Sample records for klystron output cavity

  1. Large-Signal Klystron Simulations Using KLSC

    NASA Astrophysics Data System (ADS)

    Carlsten, B. E.; Ferguson, P.

    1997-05-01

    We describe a new, 2-1/2 dimensional, klystron-simulation code, KLSC. This code has a sophisticated input cavity model for calculating the klystron gain with arbitrary input cavity matching and tuning, and is capable of modeling coupled output cavities. We will discuss the input and output cavity models, and present simulation results from a high-power, S-band design. We will use these results to explore tuning issues with coupled output cavities.

  2. Multi-frequency klystron designed for high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Aaron

    A multi-frequency klystron has an electron gun which generates a beam, a circuit of bunch-align-collect (BAC) tuned cavities that bunch the beam and amplify an RF signal, a collector where the beam is collected and dumped, and a standard output cavity and waveguide coupled to a window to output RF power at a fundamental mode to an external load. In addition, the klystron has additional bunch-align-collect (BAC) cavities tuned to a higher harmonic frequency, and a harmonic output cavity and waveguide coupled via a window to an additional external load.

  3. A study on the high-order mode oscillation in a four-cavity intense relativistic klystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying-Hui; Niu, Xin-Jian; Wang, Hui

    The high-order mode oscillation is studied in designing a four-cavity intense relativistic klystron amplifier. The reason for the oscillation caused by high-order modes and a method to suppress these kinds of spurious modes are found through theoretical analyses and the study on the influence of major parameters of a high frequency structure (such as the oscillation frequency of cavities, the cavity Q value, the length of drift tube section, and the characteristic impedance). Based on much simulation, a four-cavity intense relativistic klystron amplifier with a superior performance has been designed, built, and tested. An output power of 2.22 GW corresponding tomore » 27.4% efficiency and 61 dB gain has been obtained. Moreover, the high-order mode oscillation is suppressed effectively, and an output power of 1.95 GW corresponding to 26% efficiency and 62 dB gain has been obtained in our laboratory.« less

  4. Study of nonlinear interaction between bunched beam and intermediate cavities in a relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.

    2012-07-01

    In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.

  5. Mode control in a high gain relativistic klystron amplifier with 3 GW output power

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Xie, Hong-Quan; Xu, Zhou

    2014-01-01

    Higher mode excitation is very serious in the relativistic klystron amplifier, especially for the high gain relativistic amplifier working at tens of kilo-amperes. The mechanism of higher mode excitation is explored in the PIC simulation and it is shown that insufficient separation of adjacent cavities is the main cause of higher mode excitation. So RF lossy material mounted on the drift tube wall is adopted to suppress higher mode excitation. A high gain S-band relativistic klystron amplifier is designed for the beam current of 13 kA and the voltage of 1 MV. PIC simulation shows that the output power is 3.2 GW when the input power is only 2.8 kW.

  6. Extended interaction oversized coaxial relativistic klystron amplifier with gigawatt-level output at Ka band

    NASA Astrophysics Data System (ADS)

    Li, Shifeng; Duan, Zhaoyun; Huang, Hua; Liu, Zhenbang; He, Hu; Wang, Fei; Wang, Zhanliang; Gong, Yubin

    2018-04-01

    In this paper, an extended interaction oversized coaxial relativistic klystron amplifier (EIOC-RKA) with Gigawatt-level output at Ka band is proposed. We introduce the oversized coaxial and multi-gap resonant cavities to increase the power capacity and investigate a non-uniform extended interaction output cavity to improve the electronic efficiency of the EIOC-RKA. We develop a high order mode gap in the input and output cavities to easily design and fabricate the input and output couplers. Meanwhile, we design the EIOC-RKA by using the particle-in-cell simulation. In the simulations, we use an electron beam with a current of 6 kA and a voltage of 525 kV, which is focused by a low focusing magnetic flux intensity of 0.5 T. The simulation results demonstrate that the saturated output power is 1.17 GW, the electronic efficiency is 37.1%, and the saturated gain is 57 dB at 30 GHz. The self-oscillation is suppressed by adopting the absorbing materials. The proposed EIOC-RKA has plenty of advantages such as large power capacity, high electronic efficiency, low focusing magnetic, high gain, and simple structure.

  7. Development of an X-Band 50 MW Multiple Beam Klystron

    NASA Astrophysics Data System (ADS)

    Song, Liqun; Ferguson, Patrick; Ives, R. Lawrence; Miram, George; Marsden, David; Mizuhara, Max

    2003-12-01

    Calabazas Creek Research, Inc. is developing an X-band 50 MW multiple beam klystron (MBK) on a DOE SBIR Phase II grant. The electrical design and preliminary mechanical design were completed on the Phase I. This MBK consists of eight discrete klystron circuits driven by eight electron beams located symmetrically on a circle with a radius of 6.3 cm. Each beam operates at 190 kV and 66 A. The eight beam electron gun is in development on a DOE SBIR Phase II grant. Each circuit consists of an input cavity, two gain cavities, three penultimate cavities, and a three cavity output circuit operating in the PI/2 mode. Ring resonators were initially proposed for the complete circuit; however, low beam — wave interaction resulted in the necessity to use discrete cavities for all eight circuits. The input cavities are coupled via hybrid waveguides to ensure constant drive power amplitude and phase. The output circuits can either be combined using compact waveguide twists driving a TE01 high power window or combined into a TM04 mode converter driving the same TE01 window. The gain and efficiency for a single circuit has been optimized using KLSC, a 2 1/2D large signal klystron code. Simulations for a single circuit predict an efficiency of 53% for a single output cavity and 55% for the three cavity output resonator. The total RF output power for this MBK is 55 MW. During the Phase II emphasis will be given to cost reduction techniques resulting in a robust — high efficient — long life high power amplifier.

  8. Low Beam Voltage, 10 MW, L-Band Cluster Klystron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teryaev, V.; /Novosibirsk, IYF; Yakovlev, V.P.

    2009-05-01

    Conceptual design of a multi-beam klystron (MBK) for possible ILC and Project X applications is presented. The chief distinction between this MBK design and existing 10-MW MBK's is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development at this time of a low-voltage MBK, namely (1) no pulse transformer; (2) no oil tank for high-voltage components and for the tube socket; (3) no high-voltage cables; and (4) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters containing six beams each. The tube has common inputmore » and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration, also for a 10 MW tube, would involve four totally independent cavity clusters with four independent input cavities and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere, and because it would be easier to achieve phase and amplitude stability as required in individual SC accelerator cavities.« less

  9. Mode control in a high-gain relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Li, Zheng-Hong; Zhang, Hong; Ju, Bing-Quan; Su, Chang; Wu, Yang

    2010-05-01

    Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 105 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.

  10. A novel technique for tuning of co-axial cavity of multi-beam klystron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sukalyan, E-mail: sstechno18@gmail.com; Bandyopadhyay, Ayan Kumar; Pal, Debashis

    2016-03-09

    Multi-beam Klystrons (MBKs) have gained wide acceptances in the research sector for its inherent advantages. But developing a robust tuning technique for an MBK cavity of coaxial type has still remained a challenge as these designs are very prone to suffer from asymmetric field distribution with inductive tuning of the cavity. Such asymmetry leads to inhomogeneous beam-wave interaction, an undesirable phenomenon. Described herein is a new type of coaxial cavity that has the ability to suppress the asymmetry, thereby allowing tuning of the cavity with a single tuning post.

  11. Solar power satellite 50 kW VKS-7773 cw klystron evaluation

    NASA Technical Reports Server (NTRS)

    Larue, A. D.

    1977-01-01

    A test program for evaluating the electrical characteristics of a cw, 50 kW power output klystron at 2.45 GHz is described. The tube tested was an 8-cavity klystron, the VKS-7773 which had been in storage for seven years. Tests included preliminary testing of the tube, cold tests of microwave components, tests of the electromagnet, and first and second hot tests of the tube. During the second hot test, the tuner in the fifth cavity went down to air, preventing any further testing. Cause of failure is not known, and recommendations are to repair and modify the tube, then proceed with testing as before to meet program objectives.

  12. Computer-aided design of the RF-cavity for a high-power S-band klystron

    NASA Astrophysics Data System (ADS)

    Kant, D.; Bandyopadhyay, A. K.; Pal, D.; Meena, R.; Nangru, S. C.; Joshi, L. M.

    2012-08-01

    This article describes the computer-aided design of the RF-cavity for a S-band klystron operating at 2856 MHz. State-of-the-art electromagnetic simulation tools SUPERFISH, CST Microwave studio, HFSS and MAGIC have been used for cavity design. After finalising the geometrical details of the cavity through simulation, it has been fabricated and characterised through cold testing. Detailed results of the computer-aided simulation and cold measurements are presented in this article.

  13. A high-gain and high-efficiency X-band triaxial klystron amplifier with two-stage cascaded bunching cavities

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang

    2017-12-01

    To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.

  14. High voltage breakdown phenomena in RF window, electron gun and RF cavities in 250 kW CW C band Klystron and their preventive measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamba, O.S.; Badola, Richa; Baloda, Suman

    The paper describes voltage break down phenomenon and preventive measures in components of 250 KW CW, C band Klystron under development at CEERI Pilani. The Klystron operates at a beam voltage of 50 kV and delivers 250 kW RF power at 5 GHz frequency. The Klystron consists of several key components and regions, which are subject to high electrical stress. The most important regions of electrical breakdown are electron gun, the RF ceramic window and output cavity gap area. In the critical components voltage breakdown considered at design stage by proper gap and other techniques. All these problems discussed, asmore » well as solution to alleviate this problem. The electron gun consists basically of cathode, BFE and anode. The cathode is operated at a voltage of 50 kV. In order to maintain the voltage standoff between cathode and anode a high voltage alumina seal and RF window have been designed developed and successfully used in the tube. (author)« less

  15. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    NASA Astrophysics Data System (ADS)

    Bai, Xianchen; Yang, Jianhua; Zhang, Jiande

    2012-08-01

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  16. Design and optimization of G-band extended interaction klystron with high output power

    NASA Astrophysics Data System (ADS)

    Li, Renjie; Ruan, Cunjun; Zhang, Huafeng

    2018-03-01

    A ladder-type Extended Interaction Klystron (EIK) with unequal-length slots in the G-band is proposed and designed. The key parameters of resonance cavities working in the π mode are obtained based on the theoretical analysis and 3D simulation. The influence of the device fabrication tolerance on the high-frequency performance is analyzed in detail, and it is found that at least 5 μm of machining precision is required. Thus, the dynamic tuning is required to compensate for the frequency shift and increase the bandwidth. The input and output coupling hole dimensions are carefully designed to achieve high output power along with a broad bandwidth. The effect of surface roughness of the metallic material on the output power has been investigated, and it is proposed that lower surface roughness leads to higher output power. The focusing magnetic field is also optimized to 0.75 T in order to maintain the beam transportation and achieve high output power. With 16.5 kV operating voltage and 0.30 A beam current, the output power of 360 W, the efficiency of 7.27%, the gain of 38.6 dB, and the 3 dB bandwidth of 500 MHz are predicted. The output properties of the EIK show great stability with the effective suppression of oscillation and mode competition. Moreover, small-signal theory analysis and 1D code AJDISK calculations are carried out to verify the results of 3D PIC simulations. A close agreement among the three methods proves the relative validity and the reliability of the designed EIK. Thus, it is indicated that the EIK with unequal-length slots has potential for power improvement and bandwidth extension.

  17. Design of a 100 MW X-band klystron

    NASA Astrophysics Data System (ADS)

    Eppley, Kenneth

    1989-02-01

    Future linear colliders will require klystrons with higher peak power at higher frequency than are currently in use. SLAC is currently designing a 100 MW klystron at 11.4 GHz as a prototype for such a tube. The gun has been designed for 440 kV and 510 amps. Transporting this beam through a 5 mm radius X-band drift tube presents the major design problem. The area convergence ratio of 190 to one is over ten times higher than is found in conventional klystrons. Even with high magnetic fields of 6 to 7 kilogauss careful matching is required to prevent excessive scalloping. Extensive EGUN and CONDOR simulations have been made to optimize the transmission and RF efficiency. The EGUN simulations indicate that better matching is possible by using resonant magnetic focusing. CONDOR calculations indicate efficiencies of 45 percent are possible with a double output cavity. We will discuss the results of the simulations and the status of the experimental program.

  18. A high efficiency Ku-band radial line relativistic klystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Fangchao; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Zhong, Huihuang

    2016-07-15

    To achieve the gigawatt-level microwave amplification output at Ku-band, a radial-line relativistic klystron amplifier is proposed and investigated in this paper. Different from the annular electron beam in conventional axial relativistic klystron amplifiers, a radial-radiated electron beam is employed in this proposed klystron. Owing to its radially spreading speciality, the electron density and space charge effect are markedly weakened during the propagation in the radial line drift tube. Additionally, the power capacity, especially in the output cavity, is enhanced significantly because of its large volume, which is profitable for the long pulse operation. Particle-in-cell simulation results demonstrate that a highmore » power microwave with the power of 3 GW and the frequency of 14.25 GHz is generated with a 500 kV, 12 kA electron beam excitation and the 30 kW radio-frequency signal injection. The power conversion efficiency is 50%, and the gain is about 50 dB. Meanwhile, there is insignificant electron beam self-excitation in the proposed structure by the adoption of two transverse electromagnetic reflectors. The relative phase difference between the injected signals and output microwaves keeps stable after the amplifier saturates.« less

  19. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi

    2017-11-01

    We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.

  20. Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Renzhen; Song, Zhimin; Deng, Yuqun

    Theoretical analyses and particle-in-cell (PIC) simulations are carried out to understand the mechanism of microwave phase control realized by the external RF signal in a klystron-like relativistic backward wave oscillator (RBWO). Theoretical calculations show that a modulated electron beam can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the phase factor of the modulated current, and the difference between them is fixed. Furthermore, PIC simulations demonstrate that the phase of input signal has a close relation to that of modulated current, which initiates the phase of the irregularly microwave duringmore » the build-up of oscillation. Since the microwave field is weak during the early time of starting oscillation, it is easy to be induced, and a small input signal is sufficient to control the phase of output microwave. For the klystron-like RBWO with two pre-modulation cavities and a reentrant input cavity, an input signal with 100 kW power and 4.21 GHz frequency can control the phase of 5 GW output microwave with relative phase difference less than 6% when the diode voltage is 760 kV, and beam current is 9.8 kA, corresponding to a power ratio of output microwave to input signal of 47 dB.« less

  1. Test results of 3.7 GHz 500kW CW klystron for SST1 LHCD system

    NASA Astrophysics Data System (ADS)

    Sharma, Promod Kumar; Ambulkar, Kiran K.; Dalakoti, Shefali; Rajan Babu, N.; Parmar, Pramod R.; Virani, Chetan G.; Thakur, Arvind L.

    2012-10-01

    A 3.7 GHz, LHCD system aims to driving non inductive plasma current for SST1 machine. Its capability has been enhanced up to 2 MW by adding two additional klystrons, each rated for 500kW, CW power. The additional klystrons are installed and commissioned at site, for rated power, for more than 1000 seconds, before connecting them to main LHCD system. The auxiliary systems, like supporting power supply system (magnet, filament, ion pump, etc.), active heat management system, slow and fast interlock system, transmission line pressurization system, low power rf drive system, etc. are inter-connected with klystron system through VME based data acquisition and control system for remote CW operation of klystron at rated power. The calorimetric measurements, employing Pt-100 sensors, suggests that the maximum rf power (˜500kW CW) extracted from klystron is dissipated on water cooled dummy loads. The unspent DC power (˜800 kW CW) is dissipated in collector which is heavily cooled with water flowing at ˜1300 litres/min (lpm). The power loss in the klystron body remained within 20 kW. The cavity temperature, measured using J-type thermocouple, remained below 150 ^oC. The output rf power, sampled through directional couplers and measured by rf detectors shows good agreement with calorimetric measurements. A detailed description of the klystron test set up and the test results obtained during its commissioning is presented in this paper.

  2. Periodic permanent magnet focused klystron

    DOEpatents

    Ferguson, Patrick; Read, Michael; Ives, R Lawrence

    2015-04-21

    A periodic permanent magnet (PPM) klystron has beam transport structures and RF cavity structures, each of which has permanent magnets placed substantially equidistant from a beam tunnel formed about the central axis, and which are also outside the extent of a cooling chamber. The RF cavity sections also have permanent magnets which are placed substantially equidistant from the beam tunnel, but which include an RF cavity coupling to the beam tunnel for enhancement of RF carried by an electron beam in the beam tunnel.

  3. High-Average Power Broadband 18-Beam Klystron Circuit and Collector Designs

    DTIC Science & Technology

    2008-04-01

    high -average power S - band multiple-beam klystron are presented. The klystron will be powered by the recently completed 41.6 A, 42...al., “ High - power Four-cavity S - band multiple-beam klystron design,” IEEE Trans. Plasma Science, vol. 33, pp. 1119-1135, April 2005. [3] D.K Abe, et...APR 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE High -average Power Broadband 18-beam

  4. Development and Production of a 201 MHz, 5.0 MW Peak Power Klystron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aymar, Galen; Eisen, Edward; Stockwell, Brad

    2016-01-01

    Communications & Power Industries LLC has designed and manufactured the VKP-8201A, a high peak power, high gain, VHF band klystron. The klystron operates at 201.25 MHz, with 5.0 MW peak output power, 34 kW average output power, and a gain of 36 dB. The klystron is designed to operate between 1.0 MW and 4.5 MW in the linear range of the transfer curve. The klystron utilizes a unique magnetic field which enables the use of a proven electron gun design with a larger electron beam requirement. Experimental and predicted performance data are compared.

  5. Bandwidth Extension of an S-band, Fundamental-Mode Eight-Beam Klystron

    DTIC Science & Technology

    2006-04-01

    Extension of an S - band , Fundamental-Mode Eight-Beam Klystron Khanh T. Nguyen Beam-Wave Research, Inc. Bethesda, MD 20814 Dean E. Pershing ATK Mission...of a five-cavity, approximately 18 cm downstream from the center of the broadband, high - power multiple-beam klystron (MBK) first gap - the logical...the circuit generates >550 kW across the band with a peak power of more than 600 kW at -3.27 Keywords: Multiple-beam klystron ; MBK; bandwidth GHz. The 1

  6. A high-order mode extended interaction klystron at 0.34 THz

    NASA Astrophysics Data System (ADS)

    Wang, Dongyang; Wang, Guangqiang; Wang, Jianguo; Li, Shuang; Zeng, Peng; Teng, Yan

    2017-02-01

    We propose the concept of high-order mode extended interaction klystron (EIK) at the terahertz band. Compared to the conventional fundamental mode EIK, it operates at the TM31-2π mode, and its remarkable advantage is to obtain a large structure and good performance. The proposed EIK consists of five identical cavities with five gaps in each cavity. The method is discussed to suppress the mode competition and self-oscillation in the high-order mode cavity. Particle-in-cell simulation demonstrates that the EIK indeed operates at TM31-2π mode without self-oscillation while other modes are well suppressed. Driven by the electron beam with a voltage of 15 kV and a current of 0.3 A, the saturation gain of 43 dB and the output power of 60 W are achieved at the center frequency of 342.4 GHz. The EIK operating at high-order mode seems a promising approach to generate high power terahertz waves.

  7. METHOD FOR STABILIZING KLYSTRONS

    DOEpatents

    Magnuson, D.W.; Smith, D.F.

    1959-04-14

    High-frequency oscillators for the generation of microwaves, particularly a system for stabilizing frequency-modulated klystron oscillators of the reflex type, are described. The system takos advantage of the fact that a change in oscillator frequency will alter the normal phase displacement between the cavity and its modulator, creating an error voltage which is utilized to regulate the frequency of the oscillator and stabilize it.

  8. Design of 140 MW X-band Relativistic Klystron for Linear Collider

    NASA Astrophysics Data System (ADS)

    Dolbilov, G. V.; Azorsky, N. I.; Shvetsov, V. S.; Balakin, V. E.; Avrakhov, P. V.; Kazakov, S. Yu.; Teryaev, V. E.; Vogel, V. F.

    1997-05-01

    It has been reported at EPAC-96 on successful experimental results on achievement of 100 MW output rf power in a wide aperture (15 mm), high gain (80 dB) 14 GHz VLEPP klystron with distributed suppression of parasitic oscillations (G.V. Dolbilov et al., Proc. EPAC-96, Sitges (Barselona), 10-14 June, 1996, Vol. 3, p. 2143). This report presents design of an electrodynamic structure of the X-band klystron for linear collider with a higher efficiency up to 56 % which will be achieved at the same parameters of the electron beam (U = 1 MeV, I = 250 A, emittance 0.05 π cm\\cdotrad). Design rf output power of the klystron is 140 MW. Experimental investigations of electrodynamic structure of the klystron are planned to perform using the driving beam of the JINR LIA-3000 induction accelerator (E = 1 MeV, I = 250 A, τ = 250 ns).

  9. The 5K70SK automatically tuned, high power, S-band klystron

    NASA Technical Reports Server (NTRS)

    Goldfinger, A.

    1977-01-01

    Primary objectives include delivery of 44 5K70SK klystron amplifier tubes and 26 remote tuner assemblies with spare parts kits. Results of a reliability demonstration on a klystron test cavity are discussed, along with reliability tests performed on a remote tuning unit. Production problems and one design modification are reported and discussed. Results of PAT and DVT are included.

  10. Very broad bandwidth klystron amplifiers

    NASA Astrophysics Data System (ADS)

    Faillon, G.; Egloff, G.; Farvet, C.

    Large surveillance radars use transmitters at peak power levels of around one MW and average levels of a few kW, and possibly several tens of kW, in S band, or even C band. In general, the amplification stage of these transmitters is a microwave power tube, frequently a klystron. Although designers often turn to klystrons because of their good peak and average power capabilities, they still see them as narrow band amplifiers, undoubtedly because of their resonant cavities which, at first sight, would seem highly selective. But, with the progress of recent years, it has now become quite feasible to use these tubes in installations requiring bandwidths in excess of 10 - 12 percent, and even 15 percent, at 1 MW peak for example, in S-band.

  11. Design and Operation of a 100 kW CW X-band Klystron for Spacecraft Communications

    NASA Technical Reports Server (NTRS)

    Balkcum, Adam; Mizuhara, Al; Stockwell, Brad; Begum, Rasheda; Cox, Lydia; Forrest, Scott; Perrin, Mark; Zitelli, Lou; Hoppe, Dan; Britcliffe, Mike; hide

    2012-01-01

    A 7.19 GHz klystron producing 100 kW CW of output power over 90 MHz of bandwidth has been designed and three klystrons manufactured for use in a new JPL/NASA transmitter for spacecraft communications. The klystron was fully characterized including its phase pushing figures.

  12. The Klystron Engineering Model Development (KEMD) Task - A New Design for the Goldstone Solar System Radar (GSR)

    NASA Astrophysics Data System (ADS)

    Teitelbaum, L.; Liou, R.; Vodonos, Y.; Velazco, J.; Andrews, K.; Kelley, D.

    2017-08-01

    The Goldstone Solar System Radar (GSSR) is one of the world's great planetary radar facilities. The heart of the GSSR is its high-power transmitter, which radiates 450 kW from DSS-14, the Deep Space Network's 70-m antenna at Goldstone, by combining the output from two 250-kW klystrons. Klystrons are vacuum tube electron beam devices that are the key amplifying elements of most radio frequency telecommunications and radar transmitter systems. NASA's Science Mission Directorate sponsored the development of a new design for a 250-kW power, 50-MHz bandwidth, reliable klystron, intended to replace the aging operational devices that were developed in the mid-1990s. The design, developed in partnership with Communications & Power Industries, was verified by implementing and testing a first article prototype, the engineering model. Key elements of the design are new beam optics and focusing magnet, a seven-cavity RF body, and a modern collector able to reliably dissipate the full power of the electron beam. The first klystron based on the new VKX-7864C design was delivered to the DSN High-Power Transmitter Test Facility on November 1, 2016, the culmination of a six-year effort initiated to explore higher-resolution imaging of potentially hazardous near-Earth asteroids. The new design met or exceeded all requirements, including supporting advanced GSSR ranging modulations. The first article prototype was placed into operational service on July 26, 2017, after failure of one of the older klystrons, restoring the GSSR to full-power operations.

  13. Adaptive control system for pulsed megawatt klystrons

    DOEpatents

    Bolie, Victor W.

    1992-01-01

    The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.

  14. Time-dependent multi-dimensional simulation studies of the electron output scheme for high power FELs

    NASA Astrophysics Data System (ADS)

    Hahn, S. J.; Fawley, W. M.; Kim, K. J.; Edighoffer, J. A.

    1994-12-01

    The authors examine the performance of the so-called electron output scheme recently proposed by the Novosibirsk group. In this scheme, the key role of the FEL oscillator is to induce bunching, while an external undulator, called the radiator, then outcouples the bunched electron beam to optical energy via coherent emission. The level of the intracavity power in the oscillator is kept low by employing a transverse optical klystron (TOK) configuration, thus avoiding excessive thermal loading on the cavity mirrors. Time-dependent effects are important in the operation of the electron output scheme because high gain in the TOK oscillator leads to sideband instabilities and chaotic behavior. The authors have carried out an extensive simulation study by using 1D and 2D time-dependent codes and find that proper control of the oscillator cavity detuning and cavity loss results in high output bunching with a narrow spectral bandwidth. Large cavity detuning in the oscillator and tapering of the radiator undulator is necessary for the optimum output power.

  15. Optimum design and measurement analysis of 0.34 THz extended interaction klystron

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Wang, Jianguo; Xi, Hongzhu; Wang, Dongyang; Wang, Bingbing; Wang, Guangqiang; Teng, Yan

    2018-02-01

    In order to develop an extended interaction klystron (EIK) with high performance in the terahertz range, the staggered-tuned structure is numerically studied, manufactured, and measured. First, the circuit is optimized to get high interaction strength and avoid the mode overlapping in the output cavity, ensuring the efficiency and stability for the device. Then the clustered cavities are staggered tuned to improve its bandwidth. The particle-in-cell (PIC) code is employed to research the performances of the device under different conditions and accordingly the practicable and reliable conditions are confirmed. The device can effectively amplify the input terahertz signal and its gain reaches around 19.6 dB when the working current is 150 mA. The circuit and window are fabricated and tested, whose results demonstrate their usability. The experiment on the beam's transmission is conducted and the results show that about 92% of the emitting current can successfully arrive at the collector, ensuring the validity and feasibility for the interaction process.

  16. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  17. The two-beam accelerator and the relativistic klystron power source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessler, A.M.

    1988-04-01

    This paper discusses the concept of a two-beam accelerator. Two versions are discussed; one employing a free electron laser, the second employing a branched beam sent through ''transfer cavities'' as in a klystron. 14 refs., 26 figs., 1 tab. (LSP)

  18. A concept of a wide aperture klystron with RF absorbing drift tubes for a linear collider

    NASA Astrophysics Data System (ADS)

    Dolbilov, G. V.; Azorsky, N. I.; Fateev, A. A.; Lebedev, N. I.; Petrov, V. A.; Shvetsov, V. S.; Yurkov, M. V.; Balakin, V. E.; Avrakhov, P. V.; Kazakov, S. Yu.; Solyak, N. A.; Teryaev, V. E.; Vogel, V. F.

    1996-02-01

    This paper is devoted to a problem of the optimal design of the electrodynamic structure of the X-band klystron for a linear collider. It is shown that the optimal design should provide a large aperture and a high power gain, about 80 dB. The most severe problem arising here is that of parasitic self-excitation of the klystron, which becomes more complicated at increasing aperture and power gain. Our investigations have shown that traditional methods for suppressing the self-excitation become ineffective at the desired technical parameters of the klystron. In this paper we present a novel concept of a wide aperture klystron with distributed suppression of parasitic oscillations. Results of an experimental study of the wide-aperture relativistic klystron for VLEPP are presented. Investigations have been performed using the driving beam of the JINR LIA-3000 induction accelerator ( E = 1 MeV, I = 250 A, τ = 250 ns). To suppress self-excitation parasitic modes we have used the technique of RF absorbing drift tubes. As a result, we have obtained design output parameters of the klystron and achieved a level of 100 MW output power.

  19. Time-dependent multi-dimensional simulation studies of the electron output scheme for high power FELs

    NASA Astrophysics Data System (ADS)

    Hahn, S. J.; Fawley, W. M.; Kim, K.-J.; Edighoffer, J. A.

    1995-04-01

    We examine the performance of the so-called electron output scheme recently proposed by the Novosibirsk group [G.I. Erg et al., 15th Int. Free Electron Laser Conf., The Hague, The Netherlands, 1993, Book of Abstracts p. 50; Preprint Budker INP 93-75]. In this scheme, the key role of the FEL oscillator is to induce bunching, while an external undulator, called the radiator, then outcouples the bunched electron beam to optical energy via coherent emission. The level of the intracavity power in the oscillator is kept low by employing a transverse optical klystron (TOK) configuration, thus avoiding excessive thermal loading on the cavity mirrors. Time-dependent effects are important in the operation of the electron output scheme because high gain in the TOK oscillator leads to sideband instabilities and chaotic behavior. We have carried out an extensive simulation study by using 1D and 2D time-dependent codes and find that proper control of the oscillator cavity detuning and cavity loss results in high output bunching with a narrow spectral bandwidth. Large cavity detuning in the oscillator and tapering of the radiator undulator is necessary for the optimum output power.

  20. High efficiency SPS klystron design

    NASA Technical Reports Server (NTRS)

    Nalos, E. J.

    1980-01-01

    The most likely compact configuration to realize both high efficiency and high gain (approx. 40 dB) is a 5-6 cavity design focused by an electromagnet. The basic klystron efficiency cannot be expected to exceed 70-75% without collector depression. It was estimated that the net benefit of a 5 stage collector over a 2 stage collector is between 1.5 and 3.5 kW per tube. A modulating anode is incorporated in the design to enable rapid shutoff of the beam current in case the r.f. drive should be removed.

  1. Optimization,Modeling, and Control: Applications to Klystron Designing and Hepatitis C Virus Dynamics

    NASA Astrophysics Data System (ADS)

    Lankford, George Bernard

    In this dissertation, we address applying mathematical and numerical techniques in the fields of high energy physics and biomedical sciences. The first portion of this thesis presents a method for optimizing the design of klystron circuits. A klystron is an electron beam tube lined with cavities that emit resonant frequencies to velocity modulate electrons that pass through the tube. Radio frequencies (RF) inserted in the klystron are amplified due to the velocity modulation of the electrons. The routine described in this work automates the selection of cavity positions, resonant frequencies, quality factors, and other circuit parameters to maximize the efficiency with required gain. The method is based on deterministic sampling methods. We will describe the procedure and give several examples for both narrow and wide band klystrons, using the klystron codes AJDISK (Java) and TESLA (Python). The rest of the dissertation is dedicated to developing, calibrating and using a mathematical model for hepatitis C dynamics with triple drug combination therapy. Groundbreaking new drugs, called direct acting antivirals, have been introduced recently to fight off chronic hepatitis C virus infection. The model we introduce is for hepatitis C dynamics treated with the direct acting antiviral drug, telaprevir, along with traditional interferon and ribavirin treatments to understand how this therapy affects the viral load of patients exhibiting different types of response. We use sensitivity and identifiability techniques to determine which parameters can be best estimated from viral load data. We use these estimations to give patient-specific fits of the model to partial viral response, end-of-treatment response, and breakthrough patients. We will then revise the model to incorporate an immune response dynamic to more accurately describe the dynamics. Finally, we will implement a suboptimal control to acquire a drug treatment regimen that will alleviate the systemic cost

  2. Multi-stage Depressed Collectors (MDC) for efficiency improvements of UHF broadcast klystrons

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1982-01-01

    The consumed primary power is reduced and the efficiency of traveling wave tubes is raised through the use of depressed collectors which passively convert potential energy into electric energy. Efficiency was kept with constant within a 3 dB range while the output power varied by 10 dB. Aspects to be considered in transferring this technology to UHF klystrons are the electron energy spectrum of the klystron and the magnitude of the injection angle required.

  3. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash

    2011-07-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design ofmore » collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)« less

  4. Development of a 402.5 MHz 140 kW Inductive Output Tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Lawrence Ives; Michael Read, Robert Jackson

    2012-05-09

    This report contains the results of Phase I of an SBIR to develop a Pulsed Inductive Output Tube (IOT) with 140 kW at 400 MHz for powering H-proton beams. A number of sources, including single beam and multiple beam klystrons, can provide this power, but the IOT provides higher efficiency. Efficiencies exceeding 70% are routinely achieved. The gain is typically limited to approximately 24 dB; however, the availability of highly efficient, solid state drivers reduces the significance of this limitation, particularly at lower frequencies. This program initially focused on developing a 402 MHz IOT; however, the DOE requirement for thismore » device was terminated during the program. The SBIR effort was refocused on improving the IOT design codes to more accurately simulate the time dependent behavior of the input cavity, electron gun, output cavity, and collector. Significant improvement was achieved in modeling capability and simulation accuracy.« less

  5. New klystron technology

    NASA Astrophysics Data System (ADS)

    Faillon, G.

    1985-10-01

    It is pointed out that klystrons representing high-power RF sources are mainly used in applications related to radars and scientific instrumentation. High peak power pulsed klystrons are discussed. It is found that a large number of linacs are powered by S-band klystrons (2.856 or 2.9985 GHz) with pulse durations of a few microseconds. Special precautions are being taken to insure that the breakdown voltage will not be reached, and very thin titanium coatings are employed to protect the ceramic against discharges. Attention is given to very large pulse width tubes, CW tubes, and limits of the power-frequency domain.

  6. Klystron-linac combination

    DOEpatents

    Stein, W.E.

    1980-04-24

    A combination klystron-linear accelerator which utilizes anti-bunch electrons generated in the klystron section as a source of electrons to be accelerated in the accelerator section. Electron beam current is controlled by second harmonic bunching, constrictor aperture size and magnetic focusing. Rf coupling is achieved by internal and external coupling.

  7. Mode suppression means for gyrotron cavities

    DOEpatents

    Chodorow, Marvin; Symons, Robert S.

    1983-08-09

    In a gyrotron electron tube of the gyro-klystron or gyro-monotron type, having a cavity supporting an electromagnetic mode with circular electric field, spurious resonances can occur in modes having noncircular electric field. These spurious resonances are damped and their frequencies shifted by a circular groove in the cavity parallel to the electric field.

  8. Operating Experience and Reliability Improvements on the 5 kW CW Klystron at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Nelson, R.; Holben, S.

    1997-05-01

    With substantial operating hours on the RF system, considerable information on reliability of the 5 kW CW klystrons has been obtained. High early failure rates led to examination of the operating conditions and failure modes. Internal ceramic contamination caused premature failure of gun potting material and ultimate tube demise through arcing or ceramic fracture. A planned course of repotting and reconditioning of approximately 300 klystrons, plus careful attention to operating conditions and periodic analysis of operational data, has substantially reduced the failure rate. It is anticipated that implementation of planned supplemental monitoring systems for the klystrons will allow most catastrophic failures to be avoided. By predicting end of life, tubes can be changed out before they fail, thus minimizing unplanned downtime. Initial tests have also been conducted on this same klystron operated at higher voltages with resultant higher output power. The outcome of these tests will provide information to be considered for future upgrades to the accelerator.

  9. Design of a Ku band miniature multiple beam klystron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, Ayan Kumar, E-mail: ayan.bandyopadhyay@gmail.com; Pal, Debasish; Kant, Deepender

    2016-03-09

    The design of a miniature multiple beam klystron (MBK) working in the Ku-band frequency range is presented in this article. Starting from the main design parameters, design of the electron gun, the input and output couplers and radio frequency section (RF-section) are presented. The design methodology using state of the art commercial electromagnetic design tools, analytical formulae as well as noncommercial design tools are briefly presented in this article.

  10. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Zehai

    2015-03-01

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE11 is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation.

  11. Experimental study on parasitic mode suppression using FeSiAl in Relativistic Klystron Amplifier.

    PubMed

    Zhang, Zehai

    2015-03-01

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE11 is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation.

  12. Utilization of a Vircator to drive a High Power Relativistic Klystron Amplifier

    NASA Astrophysics Data System (ADS)

    Gardelle, J.; Bardy, J.; Cassany, B.; Desanlis, T.; Eyl, P.; Galtié, A.; Modin, P.; Voisin, L.; Balleyguier, P.; Gouard, P.; Donohue, J.

    2002-11-01

    At CESTA, we have been producing electron beams for some fifteen years by using induction accelerators and pulse diodes. First we had performed Frre-Electron Lasers experiments and we are currently studying the production of High-Power microwaves in the S-band. Among the possible sources we have chosen to perform Relativistic Klystron (RK) experiments with a pulse diode capable of generating a 700kV, 15 kA, 100 ns annular electron beam. In an amplifier configuration, we are testing the idea of using a Vircator as the driver for the first cavity of the klystron. This Vircator uses a simple electrical generator (Marx capacitor bank) which operates in the S-band in the GW class. By reducing the power level to about 100 MW, a 200 ns reliable and reproducible input driver pulse is obtained. First, we present the results of a preliminary experiment for which a coaxial cavity has been built in order to be fed by the Vircator emission at 2.45 GHz. Secondly, we give the experimental results in an oscillator configuration which corresponds to the fisrt step of our RK studies. Comparisons with the results of numerical simulations performed with MAGIC and MAFIA will be given for both experiments.

  13. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less

  14. Experimental Performance of the NRL 8-Beam, 4-Cavity Multiple-Beam Klystron

    NASA Astrophysics Data System (ADS)

    Abe, D. K.; Pershing, D. E.; Nguyen, K. T.; Wood, F. N.; Myers, R. E.; Eisen, E. L.; Cusick, M.; Levush, B.

    2006-01-01

    Multiple-beam amplifiers (MBAs) represent a device technology with the potential to produce high-power, efficient amplifiers with relatively wide bandwidths that are compact, low-weight, low-noise, and operate at reduced voltages relative to comparable single-beam devices. To better understand the device physics and technical issues involved in the design, fabrication, and operation of these devices, the U.S. Naval Research Laboratory (NRL) has an on-going program to develop high peak power (> 600 kW) multiple-beam klystrons (MBKs) operating in S-band (˜3.3 GHz).

  15. Hyperbolic chaos in the klystron-type microwave vacuum tube oscillator

    NASA Astrophysics Data System (ADS)

    Emel'yanov, V. V.; Kuznetsov, S. P.; Ryskin, N. M.

    2010-12-01

    The ring-loop oscillator consisting of two coupled klystrons which is capable of generating hyperbolic chaotic signal in the microwave band is considered. The system of delayed-differential equations describing the dynamics of the oscillator is derived. This system is further reduced to the two-dimensional return map under the assumption of the instantaneous build-up of oscillations in the cavities. The results of detailed numerical simulation for both models are presented showing that there exists large enough range of control parameters where the sustained regime corresponds to the structurally stable hyperbolic chaos.

  16. Design, construction and evaluation of a 12.2 GHz, 4.0 kW-CW high efficiency klystron amplifier. [for satellite-borne TV broadcast transmitters

    NASA Technical Reports Server (NTRS)

    Vishida, J. M.; Brodersen, L. K.

    1974-01-01

    An analytical and experimental program is described, for studying design techniques for optimizing the conversion efficiency of klystron amplifiers, and to utilize these techniques in the development and fabrication of an X-band 4 kW cw klystron, for use in satellite-borne television broadcast transmitters. The design is based on a technique for increasing the RF beam current by using the second harmonic space charge forces in the bunched beam. Experimental analysis was also made of a method to enhance circuit efficiency in the klystron cavities. The design incorporates a collector which is demountable from the tube to facilitate multistage depressed collector experiments employing an axisymmetric, electrostatic collector for linear beam microwave tubes.

  17. The space-dependent model and output characteristics of intra-cavity pumped dual-wavelength lasers

    NASA Astrophysics Data System (ADS)

    He, Jin-Qi; Dong, Yuan; Zhang, Feng-Dong; Yu, Yong-Ji; Jin, Guang-Yong; Liu, Li-Da

    2016-01-01

    The intra-cavity pumping scheme which is used to simultaneously generate dual-wavelength lasers was proposed and published by us and the space-independent model of quasi-three-level and four-level intra-cavity pumped dual-wavelength lasers was constructed based on this scheme. In this paper, to make the previous study more rigorous, the space-dependent model is adopted. As an example, the output characteristics of 946 nm and 1064 nm dual-wavelength lasers under the conditions of different output mirror transmittances are numerically simulated by using the derived formula and the results are nearly identical to what was previously reported.

  18. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zehai

    2015-03-15

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE{sub 11} is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level,more » the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation.« less

  19. Project oriented klystron developments in Japan, China and India

    NASA Astrophysics Data System (ADS)

    Fukuda, Shigeki

    2017-12-01

    Modern accelerators are based on the rf technology and the klystron is the one of key components. Some special accelerator projects require their specified klystrons i.e., project-oriented klystrons. In this paper, project-oriented klystron developments for a decade in Japan are described. Related projects are ILC, cERL and SKEKB. Usually klystron is very expensive but has a finite life and needs to procure again. Trial to introduce the compatible tubes and have a competitive tender to reduce the cost is described. At the same time, since an efficiency improvement is one of the recent trend, such an attempt is also presented. International klystron collaboration among the Asian countries has been performed for a long time. In this paper, collaboration with China and India is introduced. Since topics are covered mainly author's experience, related counties described are limited.

  20. Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhenbang; Huang, Hua; Lei, Lurong

    2015-09-15

    To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is aboutmore » 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.« less

  1. High-power klystrons

    NASA Astrophysics Data System (ADS)

    Siambis, John G.; True, Richard B.; Symons, R. S.

    1994-05-01

    Novel emerging applications in advanced linear collider accelerators, ionospheric and atmospheric sensing and modification and a wide spectrum of industrial processing applications, have resulted in microwave tube requirements that call for further development of high power klystrons in the range from S-band to X-band. In the present paper we review recent progress in high power klystron development and discuss some of the issues and scaling laws for successful design. We also discuss recent progress in electron guns with potential grading electrodes for high voltage with short and long pulse operation via computer simulations obtained from the code DEMEOS, as well as preliminary experimental results. We present designs for high power beam collectors.

  2. Using Large Signal Code TESLA for Wide Band Klystron Simulations

    DTIC Science & Technology

    2006-04-01

    tuning procedure TESLA simulates of high power klystron [3]. accurately actual eigenmodes of the structure as a solution Wide band klystrons very often...on band klystrons with two-gap two-mode resonators. The decomposition of simulation region into an external results of TESLA simulations for NRL S ...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP022454 TITLE: Using Large Signal Code TESLA for Wide Band Klystron

  3. Design of the klystron filament power supply control system for EAST LHCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zege; Wang, Mao; Hu, Huaichuan

    A filament is a critical component of the klystron used to heat the cathode. There are totally 44 klystrons in experimental advanced superconducting tokamak (EAST) lower hybrid current drive (LHCD) systems. All klystron filaments are powered by AC power suppliers through isolated transformers. In order to achieve better klystron preheat, a klystron filament power supply control system is designed to obtain the automatic control of all filament power suppliers. Klystron filament current is measured by PLC and the interlock between filament current and klystron high voltage system is also implemented. This design has already been deployed in two LHCD systemsmore » and proves feasible completely.« less

  4. Transient high-field behavior of niobium superconducting cavities

    NASA Astrophysics Data System (ADS)

    Campisi, I. E.; Farkas, Z. D.; Deruyter, H.; Hogg, H. A.

    1983-03-01

    The breakdown behavior of a TM010 mode, S-band niobium cavity at low temperatures was examined. Unloaded Q's of 9 x 10(7) at 4.2 K and of 7 x 10(9) at 1.35 K were measured. The response of the cavity at 4.2 K to 1 MW, 2.5 (SIGMA)s pulses was tested in several cool downs. In these tests the cavity was heavily overcoupled to lower its time constant to a value of 0.80 times the RF pulse length of 2.5 (SIGMA)s. This condition maximizes the energy transfer from the klystron source to the cavity. It is indicated that fields of about 50 MV/m are reached in the cavity without breakdown.

  5. Use of simple x-ray measurement in the performance analysis of cryogenic RF accelerator cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Dotson; M. Drury; R. May

    X-ray emission by radiofrequency (RF) resonant cavities has long been known to accelerator health physicists as a potentially serious source of radiation exposure. The authors points out the danger of klystrons and microwave cavities by stating that the radiation source term is erratic and may be unpredictable depending on microscopic surface conditions which change with time. He also states the x-ray output is a rapidly increasing function of RF input power. At Jefferson Lab, the RF cavities used to accelerate the electron beam employ superconducting technology. X-rays are emitted at high cavity gradients, and measurements of cavity x-rays are valuablemore » for health physics purposes and provide a useful diagnostic tool for assessing cavity performance. The quality factor (Q) for superconducting RF resonant cavities used at Jefferson Lab, is typically 5 x 10{sup 9} for the nominal design gradient of 5 MVm{sup {minus}1}. This large value for Q follows from the small resistive loss in superconducting technology. The operating frequency is 1,497 MHz. In the absence of beam, the input power for a cavity is typically 750 W and the corresponding dissipated power is 2.6 W. At 5 MWm{sup {minus}1}, the input power is 3 kW fully beam loaded. At higher gradients, performance degradation tends to occur due to the onset of electron field emission from defects in the cavity.« less

  6. Factors affecting the output pulse flatness of the linear transformer driver cavity systems with 5th harmonics

    DOE PAGES

    Alexeenko, V. M.; Mazarakis, M. G.; Kim, A. A.; ...

    2016-09-19

    Here, we describe the study we have undertaken to evaluate the effect of component tolerances in obtaining a voltage output flat top for a linear transformer driver (LTD) cavity containing 3rd and 5th harmonic bricks [A. A. Kim et al., in Proc. IEEE Pulsed Power and Plasma Science PPPS2013 (San Francisco, California, USA, 2013), pp. 1354–1356.] and for 30 cavity voltage adder. Our goal was to define the necessary component value precision in order to obtain a voltage output flat top with no more than ±0.5% amplitude variation.

  7. Factors affecting the output pulse flatness of the linear transformer driver cavity systems with 5th harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexeenko, V. M.; Mazarakis, M. G.; Kim, A. A.

    Here, we describe the study we have undertaken to evaluate the effect of component tolerances in obtaining a voltage output flat top for a linear transformer driver (LTD) cavity containing 3rd and 5th harmonic bricks [A. A. Kim et al., in Proc. IEEE Pulsed Power and Plasma Science PPPS2013 (San Francisco, California, USA, 2013), pp. 1354–1356.] and for 30 cavity voltage adder. Our goal was to define the necessary component value precision in order to obtain a voltage output flat top with no more than ±0.5% amplitude variation.

  8. Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime.

    PubMed

    Cao, Cong; Wang, Chuan; He, Ling-Yan; Zhang, Ru

    2013-02-25

    We investigate an atomic entanglement purification protocol based on the coherent state input-output process by working in low-Q cavity in the atom-cavity intermediate coupling region. The information of entangled states are encoded in three-level configured single atoms confined in separated one-side optical micro-cavities. Using the coherent state input-output process, we design a two-qubit parity check module (PCM), which allows the quantum nondemolition measurement for the atomic qubits, and show its use for remote parities to distill a high-fidelity atomic entangled ensemble from an initial mixed state ensemble nonlocally. The proposed scheme can further be used for unknown atomic states entanglement concentration. Also by exploiting the PCM, we describe a modified scheme for atomic entanglement concentration by introducing ancillary single atoms. As the coherent state input-output process is robust and scalable in realistic applications, and the detection in the PCM is based on the intensity of outgoing coherent state, the present protocols may be widely used in large-scaled and solid-based quantum repeater and quantum information processing.

  9. Solid state modulator for klystron power supply XFEL TDS INJ

    NASA Astrophysics Data System (ADS)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Zybin, D. A.; Churanov, D. V.; Shemarykin, P. V.

    2016-09-01

    The transverse deflecting system XFEL TDS INJ for European X-ray Free Electron Laser includes power supply for the CPI VKS-8262HS klystron. It has been designed for pulse high-voltage, cathode heating, solenoid and klystron ion pump. The klystron power supply includes solid state modulator, pulse transformer, controlled power supply for cathode heating and commercial power supplies for solenoid and ion pump. Main parameters of the modulator are 110 kV of peak voltage, 72 A peak current, and pulse length up to 6 μs. The klystron power supply has been developed, designed, manufactured, tuned, tested and installed in the XFEL building. All designed parameters are satisfied.

  10. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  11. A unique power supply for the PEP II klystron at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassel, R.; Nguyen, M.N.

    1997-07-01

    Each of the eight 1.2 MW RF klystrons for the PEP-II storage rings require a 2.5 MVA DC power supply of 83 Kv at 23 amps. The design for the supply was base on three factors, low cost, small size to fit existing substation pads, and good protection against damage to the klystron including klystron gun arcs. The supply uses a 12 pulse 12.5 KV primary thyristor star point controller with primary filter inductor to provide rapid voltage control, good voltage regulation, and fast turn off during klystron tube faults. The supply also uses a unique secondary rectifier, filter capacitormore » configuration to minimize the energy available under a klystron fault. The voltage control is from 0--90 KV with a regulation of < 0.1% and voltage ripple of < 1% P-P, (< 0.2% RMS) above 60 KV. The supply utilizes a thyristor crowbar, which under a klystron tube arc limits the energy in the klystron arc to < 5 joules. If the thyristor crowbar is disabled the energy supplied is < 40 joules into the arc. The size of the supply was reduced small enough to fit the existing PEP transformer yard pads. The cost of the power supply was < $140 per KVA.« less

  12. Phase-locking of an axisymmetric-fold combination cavity CO2 laser using the back surface of the output-mirror

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen; Li, Yude; Feng, Ting; Qiu, Yi

    2009-12-01

    The principle of phase-locking of an axisymmetric fold combination cavity CO2 laser, fulfilled by the reflection-injection of the back surface of the output-mirror, has been studied in detail. Variation of the equiphase surface and the influence of some characteristic parameters on phase-locking are analyzed—for example, phase error, changes in the cavity length and curvature radius, line-width and temperature. It is shown that the injected beam can excite a stable mode in the cavities, and the value of the energy coupling coefficient directly reflects the degree of phase-locking. Therefore, the output beams have a fixed phase relation between each other, and good coherent beams can be obtained by using the phase-locking method.

  13. Progress Toward a Gigawatt-Class Annular Beam Klystron with a Thermionic Electron Gun

    NASA Astrophysics Data System (ADS)

    Fazio, M.; Carlsten, B.; Farnham, J.; Habiger, K.; Haynes, W.; Myers, J.; Nelson, E.; Smith, J.; Arfin, B.; Haase, A.

    2002-08-01

    In an effort to reach the gigawatt power level in the microsecond pulse length regime Los Alamos, in collaboration with SLAC, is developing an annular beam klystron (ABK) with a thermionic electron gun. We hope to address the causes of pulse shortening in very high peak power tubes by building a "hard-vacuum" tube in the 10-10 Torr range with a thermionic electron gun producing a constant impedance electron-beam. The ABK has been designed to operate at 5 Hz pulse repetition frequency to allow for RF conditioning. The electron gun has a magnetron injection gun configuration and uses a dispenser cathode running at 1100 degC to produce a 4 kA electron beam at 800 kV. The cathode is designed to run in the temperature-limited mode to help maintain beam stability in the gun. The beam-stick consisting of the electron gun, an input cavity, an idler cavity, and drift tube, and the collector has been designed collaboratively, fabricated at SLAC, then shipped to Los Alamos for testing. On the test stand at Los Alamos a low voltage emission test was performed, but unfortunately as we prepared for high voltage testing a problem with the cathode heater was encountered that prevented the cathode from reaching a high enough temperature for electron emission. A post-mortem examination will be done shortly to determine the exact cause of the heater failure. The RF design has been proceeding and is almost complete. The output cavity presents a challenging design problem in trying to efficiently extract energy from the low impedance beam while maintaining a gap voltage low enough to avoid breakdown and a Q high enough to maintain mode purity. In the next iteration, the ABK will have a new cathode assembly installed along with the remainder of the RF circuit. This paper will discuss the electron gun and the design of the RF circuit along with a report on the status of the work.

  14. Development of a 670 GHz Extended Interaction Klystron Power Amplifier

    DTIC Science & Technology

    2011-03-01

    Klystron Power Amplifier 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...avelengths,” /40/EIK%20Tec W%20Wavelen oyski, R. Dobbs, act, High Power ction Klystron ,” Conf., Montere opments to the M or Modeling Cod 2005). ic...Research Projects Agency or the Department of Defense. Development of a 670 GHz Extended Interaction Klystron Power Amplifier David Chernin Science

  15. Analysis on the mechanism of pulse-shortening in an X-band triaxial klystron amplifier due to the asymmetric mode competition

    NASA Astrophysics Data System (ADS)

    Qi, Zumin; Zhang, Jun; Xie, Yongjie; Zhang, Yi; Wang, Zehua; Zhou, Xiaofeng; Zhu, Jianhui; Zi, Yanyong; Zhong, Huihuang

    2016-12-01

    Asymmetric mode competitions are observed in the design of an X-band triaxial klystron amplifier with an asymmetric input cavity, and the generation mechanism of the asymmetric mode competition is analyzed in the paper. The results indicate that the asymmetric modes are excited in the buncher cavity. The asymmetric mode (coaxial TM612 mode) in the buncher cavity with the highest shunt impedance can start up first among the asymmetric modes with negative beam loading conductance. The coupling of the corresponding coaxial TE mode between the buncher and input cavity exacerbates the start oscillation of the asymmetric mode competition. The rationality of the analysis is demonstrated by cutting off the propagation of the corresponding coaxial TE modes between the buncher cavity and the input cavity, and the asymmetric mode competitions are thoroughly suppressed by specially designed reflectors and lossy material. In simulation, a microwave with a power of 1.28 GW and a frequency of 9.375 GHz is generated, and the extraction efficiency and the gain are 34.5% and 41.5 dB, respectively.

  16. Method and apparatus for varying accelerator beam output energy

    DOEpatents

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  17. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  18. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, A.W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  19. Code TESLA for Modeling and Design of High-Power High-Efficiency Klystrons

    DTIC Science & Technology

    2011-03-01

    CODE TESLA FOR MODELING AND DESIGN OF HIGH - POWER HIGH -EFFICIENCY KLYSTRONS * I.A. Chernyavskiy, SAIC, McLean, VA 22102, U.S.A. S.J. Cooke, B...and multiple-beam klystrons as high - power RF sources. These sources are widely used or proposed to be used in accelerators in the future. Comparison...of TESLA modelling results with experimental data for a few multiple-beam klystrons are shown. INTRODUCTION High - power and high -efficiency

  20. FPGA-based Klystron linearization implementations in scope of ILC

    DOE PAGES

    Omet, M.; Michizono, S.; Matsumoto, T.; ...

    2015-01-23

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less

  1. Electron Gun For Multiple Beam Klystron Using Magnetic Focusing

    DOEpatents

    Ives, R. Lawrence; Miram, George; Krasnykh, Anatoly

    2004-07-27

    An RF device comprising a plurality of drift tubes, each drift tube having a plurality of gaps defining resonant cavities, is immersed in an axial magnetic field. RF energy is introduced at an input RF port at one of these resonant cavities and collected at an output RF port at a different RF cavity. A plurality of electron beams passes through these drift tubes, and each electron beam has an individual magnetic shaping applied which enables confined beam transport through the drift tubes.

  2. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Bai, Xianchen; Zhang, Jiande; Yang, Jianhua; Jin, Zhenxing

    2012-12-01

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of ˜22 MW, an output power of ˜230 MW with the power gain of ˜10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than ±15° in a single shot, and phase jitter of ±11° is obtained within a series of shots with duration of about 40 ns.

  3. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horan, D.

    1999-04-13

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less

  4. Study program for design improvements of the X-3060 klystron. Phase 3: Electron gun fabrication and beam analyzer evaluation. Phase 4: Klystron prototype fabrication and testing

    NASA Technical Reports Server (NTRS)

    Goldfinger, A.

    1981-01-01

    A full scale model was produced to verify suggested design changes. Through beam analyzer study, the correct electron beam diameter and cross sectional profile were established in conjunction with the desired confining magnetic field. Comparative data on the performance of the X-3060 klystron, design predictions for the improved klystron, and performance data taken during acceptance testing of the prototype VKS-8274 JPL are presented.

  5. Thermal Considerations of Space Solar Power Concepts with 3.5 GW RF Output

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2000-01-01

    This paper presents the thermal challenge of the Space Solar Power (SSP) design concepts with a 3.5 GW radio-frequency (RF) output. High efficiency klystrons are thermally more favored than solid state (butterstick) to convert direct current (DC) electricity to radio-frequency (RF) energy at the transmitters in these concepts. Using klystrons, the heat dissipation is 0.72 GW. Using solid state, the heat dissipation is 2.33 GW. The heat dissipation of the klystrons is 85% at 500C, 10% at 300C, and 5% at 125C. All the heat dissipation of the solid state is at 100C. Using klystrons, the radiator area is 74,500 square m Using solid state, the radiator area is 2,362,200 square m Space constructable heat pipe radiators are assumed in the thermal analysis. Also, to make the SSP concepts feasible, the mass of the heat transport system must be minimized. The heat transport distance from the transmitters to the radiators must be minimized. It can be accomplished by dividing the radiator into a cluster of small radiators, so that the heat transport distances between the klystrons and radiators can be minimized. The area of each small radiator is on the order of 1 square m. Two concepts for accommodating a cluster of small radiators are presented. If the distance between the transmitters and radiators is 1.5 m or less, constant conductance heat pipes (CCHPs) are acceptable for heat transport. If the distance exceeds 1.5 m, loop heat pipes (LHPs) are needed.

  6. Three-dimensional relativistic field-electron interaction in a multicavity high-power klystron. 1: Basic theory

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1982-01-01

    A theoretical investigation of three dimensional relativistic klystron action is described. The relativistic axisymmetric equations of motion are derived from the time-dependent Lagrangian function for a charged particle in electromagnetic fields. An analytical expression of the fringing RF electric and magnetic fields within and in the vicinity of the interaction gap and the space-charge forces between axially and radially elastic deformable rings of charges are both included in the formulation. This makes an accurate computation of electron motion through the tunnel of the cavities and the drift tube spaces possible. Method of analysis is based on Lagrangian formulation. Bunching is computed using a disk model of electron stream in which the electron stream is divided into axisymmetric disks of equal charge and each disk is assumed to consist of a number of concentric rings of equal charges. The Individual representative groups of electrons are followed through the interaction gaps and drift tube spaces. Induced currents and voltages in interacting cavities are calculated by invoking the Shockley-Ramo theorem.

  7. Microwave Frequency Multiplier

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.

    2017-02-01

    concerns. We present a theoretical analysis for the beam-wave interactions in the MFM's input and output cavities. We show the conditions required for successful frequency multiplication inside the output cavity. Computer simulations using the plasma physics code MAGIC show that 100 kW of Ka-band (32-GHz) output power can be produced using an 80-kW X-band (8-GHz) signal at the MFM's input. The associated MFM efficiency - from beam power to Ka-band power - is 83 percent. Thus, the overall klystron-MFM efficiency is 42 percent - assuming that a klystron with an efficiency of 50 percent delivers the input signal.

  8. Klystron Manufacturing Technology Program.

    DTIC Science & Technology

    1983-09-01

    processes, and methodology used on the current production tube, VKU-7735E, and the new methods and techniques used to improve and reduce the cost of...the bellows. This alignment is c~tclto the smoothi operation of the internal tuniing mezhanism. IT METR𔃼D - VKCU-7795F The new assembly method changes...Varian, the MT contractor that the new methodology , technologies and process changes introduced into the MT power klystron and autotuner assembly - VKU

  9. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements.

    PubMed

    Parameswaran, Krishnan R; Rosen, David I; Allen, Mark G; Ganz, Alan M; Risby, Terence H

    2009-02-01

    Cavity-enhanced tunable diode laser absorption spectroscopy is an attractive method for measuring small concentrations of gaseous species. Ethane is a breath biomarker of lipid peroxidation initiated by reactive oxygen species. A noninvasive means of quickly quantifying oxidative stress status has the potential for broad clinical application. We present a simple, compact system using off-axis integrated cavity output spectroscopy with an interband cascade laser and demonstrate its use in real-time measurements of breath ethane. We demonstrate a detection sensitivity of 0.48 ppb/Hz(1/2).

  10. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai Xianchen; Zhang Jiande; Yang Jianhua

    2012-12-15

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of themore » WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of {approx}22 MW, an output power of {approx}230 MW with the power gain of {approx}10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than {+-}15 Degree-Sign in a single shot, and phase jitter of {+-}11 Degree-Sign is obtained within a series of shots with duration of about 40 ns.« less

  11. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.

    2013-11-01

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  12. Enhanced output-performance of piezoelectric poly(vinylidene fluoride trifluoroethylene) fibers-based nanogenerator with interdigital electrodes and well-ordered cylindrical cavities

    NASA Astrophysics Data System (ADS)

    Gui, Jinzheng; Zhu, Yezi; Zhang, Lingling; Shu, Xi; Liu, Wei; Guo, Shishang; Zhao, Xingzhong

    2018-02-01

    A piezoelectric nanogenerator based on poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] nanofibers with an Au interdigital electrode (IDT)/P(VDF-TrFE) nanofiber film/well-ordered cylindrical cavity structure was prepared by combining Au IDTs with a rotary collector to obtain highly aligned P(VDF-TrFE) nanofiber arrays. The Au IDTs work not only as parallel electrodes to collect P(VDF-TrFE) nanofibers during electrospinning but also as charge-collecting electrodes in the nanogenerator. The well-ordered cylindrical cavities improve output performance by enhancing the deformation of P(VDF-TrFE) nanofiber films when subjected to external force. The nanogenerator performs well; as an example of application, we demonstrate energy harvesting from human walking, with a peak output voltage of 5 V and a peak short-circuit current of 1.2 μA. Such a device could have practical applications in wearable, self-powered devices.

  13. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide

    NASA Astrophysics Data System (ADS)

    Kuramoto, Masaru; Kobayashi, Seiichiro; Akagi, Takanobu; Tazawa, Komei; Tanaka, Kazufumi; Saito, Tatsuma; Takeuchi, Tetsuya

    2018-03-01

    We have achieved a high output power of 6 mW from a 441 nm GaN-based vertical-cavity surface-emitting laser (VCSEL) under continuous wave (CW) operation, by reducing both the internal loss and the reflectivity of the front cavity mirror. A preliminary analysis of the internal loss revealed an enormously high transverse radiation loss in a conventional GaN-based VCSEL without lateral optical confinement (LOC). Introducing an LOC structure enhanced the slope efficiency by a factor of 4.7, with a further improvement to a factor of 6.7 upon reducing the front mirror reflectivity. The result was a slope efficiency of 0.87 W/A and an external differential quantum efficiency of 32% under pulsed operation. A flip-chip-bonded VCSEL also exhibited a high slope efficiency of 0.64 W/A and an external differential quantum efficiency of 23% for the front-side output under CW operation. The reflectivity of the cavity mirror was adjusted by varying the number of AlInN/GaN distributed Bragg reflector pairs from 46 to 42, corresponding to reflectivity values from 99.8% to 99.5%. These results demonstrate that a combination of internal loss reduction and cavity mirror control is a very effective way of obtaining a high output GaN-based VCSEL.

  14. New waveguide-type HOM damper for ALS storage ring cavities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowski, Slawomir; Baptiste, Kenneth; Julian, James

    2004-06-28

    The ALS storage ring 500 MHz RF system uses two re-entrant accelerating cavities powered by a single 320kW PHILLIPS YK1305 klystron. During several years of initial operation, the RF cavities were not equipped with effective passive HOM damper systems. Longitudinal beam stability was achieved through cavity temperature control and the longitudinal feedback system (LFB), which was often operating at the edge of its capabilities. As a result, longitudinal beam stability was a significant operations issue at the ALS. During two consecutive shutdown periods (April 2002 and 2003) we installed E-type HOM dampers on the main and third harmonic cavities. Thesemore » devices dramatically decreased the Q-values of the longitudinal anti-symmetric HOM modes. The next step is to damp the rest of the longitudinal HOM modes in the main cavities below the synchrotron radiation damping level. This will hopefully eliminate the need for the LFB and set the stage for a possible increase in beam current. The ''waveguide'' type of HOM damper was the only option that didn't significantly compromise the vacuum performance of the RF cavity. The design process and the results of the low level measurements of the new waveguide dampers are presented in this paper.« less

  15. Performance of high power S-band klystrons focused with permanent magnet

    NASA Astrophysics Data System (ADS)

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 percent of the longitudinal field in the entire RF interaction region of the klystron.

  16. RF Conditioning and Testing of Fundamental Power Couplers for SNS Superconducting Cavity Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Stirbet; G.K. Davis; M. A. Drury

    The Spallation Neutron Source (SNS) makes use of 33 medium beta (0.61) and 48 high beta (0.81) superconducting cavities. Each cavity is equipped with a fundamental power coupler, which should withstand the full klystron power of 550 kW in full reflection for the duration of an RF pulse of 1.3 msec at 60 Hz repetition rate. Before assembly to a superconducting cavity, the vacuum components of the coupler are submitted to acceptance procedures consisting of preliminary quality assessments, cleaning and clean room assembly, vacuum leak checks and baking under vacuum, followed by conditioning and RF high power testing. Similar acceptancemore » procedures (except clean room assembly and baking) were applied for the airside components of the coupler. All 81 fundamental power couplers for SNS superconducting cavity production have been RF power tested at JLAB Newport News and, beginning in April 2004 at SNS Oak Ridge. This paper gives details of coupler processing and RF high power-assessed performances.« less

  17. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D

    NASA Astrophysics Data System (ADS)

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-01

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  18. Optical single photons on-demand teleported from microwave cavities

    NASA Astrophysics Data System (ADS)

    Barzanjeh, Sh; Vitali, D.; Tombesi, P.

    2013-03-01

    We propose a scheme for entangling the optical and microwave output modes of the respective cavities by using a micro mechanical resonator. The micro mechanical resonator, on one side, is capacitively coupled to the microwave cavity and, on the other side, it is coupled to a high-finesses optical cavity. We then show how this continuous variable entanglement can be profitably used to teleport the non-Gaussian number state |1> and the superposition (|0\\rangle +|1\\rangle )/\\sqrt 2 from the microwave cavity output mode onto an output of the optical cavity mode with fidelity much larger than the no-cloning limit.

  19. Different Solutions for the Generator-accelerator Module

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Zavadtsev, A. A.; Zavadtsev, D. A.

    The most important part of the particle accelerators [1] - is the power generator together with the whole feeding system [2]. All types of generators, such as klystrons, magnetrons, solid state generators cover their own field of power and pulse length values. For the last couple of year the Inductive Output Tubes (IOT) becomes very popular because of their comparative construction simplicity: it represents the klystron output cavity with the grid modulated electron beam injected in it. Now such IOTs are used with the superconductive particle accelerators at 700 MHz operating frequency with around 1MW output power. Higher frequencies problem - is the inability to apply high frequency modulated voltage to the grid. Thus we need to figure out some kind of RF gun. But this article is about the first steps of the geometry and beam dynamics simulation in the six beam S-band IOT, which will be used with the compact biperiodic accelerating structure.

  20. High power klystrons for efficient reliable high power amplifiers

    NASA Astrophysics Data System (ADS)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  1. High efficiency klystron for the SPS application

    NASA Technical Reports Server (NTRS)

    Larue, A. D.

    1980-01-01

    The enhancement of klystron efficiency through the use of collector depression, that is by recovering energy from the spent electron beam after microwave amplification, was investigated. Design considerations included noise, harmonics, cooling, and service life. The mod anode, to be employed for beam control, and the depressed collector, used in spent electron beam energy recovery, are described.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M.; Janyani, Vijay

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The presentmore » paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.« less

  3. Metasurface external cavity laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S.

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  4. CAVITY EXCITATION CIRCUIT

    DOEpatents

    Franck, J.V.

    1959-10-20

    An electronic oscillator is described for energizing a resonant cavity and to a system for stabilizing the operatin g frequency of the oscillator at the particular frequency necessary to establish a particular preferred field configuration or mode in the cavity, in this instance a linear accelerator. A freely rnnning oscillator has an output coupled to a resonant cavity wherein a field may be built up at any one of several adjacent frequencies. A pickup loop in the cavity is suitably shielded and positioned in the cavity so that only energy at the panticular desired frequency is fed back to stabilize the oscillator. A phase and gain control is in cluded in the feedback line.

  5. Instrumentation and signal processing for the detection of heavy water using off axis-integrated cavity output spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Singh, P. J.; Gaikwad, D. Y.; Udupa, D. V.; Topkar, A.; Sahoo, N. K.

    2018-02-01

    An experimental setup is developed for the trace level detection of heavy water (HDO) using the off axis-integrated cavity output spectroscopy technique. The absorption spectrum of water samples is recorded in the spectral range of 7190.7 cm-1-7191.5 cm-1 with the diode laser as the light source. From the recorded water vapor absorption spectrum, the heavy water concentration is determined from the HDO and water line. The effect of cavity gain nonlinearity with per pass absorption is studied. The signal processing and data fitting procedure is devised to obtain linear calibration curves by including nonlinear cavity gain effects into the calculation. Initial calibration of mirror reflectivity is performed by measurements on the natural water sample. The signal processing and data fitting method has been validated by the measurement of the HDO concentration in water samples over a wide range from 20 ppm to 2280 ppm showing a linear calibration curve. The average measurement time is about 30 s. The experimental technique presented in this paper could be applied for the development of a portable instrument for the fast measurement of water isotopic composition in heavy water plants and for the detection of heavy water leak in pressurized heavy water reactors.

  6. Decoupling PI Controller Design for a Normal Conducting RF Cavity Using a Recursive LEVENBERG-MARQUARDT Algorithm

    NASA Astrophysics Data System (ADS)

    Kwon, Sung-il; Lynch, M.; Prokop, M.

    2005-02-01

    This paper addresses the system identification and the decoupling PI controller design for a normal conducting RF cavity. Based on the open-loop measurement data of an SNS DTL cavity, the open-loop system's bandwidths and loop time delays are estimated by using batched least square. With the identified system, a PI controller is designed in such a way that it suppresses the time varying klystron droop and decouples the In-phase and Quadrature of the cavity field. The Levenberg-Marquardt algorithm is applied for nonlinear least squares to obtain the optimal PI controller parameters. The tuned PI controller gains are downloaded to the low-level RF system by using channel access. The experiment of the closed-loop system is performed and the performance is investigated. The proposed tuning method is running automatically in real time interface between a host computer with controller hardware through ActiveX Channel Access.

  7. Theoretical analysis of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator

    NASA Astrophysics Data System (ADS)

    Shin, Y. M.; Ryskin, N. M.; Won, J. H.; Han, S. T.; Park, G. S.

    2006-03-01

    The basic theory of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator consisting of two two-cavity klystron amplifiers reversely coupled through input/output slots is theoretically investigated. Application of Kirchhoff's laws to the coupled equivalent RLC circuit model of the device provides four nonlinear coupled equations, which are the first-order time-delayed differential equations. Analytical solutions obtained through linearization of the equations provide oscillation frequencies and thresholds of four fundamental eigenstates, symmetric/antisymmetric 0/π modes. Time-dependent output signals are numerically analyzed with variation of the beam current, and a self-modulation mechanism and transition to chaos scenario are examined. The oscillator shows a much stronger multistability compared to a delayed feedback klystron oscillator owing to the competitions among more diverse eigenmodes. A fully developed chaos region also appears at a relatively lower beam current, ˜3.5Ist, compared to typical vacuum tube oscillators (10-100Ist), where Ist is a start-oscillation current.

  8. Discrete wavelength-locked external cavity laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)

    2005-01-01

    An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.

  9. Nonlinear harmonic generation in distributed optical klystrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.P. Freund; George R. Neil

    2001-12-01

    A distributed optical klystron has the potential for dramatically shortening the total interaction length in high-gain free-electron lasers (INP 77-59, Novosibirsk, 1977; Nucl. Instr. and Meth A 304 (1991) 463) in comparison to a single-wiggler-segment configuration. This shortening can be even more dramatic if a nonlinear harmonic generation mechanism is used to reach the desired wavelength. An example operating at a 4.5{angstrom} fundamental and a 1.5{angstrom} harmonic is discussed.

  10. Testing Omega P’s 650 KW, 1.3 GHZ Low-Voltage Multi-Beam Klystron for the Project X Pulsed LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermi Research Alliance; Omega-P Inc.

    Omega-P Inc. had developed a multi beam 1.3 GHz klystron (MBK) for the Project X pulsed linac application. Testing of the klystron require a special hardware such as a modulator, RF components, control system, power supplies, etc, as well as associated infrastructure( electricity, water, safety). This is an expensive part of klystron development for which Omega-P does not have the required equipment. Fermilab will test the MBK at Fermilab site providing contribution to the project all the necessary facilities, infrastructure and manpower for MBK test performance and analysis.

  11. Lasers with intra-cavity phase elements

    NASA Astrophysics Data System (ADS)

    Gulses, A. Alkan; Kurtz, Russell; Islas, Gabriel; Anisimov, Igor

    2018-02-01

    Conventional laser resonators yield multimodal output, especially at high powers and short cavity lengths. Since highorder modes exhibit large divergence, it is desirable to suppress them to improve laser quality. Traditionally, such modal discriminations can be achieved by simple apertures that provide absorptive loss for large diameter modes, while allowing the lower orders, such as the fundamental Gaussian, to pass through. However, modal discrimination may not be sufficient for short-cavity lasers, resulting in multimodal operation as well as power loss and overheating in the absorptive part of the aperture. In research to improve laser mode control with minimal energy loss, systematic experiments have been executed using phase-only elements. These were composed of an intra-cavity step function and a diffractive out-coupler made of a computer-generated hologram. The platform was a 15-cm long solid-state laser that employs a neodymium-doped yttrium orthovanadate crystal rod, producing 1064 nm multimodal laser output. The intra-cavity phase elements (PEs) were shown to be highly effective in obtaining beams with reduced M-squared values and increased output powers, yielding improved values of radiance. The utilization of more sophisticated diffractive elements is promising for more difficult laser systems.

  12. Device for frequency modulation of a laser output spectrum

    DOEpatents

    Beene, James R.; Bemis, Jr., Curtis E.

    1986-01-01

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  13. Device for frequency modulation of a laser output spectrum

    DOEpatents

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  14. Efficient model for low-energy transverse beam dynamics in a nine-cell 1.3 GHz cavity

    NASA Astrophysics Data System (ADS)

    Hellert, Thorsten; Dohlus, Martin; Decking, Winfried

    2017-10-01

    FLASH and the European XFEL are SASE-FEL user facilities, at which superconducting TESLA cavities are operated in a pulsed mode to accelerate long bunch-trains. Several cavities are powered by one klystron. While the low-level rf system is able to stabilize the vector sum of the accelerating gradient of one rf station sufficiently, the rf parameters of individual cavities vary within the bunch-train. In correlation with misalignments, intrabunch-train trajectory variations are induced. An efficient model is developed to describe the effect at low beam energy, using numerically adjusted transfer matrices and discrete coupler kick coefficients, respectively. Comparison with start-to-end tracking and dedicated experiments at the FLASH injector will be shown. The short computation time of the derived model allows for comprehensive numerical studies on the impact of misalignments and variable rf parameters on the transverse intra-bunch-train beam stability at the injector module. Results from both, statistical multibunch performance studies and the deduction of misalignments from multibunch experiments are presented.

  15. Development of a high-power solid-state switch using static induction thyristors for a klystron modulator

    NASA Astrophysics Data System (ADS)

    Tokuchi, Akira; Kamitsukasa, Fumiyoshi; Furukawa, Kazuya; Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Fujimoto, Masaki; Osumi, Hiroki; Funakoshi, Sousuke; Tsutsumi, Ryouta; Suemine, Shoji; Honda, Yoshihide; Isoyama, Goro

    2015-01-01

    We developed a solid-state switch with static induction thyristors for the klystron modulator of the L-band electron linear accelerator (linac) at the Institute of Scientific and Industrial Research, Osaka University. This switch is designed to have maximum specifications of a holding voltage of 25 kV and a current of 6 kA at the repetition frequency of 10 Hz for forced air cooling. The turn-on time of the switch was measured with a matched resistor to be 270 ns, which is sufficiently fast for the klystron modulator. The switch is retrofitted in the modulator to generate 1.3 GHz RF pulses with durations of either 4 or 8 μs using a 30 MW klystron, and the linac is successfully operated under maximum conditions. This finding demonstrates that the switch can be used as a high-power switch for the modulator. Pulse-to-pulse variations of the klystron voltage are measured to be less than 0.015%, and those of RF power and phase are lower than 0.15% and 0.1°, respectively. These values are significantly smaller than those obtained with a thyratron; hence, the stability of the main RF system is improved. The solid-state switch has been used in normal operation of the linac for more than a year without any serious trouble. Thus, we confirmed the switch's robustness and long-term reliability.

  16. Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo

    2014-01-01

    The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.

  17. Design, construction and evaluation of a 12.045 GHz, 2.0 kW-cw permanent-magnet focused klystron amplifier

    NASA Technical Reports Server (NTRS)

    Nishida, J. M.

    1975-01-01

    An analytical and experimental program to demonstrate the technical feasibility of a lightweight, high-efficiency, 1-2 kW cw, permanent magnet focused klystron operating at 12.0 GHz was described. The design is based on use of a samarium-cobalt permanent magnet for focusing of the electron beam and choice of the most optimum parameters for maximum efficiency. A filter-loaded output circuit is used for the required bandwidth. The design incorporates a collector which is demountable from the tube to facilitate multistage depressed collector experiments, permitting replacement with a NASA-designed axisymmetric, electrostatic collector for linear beam microwave tubes. A further requirement is that the focusing field between the last interaction gap and the collector decay in a prescribed manner referred to as adiabatic expansion.

  18. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgashev, Valery A.

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities hasmore » a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.« less

  19. Broadband power amplifier tube: Klystron tube 5K70SK-WBT and step tuner VA-1470S

    NASA Technical Reports Server (NTRS)

    Cox, H. R.; Johnson, J. O.

    1974-01-01

    The design concept, the fabrication, and the acceptance testing of a wide band Klystron tube and remotely controlled step tuner for channel selection are discussed. The equipment was developed for the modification of an existing 20 KW Power Amplifier System which was provided to the contractor as GFE. The replacement Klystron covers a total frequency range of 2025 to 2120 MHz and is tuneable to six (6) each channel with a band width of 22 MHz or greater per channel. A 5 MHz overlap is provided between channels. Channels are selected at the control panel located in the front of the Klystron magnet or from one of three remote control stations connected in parallel with the step tuner. Included in this final report are the results of acceptance tests conducted at the vendor's plant and of the integrated system tests.

  20. Study of the emission performance of high-power klystrons: SLAC XK-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Y.

    1981-07-01

    There are hundreds of high power klystrons operated in the Linac gallery and about fifty to sixty tubes fail every year. The lifetime ranges from a few thousand up to seventy thousand hours except those which fail during an early period. The overall percentage of failures due to emission problems is approximately 25%. It is also noted that a 10% increase in mean lifetime of klystrons will reduce the overall cost per hour as much as a 10% increase in efficiency. Therefore, it is useful to find some method to predict the expected life of an individual tube. The finalmore » goal has not been attained yet, but some useful information was obtained. It is thought that this information might be helpful for those people who will study this subject further.« less

  1. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source.

    PubMed

    Baillie, Devin; St Aubin, J; Fallone, B G; Steciw, S

    2013-04-01

    To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV∕m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show dmax is at 2.15 cm for a 10 × 10 cm(2) field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  2. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  3. Novel Cavities in Vertical External Cavity Surface Emitting Lasers for Emission in Broad Spectral Region by Means of Nonlinear Frequency Conversion

    NASA Astrophysics Data System (ADS)

    Lukowski, Michal L.

    Optically pumped semiconductor vertical external cavity surface emitting lasers (VECSEL) were first demonstrated in the mid 1990's. Due to the unique design properties of extended cavity lasers VECSELs have been able to provide tunable, high-output powers while maintaining excellent beam quality. These features offer a wide range of possible applications in areas such as medicine, spectroscopy, defense, imaging, communications and entertainment. Nowadays, newly developed VECSELs, cover the spectral regions from red (600 nm) to around 5 microm. By taking the advantage of the open cavity design, the emission can be further expanded to UV or THz regions by the means of intracavity nonlinear frequency generation. The objective of this dissertation is to investigate and extend the capabilities of high-power VECSELs by utilizing novel nonlinear conversion techniques. Optically pumped VECSELs based on GaAs semiconductor heterostructures have been demonstrated to provide exceptionally high output powers covering the 900 to 1200 nm spectral region with diffraction limited beam quality. The free space cavity design allows for access to the high intracavity circulating powers where high efficiency nonlinear frequency conversions and wavelength tuning can be obtained. As an introduction, this dissertation consists of a brief history of the development of VECSELs as well as wafer design, chip fabrication and resonator cavity design for optimal frequency conversion. Specifically, the different types of laser cavities such as: linear cavity, V-shaped cavity and patented T-shaped cavity are described, since their optimization is crucial for transverse mode quality, stability, tunability and efficient frequency conversion. All types of nonlinear conversions such as second harmonic, sum frequency and difference frequency generation are discussed in extensive detail. The theoretical simulation and the development of the high-power, tunable blue and green VECSEL by the means of type I

  4. Wavelength-Agile External-Cavity Diode Laser for DWDM

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  5. Electromagnetic Design of a Radiofrequency Cavity

    NASA Astrophysics Data System (ADS)

    Montoya Soto, G. R.; Duarte Galvan, Carlos; Monzon, Ildefonso Leon; Podesta Lerma, Pedro Luis manuel; Valerio-Lizarraga, C. A.

    2017-10-01

    Electromagnetic and mechanical studies have been performed with the aim of build a RF cavity in the S-Band (2998 MHz), the design takes into consideration the relativistic change in the electron velocity through the acceleration cavity. Four cavity cases were considered at different input energies, 50 KeV, 100 KeV, 150 KeV, with output energies of 350 KeV, the designs show good acceleration efficiency and beam coherence comparable to the one created in the cathode.

  6. Cavity-Dumped Communication Laser Design

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    2003-01-01

    Cavity-dumped lasers have significant advantages over more conventional Q-switched lasers for high-rate operation with pulse position modulation communications, including the ability to emit laser pulses at 1- to 10-megahertz rates, with pulse widths of 0.5 to 5 nanoseconds. A major advantage of cavity dumping is the potential to vary the cavity output percentage from pulse to pulse, maintaining the remainder of the energy in reserve for the next pulse. This article presents the results of a simplified cavity-dumped laser model, establishing the requirements for cavity efficiency and projecting the ultimate laser efficiency attainable in normal operation. In addition, a method of reducing or eliminating laser dead time is suggested that could significantly enhance communication capacity. The design of a laboratory demonstration laser is presented with estimates of required cavity efficiency and demonstration potential.

  7. High sensitivity detection of NO2 employing off-axis integrated cavity output spectroscopy coupled with multiple line integrated spectroscopy

    NASA Astrophysics Data System (ADS)

    Rao, Gottipaty N.; Karpf, Andreas

    2011-05-01

    We report on the development of a new sensor for NO2 with ultrahigh sensitivity of detection. This has been accomplished by combining off-axis integrated cavity output spectroscopy (OA-ICOS) (which can provide large path lengths of the order of several km in a small volume cell) with multiple line integrated absorption spectroscopy (MLIAS) (where we integrate the absorption spectra over a large number of rotational-vibrational transitions of the molecular species to further improve the sensitivity). Employing an external cavity tunable quantum cascade laser operating in the 1601 - 1670 cm-1 range and a high-finesse optical cavity, the absorption spectra of NO2 over 100 transitions in the R-band have been recorded. From the observed linear relationship between the integrated absorption vs. concentration of NO2, we report an effective sensitivity of detection of 10 ppt for NO2. To the best of our knowledge, this is among the most sensitive levels of detection of NO2 to date. A sensitive sensor for the detection of NO2 will be helpful to monitor the ambient air quality, combustion emissions from the automobiles, power plants, aircraft and for the detection of nitrate based explosives (which are commonly used in improvised explosives (IEDs)). Additionally such a sensor would be valuable for the study of complex chemical reactions that undergo in the atmosphere resulting in the formation of photochemical smog, tropospheric ozone and acid rain.

  8. Theoretical analysis of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Y.M.; Ryskin, N.M.; Won, J.H.

    The basic theory of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator consisting of two two-cavity klystron amplifiers reversely coupled through input/output slots is theoretically investigated. Application of Kirchhoff's laws to the coupled equivalent RLC circuit model of the device provides four nonlinear coupled equations, which are the first-order time-delayed differential equations. Analytical solutions obtained through linearization of the equations provide oscillation frequencies and thresholds of four fundamental eigenstates, symmetric/antisymmetric 0/{pi} modes. Time-dependent output signals are numerically analyzed with variation of the beam current, and a self-modulation mechanism and transition to chaos scenario are examined. The oscillatormore » shows a much stronger multistability compared to a delayed feedback klystron oscillator owing to the competitions among more diverse eigenmodes. A fully developed chaos region also appears at a relatively lower beam current, {approx}3.5I{sub st}, compared to typical vacuum tube oscillators (10-100I{sub st}), where I{sub st} is a start-oscillation current.« less

  9. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier.

    PubMed

    Zhang, Zehai; Zhang, Jun; Shu, Ting; Qi, Zumin

    2012-09-01

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  10. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Zehai; Zhang, Jun; Shu, Ting; Qi, Zumin

    2012-09-01

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  11. The Effect of Simulated Mastoid Obliteration on the Mechanical Output of Electromagnetic Transducers.

    PubMed

    Grossöhmichen, Martin; Salcher, Rolf; Lenarz, Thomas; Maier, Hannes

    2016-08-01

    The electromagnetic transducers of implantable middle ear hearing devices or direct acoustic cochlear implants (DACIs) are intended for implantation in an air-filled middle ear cavity. When implanted in an obliterated radical mastoid cavity, they would be surrounded by fatty tissue of unknown elastic properties, potentially attenuating the mechanical output. Here, the elastic properties of this tissue were determined experimentally and the vibrational output of commonly used electromagnetic transducers in an obliterated radical mastoid cavity was investigated in vitro using a newly developed method. The Young's moduli of human fatty tissue samples (3-mm diameter), taken fresh from the abdomen or from the radical mastoid cavity during revision surgeries, were determined by indentation tests. Two phantom materials having Young's moduli similar to and higher than (worst case scenario) the tissue were identified. The displacement output of a DACI, a middle ear transducer (MET) and a floating mass transducer (FMT), was measured when embedded in the phantom materials in a model radical cavity and compared with the output of the nonembedded transducers. The here-determined Young's moduli of fresh human abdominal fatty tissue were comparable to the moduli of human breast fat tissue. When embedded in the phantom materials, the displacement output amplitude at 0.1 to 10 kHz of the DACI and MET was attenuated by maximally 5 dB. The attenuation of the output of the FMT was also minor at 0.5 to 10 kHz, but significantly reduced by up to 35 dB at lower frequencies. Using the method developed here, the Young's moduli of small soft tissue samples could be estimated and the effect of obliteration on the mechanical output of electromagnetic transducers was investigated in vitro. Our results demonstrate that the decrease in vibrational output of the DACI and MET in obliterated mastoid cavities is expected to be minor, having no major impact on clinical indication. Although no

  12. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  13. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    PubMed

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.

  14. Teleportation of atomic and photonic states in low-Q cavity QED

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man

    2012-11-01

    We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.

  15. 60-MW test using the 30-MW klystrons for the KEKB project

    NASA Astrophysics Data System (ADS)

    Fukuda, S.; Michizono, S.; Nakao, K.; Saito, Y.; Anami, S.

    1995-07-01

    The B-Factory is a future plan, requiring an energy upgrade of the KEK linac from 2.5 GeV to 8.0 GeV (KEKB Project). This paper describes the recent development of an S-band high-power pulse klystron to be used as the PF-linac rf-source of the B-Factory. This tube is a modified version of the existing 30-MW tube, which produces 51 MW at a 310 kV beam voltage by optimizing the focusing magnetic field. In order to increase the reliability, the cathode diameter, the gun housing, and the insulation ceramic-seal were enlarged. This tube was redesigned so as to have the same characteristics as the test results of 30-MW tubes at a higher applied voltage without changing the rf interaction region. Four prototype tubes have been manufactured; final test results showed that these new tubes produce an output power of more than 50 MW at 310 kV with an efficiency of 46%. Recently this tube has produced more than 60 MW at a 350 kV beam voltage for a demonstration test. A comparison between the FCI-code prediction and the test results is also given in this paper.

  16. A possible pole problem in the formula for klystron gap fields

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1977-01-01

    In isolated cases a pole may be encountered in a previously published solution for the fields in a klystron gap. Formulas, permitting the critical combinations of parameters to be defined, are presented. It is noted that the region of inaccuracy surrounding the pole is sufficiently small and that a 0.1% change in the field changing parameter is enough to avoid it.

  17. Final Report for "Design calculations for high-space-charge beam-to-RF conversion".

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N Smithe

    2008-10-17

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimummore » energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications

  18. Photon transport in a dissipative chain of nonlinear cavities

    NASA Astrophysics Data System (ADS)

    Biella, Alberto; Mazza, Leonardo; Carusotto, Iacopo; Rossini, Davide; Fazio, Rosario

    2015-05-01

    By means of numerical simulations and the input-output formalism, we study photon transport through a chain of coupled nonlinear optical cavities subject to uniform dissipation. Photons are injected from one end of the chain by means of a coherent source. The propagation through the array of cavities is sensitive to the interplay between the photon hopping strength and the local nonlinearity in each cavity. We characterize photon transport by studying the populations and the photon correlations as a function of the cavity position. When complemented with input-output theory, these quantities provide direct information about photon transmission through the system. The position of single-photon and multiphoton resonances directly reflects the structure of the many-body energy levels. This shows how a study of transport along a coupled cavity array can provide rich information about the strongly correlated (many-body) states of light even in presence of dissipation. The numerical algorithm we use, based on the time-evolving block decimation scheme adapted to mixed states, allows us to simulate large arrays (up to 60 cavities). The scaling of photon transmission with the number of cavities does depend on the structure of the many-body photon states inside the array.

  19. 100 GeV SLAC Linac

    NASA Astrophysics Data System (ADS)

    Farkas, Z. D.

    2002-03-01

    The SLAC beam energy can be increased from the current 50 GeV to 100 GeV, if we change the operating frequency from the present 2856 MHz to 11424 MHz, using technology developed for the NLC. We replace the power distribution system with a proposed NLC distribution system as shown in Fig. 1. The four 3 meter s-band 820 nS .ll time accelerator sections are replaced by six 2 meter x-band 120 nS .ll time sections. Thus the accelerator length per klystron retains the same length, 12 meters. The 4050 65MW- 3.5microS klystrons are replaced by 75MW-1.5microS permanent magnet klystrons developed here and in Japan. The present input to the klystrons would be multiplied by a factor of 4 and possibly ampli.ed. The SLED cavities have to be replaced. The increase in beam voltage is due to the higher elastance to group velocity ratio, higher compression ratio and higher unloaded to external Q ratio of the new SLED cavities. The average power input is reduced because of the narrower klystron pulse width and because the klystron electro-magnets are replaced by permanent magnets.

  20. An historical overview of cavity-enhanced methods

    NASA Astrophysics Data System (ADS)

    Paldus, B. A.; Kachanov, A. A.

    2005-10-01

    An historical overview of laser-based, spectroscopic methods that employ high-finesse optical resonators is presented. The overview begins with the early work in atomic absorption (1962) and optical cavities (1974) that led to the first mirror reflectivity measurements in 1980. This paper concludes with very recent extensions of cavity-enhanced methods for the study of condensed-phase media and biological systems. Methods described here include cavity ring-down spectroscopy, integrated cavity output spectroscopy, and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Given the explosive growth of the field over the past decade, this review does not attempt to present a comprehensive bibliography of all work published in cavity-enhanced spectroscopy, but rather strives to illustrate the rich history, creative diversity, and broad applications potential of these methods.

  1. Nanoklystron: A Monolithic Tube Approach to THz Power Generation

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Fung, Andy; Manohara, Harish; Xu, Jimmy; Chang, Baohe

    2001-01-01

    The authors propose a new approach to THz power generation: the nanoklystron. Utilizing silicon micromachining techniques, the design and fabrication concept of a monolithic THz vacuum-tube reflex-klystron source is described. The nanoklystron employs a separately fabricated cathode structure composed of densely packed carbon nanotube field emitters and an add-in repeller. The nanotube cathode is expected to increase the current density, extend the cathode life and decrease the required oscillation voltage to values below 100 V. The excitation cavity is based on ridged-waveguide and differs from the conventional cylindrical re-entrant structures found in lower frequency klystrons. A quasi-static field analysis of the cavity and output coupling structure show excellent control of the quality factor and desired field distribution. Output power is expected to occur through an iris coupled matched rectangular waveguide and integrated pyramidal feed horn. The entire circuit is designed so as to be formed monolithically from two thermocompression bonded silicon wafers processed using deep reactive ion etching (DRIE) techniques. To expedite prototyping, a 600 GHz mechanically machined structure has been designed and is in fabrication. A complete numeric analysis of the nanoklystron circuit, including the electron beam dynamics has just gotten underway. Separate evaluation of the nanotube cathodes is also ongoing. The authors will describe the progress to date as well as plans for the immediate implementation and testing of nanoklystron prototypes at 640 and 1250 GHz.

  2. Gain and Efficiency of a Superconducting Microwave Compressor with a Switching Cavity in an Interference Switch

    NASA Astrophysics Data System (ADS)

    Artemenko, S. N.; Samoylenko, G. M.

    2016-11-01

    We study the processes of radiation output from a microwave storage cavity through a superconducting interference switch, which is based on a H-junction with a superconducting switching cavity connected to the side branch of the junction for various ways of controlling the parameters of the switching cavity. It is shown that efficient control over radiation output in such a switch can be achieved by varying the resonance frequency or Q-factor of the switching cavity, as well as by varying these parameters simultaneously. It is found that in the case of controlling the resonance frequency of the switching cavity, there exists an optimal interval of the frequency variation, within which the total efficiency and extraction efficiency are maximum. When the Q-factor of the switching cavity changes, the dependence of the total efficiency and extraction efficiency on the Q-factor has the monotonic character. The mixed regime of radiation output control is also studied. The envelopes of the output compressor pulses are plotted on the basis of recurrent relationships between the amplitudes of the waves in the system for three regimes of switch operation. It is shown that pulses with an almost rectangular shape of the envelope can be formed in the regime of controlling the switching cavity by varying the Q-factor. An example of possible realization of the switching cavity is considered.

  3. Parametric resonance in tunable superconducting cavities

    NASA Astrophysics Data System (ADS)

    Wustmann, Waltraut; Shumeiko, Vitaly

    2013-05-01

    We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity and the output field. Other quantum-statistical properties of the noise are addressed such as squeezing spectra, second-order coherence, and two-mode entanglement.

  4. Electrically injected visible vertical cavity surface emitting laser diodes

    DOEpatents

    Schneider, Richard P.; Lott, James A.

    1994-01-01

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors.

  5. Electrically injected visible vertical cavity surface emitting laser diodes

    DOEpatents

    Schneider, R.P.; Lott, J.A.

    1994-09-27

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  6. Numerical solution of the exact cavity equations of motion for an unstable optical resonator.

    PubMed

    Bowers, M S; Moody, S E

    1990-09-20

    We solve numerically, we believe for the first time, the exact cavity equations of motion for a realistic unstable resonator with a simple gain saturation model. The cavity equations of motion, first formulated by Siegman ["Exact Cavity Equations for Lasers with Large Output Coupling," Appl. Phys. Lett. 36, 412-414 (1980)], and which we term the dynamic coupled modes (DCM) method of solution, solve for the full 3-D time dependent electric field inside the optical cavity by expanding the field in terms of the actual diffractive transverse eigenmodes of the bare (gain free) cavity with time varying coefficients. The spatially varying gain serves to couple the bare cavity transverse modes and to scatter power from mode to mode. We show that the DCM method numerically converges with respect to the number of eigenmodes in the basis set. The intracavity intensity in the numerical example shown reaches a steady state, and this steady state distribution is compared with that computed from the traditional Fox and Li approach using a fast Fourier transform propagation algorithm. The output wavefronts from both methods are quite similar, and the computed output powers agree to within 10%. The usefulness and advantages of using this method for predicting the output of a laser, especially pulsed lasers used for coherent detection, are discussed.

  7. Air-coupled MUMPs capacitive micromachined ultrasonic transducers with resonant cavities.

    PubMed

    Octavio Manzanares, Alberto; Montero de Espinosa, Francisco

    2012-04-01

    This work reports performance improvements of air-coupled capacitive micromachined ultrasonic transducers (CMUTs) using resonant cavities. In order to perform this work, we have designed and manufactured a CMUT employing multi-user microelectromechanical systems (MEMS) processes (MUMPs). The transducer was designed using Helmholtz resonator principles. This was characterised by the dimensions of the cavity and several acoustic ports, which had the form of holes in the CMUT plate. The MUMPs process has the advantage of being low cost which allows the manufacture of economic prototypes. In this paper we show the effects of the resonant cavities and acoustic ports in CMUTs using laser Doppler vibrometry and acoustical measurements. We also use Finite Element (FE) simulations in order to support experimental measurements. The results show that it is possible to enhance the output pressure and bandwidth in air by tuning the resonance frequency of the plate (f(p)) with that of the Helmholtz resonator (f(H)). The experimental measurements show the plate resonance along with an additional resonance in the output pressure spectrum. This appears due to the effect of the new resonant cavities in the transducer. FE simulations show an increase of 11 dB in the output pressure with respect to that of a theoretical vacuum-sealed cavity MUMPs CMUT by properly tuning the transducer. The bandwidth has been also analyzed by calculating the mechanical Q factor of the tuned CMUT. This has been estimated as 4.5 compared with 7.75 for the vacuum-sealed cavity MUMPs CMUT. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis.

    PubMed

    Anctil, G; McCarthy, N; Piché, M

    2000-12-20

    We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems (C = 0) or self-imaging systems (B = 0) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.

  9. Sensitivity of a Three-Mirror Cavity to Thermal and Nonlinear Lensing: Gaussian-Beam Analysis

    NASA Astrophysics Data System (ADS)

    Anctil, Geneviève; McCarthy, Nathalie; Piché, Michel

    2000-12-01

    We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems ( C 0 ) or self-imaging systems ( B 0 ) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.

  10. Rotational cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Wetzel, Wyatt; Rodenburg, B.; Ek, B.; Jha, A. K.; Bhattacharya, M.

    2017-04-01

    We consider optomechanics based on the exchange of orbital angular momentum between light and matter. Specifically we consider a nanoparticle levitated in an optical ring trap in a cavity. The motion of this particle is probed by an angular lattice created by two co-propagating beams carrying equal but opposite angular momenta. Firstwe consider the case where the lattice is weak, so the nanoparticle can execute complete rotations about the cavity axis. We establishanalytically the existence of a linear regime where accurate Doppler velocimetry can be performed on the nanoparticle, and also describe numerically the dynamics in the nonlinear regime where the velocimetry is no longer accurate. Second, we consider the case where the lattice is strong and the nanoparticle executes torsional motion about the cavity axis. We find the presence of an external torque introduces an instability, but can also be used to tune continuously the linear optomechanical coupling whose strength can be measured by homodyning the cavity output field. This research was supported by the National Science Foundation (NSF) (1454931), the Office of Naval Research (N00014-14-1-0803), and the Research Corporation for Science Advancement (20966).

  11. Large-Signal Code TESLA: Current Status and Recent Development

    DTIC Science & Technology

    2008-04-01

    K.Eppley, J.J.Petillo, “ High - power four cavity S - band multiple- beam klystron design”, IEEE Trans. Plasma Sci. , vol. 32, pp. 1119-1135, June 2004. 4...advances in the development of the large-signal code TESLA, mainly used for the modeling of high - power single- beam and multiple-beam klystron ...amplifiers. Keywords: large-signal code; multiple-beam klystrons ; serial and parallel versions. Introduction The optimization and design of new high power

  12. Electron trajectory evaluation in laser-plasma interaction for effective output beam

    NASA Astrophysics Data System (ADS)

    Zobdeh, P.; Sadighi-Bonabi, R.; Afarideh, H.

    2010-06-01

    Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.

  13. Cavity electromagnetically induced transparency via spontaneously generated coherence

    NASA Astrophysics Data System (ADS)

    Tariq, Muhammad; Ziauddin, Bano, Tahira; Ahmad, Iftikhar; Lee, Ray-Kuang

    2017-09-01

    A four-level N-type atomic ensemble enclosed in a cavity is revisited to investigate the influence of spontaneous generated coherence (SGC) on transmission features of weak probe light field. A weak probe field is propagating through the cavity where each atom inside the cavity follows four-level N-type atom-field configuration of rubidium (?) atom. We use input-output theory and study the interaction of atomic ensemble and three cavity fields which are coupled to the same cavity mode. A SGC affects the transmission properties of weak probe light field due to which a transparency window (cavity EIT) appears. At resonance condition the transparency window increases with increasing the SGC in the system. We also studied the influence of the SGC on group delay and investigated magnitude enhancement of group delay for the maximum SGC in the system.

  14. A highly stable monolithic enhancement cavity for second harmonic generation in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Hannig, S.; Mielke, J.; Fenske, J. A.; Misera, M.; Beev, N.; Ospelkaus, C.; Schmidt, P. O.

    2018-01-01

    We present a highly stable bow-tie power enhancement cavity for critical second harmonic generation (SHG) into the UV using a Brewster-cut β-BaB2O4 (BBO) nonlinear crystal. The cavity geometry is suitable for all UV wavelengths reachable with BBO and can be modified to accommodate anti-reflection coated crystals, extending its applicability to the entire wavelength range accessible with non-linear frequency conversion. The cavity is length-stabilized using a fast general purpose digital PI controller based on the open source STEMlab 125-14 (formerly Red Pitaya) system acting on a mirror mounted on a fast piezo actuator. We observe 130 h uninterrupted operation without decay in output power at 313 nm. The robustness of the system has been confirmed by exposing it to accelerations of up to 1 g with less than 10% in-lock output power variations. Furthermore, the cavity can withstand 30 min of acceleration exposure at a level of 3 grms without substantial change in the SHG output power, demonstrating that the design is suitable for transportable setups.

  15. Fiber cavities with integrated mode matching optics.

    PubMed

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  16. Microwave power transmission system studies. Volume 2: Introduction, organization, environmental and spaceborne systems analyses

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    Introduction, organization, analyses, conclusions, and recommendations for each of the spaceborne subsystems are presented. Environmental effects - propagation analyses are presented with appendices covering radio wave diffraction by random ionospheric irregularities, self-focusing plasma instabilities and ohmic heating of the D-region. Analyses of dc to rf conversion subsystems and system considerations for both the amplitron and the klystron are included with appendices for the klystron covering cavity circuit calculations, output power of the solenoid-focused klystron, thermal control system, and confined flow focusing of a relativistic beam. The photovoltaic power source characteristics are discussed as they apply to interfacing with the power distribution flow paths, magnetic field interaction, dc to rf converter protection, power distribution including estimates for the power budget, weights, and costs. Analyses for the transmitting antenna consider the aperture illumination and size, with associated efficiencies and ground power distributions. Analyses of subarray types and dimensions, attitude error, flatness, phase error, subarray layout, frequency tolerance, attenuation, waveguide dimensional tolerances, mechanical including thermal considerations are included. Implications associated with transportation, assembly and packaging, attitude control and alignment are discussed. The phase front control subsystem, including both ground based pilot signal driven adaptive and ground command approaches with their associated phase errors, are analyzed.

  17. Thermal radiation from optically driven Kerr (χ{sup (3)}) photonic cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khandekar, Chinmay; Rodriguez, Alejandro W.; Lin, Zin

    2015-04-13

    We describe thermal radiation from nonlinear (χ{sup (3)}) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including “super-narrow spectral peaks” occurring at the onset of kinetic phase transitions. We show that when the cavities are designed to exhibit perfect linear emissivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading tomore » a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation.« less

  18. Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy.

    PubMed

    McCurdy, Matthew R; Bakhirkin, Yury; Wysocki, Gerard; Tittel, Frank K

    2007-01-01

    Exhaled nitric oxide (NO) is an important biomarker in asthma and other respiratory disorders. The optical performance of a NOCO(2) sensor employing integrated cavity output spectroscopy (ICOS) with a quantum cascade laser operating at 5.22 microm capable of real-time NO and CO(2) measurements in a single breath cycle is reported. A NO noise-equivalent concentration of 0.4 ppb within a 1-sec integration time is achieved. The off-axis ICOS sensor performance is compared to a chemiluminescent NO analyzer and a nondispersive infrared (NDIR) CO(2) absorption capnograph. Differences between the gas analyzers are assessed by the Bland-Altman method to estimate the expected variability between the gas sensors. The off-axis ICOS sensor measurements are in good agreement with the data acquired with the two commercial gas analyzers. This work demonstrates the performance characteristics and merits of mid-infrared spectroscopy for exhaled breath analysis.

  19. An Advanced simulation Code for Modeling Inductive Output Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thuc Bui; R. Lawrence Ives

    2012-04-27

    During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing currentmore » density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.« less

  20. Low Threshold Voltage Continuous Wave Vertical-Cavity Surface-Emitting Lasers

    DTIC Science & Technology

    1993-04-26

    Data are presented demonstrating a design and fabrication process for the realization of low- threshold , high-output vertical-cavity surface-emitting...layers), the low series resistance of the design results in a bias voltage on o 1.8 V at a threshold current of 1.9 mA for 10-micrometer-diam devices.... Vertical-cavity surface-emitting lasers.

  1. Nonlinear dynamics and cavity cooling of levitated nanoparticles

    NASA Astrophysics Data System (ADS)

    Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.

    2016-09-01

    We investigate a dynamic nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. Through the rich sideband structure displayed by the cavity output we can observe cooling of the linear and non-linear particle's motion. Here we present an experimental setup which allows full control over the cavity resonant frequencies, and shows cooling of the particle's motion as a function of the detuning. This work paves the way to strong-coupled quantum dynamics between a cavity and a mesoscopic object largely decoupled from its environment.

  2. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    NASA Astrophysics Data System (ADS)

    Brian Leen, J.; Berman, Elena S. F.; Liebson, Lindsay; Gupta, Manish

    2012-04-01

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to δ2H and δ18O measurement errors (Δδ2H and Δδ18O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, mBB, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, mNB. These metrics are used to correct for Δδ2H and Δδ18O. The method was tested on 14 instruments and Δδ18O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while Δδ2H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with mNB. Using the isotope error versus mNB and mBB curves, Δδ2H and Δδ18O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 ‰ and 0.25 ‰ respectively, while Δδ2H and Δδ18O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 ‰ and 0.22 ‰. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique

  3. Thermal resistance of etched-pillar vertical-cavity surface-emitting laser diodes

    NASA Astrophysics Data System (ADS)

    Wipiejewski, Torsten; Peters, Matthew G.; Young, D. Bruce; Thibeault, Brian; Fish, Gregory A.; Coldren, Larry A.

    1996-03-01

    We discuss our measurements on thermal impedance and thermal crosstalk of etched-pillar vertical-cavity lasers and laser arrays. The average thermal conductivity of AlAs-GaAs Bragg reflectors is estimated to be 0.28 W/(cmK) and 0.35W/(cmK) for the transverse and lateral direction, respectively. Lasers with a Au-plated heat spreading layer exhibit a 50% lower thermal impedance compared to standard etched-pillar devices resulting in a significant increase of maximum output power. For an unmounted laser of 64 micrometer diameter we obtain an improvement in output power from 20 mW to 42 mW. The experimental results are compared with a simple analytical model showing the importance of heat sinking for maximizing the output power of vertical-cavity lasers.

  4. High-Q resonant cavities for terahertz quantum cascade lasers.

    PubMed

    Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P

    2015-02-09

    We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.

  5. Mode-locked long fibre master oscillator with intra-cavity power management and pulse energy > 12 µJ.

    PubMed

    Ivanenko, Alexey; Kobtsev, Sergey; Smirnov, Sergey; Kemmer, Anna

    2016-03-21

    Combined lengthening of the cavity of a passive mode-locked fibre master oscillator and implementation of a new concept of intra-cavity power management led to achievement of a record-high pulse energy directly at the output of the mode-locked fibre master oscillator (without any subsequent amplification) exceeding 12 µJ. Output powers at the level of > 12 µJ obtainable from a long-cavity mode-locked fibre master oscillator open new possibilities of application of all pulse types that can be generated in such oscillators.

  6. An effective method to increase bandwidth of EIK at 0.34 THz

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Wang, Guangqiang; Wang, Dongyang

    2018-02-01

    To increase the bandwidth of Extended Interaction Klystron (EIK) at 0.34 THz, the method of staggered tuning on cavities' configurations is proposed. Based on the analysis of phase relationship between gap voltage and the bunched beam, the buncher cavities in EIK are reasonably staggered-tuned to achieve various resonance frequencies, which is helpful to flat the gain response of the whole device. The characteristics of output cavities with different numbers of gaps are then researched and the issue of start current for the self-oscillation mode is also involved, leading to the optimum number of gaps to enhance the interaction and avoid the instability. By comparing the performances of various typical stagger-tuned models, the final configuration is accordingly confirmed. Particle-in-cell simulation is eventually applied to study performance of the optimised structure, whose gain is 34.8 dB in peak and -3 dB bandwidth reaches about 500 MHz, which is double that of the synchronous-tuned structure.

  7. Nonreciprocal lasing in topological cavities of arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Bahari, Babak; Ndao, Abdoulaye; Vallini, Felipe; El Amili, Abdelkrim; Fainman, Yeshaiahu; Kanté, Boubacar

    2017-11-01

    Resonant cavities are essential building blocks governing many wave-based phenomena, but their geometry and reciprocity fundamentally limit the integration of optical devices. We report, at telecommunication wavelengths, geometry-independent and integrated nonreciprocal topological cavities that couple stimulated emission from one-way photonic edge states to a selected waveguide output with an isolation ratio in excess of 10 decibels. Nonreciprocity originates from unidirectional edge states at the boundary between photonic structures with distinct topological invariants. Our experimental demonstration of lasing from topological cavities provides the opportunity to develop complex topological circuitry of arbitrary geometries for the integrated and robust generation and transport of photons in classical and quantum regimes.

  8. Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Cheng, Jin; Lu, Dan-feng; Gao, Ran; Qi, Zhi-mei

    2017-10-01

    In this paper, we report a fiber optic microphone with a large dynamic range. The probe of microphone consists of bi-fiber Fabry-Perot cavity architecture. The wavelength of the working laser is about 1552.05nm. At this wavelength, the interference spectroscopies of these two fiber Fabry-Perot cavities have a quadrature shift. So the outputs of these two fiber Fabry-Perot sensors are orthogonal signal. By using orthogonal signal demodulation method, this microphone can output a signal of acoustic wave. Due to no relationship between output signal and the linear region on interference spectroscopy, the microphones have a large maximum acoustic pressure above 125dB.

  9. Dynamics of a vertical cavity quantum cascade phonon laser structure

    PubMed Central

    Maryam, W.; Akimov, A. V.; Campion, R. P.; Kent, A. J.

    2013-01-01

    Driven primarily by scientific curiosity, but also by the potential applications of intense sources of coherent sound, researchers have targeted the phonon laser (saser) since the invention of the optical laser over 50 years ago. Here we fabricate a vertical cavity structure designed to operate as a saser oscillator device at a frequency of 325 GHz. It is based on a semiconductor superlattice gain medium, inside a multimode cavity between two acoustic Bragg reflectors. We measure the acoustic output of the device as a function of time after applying electrical pumping. The emission builds in intensity reaching a steady state on a timescale of order 0.1 μs. We show that the results are consistent with a model of the dynamics of a saser cavity exactly analogous to the models used for describing laser dynamics. We also obtain estimates for the gain coefficient, steady-state acoustic power output and efficiency of the device. PMID:23884078

  10. Rise time analysis of pulsed klystron-modulator for efficiency improvement of linear colliders

    NASA Astrophysics Data System (ADS)

    Oh, J. S.; Cho, M. H.; Namkung, W.; Chung, K. H.; Shintake, T.; Matsumoto, H.

    2000-04-01

    In linear accelerators, the periods during the rise and fall of a klystron-modulator pulse cannot be used to generate RF power. Thus, these periods need to be minimized to get high efficiency, especially in large-scale machines. In this paper, we present a simplified and generalized voltage rise time function of a pulsed modulator with a high-power klystron load using the equivalent circuit analysis method. The optimum pulse waveform is generated when this pulsed power system is tuned with a damping factor of ˜0.85. The normalized rise time chart presented in this paper allows one to predict the rise time and pulse shape of the pulsed power system in general. The results can be summarized as follows: The large distributed capacitance in the pulse tank and operating parameters, Vs× Tp , where Vs is load voltage and Tp is the pulse width, are the main factors determining the pulse rise time in the high-power RF system. With an RF pulse compression scheme, up to ±3% ripple of the modulator voltage is allowed without serious loss of compressor efficiency, which allows the modulator efficiency to be improved as well. The wiring inductance should be minimized to get the fastest rise time.

  11. Ring-resonator-integrated tunable external cavity laser employing EAM and SOA.

    PubMed

    Yoon, Ki-Hong; Kwon, O-Kyun; Kim, Ki Soo; Choi, Byung-Seok; Oh, Su Hwan; Kim, Hyun Su; Sim, Jae-Sik; Kim, Chul Soo

    2011-12-05

    We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.

  12. Influence of thermal deformation in cavity mirrors on beam propagation characteristics of high-power slab lasers

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui

    2018-01-01

    Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.

  13. Gyrotron cavity resonator with an improved value of Q

    DOEpatents

    Stone, David S.; Shively, James F.

    1982-10-26

    A gyrotron cavity resonator is connected smoothly and directly to an output waveguide with a very gradually tapered wall so that values of external Q lower than twice the diffraction limit are obtainable.

  14. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  15. Measurement technology based on laser internal/external cavity tuning

    NASA Astrophysics Data System (ADS)

    Zhang, Shulian

    2011-08-01

    For an ordinary laser with two cavity mirrors, if the length of laser cavity changes half wavelength the laser frequency changes one longitudinal mode separation. For a laser with three cavity mirrors, in which a feedback mirror is used to feed part of the laser output beam back into the laser cavity, the external cavity length changes half wavelength the laser intensity fluctuates one period. This presentation gives some research results in measurement field based on changing (tuning) the length of laser internal/external cavity, including 1) HeNe laser cavity-tuning nanometer displacement measurement instruments (laser nanometer rulers), 2) HeNe laser feedback displacement measurement, 3) Nd:YAG laser feedback nanometer displacement measurement, 4) benchmark of waveplate phase retardation measurement based on laser frequency splitting, 5) in-site waveplate phase retardation measurement instruments based on laser feedback and polarization hopping, 6) quasi-common-path microchip Nd:YAG laser feedback interferometer, 7) non-contact Nd:YAG laser feedback surface profile measurement. Some of these instruments have been put into application and display some irreplaceable advantages.

  16. Output-Mirror-Tuning Terahertz-Wave Parametric Oscillator with an Asymmetrical Porro-Prism Resonator Configuration

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Liu, Chuang; Chen, Zhenlei

    2017-06-01

    We demonstrate a terahertz-wave parametric oscillator (TPO) with an asymmetrical porro-prism (PP) resonator configuration, consisting of a close PP corner reflector and a distant output mirror relative to the MgO:LiNbO3 crystal. Based on this cavity, frequency tuning of Stokes and the accompanied terahertz (THz) waves is realized just by rotating the plane mirror. Furthermore, THz output with high efficiency and wide tuning range is obtained. Compared with a conventional TPO employing a plane-parallel resonator of the same cavity length and output loss, the low end of the frequency tuning range is extended to 0.96 THz from 1.2 THz. The highest output obtained at 1.28 THz is enhanced by about 25%, and the oscillation threshold pump energy measured at 1.66 THz is reduced by about 4.5%. This resonator configuration also shows some potential to simplify the structure and application for intracavity TPOs.

  17. High brightness angled cavity quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightestmore » QCL to date.« less

  18. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offsetmore » of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest

  19. Compact optical switch based on 2D photonic crystal and magneto-optical cavity.

    PubMed

    Dmitriev, Victor; Kawakatsu, Marcelo N; Portela, Gianni

    2013-04-01

    A compact optical switch based on a 2D photonic crystal (PhC) and a magneto-optical cavity is suggested and analyzed. The cavity is coupled to two parallel and misaligned PC waveguides and operates with dipole mode. When the cavity is nonmagnetized, the dipole mode excited by a signal in the input waveguide has a node in the output waveguide. Therefore, the input signal is reflected from the cavity. This corresponds to the state off of the switch. Normal to the plane of the PhC magnetization by a dc magnetic field produces a rotation of the dipole pattern in the cavity providing equal amplitudes of the electromagnetic fields in the input and the output waveguides. This corresponds to the state on with high transmission of the input signal. Numerical calculations show that at the 1.55 μm wavelength the device has the insertion loss -0.42 dB in the on state, the isolation -19 dB in the off state and the switch off and on ratio P(on)/P(off) about 72. The frequency band at the level of -15 dB of the resonance curve in off state is about 160 GHz.

  20. Validation Studies for CHRISTINE-CC Using a Ka-Band Coupled-Cavity TWT

    DTIC Science & Technology

    2006-04-01

    Cavity TWT for 29-31 GHz Figure 3: Output power vs. input power at f=30.0 Communications Systems," I Ith Ka and Broadband GHz for the VTA-6430A1 Ka...Coupled-Cavity TWT DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: 2006 IEEE...Studies for CHRISTINE-CC Using a Ka-Band Coupled-Cavity TWT * D. Chernin, D. Dialetis, T. M. Antonsen, Jr.t, Science Applications International Corp McLean

  1. Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.

  2. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating

    NASA Astrophysics Data System (ADS)

    Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2018-03-01

    We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (<0.29 nm) and was used as a single-wavelength source. A volume Bragg grating was used as an output coupler for the external-cavity DFB laser to output another stable wavelength beam with a narrow bandwidth of 0.27 nm. A frequency difference for dual-wavelength operation of 0.88 THz was achieved and an output power of up to 415 mW was obtained. The external-cavity DFB laser showed a stable dual-wavelength operation over the practical current and temperature ranges.

  3. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    PubMed

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  4. Sum frequency mixing of copper vapor laser output in KDP and beta-BBO

    NASA Astrophysics Data System (ADS)

    Coutts, D. W.; Ainsworth, M. D.; Piper, J. A.

    1989-09-01

    Generation at 271 nm by frequency summing the two copper vapor laser (CVL) output wavelengths (at 511 and 578 nm) in beta-BBO and KDP is reported. A maximum sum frequency output of 100 mW was obtained for 6.8 W total pump power from a CVL operating with a fully unstable (M = 16) confocal cavity.

  5. Transverse Mode Dynamics and Ultrafast Modulation of Vertical-Cavity Surface-Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We show that multiple transverse mode dynamics of VCSELs (Vertical-Cavity Surface-Emitting Lasers) can be utilized to generate ultrafast intensity modulation at a frequency over 100 GHz, much higher than the relaxation oscillation frequency. Such multimode beating can be greatly enhanced by taking laser output from part of the output facet.

  6. RF extraction issues in the relativistic klystron amplifiers

    NASA Astrophysics Data System (ADS)

    Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.

    1994-05-01

    Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.

  7. Real-Time Adaptive Control of Flow-Induced Cavity Tones

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; Cabell, Randolph H.; Cattafesta, Louis N.

    2004-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. The adaptive control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. The algorithm was also able t o maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are colocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible. In the control-algorithm development, the cavity dynamics are treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support this treatment.

  8. Design and test of SX-FEL cavity BPM

    NASA Astrophysics Data System (ADS)

    Yuan, Ren-Xian; Zhou, Wei-Min; Chen, Zhi-Chu; Yu, Lu-Yang; Wang, Bao-Pen; Leng, Yong-Bin

    2013-11-01

    This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1 μm, even 0.1 μm. The CBPM was optimized by using a coupling slot to damp the TM010 mode in the output signal. The isolation of TM010 mode is about 117 dB, and the shunt impedance is about 200 Ω@4.65 GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM110 mode was about 90 mV/mm when the source was 6 dBm, and the accomplishable minimum voltage was about 200 μV. The resolution of the CBPM was about 0.1 μm from the linear fitting result based on the cold test.

  9. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Danni; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang

    2015-11-15

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% aremore » obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.« less

  10. Compact spectrometer for precision studies of multimode behavior in an extended-cavity diode laser

    NASA Astrophysics Data System (ADS)

    Roach, Timothy; Golemi, Josian; Krueger, Thomas

    2016-05-01

    We have built a compact, inexpensive, high-precision spectrometer and used it to investigate the tuning behavior of a grating stabilized extended-cavity diode laser (ECDL). A common ECDL design uses a laser chip with an uncoated (partially reflecting) front facet, and the laser output exhibits a complicated pattern of mode hops as the frequency is tuned, in some cases even showing chaotic dynamics. Our grating spectrometer (based on a design by White & Scholten) monitors a span of 4000 GHz (8 nm at 780 nm) with a linewidth of 3 GHz, which with line-splitting gives a precision of 0.02 GHz in determining the frequency of a laser mode. We have studied multimode operation of the ECDL, tracking two or three simultaneous chip cavity modes (spacing ~ 30 GHz) during tuning via current or piezo control of the external cavity. Simultaneous output on adjacent external cavity modes (spacing ~ 5 GHz) is monitored by measuring an increase in the spectral linewidth. Computer-control of the spectrometer (for line-fitting and averaging) and of the ECDL (electronic tuning) allows rapid collection of spectral data sets, which we will use to test mathematical simulation models of the non-linear laser cavity interactions.

  11. Implementation of a diode-pumped Nd:YAG laser with quick-change output couplers for high-beam quality 1064 or 532 nm wavelength generation

    NASA Astrophysics Data System (ADS)

    Li, Chun-Hao; Tsai, Ming-Jong

    2009-06-01

    A novel diode-pumped Nd:YAG laser system that employs a fixed active laser medium and a pair of quick-change output couplers on a precision linear stage for 1064 or 532 nm wavelength generation is presented. Fixed elements include a rear mirror, an acousto-optical Q-switch, and a diode-pumped solid-state laser (DPSSL). Movable elements for 1064 nm generation include an intra-cavity aperture as a mode selection element (MSE) and an output coupler. Movable elements for 532 nm generation include an intra-cavity frequency conversion with KTP, an intra-cavity aperture as a mode selection element (MSE), and an output coupler. Under stable operating conditions, the 1064 nm configuration produced a beam propagation ratio of 1.18 whereas the 532 nm configuration produced a beam propagation ratio of 1.1, both of which used an intra-cavity MSE with an aperture of 1.2 mm and a length of 5 mm.

  12. Recent advances in Reltron and Super-Reltron HPM source development

    NASA Astrophysics Data System (ADS)

    Miller, Robert B.; Muehlenweg, Carl A.; Habiger, Kerry W.; Smith, John R.; Shiffler, Donald A.

    1994-05-01

    Reltron and super-reltron microwave tubes use post acceleration of a well-modulated beam and multiple output cavity extraction sections to generate high power microwave pulses with excellent efficiency. We have continued our development of these tubes with emphasis being given to four specific topics: (1) Recent experiments with our 1-GHz super-reltron tube have demonstrated operation at a peak power level of 600 MW. With pulse durations of several hundred nanoseconds, the microwave energy per pulse is about 250 J. (2) We have extracted significant power (several tens of megawatts) at the third multiple (3 GHz) of our 1-GHz super-reltron tube using output cavities designed for operation in S-band. (3) We have fielded a small S-band super-reltron tube on our 260 kV modulator. We have obtained lifetime data for this tube under repetitive (20 Hz), long pulse (2 microsecond(s) ec) operating conditions. (4) We have initiated feasibility experiments of the reltron concept by post accelerating the bunched beam produced by a SLAC XK-5 klystron. In this paper we report our experimental results and discuss relevant theoretical considerations related to each of these four topics.

  13. A geometric approach to identify cavities in particle systems

    NASA Astrophysics Data System (ADS)

    Voyiatzis, Evangelos; Böhm, Michael C.; Müller-Plathe, Florian

    2015-11-01

    The implementation of a geometric algorithm to identify cavities in particle systems in an open-source python program is presented. The algorithm makes use of the Delaunay space tessellation. The present python software is based on platform-independent tools, leading to a portable program. Its successful execution provides information concerning the accessible volume fraction of the system, the size and shape of the cavities and the group of atoms forming each of them. The program can be easily incorporated into the LAMMPS software. An advantage of the present algorithm is that no a priori assumption on the cavity shape has to be made. As an example, the cavity size and shape distributions in a polyethylene melt system are presented for three spherical probe particles. This paper serves also as an introductory manual to the script. It summarizes the algorithm, its implementation, the required user-defined parameters as well as the format of the input and output files. Additionally, we demonstrate possible applications of our approach and compare its capability with the ones of well documented cavity size estimators.

  14. Visible Vertical Cavity Surface Emitting Lasers

    DTIC Science & Technology

    1993-01-01

    circular output beams are easily coupled into optical fibers, or focused or collimated with microlenslets. The VCSELs can be tested individually at the wafer...semiconductor visible VCSEL . Also shown is the DBR reflectance and reflectivity phase , as seen from the optical cavity, and the electric field intensity ...76 xv Figure page 2.32 Calculated electric field intensity for the example IR and visible VCSELs shown in Fig. 2.31 ........................... 79

  15. Wavelength tunable CW red laser generated based on an intracavity-SFG composite cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Z. N.; Bai, Y.; Lei, G. Z.; Bai, B.; Sun, Y. X.; Hu, M. X.; Wang, C.; Bai, J. T.

    2016-12-01

    We report a wavelength-tunable watt-level continuous wave (CW) red laser that uses a composite cavity based on an intracavity sum-frequency generation (SFG). The composite cavity is composed of a LD side-pumped Nd: GdVO4 p-polarized 1062.9 nm resonant cavity and a resonant optical parametric oscillator (SRO) of s-polarized signal light using a periodically poled crystal MgO: PPLN. Based on the temperature tuning from 30 °C to 200 °C, the CW red laser beams are obtained in a tunable waveband from 634.4 nm to 649.1 nm, corresponding to a tunable output waveband from 3278.0 nm to 2940.2 nm of the mid-infrared idler lights. The maximum CW output power of the red laser at 634.4 nm and the idler light at 3278.0 nm reach 3.03 W and 4.13 W under 30 °C, respectively.

  16. A Statistical Representation of Pyrotechnic Igniter Output

    NASA Astrophysics Data System (ADS)

    Guo, Shuyue; Cooper, Marcia

    2017-06-01

    The output of simplified pyrotechnic igniters for research investigations is statistically characterized by monitoring the post-ignition external flow field with Schlieren imaging. Unique to this work is a detailed quantification of all measurable manufacturing parameters (e.g., bridgewire length, charge cavity dimensions, powder bed density) and associated shock-motion variability in the tested igniters. To demonstrate experimental precision of the recorded Schlieren images and developed image processing methodologies, commercial exploding bridgewires using wires of different parameters were tested. Finally, a statistically-significant population of manufactured igniters were tested within the Schlieren arrangement resulting in a characterization of the nominal output. Comparisons between the variances measured throughout the manufacturing processes and the calculated output variance provide insight into the critical device phenomena that dominate performance. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  17. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOEpatents

    Bryan, R.P.; Esherick, P.; Jewell, J.L.; Lear, K.L.; Olbright, G.R.

    1997-04-29

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications. 9 figs.

  18. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOEpatents

    Bryan, Robert P.; Esherick, Peter; Jewell, Jack L.; Lear, Kevin L.; Olbright, Gregory R.

    1997-01-01

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications.

  19. A Laser Cavity for a Future Photon Collider at ILC

    NASA Astrophysics Data System (ADS)

    Klemz, G.; Moenig, K.

    2006-04-01

    Within a future photon-collider based on the infrastructure of ILC the energy of near-infrared laser photons will be boosted by Compton backscattering on a high energy electron beam to well above 100 GeV. By reason of luminosity, an extremely powerful lasersystem is required that will exceed today's state-of-the-art capabilities. An auxiliary cavity for resonantly enhancing the optical peak-power can relax demands on the power output of the laser. In this paper a possible design and the static aspects of a passive cavity are discussed.

  20. Input-output theory for spin-photon coupling in Si double quantum dots

    NASA Astrophysics Data System (ADS)

    Benito, M.; Mi, X.; Taylor, J. M.; Petta, J. R.; Burkard, Guido

    2017-12-01

    The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit.

  1. High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures.

    PubMed

    Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana

    2014-09-22

    A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.

  2. Stability branching induced by collective atomic recoil in an optomechanical ring cavity

    NASA Astrophysics Data System (ADS)

    Ian, Hou

    2017-02-01

    In a ring cavity filled with an atomic condensate, self-bunching of atoms due to the cavity pump mode produce an inversion that re-emits into the cavity probe mode with an exponential gain, forming atomic recoil lasing. An optomechanical ring cavity is formed when one of the reflective mirrors is mounted on a mechanical vibrating beam. In this paper, we extend studies on the stability of linear optomechanical cavities to such ring cavities with two counter-propagating cavity modes, especially when the forward propagating pump mode is taken to its weak coupling limit. We find that when the atomic recoil is in action, stable states of the mechanical mode of the mirror converge into branch cuts, where the gain produced by the recoiling strikes balance with the multiple decay sources, such as cavity leakage in the optomechanical system. This balance is obtained when the propagation delay in the dispersive atomic medium matches in a periodic pattern to the frequencies and linewidths of the cavity mode and the collective bosonic mode of the atoms. We show an input-output hysteresis cycle between the atomic mode and the cavity mode to verify the multi-valuation of the stable states after branching at the weak coupling limit.

  3. L-Band High Power Amplifiers for CEBAF Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugitt, Jock; Killion, Richard; Nelson, Richard

    1990-09-01

    The high power portion of the CEBAF RF system utilizes 340 5kW klystrons providing 339 separately controlled outputs. Modulating anodes have been included in the klystron design to provide for economically efficient operation. The design includes shunt regulator-type modulating anode power supplies running from the cathode power supply, and switching filament power supplies. Remotely programmable filament voltage allows maximum cathode life to be realized. Klystron operating setpoint and fast klystron protection logic are provided by individual external CEBAF RF control modules. A single cathode power supply powers a block of eight klystrons. The design includes circulators and custom extrusion andmore » hybrid waveguide components which have allowed reduced physical size and lower cost in the design of the WR-650 waveguide transmission system.« less

  4. FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking

    DOE PAGES

    Xu, Yilun; Wilcox, Russell; Byrd, John; ...

    2017-11-20

    Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less

  5. FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yilun; Wilcox, Russell; Byrd, John

    Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less

  6. Formation of a Spin Texture in a Quantum Gas Coupled to a Cavity

    NASA Astrophysics Data System (ADS)

    Landini, M.; Dogra, N.; Kroeger, K.; Hruby, L.; Donner, T.; Esslinger, T.

    2018-06-01

    We observe cavity mediated spin-dependent interactions in an off-resonantly driven multilevel atomic Bose-Einstein condensate that is strongly coupled to an optical cavity. Applying a driving field with adjustable polarization, we identify the roles of the scalar and the vectorial components of the atomic polarizability tensor for single and multicomponent condensates. Beyond a critical strength of the vectorial coupling, we infer the formation of a spin texture in a condensate of two internal states from the analysis of the cavity output field. Our work provides perspectives for global dynamical gauge fields and self-consistently spin-orbit coupled gases.

  7. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement.

    PubMed

    Liu, Ye; Wang, D N; Chen, W P

    2016-12-02

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  8. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Wang, D. N.; Chen, W. P.

    2016-12-01

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  9. Development Of Hard X-Ray Sources With High Radiative Power Output At The National Ignition Facility Utilizing Molybdenum and Silver Cavities

    NASA Astrophysics Data System (ADS)

    Widmann, Klaus; Benjamin, Russ; May, Mark; Thorn, Daniel; Colvin, Jeff; Barrios, Maria; Kemp, G. Elijah; Fournier, Kevin; Blue, Brent

    2016-10-01

    In our on-going x-ray source development campaign at the National Ignition Facility, we have recently extended the energy range of our laser-driven cavity sources to the 20 keV range by utilizing molybdenum-lined and silver-lined cavity targets. Using a variety of spectroscopic and power diagnostics we determined that almost 1% of the nearly 1 MJ total laser energy used for heating the cavity target was converted to Mo K-shell x rays using our standard cavity design. The same laser drive for silver-lined cavities yielded about 0.4% conversion efficiency for the Ag K-shell emission. Comparison with HYDRA simulations are used to further optimize the x-rays conversion efficiency. The simulations indicate that minor changes in the aspect ratio of the cavity and the layer thickness may double the radiative power of the K-shell emission. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  10. Calibration of δ13C and δ18O measurements in CO2 using Off-axis Integrated Cavity Output Spectrometer (ICOS)

    NASA Astrophysics Data System (ADS)

    Joseph, Jobin; Külls, Christoph

    2014-05-01

    The δ13C and δ18O of CO2 has enormous potential as tracers to study and quantify the interaction between the water and carbon cycles. Isotope ratio mass spectrometry (IRMS) being the conventional method for stable isotopic measurements, has many limitations making it impossible for deploying them in remote areas for online or in-situ sampling. New laser based absorption spectroscopy approaches like Cavity Ring Down Spectroscopy (CRDS) and Integrated Cavity Output Spectroscopy (ICOS) have been developed for online measurements of stable isotopes at an expense of considerably less power requirement but with precision comparable to IRMS. In this research project, we introduce a new calibration system for an Off- Axis ICOS (Los Gatos Research CCIA-36d) for a wide range of varying concentrations of CO2 (800ppm - 25,000ppm), a typical CO2 flux range at the plant-soil continuum. The calibration compensates for the concentration dependency of δ13C and δ18O measurements, and was performed using various CO2 standards with known CO2 concentration and δC13 and δO18 values. A mathematical model was developed after the calibration procedure as a correction factor for the concentration dependency of δ13C and δ18O measurements. Temperature dependency of δ13C and δ18O measurements were investigated and no significant influence was found. Simultaneous calibration of δ13C and δ18O is achieved using this calibration system with an overall accuracy of (~ 0.75±0.24 ‰ for δ13C, ~ 0.81 ±0.26‰ for δ18O). This calibration procedure is found to be appropriate for making Off-Axis ICOS suitable for measuring CO2 concentration and δ13C and δ18O measurements at atmosphere-plant-soil continuum.

  11. Microwave Tubes.

    DTIC Science & Technology

    1980-06-02

    better possibilities). It should be stated, also, that there exists for both TWT and the klystron, quite straight forward theoretical approaches which can...methods of large signal calculations for coupled cavity TWTs . Copies of this internal memo can be made available to any recipient of this report. M716S GP"I...electrodes and magnetic fields. The magnetic fields, in some cases (klystrons and TWTs ), serve merely to focus the beam, that is, confine the electron

  12. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  13. Dynamic Nuclear Polarization enhanced NMR at 187 GHz/284 MHz using an Extended Interaction Klystron amplifier.

    PubMed

    Kemp, Thomas F; Dannatt, Hugh R W; Barrow, Nathan S; Watts, Anthony; Brown, Steven P; Newton, Mark E; Dupree, Ray

    2016-04-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer which uses a 187 GHz (corresponding to (1)H NMR frequency of 284 MHz) Extended Interaction Klystron (EIK) amplifier as the microwave source is briefly described. Its performance is demonstrated for a biomolecule (bacteriorhodopsin), a pharmaceutical, and surface functionalised silica. The EIK is very compact and easily incorporated into an existing spectrometer. The bandwidth of the amplifier is sufficient that it obviates the need for a sweepable magnetic field, once set, for all commonly used radicals. The variable power (CW or pulsed) output from the EIK is transmitted to the DNP-NMR probe using a quasi-optic system with a high power isolator and a corrugated waveguide which feeds the microwaves into the DNP-NMR probe. Curved mirrors inside the probe project the microwaves down the axis of the MAS rotor, giving a very efficient system such that maximum DNP enhancement is achieved with less than 3 W output from the microwave source. The DNP-NMR probe operates with a sample temperature down to 90K whilst spinning at 8 kHz. Significant enhancements, in excess of 100 for bacteriorhodopsin in purple membrane (bR in PM), are shown along with spectra which are enhanced by ≈25 with respect to room temperature, for both the pharmaceutical furosemide and surface functionalised silica. These enhancements allow hitherto prohibitively time consuming experiments to be undertaken. The power at which the DNP enhancement in bR in PM saturates does not change significantly between 90K and 170 K even though the enhancement drops by a factor of ≈11. As the DNP build up time decreases by a factor 3 over this temperature range, the reduction in T1n is presumably a significant contribution to the drop in enhancement. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Investigation of short cavity CRDS noise terms by optical correlation

    NASA Astrophysics Data System (ADS)

    Griffin, Steven T.; Fathi, Jason

    2013-05-01

    Cavity Ring Down Spectroscopy (CRDS) has been identified as having significant potential for Department of Defense security and sensing applications. Significant factors in the development of new sensor architectures are portability, robustness and economy. A significant factor in new CRDS sensor architectures is cavity length. Prior publication has examined the role of cavity length in sensing modality both from the standpoint of the system's design and the identification of potential difficulties presented by novel approaches. Two of interest here are new noise terms that have been designated turbulence-like and speckle-like in prior publication. In the prior publication the theoretical and some empirical data was presented. This presentation addresses the automation of the experimental apparatus, new data analysis, and implications regarding the significance of the two noise terms. This is accomplished through an Analog-to- Digital Conversion (ADC) from the output of a custom designed optical correlator. Details of the unique application of the developed instrument and implications for short cavity (portable) CRDS applications are presented.

  15. Theory of active mode locking of a semiconductor laser in an external cavity

    NASA Technical Reports Server (NTRS)

    Yeung, J. A.

    1981-01-01

    An analytical treatment is given for the active mode locking of a semiconductor laser in an external resonator. The width of the mode-locked pulses is obtained as a function of the laser and cavity parameters and the amount of frequency detuning. The effects of self-modulation and saturation are included in the treatment. The pulse output is compared with that obtained by a strong modulation of the laser diode with no external cavity.

  16. Absorption, Transmission and Amplification in a Double-Cavity Optomechanical System with Coulomb-Interaction

    NASA Astrophysics Data System (ADS)

    Geng, H.; Liu, H. D.

    2018-04-01

    We explore three interesting phenomena in a double-cavity optomechanical system: coherent perfect absorption, coherent perfect transmission and output signal amplification, and find that these phenomena can be realized and controlled by the coulomb-interaction between the dissipative oscillator locates in the cavity and the gain oscillator locates outside. They originate from the efficient hybrid coupling of optical and mechanical modes, and can be used for realizing novel photonic devices in quantum information networks.

  17. Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 1; Fixed-Gain Control

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III

    2006-01-01

    A generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The control algorithm demonstrated multiple Rossiter-mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are collocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible with the present sensor/actuator arrangement. In the control-algorithm development, the cavity dynamics were treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support to that treatment.

  18. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier.

    PubMed

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-08-02

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs.

  19. INVESTIGATION OF NEW CONCEPTS AND LINEAR BEAM TECHNIQUES FOR MICROWAVE POWER GENERATION.

    DTIC Science & Technology

    ARSENIC ALLOYS, MILLIMETER WAVES, CAVITY RESONATORS, ELECTRON GUNS, ELECTRON DENSITY, EPITAXIAL GROWTH, OSCILLATORS, S BAND , X BAND , GERMANIUM...ELECTRIC FIELDS, SCATTERING, BRILLOUIN ZONES, RUBY, ELECTROSTRICTION, IONIZATION, MICROWAVE OSCILLATORS, KLYSTRONS , EXPERIMENTAL DESIGN.

  20. Microwave pulse compression from a storage cavity with laser-induced switching

    DOEpatents

    Bolton, Paul R.

    1992-01-01

    A laser-induced switch and a multiple cavity configuration are disclosed for producing high power microwave pulses. The microwave pulses are well controlled in wavelength and timing, with a quick rise time and a variable shape and power of the pulse. In addition, a method of reducing pre-pulse leakage to a low level is disclosed. Microwave energy is directed coherently to one or more cavities that stores the energy in a single mode, represented as a standing wave pattern. In order to switch the stored microwave energy out of the main cavity and into the branch waveguide, a laser-actuated switch is provided for the cavity. The switch includes a laser, associated optics for delivering the beam into the main cavity, and a switching gas positioned at an antinode in the main cavity. When actuated, the switching gas ionizes, creating a plasma, which becomes reflective to the microwave energy, changing the resonance of the cavity, and as a result the stored microwave energy is abruptly switched out of the cavity. The laser may directly pre-ionize the switching gas, or it may pump an impurity in the switching gas to an energy level which switches when a pre-selected cavity field is attained. Timing of switching the cavities is controlled by varying the pathlength of the actuating laser beam. For example, the pathlengths may be adjusted to output a single pulse of high power, or a series of quick lower power pulses.

  1. Gain-assisted broadband ring cavity enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Selim, Mahmoud A.; Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2017-02-01

    Incoherent broadband cavity enhanced spectroscopy can significantly increase the effective path length of light-matter interaction to detect weak absorption lines over broad spectral range, for instance to detect gases in confined environments. Broadband cavity enhancement can be based on the decay time or the intensity drop technique. Decay time measurement is based on using tunable laser source that is expensive and suffers from long scan time. Intensity dependent measurement is usually reported based on broadband source using Fabry-Perot cavity, enabling short measurement time but suffers from the alignment tolerance of the cavity and the cavity insertion loss. In this work we overcome these challenges by using an alignment-free ring cavity made of an optical fiber loop and a directional coupler, while having a gain medium pumped below the lasing threshold to improve the finesse and reduce the insertion loss. Acetylene (C2H2) gas absorption is measured around 1535 nm wavelength using a semiconductor optical amplifier (SOA) gain medium. The system is analyzed for different ring resonator forward coupling coefficient and loses, including the 3-cm long gas cell insertion loss and fiber connector losses used in the experimental verification. The experimental results are obtained for a coupler ratio of 90/10 and a fiber length of 4 m. The broadband source is the amplified spontaneous emission of another SOA and the output is measured using a 70pm-resolution optical spectrum analyzer. The absorption depth and the effective interaction length are improved about an order of magnitude compared to the direct absorption of the gas cell. The presented technique provides an engineering method to improve the finesse and, consequently the effective length, while relaxing the technological constraints on the high reflectivity mirrors and free-space cavity alignment.

  2. Relativistic Klystron Amplifiers Driven by Modulated Intense Relativistic Electron Beams

    DTIC Science & Technology

    1990-04-11

    electrical parameters of the cavity were calculated using the SUPERFISH computer code. We found: (1) that the gap voltage, V was half as high as the...SUPERFISH computer code and experimenting with various cavities we found the best cavity geometry that fulfilled the above conditions. For this cavity...paths. Experiments along this line are being planned (T. Godlove and F. Mako, private communciation ). A somewhat different concept which also

  3. Bessel-Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis.

    PubMed

    Gutiérrez-Vega, Julio C; Rodríguez-Masegosa, Rodolfo; Chávez-Cerda, Sabino

    2003-11-01

    A detailed study of the axicon-based Bessel-Gauss resonator with concave output coupler is presented. We employ a technique to convert the Huygens-Fresnel integral self-consistency equation into a matrix equation and then find the eigenvalues and the eigenfields of the resonator at one time. A paraxial ray analysis is performed to find the self-consistency condition to have stable periodic ray trajectories after one or two round trips. The fast-Fourier-transform-based Fox and Li algorithm is applied to describe the three-dimensional intracavity field distribution. Special attention was directed to the dependence of the output transverse profiles, the losses, and the modal-frequency changes on the curvature of the output coupler and the cavity length. The propagation of the output beam is discussed.

  4. Off-axis Integrated Cavity Output Spectrometer measurements of HDO/H2O ratio for understanding water transport in the Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Clouser, B.; Moyer, E. J.; Sarkozy, L.

    2016-12-01

    The Asian monsoon is one of the main pathways by which water vapor enters the stratosphere. However, the pathways by which water is carried to the upper troposphere/lower stratosphere (UTLS) region and the monsoon contributions to the total stratospheric water budget are not well constrained. We describe here a new instrument for measuring the isotopic composition of water vapor in this region, a useful tracer of the convective and microphysical history of air parcels, and show preliminary results from studies of monsoon outflow in summer 2016. The Chicago Water Isotope Spectrometer (Chi-WIS) is an absorption spectroscopy instrument for measurements of HDO and H2O at 2.65 microns by integrated cavity output spectroscopy (ICOS), designed to sample the 14-21 km range from the M55 Geophysica aircraft. The instrument is rebuilt specifically for the StratoClim campaign to study the Asian monsoon effect on the UTLS region in 2016-2017. We discuss steps taken to maximize signal in this extremely cold and dry environment, explore the instrument's sensitivity limits, and discuss data from test flights sampling monsoon outflow.

  5. Project Echo: 960-Megacycle, 10-Kilowatt Transmitter

    NASA Technical Reports Server (NTRS)

    Schafer, J. P.; Brandt, R. H.

    1961-01-01

    A 10-kw transmitter operating at 960 to 961 Mc was used at the eastern terminus of the Project Echo communications experiment. This transmitter is located on Crawford's Hill near Holmdel, New Jersey. The 10-kw output feeds into a waveguide line leading to a 60-foot dish antenna. Exciter-driver units are available to drive the power amplifier with various modulations, such as wide-deviation FM, low-index phase modulation, single-sideband or double-sideband modulation with or without carrier, 960.05 or 961.05 Mc constant-frequency CW, and radar on-off pulses at 961.05 Mc. The main output amplifier consists primarily of a four-stage, externally-tuned-cavity, water-cooled klystron, operating at a beam voltage of 16 to 18 kv. The transmitter has been operated during many Moonbounce, tropospheric scatter, and Echo I tests with very satisfactory results. This paper describes its use before March 1, 1961.

  6. Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal

    NASA Astrophysics Data System (ADS)

    Rodin, Aleksej M.; Grishin, Mikhail; Michailovas, Andrejus

    2016-01-01

    We report results of design and optimization of high average output power picosecond and nanosecond laser operating at 1342 nm wavelength. Developed for selective micromachining, this DPSS laser is comprised of master oscillator, regenerative amplifier and output pulse control module. Passively mode-locked by means of semiconductor saturable absorber mirror and pumped with 808 nm wavelength Nd:YVO4 master oscillator emits 12.5 ps pulses at repetition rate of 55 MHz with average output power of ∼100 mW. The four-pass confocal delay line forms a longest part of the oscillator cavity in order to suppress thermo-mechanical misalignment. Picked from the train seed pulses were injected to the cavity of regenerative amplifier based on composite Nd:YVO4 crystal with diffusion-bonded segments of multiple Nd doping concentration end-pumped at 880 nm wavelength. Laser produces pulses of ∼13 ps duration at 300 kHz repetition rate with average output power of 11 W and nearly diffraction limited beam quality of M2∼1.03. Attained high peak power ∼2.8 MW facilitates conversion to the 2nd, 3rd and 6th harmonics at 671 nm, 447 nm and 224 nm wavelengths with 80%, 50% and 15% efficiency respectively. Without seeding the regenerative amplifier transforms to electro-optically cavity-dumped Q-switched laser providing 10 ns output pulses at high repetition rates with beam propagation factor of M2∼1.06.

  7. Theoretical studies on stability and feasibility of 0.34 THz EIK

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Wang, Jianguo; Wang, Guangqiang; Wang, Dongyang

    2017-05-01

    The stability of the circuit and the tolerance during the manufacture process are theoretically studied in the design of 0.34 THz extended interaction klystron, which are helpful to increase the feasibility of the device. By using the small signal theory, the beam-loading conductance is studied to increase the efficiency of the beam-wave interaction. Combined with the study of start current for oscillation modes, the analysis of stability in multi-gap cavity is proposed, leading to the optimization of cavity. As a crucial factor affecting the ultimate performance of device, the inaccuracy during the fabrication process is researched. The acceptable tolerance is summarized through discussion of various geometrical dimensions' influences on cavity's characteristics. The study of power loss in the conductive wall is presented and the copper is believed to be adapted in making the device practicable with low attenuation. The physical design is simulated and verified by the particle-in-cell (PIC) method, and the results show that the output power of 142 W can be reached steadily at the frequency of 347.7 GHz, approaching the gain of 37.9 dB.

  8. Dynamical regimes and intracavity propagation delay in external cavity semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Jayaprasath, E.; Sivaprakasam, S.

    2017-11-01

    Intracavity propagation delay, a delay introduced by a semiconductor diode laser, is found to significantly influence synchronization of multiple semiconductor diode lasers, operated either in stable or in chaotic regime. Two diode lasers coupled in unidirectional scheme is considered in this numerical study. A diode laser subjected to an optical feedback, also called an external cavity diode laser, acts as the transmitter laser (TL). A solitary diode laser acts as the receiver laser (RL). The optical output of the TL is coupled to the RL and laser operating parameters are optimized to achieve synchronization in their output intensities. The time-of-flight between the TL and RL introduces an intercavity time delay in the dynamics of RL. In addition to this, an intracavity propagation delay arises as the TL's field propagated within the RL. This intracavity propagation delay is evaluated by cross-correlation analysis between the output intensities of the lasers. The intracavity propagation delay is found to increase as the external cavity feedback rate of TL is increased, while an increment in the injection rate between the two lasers resulted in a reduction of intracavity propagation delay.

  9. Description and expected performance of flight-model, 12-gigahertz, output stage tube for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Chomos, G. J.; Curren, A. N.

    1976-01-01

    The flight model output stage tube for the Communications Technology Satellite is described. The output stage tube is a 12-GHz, 200-W, coupled cavity traveling wave tube. The tube has a multistage depressed collector for efficiency enhancement. Collector cooling is accomplished by direct radiation to space. Expected rf performance and factors affecting on orbit performance and life are discussed.

  10. High Power Microwave Tubes: Basics and Trends, Volume 2

    NASA Astrophysics Data System (ADS)

    Kesari, Vishal; Basu, B. N.

    2018-01-01

    Volume 2 of the book begins with chapter 6, in which we have taken up conventional MWTs (such as TWTs, klystrons, including multi-cavity and multi-beam klystrons, klystron variants including reflex klystron, IOT, EIK, EIO and twystron, and crossed-field tubes, namely, magnetron, CFA and carcinotron). In chapter 7, we have taken up fast-wave tubes (such as gyrotron, gyro-BWO, gyro-klystron, gyro-TWT, CARM, SWCA, hybrid gyro-tubes and peniotron). In chapter 8, we discuss vacuum microelectronic tubes (such as klystrino module, THz gyrotron and clinotron BWO); plasma-assisted tubes (such as PWT, plasma-filled TWT, BWO, including PASOTRON, and gyrotron); and HPM (high power microwave) tubes (such as relativistic TWT, relativistic BWO, RELTRON (variant of relativistic klystron), relativistic magnetron, high power Cerenkov tubes including SWO, RDG or orotron, MWCG and MWDG, bremsstrahlung radiation type tube, namely, vircator, and M-type tube MILO). In Chapter 9, we provide handy information about the frequency and power ranges of common MWTs, although more such information is provided at relevant places in the rest of the book as and where necessary. Chapter 10 is an epilogue that sums up the authors' attempt to bring out the various aspects of the basics of and trends in high power MWTs.

  11. Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy.

    PubMed

    de Vine, Glenn; McClelland, David E; Gray, Malcolm B; Close, John D

    2005-05-15

    We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound-Drever-Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.

  12. Output power stability of a HCN laser using a stepping motor for the EAST interferometer system

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.

    2015-11-01

    The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.

  13. High efficiency and high-energy intra-cavity beam shaping laser

    NASA Astrophysics Data System (ADS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-09-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.

  14. Cavity turnover and equilibrium cavity densities in a cottonwood bottomland

    USGS Publications Warehouse

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.

  15. Efficient solar-pumped Nd:YAG laser by a double-stage light-guide/V-groove cavity

    NASA Astrophysics Data System (ADS)

    Almeida, Joana; Liang, Dawei

    2011-05-01

    Since the first reported Nd:YAG solar laser, researchers have been exploiting parabolic mirrors and heliostats for enhancing laser output performance. We are now investigating the production of an efficient solar-pumped laser for the reduction of magnesium from magnesium oxide, which could be an alternative solution to fossil fuel. Therefore both high conversion efficiency and excellent beam quality are imperative. By using a single fused silica light guide of rectangular cross section, highly concentrated solar radiation at the focal spot of a stationary parabolic mirror is efficiently transferred to a water-flooded V-groove pump cavity. It allows for the double-pass absorption of pump light along a 4mm diameter, 30mm length, 1.1at% Nd:YAG rod. Optimum pumping parameters and solar laser output power are found through ZEMAXTM non-sequential ray-tracing and LASCADTM laser cavity analysis. 11.0 W of multimode laser output power with excellent beam profile is numerically calculated, corresponding to 6.1W/m2 collection efficiency. To validate the proposed pumping scheme, an experimental setup of the double-stage light-guide/V-groove cavity was built. 78% of highly concentrated solar radiation was efficiently transmitted by the fused silica light guide. The proposed pumping scheme can be an effective solution for enhancing solar laser performances when compared to other side-pump configurations.

  16. Temporal laser pulse manipulation using multiple optical ring-cavities

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  17. [The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].

    PubMed

    Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun

    2005-12-01

    Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.

  18. Solar power satellite system definition study. Volume 4: Solid State SPS Analysis, Phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A 2500 megawatt solid ground output Solar Power Satellite (SPS) of conventional configuration was designed and analyzed. Because the power per receiving antenna is halved, as compared with the klystron reference, twice the number of receiving antennas are needed to deliver the same total power. The solid state approach appears feasible with a slightly greater specific mass and slightly higher cost than the klystron SPS design.

  19. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    PubMed Central

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-01-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs. PMID:27481661

  20. Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice.

    PubMed

    Kundu, Iman; Dean, Paul; Valavanis, Alexander; Chen, Li; Li, Lianhe; Cunningham, John E; Linfield, Edmund H; Davies, A Giles

    2017-01-09

    We demonstrate quasi-continuous tuning of the emission frequency from coupled cavity terahertz frequency quantum cascade lasers. Such coupled cavity lasers comprise a lasing cavity and a tuning cavity which are optically coupled through a narrow air slit and are operated above and below the lasing threshold current, respectively. The emission frequency of these devices is determined by the Vernier resonance of longitudinal modes in the lasing and the tuning cavities, and can be tuned by applying an index perturbation in the tuning cavity. The spectral coverage of the coupled cavity devices have been increased by reducing the repetition frequency of the Vernier resonance and increasing the ratio of the free spectral ranges of the two cavities. A continuous tuning of the coupled cavity modes has been realized through an index perturbation of the lasing cavity itself by using wide electrical heating pulses at the tuning cavity and exploiting thermal conduction through the monolithic substrate. Single mode emission and discrete frequency tuning over a bandwidth of 100 GHz and a quasi-continuous frequency coverage of 7 GHz at 2.25 THz is demonstrated. An improvement in the side mode suppression and a continuous spectral coverage of 3 GHz is achieved without any degradation of output power by integrating a π-phase shifted photonic lattice in the laser cavity.

  1. Electro-optical resonance modulation of vertical-cavity surface-emitting lasers.

    PubMed

    Germann, Tim David; Hofmann, Werner; Nadtochiy, Alexey M; Schulze, Jan-Hindrik; Mutig, Alex; Strittmatter, André; Bimberg, Dieter

    2012-02-27

    Optical and electrical investigations of vertical-cavity surface-emitting lasers (VCSEL) with a monolithically integrated electro-optical modulator (EOM) allow for a detailed physical understanding of this complex compound cavity laser system. The EOM VCSEL light output is investigated to identify optimal working points. An electro-optic resonance feature triggered by the quantum confined Stark effect is used to modulate individual VCSEL modes by more than 20 dB with an extremely small EOM voltage change of less than 100 mV. Spectral mode analysis reveals modulation of higher order modes and very low wavelength chirp of < 0.5 nm. Dynamic experiments and simulation predict an intrinsic bandwidth of the EOM VCSEL exceeding 50 GHz.

  2. Optical damage observed in the LHMEL II output coupler

    NASA Astrophysics Data System (ADS)

    Eric, John J.; Bagford, John O.; Devlin, Christie L. H.; Hull, Robert J.; Seibert, Daniel B.

    2008-01-01

    During the annual NIST calibration testing done at the LHMEL facility in FY06 on its high energy Carbon-Dioxide lasers, the LHMEL II device suffered severe damage to the internal surface of its ZnSe output coupler optics. The damage occurred during a high power, short duration run and it was believed to have been the result of a significant amount of surface contaminants interacting with the LHMEL cavity beam. Initial theories as to the source of the contamination led to the inspection of the vacuum grease that seals the piping that supplies the source gases to the laser cavity. Other contamination sources were considered, and analysis was conducted in an effort to identify the material found at the damage sites on the optic, but the tests were mainly inconclusive. Some procedure changes were initiated to identify possible contamination before high energy laser operation in an attempt to mitigate and possibly prevent the continued occurrence of damage to the output coupler window. This paper is to illustrate the type and extent of the damage encountered, highlight some of the theories as to the contamination source, and serve as a notice as to the severity and consequences of damage that is possible even due to small amounts of foreign material in a high energy laser environment.

  3. A continuous-wave, widely tunable, intra-cavity, singly resonant, magnesium-doped, periodically poled lithium niobate optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Duan, Y. M.; Wu, K. R.; Zhang, G.; Zhu, H. Y.; Wang, X. L.; Chen, Y. H.; Xue, Z. Q.; Lin, Q.; Song, G. C.; Su, H.

    2013-05-01

    We report a continuous-wave (CW), intra-cavity singly resonant optical parametric oscillator (OPO), based on periodically poled MgO:LiNbO3 pumped by a diode-end-pumped CW Nd:YVO4 laser, and calculate the gain of optical parametric amplification as a function of pump beam waist (at 1064 nm) in the singly resonant OPO (SRO) cavity, to balance the mode-matching and the intensity for the higher gain of a signal wave in the operation of the SRO. In order to achieve maximum gain, we use a convex lens to limit the 1064 nm beam waist. In the experiment, a tunable signal output from 1492 to 1614 nm and an idler output from 3122 to 3709 nm are obtained. For an 808 nm pump power of 11.5 W, a maximum signal output power of up to 2.48 W at 1586 nm and an idler output power of 1.1 W at 3232 nm are achieved with a total optical-to-optical conversion efficiency of 31%.

  4. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    NASA Astrophysics Data System (ADS)

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A.; won Jang, Si; Vinokurov, Nikolay A.; Jeong, Young UK; Hee Park, Seong; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  5. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser.

    PubMed

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A; Jang, Si won; Vinokurov, Nikolay A; Jeong, Young U K; Park, Seong Hee; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  6. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Seon Yeong; Kim, Eun-San, E-mail: eskim1@knu.ac.kr; Hwang, Ji-Gwang

    2015-01-15

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using anmore » oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was −39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.« less

  7. The analysis of temperature effect and temperature compensation of MOEMS accelerometer based on a grating interferometric cavity

    NASA Astrophysics Data System (ADS)

    Han, Dandan; Bai, Jian; Lu, Qianbo; Lou, Shuqi; Jiao, Xufen; Yang, Guoguang

    2016-08-01

    There is a temperature drift of an accelerometer attributed to the temperature variation, which would adversely influence the output performance. In this paper, a quantitative analysis of the temperature effect and the temperature compensation of a MOEMS accelerometer, which is composed of a grating interferometric cavity and a micromachined sensing chip, are proposed. A finite-element-method (FEM) approach is applied in this work to simulate the deformation of the sensing chip of the MOEMS accelerometer at different temperature from -20°C to 70°C. The deformation results in the variation of the distance between the grating and the sensing chip of the MOEMS accelerometer, modulating the output intensities finally. A static temperature model is set up to describe the temperature characteristics of the accelerometer through the simulation results and the temperature compensation is put forward based on the temperature model, which can improve the output performance of the accelerometer. This model is permitted to estimate the temperature effect of this type accelerometer, which contains a micromachined sensing chip. Comparison of the output intensities with and without temperature compensation indicates that the temperature compensation can improve the stability of the output intensities of the MOEMS accelerometer based on a grating interferometric cavity.

  8. Computer program for analysis of coupled-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Omalley, T. A.

    1977-01-01

    A flexible, accurate, large signal computer program was developed for the design of coupled cavity traveling wave tubes. The program is written in FORTRAN IV for an IBM 360/67 time sharing system. The beam is described by a disk model and the slow wave structure by a sequence of cavities, or cells. The computational approach is arranged so that each cavity may have geometrical or electrical parameters different from those of its neighbors. This allows the program user to simulate a tube of almost arbitrary complexity. Input and output couplers, severs, complicated velocity tapers, and other features peculiar to one or a few cavities may be modeled by a correct choice of input data. The beam-wave interaction is handled by an approach in which the radio frequency fields are expanded in solutions to the transverse magnetic wave equation. All significant space harmonics are retained. The program was used to perform a design study of the traveling-wave tube developed for the Communications Technology Satellite. Good agreement was obtained between the predictions of the program and the measured performance of the flight tube.

  9. NRL (Naval Research Laboratory) Review

    DTIC Science & Technology

    1989-07-01

    newmatrial. Vriou difracion The division has recently developed the 475-ftto invent new materials. Various diffraction e-hdel(S- 5 noa dacdfr...study sample between 4 and 400 K without breaking the fabrication methods by using new and/or unusual vacuum. The facility is currently used for...combine the output of multiaperture HF laser amplifiers. 24 . 4 Relativistic Klystron Amplifier New , high-power RF klystron-like amplifiers have been

  10. The SLH framework for modeling quantum input-output networks

    DOE PAGES

    Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan

    2017-09-04

    Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less

  11. The SLH framework for modeling quantum input-output networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan

    Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less

  12. Resonant spin wave excitations in a magnonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Prabhakar, A.

    2018-03-01

    Spin polarized electric current, injected into permalloy (Py) through a nano contact, exerts a torque on the magnetization. The spin waves (SWs) thus excited propagate radially outward. We propose an antidot magnonic crystal (MC) with a three-hole defect (L3) around the nano contact, designed so that the frequency of the excited SWs, lies in the band gap of the MC. L3 thus acts as a resonant SW cavity. The energy in this magnonic crystal cavity can be tapped by an adjacent MC waveguide (MCW). An analysis of the simulated micromagnetic power spectrum, at the output port of the MCW reveals stable SW oscillations. The quality factor of the device, calculated using the decay method, was estimated as Q > 105 for an injected spin current density of 7 ×1012 A/m2.

  13. Long wavelength vertical cavity surface emitting laser

    DOEpatents

    Choquette, Kent D.; Klem, John F.

    2005-08-16

    Selectively oxidized vertical cavity lasers emitting near 1300 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave below, at and above room temperature. The lasers employ two n-type Al.sub.0.94 Ga.sub.0.06 As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the active region, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55.degree. C.

  14. Design of a terahertz parametric oscillator based on a resonant cavity in a terahertz waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, K., E-mail: k-saito@material.tohoku.ac.jp; Oyama, Y.; Tanabe, T.

    We demonstrate ns-pulsed pumping of terahertz (THz) parametric oscillations in a quasi-triply resonant cavity in a THz waveguide. The THz waves, down converted through parametric interactions between the pump and signal waves at telecom frequencies, are confined to a GaP single mode ridge waveguide. By combining the THz waveguide with a quasi-triply resonant cavity, the nonlinear interactions can be enhanced. A low threshold pump intensity for parametric oscillations can be achieved in the cavity waveguide. The THz output power can be maximized by optimizing the quality factors of the cavity so that an optical to THz photon conversion efficiency, η{submore » p}, of 0.35, which is near the quantum-limit level, can be attained. The proposed THz optical parametric oscillator can be utilized as an efficient and monochromatic THz source.« less

  15. Picosecond laser system with 30-W average power via cavity dumping and amplifying

    NASA Astrophysics Data System (ADS)

    Fu, J.; Pang, Q. S.; Chang, L.; Bai, Z. A.; Ai, Q. K.; Chen, L. Y.; Chen, M.; Li, G.; Ma, Y. F.; Fan, Z. W.; Niu, G.; Yu, J.; Liu, Y.; Zhang, X.; Kang, W. Y.; He, K.

    2011-06-01

    We present a picosecond laser system with high energy by technologies of cavity dumping and amplifying. Firstly, pulses with 10 ps and ˜520 nJ were obtained by cavity-dumped mode-locked laser at 10 kHz repetition rate. Secondly those pulses were seeded into a side-pumped regenerative amplifier (RA). Then pulses output from the regenerative amplifier were amplified by two four-pass post amplifiers. From the laser system pulses with an average power of 30 W corresponding to 3 mJ pulse energy were achieved with the pulse-width of 25.4 ps at repetition rate of 10 kHz.

  16. The combination of high Q factor and chirality in twin cavities and microcavity chain

    PubMed Central

    Song, Qinghai; Zhang, Nan; Zhai, Huilin; Liu, Shuai; Gu, Zhiyuan; Wang, Kaiyang; Sun, Shang; Chen, Zhiwei; Li, Meng; Xiao, Shumin

    2014-01-01

    Chirality in microcavities has recently shown its bright future in optical sensing and microsized coherent light sources. The key parameters for such applications are the high quality (Q) factor and large chirality. However, the previous reported chiral resonances are either low Q modes or require very special cavity designs. Here we demonstrate a novel, robust, and general mechanism to obtain the chirality in circular cavity. By placing a circular cavity and a spiral cavity in proximity, we show that ultra-high Q factor, large chirality, and unidirectional output can be obtained simultaneously. The highest Q factors of the non-orthogonal mode pairs are almost the same as the ones in circular cavity. And the co-propagating directions of the non-orthogonal mode pairs can be reversed by tuning the mode coupling. This new mechanism for the combination of high Q factor and large chirality is found to be very robust to cavity size, refractive index, and the shape deformation, showing very nice fabrication tolerance. And it can be further extended to microcavity chain and microcavity plane. We believe that our research will shed light on the practical applications of chirality and microcavities. PMID:25262881

  17. Rf Feedback free electron laser

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1981-01-01

    A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  18. 3.1 W narrowband blue external cavity diode laser

    NASA Astrophysics Data System (ADS)

    Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui

    2018-03-01

    We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.

  19. Vertical cavity surface-emitting semiconductor lasers with injection laser pumping

    NASA Astrophysics Data System (ADS)

    McDaniel, D. L., Jr.; McInerney, J. G.; Raja, M. Y. A.; Schaus, C. F.; Brueck, S. R. J.

    1990-05-01

    Continuous-wave GaAs/GaAlAs edge-emitting diode lasers were used to pump GaAs/AlGaAs and InGaAs/AlGaAs vertical cavity surface-emitting lasers (VCSELs) with resonant periodic gain (RPG) at room temperature. Pump threshold as low as 11 mW, output powers as high as 27 mW at 850 nm, and external differential quantum efficiencies of about 70 percent were observed in GaAs/AlGaAs surface -emitters; spectral brightness 22 times that of the pump laser was also observed. Output powers as high as 85 mW at 950 nm and differential quantum efficiencies of up to 58 percent were recorded for the InGaAs surface-emitting laser. This is the highest quasi-CW output power ever reported for any RPG VCSEL, and the first time such a device has been pumped using an injection laser diode.

  20. A combined source of electron bunches and microwave power

    NASA Astrophysics Data System (ADS)

    Xie, J. L.; Wang, F. Y.; Yang, X. P.; Shen, B.; Gu, W.; Zhang, L. W.

    2003-12-01

    In this article, the possibility of using a high power klystron amplifier simultaneously as a microwave power source as usual and an electron bunches source by extracting the spent beam with a magnet and also as an oscillator by feedback is investigated. The purpose of this study is to demonstrate the feasibility of constructing a very compact electron linear accelerator or for other applications of electron bunches. The feasibility of the idea was first examined by computer simulation of the electron motion in a 5 MW klystron and the characteristics of the klystron spent beam. Experimental study was then carried out by installing a radio frequency cavity and a Faraday cage in sequence at the exit end of a bending magnet located at the top of the klystron collector. The energy and current of the chopped spent electron beam can then be measured. By properly choosing the feedback circuit elements, the frequency stability of the klystron in oscillator mode was proved to be good enough for linac operation. According to the results presented in this article, it is evident that an extremely compact linac for research and education with better affordability can be constructed to promote the applications of linacs.

  1. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Fang, Tianxiao; Cui, Bifeng; Hao, Shuai; Wang, Yang

    2018-02-01

    In order to design a single mode 980 nm vertical cavity surface emitting laser (VCSEL), a 2 μm output aperture is designed to guarantee the single mode output. The effects of different mesa sizes on the lattice temperature, the output power and the voltage are simulated under the condition of continuous working at room temperature, to obtain the optimum process parameters of mesa. It is obtained by results of the crosslight simulation software that the sizes of mesa radius are between 9.5 to 12.5 μm, which cannot only obtain the maximum output power, but also improve the heat dissipation of the device. Project supported by the Beijing Municipal Eduaction Commission (No. PXM2016_014204_500018) and the Construction of Scientific and Technological Innovation Service Ability in 2017 (No. PXM2017_014204_500034).

  2. Optimisation of cavity parameters for lasers based on AlGaInAsP/InP solid solutions (λ = 1470 nm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D A; Ayusheva, K R; Shashkin, I S

    2015-10-31

    We have studied the effect of laser cavity parameters on the light–current characteristics of lasers based on the AlGaInAs/GaInAsP/InP solid solution system that emit in the spectral range 1400 – 1600 nm. It has been shown that optimisation of cavity parameters (chip length and front facet reflectivity) allows one to improve heat removal from the laser, without changing other laser characteristics. An increase in the maximum output optical power of the laser by 0.5 W has been demonstrated due to cavity design optimisation. (lasers)

  3. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.

    2008-12-01

    We describe an instrument for simultaneous measurements of glyoxal (CHOCHO) and nitrogen dioxide (NO2) using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2+O2). Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO2, O4, and H2O in the 441 to 469 nm spectral range. For a 1-min sampling time, the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv, respectively. We directly compare measurements made with the incoherent broadband cavity enhanced absorption spectrometer with those from cavity ringdown instruments detecting CHOCHO and NO2 at 404 and 532 nm, respectively, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO2.

  4. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.

    2008-08-01

    We describe an instrument for simultaneous measurements of glyoxal (CHOCHO) and nitrogen dioxide (NO2) using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2+O2). Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO2, O4, and H2O in the 441 to 469 nm spectral range. For a 1-min sampling time, the minimum detectable absorption is 4×10-10 cm-1, and the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv, respectively. We directly compare the incoherent broadband cavity enhanced absorption spectrometer to 404 and 532 nm cavity ringdown instruments for CHOCHO and NO2 detection, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO2.

  5. Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication and Characterization

    NASA Astrophysics Data System (ADS)

    Geels, Randall Scott

    The theory, design, fabrication, and testing of vertical-cavity surface-emitting lasers (VCSELs) is explored in depth. The design of the distributed Bragg reflector (DBR) mirrors is thoroughly treated and both analytic and numerical approaches for computing the reflectivity are covered. The electrical properties of the DBR mirrors are also considered and graded interfaces are found to be critical in reducing the series voltage drop in the mirrors. Thickness variations due to growth rate uncertainties are considered and the permissible thickness inaccuracies are discussed. Layer thickness variations of several percent can be tolerated without large changes in the threshold current. The growth of VCSELs by molecular beam epitaxy (MBE) is described in detail as is the device processing technology for broad area as well as small area devices. Results from numerous devices are reported. Broad area in-plane lasers were used to characterize the material and determine the internal parameters. Broad area VCSELs were fabricated to determine the characteristics of the VCSEL cavity. Small area VCSELs were fabricated and extensively tested. Measured and derived parameters from small area devices include: threshold current (~0.7 mA), peak output power (>3 mW), maximum operation temperature (>110^ circC), output power at 100^ circC (~0.4 mW), and linewidth (85 MHz). The near field, far field, and polarization characteristics were also measured.

  6. Modeling power flow in the induction cavity with a two dimensional circuit simulation

    NASA Astrophysics Data System (ADS)

    Guo, Fan; Zou, Wenkang; Gong, Boyi; Jiang, Jihao; Chen, Lin; Wang, Meng; Xie, Weiping

    2017-02-01

    We have proposed a two dimensional (2D) circuit model of induction cavity. The oil elbow and azimuthal transmission line are modeled with one dimensional transmission line elements, while 2D transmission line elements are employed to represent the regions inward the azimuthal transmission line. The voltage waveforms obtained by 2D circuit simulation and transient electromagnetic simulation are compared, which shows satisfactory agreement. The influence of impedance mismatch on the power flow condition in the induction cavity is investigated with this 2D circuit model. The simulation results indicate that the peak value of load voltage approaches the maximum if the azimuthal transmission line roughly matches the pulse forming section. The amplitude of output transmission line voltage is strongly influenced by its impedance, but the peak value of load voltage is insensitive to the actual output transmission line impedance. When the load impedance raises, the voltage across the dummy load increases, and the pulse duration at the oil elbow inlet and insulator stack regions also slightly increase.

  7. Laser-diode pumped dysprosium-doped lead thiogallate laser output wavelength temporal evolution and tuning possibilities at 4.3-4.7 um

    NASA Astrophysics Data System (ADS)

    Jelínková, Helena; Doroshenko, Maxim E.; Šulc, Jan; Němec, Michal; Jelínek, Michal; Osiko, Vjatcheslav V.; Badikov, Valerii V.; Badikov, Dmitri V.

    2016-03-01

    On the basis of our previous Dy3+:PbGa2S4 laser study, laser output wavelength temporal evolution as well as tuning possibilities in the range 4.3-4.7 μm were investigated. Active crystal was pumped by a fiber-coupled Brightlase Ultra- 50 diode laser (1.7 μm, max. power 7.5 W). Laser resonator was formed by flat dichroic pumping mirror (T = 70%@1.7 μm, R~100% @ 3.5 - 5 μm) and a concave (r = 200 mm) output coupler with R~99% @ 3.5 - 5 μm. The laser output wavelength dependence on the pump pulse duration and its evolution during the pulse was investigated first without any spectrally-selective element in the cavity. At pump pulse duration of 1 ms, generation just near Dy3+ fluorescence maximum of 4.35 μm has been observed. Prolongation of the pulse up to 5 ms led to similar lasing at 4.35 μm in the first millisecond, followed by simultaneous generation at 4.35 and 4.38 μm in the next millisecond, and further lasing at 4.6 μm till the end of the pump pulse. Increase of pump pulse duration up to 10 ms led to similar oscillation pulse development followed by generation at 4.6 μm only. Furthermore, output wavelength tuning using MgF2 birefringent filter as a cavity spectral selective element was investigated under 10 ms pumping. Almost continuous tuning without any significant dip has been observed within spectral range from 4.3 up to 4.7 μm. Due to practically closed cavity mean output power in the maximum of tuning curve was in the order of 400 μW.

  8. Optimization of CW Fiber Lasers With Strong Nonlinear Cavity Dynamics

    NASA Astrophysics Data System (ADS)

    Shtyrina, O. V.; Efremov, S. A.; Yarutkina, I. A.; Skidin, A. S.; Fedoruk, M. P.

    2018-04-01

    In present work the equation for the saturated gain is derived from one-level gain equations describing the energy evolution inside the laser cavity. It is shown how to derive the parameters of the mathematical model from the experimental results. The numerically-estimated energy and spectrum of the signal are in good agreement with the experiment. Also, the optimization of the output energy is performed for a given set of model parameters.

  9. Plasmonic Waveguide Coupled Ring Cavity for a Non-Resonant Type Refractive Index Sensor.

    PubMed

    Kwon, Soon-Hong

    2017-11-03

    Sensitive refractive index sensors with small footprints have been studied to allow the integration of a large number of sensors into a tiny chip for bio/chemical applications. In particular, resonant-type index sensors based on various micro/nanocavities, which use a resonant wavelength dependence on the refractive index of the analyte, have been developed. However, the spectral linewidth of the resonance, which becomes the resolution limit, is considerably large in plasmonic cavities due to the large absorption loss of metals. Therefore, there is demand for a new type of plasmonic refractive index sensor that is not limited by the linewidth of the cavity. We propose a new type of plasmonic index sensors consisting of a channel waveguide and a ring cavity. Two emissions from the ring cavity in both directions of the waveguide couple with a reflection phase difference depending on the length of a closed right arm with a reflecting boundary. Therefore, the output power dramatically and sensitively changes as a function of the refractive index of the analyte filling the waveguide.

  10. Plasmonic Waveguide Coupled Ring Cavity for a Non-Resonant Type Refractive Index Sensor

    PubMed Central

    Kwon, Soon-Hong

    2017-01-01

    Sensitive refractive index sensors with small footprints have been studied to allow the integration of a large number of sensors into a tiny chip for bio/chemical applications. In particular, resonant-type index sensors based on various micro/nanocavities, which use a resonant wavelength dependence on the refractive index of the analyte, have been developed. However, the spectral linewidth of the resonance, which becomes the resolution limit, is considerably large in plasmonic cavities due to the large absorption loss of metals. Therefore, there is demand for a new type of plasmonic refractive index sensor that is not limited by the linewidth of the cavity. We propose a new type of plasmonic index sensors consisting of a channel waveguide and a ring cavity. Two emissions from the ring cavity in both directions of the waveguide couple with a reflection phase difference depending on the length of a closed right arm with a reflecting boundary. Therefore, the output power dramatically and sensitively changes as a function of the refractive index of the analyte filling the waveguide. PMID:29099740

  11. Rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

    1979-11-02

    A free electron laser system and electron beam system for a free electron laser are provided which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  12. Validation of the doubly labeled water method using off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry.

    PubMed

    Melanson, Edward L; Swibas, Tracy; Kohrt, Wendy M; Catenacci, Vicki A; Creasy, Seth A; Plasqui, Guy; Wouters, Loek; Speakman, John R; Berman, Elena S F

    2018-02-01

    When the doubly labeled water (DLW) method is used to measure total daily energy expenditure (TDEE), isotope measurements are typically performed using isotope ratio mass spectrometry (IRMS). New technologies, such as off-axis integrated cavity output spectroscopy (OA-ICOS) provide comparable isotopic measurements of standard waters and human urine samples, but the accuracy of carbon dioxide production (V̇co 2 ) determined with OA-ICOS has not been demonstrated. We compared simultaneous measurement V̇co 2 obtained using whole-room indirect calorimetry (IC) with DLW-based measurements from IRMS and OA-ICOS. Seventeen subjects (10 female; 22 to 63 yr) were studied for 7 consecutive days in the IC. Subjects consumed a dose of 0.25 g H 2 18 O (98% APE) and 0.14 g 2 H 2 O (99.8% APE) per kilogram of total body water, and urine samples were obtained on days 1 and 8 to measure average daily V̇co 2 using OA-ICOS and IRMS. V̇co 2 was calculated using both the plateau and intercept methods. There were no differences in V̇co 2 measured by OA-ICOS or IRMS compared with IC when the plateau method was used. When the intercept method was used, V̇co 2 using OA-ICOS did not differ from IC, but V̇co 2 measured using IRMS was significantly lower than IC. Accuracy (~1-5%), precision (~8%), intraclass correlation coefficients ( R = 0.87-90), and root mean squared error (30-40 liters/day) of V̇co 2 measured by OA-ICOS and IRMS were similar. Both OA-ICOS and IRMS produced measurements of V̇co 2 with comparable accuracy and precision compared with IC.

  13. 21-nm-range wavelength-tunable L-band Er-doped fiber linear-cavity laser

    NASA Astrophysics Data System (ADS)

    Yang, Shiquan; Zhao, Chunliu; Li, Zhaohui; Ding, Lei; Yuan, Shuzhong; Dong, Xiaoyi

    2001-10-01

    A novel method, which utilizes amplified spontaneous emission (ASE) as a secondary pump source, is presented for implanting a linear cavity erbium-doped fiber laser operating in L-Band. The output wavelength tuned from 1566 nm to 1587 nm, about 21 nm tuning range, was obtained in the experiment and the stability of the laser is very good.

  14. Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Sowade, R.; Breunig, I.; Kiessling, J.; Buse, K.

    2009-07-01

    We demonstrate that for a given pump source, there is an optimum pump threshold to achieve the maximum single-frequency output power in singly resonant optical parametric oscillators. Therefore, cavity losses and parametric amplification have to be adjusted. In particular, continuous-wave output powers of 1.5 W were achieved with a 2.5 cm lithium niobate crystal in comparison with 0.5 W by a 5 cm long crystal within the same cavity design. This counter-intuitive result of weaker amplification leading to larger powers can be explained using a model from L.B. Kreuzer (Proc. Joint Conf. Lasers and Opt.-Elect., p. 52, 1969). Kreuzer also states that single-mode operation is possible only up to pump powers which are 4.6 times the threshold value. Additionally, implementing an outcoupling mirror to increase losses, single-frequency waves with powers of 3 W at 3.2 µm and 7 W at 1.5 µm could be generated simultaneously.

  15. Continuous measurements of water vapor isotopic compositions using an integrated cavity output spectrometer: calibrations and applications

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K.; Dragoni, D.

    2009-04-01

    The 18O and 2H of water vapor can be used to investigate couplings between biological processes (e.g., photosynthesis or transpiration) and hydrologic processes (e.g., evaporation) and therefore serve as powerful tracers in hydrological cycles. A typical method for determining δ18O and δ2H fluxes in landscapes is a "Keeling Plot" approach, which uses field-collected vapor samples coupled with a traditional isotope ratio mass spectrometer to infer the isotopic composition of evapotranspiration. However, fractionation accompanying inefficient vapor trapping can lead to large measurement uncertainty and the intensive laboring involved in cold-trap make it almost impossible for continuous measurements. Over the last 3-4 years a few groups have developed continuous approaches for measuring δ18O and δ2H that use laser absorption spectroscopy (LAS) to achieve accuracy levels similar to lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling, constant calibration to a reference gas, and substantial power requirements, which make them unsuitable for long-term field deployment at remote field sites. In this research, we tested out a new LAS-based water vapor isotope analyzer (WVIA, Los Gatos Research, Inc, Mountain View, CA) based on Integrated Cavity Output Spectroscopy (ICOS) and coupled this instrument with a flux gradient system. The WVIA was calibrated bi-weekly using a dew point generator and water with known δ18O and δ2H signatures. The field work was performed at Morgan-Monroe State Forest Ameriflux tower site (central Indiana) between August 8 and August 27, 2008. The combination method was able to produce hourly δ18O and δ2H fluxes data with reproducibility similar to lab-based mass spectrometry methods. Such high temporal resolution data were also able to capture signatures of canopy and bare soil evaporation to individual rainfall events. The use of the ICOS water vapor analyzer within a gradient system has the

  16. Experimental research on the stability and the multilongitudinal mode interference of bidirectional outputs of LD-pumped solid state ring laser

    NASA Astrophysics Data System (ADS)

    Wan, Shunping; Tian, Qian; Sun, Liqun; Yao, Minyan; Mao, Xianhui; Qiu, Hongyun

    2004-05-01

    This paper reports an experimental research on the stability of bidirectional outputs and multi-longitudinal mode interference of laser diode end-pumped Nd:YVO4 solid-state ring laser (DPSSL). The bidirectional, multi-longitudinal and TEM00 mode continuous wave outputs are obtained and the output powers are measured and their stabilities are analyzed respectively. The spectral characteristic of the outputs is measured. The interfering pattern of the bidirectional longitudinal mode outputs is obtained and analyzed in the condition of the ring cavity with rotation velocity. The movement of the interfering fringe of the multi-longitudinal modes is very sensitive to the deformation of the setup base and the fluctuation of the intracavity air, but is stationary or randomly dithers when the stage is rotating.

  17. Free electron laser using Rf coupled accelerating and decelerating structures

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1984-01-01

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  18. Single steady frequency and narrow-linewidth external-cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Zhao, Weirui; Jiang, Pengfei; Xie, Fuzeng

    2003-11-01

    A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10-3°C by temperature control system. The experiments have been carried out and the results obtained - the spectral line width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.

  19. Green high-power tunable external-cavity GaN diode laser at 515  nm.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-09-15

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode laser system.

  20. 180 MW/180 KW pulse modulator for S-band klystron of LUE-200 linac of IREN installation of JINR

    NASA Astrophysics Data System (ADS)

    Su, Kim Dong; Sumbaev, A. P.; Shvetsov, V. N.

    2014-09-01

    The offer on working out of the pulse modulator with 180 MW pulse power and 180 kW average power for pulse S-band klystrons of LUE-200 linac of IREN installation at the Laboratory of neutron physics (FLNP) at JINR is formulated. Main requirements, key parameters and element base of the modulator are presented. The variant of the basic scheme on the basis of 14 (or 11) stage 2 parallel PFN with the thyratron switchboard (TGI2-10K/50) and six parallel high voltage power supplies (CCPS Power Supply) is considered.

  1. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz.

    PubMed

    Keaveney, James; Hamlyn, William J; Adams, Charles S; Hughes, Ifan G

    2016-09-01

    We report on the development of a diode laser system - the "Faraday laser" - using an atomic Faraday filter as the frequency-selective element. In contrast to typical external-cavity diode laser systems which offer tunable output frequency but require additional control systems in order to achieve a stable output frequency, our system only lases at a single frequency, set by the peak transmission frequency of the internal atomic Faraday filter. Our system has both short-term and long-term stability of less than 1 MHz, which is less than the natural linewidth of alkali-atomic D-lines, making similar systems suitable for use as a "turn-key" solution for laser-cooling experiments.

  2. Experimental Investigation and Computer Modeling of Optical Switching in Distributed Bragg Reflector and Vertical Cavity Surface Emitting Laser Structures.

    DTIC Science & Technology

    1995-12-01

    of a Molecular Beam Epitaxy (MBE) system prior to growing a Vertical Cavity Surface Emitting Laser ( VCSEL ). VCSEL bistability is discussed later in...addition, optical bistability 1 in the reflectivity of a DBR, as well as in the lasing power, wavelength, and beam divergence of a lasing VCSEL are...Spectral Reflectivity of AlGaAs/AlAs VCSEL Top DBR Mirror Cavity Bottom DBR Mirror Substrate Output Beam Resonance Pump Minimum Stop Band Figure 2. VCSEL

  3. KAHVE Laboratory RF circulator and transmission line project

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Hakan; ćaǧlar, Aslıhan; ćiçek, Cihan; Özbey, Aydın; Sunar, Ezgi; Türemen, Görkem; Yıldız, Hüseyin; Yüncü, Alperen; Özcan, Erkcan; Ünel, Gökhan; Yaman, Fatih

    2018-02-01

    An 800 MHz RF circulator and transmission line project has recently started at the newly commissioned Kandilli Detector, Accelerator and Instrumentation (KAHVE) Laboratory at the Boğaziçi University. The aims are to design, build and construct an RF circulator and transmission line in Turkey for high power and high frequency applications. The project consists of 8 transmission line elements: 800 MHz RF generator with 60 kW power (klystron), klystron to waveguide converter, waveguides, E and H bends, 3-port circulator and waveguide to coaxial converter to transmit RF power to a pillbox RF cavity. Design studies and details of the ongoing project will be presented.

  4. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  5. Compact rf polarizer and its application to pulse compression systems

    DOE PAGES

    Franzi, Matthew; Wang, Juwen; Dolgashev, Valery; ...

    2016-06-01

    We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE 114 modes. The overcoupled spherical cavity has a Q 0 of 9.4×10 4 and coupling factor (β) ofmore » 7.69 thus providing a loaded quality factor Q L of 1.06×10 4 with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05 dB and reflection back to the input rectangular WR 90 waveguide less than -40 dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.« less

  6. Transmission-enabled fiber Fabry-Perot cavity based on a deeply etched slotted micromirror.

    PubMed

    Othman, Muhammad A; Sabry, Yasser M; Sadek, Mohamed; Nassar, Ismail M; Khalil, Diaa A

    2018-06-01

    In this work, we report the analysis, fabrication, and characterization of an optical cavity built using a Bragg-coated fiber (BCF) mirror and a metal-coated microelectromechanical systems (MEMS) slotted micromirror, where the latter allows transmission output from the cavity. Theoretical modeling, using Fourier optics analysis for the cavity response based on tracing the propagation of light back and forth between the mirrors, is presented. Detailed simulation analysis is carried out for the spectral response of the cavity under different design conditions. MEMS chips of the slotted micromirror are fabricated using deep reactive ion etching of a silicon-on-insulator substrate with different device-etching depths of 150 μm and 80 μm with aluminum and gold metal coating, respectively. The cavity is characterized as an optical filter using a BCF with reflectivity that is larger than 95% in a 300 nm range across the E-band and the L-band. Versatile filter characteristics were obtained for different values of the MEMS micromirror slit width and cavity length. A free spectral range (FSR) of about 33 nm and a quality factor of about 196 were obtained for a 5.5 μm width aluminum slit, while an FSR of about 148 nm and a quality factor of about 148 were obtained for a 1.5 μm width gold slit. The presented structure opens the door for wide spectral response transmission-type MEMS filters.

  7. Clinical dental application of Er:YAG laser for Class V cavity preparation.

    PubMed

    Matsumoto, K; Nakamura, Y; Mazeki, K; Kimura, Y

    1996-06-01

    Following the development of the ruby laser by Maiman in 1960, the Nd:YAG laser, the CO2 laser, the semiconductor laser, the He-Ne laser, excimer lasers, the argon laser, and finally the Er:YAG laser capable of cutting hard tissue easily were developed and have come to be applied clinically. In the present study, the Er:YAG laser emitting at a wavelength of 2.94 microns developed by Luxar was used for the clinical preparation of class V cavities. Parameters of 8 Hz and approx. 250 mJ/pulse maximum output were used for irradiation. Sixty teeth of 40 patients were used in this clinical study. The Er:YAG laser used in this study was found to be a system suitable for clinical application. No adverse reaction was observed in any of the cases. Class V cavity preparation was performed without inducing any pain in 48/60 cases (80%). All of the 12 cases that complained of mild or severe intraoperative pain had previously complained of cervical dentin hypersensibility during the preoperative examination. Cavity preparation was completed with this laser system in 58/60 cases (91.7%). No treatment-related clinical problems were observed during the follow-up period of approx. 30 days after cavity preparation and resin filling. Cavity preparation took between approx. 10 sec and 3 min and was related more or less to cavity size and depth. Overall clinical evaluation showed no safety problem with very good rating in 49 cases (81.7%).

  8. Cavity solitons and localized patterns in a finite-size optical cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozyreff, G.; Gelens, L.

    2011-08-15

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The resultsmore » are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.« less

  9. Matrix addressable vertical cavity surface emitting laser array

    NASA Astrophysics Data System (ADS)

    Orenstein, M.; von Lehmen, A. C.; Chang-Hasnain, C.; Stoffel, N. G.; Harbison, J. P.

    1991-02-01

    The design, fabrication and characterization of 1024-element matrix-addressable vertical-cavity surface-emitting laser (VCSEL) arrays are described. A strained InGaAs quantum-well VCSEL structure was grown by MBE, and an array of 32 x 32 lasers was defined using a proton implantation process. A matrix addressing architecture was employed, which enables the individual addressing of each of the 1024 lasers using only 64 electrical contacts. All the lasers in the array, measured after the laser definition step, were operating with fairly homogeneous characteristics; threshold current of 6.8 mA and output quantum differential efficiency of about 8 percent.

  10. Electron beam transport analysis of W-band sheet beam klystron

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Xun; Barnett, Larry R.; Luhmann, Neville C.; Shin, Young-Min; Humphries, Stanley

    2010-04-01

    The formation and transport of high-current density electron beams are of critical importance for the success of a number of millimeter wave and terahertz vacuum devices. To elucidate design issues and constraints, the electron gun and periodically cusped magnet stack of the original Stanford Linear Accelerator Center designed W-band sheet beam klystron circuit, which exhibited poor beam transmission (≤55%), have been carefully investigated through theoretical and numerical analyses taking advantage of three-dimensional particle tracking solvers. The re-designed transport system is predicted to exhibit 99.76% (cold) and 97.38% (thermal) beam transmission, respectively, under space-charge-limited emission simulations. The optimized design produces the required high aspect ratio (10:1) sheet beam with 3.2 A emission current with highly stable propagation. In the completely redesigned model containing all the circuit elements, more than 99% beam transmission is experimentally observed at the collector located about 160 mm distant from the cathode surface. Results are in agreement of the predictions of two ray-tracing simulators, CST PARTICLE STUDIO and OMNITRAK which also predict the observed poor transmission in the original design. The quantitative analysis presents practical factors in the modeling process to design a magnetic lens structure to stably transport the elliptical beam along the long drift tube.

  11. Effect of laser cavity parameters on saturation of light – current characteristics of high-power pulsed lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D A; Pikhtin, N A; Lyutetskiy, A V

    2015-07-31

    We report an experimental study of power characteristics of semiconductor lasers based on MOVPE-grown asymmetric separate-confinement heterostructures with a broadened waveguide as functions of cavity length, stripe contact width and mirror reflectivities. It is shown that at high current pump levels, the variation of the cavity parameters of a semiconductor laser (width, length and mirror reflectivities) influences the light – current (L – I) characteristic saturation and maximum optical power by affecting such laser characteristics, as the current density and the optical output loss. A model is elaborated and an optical power of semiconductor lasers is calculated by taking intomore » account the dependence of the internal optical loss on pump current density and concentration distribution of charge carriers and photons along the cavity axis of the cavity. It is found that only introduction of the dependence of the internal optical loss on pump current density to the calculation model provides a good agreement between experimental and calculated L – I characteristics for all scenarios of variations in the laser cavity parameters. (lasers)« less

  12. Segmented trapped vortex cavity

    NASA Technical Reports Server (NTRS)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  13. High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity

    DOE PAGES

    Xu, Luyao; Curwen, Christopher A.; Reno, John L.; ...

    2017-09-04

    A terahertz quantum-cascade (QC) vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated with over 5 mW power in continuous-wave and single-mode operation above 77 K, in combination with a near-Gaussian beam pattern with full-width half-max divergence as narrow as ~5° × 5°, with no evidence of thermal lensing. This is realized by creating an intra-cryostat VECSEL cavity to reduce the cavity loss and designing an active focusing metasurface reflector with low power dissipation for efficient heat removal. Compared with a conventional quantumcascade laser based on a metal-metal waveguide, the intra-cryostat QC-VECSEL exhibits significant improvements in both output power level and beam pattern. Also,more » the intra-cryostat configuration newly allows evaluation of QC-VECSEL operation vs. temperature, showing a maximum pulsed mode operating temperature of 129 K. While the threshold current density in the QC-VECSEL is worse in comparison to a conventional edge-emitting metal-metal waveguide QClaser, the beam quality, slope efficiency, maximum power, and thermal resistance are all significantly improved.« less

  14. Efficient Characterization of Protein Cavities within Molecular Simulation Trajectories: trj_cavity.

    PubMed

    Paramo, Teresa; East, Alexandra; Garzón, Diana; Ulmschneider, Martin B; Bond, Peter J

    2014-05-13

    Protein cavities and tunnels are critical in determining phenomena such as ligand binding, molecular transport, and enzyme catalysis. Molecular dynamics (MD) simulations enable the exploration of the flexibility and conformational plasticity of protein cavities, extending the information available from static experimental structures relevant to, for example, drug design. Here, we present a new tool (trj_cavity) implemented within the GROMACS ( www.gromacs.org ) framework for the rapid identification and characterization of cavities detected within MD trajectories. trj_cavity is optimized for usability and computational efficiency and is applicable to the time-dependent analysis of any cavity topology, and optional specialized descriptors can be used to characterize, for example, protein channels. Its novel grid-based algorithm performs an efficient neighbor search whose calculation time is linear with system size, and a comparison of performance with other widely used cavity analysis programs reveals an orders-of-magnitude improvement in the computational cost. To demonstrate its potential for revealing novel mechanistic insights, trj_cavity has been used to analyze long-time scale simulation trajectories for three diverse protein cavity systems. This has helped to reveal, respectively, the lipid binding mechanism in the deep hydrophobic cavity of a soluble mite-allergen protein, Der p 2; a means for shuttling carbohydrates between the surface-exposed substrate-binding and catalytic pockets of a multidomain, membrane-proximal pullulanase, PulA; and the structural basis for selectivity in the transmembrane pore of a voltage-gated sodium channel (NavMs), embedded within a lipid bilayer environment. trj_cavity is available for download under an open-source license ( http://sourceforge.net/projects/trjcavity ). A simplified, GROMACS-independent version may also be compiled.

  15. Time-domain model of gyroklystrons with diffraction power input and output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Rozental, R. M.; Sergeev, A. S.

    A time-domain theory of gyroklystrons with diffraction input and output has been developed. The theory is based on the description of the wave excitation and propagation by a parabolic equation. The results of the simulations are in good agreement with the experimental studies of two-cavity gyroklystrons operating at the first and second cyclotron harmonics. Along with the basic characteristics of the amplification regimes, such as the gain and efficiency, the developed method makes it possible to define the conditions of spurious self-excitation and frequency-locking by an external signal.

  16. An intra-cavity pumped dual-wavelength laser operating at 946 nm and 1064 nm with Nd:YAG  +  Nd:YVO4 crystals

    NASA Astrophysics Data System (ADS)

    He-Dong, Xiao; Yuan, Dong; Yu, Liu; Shu-Tao, Li; Yong-Ji, Yu; Guang-Yong, Jin

    2016-09-01

    We adopt a compact intra-cavity pumped structure of Nd:YAG and Nd:YVO4 crystals to develop an efficient dual-wavelength laser that operates at 946 nm and 1064 nm. A 808 nm laser diode is used to pump the Nd:YAG crystal, which emits at 946 nm, and the Nd:YVO4 crystal, which emits at 1064 nm, is intra-cavity pumped at 946 nm. In order to avoid unnecessary pump light passing though the Nd:YAG crystal, reaching the Nd:YVO4 crystal and having an impact on the cavity pump, the two crystals are placed as far from one another as possible in this experiment. The output power at 1064 nm can be adjusted from 1 W-2.9 W by varying the separation between the two crystals. A total output power of 4 W at the dual-wavelengths is achieved at an incident pump power of 30.5 W, where the individual output powers for the 946 nm and 1064 nm emissions are 1.1 W and 2.9 W, respectively.

  17. Design of a New Water Load for S-band 750 kW Continuous Wave High Power Klystron Used in EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Liu, Fukun; Shan, Jiafang; Kuang, Guangli

    2007-04-01

    In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 oC at the highest power level.

  18. Cavity Ring-Down Absorption of O2 in Air as a Temperature Sensor for an Open and a Cryogenic Optical Cavity.

    PubMed

    Nyaupane, Parashu R; Perez-Delgado, Yasnahir; Camejo, David; Wright, Lesley M; Manzanares, Carlos E

    2017-05-01

    The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. To obtain the temperature, the energy of the lower rotational state for seven selected rotational transitions is linearly fitted to a logarithmic function that contains the relative intensity of the rotational transition, the initial and final rotational quantum numbers, and the energy of the transition. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube. This flowing air temperature sensor will be used to measure the temperatures of cooling air at the input (cold air) and output (hot air) after cooling the blades of a laboratory gas turbine. The results could contribute to improvements in turbine blade cooling design.

  19. Tunable vertical cavity surface emitting lasers for use in the near infrared biological window

    NASA Astrophysics Data System (ADS)

    Kitsmiller, Vincent J.; Dummer, Matthew; Johnson, Klein; O'Sullivan, Thomas D.

    2018-02-01

    We present a near-infrared tunable vertical cavity surface emitting laser (VCSEL) based upon a unique electrothermally tunable microelectromechanical systems (MEMS) topside mirror designed for tissue imaging and sensing. At room temperature, the laser is tunable from 769-782nm with single mode CW output and a peak output power of 1.3mW. We show that the tunable VCSEL is suitable for use in frequency domain diffuse optical spectroscopy by measuring the optical properties of a tissue-simulating phantom over the tunable range. These results indicate that tunable VCSELs may be an attractive choice to enable high spectral resolution optical sensing in a wearable format.

  20. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production

    Treesearch

    Richard N. Conner; Daniel Saenz; D. Craig Rudolph; William G. Ross; David L. Kulhavy

    1998-01-01

    The authors evaluated selection of nest sites by male red-cockaded woodpeckers (Picoides borealis) in Texas relative to the age of the cavity when only cavities excavated by the woodpeckers were available and when both naturally excavated cavities and artificial cavities were available. They also evaluated nest-cavity selection relative to the ability of naturally...

  1. Dental cavities

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001055.htm Dental cavities To use the sharing features on this page, please enable JavaScript. Dental cavities are holes (or structural damage) in the ...

  2. Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Smagley, Vladimir Anatolievich

    Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.

  3. Experimental demonstration of a Ku-band radial-line relativistic klystron oscillator based on transition radiation

    NASA Astrophysics Data System (ADS)

    Dang, Fangchao; Zhang, Xiaoping; Zhang, Jun; Ju, Jinchuan; Zhong, Huihuang

    2017-03-01

    We report on a radial-line relativistic klystron oscillator (RL-RKO), which is physically designed to generate gigawatt-level high power microwaves (HPMs) at Ku-band. The 3π/4 mode of a four-gap buncher is selected to highly modulate the radially propagating intense relativistic electron beam (IREB). A three-gap extractor operating at the π mode is employed to extract the radio-frequency energy efficiently. The Ku-band RL-RKO is investigated experimentally on an intense-current electron beam accelerator. The radially propagating IREB is well focused with an axial-width of 2 mm by a radial magnetic field of 0.4 T. Microwaves with a frequency of 14.86 GHz and a power of 1.5 GW are generated, corresponding to an efficiency of 24%, which indicates a significant advance for the research of radial-line HPM sources.

  4. Theoretical study on mode competition between fundamental and second harmonic modes in a 0.42 THz gyrotron with gradually tapered complex cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Qixiang, E-mail: zxqi1105@gmail.com; Yu, Sheng; Zhang, Tianzhong

    2015-10-15

    In this paper, the nonlinear dynamics of mode competition in the complex cavity gyrotron are studied by using multi-frequency, time-dependent theory with the cold-cavity longitudinal profile approximation. Based on the theory, a code is written to simulate the mode competition in the gradually tapered complex cavity gyrotron operating at second harmonic oscillation. The simulations tracking seven competition modes show that single mode oscillation of the desired mode TE{sub 17.4} at 150 kW level can be expected with proper choice of operating parameters. Through studying on mode competition, it is proved that the complex cavity has a good capability for suppressing themore » mode competition. Meanwhile, it is found that TE{sub 17.3} could be excited in the first cavity as a competition mode when the gyrotron operating at large beam current, which leads to that TE{sub 17.3} and TE{sub 17.4} with different frequencies can coexist stably in the complex cavity gyrotron with very close amplitudes. Thus, the complex cavity might be used for multi-frequency output gyrotron.« less

  5. Ring laser having an output at a single frequency

    DOEpatents

    Hackell, Lloyd A.

    1991-01-01

    A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.

  6. Numerical studies of the fluid and optical fields associated with complex cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1992-01-01

    Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.

  7. Manipulating the wavelength-drift of a Tm laser for resonance enhancement in an intra-cavity pumped Ho laser.

    PubMed

    Huang, Haizhou; Huang, Jianhong; Liu, Huagang; Li, Jinhui; Lin, Zixiong; Ge, Yan; Dai, Shutao; Deng, Jing; Lin, Wenxiong

    2018-03-05

    We demonstrate an enhancement mechanism and thermal model for intra-cavity pumped lasers, where resonance enhancement in intra-cavity pumped Ho laser was achieved by manipulating the wavelength-drift nature of the Tm laser for the first time. Optical conversion efficiency of 37.5% from an absorbed 785 nm diode laser to a Ho laser was obtained with a maximum output power of 7.51 W at 2122 nm, which is comparable to the conversion efficiency in 1.9 μm LD pumped Ho lasers. Meanwhile, more severe thermal effects in the Ho-doped gain medium than the Tm-doped one at high power operation were verified based on the built thermal model. This work benefits the design or evaluation of intra-cavity pumped lasers, and the resonance enhancement originated from the difference in reabsorption loss between stark levels at the lasing manifolds of quasi-three-level rare-earth ions has great interest to improve the existing intra-cavity pumped lasers or explore novel lasers.

  8. Passivated niobium cavities

    DOEpatents

    Myneni, Ganapati Rao [Yorktown, VA; Hjorvarsson, Bjorgvin [Lagga Arby, SE; Ciovati, Gianluigi [Newport News, VA

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  9. Measurement of Glyoxal Using an Incoherent Broadband Cavity Enhanced Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.

    2008-12-01

    Glyoxal (CHOCHO) is the simplest alpha-dicarbonyl and one of the most prevalent dicarbonyls in the atmosphere. It is formed from the photooxidation of anthropogenic hydrocarbons (e.g. aromatics and acetylene), and is a minor oxidation product of isoprene and other biogenic species. Photolysis of glyoxal is a significant source of HOx (OH + HO2), and there is growing evidence that heterogeneous reactions of glyoxal play an important role in the formation of secondary organic aerosol. We present a novel technique for measurement of glyoxal using cavity enhanced absorption spectroscopy with a broadband light source (IBBCEAS). The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge- coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2 + O2). We use least-squares fitting with published reference spectra to simultaneous retrieve glyoxal, nitrogen dioxide (NO2), oxygen dimer (O4) and water (H2O) in the 441 to 469 nm spectral range. For a 1-min sampling time, the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv respectively. We directly compare the incoherent broadband cavity enhanced absorption spectrometer to 404 and 532 nm cavity ringdown instruments for CHOCHO and NO2 detection, and find linear agreement over a wide range of concentrations. We present laboratory measurements of synthetic and real air samples containing CHOCHO and NO2, and discuss the potential for field measurements.

  10. Spatial Power Combining Amplifier for Ground and Flight Applications

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.; Taylor, M.

    2016-11-01

    Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross

  11. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity.

    PubMed

    Wang, Lei; Zhang, Jinchuan; Jia, Zhiwei; Zhao, Yue; Liu, Chuanwei; Liu, Yinghui; Zhai, Shenqiang; Ning, Zhuo; Xu, Xiangang; Liu, Fengqi

    2016-12-26

    We show a phase-locked array of three quantum cascade lasers with an integrated Talbot cavity at one side of the laser array. The coupling scheme is called diffraction coupling. By controlling the length of Talbot to be a quarter of Talbot distance (Zt/4), in-phase mode operation can be selected. The in-phase operation shows great modal stability under different injection currents, from the threshold current to the full power current. The far-field radiation pattern of the in-phase operation contains three lobes, one central maximum lobe and two side lobes. The interval between adjacent lobes is about 10.5°. The output power is about 1.5 times that of a single-ridge laser. Further studies should be taken to achieve better beam performance and reduce optical losses brought by the integrated Talbot cavity.

  12. Displacement sensor based on intra-cavity tuning of dual-frequency gas laser

    NASA Astrophysics Data System (ADS)

    Niu, Haisha; Niu, Yanxiong; Liu, Ning; Li, Jiyang

    2018-01-01

    A nanometer-resolution displacement measurement instrument based on tunable cavity frequency-splitting method is presented. One beam is split into two orthogonally polarized beams when anisotropic element inserted in the cavity. The two beams with fixed frequency difference are modulated by the movement of the reflection mirror. The changing law of the power tuning curves between the total output and the two orthogonally polarized beams is researched, and a method splitting one tuning cycle to four equal parts is proposed based on the changing law, each part corresponds to one-eighth wavelength of displacement. A laser feedback interferometer (LFI) and piezoelectric ceramic are series connected to the sensor head to calibrate the displacement that less than one-eighth wavelength. The displacement sensor achieves to afford measurement range of 20mm with resolution of 6.93nm.

  13. Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Chang, H. L.; Zhuang, W. Z.; Huang, W. C.; Huang, J. Y.; Huang, K. F.; Chen, Y. F.

    2011-09-01

    We report on a widely tunable passively Q-switched photonic crystal fiber (PCF) laser with wavelength tuning range up to 80 nm. The PCF laser utilizes an AlGaInAs quantum well/barrier structure as a saturable absorber and incorporates an external-cavity optical parametric oscillator (OPO) to achieve wavelength conversion. Under a pump power of 13.1 W at 976 nm, the PCF laser generated 1029-nm radiation with maximum output energy of 750 μJ and was incident into an external-cavity OPO. The output energy and peak power of signal wave was found to be 138 μJ and 19 kW, respectively. By tuning the temperature of nonlinear crystal, periodically poled lithium niobate (PPLN), in the OPO, the signal wavelength in eye-safe regime from 1513 to 1593 nm was obtained.

  14. External cavity cascade diode lasers tunable from 3.05 to 3.25 μm

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Lu, Ming; Stein, Aaron; Belenky, Gregory

    2018-01-01

    The external cavity tunable mid-infrared emitters based on Littrow configuration and utilizing three stages type-I quantum well cascade diode laser gain elements were designed and fabricated. The free-standing coated 7.5-μm-wide ridge waveguide lasers generated more than 30 mW of continuous wave power near 3.25 μm at 20°C when mounted epi-side-up on copper blocks. The external cavity lasers (ECLs) utilized 2-mm-long gain chips with straight ridge design and anti-/neutral-reflection coated facets. The ECLs demonstrated narrow spectrum tunable operation with several milliwatts of output power in spectral region from 3.05 to 3.25 μm corresponding to ˜25 meV of tuning range.

  15. External cavity cascade diode lasers tunable from 3.05 to 3.25 μm

    DOE PAGES

    Wang, Meng; Hosoda, Takashi; Shterengas, Leon; ...

    2017-09-14

    Here, the external cavity tunable mid-infrared emitters based on Littrow configuration and utilizing three stages type-I quantum well cascade diode laser gain elements were designed and fabricated. The free-standing coated 7.5-μm-wide ridge waveguide lasers generated more than 30 mW of continuous wave power near 3.25 μm at 20°C when mounted epi-side-up on copper blocks. The external cavity lasers (ECLs) utilized 2-mm-long gain chips with straight ridge design and anti-/neutral-reflection coated facets. The ECLs demonstrated narrow spectrum tunable operation with several milliwatts of output power in spectral region from 3.05 to 3.25 μm corresponding to ~25 meV of tuning range.

  16. Analysis of the hot-cavity mode composition of an X-band overmoded relativistic backward wave oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang

    Overmoded RBWO (Relativistic Backward Wave Oscillators) is utilized more and more often for its high power capacity. However, both sides of SWS (Slow Wave Structure) of overmoded RBWO consist multi TM{sub 0n} modes; in order to achieve the design of reflector, it is essential to make clear of the mode composition of TM{sub 0n}. NUDT (National University of Defence Technology) had done research of the output mode composition in overmoded O-type Cerenkov HPM (High Power Microwave) Oscillators in detail, but in the area where the electron beam exists, the influence of electron beam must be taken into account. Hot-cavity dispersionmore » equation is figured out in this article first, and then analyzes the hot-cavity mode composition of an X-band overmoded RBWO tentatively. The results show that in collimating hole, the hot-cavity mode analysis is more accurate.« less

  17. Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity

    PubMed Central

    Vora, Patrick M.; Bracker, Allan S.; Carter, Samuel G.; Sweeney, Timothy M.; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G.; Economou, Sophia E.; Gammon, Daniel

    2015-01-01

    The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin–cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet–triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network. PMID:26184654

  18. Control of solid-state lasers using an intra-cavity MEMS micromirror.

    PubMed

    Lubeigt, Walter; Gomes, Joao; Brown, Gordon; Kelly, Andrew; Savitski, Vasili; Uttamchandani, Deepak; Burns, David

    2011-01-31

    High reflectivity, electrothermal and electrostatic MEMS (Micro-Electro-Mechanical Systems) micromirrors were used as a control element within a Nd-doped laser cavity. Stable continuous-wave oscillation of a 3-mirror Nd:YLF laser at a maximum output power of 200 mW was limited by thermally-induced surface deformation of the micromirror. An electrostatic micromirror was used to induce Q-switching, resulting in pulse durations of 220 ns - 2 μs over a repetition frequency range of 6 kHz - 40 kHz.

  19. Optical design and suspension system of the KAGRA output mode-cleaner

    NASA Astrophysics Data System (ADS)

    Kasuya, Junko; Winterflood, John; Li, Ju; Somiya, Kentaro

    2018-02-01

    KAGRA is a Japanese large scale, underground, cryogenic gravitational telescope which is under construction in the Kamioka mine. For using cryogenic test masses, the sensitivity of KAGRA is limited mainly by quantum noise. In order to reduce quantum noise, KAGRA employs an output mode-cleaner (OMC) at the output port that filters out junk light but allows the gravitational wave signal to go through. The requirement of the KAGRA OMC is even more challenging than other telescopes in the world since KAGRA plans to tune the signal readout phase so that the signal-to-noise ratio for our primary target source can be maximized. A proper selection of optical parameters and anti-vibration devices is required for the robust operation of the OMC. In this proceeding, we show our final results of modal-model simulations, in which we downselected the cavity length, the round-trip Gouy phase shift, the finesse, and the seismic isolation ratio for the suspended optics.

  20. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  1. CRSP, numerical results for an electrical resistivity array to detect underground cavities

    NASA Astrophysics Data System (ADS)

    Amini, Amin; Ramazi, Hamidreza

    2017-03-01

    This paper is devoted to the application of the Combined Resistivity Sounding and Profiling electrode configuration (CRSP) to detect underground cavities. Electrical resistivity surveying is among the most favorite geophysical methods due to its nondestructive and economical properties in a wide range of geosciences. Several types of the electrode arrays are applied to detect different certain objectives. In one hand, the electrode array plays an important role in determination of output resolution and depth of investigations in all resistivity surveys. On the other hand, they have their own merits and demerits in terms of depth of investigations, signal strength, and sensitivity to resistivity variations. In this article several synthetic models, simulating different conditions of cavity occurrence, were used to examine the responses of some conventional electrode arrays and also CRSP array. The results showed that CRSP electrode configuration can detect the desired objectives with a higher resolution rather than some other types of arrays. Also a field case study was discussed in which electrical resistivity approach was conducted in Abshenasan expressway (Tehran, Iran) U-turn bridge site for detecting potential cavities and/or filling loose materials. The results led to detect an aqueduct tunnel passing beneath the study area.

  2. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users.

    PubMed

    Vierling, Kerri T; Lorenz, Teresa J; Cunningham, Patrick; Potterf, Kelsi

    2018-04-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and ~ 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  3. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    NASA Astrophysics Data System (ADS)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  4. High voltage systems (tube-type microwave)/low voltage system (solid-state microwave) power distribution

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.; Woodcock, G. R.

    1980-01-01

    SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.

  5. Dual frequency optical cavity

    DOEpatents

    George, E.V.; Schipper, J.F.

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  6. Dual frequency optical cavity

    DOEpatents

    George, E. Victor; Schipper, John F.

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  7. Cavity magnomechanics

    PubMed Central

    Zhang, Xufeng; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2016-01-01

    A dielectric body couples with electromagnetic fields through radiation pressure and electrostrictive forces, which mediate phonon-photon coupling in cavity optomechanics. In a magnetic medium, according to the Korteweg-Helmholtz formula, which describes the electromagnetic force density acting on a medium, magneostrictive forces should arise and lead to phonon-magnon interaction. We report such a coupled phonon-magnon system based on ferrimagnetic spheres, which we term as cavity magnomechanics, by analogy to cavity optomechanics. Coherent phonon-magnon interactions, including electromagnetically induced transparency and absorption, are demonstrated. Because of the strong hybridization of magnon and microwave photon modes and their high tunability, our platform exhibits new features including parametric amplification of magnons and phonons, triple-resonant photon-magnon-phonon coupling, and phonon lasing. Our work demonstrates the fundamental principle of cavity magnomechanics and its application as a new information transduction platform based on coherent coupling between photons, phonons, and magnons. PMID:27034983

  8. Very high repetition-rate electro-optical cavity-dumped Nd: YVO4 laser with optics and dynamics stabilities

    NASA Astrophysics Data System (ADS)

    Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun

    2015-02-01

    In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.

  9. Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy.

    PubMed

    Hildebrandt, Lars; Knispel, Richard; Stry, Sandra; Sacher, Joachim R; Schael, Frank

    2003-04-20

    Commercially available GaN-based laser diodes were antireflection coated in our laboratory and operated in an external cavity in a Littrow configuration. A total tuning range of typically 4 nm and an optical output power of up to 30 mW were observed after optimization of the external cavity. The linewidth was measured with a beterodyne technique, and 0.8 MHz at a sweep time of 50 ms was obtained. The mode-hop-free tuning range was more than 50 GHz. We demonstrated the performance of the laser by detecting the saturated absorption spectrum of atomic indium at 410 nm, allowing observation of well-resolved Lamb dips.

  10. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.

    1959-08-01

    A cavity excitation circuit is described for rapidly building up and maintaining high-level oscillations in a resonant cavity. The circuit overcomes oscillation buildup slowing effects such as ion locking in the cavity by providing for the selective application of an amplified accelerating drive signal to the main cavity exciting oscillator during oscillation buildup and a direct drive signal to the oscillator thereafter.

  11. Resource Quantity and Quality Determine the Inter-Specific Associations between Ecosystem Engineers and Resource Users in a Cavity-Nest Web

    PubMed Central

    Robles, Hugo; Martin, Kathy

    2013-01-01

    While ecosystem engineering is a widespread structural force of ecological communities, the mechanisms underlying the inter-specific associations between ecosystem engineers and resource users are poorly understood. A proper knowledge of these mechanisms is, however, essential to understand how communities are structured. Previous studies suggest that increasing the quantity of resources provided by ecosystem engineers enhances populations of resource users. In a long-term study (1995-2011), we show that the quality of the resources (i.e. tree cavities) provided by ecosystem engineers is also a key feature that explains the inter-specific associations in a tree cavity-nest web. Red-naped sapsuckers ( Sphyrapicus nuchalis ) provided the most abundant cavities (52% of cavities, 0.49 cavities/ha). These cavities were less likely to be used than other cavity types by mountain bluebirds ( Sialia currucoides ), but provided numerous nest-sites (41% of nesting cavities) to tree swallows ( Tachycineta bicolour ). Swallows experienced low reproductive outputs in northern flicker ( Colaptes auratus ) cavities compared to those in sapsucker cavities (1.1 vs. 2.1 fledglings/nest), but the highly abundant flickers (33% of cavities, 0.25 cavities/ha) provided numerous suitable nest-sites for bluebirds (58%). The relative shortage of cavities supplied by hairy woodpeckers ( Picoides villosus ) and fungal/insect decay (<10% of cavities each, <0.09 cavities/ha) provided fewer breeding opportunities (<15% of nests), but represented high quality nest-sites for both bluebirds and swallows. Because both the quantity and quality of resources supplied by different ecosystem engineers may explain the amount of resources used by each resource user, conservation strategies may require different management actions to be implemented for the key ecosystem engineer of each resource user. We, therefore, urge the incorporation of both resource quantity and quality into models that assess

  12. Resource quantity and quality determine the inter-specific associations between ecosystem engineers and resource users in a cavity-nest web.

    PubMed

    Robles, Hugo; Martin, Kathy

    2013-01-01

    While ecosystem engineering is a widespread structural force of ecological communities, the mechanisms underlying the inter-specific associations between ecosystem engineers and resource users are poorly understood. A proper knowledge of these mechanisms is, however, essential to understand how communities are structured. Previous studies suggest that increasing the quantity of resources provided by ecosystem engineers enhances populations of resource users. In a long-term study (1995-2011), we show that the quality of the resources (i.e. tree cavities) provided by ecosystem engineers is also a key feature that explains the inter-specific associations in a tree cavity-nest web. Red-naped sapsuckers (Sphyrapicusnuchalis) provided the most abundant cavities (52% of cavities, 0.49 cavities/ha). These cavities were less likely to be used than other cavity types by mountain bluebirds (Sialiacurrucoides), but provided numerous nest-sites (41% of nesting cavities) to tree swallows (Tachycinetabicolour). Swallows experienced low reproductive outputs in northern flicker (Colaptesauratus) cavities compared to those in sapsucker cavities (1.1 vs. 2.1 fledglings/nest), but the highly abundant flickers (33% of cavities, 0.25 cavities/ha) provided numerous suitable nest-sites for bluebirds (58%). The relative shortage of cavities supplied by hairy woodpeckers (Picoidesvillosus) and fungal/insect decay (<10% of cavities each, <0.09 cavities/ha) provided fewer breeding opportunities (<15% of nests), but represented high quality nest-sites for both bluebirds and swallows. Because both the quantity and quality of resources supplied by different ecosystem engineers may explain the amount of resources used by each resource user, conservation strategies may require different management actions to be implemented for the key ecosystem engineer of each resource user. We, therefore, urge the incorporation of both resource quantity and quality into models that assess community dynamics to

  13. Preliminary research on overmoded high-power millimeter-wave Cerenkov generator with dual-cavity reflector in low guiding magnetic field

    NASA Astrophysics Data System (ADS)

    Ye, Hu; Chen, Changhua; Ning, Hui; Tan, Weibing; Teng, Yan; Shi, Yanchao; Wu, Ping; Song, Zhimin; Cao, Yibing; Du, Zhaoyu

    2015-12-01

    This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use of the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed.

  14. Construction of an Extended Cavity Tunable Diode Laser

    NASA Astrophysics Data System (ADS)

    Deveney, Edward; Metcalf, Harold; Noe, John

    2001-03-01

    A diverse and vast amount of experiments at the forefront of experimental physics typically use diode lasers as an integral part of their arrangement. However, researchers who use unmodified commercially available diode lasers run into several complications. The laser diode that is purchased is often not of the same wavelength as is advertised; thus the researcher’s desired wavelength is not met. Because the semiconductor has such a short external cavity, it is very sensitive to the injection current, changes in room temperature, and has a large linewidth making it harder to tune. To obtain a finely tuned diode laser, temperature and current controlling of the diode laser are used in conjunction with an extended semiconductor cavity. This is achieved by mounting the hermetically sealed assembly atop a thermoelectric cooler, which uses the Peltier effect. Furthermore, the variation of the injection current may be used as an additional control for the wavelength output of the diode. The power range of 70 mW as controlled by the injection current adjusts the wavelength by a span of only 4 nanometers. The extended cavity consists of a diffraction grating adhered to a mirror mount and is used for grating feedback. That in turn is used to reduce the linewidth sufficiently enough in order to provide much better tunability. In the next three weeks, the tunable diode laser will be specifically applied to research in the areas of Second Harmonic Generation in a PPLN Crystal and Saturated Rubidium Spectroscopy. This study was supported in part by NSF grant PHY99-12312.

  15. Scaling the spectral beam combining channel by multiple diode laser stacks in an external cavity

    NASA Astrophysics Data System (ADS)

    Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao; Lei, Fuchuan; Yu, Junhong; Tan, Hao

    2017-04-01

    Spectral beam combining of a broad area diode laser is a promising technique for direct diode laser applications. We present an experimental study of three mini-bar stacks in an external cavity on spectral beam combining in conjunction with spatial beam combining. At the pump current of 70 A, a CW output power of 579 W, spectral bandwidth of 18.8 nm and electro-optical conversion efficiency of 47% are achieved. The measured M 2 values of spectral beam combining are 18.4 and 14.7 for the fast and the slow axis, respectively. The brightness of the spectral beam combining output is 232 MW · cm-2 · sr-1.

  16. Quantum noise and squeezing in optical parametric oscillator with arbitrary output coupling

    NASA Technical Reports Server (NTRS)

    Prasad, Sudhakar

    1993-01-01

    The redistribution of intrinsic quantum noise in the quadratures of the field generated in a sub-threshold degenerate optical parametric oscillator exhibits interesting dependences on the individual output mirror transmittances, when they are included exactly. We present a physical picture of this problem, based on mirror boundary conditions, which is valid for arbitrary transmittances. Hence, our picture applies uniformly to all values of the cavity Q factor representing, in the opposite extremes, both perfect oscillator and amplifier configurations. Beginning with a classical second-harmonic pump, we shall generalize our analysis to the finite amplitude and phase fluctuations of the pump.

  17. A general method to analyze the thermal performance of multi-cavity concentrating solar power receivers

    DOE PAGES

    Fleming, Austin; Folsom, Charles; Ban, Heng; ...

    2015-11-13

    Concentrating solar power (CSP) with thermal energy storage has potential to provide grid-scale, on-demand, dispatachable renewable energy. As higher solar receiver output temperatures are necessary for higher thermal cycle efficiency, current CSP research is focused on high outlet temperature and high efficiency receivers. Here, the objective of this study is to provide a simplified model to analyze the thermal efficiency of multi-cavity concentrating solar power receivers.

  18. Does the availability of artificial cavities affect cavity excavation rates in red-cockaded woodpeckers?

    Treesearch

    Richard N. Conner; Daniel Saenz; D. Craig Rudolph; Richard R. Schaefer

    2002-01-01

    Rates of cavity excavation by Red-cockaded Woodpeckers (Picoides borealis) were examined from 1983 to 1999 on the Angelina National Forest in east Texas. We compared the rare of natural cavity excavation between 1983 and 1990 (before artificial cavities were available) with the rate of cavity excavation between 1992 and 1993, a period when...

  19. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.

    1999-06-15

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.

  20. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun

    1999-01-01

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).

  1. Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.

    PubMed

    Kocaman, Serdar; Sayan, Gönül Turhan

    2016-12-12

    Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).

  2. Tunable high-power blue external cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Lv, Xueqin; Chen, Xinyi; Wang, Fei; Zhang, Jiangyong; Che, Kaijun

    2017-09-01

    A commercially available high-power GaN-based blue laser diode has been operated in a simple Littrow-type external cavity (EC). Two kinds of EC configurations with the grating lines perpendicular (A configuration) and parallel (B configuration) to the p-n junction are evaluated. Good performance has been demonstrated for the EC laser with B configuration due to the better mode selection effect induced by the narrow feedback wavelength range from the grating. Under an injection current of 1100 mA, the spectral linewidth is narrowed significantly down to ∼0.1 nm from ∼1 nm (the free-running width), with a good wavelength-locking behavior and a higher than 35 dB-amplified spontaneous emission suppression ratio. Moreover, a tuning bandwidth of 3.6 nm from 443.9 nm to 447.5 nm is realized with output power of 1.24 W and EC coupling efficiency of 80% at the central wavelength. The grating-coupled blue EC laser with narrow spectral linewidth, flexible wavelength tunability, and high output power shows potential applications in atom cooling and trapping, high-resolution spectroscopy, second harmonic generation, and high-capacity holographic data storage.

  3. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    NASA Astrophysics Data System (ADS)

    Welte, Stephan; Hacker, Bastian; Daiss, Severin; Ritter, Stephan; Rempe, Gerhard

    2018-02-01

    Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2 μ s . We show an entangling operation between the two atoms by generating a Bell state with 76(2)% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6)% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8)%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  4. Preliminary research on overmoded high-power millimeter-wave Cerenkov generator with dual-cavity reflector in low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Hu; Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024

    2015-12-15

    This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use ofmore » the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed.« less

  5. Frequency-doubled vertical-external-cavity surface-emitting laser

    DOEpatents

    Raymond, Thomas D.; Alford, William J.; Crawford, Mary H.; Allerman, Andrew A.

    2002-01-01

    A frequency-doubled semiconductor vertical-external-cavity surface-emitting laser (VECSEL) is disclosed for generating light at a wavelength in the range of 300-550 nanometers. The VECSEL includes a semiconductor multi-quantum-well active region that is electrically or optically pumped to generate lasing at a fundamental wavelength in the range of 600-1100 nanometers. An intracavity nonlinear frequency-doubling crystal then converts the fundamental lasing into a second-harmonic output beam. With optical pumping with 330 milliWatts from a semiconductor diode pump laser, about 5 milliWatts or more of blue light can be generated at 490 nm. The device has applications for high-density optical data storage and retrieval, laser printing, optical image projection, chemical-sensing, materials processing and optical metrology.

  6. Cavity-dumped femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate

    NASA Astrophysics Data System (ADS)

    Yoon, E.; Joo, T.

    2016-03-01

    A synchronously pumped cavity-dumped femtosecond optical parametric oscillator (OPO) based on a periodically poled stoichiometric lithium tantalate (PPSLT) crystal is reported. The OPO runs in positive group velocity dispersion (GVD) mode to deliver high pulse energy at high repetition rate. It delivers pulse energy over 130 nJ up to 500 kHz and 70 nJ at 1 MHz of repetition rate at 1100 nm. Pulse duration is as short as 42 fs, and the OPO is tunable in the near infrared region from 1050 to 1200 nm. Dispersion property of the OPO was also explored. The cavity-dumped output carries a positive GVD, which can be compensated easily by an external prism pair, and large negative third order dispersion (TOD), which results in a pedestal in the pulse shape. Approaches to obtain clean pulse shape by reducing the large TOD are proposed.

  7. Hydroforming of elliptical cavities

    DOE PAGES

    Singer, W.; Singer, X.; Jelezov, I.; ...

    2015-02-27

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E acc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E acc of 30–35 MV/m were measured after BCP and E acc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E acc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have

  8. Hydroforming of elliptical cavities

    NASA Astrophysics Data System (ADS)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been

  9. 10-Gb/s direct modulation of polymer-based tunable external cavity lasers.

    PubMed

    Choi, Byung-Seok; Oh, Su Hwan; Kim, Ki Soo; Yoon, Ki-Hong; Kim, Hyun Soo; Park, Mi-Ran; Jeong, Jong Sool; Kwon, O-Kyun; Seo, Jun-Kyu; Lee, Hak-Kyu; Chung, Yun C

    2012-08-27

    We demonstrate a directly-modulated 10-Gb/s tunable external cavity laser (ECL) fabricated by using a polymer Bragg reflector and a high-speed superluminescent diode (SLD). The tuning range and output power of this ECL are measured to be >11 nm and 2.6 mW (@ 100 mA), respectively. We directly modulate this laser at 10 Gb/s and transmit the modulated signal over 20 km of standard single-mode fiber. The power penalty is measured to be <2.8 dB at the bit-error rate (BER) of 10(-10).

  10. Cavity Processing and Preparation of 650 MHz Elliptical Cell Cavities for PIP-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Allan; Chandrasekaran, Saravan Kumar; Grassellino, Anna

    The PIP-II project at Fermilab requires fifteen 650 MHz SRF cryomodules as part of the 800 MeV LINAC that will provide a high intensity proton beam to the Fermilab neutrino program. A total of fifty-seven high-performance SRF cavities will populate the cryomodules and will operate in both pulsed and continuous wave modes. These cavities will be processed and prepared for performance testing utilizing adapted cavity processing infrastructure already in place at Fermilab and Argonne. The processing recipes implemented for these structures will incorporate state-of-the art processing and cleaning techniques developed for 1.3 GHz SRF cavities for the ILC, XFEL, andmore » LCLS-II projects. This paper describes the details of the processing recipes and associated chemistry, heat treatment, and cleanroom processes at the Fermilab and Argonne cavity processing facilities. This paper also presents single and multi-cell cavity test results with quality factors above 5·10¹⁰ and accelerating gradients above 30 MV/m.« less

  11. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less

  12. Coupling analysis of high Q resonators in add-drop configuration through cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Frigenti, G.; Arjmand, M.; Barucci, A.; Baldini, F.; Berneschi, S.; Farnesi, D.; Gianfreda, M.; Pelli, S.; Soria, S.; Aray, A.; Dumeige, Y.; Féron, P.; Nunzi Conti, G.

    2018-06-01

    An original method able to fully characterize high-Q resonators in an add-drop configuration has been implemented. The method is based on the study of two cavity ringdown (CRD) signals, which are produced at the transmission and drop ports by wavelength sweeping a resonance in a time interval comparable with the photon cavity lifetime. All the resonator parameters can be assessed with a single set of simultaneous measurements. We first developed a model describing the two CRD output signals and a fitting program able to deduce the key parameters from the measured profiles. We successfully validated the model with an experiment based on a fiber ring resonator of known characteristics. Finally, we characterized a high-Q, home-made, MgF2 whispering gallery mode disk resonator in the add-drop configuration, assessing its intrinsic and coupling parameters.

  13. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    DOE PAGES

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; ...

    2015-03-01

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less

  14. Rf system for the NSLS coherent infrared radiation source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broome, W.; Biscardi, R.; Keane, J.

    1995-05-01

    The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity,more » power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.« less

  15. Measuring hourly 18O and 2H fluxes in a mixed hardwood forest using an integrated cavity output spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K.; Dragoni, D.

    2008-12-01

    The 18O and 2H of water vapor can be used to investigate couplings between biological processes (e.g., photosynthesis or transpiration) and hydrologic processes (e.g., evaporation) and therefore serve as powerful tracers in hydrological cycles. A typical method for determining δ18O and δ2H fluxes in landscapes is a 'Keeling Plot' approach, which uses field-collected vapor samples coupled with a traditional isotope ratio mass spectrometer to infer the isotopic composition of evapotranspiration. However, fractionation accompanying inefficient vapor trapping can lead to large measurement uncertainty and the intensive laboring involved in cold-trap make it almost impossible for continuous measurements. Over the last 3-4 years a few groups have developed continuous approaches for measuring δ18O and δ2H that use laser absorption spectroscopy (LAS) to achieve accuracy levels similar to lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling, constant calibration to a reference gas, and substantial power requirements, which make them unsuitable for long-term field deployment at remote field sites. In this research, we tested out a new LAS--based water vapor isotope analyzer (WVIA, Los Gatos Research, Inc, Mountain View, CA) based on Integrated Cavity Output Spectroscopy (ICOS) and coupled this instrument with a flux gradient system. The WVIA was calibrated bi- weekly using a dew point generator and water with known δ18O and δ2H signatures. The field work was performed at Morgan-Monroe State Forest Ameriflux tower site (central Indiana) between August 8 and August 27, 2008. The combination method was able to produce hourly δ18O and δ2H fluxes data with reproducibility similar to lab-based mass spectrometry methods. Such high temporal resolution data were also able to capture signatures of canopy and bare soil evaporation to individual rainfall events. The use of the ICOS water vapor analyzer within a gradient system has the

  16. A Two-stage Injection-locked Magnetron for Accelerators with Superconducting Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazakevich, Grigory; Flanagan, Gene; Johnson, Rolland

    2012-05-01

    A concept for a two-stage injection-locked CW magnetron intended to drive Superconducting Cavities (SC) for intensity-frontier accelerators has been proposed. The concept considers two magnetrons in which the output power differs by 15-20 dB and the lower power magnetron being frequency-locked from an external source locks the higher power magnetron. The injection-locked two-stage CW magnetron can be used as an RF power source for Fermilab's Project-X to feed separately each of the 1.3 GHz SC of the 8 GeV pulsed linac. We expect output/locking power ratio of about 30-40 dB assuming operation in a pulsed mode with pulse duration ofmore » ~ 8 ms and repetition rate of 10 Hz. The experimental setup of a two-stage magnetron utilising CW, S-band, 1 kW tubes operating at pulse duration of 1-10 ms, and the obtained results are presented and discussed in this paper.« less

  17. Diode-pumped microchip Tm:KLu(WO₄)₂ laser with more than 3 W of output power.

    PubMed

    Serres, Josep Maria; Mateos, Xavier; Loiko, Pavel; Yumashev, Konstantin; Kuleshov, Nikolai; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc

    2014-07-15

    A diode-pumped microchip laser containing a quasi-monolithic plano-plano cavity is realized on the basis of a Tm:KLu(WO₄)₂ crystal. The maximum CW output power is 3.2 W (at an absorbed pump power of 6.8 W) and the slope efficiency as high as 50.4%. The laser is operating at 1946 nm in the TEM₀₀ mode with a M²<1.05. Microchip operation with Tm:KLu(WO₄)₂ is, in principle, due to a special crystal cut along the N(g) optical indicatrix axis. This crystal cut possesses positive near-spherical thermal lens that provides the required mode stabilization in the plano-plano cavity. Sensitivity factors of the thermal lens, "generalized" thermo-optic coefficients and constants describing the photoelastic effect are determined for the monolithic Tm:KLu(WO₄)₂ crystal.

  18. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, James H.

    1996-01-01

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.

  19. Littrow-type external-cavity blue laser for holographic data storage.

    PubMed

    Tanaka, Tomiji; Takahashi, Kazuo; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro; Samuels, David; Takeya, Motonobu

    2007-06-10

    An external-cavity laser with a wavelength of 405 nm and an output of 80 mW has been developed for holographic data storage. The laser has three states: the first is a perfect single mode, whose coherent length is 14 m; the second is a three-mode state with a coherent length of 3 mm; and the third is a six-mode state with a coherent length of 0.3 mm. The first and second states are available for angular-multiplexing recording; all states are available for coaxial multiplexing recording. Due to its short wavelength, the recording density is higher than that of a 532 nm laser.

  20. External-cavity beam combining of 4-channel quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Zhang, Jin-Chuan; Zhou, Yu-Hong; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2017-09-01

    We demonstrate an external-cavity (EC) beam combining of 4-channel quantum cascade lasers (QCLs) with an output coupler which makes different QCL beams propagating coaxially. A beam combining efficiency of 35% (up to 75% near threshold) is obtained with a beam quality M2 of 5.5. A peak power of 0.64 W is achieved at a wavelength of 4.7 μm. The differences of spot characteristic between coupled and uncoupled are also showed in this letter. The QCLs in this EC system do not have heat crosstalk so that the system can be used for high power beam combining of QCLs.

  1. JLEIC SRF cavity RF Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaoheng; Guo, Jiquan; Wang, Haipeng

    2016-05-01

    The initial design of a low higher order modes (HOM) impedance superconducting RF (SRF) cavity is presented in this paper. The design of this SRF cavity is for the proposed Jefferson Lab Electron Ion Collider (JLEIC). The electron ring of JLEIC will operate with electrons of 3 to 10 GeV energy. The ion ring of JLEIC will operate with protons of up to 100 GeV energy. The bunch lengths in both rings are ~12 mm (RMS). In order to maintain the short bunch length in the ion ring, SRF cavities are adopted to provide large enough gradient. In the firstmore » phase of JLEIC, the PEP II RF cavities will be reused in the electron ring to lower the initial cost. The frequency of the SRF cavities is chosen to be the second harmonic of PEP II cavities, 952.6 MHz. In the second phase of JLEIC, the same frequency SRF cavities may replace the normal conducting PEP II cavities to achieve higher luminosity at high energy. At low energies, the synchro-tron radiation damping effect is quite weak, to avoid the coupled bunch instability caused by the intense closely-spaced electron bunches, low HOM impedance of the SRF cavities combined with longitudinal feedback sys-tem will be necessary.« less

  2. Nanofriction in Cavity Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Fogarty, T.; Cormick, C.; Landa, H.; Stojanović, Vladimir M.; Demler, E.; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.

  3. Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber.

    PubMed

    Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro

    2005-10-01

    We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.

  4. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, J.H.

    1996-11-26

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.

  5. Systematic cavity design approach for a multi-frequency gyrotron for DEMO and study of its RF behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaria, P. C., E-mail: parth.kalaria@partner.kit.edu; Avramidis, K. A.; Franck, J.

    High frequency (>230 GHz) megawatt-class gyrotrons are planned as RF sources for electron cyclotron resonance heating and current drive in DEMOnstration fusion power plants (DEMOs). In this paper, for the first time, a feasibility study of a 236 GHz DEMO gyrotron is presented by considering all relevant design goals and the possible technical limitations. A mode-selection procedure is proposed in order to satisfy the multi-frequency and frequency-step tunability requirements. An effective systematic design approach for the optimal design of a gradually tapered cavity is presented. The RF-behavior of the proposed cavity is verified rigorously, supporting 920 kW of stable output power withmore » an interaction efficiency of 36% including the considerations of realistic beam parameters.« less

  6. The influence of dentin demineralization on morphological features of cavities using Er:YAG laser.

    PubMed

    Melo, Mary A S; Lima, Juliana P M; Passos, Vanara F; Rodrigues, Lidiany K A

    2015-01-01

    The purpose of this study was to evaluate the influence of erbium-doped: yttrium-aluminum-garnet (Er:YAG) laser parameters and different degrees of demineralization on morphological features, diameter, and depth of prepared cavities. Minimally invasive dentin caries removal has been recommended. Ablation of deep caries lesions using Er:YAG laser should preserve remaining demineralized dentin; however, the influence of the degree of mineralization of this substrate had not been entirely described. A randomized, factorial design was used to study the effects of two factors. Laser parameter was tested at two levels (250 mJ/4 Hz vs. 200 mJ/2 Hz) and degree of demineralization was tested at four levels (control, two-four-eight cycles). Twelve slabs of human dentin were divided into four groups according to the number of cycles induced by pH-cycling: G1, zero cycles; G2, two cycles, G3, four cycles, and G4, eight cycles. An Er:YAG laser was used at an output energy of 250 mJ/4 Hz and 200 mJ/2 Hz for all groups, for 10 sec at 12 mm distance focus/object. Circumference and depth of the cavities were measured on scanning electron microscopy (SEM) images using image analysis software. The mean values were subjected to two way analysis of variance (ANOVA) and Tukey tests. When using 250 mJ/4 Hz, the mean values of circumferential area increased significantly in relation to control (503.54 μm(2)) with increasing demineralization level (eight cycles) (555.45 μm(2)). Regardless of the demineralization level, there was also significant statistical difference in the studied measurements of the cavities when 250 mJ/4 Hz and 200 mJ/2 Hz were used. SEM also showed that laser cavity preparations left no smear layer, and the dentinal tubules were clear. The circumferential area and depth measurements were affected by laser parameter and demineralization level (eight cycles). Energy level output represents a relevant factor for increased circumferential area and depth measurements

  7. Laboratory Plasma Studies

    DTIC Science & Technology

    1989-05-23

    Intense Rela- tivistic Electron Beams S . A Compact Accelerator Powercd by the Relativistic Klystron Amplifier T. Numerical and Experimental Studies of...Research Laboratory Washingto, IX 2075.6000 NRL Memorandum Report 6419 Megavolt, Multi-Kiloamp K - Band Gyrotron Oscillator Experiment W. M. BLACK,* S . H...Ka- Band Gyrotron Oscillator Experiments with Slotted and Unslotted Cavities S . H. GOLD, MEMBER, IEEE. A. W. FLIFLET, MEMBER, IEEE, W. M. MANHEIMER

  8. Effects of cavity-cavity interaction on the entanglement dynamics of a generalized double Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Pandit, Mahasweta; Das, Sreetama; Singha Roy, Sudipto; Shekhar Dhar, Himadri; Sen, Ujjwal

    2018-02-01

    We consider a generalized double Jaynes-Cummings model consisting of two isolated two-level atoms, each contained in a lossless cavity that interact with each other through a controlled photon-hopping mechanism. We analytically show that at low values of such a mediated cavity-cavity interaction, the temporal evolution of entanglement between the atoms, under the effects of cavity perturbation, exhibits the well-known phenomenon of entanglement sudden death (ESD). Interestingly, for moderately large interaction values, a complete preclusion of ESD is achieved, irrespective of its value in the initial atomic state. Our results provide a model to sustain entanglement between two atomic qubits, under the adverse effect of cavity induced perturbation, by introducing a non-intrusive inter-cavity photon exchange that can be physically realized through cavity-QED setups in contemporary experiments.

  9. Temperature Structure of a Coronal Cavity

    NASA Technical Reports Server (NTRS)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel lenth. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011).

  10. High-power lightweight external-cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Day, Timothy; Takeuchi, Eric B.; Weida, Miles; Arnone, David; Pushkarsky, Michael; Boyden, David; Caffey, David

    2009-05-01

    Commercially available quantum cascade gain media has been integrated with advanced coating and die attach technologies, mid-IR micro-optics and telecom-style assembly and packaging to yield cutting edge performance. When combined into Daylight's external-cavity quantum cascade laser (ECqcL) platform, multi-Watt output power has been obtained. Daylight will describe their most recent results obtained from this platform, including high cw power from compact hermetically sealed packages and narrow spectral linewidth devices. Fiber-coupling and direct amplitude modulation from such multi-Watt lasers will also be described. In addition, Daylight will present the most recent results from their compact, portable, battery-operated "thermal laser pointers" that are being used for illumination and aiming applications. When combined with thermal imaging technology, such devices provide significant benefits in contrast and identification.

  11. A Model-Based Fast Protection System for High-Power RF Tube Amplifiers Used at the European XFEL Accelerator

    NASA Astrophysics Data System (ADS)

    Butkowski, Łukasz; Vogel, Vladimir; Schlarb, Holger; Szabatin, Jerzy

    2017-06-01

    The driving engine of the superconducting accelerator of the European X-ray free electron laser (XFEL) is a set of 27 radio frequency (RF) stations. Each of the underground RF stations consists of a multibeam horizontal klystron that can provide up to 10 MW of power at 1.3 GHz. Klystrons are sensitive devices with a limited lifetime and a high mean time between failures. In real operation, the lifetime of the tube can be significantly reduced because of failures. The special fast protection klystron lifetime management (KLM) system has been developed to minimize the influence of service conditions on the lifetime of klystrons. The main task of this system is to detect all events which can destroy the tube as quickly as possible, and switch off the driving RF signal or the high voltage. Detection of events is based on a comparison of the value of the real signal obtained at the system output with the value estimated on the basis of a high-power RF amplifier model and input signals. The KLM system has been realized in field-programmable gate array (FPGA) and implemented in XFEL. Implementation is based on the standard low-level RF micro telecommunications computing architecture (MTCA.4 or xTCA). The main part of the paper focuses on an estimation of the klystron model and the implementation of KLM in FPGA. The results of the performance of the KLM system will also be presented.

  12. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2001-05-15

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  13. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2003-01-01

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  14. Novel approach for chirp and output power compensation applied to a 40-Gbit/s EADFB laser integrated with a short SOA.

    PubMed

    Kobayashi, Wataru; Arai, Masakazu; Fujisawa, Takeshi; Sato, Tomonari; Ito, Toshio; Hasebe, Koichi; Kanazawa, Shigeru; Ueda, Yuta; Yamanaka, Takayuki; Sanjoh, Hiroaki

    2015-04-06

    We propose a novel approach for simultaneously controlling the chirp and increasing the output power of an EADFB laser by monolithically integrating a short-cavity SOA. We achieved a 40-Gbit/s 5-km SMF transmission at a wavelength of 1.55 μm by using an EADFB SOA with a lower power consumption than a stand-alone EADFB laser.

  15. Cavity Enhanced Absorption Spectroscopy using a Prism Cavity and Supercontinuum Source

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.; Johnston, Paul S.

    2010-03-01

    The multiplex advantage of current cavity enhanced spectrometers is limited by the limited high reflectivity bandwidth of the dielectric mirrors used to construct the high finesse cavity. We report on our development of a spectrometer that uses Brewster's angle retroreflectors that is excited with supercontinuum radiation generated by a 1.06 μm pumped photonic crystal fiber, which covers the 500-1800 nm spectral range. Recent progress will be discussed including modeling of the prism cavity losses, alternative prism materials for use in the UV and mid-IR, and a new higher power source pumped by a mode-locked laser.

  16. Gas Cavities inside Dust Cavities in Disks Inferred from ALMA Observations

    NASA Astrophysics Data System (ADS)

    van der Marel, Nienke; van Dishoeck, Ewine F.; Bruderer, Simon; Pinilla, Paola; van Kempen, Tim; Perez, Laura; Isella, Andrea

    2016-01-01

    Protoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.

  17. Hollow waveguide cavity ringdown spectroscopy

    NASA Technical Reports Server (NTRS)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  18. Misalignment sensitivity in an intra-cavity coherently combined crossed-Porro resonator configuration

    NASA Astrophysics Data System (ADS)

    Alperovich, Z.; Buchinsky, O.; Greenstein, S.; Ishaaya, A. A.

    2017-08-01

    We investigate the misalignment sensitivity in a crossed-Porro resonator configuration when coherently combining two pulsed multimode Nd:YAG laser channels. To the best of our knowledge, this is the first reported study of this configuration. The configuration is based on a passive intra-cavity interferometric combiner that promotes self-phase locking and coherent combining. Detailed misalignment sensitivity measurements are presented, examining both translation and angular deviations of the end prisms and combiner, and are compared to the results for standard flat end-mirror configurations. The results show that the most sensitive parameter in the crossed-Porro resonator configuration is the angular tuning of the intra-cavity interferometric combiner, which is ~±54 µrad. In comparison, with the flat end mirror configuration, the most sensitive parameter in the resonator is the angular tuning of the output coupler, which is ~±11 µrad. Thus, with the crossed-Porro configuration, we obtain significantly reduced sensitivity. This ability to reduce the misalignment sensitivity in coherently combined solid-state configurations may be beneficial in paving their way into practical use in a variety of demanding applications.

  19. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Lamour, Tobias P.; Reid, Derryck T.

    2011-08-01

    Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

  20. On the calibration of continuous, high-precision delta18O and delta2H measurements using an off-axis integrated cavity output spectrometer.

    PubMed

    Wang, Lixin; Caylor, Kelly K; Dragoni, Danilo

    2009-02-01

    The (18)O and (2)H of water vapor serve as powerful tracers of hydrological processes. The typical method for determining water vapor delta(18)O and delta(2)H involves cryogenic trapping and isotope ratio mass spectrometry. Even with recent technical advances, these methods cannot resolve vapor composition at high temporal resolutions. In recent years, a few groups have developed continuous laser absorption spectroscopy (LAS) approaches for measuring delta(18)O and delta(2)H which achieve accuracy levels similar to those of lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling and constant calibration to a reference gas, and have substantial power requirements, making them unsuitable for long-term field deployment at remote field sites. A new method called Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) has been developed which requires extremely low-energy consumption and neither reference gas nor cryogenic cooling. In this report, we develop a relatively simple pumping system coupled to a dew point generator to calibrate an ICOS-based instrument (Los Gatos Research Water Vapor Isotope Analyzer (WVIA) DLT-100) under various pressures using liquid water with known isotopic signatures. Results show that the WVIA can be successfully calibrated using this customized system for different pressure settings, which ensure that this instrument can be combined with other gas-sampling systems. The precisions of this instrument and the associated calibration method can reach approximately 0.08 per thousand for delta(18)O and approximately 0.4 per thousand for delta(2)H. Compared with conventional mass spectrometry and other LAS-based methods, the OA-ICOS technique provides a promising alternative tool for continuous water vapor isotopic measurements in field deployments. Copyright 2009 John Wiley & Sons, Ltd.

  1. Partial Cavity Flows at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.

  2. Call for Papers: Cavity QED

    NASA Astrophysics Data System (ADS)

    Lange, W.; Gerard, J.-M.

    2003-06-01

    Cavity QED interactions of light and matter have been investigated in a wide range of systems covering the spectrum from microwaves to optical frequencies, using media as diverse as single atoms and semiconductors. Impressive progress has been achieved technologically as well as conceptually. This topical issue of Journal of Optics B: Quantum and Semiclassical Optics is intended to provide a comprehensive account of the current state of the art of cavity QED by uniting contributions from researchers active across this field. As Guest Editors of this topical issue, we invite manuscripts on current theoretical and experimental work on any aspects of cavity QED. The topics to be covered will include, but are not limited to: bulletCavity QED in optical microcavities bulletSemiconductor cavity QED bulletQuantum dot cavity QED bulletRydberg atoms in microwave cavities bulletPhotonic crystal cavity QED bulletMicrosphere resonators bulletMicrolasers and micromasers bulletMicrodroplets bulletDielectric cavity QED bulletCavity QED-based quantum information processing bulletQuantum state engineering in cavities The DEADLINE for submission of contributions is 31 July 2003 to allow the topical issue to appear in about February 2004. All papers will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. Submissions should ideally be in either standard LaTeX form or Microsoft Word. There are no page charges for publication. In addition to the usual 50 free reprints, the corresponding author of each paper published will receive a complimentary copy of the topical issue. Contributions to the topical issue should if possible be submitted electronically at www.iop.org/journals/jopb. or by e-mail to jopb@iop.org. Authors unable to submit online or by e-mail may send hard copy contributions (enclosing the

  3. Effect of cavity disinfectants on antibacterial activity and microtensile bond strength in class I cavity.

    PubMed

    Kim, Bo-Ram; Oh, Man-Hwan; Shin, Dong-Hoon

    2017-05-31

    This study was performed to compare the antibacterial activities of three cavity disinfectants [chlorhexidine (CHX), NaOCl, urushiol] and to evaluate their effect on the microtensile bond strength of Scotchbond Universal Adhesive (3M-ESPE, St. Paul, MN, USA) in class I cavities. In both experiments, class I cavities were prepared in dentin. After inoculation with Streptococcus mutans, the cavities of control group were rinsed and those of CHX, NaOCl and urushiol groups were treated with each disinfectant. Standardized amounts of dentin chips were collected and number of S. mutans was determined. Following the same cavity treatment, same adhesive was applied in etch-and-rinse mode. Then, microtensile bond strength was evaluated. The number of S. mutans was significantly reduced in the cavities treated with CHX, NaOCl, and urushiol compared with control group (p<0.05). However, there was a significant bond strength reduction in NaOCl group, which showed statistical difference compared to the other groups (p<0.05).

  4. Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities.

    PubMed

    Zhu, X; Cassidy, D T

    1996-08-20

    A liquid detection system consisting of a diode laser with multiple short external cavities (MSXC's) is reported. The MSXC diode laser operates single mode on one of 18 distinct modes that span a range of 72 nm. We selected the modes by setting the length of one of the external cavities using a piezoelectric positioner. One can measure the transmission through cells by modulating the injection current at audio frequencies and using phase-sensitive detection to reject the ambient light and reduce 1/f noise. A method to determine regions of single-mode operation by the rms of the output of the laser is described. The transmission data were processed by multivariate calibration techniques, i.e., partial least squares and principal component regression. Water concentration in acetone was used to demonstrate the performance of the system. A correlation coefficient of R(2) = 0.997 and 0.29% root-mean-square error of prediction are found for water concentration over the range of 2-19%.

  5. Tunable-cavity QED with phase qubits

    NASA Astrophysics Data System (ADS)

    Whittaker, Jed D.; da Silva, Fabio; Allman, Michael Shane; Lecocq, Florent; Cicak, Katarina; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.

    2014-03-01

    We describe a tunable-cavity QED architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both tunneling and dispersive measurements. Dispersive measurement is well characterized by a three-level model, strongly dependent on qubit anharmonicity, qubit-cavity coupling and detuning. The tunable cavity frequency provides dynamic control over the coupling strength and qubit-cavity detuning helping to minimize Purcell losses and cavity-induced dephasing during qubit operation. The maximum decay time T1 = 1 . 5 μs is limited by dielectric losses from a design geometry similar to planar transmon qubits. This work supported by NIST and NSA grant EAO140639.

  6. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm.

    PubMed

    Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang

    2007-10-15

    We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.

  7. Fundamental limitations of cavity-assisted atom interferometry

    NASA Astrophysics Data System (ADS)

    Dovale-Álvarez, M.; Brown, D. D.; Jones, A. W.; Mow-Lowry, C. M.; Miao, H.; Freise, A.

    2017-11-01

    Atom interferometers employing optical cavities to enhance the beam splitter pulses promise significant advances in science and technology, notably for future gravitational wave detectors. Long cavities, on the scale of hundreds of meters, have been proposed in experiments aiming to observe gravitational waves with frequencies below 1 Hz, where laser interferometers, such as LIGO, have poor sensitivity. Alternatively, short cavities have also been proposed for enhancing the sensitivity of more portable atom interferometers. We explore the fundamental limitations of two-mirror cavities for atomic beam splitting, and establish upper bounds on the temperature of the atomic ensemble as a function of cavity length and three design parameters: the cavity g factor, the bandwidth, and the optical suppression factor of the first and second order spatial modes. A lower bound to the cavity bandwidth is found which avoids elongation of the interaction time and maximizes power enhancement. An upper limit to cavity length is found for symmetric two-mirror cavities, restricting the practicality of long baseline detectors. For shorter cavities, an upper limit on the beam size was derived from the geometrical stability of the cavity. These findings aim to aid the design of current and future cavity-assisted atom interferometers.

  8. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, S.

    1984-02-09

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  9. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, Salvatore

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  10. Machining and brazing of accelerating RF cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghodke, S.R.; Barnwal, Rajesh; Mondal, Jayant, E-mail: ghodke_barc@yahoo.co.in

    2014-07-01

    BARC has developed 2856 MHz accelerating cavities for 6 MeV, 9 MeV and 10 MeV RF Linac. New vendors are developed for mass production of accelerating cavity for future projects. New vendors are developing for diamond turning machining, cleaning and brazing processes. Fabrication involved material testing, CNC diamond turning of cavity, cavity cleaning and brazing. Before and after brazing resonance frequency (RF) of cavity was checked with vector network analyser (VNA). A power feed test setup is also fabricated to test power feed cavity before brazing. This test setup will be used to find out assembly performance of power feedmore » cavity and its coupler. This paper discusses about nano machining, cleaning and brazing processes of RF cavities. (author)« less

  11. An economical wireless cavity-nest viewer

    Treesearch

    Daniel P. Huebner; Sarah R. Hurteau

    2007-01-01

    Inspection of cavity nests and nest boxes is often required during studies of cavity-nesting birds, and fiberscopes and pole-mounted video cameras are sometimes used for such inspection. However, the cost of these systems may be prohibitive for some potential users. We describe a user-built, wireless cavity viewer that can be used to access cavities as high as 15 m and...

  12. Forward Modeling of a Coronal Cavity

    NASA Technical Reports Server (NTRS)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  13. Quantized mode of a leaky cavity

    NASA Astrophysics Data System (ADS)

    Dutra, S. M.; Nienhuis, G.

    2000-12-01

    We use Thomson's classical concept of mode of a leaky cavity to develop a quantum theory of cavity damping. This theory generalizes the conventional system-reservoir theory of high-Q cavity damping to arbitrary Q. The small system now consists of damped oscillators corresponding to the natural modes of the leaky cavity rather than undamped oscillators associated with the normal modes of a fictitious perfect cavity. The formalism unifies semiclassical Fox-Li modes and the normal modes traditionally used for quantization. It also lays the foundations for a full quantum description of excess noise. The connection with Siegman's semiclassical work is straightforward. In a wider context, this theory constitutes a radical departure from present models of dissipation in quantum mechanics: unlike conventional models, system and reservoir operators no longer commute with each other. This noncommutability is an unavoidable consequence of having to use natural cavity modes rather than normal modes of a fictitious perfect cavity.

  14. Cavity-locked ring down spectroscopy

    DOEpatents

    Zare, Richard N.; Paldus, Barbara A.; Harb, Charles C.; Spence, Thomas

    2000-01-01

    Distinct locking and sampling light beams are used in a cavity ring-down spectroscopy (CRDS) system to perform multiple ring-down measurements while the laser and ring-down cavity are continuously locked. The sampling and locking light beams have different frequencies, to ensure that the sampling and locking light are decoupled within the cavity. Preferably, the ring-down cavity is ring-shaped, the sampling light is s-polarized, and the locking light is p-polarized. Transmitted sampling light is used for ring-down measurements, while reflected locking light is used for locking in a Pound-Drever scheme.

  15. Performance improvement of high repetition rate electro-optical cavity-dumped Nd:GdVO4 laser

    NASA Astrophysics Data System (ADS)

    Yu, X.; Wang, C.; Ma, Y. F.; Chen, F.; Yan, R. P.; Li, X. D.

    2012-02-01

    We improved the electro-optical cavity-dumped Nd:GdVO4 laser performance at high repetition rates by employing continuous-grown GdVO4/Nd:GdVO4 composite crystal under 879 nm diode-laser pumping. A constant 3.8 ns duration pulsed laser was obtained and the repetition rate could reach up to 100 kHz with a maximum average output power of 13.1 W and a slope efficiency of 56.4%, corresponding to a peak power of 34.4 kW.

  16. CIRCULAR CAVITY SLOT ANTENNA

    DOEpatents

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  17. Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing

    NASA Astrophysics Data System (ADS)

    Larsson, David; Greve, Anders; Hvam, Jørn M.; Boisen, Anja; Yvind, Kresten

    2009-03-01

    We have experimentally investigated self-mixing interference produced by the feedback of light from a polymer micrometer-sized cantilever into a vertical-cavity surface-emitting laser for sensing applications. In particular we have investigated how the visibility of the optical output power and the junction voltage depends on the laser injection current and the distance to the cantilever. The highest power visibility obtained from cantilevers without reflective coatings was ˜60%, resulting in a very high sensitivity of 45 mV/nm with a noise floor below 1.2 mV. Different detection schemes are discussed.

  18. Short cavity active mode locking fiber laser for optical sensing and imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Han, Ga Hee; Jeong, Syung Won; Jeong, Myung Yung; Kim, Chang-Seok; Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong

    2014-05-01

    We demonstrate a highly linear wavenumber- swept active mode locking (AML) fiber laser for optical sensing and imaging without any wavenumber-space resampling process. In this all-electric AML wavenumber-swept mechanism, a conventional wavelength selection filter is eliminated and, instead, the suitable programmed electric modulation signal is directly applied to the gain medium. Various types of wavenumber (or wavelength) tunings can be implemented because of the filter-less cavity configuration. Therefore, we successfully demonstrate a linearly wavenumber-swept AML fiber laser with 26.5 mW of output power to obtain an in-vivo OCT image at the 100 kHz swept rate.

  19. Application of M-type cathodes to high-power cw klystrons

    NASA Astrophysics Data System (ADS)

    Isagawa, S.; Higuchi, T.; Kobayashi, K.; Miyake, S.; Ohya, K.; Yoshida, M.

    1999-05-01

    Two types of high-power cw klystrons have been widely used at KEK in both TRISTAN and KEKB e +e - collider projects: one is a 0.8 MW/1.0 MW tube, called YK1302/YK1303 (Philips); the other is a 1.2 MW tube, called E3786/E3732 (Toshiba). Normally, the dispenser cathodes of the `B-type' and the `S-type' have been used, respectively, but for improved versions they have been replaced by low-temperature cathodes, called the `M-type'. An Os/Ru coating was applied to the former, whereas an Ir one was applied to the latter. Until now, all upgraded tubes installing M-type cathodes, 9 and 8 in number, respectively, have worked successfully without any dropout. A positive experience concerning the lifetime under real operation conditions has been obtained. M-type cathodes are, however, more easily poisoned. One tube installing an Os/Ru-coated cathode showed a gradual, and then sudden decrease in emission during an underheating test, although the emission could fortunately be recovered by aging at the KEK test field. Once sufficiently aged, the emission of an Ir-coated cathode proved to be very high and stable, and its lifetime is expected to be very long. One disadvantage of this cathode is, however, susceptibility to gas poisoning and the necessity of long-term initial aging. New techniques, like ion milling and fine-grained tungsten top layers, were not as successful as expected from their smaller scale applications to shorten the initial aging period. A burn-in process at higher cathode loading was efficient to make the poisoned cathode active and to decrease unwanted Wehnelt emission. On top of that, the emission cooling, and thus thermal conductivity near the emitting layer could play an important role in such large-current cathodes as ours.

  20. Development of new S-band SLED for PAL-XFEL Linac

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik; Lee, Heung-Soo; Noh, Sungju; Oh, Kyoungmin

    2017-01-01

    In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.

  1. Study on the After Cavity Interaction in a 140 GHz Gyrotron Using 3D CFDTD PIC Simulations

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Illy, S.; Avramidis, K.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on after cavity interaction (ACI) in a 140 GHz gryotron for fusion research has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. The ACI, i.e. beam wave interaction in the non-linear uptaper after the cavity has attracted a lot of attention and been widely investigated in recent years. In a dynamic ACI, a TE mode is excited by the electron beam at the same frequency as in the cavity, and the same mode is also interacting with the spent electron beam at a different frequency in the non-linear uptaper after the cavity while in a static ACI, a mode interacts with the beam both at the cavity and at the uptaper, but at the same frequency. A previous study on the dynamic ACI on a 140 GHz gyrotron has concluded that more advanced numerical simulations such as particle-in-cell (PIC) modeling should be employed to study or confirm the dynamic ACI in addition to using trajectory codes. In this work, we use a 3-D full wave time domain simulation based on the CFDTD PIC method to include the rippled-wall launcher of the quasi-optical output coupler into the simulations which breaks the axial symmetry of the original model employing a symmetric one. A preliminary simulation result has confirmed the dynamic ACI effect in this 140 GHz gyrotron in good agreement with the former study. A realistic launcher will be included in the model for studying the dynamic ACI and compared with the homogenous one.

  2. Pressure and kinetic energy transport across the cavity mouth in resonating cavities.

    PubMed

    Bailey, Peter Roger; Abbá, Antonella; Tordella, Daniela

    2013-01-01

    Basic properties of the incompressible fluid motion in a rectangular cavity located along one wall of a plane channel are considered. For Mach numbers of the order of 1×10(-3) and using the incompressible formulation, we look for observable properties that can be associated with acoustic emission, which is normally observed in this kind of flow beyond a critical value of Reynolds number. The focus is put on the energy dynamics, in particular on the accumulation of energy in the cavity which takes place in the form of pressure and kinetic energy. By increasing the external forcing, we observe that the pressure flow into the cavity increases very rapidly, then peaks. However, the flow of kinetic energy, which is many orders of magnitude lower than that of the pressure, slowly but continuously grows. This leads to the pressure-kinetic energy flows ratio reaching an asymptotic state around the value 1000 for the channel bulk speed Reynolds number. It is interesting to note that beyond this threshold when the channel flow is highly unsteady-a sort of coarse turbulent flow-a sequence of high and low pressure spots is seen to depart from the downward cavity step in the statistically averaged field. The set of spots forms a steady spatial structure, a sort of damped standing wave stretching along the spanwise direction. The line joining the centers of the spots has an inclination similar to the normal to the fronts of density or pressure waves, which are observed to propagate from the downstream cavity edge in compressible cavity flows (at Mach numbers of 1×10(2) to 1×10(3), larger than those considered here). The wavelength of the standing wave is of the order of 1/8 the cavity depth and observed at the channel bulk Reynolds number, Re~2900. In this condition, the measure of the maximum pressure differences in the cavity field shows values of the order of 1×10(-1) Pa. We interpret the presence of this sort of wave as the fingerprint of the noise emission spots which

  3. Self-bunching electron guns

    NASA Astrophysics Data System (ADS)

    Mako, Frederick M.; Len, L. K.

    1999-05-01

    We report on three electron gun projects that are aimed at power tube and injector applications. The purpose of the work is to develop robust electron guns which produce self-bunched, high-current-density beams. We have demonstrated, in a microwave cavity, self-bunching, cold electron emission, long life, and tolerance to contamination. The cold process is based on secondary electron emission. FMT has studied using simulation codes the resonant bunching process which gives rise to high current densities (0.01-5 kA/cm2), high charge bunches (up to 500 nC/bunch), and short pulses (1-100 ps) for frequencies from 1 to 12 GHz. The beam pulse width is nominally ˜5% of the rf period. The first project is the L-Band Micro-Pulse Gun (MPG). Measurements show ˜40 ps long micro-bunches at ˜20 A/cm2 without contamination due to air exposure. Lifetime testing has been carried out for about 18 months operating at 1.25 GHz for almost 24 hours per day at a repetition rate of 300 Hz and 5 μs-long macro-pulses. Approximately 5.8×1013 micro-bunches or 62,000 coulombs have passed through this gun and it is still working fine. The second project, the S-Band MPG, is now operational. It is functioning at a frequency of 2.85 GHz, a repetition rate of 30 Hz, with a 2 μs-long macro-pulse. It produces about 45 A in the macro-pulse. The third project is a 34.2 GHz frequency-multiplied source driven by an X-Band MPG. A point design was performed at an rf output power of 150 MW at 34.2 GHz. The resulting system efficiency is 53% and the gain is 60 dB. The system efficiency includes the input cavity efficiency, input driver efficiency (a 50 MW klystron at 11.4 GHz), output cavity efficiency, and the post-acceleration efficiency.

  4. Numerical Analysis of Intra-Cavity and Power-Stream Flow Interaction in Multiple Gas-Turbine Disk-Cavities

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.; Steinetz, B. M.

    1995-01-01

    A numerical analysis methodology and solutions of the interaction between the power stream and multiply-connected multi-cavity sealed secondary flow fields are presented. Flow solutions for a multi-cavity experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that the de-coupled solutions on single cavities is inadequate. The present results show trends similar to the T-700 engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected the engine performance.

  5. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  6. Phase difference in modulated signals of two orthogonally polarized outputs of a Nd:YAG microchip laser with anisotropic optical feedback.

    PubMed

    Zhang, Peng; Tan, Yi-Dong; Liu, Ning; Wu, Yun; Zhang, Shu-Lian

    2013-11-01

    We present an experimental observation of the output responses of a Nd:YAG microchip laser with an anisotropic external cavity under weak optical feedback. The feedback mirror is stationary during the experiments. A pair of acousto-optic modulators is used to produce a frequency shift in the feedback light with respect to the initial light. The laser output is a beat signal with 40 kHz modulation frequency and is separated into two orthogonal directions by a Wollaston prism. Phase differences between the two intensity curves are observed as the laser works in two orthogonal modes, and vary with the external birefringence element and the pump power. Theoretical analyses are given, and the simulated results are consistent with the experimental phenomena.

  7. High efficiency and good beam quality of electro-optic, cavity-dumped and double-end pumped Nd:YLF laser

    NASA Astrophysics Data System (ADS)

    Tang, X. X.; Fan, Z. W.; Qiu, J. S.; Lian, F. Q.; Zhang, X. L.

    2012-06-01

    In this paper, we describe a Nd:YLF laser based on high-speed RTP electro-optical cavity dumping technique. Two home-made 150 W fiber pump modules are used from both sides to pump Nd:YLF crystal. Coupling systems are the key elements in end-pumped solid-state lasers, the aberrations of which greatly affect the efficiency of the lasers. In order to get high efficient and good quality laser output, the optical software ZEMAX is used to design a four-piece coupling system. When the pumped energy is 32 mJ at the repetition rate of 1 Hz, the output energy is 6.5 mJ with 2.5 ns pulse width. When the pumped energy is 13.1 W at the repetition rate of 200 Hz, the output energy is 2.2 W with small M 2 factor where M {/x 2} is 1.04, and M {/y 2} is 1.05, and the light-light conversion efficiency is up to 16.8%.

  8. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    PubMed

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  9. Conduction cooling systems for linear accelerator cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kephart, Robert

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  10. Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection.

    PubMed

    Li, Zhixin; Ma, Weiguang; Fu, Xiaofang; Tan, Wei; Zhao, Gang; Dong, Lei; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2013-07-29

    A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10(-9)cm(-1)Hz(-1/2), which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C(2)H(2) transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.

  11. Control of Cavity Resonance Using Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Scarfe, Alison Lamp; Chokani, Ndaona

    2000-01-01

    The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.

  12. Constraining the Thermal Contents of X-Ray Cavities in Galaxy Clusters with Sunyaev Zel'dovich Effect Observations

    NASA Astrophysics Data System (ADS)

    Abdulla, Zubair M.

    We use Sunyaev Zel'dovich Effect observations at 30 GHz with the Combined Array for Research in Millimeter Astronomy (CARMA) to probe the thermal contents of X-ray cavities in the galaxy cluster MS 0735+741 (MS0735). The hot (3-10 keV), diffuse X-ray emitting atmospheres of galaxy clusters should quickly radiate away its thermal energy via radiative cooling. However, high-resolution X-ray observations from Chandra and XMM have shown that the gas is not cooling to low temperatures at the rates expected, suggesting that the radiative cooling is being balanced by non-gravitational sources of heating. Of primary interest is the energy output from active galactic nuclei (AGN), outbursts from accreting super massive black holes at the center of clusters, which drive radio jets into the atmospheres of clusters and terminate in spectacular radio lobes. High resolution X-ray images have revealed giant cavities produced by the radio lobes displacing the X-ray emitting gas, providing a gauge for the mean mechanical power output of the AGN. These measured powers are enough to offset radiative cooling at the center of relaxed clusters, however, little beyond the energetics of the outbursts is known. The relative balance and efficiency of heating mechanisms for converting the mechanical energy from the AGN into thermal energy in the cluster atmosphere is not well understood, nor are the details of the jets whose contents inflate and support the X-ray cavities. The Sunyaev-Zel'dovich (SZ) effect, which is proportional to the line-of-sight pressure of the electrons of the hot gas in galaxy clusters, can shed light on these outstanding issues by directly constraining the thermal contents of the radio-filled X-ray cavities. In this work, we describe the assembly and commissioning of 1-cm cryogenic receivers for CARMA, which are vital for the high-fidelity SZ observations required for the proposed measurements. CARMA is a 23-element heterogeneous radio interferometer in Cedar Flat

  13. Design, fabrication, and optimization of quantum cascade laser cavities and spectroscopy of the intersubband gain

    NASA Astrophysics Data System (ADS)

    Dirisu, Afusat Olayinka

    Quantum Cascade (QC) lasers are intersubband light sources operating in the wavelength range of ˜ 3 to 300 mum and are used in applications such as sensing (environmental, biological, and hazardous chemical), infrared countermeasures, and free-space infrared communications. The mid-infrared range (i.e. lambda ˜ 3-30 mum) is of particular importance in sensing because of the strong interaction of laser radiation with various chemical species, while in free space communications the atmospheric windows of 3-5 mum and 8-12 mum are highly desirable for low loss transmission. Some of the requirements of these applications include, (1) high output power for improved sensitivity; (2) high operating temperatures for compact and cost-effective systems; (3) wide tunability; (4) single mode operation for high selectivity. In the past, available mid-infrared sources, such as the lead-salt and solid-state lasers, were bulky, expensive, or emit low output power. In recent years, QC lasers have been explored as cost-effective and compact sources because of their potential to satisfy and exceed all the above requirements. Also, the ultrafast carrier lifetimes of intersubband transitions in QC lasers are promising for high bandwidth free-space infrared communication. This thesis was focused on the improvement of QC lasers through the design and optimization of the laser cavity and characterization of the laser gain medium. The optimization of the laser cavity included, (1) the design and fabrication of high reflection Bragg gratings and subwavelength antireflection gratings, by focused ion beam milling, to achieve tunable, single mode and high power QC lasers, and (2) modeling of slab-coupled optical waveguide QC lasers for high brightness output beams. The characterization of the QC laser gain medium was carried out using the single-pass transmission experiment, a sensitive measurement technique, for probing the intersubband transitions and the electron distribution of QC lasers

  14. Convection-Enhanced Transport into Open Cavities : Effect of Cavity Aspect Ratio.

    PubMed

    Horner, Marc; Metcalfe, Guy; Ottino, J M

    2015-09-01

    Recirculating fluid regions occur in the human body both naturally and pathologically. Diffusion is commonly considered the predominant mechanism for mass transport into a recirculating flow region. While this may be true for steady flows, one must also consider the possibility of convective fluid exchange when the outer (free stream) flow is transient. In the case of an open cavity, convective exchange occurs via the formation of lobes at the downstream attachment point of the separating streamline. Previous studies revealed the effect of forcing amplitude and frequency on material transport rates into a square cavity (Horner in J Fluid Mech 452:199-229, 2002). This paper summarizes the effect of cavity aspect ratio on exchange rates. The transport process is characterized using both computational fluid dynamics modeling and dye-advection experiments. Lagrangian analysis of the computed flow field reveals the existence of turnstile lobe transport for this class of flows. Experiments show that material exchange rates do not vary linearly as a function of the cavity aspect ratio (A = W/H). Rather, optima are predicted for A ≈ 2 and A ≈ 2.73, with a minimum occurring at A ≈ 2.5. The minimum occurs at the point where the cavity flow structure bifurcates from a single recirculating flow cell into two corner eddies. These results have significant implications for mass transport environments where the geometry of the flow domain evolves with time, such as coronary stents and growing aneurysms. Indeed, device designers may be able to take advantage of the turnstile-lobe transport mechanism to tailor deposition rates near newly implanted medical devices.

  15. Photonic generation of polarization-resolved wideband chaos with time-delay concealment in three-cascaded vertical-cavity surface-emitting lasers.

    PubMed

    Liu, Huijie; Li, Nianqiang; Zhao, Qingchun

    2015-05-10

    Optical chaos generated by chaotic lasers has been widely used in several important applications, such as chaos-based communications and high-speed random-number generators. However, these applications are susceptible to degradation by the presence of time-delay (TD) signature identified from the chaotic output. Here we propose to achieve the concealment of TD signature, along with the enhancement of chaos bandwidth, in three-cascaded vertical-cavity surface-emitting lasers (VCSELs). The cascaded system is composed of an external-cavity master VCSEL, a solitary intermediate VCSEL, and a solitary slave VCSEL. Through mapping the evolutions of TD signature and chaos bandwidth in the parameter space of the injection strength and frequency detuning, photonic generation of polarization-resolved wideband chaos with TD concealment is numerically demonstrated for wide regions of the injection parameters.

  16. High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centeno, R.; Marchenko, D.; Mandon, J.

    We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.

  17. Fluid-structure interactions in compressible cavity flows

    DOE PAGES

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...

    2015-06-08

    Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionallymore » dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.« less

  18. Scaled experiments of explosions in cavities

    DOE PAGES

    Grun, J.; Cranch, G. A.; Lunsford, R.; ...

    2016-05-11

    Consequences of an explosion inside an air-filled cavity under the earth's surface are partly duplicated in a laboratory experiment on spatial scales 1000 smaller. The experiment measures shock pressures coupled into a block of material by an explosion inside a gas-filled cavity therein. The explosion is generated by suddenly heating a thin foil that is located near the cavity center with a short laser pulse, which turns the foil into expanding plasma, most of whose energy drives a blast wave in the cavity gas. Variables in the experiment are the cavity radius and explosion energy. Measurements and GEODYN code simulationsmore » show that shock pressuresmeasured in the block exhibit a weak dependence on scaled cavity radius up to ~25 m/kt 1/3, above which they decrease rapidly. Possible mechanisms giving rise to this behavior are described. As a result, the applicability of this work to validating codes used to simulate full-scale cavityexplosions is discussed.« less

  19. Absorption spectrum of a two-level atom in a bad cavity with injected squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Swain, S.

    1996-02-01

    We study the absorption spectrum of a coherently driven two-level atom interacting with a resonant cavity mode which is coupled to a broadband squeezed vacuum through its input-output mirror in the bad cavity limit. We study the modification of the two-photon correlation strength of the injected squeezed vacuum inside the cavity, and show that the equations describing probe absorption in the cavity environment are formally identical to these in free space, but with modified parameters describing the squeezed vacuum. The two photon correlations induced by the squeezed vacuum are always weaker than in free space. We pay particular attention to the spectral behaviour at line centre in the region of intermediate trength driving intensities, where anomalous spectral features such as hole-burning and dispersive profiles are displayed. These unusual spectral features are very sensitive to the squeezing phase and the Rabi frequency of the driving field. We also derive the threshold value of the Rabi frequency which gives rise to the transparency of the probe beam at the driving frequency. When the Rabi frequency is less than the threshold value, the probe beam is absorbed, whilst the probe beam is amplified (without population inversion under certain conditions) when the Rabi frequency is larger than this threshold. The anomalous spectral features all take place in the vicinity of the critical point dividing the different dynamical regimes, probe absorption and amplification, of the atomic radiation. The physical origin of the strong amplification without population inversion, and the feasibility of observing it, are discussed.

  20. A split-cavity design for the incorporation of a DC bias in a 3D microwave cavity

    NASA Astrophysics Data System (ADS)

    Cohen, Martijn A.; Yuan, Mingyun; de Jong, Bas W. A.; Beukers, Ewout; Bosman, Sal J.; Steele, Gary A.

    2017-04-01

    We report on a technique for applying a DC bias in a 3D microwave cavity. We achieve this by isolating the two halves of the cavity with a dielectric and directly using them as DC electrodes. As a proof of concept, we embed a variable capacitance diode in the cavity and tune the resonant frequency with a DC voltage, demonstrating the incorporation of a DC bias into the 3D cavity with no measurable change in its quality factor at room temperature. We also characterize the architecture at millikelvin temperatures and show that the split cavity design maintains a quality factor Qi ˜ 8.8 × 105, making it promising for future quantum applications.

  1. Analysis of a novel sensor interrogation technique based on fiber cavity ring-down (CRD) loop and OTDR

    NASA Astrophysics Data System (ADS)

    Yüksel, Kivilcim; Yilmaz, Anil

    2018-07-01

    We present the analysis of a remote sensor based on fiber Cavity Ring-Down (CRD) loop interrogated by an Optical Time Domain Reflectometer (OTDR) taking into account both practical limitations and the related signal processing. A commercial OTDR is used for both pulse generation and sensor output detection. This allows obtaining a compact and simple design for intensity-based sensor applications. This novel sensor interrogation approach is experimentally demonstrated by placing a variable attenuator inside the fiber loop that mimics a sensor head.

  2. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J.

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  3. The ADMX Microwave Cavity: Present and future

    NASA Astrophysics Data System (ADS)

    Woollett, Nathan; ADMX Collaboration

    2017-01-01

    The Axion Dark Matter eXperiment (ADMX), a direct-detection axion search, uses a tunable resonant cavity to enhance axion to photon conversion rates to a detectable level when the cavity resonance matches the mass of the axion. It has successfully taken data in the 460 - 890 MHz frequency range and is now probing a similar range with much higher sensitivity. However the axion mass is unknown and may be at higher frequencies than the currently operating system. In anticipation of future runs with an increased mass range, ADMX is conducting extensive research and development of microwave cavities. These developments include photonic band-gap cavities, multi-vane cavities, partitioned cavities, in-phase coupled cavities, and superconducting hybrid cavities. Many of these projects are in different stages between simulations and testing of physical prototypes. The status and current objectives of these projects will be presented. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.

  4. Flow-induced resonance of screen-covered cavities

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1990-01-01

    An experimental study of screen-covered cavities exposed to airflow tangent to the screen is described. The term screen refers to a thin metal plate perforated with a repetitive pattern of round holes. The purpose was to find the detailed aerodynamic and acoustic mechanisms responsible for screen-covered cavity resonance and to find ways to control the pressure oscillations. Results indicate that strong cavity acoustic resonances are created by screen orifices that shed vortices which couple resonance by choosing hole spacings such that shed vortices do not arrive at a downstream orifice in synchronization with cavity pressure oscillations. The proper hole pattern is effective at all airspeeds. It was also discovered that a reduction of orifice size tended to weaken the screen/cavity interaction regardless of hole pattern, probably because of viscous flow losses at the orifices. The screened cavities that resonated did so at much higher frequencies than the equivalent open cavity. The classical large eddy phenomenon occurs at the relatively small scale of the orifices (the excitation is typically of high frequency). The wind tunnel study was made at airspeeds from 0 to 100m/sec. The 457-mm-long by 1.09-m-high rectangular cavities had length-to-depth ratios greater than one, which is indicative of shallow cavities. The cavity screens were perforated in straight rows and columns with hole diameters ranging from 1.59 to 6.35 mm and with porosities from 2.6 to 19.6 percent.

  5. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    NASA Astrophysics Data System (ADS)

    Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.

    2014-01-01

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R&D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q0 was 1.5×1010 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni-Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and permeability

  6. Evolution of the Novalux extended cavity surface-emitting semiconductor laser (NECSEL)

    NASA Astrophysics Data System (ADS)

    McInerney, John G.

    2016-03-01

    Novalux Inc was an enterprise founded by Aram Mooradian in 1998 to commercialise a novel electrically pumped vertical extended cavity semiconductor laser platform, initially aiming to produce pump lasers for optical fiber telecommunication networks. Following successful major investment in 2000, the company developed a range of single- and multi-mode 980 nm pump lasers emitting from 100-500 mW with excellent beam quality and efficiency. This rapid development required solution of several significant problems in chip and external cavity design, substrate and DBR mirror optimization, thermal engineering and mode selection. Output coupling to single mode fiber was exceptional. Following the collapse of the long haul telecom market in late 2001, a major reorientation of effort was undertaken, initially to develop compact 60-100 mW hybrid monolithically integrated pumplets for metro/local amplified networks, then to frequency-doubled blue light emitters for biotech, reprographics and general scientific applications. During 2001-3 I worked at Novalux on a career break from University College Cork, first as R&D Director managing a small group tasked with producing new capabilities and product options based on the NECSEL platform, including high power, pulsed and frequency doubled versions, then in 2002 as Director of New Product Realization managing the full engineering team, leading the transition to frequency doubled products.

  7. Acoustic cavity technology for high performance injectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of damping more than one mode of rocket engine combustion instability by means of differently tuned acoustic cavities sharing a common entrance was shown. Analytical procedures and acoustic modeling techniques for predicting the stability behavior of acoustic cavity designs in hot firings were developed. Full scale testing of various common entrance, dual cavity configurations, and subscale testing for the purpose of obtaining motion pictures of the cavity entrance region, to aid in determining the mechanism of cavity damping were the two major aspects of the program.

  8. Additive Manufactured Superconducting Cavities

    NASA Astrophysics Data System (ADS)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  9. The thick left ventricular wall of the giraffe heart normalises wall tension, but limits stroke volume and cardiac output.

    PubMed

    Smerup, Morten; Damkjær, Mads; Brøndum, Emil; Baandrup, Ulrik T; Kristiansen, Steen Buus; Nygaard, Hans; Funder, Jonas; Aalkjær, Christian; Sauer, Cathrine; Buchanan, Rasmus; Bertelsen, Mads Frost; Østergaard, Kristine; Grøndahl, Carsten; Candy, Geoffrey; Hasenkam, J Michael; Secher, Niels H; Bie, Peter; Wang, Tobias

    2016-02-01

    Giraffes--the tallest extant animals on Earth--are renowned for their high central arterial blood pressure, which is necessary to secure brain perfusion. Arterial pressure may exceed 300 mmHg and has historically been attributed to an exceptionally large heart. Recently, this has been refuted by several studies demonstrating that the mass of giraffe heart is similar to that of other mammals when expressed relative to body mass. It thus remains unexplained how the normal-sized giraffe heart generates such massive arterial pressures. We hypothesized that giraffe hearts have a small intraventricular cavity and a relatively thick ventricular wall, allowing for generation of high arterial pressures at normal left ventricular wall tension. In nine anaesthetized giraffes (495±38 kg), we determined in vivo ventricular dimensions using echocardiography along with intraventricular and aortic pressures to calculate left ventricular wall stress. Cardiac output was also determined by inert gas rebreathing to provide an additional and independent estimate of stroke volume. Echocardiography and inert gas-rebreathing yielded similar cardiac outputs of 16.1±2.5 and 16.4±1.4 l min(-1), respectively. End-diastolic and end-systolic volumes were 521±61 ml and 228±42 ml, respectively, yielding an ejection fraction of 56±4% and a stroke volume of 0.59 ml kg(-1). Left ventricular circumferential wall stress was 7.83±1.76 kPa. We conclude that, relative to body mass, a small left ventricular cavity and a low stroke volume characterizes the giraffe heart. The adaptations result in typical mammalian left ventricular wall tensions, but produce a lowered cardiac output. © 2016. Published by The Company of Biologists Ltd.

  10. On the use of a chirped Bragg grating as a cavity mirror of a picosecond Nd : YAG laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubko, A E; Shashkov, E V; Smirnov, A V

    2016-02-28

    The first experimental evidence is presented that the use of a chirped volume Bragg grating (CVBG) as a cavity mirror of a Q-switched picosecond Nd : YAG laser with self-mode-locking leads to significant changes in the temporal parameters of the laser output. Measurements have been performed at two positions of the CVBG: with the grating placed so that shorter wavelengths reflected from its front part lead longer wavelengths or with the grating rotated through 180°, so that longer wavelengths are reflected first. In the former case, the duration of individual pulses in a train increased from ∼35 to ∼300 ps,more » whereas the pulse train shape and duration remained the same as in the case of a conventional laser with a mirror cavity. In the latter case, the full width at half maximum of pulse trains increased from ∼70 ns (Nd : YAG laser with a mirror cavity) to ∼1 ms, and the duration of individual pulses increased from 35 ps to ∼1.2 ns, respectively, which is more typical of free-running laser operation. (laser crystals and braggg ratings)« less

  11. >100% output differential efficiency 1.55-μm VCSELs using submonolayer superlattices digital-alloy multiple-active-regions grown by MBE on InP

    NASA Astrophysics Data System (ADS)

    Wang, C. S.; Koda, R.; Huntington, A. S.; Gossard, A. C.; Coldren, L. A.

    2005-04-01

    High-quality InAlGaAs digital-alloy active regions using submonolayer superlattices were developed and employed in a 3-stage bipolar cascade multiple-active-region vertical cavity surface emitting laser (VCSEL) design. The photoluminescence intensity and linewidth of these active regions were optimized by varying the substrate temperature and digitization period. These active regions exhibit considerable improvement over previously developed digital-alloy active regions and are comparable to analog-alloy active regions. Multiple-active-region VCSELs, grown all-epitaxially by MBE on InP, demonstrate greater than 100% output differential efficiency at 1.55-μm emission. A record high 104% output differential efficiency was achieved for a 3-stage long-wavelength VCSEL.

  12. LD end pumped mode locked and cavity dumped Nd:YAP laser at 1.34 μm

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wang, S.; Rhee, H.; Eichler, H. J.; Meister, S.

    2011-06-01

    We report a LD end pumped actively mode locked, passively Q switched and cavity dumped Nd:YAP laser at 1.34 μm. The dumped output pulse energy of 160 μJ is obtained at a repetition rate of 10 Hz. Passing through a LD end pumped, double-passed Nd:YAP amplifier the pulse energy is amplified to 1.44 mJ. The corresponding amplification factor is 9. Stimulated Raman scattering experiment is taken with a 9 mm long PbWO4 Raman crystal. Maximum of 20% Raman conversion is reached.

  13. Diagnostic resonant cavity for a charged particle accelerator

    DOEpatents

    Barov, Nikolai

    2007-10-02

    Disclosed is a diagnostic resonant cavity for determining characteristics of a charged particle beam, such as an electron beam, produced in a charged particle accelerator. The cavity is based on resonant quadrupole-mode and higher order cavities. Enhanced shunt impedance in such cavities is obtained by the incorporation of a set of four or more electrically conductive rods extending inwardly from either one or both of the end walls of the cavity, so as to form capacitive gaps near the outer radius of the beam tube. For typical diagnostic cavity applications, a five-fold increase in shunt impedance can be obtained. In alternative embodiments the cavity may include either four or more opposing pairs of rods which extend coaxially toward one another from the opposite end walls of the cavity and are spaced from one another to form capacitative gaps; or the cavity may include a single set of individual rods that extend from one end wall to a point adjacent the opposing end wall.

  14. Collapsing cavities in reactive and nonreactive media

    NASA Astrophysics Data System (ADS)

    Bourne, Neil K.; Field, John E.

    1991-04-01

    This paper presents results of a high-speed photographic study of cavities collapsed asymmetrically by shocks of strengths in the range 0.26 GPa to 3.5 GPa. Two-dimensional collapses of cavity configurations punched into a 12% by weight gelatine in water sheet, and an ammonium nitrate/sodium nitrate (AN/SN) emulsion explosive were photographed using schlieren optics. The single cavity collapses were characterized by the velocity of the liquid jet formed by the upstream wall as it was accelerated by the shock and by the time taken for the cavity to collapse. The shock pressure did not qualitatively affect the collapse behaviour but jet velocities were found to exceed incident shock velocities at higher pressures. The more violent collapses induced light emission from the compressed gas in the cavity. When an array of cavities collapsed, a wave, characterized by the particle velocity in the medium, the cavity diameter and the inter-cavity spacing, was found to run through the array. When such an array was created within an emulsion explosive, ignition of the reactive matrix occurred ahead of the collapse wave when the incident shock was strong.

  15. Cavity parameters identification for TESLA control system development

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan

    2005-08-01

    Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.

  16. Vented Cavity Radiant Barrier Assembly And Method

    DOEpatents

    Dinwoodie, Thomas L.; Jackaway, Adam D.

    2000-05-16

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  17. Controlled directional scattering cavity for tubular absorbers

    DOEpatents

    Winston, Roland

    1982-01-01

    A specular cavity is provided in which an optical receiver is emplaced. The cavity is provided with a series of V groove-like indentations (or pyramidal-type indentations) which redirect energy entering between the receiver and cavity structure onto the receiver. The aperture opening of each V groove is less than half the cavity opening and in most preferred embodiments, much less than half. This enables the optical receiver to be emplaced a distance g from the cavity wherein 0.414r

  18. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  19. Direct analysis of δ2H and δ18O in natural and enriched human urine using laser-based, Off-Axis Integrated Cavity Output Spectroscopy

    PubMed Central

    Berman, Elena S.F.; Fortsona, Susan L.; Snaith, Steven P.; Gupta, Manish; Baer, Douglas S.; Chery, Isabelle; Blanc, Stephane; Melanson, Edward L.; Thomson, Peter J; Speakman, John R.

    2012-01-01

    The stable isotopes of hydrogen (δ2H) and oxygen (δ18O) in human urine are measured during studies of total energy expenditure by the doubly labeled water method, measurement of total body water, and measurement of insulin resistance by glucose disposal among other applications. An ultrasensitive laser absorption spectrometer based on off-axis integrated cavity output spectroscopy was demonstrated for simple and inexpensive measurement of stable isotopes in natural isotopic abundance and isotopically enriched human urine. Preparation of urine for analysis was simple and rapid (approx. 25 samples per hour), requiring no decolorizing or distillation steps. Analysis schemes were demonstrated to address sample-to-sample memory while still allowing analysis of 45 natural or 30 enriched urine samples per day. The instrument was linear over a wide range of water isotopes (δ2H = −454 to +1702 ‰ and δ18O= −58.3 to +265 ‰). Measurements of human urine were precise to better than 0.65 ‰ 1σ for δ2H and 0.09 ‰ 1σ for δ18O for natural urines, 1.1 ‰ 1σ for δ2H and 0.13 ‰ 1σ for δ18O for low enriched urines, and 1.0 ‰ 1σ for δ2H and 0.08 ‰ 1σ for δ18O for high enriched urines. Furthermore, the accuracy of the isotope measurements of human urines was verified to better than ±0.81 ‰ in δ2H and ±0.13 ‰ in δ18O (average deviation) against three independent IRMS laboratories. The ability to immediately and inexpensively measure the stable isotopes of water in human urine is expected to increase the number and variety of experiments which can be undertaken. PMID:23075099

  20. Fabrication of elliptical SRF cavities

    NASA Astrophysics Data System (ADS)

    Singer, W.

    2017-03-01

    The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good

  1. Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM00 mode output.

    PubMed

    Xu, Yi-Ting; Xu, Jia-Lin; Guo, Ya-Ding; Yang, Feng-Tu; Chen, Yan-Zhong; Xu, Jian; Xie, Shi-Yong; Bo, Yong; Peng, Qin-Jun; Cui, Dafu; Xu, Zu-Yan

    2010-08-20

    We present a compact high-efficiency and high-average-power diode-side-pumped Nd:YAG rod laser oscillator operated with a linearly polarized fundamental mode. The oscillator resonator is based on an L-shaped convex-convex cavity with an improved module and a dual-rod configuration for birefringence compensation. Under a pump power of 344 W, a linearly polarized average output power of 101.4 W at 1064 nm is obtained, which corresponds to an optical-to-optical conversion efficiency of 29.4%. The laser is operated at a repetition rate of 400 Hz with a beam quality factor of M(2)=1.14. To the best of our knowledge, this is the highest optical-to-optical efficiency for a side-pumped TEM(00) Nd:YAG rod laser oscillator with a 100-W-level output ever reported.

  2. Broadband cavity enhanced spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Rudich, Y.; Brown, S. S.

    2015-09-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity enhanced spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99933 ± 0.00003 (670 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.49 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device (CCD) array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity enhanced spectroscopy and cavity ringdown spectroscopy agree within 2 % (slope for linear fit = 0.98 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity enhanced spectroscopy and calculated based on flow dilution are also well-correlated, with r2 = 0.9998. During constant, mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1-min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically-based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for

  3. The ESS spoke cavity cryomodules

    NASA Astrophysics Data System (ADS)

    Bousson, Sebastien; Darve, Christine; Duthil, Patxi; Elias, Nuno; Molloy, Steve; Reynet, Denis; Thermeau, Jean-Pierre

    2014-01-01

    The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today's leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. This paper introduces the thermo-mechanical design and expected operation of the ESS spoke cavity cryomodules. These cryomodules contain two double spoke bulk Niobium cavities operating at 2 K and at a frequency of 352.21 MHz. The superconducting section of the Spoke Linac accelerates the beam from 90 MeV to 220 MeV. A Spoke Cavity Cryomodule Technology Demonstrator will be built and tested in order to validate the ESS series production.

  4. Bit Error Ratio Test Equipment for High Speed Vertical Cavity Transistor Laser and MicroCavity VCSEL and Photo Receiver

    DTIC Science & Technology

    2015-08-31

    Ratio Test Equipment for High Speed Vertical Cavity Transistor Laser & MicroCavity VCSEL and Photo Receiver The views, opinions and/or findings...suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis...for High Speed Vertical Cavity Transistor Laser & MicroCavity VCSEL and Photo Receiver Report Title In the previous DURIP award (W911NF-13-1-0287

  5. Urine output - decreased

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003147.htm Urine output - decreased To use the sharing features on this page, please enable JavaScript. Decreased urine output means that you produce less urine than ...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowring, Daniel; Freemire, Ben; Kochemirovskiy, Alexey

    Ionization cooling of intense muon beams requires the operation of high-gradient, normal-conducting RF structures within multi-Tesla magnetic fields. The application of strong magnetic fields has been shown to lead to an increase in vacuum RF breakdown. This phenomenon imposes operational (i.e. gradient) limitations on cavities in ionization cooling channels, and has a bearing on the design and operation of other RF structures as well, such as photocathodes and klystrons. We present recent results from Fermilab's MuCool Test Area (MTA), in which 201 and 805 MHz cavities were operated at high power both with and without the presence of multi-Tesla magneticmore » fields. We present an analysis of damage due to breakdown in these cavities, as well as measurements related to dark current and their relation to a conceptual model describing breakdown phenomena.« less

  7. Studies on 405nm blue-violet diode laser with external grating cavity

    NASA Astrophysics Data System (ADS)

    Li, Bin; Gao, Jun; Zhao, Jun; Yu, Anlan; Luo, Shiwen; Xiong, Dongsheng; Wang, Xinbing; Zuo, Duluo

    2016-03-01

    Spectroscopy applications of free-running laser diodes (LD) are greatly restricted as its broad band spectral emission. And the power of a single blue-violet LD is around several hundred milliwatts by far, it is of great importance to obtain stable and narrow line-width laser diodes with high efficiency. In this paper, a high efficiency external cavity diode laser (ECDL) with high output power and narrow band emission at 405 nm is presented. The ECDL is based on a commercially available LD with nominal output power of 110 mW at an injection current of 100 mA. The spectral width of the free-running LD is about 1 nm (FWHM). A reflective holographic grating which is installed on a home-made compact adjustable stage is utilized for optical feedback in Littrow configuration. In this configuration, narrow line-width operation is realized and the effects of grating groove density as well as the groove direction related to the beam polarization on the performances of the ECDL are experimentally investigated. In the case of grating with groove density of 3600 g/mm, the threshold is reduced from 21 mA to 18.3 mA or 15.6 mA and the tuning range is 3.95 nm or 6.01 nm respectively when the grating is orientated in TE or TM polarization. In addition, an output beam with a line-width of 30 pm and output power of 92.7 mW is achieved in TE polarization. With these narrow line-width and high efficiency, the ECDL is capable to serve as a light source for spectroscopy application such as Raman scattering and laser induced fluorescence.

  8. Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 2; Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III

    2006-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. Past input-output data and an estimate of the open-loop pulse response sequence are all that is needed to implement the algorithm for application at fixed Mach numbers. Transient measurements made during controller adaptation revealed that the controller coefficients converged to a steady state in the mean, and this implies that adaptation can be turned off at some point with no degradation in control performance. When converged, the control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. However, as in the case of fixed-gain GPC, the adaptive GPC performance was limited by spillover in sidebands around the suppressed Rossiter modes. The algorithm was also able to maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Beyond this range, stable operation of the control algorithm was not possible due to the fixed plant model in the algorithm.

  9. External Cavity Coherent Transmitter Modules

    DTIC Science & Technology

    1990-11-01

    Lasers 141 Tunability Aspects of DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory...Linewidth Considerations for DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory

  10. Elliptical superconducting RF cavities for FRIB energy upgrade

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Contreras, C.; Plastun, A. S.; Rathke, J.; Schultheiss, T.; Taylor, A.; Wei, J.; Xu, M.; Xu, T.; Zhao, Q.; Gonin, I. V.; Khabiboulline, T.; Pischalnikov, Y.; Yakovlev, V. P.

    2018-04-01

    The multi-physics design of a five cell, βG = 0 . 61, 644 MHz superconducting elliptical cavity being developed for an energy upgrade in the Facility for Rare Isotope Beams (FRIB) is presented. The FRIB energy upgrade from 200 MeV/u to 400 MeV/u for heaviest uranium ions will increase the intensities of rare isotope beams by nearly an order of magnitude. After studying three different frequencies, 1288 MHz, 805 MHz, and 644 MHz, the 644 MHz cavity was shown to provide the highest energy gain per cavity for both uranium and protons. The FRIB upgrade will include 11 cryomodules containing 5 cavities each and installed in 80-meter available space in the tunnel. The cavity development included extensive multi-physics optimization, mechanical and engineering analysis. The development of a niobium cavity is complete and two cavities are being fabricated in industry. The detailed design of the cavity sub-systems such as fundamental power coupler and dynamic tuner are currently being pursued. In the overall design of the cavity and its sub-systems we extensively applied experience gained during the development of 650 MHz low-beta cavities at Fermi National Accelerator Laboratory (FNAL) for the Proton Improvement Plan (PIP) II.

  11. Compact intra-cavity pumped low-threshold passively Q-switched Ho:Sc2SiO5 laser by a LD-pumped Tm:YAP laser at room temperature

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-tao; Xie, Wen-qiang; Liu, Long; Li, Lin-jun

    2017-08-01

    A compact intra-cavity pumped low-threshold passively Q-switched (PQS) Ho:Sc2SiO5 (Ho:SSO) laser is reported for the first time. The Tm:YAlO3 (Tm:YAP) crystal and the Ho:SSO crystal are placed in the same laser cavity. A laser diode with a central wavelength of 793 nm is used to realize the output of the Ho:SSO laser. Both the continuous wave (CW) and PQS operation are investigated. A Cr2+:ZnSe is used as the saturable absorber in the PQS Ho:SSO laser. For the CW mode, the laser threshold is only 750 mW, which is 980 mW in the PQS mode. A maximum pulse energy of 699 µJ is primarily obtained, corresponding to the pulse width of 96 ns. The maximum repetition frequency is 1.46 kHz. The maximum pulse peak power can be calculated to be 7.28 kW. The beam quality factor M 2 is calculated to be 1.4 with the maximum output power.

  12. Implementing a quantum cloning machine in separate cavities via the optical coherent pulse as a quantum communication bus

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Zheng; Ye, Liu

    2015-04-01

    An efficient scheme is proposed to implement a quantum cloning machine in separate cavities based on a hybrid interaction between electron-spin systems placed in the cavities and an optical coherent pulse. The coefficient of the output state for the present cloning machine is just the direct product of two trigonometric functions, which ensures that different types of quantum cloning machine can be achieved readily in the same framework by appropriately adjusting the rotated angles. The present scheme can implement optimal one-to-two symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, optimal symmetric (asymmetric) real-state cloning, optimal one-to-three symmetric economical real-state cloning, and optimal symmetric cloning of qubits given by an arbitrary axisymmetric distribution. In addition, photon loss of the qubus beams during the transmission and decoherence effects caused by such a photon loss are investigated.

  13. Cavity Enhanced Absorption Spectroscopy Using a Broadband Prism Cavity and a Supercontinuum Source

    NASA Astrophysics Data System (ADS)

    Johnston, Paul S.; Lehmann, Kevin K.

    2009-06-01

    The multiplex advantage of current cavity enhanced spectrometers is limited by the high reflectivity bandwidth of the mirrors used to construct the high finesse cavity. Previously, we reported the design and construction of a new spectrometer that circumvents this limitation by utilizing Brewster^{,}s angle prism retroreflectors. The prisms, made from fused silica and combined with a supercontinuum source generated by pumping a highly nonlinear photonic crystal fiber, yields a spectral window ranging from 500 nm to 1750 nm. Recent progress in the instruments development will be discussed, including work on modeling the prism cavity losses, alternative prism material for use in the UV and mid-IR spectral regions, and a new high power supercontinuum source based on mode-locked picosecond laser.

  14. Constructing Artifical Red-Cockaded Woodpecker Cavities

    Treesearch

    David H. Allen

    1991-01-01

    A complete guide is provided for excavating red-cockaded woodpecker (Picoides borealis) cavities. A hole 4 inches wide by 10 inches high by 6 inches deep is cut from a live pine(Pinusspp.) tree with a chainsaw, and a prefabricated cavity is inserted. Cavities can be excavated in pines of any age, but the diameter of the tree at the height of insertion must be greater...

  15. 1.55-μm InGaAs/InGaAlAs MQW vertical-cavity surface-emitting lasers with InGaAlAs/InP distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Xia, Jinan; Hoan O, Beom; Gol Lee, Seung; Hang Lee, El

    2005-03-01

    High-performance InGaAs/InGaAlAs multiple-quantum-well vertical-cavity surface-emitting lasers (VCSELs) with InGaAlAs/InP distributed Bragg reflectors are proposed for operation at the wavelength of 1.55 μm. The lasers have good heat diffusion characteristic, large index contrast in DBRs, and weak temperature sensitivity. They could be fabricated either by metal-organic chemical vapor deposition (MOCVD) or by molecular beam epitaxy (MBE) growth. The laser light-current characteristics indicate that a suitable reflectivity of the DBR on the light output side in a laser makes its output power increase greatly and its lasing threshold current reduce significantly, and that a small VCSEL could output the power around its maximum for the output mirror at the reflectivity varying in a broader range than a large VCSEL does.

  16. Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Mendoza, J.

    1995-01-01

    This report documents the results of an experimental investigation on the response of a cavity to external flowfields. The primary objective of this research was to acquire benchmark of data on the effects of cavity length, width, depth, upstream boundary layer, and flow temperature on cavity noise. These data were to be used for validation of computational aeroacoustic (CAA) codes on cavity noise. To achieve this objective, a systematic set of acoustic and flow measurements were made for subsonic turbulent flows approaching a cavity. These measurements were conducted in the research facilities of the Georgia Tech research institute. Two cavity models were designed, one for heated flow and another for unheated flow studies. Both models were designed such that the cavity length (L) could easily be varied while holding fixed the depth (D) and width (W) dimensions of the cavity. Depth and width blocks were manufactured so that these dimensions could be varied as well. A wall jet issuing from a rectangular nozzle was used to simulate flows over the cavity.

  17. Multi-output differential technologies

    NASA Astrophysics Data System (ADS)

    Bidare, Srinivas R.

    1997-01-01

    A differential is a very old and proven mechanical device that allows a single input to be split into two outputs having equal torque irrespective of the output speeds. A standard differential is capable of providing only two outputs from a single input. A recently patented multi-output differential technology known as `Plural-Output Differential' allows a single input to be split into many outputs. This new technology is the outcome of a systematic study of complex gear trains (Bidare 1992). The unique feature of a differential (equal torque at different speeds) can be applied to simplify the construction and operation of many complex mechanical devices that require equal torque's or forces at multiple outputs. It is now possible to design a mechanical hand with three or more fingers with equal torque. Since these finger are powered via a differential they are `mechanically intelligent'. A prototype device is operational and has been used to demonstrate the utility and flexibility of the design. In this paper we shall review two devices that utilize the new technology resulting in increased performance, robustness with reduced complexity and cost.

  18. Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Wysocki, Gerard; Curl, Robert F.; Tittel, Frank K.

    2010-01-01

    The external-cavity quantum cascade laser (EC-QCL) system is based on an optical configuration of the Littrow type. It is a room-temperature, continuous wave, widely tunable, mode-hop-free, mid-infrared, EC-QCL spectroscopic source. It has a single-mode tuning range of 155 cm(exp -1) (approximately equal to 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm(exp -1) (approximately equal to 15% of the center wavelength), and a maximum power of 50 mW as demonstrated for 5.3 micron and 8.4 micron EC-QCLs, respectively. This technology is particularly suitable for high-resolution spectroscopic applications, multi-species tracegas detection, and spectroscopic measurements of broadband absorbers. Wavelength tuning of EC-QCL spectroscopic source can be implemented by varying three independent parameters of the laser: (1) the optical length of the gain medium (which, in this case, is equivalent to QCL injection current modulation), (2) the length of the EC (which can be independently varied in the Rice EC-QCL setup), and (3) the angle of beam incidence at the diffraction grating (frequency tuning related directly to angular dispersion of the grating). All three mechanisms of frequency tuning have been demonstrated and are required to obtain a true mode-hop-free laser frequency tuning. The precise frequency tuning characteristics of the EC-QCL output have been characterized using a variety of diagnostic tools available at Rice University (e.g., a monochromator, FTIR spectrometer, and a Fabry-Perot spectrometer). Spectroscopic results were compared with available databases (such as HITRAN, PNNL, EPA, and NIST). These enable precision verification of complete spectral parameters of the EC-QCL, such as wavelength, tuning range, tuning characteristics, and line width. The output power of the EC-QCL is determined by the performance of the QC laser chip, its operating conditions, and parameters of the QC laser cavity such as mirror reflectivity or intracavity

  19. Turbine disk cavity aerodynamics and heat transfer

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Daniels, W. A.

    1992-01-01

    Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

  20. Mounting system for optical frequency reference cavities

    NASA Technical Reports Server (NTRS)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  1. Multi-Mode Cavity Accelerator Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10 -7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2ndmore » harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E sur max< 260 MV/m and pulsed surface heating ΔT max< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.« less

  2. The ESS elliptical cavity cryomodules

    NASA Astrophysics Data System (ADS)

    Darve, Christine; Bosland, Pierre; Devanz, Guillaume; Olivier, Gilles; Renard, Bertrand; Thermeau, Jean-Pierre

    2014-01-01

    The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today's leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. The superconducting section of the Linac accelerates the beam from 80 MeV to 2.0 GeV. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. These cryomodules contain four elliptical Niobium cavities operating at 2 K and at a frequency of 704.42 MHz. This paper introduces the thermo-mechanical design, the prototyping and the expected operation of the ESS elliptical cavity cryomodules. An Elliptical Cavity Cryomodule Technology Demonstrator (ECCTD) will be built and tested in order to validate the ESS series production.

  3. Quantum correlations in non-inertial cavity systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2016-10-15

    Non-inertial cavities are utilized to store and send Quantum Information between mode pairs. A two-cavity system is considered where one is inertial and the other accelerated in a finite time. Maclaurian series are applied to expand the related Bogoliubov coefficients and the problem is treated perturbatively. It is shown that Quantum Discord, which is a measure of quantumness of correlations, is degraded periodically. This is almost in agreement with previous results reached in accelerated systems where increment of acceleration decreases the degree of quantum correlations. As another finding of the study, it is explicitly shown that degradation of Quantum Discordmore » disappears when the state is in a single cavity which is accelerated for a finite time. This feature makes accelerating cavities useful instruments in Quantum Information Theory. - Highlights: • Non-inertial cavities are utilized to store and send information in Quantum Information Theory. • Cavities include boundary conditions which will protect the entanglement once it has been created. • The problem is treated perturbatively and the maclaurian series are applied to expand the related Bogoliubov coefficients. • When two cavities are considered degradation in the degree of quantum correlation happens and it appears periodically. • The interesting issue is when a single cavity is studied and the degradation in quantum correlations disappears.« less

  4. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Peter Gwin

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it wouldmore » be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.« less

  5. Acoustic localization of breakdown in radio frequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Lane, Peter

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  6. Mechanical properties of niobium radio-frequency cavities

    DOE PAGES

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; ...

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysismore » of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.« less

  7. Status of the LCLS-II Accelerating Cavity Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Ed; Marhauser, Frank; Fitzpatrick, Jarrod A.

    Cavity serial production for the LCLS-II 4 GeV CM SRF linac has started. A quantity of 266 accelerating cavities has been ordered from two industrial vendors. Jefferson Laboratory leads the cavity procurement activities for the project and has successfully transferred the Nitrogen-Doping process to the industrial partners in the initial phase, which is now being applied for the production cavities. We report on the results from vendor qualification and the status of the cavity production for LCLS-II.

  8. Perturbed Partial Cavity Drag Reduction at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    Ventilated partial cavities were investigated at Reynolds numbers to 80 million. These cavities could be suitable for friction drag reduction on ocean going vessels and thereby lead to environmental and economical benefits. The test model was a 3.05 m wide by 12.9 m long flat plate, with a 0.18 m backward-facing step and a cavity-terminating beach, which had an adjustable slope, tilt and height. The step and beach trapped a ventilated partial cavity over the longitudinal mid-section of the model. Large-scale flow perturbations, mimicking the effect of ambient ocean waves were investigated. For the conditions tested a cavity could be maintained under perturbed flow conditions when the gas flux supplied was greater than the minimum required to maintain a cavity under steady conditions, with larger perturbations requiring more excess gas flux to maintain the cavity. High-speed video was used to observe the unsteady three dimensional cavity closure, the overall cavity shape, and the cavity oscillations. Cavities with friction drag reduction exceeding 95% were attained at optimal conditions. A simplified energy cost-benefit analysis of partial cavity drag reduction was also performed. The results suggest that PCDR could potentially lead to energy savings.

  9. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.

    PubMed

    Xu, Youjun; Wang, Shiwei; Hu, Qiwan; Gao, Shuaishi; Ma, Xiaomin; Zhang, Weilin; Shen, Yihang; Chen, Fangjin; Lai, Luhua; Pei, Jianfeng

    2018-05-10

    CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.

  10. Three-Dimensional Morphology of a Coronal Prominence Cavity

    NASA Technical Reports Server (NTRS)

    Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hill, S.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; hide

    2010-01-01

    We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft-X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally-extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step towards quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI) observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explains the observed variation in cavity visibility for the east vs. west limbs

  11. Bistability of Cavity Magnon Polaritons

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C.-M.; You, J. Q.

    2018-01-01

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  12. Piezoelectric tunable microwave superconducting cavity

    NASA Astrophysics Data System (ADS)

    Carvalho, N. C.; Fan, Y.; Tobar, M. E.

    2016-09-01

    In the context of engineered quantum systems, there is a demand for superconducting tunable devices, able to operate with high-quality factors at power levels equivalent to only a few photons. In this work, we developed a 3D microwave re-entrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which controls the resonator dominant mode frequency by changing the cavity narrow gap by very small displacements. Experiments were conducted at room and dilution refrigerator temperatures showing a large dynamic range up to 4 GHz and 1 GHz, respectively, and were compared to a finite element method model simulated data. At elevated microwave power input, nonlinear thermal effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the re-entrant cavity.

  13. Bistability of Cavity Magnon Polaritons.

    PubMed

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C-M; You, J Q

    2018-02-02

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  14. Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level.

    PubMed

    Beirow, Frieder; Eckerle, Michael; Dannecker, Benjamin; Dietrich, Tom; Ahmed, Marwan Abdou; Graf, Thomas

    2018-02-19

    We report on a high-power passively mode-locked radially polarized Yb:YAG thin-disk oscillator providing 125 W of average output power. To the best of our knowledge, this is the highest average power ever reported from a mode-locked radially polarized oscillator without subsequent amplification stages. Mode-locking was achieved by implementing a SESAM as the cavity end mirror and the radial polarization of the LG* 01 mode was obtained by means of a circular Grating Waveguide Output Coupler. The repetition rate was 78 MHz. A pulse duration of 0.97 ps and a spectral bandwidth of 1.4 nm (FWHM) were measured at the maximum output power. This corresponds to a pulse energy of 1.6 µJ and a pulse peak power of 1.45 MW. A high degree of radial polarization of 97.3 ± 1% and an M 2 -value of 2.16 which is close to the theoretical value for the LG* 01 doughnut mode were measured.

  15. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer

    PubMed Central

    Sturm, C.; Tanese, D.; Nguyen, H.S.; Flayac, H.; Galopin, E.; Lemaître, A.; Sagnes, I.; Solnyshkov, D.; Amo, A.; Malpuech, G.; Bloch, J.

    2014-01-01

    Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields. PMID:24513781

  16. Effects of various cavity designs on the performance of a CO2 TEA laser with an unstable resonator

    NASA Technical Reports Server (NTRS)

    Zhao, Yanzeng; Post, Madison J.; Lawrence, T. R.

    1992-01-01

    Unstable resonator modeling has been carried out for an injection-seeded CO2 transversely excited atmosphere (TEA) laser in the NOAA/ERL/Wave Propagation Laboratory (WPL) Doppler lidar to examine the effects of various cavity designs on the quality of the output beam. The results show the effects of an injection pinhole, electrode spacing, mirror tilt, and radial reflectivity function of the output coupler. The electrode spacing in this laser has negligible effect. The injection pinhole, however, produces complicated structures in the output patterns. If the pinhole is removed, the output pattern is much smoother, and the frequency jitter is smaller. Misalignment sensitivity is very closely related to the radial reflectivity function. The superparabolic function provides the highest coupling efficiency, largest beam size, and good collimation, but produces a slightly higher misalignment sensitivity compared with a parabolic function. The Gaussian function provides the lowest misalignment sensitivity, but it produces the smallest beam size and the largest beam divergence. Also, the coupling coefficient is 50 percent lower than the optimum value. Methods for using a flat diffraction grating in unstable resonators are also investigated. The best way is to use a flat grating/positive lens combination to replace the back concave mirror.

  17. Teleportation of a Weak Coherent Cavity Field State

    NASA Astrophysics Data System (ADS)

    Cardoso, Wesley B.; Qiang, Wen-Chao; Avelar, Ardiley T.

    2016-07-01

    In this paper we propose a scheme to teleport a weak coherent cavity field state. The scheme relies on the resonant atom-field interaction inside a high-Q cavity. The mean photon-number of the cavity field is assumed much smaller than one, hence the field decay inside the cavity can be effectively suppressed.

  18. Optical microfiber-based photonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Sun, Yi-zhi; Andrews, Steve; Li, Zhi-yuan; Ding, Wei

    2016-01-01

    Using a focused ion beam milling technique, we fabricate broad stop band (∼10% wide) photonic crystal (PhC) cavities in adiabatically-tapered silica fibers. Abrupt structural design of PhC mirrors efficiently reduces radiation loss, increasing the cavity finesse to ∼7.5. Further experiments and simulations verify that the remaining loss is mainly due to Ga ion implantation. Such a microfiber PhC cavity probably has potentials in many light-matter interaction applications.

  19. Supersonic cavity flows over concave and convex walls

    NASA Astrophysics Data System (ADS)

    Ye, A. Ran; Das, Rajarshi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2016-04-01

    Supersonic cavity flows are characterized by compression and expansion waves, shear layer, and oscillations inside the cavity. For decades, investigations into cavity flows have been conducted, mostly with flows at zero pressure gradient entering the cavity in straight walls. Since cavity flows on curved walls exert centrifugal force, the features of these flows are likely to differ from those of straight wall flows. The aim of the present work is to study the flow physics of a cavity that is cut out on a curved wall. Steady and unsteady numerical simulations were carried out for supersonic flow through curved channels over the cavity with L/H = 1. A straight channel flow was also analyzed which serves as the base model. The velocity gradient along the width of the channel was observed to increase with increasing the channel curvature for both concave and convex channels. The pressure on the cavity floor increases with the increase in channel curvature for concave channels and decreases for convex channels. Moreover, unsteady flow characteristics are more dependent on channel curvature under supersonic free stream conditions.

  20. Theory of hydrophobicity: transient cavities in molecular liquids

    NASA Technical Reports Server (NTRS)

    Pratt, L. R.; Pohorille, A.

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or "squeezing" force, reaches a maximum near cavity diameters of 2.4 angstroms. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studied here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems.

  1. Theory of hydrophobicity: Transient cavities in molecular liquids

    PubMed Central

    Pratt, Lawrence R.; Pohorille, Andrew

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or “squeezing” force, reaches a maximum near cavity diameters of 2.4 Å. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studies here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems. PMID:11537863

  2. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non

  3. Piezoelectric-tuned microwave cavity for absorption spectrometry

    DOEpatents

    Leskovar, Branko; Buscher, Harold T.; Kolbe, William F.

    1978-01-01

    Gas samples are analyzed for pollutants in a microwave cavity that is provided with two highly polished walls. One wall of the cavity is mechanically driven with a piezoelectric transducer at a low frequency to tune the cavity over a band of microwave frequencies in synchronism with frequency modulated microwave energy applied to the cavity. Absorption of microwave energy over the tuned frequencies is detected, and energy absorption at a particular microwave frequency is an indication of a particular pollutant in the gas sample.

  4. Cavity-actuated supersonic mixing and combustion control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K.H.; Schadow, K.C.

    1994-11-01

    Compressible shear layers in supersonic jets are quite stable and spread very slowly compared with incompressible shear layers. In this paper, a novel use of a cavity-actuated forcing technique is demonstrated for increasing the spreading rate of compressible shear layers. Periodic modulations were applied to Mach 2.0 reacting and nonreacting jets using the cavities that were attached at the exit of a circular supersonic nozzle. The effect of cavity-actuated forcing was studied as a function of the cavity geometry, in particular, the length and the depth of the cavity. When the cavities were tuned to certain frequencies, large-scale highly coherentmore » structures were produced in the shear layers substantially increasing the growth rate. The cavity excitation was successfully applied to both cold and hot supersonic jets. When applied to cold Mach 2.0 air jets. the cavity-actuated forcing increased the spreading rate of the initial shear layers with the convective Mach number (M[sub C]) of 0.85 by a factor of three. For high-temperature Mach 2.0 jets with M[sub C] of 1.4, a 50% increase in the spreading rate was observed with the forcing. Finally, the cavity-actuated forcing was applied to reacting supersonic jets with ethylene-oxygen afterburning. For this case, the forcing caused a 20%--30% reduction in the afterburning flame length and modified the afterburning intensity significantly. The direction of the modification depended on the characteristics of the afterburning flames. The intensity was reduced with forcing for unstable flames with weak afterburning while it was increased for stable flames with strong afterburning.« less

  5. Compound parabolic concentrator with cavity for tubular absorbers

    DOEpatents

    Winston, Roland

    1983-01-01

    A compond parabolic concentrator with a V-shaped cavity is provided in which an optical receiver is emplaced. The cavity redirects all energy entering between the receiver and the cavity structure onto the receiver, if the optical receiver is emplaced a distance from the cavity not greater than 0.27 r (where r is the radius of the receiver).

  6. Estimating tree cavity distributions from historical FIA data

    Treesearch

    Mark D. Nelson; Charlotte Roy

    2012-01-01

    Tree cavities provide important habitat features for a variety of wildlife species. We describe an approach for using historical FIA data to estimate the number of trees containing cavities during the 1990s in seven states of the Upper Midwest. We estimated a total of 280 million cavity-containing trees. Iowa and Missouri had the highest percentages of cavity-...

  7. Resonant-cavity light-emitting diodes for optical interconnects

    NASA Astrophysics Data System (ADS)

    Jin, Xu

    This dissertation addresses the issues related to external quantum efficiencies and light coupling efficiency of novel 1.3 mum Resonant-cavity light-emitting diodes (RCLEDs) on GaAs substrates. External quantum efficiency (QE) is defined as the number of extracted photons per injected electrons, i.e., the product of injection efficiency, internal QE, and light extraction efficiency. This study focuses on the latter two terms. Internal QE mainly depends on the properties of the active region quantum wells (QWs) used in the RCLEDs, such as composition, thickness, and strain compensation. GaAsSb/GaAs QW edge-emitting (EE) lasers are characterized experimentally to extract key parameters, such as internal QE and internal loss. With optimized QWs and a novel self-aligned EE lasers process, room temperature continuous wave (CW) operation of GaAsSb EE lasers has been demonstrated for the first time. The highest operational temperature for the EE lasers is 48°C at a wavelength as long as 1260 nm. This result is the best ever reported by a university group. In conventional LEDs, very little light generated by the active region, succeeds in escaping from the semiconductor material due to the small critical angle of total internal reflection. With the use of a resonant cavity, the light extraction efficiency of RCLEDs is significantly improved. Front and back reflectivities, detuning (offset) between resonant-cavity peak and electroluminescence, and electroluminescence linewidth have been identified as key factors influencing light extraction efficiency. Numerical simulations indicate that the fraction of luminescence transmitted through the top mirror of an optimized RCLED is around 9%, which is more than double that of conventional LEDs. This number will be larger when multiple reflections and photon recycling are considered; which are not included in the current model since they are structure dependent. The best GaAsSb/GaAs QW RCLEDs demonstrated in this work have shown

  8. Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration.

    PubMed

    Zhang, Yangyang; Lu, Bingwei; Lü, Chaofeng; Feng, Xue

    2017-11-01

    Self-powered implantable devices with flexible energy harvesters are of significant interest due to their potential to solve the problem of limited battery life and surgical replacement. The flexible electronic devices made of piezoelectric materials have been employed to harvest energy from the motion of biological organs. Experimental measurements show that the output voltage of the device mounted on porcine left ventricle in chest closed environment decreases significantly compared to the case of chest open. A restricted-space deformation model is proposed to predict the impeding effect of pleural cavity, surrounding tissues, as well as respiration on the efficiency of energy harvesting from heartbeat using flexible piezoelectric devices. The analytical solution is verified by comparing theoretical predictions to experimental measurements. A simple scaling law is established to analyse the intrinsic correlations between the normalized output power and the combined system parameters, i.e. the normalized permitted space and normalized electrical load. The results may provide guidelines for optimization of in vivo energy harvesting from heartbeat or the motions of other biological organs using flexible piezoelectric energy harvesters.

  9. Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration

    NASA Astrophysics Data System (ADS)

    Zhang, Yangyang; Lu, Bingwei; Lü, Chaofeng; Feng, Xue

    2017-11-01

    Self-powered implantable devices with flexible energy harvesters are of significant interest due to their potential to solve the problem of limited battery life and surgical replacement. The flexible electronic devices made of piezoelectric materials have been employed to harvest energy from the motion of biological organs. Experimental measurements show that the output voltage of the device mounted on porcine left ventricle in chest closed environment decreases significantly compared to the case of chest open. A restricted-space deformation model is proposed to predict the impeding effect of pleural cavity, surrounding tissues, as well as respiration on the efficiency of energy harvesting from heartbeat using flexible piezoelectric devices. The analytical solution is verified by comparing theoretical predictions to experimental measurements. A simple scaling law is established to analyse the intrinsic correlations between the normalized output power and the combined system parameters, i.e. the normalized permitted space and normalized electrical load. The results may provide guidelines for optimization of in vivo energy harvesting from heartbeat or the motions of other biological organs using flexible piezoelectric energy harvesters.

  10. Selected computations of transonic cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1993-01-01

    An efficient diagonal scheme implemented in an overset mesh framework has permitted the analysis of geometrically complex cavity flows via the Reynolds averaged Navier-Stokes equations. Use of rapid hyperbolic and algebraic grid methods has allowed simple specification of critical turbulent regions with an algebraic turbulence model. Comparisons between numerical and experimental results are made in two dimensions for the following problems: a backward-facing step; a resonating cavity; and two quieted cavity configurations. In three-dimensions the flow about three early concepts of the stratospheric Observatory For Infrared Astronomy (SOFIA) are compared to wind-tunnel data. Shedding frequencies of resolved shear layer structures are compared against experiment for the quieted cavities. The results demonstrate the progress of computational assessment of configuration safety and performance.

  11. Simple, low-noise piezo driver with feed-forward for broad tuning of external cavity diode lasers.

    PubMed

    Doret, S Charles

    2018-02-01

    We present an inexpensive, low-noise (<260 μV rms , 0.1 Hz-100 kHz) design for a piezo driver suitable for frequency tuning of external-cavity diode lasers. This simple driver improves upon many commercially available drivers by incorporating circuitry to produce a "feed-forward" signal appropriate for making simultaneous adjustments to the piezo voltage and laser current, enabling dramatic improvements in a mode-hop-free laser frequency tuning range. We present the theory behind our driver's operation, characterize its output noise, and demonstrate its use in absorption spectroscopy on the rubidium D 1 line.

  12. Quantum teleportation with atoms trapped in cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Jaeyoon; Lee, Hai-Woong

    2004-09-01

    We propose a scheme to implement the quantum teleportation protocol with single atoms trapped in cavities. The scheme is based on the adiabatic passage and the polarization measurement. We show that it is possible to teleport the internal state of an atom trapped in a cavity to an atom trapped in another cavity with the success probability of 1/2 and the fidelity of 1. The scheme is resistant to a number of considerable imperfections such as the violation of the Lamb-Dicke condition, weak atom-cavity coupling, spontaneous emission, and detection inefficiency.

  13. Acoustic trapping in bubble-bounded micro-cavities

    NASA Astrophysics Data System (ADS)

    O'Mahoney, P.; McDougall, C.; Glynne-Jones, P.; MacDonald, M. P.

    2016-12-01

    We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded `micro-cavities'. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.

  14. Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, F.; Rose, J.; Cupolo, J.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.

  15. Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact

    NASA Astrophysics Data System (ADS)

    Forman, Charles A.; Lee, SeungGeun; Young, Erin C.; Kearns, Jared A.; Cohen, Daniel A.; Leonard, John T.; Margalith, Tal; DenBaars, Steven P.; Nakamura, Shuji

    2018-03-01

    We have achieved continuous-wave (CW) operation of an optically polarized m-plane GaN-based vertical-cavity surface-emitting laser (VCSEL) with an ion implanted current aperture, a tunnel junction intracavity contact, and a dual dielectric distributed Bragg reflector design. The reported VCSEL has 2 quantum wells, with a 14 nm quantum well width, 1 nm barriers, a 5 nm electron-blocking layer, and a 23 λ total cavity thickness. The thermal performance was improved by increasing the cavity length and using Au-In solid-liquid interdiffusion bonding, which led to lasing under CW operation for over 20 min. Lasing wavelengths under pulsed operation were observed at 406 nm, 412 nm, and 419 nm. Only the latter two modes appeared under CW operation due to the redshifted gain at higher temperatures. The peak output powers for a 6 μm aperture VCSEL under CW and pulsed operation were 140 μW and 700 μW, respectively. The fundamental transverse mode was observed without the presence of filamentary lasing. The thermal impedance was estimated to be ˜1400 °C/W for a 6 μm aperture 23 λ VCSEL.

  16. Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton.

    PubMed

    Bai, Lihui; Harder, Michael; Hyde, Paul; Zhang, Zhaohui; Hu, Can-Ming; Chen, Y P; Xiao, John Q

    2017-05-26

    Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusion length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.

  17. Loading a single photon into an optical cavity

    NASA Astrophysics Data System (ADS)

    Du, Shengwang; Liu, Chang; Sun, Yuan; Zhao, Luwei; Zhang, Shanchao; Loy, M. M. T.

    2015-05-01

    Confining and manipulating single photons inside a reflective optical cavity is an essential task of cavity quantum electrodynamics (CQED) for probing the quantum nature of light quanta. Such systems are also elementary building blocks for many protocols of quantum network, where remote cavity quantum nodes are coupled through flying photons. The connectivity and scalability of such a quantum network strongly depends on the efficiency of loading a single photon into cavity. In this work we demonstrate that a single photon with an optimal temporal waveform can be efficiently loaded into a cavity. Using heralded narrow-band single photons with exponential growth wave packet whose time constant matches the photon lifetime in the cavity, we demonstrate a loading efficiency of more than 87 percent from free space to a single-sided Fabry-Perot cavity. Our result and approach may enable promising applications in realizing large-scale CQED-based quantum networks. The work was supported by the Hong Kong RGC (Project No. 601411).

  18. Enhanced photoelastic modulation in silica phononic crystal cavities

    NASA Astrophysics Data System (ADS)

    Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-04-01

    The enhanced photoelastic modulation in quasi-one-dimensional (1D) phononic crystal (PnC) cavities made of fused silica is experimentally demonstrated. A confined acoustic wave in the cavity can induce a large birefringence through the photoelastic effect and enable larger optical modulation amplitude at the same acoustic power. We observe a phase retardation of ∼26 mrad of light passing through the cavity when the exciting acoustic frequency is tuned to the cavity mode resonance of ∼500 kHz at 2.5 V. In the present experiment, a 16-fold enhancement of retardation in the PnC cavity is demonstrated compared with that in a bar-shaped silica structure. Spatially resolved optical retardation measurement reveals that the large retardation is realized only around the cavity reflecting the localized nature of the acoustic cavity mode. The enhanced interactions between acoustic waves and light can be utilized to improve the performance of acousto-optic devices such as photoelastic modulators.

  19. Novel High Cooperativity Photon-Magnon Cavity QED

    NASA Astrophysics Data System (ADS)

    Tobar, Michael; Bourhill, Jeremy; Kostylev, Nikita; G, Maxim; Creedon, Daniel

    Novel microwave cavities are presented, which couple photons and magnons in YIG spheres in a super- and ultra-strong way at around 20 mK in temperature. Few/Single photon couplings (or normal mode splitting, 2g) of more than 6 GHz at microwave frequencies are obtained. Types of cavities include multiple post reentrant cavities, which co-couple photons at different frequencies with a coupling greater that the free spectral range, as well as spherical loaded dielectric cavity resonators. In such cavities we show that the bare dielectric properties can be obtained by polarizing all magnon modes to high energy using a 7 Tesla magnet. We also show that at zero-field, collective effects of the spins significantly perturb the photon modes. Other effects like time-reversal symmetry breaking are observed.

  20. Cavity cooling a single charged levitated nanosphere.

    PubMed

    Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F

    2015-03-27

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.