phenotype associated with mutations in the 'Min' proteins, further indicated the possibility of ParA2 regulating cell division by bringing nucleoid compaction at the vicinity of septum growth.
Lee, Hyun-Joo; Kim, Won-Jeong; Kim, Jun-Young; Kim, Hoon-Soo; Kim, Byung-Soo; Kim, Moon-Bum; Ko, Hyun-Chang
2016-01-01
Hair dye is one of the most common causes of allergic contact dermatitis. The main allergen has been identified as para-phenylenediamine. To prevent the recurrence of contact dermatitis to para-phenylenediamine, patients should discontinue the use of para-phenylenediamine-containing hair dye products. However, many patients are unable to discontinue their use for cosmetic or social reasons. Sometimes, they continue to have symptoms even after switching to so-called "less allergenic" hair dyes. To evaluate the safety of 15 commercially available hair dye products in patients with allergic contact dermatitis due to para-phenylenediamine. We performed patch tests using 15 hair dyes that were advertised as "hypoallergenic," "no para-phenylenediamine" and "non-allergenic" products in the market. Twenty three patients completed the study and 20 (87.0%) patients had a positive patch test reaction to at least one product. While four (26.7%) hair dye products contained para-phenylenediamine, 10 (66.7%) out of 15 contained m- aminophenol and 7 (46.7%) contained toluene-2,5-diamine sulfate. Only one product did not elicit a positive reaction in any patient. Small sample size and possibility of false-positive reactions. Dermatologists should educate patients with allergic contact dermatitis to para-phenylenediamine about the importance of performing sensitivity testing prior to the actual use of any hair dye product, irrespective of how it is advertised or labelled.
A sensitive and selective enzyme-linked immunosorbent assay for the analysis of Para red in foods.
Wang, Jia; Wei, Keyi; Li, Hao; Li, Qing X; Li, Ji; Xu, Ting
2012-05-07
Para red is a synthetic dye and a potential genotoxic carcinogen. A hapten mimicking Para red structure was synthesized by introducing a carboxyl to the naphthol part of Para red and coupled to carrier protein to form an immunogen for the production of specific antibodies. A sensitive and selective enzyme-linked immunosorbent assay (ELISA) was developed for the detection of Para red in food samples. The limit of detection and inhibition half-maximum concentrations of Para red in phosphate buffered saline with 10% methanol were 0.06 and 2.2 ng mL(-1), respectively. Cross-reactivity values of the ELISA with the tested compounds including Sudan red I, II, III, IV, and G, sunset yellow, 2-naphthol, and 4-nitroaniline were ≤0.2%. This assay was used to determine Para red in tomato sauce, chilli sauce, chilli powder and sausage samples after ultrasonic extraction, cleanup and concentration steps. The average recoveries, repeatability (intraday extractions and analysis), and intra-laboratory reproducibility (interday extractions and analysis) were in the range 90-108%, 4-12% and 8-17%, respectively. This assay was compared to a high-performance liquid chromatographic method for 28 samples, displaying a good correlation (R(2) = 0.95). Para red residues in 53 real world samples determined by ELISA were below the limit of detection.
Okwumabua, Ogi; Moua, Tou Vue; Danz, Tonya; Quinn, Joe; O'Connor, Mike; Gibbons-Burgener, Suzanne
2010-09-01
The effect of para-JEM(R) BLUE on Mycobacterium avium subspecies paratuberculosis (MAP) inoculated into broth-based culture media was evaluated by using 84 fecal samples with known MAP status. Results showed that growth of the organism in samples inoculated into the broth without the para-JEM BLUE was detectable 1-35 days (average of 6 days) earlier in 35 of the samples (42%) compared with the same samples inoculated in broth with para-JEM BLUE. Four additional samples (5%) that were MAP positive in the culture broth that lacked the para-JEM BLUE gave negative results when the reagent was included. Of the remaining 45 samples, growth of MAP was detected 1-4 days (average of 3 days) earlier in 4 of the samples (5%) inoculated in the broth with para-JEM BLUE compared with the same samples inoculated in the broth without the para-JEM BLUE, whereas 41 samples (49%) yielded equivalent results with respect to time-to-growth detection and negative growth, regardless of whether para-JEM BLUE was present in the culture broth. However, exclusion of para-JEM BLUE from the broth increased the number of samples that produced false-positive instrument signals compared with the number that produced false-positive signals when the reagent was added. Modification of the sample processing step had no measurable effect. Observations indicated that, although elimination of para-JEM BLUE from the broth increased false-positive instrument signals, its inclusion has an adverse effect on the growth of certain MAP, which suggests that its elimination from broth cultures may increase sensitivity.
Wuensch, Christiane; Pavkov-Keller, Tea; Steinkellner, Georg; Gross, Johannes; Fuchs, Michael; Hromic, Altijana; Lyskowski, Andrzej; Fauland, Kerstin; Gruber, Karl; Glueck, Silvia M; Faber, Kurt
2015-01-01
We report on a ‘green’ method for the utilization of carbon dioxide as C1 unit for the regioselective synthesis of (E)-cinnamic acids via regioselective enzymatic carboxylation of para-hydroxystyrenes. Phenolic acid decarboxylases from bacterial sources catalyzed the β-carboxylation of para-hydroxystyrene derivatives with excellent regio- and (E/Z)-stereoselectivity by exclusively acting at the β-carbon atom of the C=C side chain to furnish the corresponding (E)-cinnamic acid derivatives in up to 40% conversion at the expense of bicarbonate as carbon dioxide source. Studies on the substrate scope of this strategy are presented and a catalytic mechanism is proposed based on molecular modelling studies supported by mutagenesis of amino acid residues in the active site. PMID:26190963
Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Amorós-Muñoz, I
2016-11-01
Nowadays cost reduction is a very important issue in wastewater treatment plants. One way, is to minimize the sludge production. Microorganisms break down the organic matter into inorganic compounds through catabolism. Uncoupling metabolism is a method which promote catabolism reactions instead of anabolism ones, where adenosine triphosphate synthesis is inhibited. In this work, the influence of the addition of para-nitrophenol and a commercial reagent to a sequencing batch reactor (SBR) on sludge production and process performance has been analyzed. Three laboratory SBRs were operated in parallel to compare the effect of the addition of both reagents with a control reactor. SBRs were fed with synthetic wastewater and were operated with the same conditions. Results showed that sludge production was slightly reduced for the tested para-nitrophenol concentrations (20 and 25 mg/L) and for a LODOred dose of 1 mL/day. Biological process performance was not influenced and high COD removals were achieved.
NASA Astrophysics Data System (ADS)
Miyamoto, Ayaho; Motoshita, Minoru; Casas, Joan R.
2013-12-01
Bridge monitoring system via information technology is capable of providing more accurate knowledge of bridge performance characteristics than traditional strategies. This paper describes not only an integrated Internet monitoring system that consists of a stand-alone monitoring system (SMS) and a Web-based Internet monitoring system (IMS) for bridge maintenance but also its application to para-stressing bridge system as an intelligent structure. IMS, as a Web-based system, is capable of addressing the remote monitoring by introducing measuring information derived from SMS into the system through Internet or intranet connected by either PHS or LAN. Moreover, the key functions of IMS such as data management system, condition assessment, and decision making with the proposed system are also introduced in this paper. Another goal of this study is to establish the framework of a para-stressing bridge system which is an intelligent bridge by integrating the bridge monitoring information into the system to control the bridge performance automatically.
Renormalization-group approach for para-hydrogen adsorbed on exfoliated graphite
NASA Astrophysics Data System (ADS)
Mello, E. V. L.; Carneiro, G. M.
1986-04-01
Heat-capacity measurements of para-hydrogen adsorbed on graphite were performed recently and revealed an interesting phase diagram similar to 4He. We report a renormalization-group study based on a three-state Potts model with vacancies which approximates the experimental situation. The resulting global phase diagram is in a three parameter space of pair-interaction constants and chemical potential as studied by Berker, Ostlund and Putnam. The Lennard-Jones or other effective potential between the para-H 2 adsorbed molecules determines the subspace relevant to this adsorbate. A method to calculate thermodynamic densities is discussed and the resulting temperature versus density diagram agrees well with the experiment.
Effect of current-loop sizes on the para-Meissner effect in superconductors
NASA Astrophysics Data System (ADS)
Krishna, N. Murali; Lingam, Lydia S.; Ghosh, P. K.; Shrivastava, Keshav N.
1998-01-01
We find that there is a range of current-loop sizes and a range of temperatures under which the para-Meissner effect is predicted. When the phase φ/ φ0 of the Josephson Hamiltonian varies in a certain range, the magnetization becomes positive. In general, the magnetization can be both positive as well as negative with zero resistivity in all phases. The susceptibility as a function of temperature at small magnetic fields is explained on the basis of Josephson interaction. The transition temperature of the para-Meissner effect, TpM, is different from that of the Meissner effect, Tc> TpM. The experimental measurements of the magnetization of Tl 2CaBa 2Cu 2O 8 at low fields are in agreement with the theoretical predictions.
Hong, C. S.; Ganetzky, B.
1996-01-01
To elucidate the mechanisms regulating expression of para, which encodes the major class of sodium channels in the Drosophila nervous system, we have tried to locate upstream cis-acting regulatory elements by mapping the transcriptional start site and analyzing the region immediately upstream of para in region 14D of the polytene chromosomes. From these studies, we have discovered that the region contains a cluster of neurally expressing genes. Here we report the molecular characterization of the genomic organization of the 14D region and the genes within this region, which are: calnexin (Cnx), actin related protein 14D (Arp14D), calcineurin A 14D (CnnA14D), and chromosome associated protein (Cap). The tight clustering of these genes, their neuronal expression patterns, and their potential functions related to expression, modulation, or regulation of sodium channels raise the possibility that these genes represent a functionally related group sharing some coordinate regulatory mechanism. PMID:8849894
Kyste géant para-urétral feminine
Kassogué, Amadou; Coulibaly, Mamadou; Ouattara, Zanafon; Diarra, Alkadri; Tembely, Aly; Ouattara, Kalilou; Farih, My Hassan
2014-01-01
Le kyste géant para-urétral féminin infecté est rarement rapporté dans la littérature. Ce kyste est différent du diverticule sous urétral sur le plan clinique, diagnostique et thérapeutique. Sa pathogénie se confond avec celle des diverticules sous urétraux. Son traitement n'est pas bien codifié, vu sa rareté. Nous rapportons un cas atypique de kyste géant para urétral infecté chez une jeune femme de 26 ans. Le kyste était symptomatique et la patiente a eu un traitement chirurgical. Nous discutons les aspects cliniques, diagnostiques et thérapeutiques de cette entité rare à travers une revue de la littérature.
Potential of Brachiaria mutica (Para grass) for bioethanol production from Loktak Lake.
Sahoo, Dinabandhu; Ummalyma, Sabeela Beevi; Okram, Aswini Kumar; Sukumaran, Rajeev K; George, Emrin; Pandey, Ashok
2017-10-01
The aim of present study was to evaluate feasibility of using the Para grass as feedstock for production of bioethanol. Process involved the pretreatment with dilute acid or alkali and followed by enzymatic saccharification with commercial cellulase. Maximum sugar release of 696mg/g was obtained from 10% biomass loading and 0.5% w/v of alkali whereas in the case of acid pretreatment maximum sugar of 660mg/g was obtained from 20% biomass loading and 2% w/v acid loading. Results showed that Para grass utilization as a biorefinery feedstock can be a potential strategy to address the sustainable utilization of this invasive grass thereby keeping its population in check in the Loktak Lake. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Density Functional Approach to Para-hydrogen at Zero Temperature
NASA Astrophysics Data System (ADS)
Ancilotto, Francesco; Barranco, Manuel; Navarro, Jesús; Pi, Marti
2016-10-01
We have developed a density functional (DF) built so as to reproduce either the metastable liquid or the solid equation of state of bulk para-hydrogen, as derived from quantum Monte Carlo zero temperature calculations. As an application, we have used it to study the structure and energetics of small para-hydrogen clusters made of up to N=40 molecules. We compare our results for liquid clusters with diffusion Monte Carlo (DMC) calculations and find a fair agreement between them. In particular, the transition found within DMC between hollow-core structures for small N values and center-filled structures at higher N values is reproduced. The present DF approach yields results for (pH_2)_N clusters indicating that for small N values a liquid-like character of the clusters prevails, while solid-like clusters are instead energetically favored for N ≥ 15.
Una propuesta para el desarrollo de un arreglo de síntesis de apertura
NASA Astrophysics Data System (ADS)
Arnal, E. M.
Los estudios llevados a cabo en la transición del hidrógeno neutro a λ~21-cm han contribuído a incrementar nuestro conocimiento acerca de las propiedades globales del medio interestelar, sea este galáctico o extragaláctico. Avances en este campo han sido provocados, a menudo, por la puesta en servicio de radiotelescopios que poseen una mayor resolución angular. Aquí se presenta una propuesta para desarrollar un nuevo instrumento, un interferómetro, que permitirá abrir nuevas líneas de investigación. Este instrumento combinará la técnica de síntesis de apertura con la de espectroscopía de correlación digital, para alcanzar una resolución angular de 1' y un campo de visión de ~1o.7.
Ramanathan, N; Sundararajan, K; Gopi, R; Sankaran, K
2017-03-16
Trimethyl phosphite (TMPhite) was photooxidized to trimethyl phosphate (TMP) in N2, O2, and para-H2 matrixes at low temperatures to correlate the conformational landscape of these two molecules. The photooxidation produced the trans (TGG)-rich conformer with respect to the ground state gauche (GGG) conformer of TMP in N2 and O2 matrixes, which has diverged from the conformational composition of freshly deposited pure TMP in the low-temperature matrixes. The enrichment of the trans conformer in preference to the gauche conformer of TMP during photooxidation is due to the TMPhite precursor, which exists exclusively in the trans conformer. Interestingly, whereas the photooxidized TMP molecule suffers site effects possibly due to the local asymmetry in N2 and O2 matrixes, in the para-H2 matrix owing to the quantum crystal nature the site effects were observed to be self-repaired.
H2CS abundances and ortho-to-para ratios in interstellar clouds
NASA Technical Reports Server (NTRS)
Minh, Y. C.; Irvine, W. M.; Brewer, M. K.
1991-01-01
Several H2CS ortho and para transitions have been observed toward interstellar molecular clouds, including cold, dark clouds and star-forming regions. H2CS fractional abundances f(H2CS) about 1-2 10 to the -9th relative to molecular hydrogen toward TMC-1, Orion A, and NGC 7538, and about 5 10 to the -10th for L134N are derived. The H2CS ortho-to-para ratios in TMC-1 are about 1.8 toward the cyanopolyyne peak and the ammonia peak, which may indicate the thermalization of H2CS on 10 K grains. A ratio of about 3, the statistical value, for Orion (3N, 1E) and NGC 7538 is derived, while a value of about 2 for Orion (KL) is found.
Kwon, Woosung; Do, Sungan; Kim, Ji-Hee; Seok Jeong, Mun; Rhee, Shi-Woo
2015-01-01
Carbon nanodots (C-dots) are a kind of fluorescent carbon nanomaterials, composed of polyaromatic carbon domains surrounded by amorphous carbon frames, and have attracted a great deal of attention because of their interesting properties. There are still, however, challenges ahead such as blue-biased photoluminescence, spectral broadness, undefined energy gaps and etc. In this report, we chemically modify the surface of C-dots with a series of para-substituted anilines to control their photoluminescence. Our surface functionalization endows our C-dots with new energy levels, exhibiting long-wavelength (up to 650 nm) photoluminescence of very narrow spectral widths. The roles of para-substituted anilines and their substituents in developing such energy levels are thoroughly studied by using transient absorption spectroscopy. We finally demonstrate light-emitting devices exploiting our C-dots as a phosphor, converting UV light to a variety of colors with internal quantum yields of ca. 20%. PMID:26218869
Jupiter's Tropospheric Dynamics from SOFIA Mapping of Temperature, Para-Hydrogen, and Aerosols
NASA Astrophysics Data System (ADS)
de Pater, Imke
We request time with FORCAST to observe Jupiter at mid-infrared wavelengths using 8-37 micron grism spectroscopy of the collisionally-induced H2-He continuum to derive the zonal mean tropospheric temperatures and para-H2 distribution. In addition, we request imaging in discrete filters between 5 and 37 micron to provide spatial context for the spectroscopy. This proposal is a follow-up of our successful observations in May 2014, where we confirmed the N-S polar asymmetry in the para-H2 fraction detected by Voyager 1, also during late summer in Jupiter's northern hemisphere. In spring 2017, during a world-wide campaign in support of the Juno mission, it gets close to southern summer solstice. This timing is ideal to assess seasonable variability on the planet.
Charge Transfer Directed Radical Substitution Enables para-Selective C–H Functionalization
Boursalian, Gregory B.; Ham, Won Seok; Mazzotti, Anthony R.; Ritter, Tobias
2016-01-01
Efficient C–H functionalization requires selectivity for specific C–H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho- and meta- selectivity, but a general strategy for para-selective C–H functionalization has remained elusive. Herein, we introduce a previously unappreciated concept which enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit areneto-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate that the selectivity is predictable by a simple theoretical tool and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of charge transfer directed radical substitution could serve as the basis for the development of new, highly selective C–H functionalization reactions. PMID:27442288
Charge-transfer-directed radical substitution enables para-selective C-H functionalization
NASA Astrophysics Data System (ADS)
Boursalian, Gregory B.; Ham, Won Seok; Mazzotti, Anthony R.; Ritter, Tobias
2016-08-01
Efficient C-H functionalization requires selectivity for specific C-H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho and meta selectivity, but a general strategy for para-selective C-H functionalization has remained elusive. Herein we introduce a previously unappreciated concept that enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit arene-to-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate with a simple theoretical tool that the selectivity is predictable and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of radical substitution directed by charge transfer could serve as the basis for the development of new, highly selective C-H functionalization reactions.
ROTATIONAL SPECTROSCOPY OF THE CO-PARA-H{sub 2} MOLECULAR COMPLEX
Potapov, A. V.; Surin, L. A.; Giesen, T. F.; Schlemmer, S.; Panfilov, V. A.; Dumesh, B. S.; Raston, P. L.; Jaeger, W.
2009-10-01
The rotational spectrum of the CO-para-H{sub 2} van der Waals complex, produced using a molecular jet expansion, was observed with two different techniques: OROTRON intracavity millimeter-wave spectroscopy and pulsed Fourier transform microwave spectroscopy. Thirteen transitions in the frequency range from 80 to 130 GHz and two transitions in the 14 GHz region were measured and assigned, allowing for a precise determination of the corresponding energy level positions of CO-para-H{sub 2}. The data obtained enable further radio astronomical searches for this molecular complex and provide a sensitive test of the currently best available intermolecular potential energy surface for the CO-H{sub 2} system.
Hanna, W G
1999-11-15
The complexation of para-Cl-phenylazo-R-acid azo dye with Pd(II) has been studied spectrophotometrically. Protonation constant (pK(a)) of the ligand has been calculated and the stability conditional constants of para-Cl-phenylazo-R-acid ligand with palladium ion has been determined at a constant temperature (25.0 degrees C), where the molar ratio of this complex is 1:1 (metal:ligand) with logbeta(1)=3.75, and 1:2 with logbeta(2)=8.55. Solid complex of para-Cl-phenylazo-R-acid has been prepared and characterized on the basis of elemental analysis and FTIR spectral data. A procedure for the spectrophotometric determination of Pd(II) using para-Cl-phenylazo-R-acid as a new azo chromophore is proposed where it is rapid, sensitive and highly specific. Beer's law was obeyed in the range 0.50-10.00 ppm at pH 5.0-6.0 to form a violet-red complex (epsilon=7.7 x 10(4) l(-1) mol(-1) cm(-1) at lambda(max)=560 nm). Metal ions such as Cu(II), Cr(III), La(III), Yb(III), Y(III), and Rh(III) interfere with the complex. Ammonium salt of trimellitic acid is used to precipitate some of the interfering ions and a scheme for separation of Pd(II) from a synthetic mixture similar in composition to platinum ore or deposit was made.
Role of pelvic and para-aortic lymphadenectomy in abandoned radical hysterectomy in cervical cancer.
Barquet-Muñoz, Salim Abraham; Rendón-Pereira, Gabriel Jaime; Acuña-González, Denise; Peñate, Monica Vanessa Heymann; Herrera-Montalvo, Luis Alonso; Gallardo-Alvarado, Lenny Nadia; Cantú-de León, David Francisco; Pareja, René
2017-01-14
Cervical cancer (CC) occupies fourth place in cancer incidence and mortality worldwide in women, with 560,505 new cases and 284,923 deaths per year. Approximately, nine of every ten (87%) take place in developing countries. When a macroscopic nodal involvement is discovered during a radical hysterectomy (RH), there is controversy in the literature between resect macroscopic lymph node compromise or abandonment of the surgery and sending the patient for standard chemo-radiotherapy treatment. The objective of this study is to compare the prognosis of patients with CC whom RH was abandoned and bilateral pelvic lymphadenectomy and para-aortic lymphadenectomy was performed with that of patients who were only biopsied or with removal of a suspicious lymph node, treated with concomitant radiotherapy/chemotherapy in the standard manner. A descriptive and retrospective study was conducted in two institutions from Mexico and Colombia. Clinical records of patients with early-stage CC programmed for RH with an intraoperative finding of pelvic lymph, para-aortic nodes, or any extracervical involvement that contraindicates the continuation of surgery were obtained. Between January 2007 and December 2012, 42 clinical patients complied with study inclusion criteria and were selected for analysis. In patients with CC whom RH was abandoned due to lymph node affectation, there is no difference in overall survival or in disease-free period between systematic lymphadenectomy and tumor removal or lymph node biopsy, in pelvic lymph nodes as well as in para-aortic lymph nodes, when these patients receive adjuvant treatment with concomitant radiotherapy/chemotherapy. This is a hypothesis-generator study; thus, the recommendation is made to conduct randomized prospective studies to procure better knowledge on the impact of bilateral pelvic and para-aortic lymphadenectomy on this group of patients.
ParaDiS on Blue Gene/L: stepping up to the challenge
Hommes, G; Arsenlis, A; Bulatov, V; Cai, W; Cook, R; Hiratani, M; Oppestrup, T; Rhee, M; Tang, M
2006-06-09
This paper reports on the efforts to enable fully scalable simulations of Dislocation Line Dynamics (DLD) for direct calculations of strength of crystalline materials. DLD simulations are challenging and do not lend themselves naturally to parallel computing. Through a combinations of novel physical approaches, mathematical algorithms and computational science developments, a new DLD code ParaDiS is shown to take meaningful advantage of BG/L and, by doing so, to enable discovery class science by computation.
Parallel Visualization and Analysis with ParaView on a Cray XT4
Patchett, John; Ahrens, James; Ahern, Sean; Pugmire, Dave
2009-01-01
Scienti c data sets produced by modern supercomputers like ORNL s Cray XT 4, Jaguar, can be extremely large, making visualization and analysis more di cult as moving large resultant data to dedicated analysis systems can be pro- hibitively expensive. We share our continuing work of integrating a parallel visu- alization system, ParaView, on ORNL s Jaguar system and our e orts to enable extreme scale interactive data visualization and analysis. We will discuss porting challenges and present performance numbers.
16. mu. m para-H/sub 2/ stimulated Raman laser
Jin Chunzhi; Lin Taiji; Wu Xuhua; Niu Zhenya; Ding Yishan; Li Dianjun; Zhu Youxin; Li Yulan; Yang Jinfeng; Wang Naihong; and others
1988-08-01
A para-H/sub 2/ stimulated Raman laser pumped by a TEA CO/sub 2/ laser was developed. The main factors affecting Raman conversion efficiency are discussed. At a working temperature of 100 K, the maximum output energy of the Stokes beam at 16 ..mu..m was 536 mJ, corresponding to an energy conversion efficiency of 13% and a quantum conversion efficiency greater than 20%.
1978-12-01
Polybenzobisoxazoles 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s) Dr. J. F. Wolfe Dr. F. E. Arnold 9. PERFORMING ORGANIZATION...number) Para-ordered Polymers Polybenzobisoxazoles Polyphenylated Terphenylene 20. ABSTRACT (Continue on reverse side If necessary and Identify by block...poly(amide hydrazide) fibers 1-4 recently described in the literature meet the first two of these criteria. The overriding structural feature of
ParaDiS on BlueGene/L: scalable line dynamics
Bulatov, V; Cai, W; Fier, J; Hiratani, M; Pierce, T; Tang, M; Rhee, M; Yates, R K; Arsenlis, A
2004-04-29
We describe an innovative highly parallel application program, ParaDiS, which computes the plastic strength of materials by tracing the evolution of dislocation lines over time. We discuss the issues of scaling the code to tens of thousands of processors, and present early scaling results of the code run on a prototype of the BlueGene/L supercomputer being developed by IBM in partnership with the US DOE's ASC program.
Aplicación del Teorema de Nekhorochev para tiempos de estabilidad en Mecánica Celeste
NASA Astrophysics Data System (ADS)
Miloni, O.; Núñez, J.; Brunini, A.
En Mecánica Celeste, uno de los problemas centrales consiste en la determinación de los tiempos de estabilidad. El teorema de Nekhorochev proporciona un método para dicho estudio, para un sistema determinado por un hamiltoniano descripto en las variables acción-ángulo. El trabajo consiste en la acotación tanto del potencial perturbador y de la matriz hessiana del hamiltoniano integrable para determinar luego el tiempo de estabilidad de dicho sistema, donde por estabilidad se entiende la separación en norma infinito en el espacio de las acciones.
Beyond Hox: the role of ParaHox genes in normal and malignant hematopoiesis.
Rawat, Vijay P S; Humphries, R Keith; Buske, Christian
2012-07-19
During the past decade it was recognized that homeobox gene families such as the clustered Hox genes play pivotal roles both in normal and malignant hematopoiesis. More recently, similar roles have also become apparent for members of the ParaHox gene cluster, evolutionarily closely related to the Hox gene cluster. This is in particular found for the caudal-type homeobox genes (Cdx) genes, known to act as upstream regulators of Hox genes. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. Correlative studies indicate that CDX2 functions as master regulator of perturbed HOX gene expression in human acute myeloid leukemia, locating this ParaHox gene at a central position for initiating and maintaining HOX gene dysregulation as a driving leukemogenic force. There are still few data about potential upstream regulators initiating aberrant CDX2 expression in human leukemias or about critical downstream targets of CDX2 in leukemic cells. Characterizing this network will hopefully open the way to therapeutic approaches that target deregulated ParaHox genes in human leukemia.
ParaView visualization of Abaqus output on the mechanical deformation of complex microstructures
NASA Astrophysics Data System (ADS)
Liu, Qingbin; Li, Jiang; Liu, Jie
2017-02-01
Abaqus® is a popular software suite for finite element analysis. It delivers linear and nonlinear analyses of mechanical and fluid dynamics, includes multi-body system and multi-physics coupling. However, the visualization capability of Abaqus using its CAE module is limited. Models from microtomography have extremely complicated structures, and datasets of Abaqus output are huge, requiring a visualization tool more powerful than Abaqus/CAE. We convert Abaqus output into the XML-based VTK format by developing a Python script and then using ParaView to visualize the results. Such capabilities as volume rendering, tensor glyphs, superior animation and other filters allow ParaView to offer excellent visualizing manifestations. ParaView's parallel visualization makes it possible to visualize very big data. To support full parallel visualization, the Python script achieves data partitioning by reorganizing all nodes, elements and the corresponding results on those nodes and elements. The data partition scheme minimizes data redundancy and works efficiently. Given its good readability and extendibility, the script can be extended to the processing of more different problems in Abaqus. We share the script with Abaqus users on GitHub.
The "drinking-buddy" scale as a measure of para-social behavior.
Powell, Larry; Richmond, Virginia P; Cantrell-Williams, Glenda
2012-06-01
Para-social behavior is a form of quasi-interpersonal behavior that results when audience members develop bonds with media personalities that can resemble interpersonal social interaction, but is not usually applied to political communication. This study tested whether the "Drinking-Buddy" Scale, a simple question frequently used in political communication, could be interpreted as a single-item measure of para-social behavior with respect to political candidates in terms of image judgments related to interpersonal attraction and perceived similarity to self. The participants were college students who had voted in the 2008 election. They rated the candidates, Obama or McCain, as drinking buddies and then rated the candidates' perceived similarity to themselves in attitude and background, and also the social and task attraction to the candidate. If the drinking-buddy rating serves as a proxy measure for para-social behavior, then it was expected that participants' ratings for all four kinds of similarity to and attraction toward a candidate would be higher for the candidate they chose as a drinking buddy. The directional hypotheses were supported for interpersonal attraction, but not for perceived similarity. These results indicate that the drinking-buddy scale predicts ratings of interpersonal attraction, while voters may view perceived similarity as an important but not essential factor in their candidate preference.
Atlas de aves: Un metodo para documentar distribucion y seguir poblaciones
Robbins, C.S.; Dowell, B.A.; Dawson, D.K.; Alvarez-Lopez, Humberto; Kattan, Gustavo; Murcia, Carolina
1988-01-01
Los Atlas de Aves son proyectos nacionales o regionalies para trazar en mapas la distribucion en reproduccion de cada especie de ave. Ese procedimiento se esta usando en Europa, Australia, Nueva Zelanda, Norteamerica, y partes de Africa. El tama?o de los cuadrados varia de medio grado de latitud y Iongitud hasta 5 x 5 km. El trabajo de campo de cada proyecto exige aproxlmadamente cinco a?os, pero los aficionados pueden llevar a cabo la mayor parte del trabajo. Es posible almacenar los resultados en un computador personal. Hay muchos beneficios: (I) se presenta la distribucion corriente de las aves de la nacion, del estado, o de la Iocalidad; (2) se desarrolla nueva informacion especialmente sobre especies raras o en peligro; (3) se descubren areas que tienen una avlfauna sobresaliente o habitats raros y ayuda a su proteccion, (4) se documentan cambios de dlstribucion; (5) se pueden usar para documentar cambios de poblacion, especialmente en los tropicos donde otros metodos son mas dificiles de usar porque hay muchas especies y no hay muchos observadores calificados en la identificacion de sonidos de las aves; (6) son proyectos buenos de investigacion para estudiantes graduados; (7) los turistas y los jefes de excursiones de historia natural pueden contribuir con muchas informaciones
ParaDock: a flexible non-specific DNA--rigid protein docking algorithm.
Banitt, Itamar; Wolfson, Haim J
2011-11-01
Accurate prediction of protein-DNA complexes could provide an important stepping stone towards a thorough comprehension of vital intracellular processes. Few attempts were made to tackle this issue, focusing on binding patch prediction, protein function classification and distance constraints-based docking. We introduce ParaDock: a novel ab initio protein-DNA docking algorithm. ParaDock combines short DNA fragments, which have been rigidly docked to the protein based on geometric complementarity, to create bent planar DNA molecules of arbitrary sequence. Our algorithm was tested on the bound and unbound targets of a protein-DNA benchmark comprised of 47 complexes. With neither addressing protein flexibility, nor applying any refinement procedure, CAPRI acceptable solutions were obtained among the 10 top ranked hypotheses in 83% of the bound complexes, and 70% of the unbound. Without requiring prior knowledge of DNA length and sequence, and within <2 h per target on a standard 2.0 GHz single processor CPU, ParaDock offers a fast ab initio docking solution.
The ortho:para-H_2 ratio in C- and J-type shocks
NASA Astrophysics Data System (ADS)
Wilgenbus, D.; Cabrit, S.; Pineau des Forêts, G.; Flower, D. R.
2000-04-01
We have computed extensive grids of models of both C- and J-type planar shock waves, propagating in dark, cold molecular clouds, in order to study systematically the behaviour of the ortho:para-H_2 ratio. Careful attention was paid to both macroscopic (dynamical) and microscopic (chemical reactions and collisional population transfer in H_2) aspects. We relate the predictions of the models to observational determinations of the ortho:para-H_2 ratio using both pure rotational lines and rovibrational lines. As an illustration, we consider ISO and ground-based H_2 observations of HH 54. Neither planar C-type nor planar J-type shocks appear able to account fully for these observations. Given the additional constraints provided by the observed ortho:para H_2 ratios, a C-type bowshock, or a C-type precursor followed by a J-type shock, remain as plausible models. Tables~2a-f and 4a-f are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
Theoretical study of the design of a catalyst for para to ortho hydrogen conversion
NASA Technical Reports Server (NTRS)
Coffman, Robert E.
1992-01-01
The theory of Petzinger and Scalapino (1973) was thoroughly reviewed, and all of the basic equations for paramagnetic para to ortho hydrogen catalysis re-derived. There are only a few minor phase errors and errors of omission in the description of the theory. Three models (described by Petzinger and Scalapino) for the rate of para to ortho H2 catalysis were worked out, and uniform agreement obtained to within a constant factor of 2 pi. The analytical methods developed in the course of this study were then extended to two new models, which more adequately describe the process of surface catalysis including transfer of hydrogen molecules onto and off of the surface. All five equations for the para to ortho catalytic rate of conversion are described. The two new equations describe the catalytic rate for these models: H2 on the surface is a 2-D gas with lifetime tau; and H2 on the surface is a 2-D liquid undergoing Brownian motion (diffusion) with surface lifetime tau.
ParaSAM: a parallelized version of the significance analysis of microarrays algorithm
Sharma, Ashok; Zhao, Jieping; Podolsky, Robert; McIndoe, Richard A.
2010-01-01
Motivation: Significance analysis of microarrays (SAM) is a widely used permutation-based approach to identifying differentially expressed genes in microarray datasets. While SAM is freely available as an Excel plug-in and as an R-package, analyses are often limited for large datasets due to very high memory requirements. Summary: We have developed a parallelized version of the SAM algorithm called ParaSAM to overcome the memory limitations. This high performance multithreaded application provides the scientific community with an easy and manageable client-server Windows application with graphical user interface and does not require programming experience to run. The parallel nature of the application comes from the use of web services to perform the permutations. Our results indicate that ParaSAM is not only faster than the serial version, but also can analyze extremely large datasets that cannot be performed using existing implementations. Availability:A web version open to the public is available at http://bioanalysis.genomics.mcg.edu/parasam. For local installations, both the windows and web implementations of ParaSAM are available for free at http://www.amdcc.org/bioinformatics/software/parasam.aspx Contact: rmcindoe@mail.mcg.edu Supplementary information: Supplementary Data is available at Bioinformatics online. PMID:20400455
Base de linhas moleculares para síntese espectral estelar
NASA Astrophysics Data System (ADS)
Milone, A.; Sanzovo, G.
2003-08-01
A análise das abundâncias quí micas fotosféricas em estrelas do tipo solar ou tardia, através do cálculo teórico de seus espectros, emprega a espectroscopia de alta resolução e necessita de uma base representativa de linhas atômicas e moleculares com suas respectivas constantes bem determinadas. Nesse trabalho, utilizamos como ponto de partida as extensas listas de linhas espectrais de sistemas eletrônicos de algumas moléculas diatômicas compiladas por Kurucz para a construção de uma base de linhas moleculares para a sí ntese espectral estelar. Revisamos as determinações dos fatores rotacionais de Honl-London das forças de oscilador das linhas moleculares, para cada banda vibracional de alguns sistemas eletrônicos, seguindo a regra usual de normalização. Usamos as forças de oscilador eletrônicas da literatura. Os fatores vibracionais de Franck-Condon de cada banda foram especialmente recalculados empregando-se novas constantes moleculares. Reproduzimos, com êxito, as absorções espectrais de determinadas bandas eletrônicas-vibracionais das espécies moleculares C12C12, C12N14 e Mg24H em espectros de estrelas de referência como o Sol e Arcturus.