Sample records for km depth consistent

  1. Shear heating and metamorphism in subduction zones, 2. The seismic-aseismic transition at c. 50 km depth.

    NASA Astrophysics Data System (ADS)

    Castro, A. E.; Spear, F. S.; Kohn, M. J.

    2017-12-01

    Recent work demonstrates that shear heating, which is required for explaining fore-arc heat flow, reconciles thermal models with pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks, i.e. exhumed rocks are representative of normal subduction. However, the range of subduction conditions on Earth (age, angle and rate of subducting plate, character of overriding plate, coefficient of friction, etc.) implies a ≥250 °C range of corresponding temperatures at the depth of the seismic-aseismic transition (SAT), which is consistently observed at 40-60 km in subduction zones worldwide. Here we show that the predicted rheologies and mineral stabilities for 3 common rock types fail to explain the global consistency of the SAT depth, and we propose that mechanical removal of the weakest rocks is required. Using either realistic thermal models, or P-T conditions recorded by exhumed metamorphic rocks, a substantial subset of depths corresponding with any single petrologic or rheological process falls outside the relatively restricted 40-60 km depth of the SAT. For example, a thermal weakening mechanism (the brittle-ductile transition) implies a wide range of depths, regardless of proposed T (e.g. 20-30 km (300 °C), 25-60 km (400 °C), 35 to >85 km (500 °C), etc). Similarly, individual dehydration reactions span a larger range of depths than observed for the SAT; for example, chlorite-out (metapelites: 35 to >85 km; metabasalts: 40 to >85 km), brucite-out (35-75 km) and serpentine/talc-out (50 to >80 km). The failure of a single petrologic and rheological trigger for these characteristic rocks to produce a consistent SAT depth implies that these rocks do not control the SAT, and consequently must not be abundant at depths below the SAT. That is, these hydrated, weak, and buoyant rocks must be squeezed out of the subduction system, although subduction of discontinuous blobs or lenses to greater depth, e.g. to feed arc volcanoes, may occur. The SAT instead may represent progressive strengthening of the subduction interface through mechanical exclusion of weak rocks and formation of stiffer minerals with increasing temperature and depth. Ultimately, as the strengths of the slab and mantle wedge converge at c. 80 km depth, mechanical coupling occurs, driving mantle wedge convection.

  2. Teleseismic P wave tomography of South Island, New Zealand upper mantle: Evidence of subduction of Pacific lithosphere since 45 Ma

    NASA Astrophysics Data System (ADS)

    Zietlow, Daniel W.; Molnar, Peter H.; Sheehan, Anne F.

    2016-06-01

    A P wave speed tomogram produced from teleseismic travel time measurements made on and offshore the South Island of New Zealand shows a nearly vertical zone with wave speeds that are 4.5% higher than the background average reaching to depths of approximately 450 km under the northwestern region of the island. This structure is consistent with oblique west-southwest subduction of Pacific lithosphere since about 45 Ma, when subduction beneath the region began. The high-speed zone reaches about 200-300 km below the depths of the deepest intermediate-depth earthquakes (subcrustal to ~200 km) and therefore suggests that ~200-300 km of slab below them is required to produce sufficient weight to induce the intermediate-depth seismicity. In the southwestern South Island, high P wave speeds indicate subduction of the Australian plate at the Puysegur Trench to approximately 200 km depth. A band with speeds ~2-3.5% lower than the background average is found along the east coast of the South Island to depths of ~150-200 km and underlies Miocene or younger volcanism; these low speeds are consistent with thinned lithosphere. A core of high speeds under the Southern Alps associated with a convergent margin and mountain building imaged in previous investigations is not well resolved in this study. This could suggest that such high speeds are limited in both width and depth and not resolvable by our data.

  3. Upper mantle structure across the Trans-European Suture Zone imaged by S-receiver functions

    NASA Astrophysics Data System (ADS)

    Knapmeyer-Endrun, Brigitte; Krüger, Frank; Geissler, Wolfram H.; Passeq Working Group

    2017-01-01

    We present a high-resolution study of the upper mantle structure of Central Europe, including the western part of the East European Platform, based on S-receiver functions of 345 stations. A distinct contrast is found between Phanerozoic Europe and the East European Craton across the Trans-European Suture Zone. To the west, a pronounced velocity reduction with depth interpreted as lithosphere-asthenosphere boundary (LAB) is found at an average depth of 90 km. Beneath the craton, no strong and continuous LAB conversion is observed. Instead we find a distinct velocity reduction within the lithosphere, at 80-120 km depth. This mid-lithospheric discontinuity (MLD) is attributed to a compositional boundary between depleted and more fertile lithosphere created by late Proterozoic metasomatism. A potential LAB phase beneath the craton is very weak and varies in depth between 180 and 250 km, consistent with a reduced velocity contrast between the lower lithosphere and the asthenosphere. Within the Trans-European Suture Zone, lithospheric structure is characterized by strong heterogeneity. A dipping or step-wise increase to LAB depth of 150 km is imaged from Phanerozoic Europe to 20-22° E, whereas no direct connection to the cratonic LAB or MLD to the east is apparent. At larger depths, a positive conversion associated with the lower boundary of the asthenosphere is imaged at 210-250 km depth beneath Phanerozoic Europe, continuing down to 300 km depth beneath the craton. Conversions from both 410 km and 660 km discontinuities are found at their nominal depth beneath Phanerozoic Europe, and the discontinuity at 410 km depth can also be traced into the craton. A potential negative conversion on top of the 410 km discontinuity found in migrated images is analyzed by modeling and attributed to interference with other converted phases.

  4. Petrologic Constraints on Magma Plumbing Systems Beneath Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Peterman, K. J.; Scott, J. L.; Barton, M.

    2016-12-01

    We have calculated the pressures of partial crystalliztion of basaltic magmas from Hawaii using a petrological method. A total of 1576 major oxide analyses of glasses from four volcanoes (Kilauea and the Puna Ridge, Loihi, Mauna Loa, and Mauna Kea, on the Big Island) were compiled and used as input data. Glasses represent quenched liquid compositions and are ideal for calculation of pressures of partial crystallization. The results were filtered to exclude samples that yielded unrealistic high errors associated with the calculated pressure or negative value of pressure, and to exclude samples with non-basaltic compositions. Calculated pressures were converted to depths of partial crystallization. The majority (68.2%) of pressures for the shield-stage subaerial volcanoes Kilauea, Mauna Loa, and Mauna Kea, fall in the range 0-140 MPa, corresponding to depths of 0-5 km. Glasses from the Puna Ridge yield pressures ranging from 18 to 126 MPa and are virtually identical to pressures determined from glasses from Kilauea (0 to 129 MPa). These results are consistent with the presence of magma reservoirs at depths of 0-5 km beneath the large shield volcanoes. The inferred depth of the magma reservoir beneath the summit of Kilauea (average = 1.8 km, maximum = 5 km) agrees extremely well with depths ( 2-6 km) estimated from seismic studies. The results for Kilauea and Mauna Kea indicate that significant partial crystallization also occurs beneath the summit reservoirs at depths up to 11 km. These results are consistent with seismic evidence for the presence of a magma reservoir at 8-11 km beneath Kilauea at the base of the volcanic pile. The results for Loihi indicate crystallization at higher average pressures (100-400 MPa) and depths (3-14 km) than the large shield volcanoes, suggesting that the plumbing system is not yet fully developed, and that the Hawaiian volcanic plumbing systems evolve over time.

  5. Estimates of velocity structure and source depth using multiple P waves from aftershocks of the 1987 Elmore Ranch and Superstition Hills, California, earthquakes

    USGS Publications Warehouse

    Mori, J.

    1991-01-01

    Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequencs appear to have similar depth distribution in the range of 4 to 10 km. -Author

  6. Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography

    NASA Astrophysics Data System (ADS)

    Pandey, Shantanu; Yuan, Xiaohui; Debayle, Eric; Tilmann, Frederik; Priestley, Keith; Li, Xueqing

    2015-06-01

    Azimuthal anisotropy derived from multimode Rayleigh wave tomography in China exhibits depth-dependent variations in Tibet, which can be explained as induced by the Cenozoic India-Eurasian collision. In west Tibet, the E-W fast polarization direction at depths <100 km is consistent with the accumulated shear strain in the Tibetan lithosphere, whereas the N-S fast direction at greater depths is aligned with Indian Plate motion. In northeast Tibet, depth-consistent NW-SE directions imply coupled deformation throughout the whole lithosphere, possibly also involving the underlying asthenosphere. Significant anisotropy at depths of 225 km in southeast Tibet reflects sublithospheric deformation induced by northward and eastward lithospheric subduction beneath the Himalaya and Burma, respectively. The multilayer anisotropic surface wave model can explain some features of SKS splitting measurements in Tibet, with differences probably attributable to the limited back azimuthal coverage of most SKS studies in Tibet and the limited horizontal resolution of the surface wave results.

  7. Seismic evidence for a slab tear at the Puerto Rico Trench

    NASA Astrophysics Data System (ADS)

    Meighan, Hallie E.; Pulliam, Jay; ten Brink, Uri; López-Venegas, Alberto M.

    2013-06-01

    fore-arc region of the northeast Caribbean plate north of Puerto Rico and the Virgin Islands has been the site of numerous seismic swarms since at least 1976. A 6 month deployment of five ocean bottom seismographs recorded two such tightly clustered swarms, along with additional events. Joint analyses of the ocean bottom seismographs and land-based seismic data reveal that the swarms are located at depths of 50-150 km. Focal mechanism solutions, found by jointly fitting P wave first-motion polarities and S/P amplitude ratios, indicate that the broadly distributed events outside the swarm generally have strike- and dip-slip mechanisms at depths of 50-100 km, while events at depths of 100-150 km have oblique mechanisms. A stress inversion reveals two distinct stress regimes: The slab segment east of 65°W longitude is dominated by trench-normal tensile stresses at shallower depths (50-100 km) and by trench-parallel tensile stresses at deeper depths (100-150 km), whereas the slab segment west of 65°W longitude has tensile stresses that are consistently trench normal throughout the depth range at which events were observed (50-100 km). The simple stress pattern in the western segment implies relatively straightforward subduction of an unimpeded slab, while the stress pattern observed in the eastern segment, shallow trench-normal tension and deeper trench-normal compression, is consistent with flexure of the slab due to rollback. These results support the hypothesis that the subducting North American plate is tearing at or near these swarms. The 35 year record of seismic swarms at this location and the recent increase in seismicity suggest that the tear is still propagating.

  8. Seismic evidence for a slab tear at the Puerto Rico Trench

    USGS Publications Warehouse

    Meighan, Hallie E.; Pulliam, Jay; ten Brink, Uri S.; López-Venegas, Alberto M.

    2013-01-01

    The fore-arc region of the northeast Caribbean plate north of Puerto Rico and the Virgin Islands has been the site of numerous seismic swarms since at least 1976. A 6 month deployment of five ocean bottom seismographs recorded two such tightly clustered swarms, along with additional events. Joint analyses of the ocean bottom seismographs and land-based seismic data reveal that the swarms are located at depths of 50–150 km. Focal mechanism solutions, found by jointly fitting P wave first-motion polarities and S/P amplitude ratios, indicate that the broadly distributed events outside the swarm generally have strike- and dip-slip mechanisms at depths of 50–100 km, while events at depths of 100–150 km have oblique mechanisms. A stress inversion reveals two distinct stress regimes: The slab segment east of 65°W longitude is dominated by trench-normal tensile stresses at shallower depths (50–100 km) and by trench-parallel tensile stresses at deeper depths (100–150 km), whereas the slab segment west of 65°W longitude has tensile stresses that are consistently trench normal throughout the depth range at which events were observed (50–100 km). The simple stress pattern in the western segment implies relatively straightforward subduction of an unimpeded slab, while the stress pattern observed in the eastern segment, shallow trench-normal tension and deeper trench-normal compression, is consistent with flexure of the slab due to rollback. These results support the hypothesis that the subducting North American plate is tearing at or near these swarms. The 35 year record of seismic swarms at this location and the recent increase in seismicity suggest that the tear is still propagating.

  9. Moho Depth Variations in the Northeastern North China Craton Revealed by Receiver Function Imaging

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Chen, L.; Yao, H.; Fang, L.

    2016-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of the region. In this study, we used two-year teleseismic receiver function data from the North China Seismic Array consisting of 200 broadband stations deployed in the northeastern NCC to image the Moho undulation of the region. A 2-D wave equation-based poststack depth migration method was employed to construct the structural images along 19 profiles, and a pseudo 3D crustal velocity model of the region based on previous ambient noise tomography and receiver function study was adopted in the migration. We considered both the Ps and PpPs phases, but in some cases we also conducted PpSs+PsPs migration using different back azimuth ranges of the data, and calculated the travel times of all the considered phases to constrain the Moho depths. By combining the structure images along the 19 profiles, we got a high-resolution Moho depth map beneath the northeastern NCC. Our results broadly consist with the results of previous active source studies [http://www.craton.cn/data], and show a good correlation of the Moho depths with geological and tectonic features. Generally, the Moho depths are distinctly different on the opposite sides of the North-South Gravity Lineament. The Moho in the west are deeper than 40 km and shows a rapid uplift from 40 km to 30 km beneath the Taihang Mountain Range in the middle. To the east in the Bohai Bay Basin, the Moho further shallows to 30-26 km depth and undulates by 3 km, coinciding well with the depressions and uplifts inside the basin. The Moho depth beneath the Yin-Yan Mountains in the north gradually decreases from 42 km in the west to 25 km in the east, varying much smoother than that to the south.

  10. Discontinuities in the shallow Martian crust at Lunae, Syria, and Sinai Plana

    USGS Publications Warehouse

    Davis, P.A.; Golombek, M.P.

    1990-01-01

    Detailed photoclinometric profiles across 125 erosional features and 141 grabens in the western equatorial region of Mars indicate the presence of three discontinuities within the shallow crust, at depths of 0.3, 0.6 km, 1 km, and 2-3 km. The shallowest discontinuity corresponds to thickness estimates for the ridged plains unit in this region, and thus the discontinuity probably is the contact between a sequence of layered rock making up this unit and the underlying megaregolith. The 1-km discontinuity is reflected in the base levels of erosion of all the features studied, and it may correspond to the base of the proposed layer of ground ice. Model calculations show that graben-bounding faults consistently intersect at the mechanical discontinuity at about 1 km depth. This discontinuity may represent an interface between ice-laden and dry regolith, ice-laden and water-laden regolith, or pristine and cemented regolith. A correlation between wall valley head depth and local thickness of the faulted layer suggests that the 1-km discontinuity also controlled the depth of the heads of sapping canyons. The third discontinuity, at a depth of 2-3 km, corresponds to the proposed base of the Martian megaregolith and is probably the interface between overlying, ejected breccia and in situ, fractured basement rocks. -from Authors

  11. Global Discontinuity Structure of the Mantle Transition Zone from Finite-Frequency Tomography of SS Precursors

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Zhou, Y.

    2017-12-01

    We report global structure of the 410-km and 660-km discontinuities from finite-frequency tomography using frequency-dependent traveltime measurements of SS precursors recorded at the Global Seismological Network (GSN). Finite-frequency sensitivity kernels for discontinuity depth perturbations are calculated in the framework of traveling-wave mode coupling. We parametrize the global discontinuities using a set of spherical triangular grid points and solve the tomographic inverse problem based on singular value decomposition. Our global 410-km and 660-km discontinuity models reveal distinctly different characteristics beneath the oceans and subduction zones. In general, oceanic regions are associated with a thinner mantle transition zone and depth perturbations of the 410-km and 660-km discontinuities are anti-correlated, in agreement with a thermal origin and an overall warm and dry mantle beneath the oceans. The perturbations are not uniform throughout the oceans but show strong small-scale variations, indicating complex processes in the mantle transition zone. In major subduction zones (except for South America where data coverage is sparse), depth perturbations of the 410-km and 660-km discontinuities are correlated, with both the 410-km and the 660-km discontinuities occurring at greater depths. The distributions of the anomalies are consistent with cold stagnant slabs just above the 660-km discontinuity and ascending return flows in a superadiabatic upper mantle.

  12. Lateral density anomalies and the earth's gravitational field

    NASA Technical Reports Server (NTRS)

    Lowrey, B. E.

    1978-01-01

    The interpretation of gravity is valuable for understanding lithospheric plate motion and mantle convection. Postulated models of anomalous mass distributions in the earth and the observed geopotential as expressed in the spherical harmonic expansion are compared. In particular, models of the anomalous density as a function of radius are found which can closely match the average magnitude of the spherical harmonic coefficients of a degree. These models include: (1) a two-component model consisting of an anomalous layer at 200 km depth (below the earth's surface) and at 1500 km depth (2) a two-component model where the upper component is distributed in the region between 1000 and 2800 km depth, and(3) a model with density anomalies which continuously increase with depth more than an order of magnitude.

  13. A new petrological and geophysical investigation of the present-day plumbing system of Mount Vesuvius

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Tarits, P.; Hautot, S.; Pichavant, M.; Scaillet, B.; Gaillard, F.

    2010-07-01

    A model of the electrical resistivity of Mt. Vesuvius has been elaborated to investigate the present structure of the volcanic edifice. The model is based on electrical conductivity measurements in the laboratory, on geophysical information, in particular, magnetotelluric (MT) data, and on petrological and geochemical constraints. Both 1-D and 3-D simulations explored the effect of depth, volume and resistivity of either one or two reservoirs in the structure. For each configuration tested, modeled MT transfer functions were compared to field transfer functions from field magnetotelluric studies. The field electrical data are reproduced with a shallow and very conductive layer (˜0.5 km depth, 1.2 km thick, 5 ohm.m resistive) that most likely corresponds to a saline brine present beneath the volcano. Our results are also compatible with the presence of cooling magma batches at shallow depths (<3-4 km depth). The presence of a deeper body at ˜8 km depth, as suggested by seismic studies, is consistent with the observed field transfer functions if such a body has an electrical resistivity > ˜100 ohm.m. According to a petro-physical conductivity model, such a resistivity value is in agreement either with a low-temperature, crystal-rich magma chamber or with a small quantity of hotter magma interconnected in the resistive surrounding carbonates. However, the low quality of MT field data at long periods prevent from placing strong constraints on a potential deep magma reservoir. A comparison with seismic velocity values tends to support the second hypothesis. Our findings would be consistent with a deep structure (8-10 km depth) made of a tephriphonolitic magma at 1000°C, containing 3.5 wt%H2O, 30 vol.% crystals, and interconnected in carbonates in proportions ˜45% melt -55% carbonates.

  14. Crust and upper mantle shear wave structure of Northeast Algeria from Rayleigh wave dispersion analysis

    NASA Astrophysics Data System (ADS)

    Radi, Zohir; Yelles-Chaouche, Abdelkrim; Corchete, Victor; Guettouche, Salim

    2017-09-01

    We resolve the crust and upper mantle structure beneath Northeast Algeria at depths of 0-400 km, using inversion of fundamental mode Rayleigh wave. Our data set consists of 490 earthquakes recorded between 2007 and 2014 by five permanent broadband seismic stations in the study area. Applying a combination of different filtering technics and inversion method shear wave velocities structure were determined as functions of depth. The resolved changes in Vs at 50 km depth are in perfect agreement with crustal thickness estimates, which reflect the study area's orogenic setting, partly overlying the collision zone between the African and Eurasian plates. The inferred Moho discontinuity depths are close to those estimated for other convergent areas. In addition, there is good agreement between our results and variations in orientations of regional seismic anisotropy. At depths of 80-180 km, negative Vs anomalies at station CBBR suggest the existence of a failed subduction slab.

  15. Reconciling Electromagnetic and Seismic Constraints on Lithospheric Thickness and Composition of the Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Muller, M. R.; Fullea, J.; Jones, A. G.

    2010-12-01

    Much of the long-running debate regarding the depth extent of the continental lithosphere beneath Archean shield areas has focussed on the Kaapvaal Craton of South Africa. Our recent magnetotelluric surveys across the Kaapvaal Craton, as part of the Southern African Magnetotelluric Experiment (SAMTEX), indicate a lithospheric thickness of the order of 220 km or greater for the central core of the craton. In contrast, a recently published S-wave receiver function study and several surface wave studies suggest that the Kaapvaal lithosphere is characterized by an approximately 160 km thick high-velocity “lid” underlain by a low-velocity layer that is between 65 - 150 km thick, with the base of the high-velocity lid inferred to represent the “lithosphere-asthenosphere boundary”. Other body-wave, surface wave and S-wave receiver function studies in the area suggest that the (high-velocity) lithosphere is substantially thicker, in excess of 250 km for the most part. Evidence from mantle xenolith pressure-temperature arrays derived from Mesozoic kimberlites found across the Kaapvaal Craton requires that the base of the lithosphere (i.e., the base of the thermal boundary layer above which a conductive geotherm is maintained) be at least 220 km deep, if observed mantle geotherms in the range 35 - 38 mWm-2 are to be accounted for. The presence of richly diamondiferous kimberlites across the Kaapvaal Craton is also impossible to reconcile with a 160 km lithospheric thickness: the top of the diamond (pressure-temperature) stability field is deeper than 160 km for the mantle geotherm associated with a 160 km lithospheric thickness. In the work presented here, we use the recently developed LitMOD software package to derive both seismic velocity and electrical resistivity models for the lithosphere that are fully chemically, petrologically and thermodynamically consistent, and assess whether these apparently disparate views of the Kaapvaal lithosphere - provided by seismic, magnetotelluric and xenolith studies - can be reconciled. We address directly several key issues: (i) whether a 160 km lithospheric thickness (and its associated temperature and pressure variation with depth) is “internally” consistent with the high (> 4.7 km/s) S-wave velocities predicted for the seismic high-velocity lid, given typical Kaapvaal geochemical compositions from xenolith analyses, (ii) whether a 160 km lithospheric thickness and its associated electrical resistivity variation with depth is consistent with observed magnetotelluric responses, and (iii) whether the observed (negative) mantle conversion event at 160 km depth in one S-wave receiver function study can be explained by compositional layering within the Kaapvaal Craton, given that the geochemistry of xenoliths from younger Group I kimberlites provides evidence for chemical refertilization of the lithosphere in the depth range 160 - 200 km.

  16. Variable magma reservoir depths for Tongariro Volcanic Complex eruptive deposits from 10,000 years to present

    NASA Astrophysics Data System (ADS)

    Arpa, Maria Carmencita; Zellmer, Georg F.; Christenson, Bruce; Lube, Gert; Shellnutt, Gregory

    2017-07-01

    Mineral, groundmass and bulk rock chemical analyses of samples from the Tongariro Volcanic Complex were made to estimate depths of magma reservoirs for selected eruptive deposits. The sample set consists of two units from the 11,000 cal. years bp Mangamate Formation (Te Rato and Wharepu) and more recent deposits from near 1717 cal. years bp (Ngauruhoe and Red Crater) to 1975 (Ngauruhoe). The depths of crystallization were determined by established thermobarometers. Results show that the Mangamate eruptions of Te Rato and Wharepu originated from a deeper magma reservoir of about 28-35 km and likely ascended rapidly, whereas explosive eruption deposits from Ngauruhoe have depths of crystallization in the lower to mid-crust or about 7 to 22 km depth. A Red Crater lava flow had a possible magma reservoir depth from 4 to 9 km. The different eruptions sampled for this study tapped different reservoir levels, and the oldest and largest eruptions were sourced from the deepest reservoir.

  17. Images for the base of the Pacific lithospheric plate beneath Wellington, New Zealand, from 500 kg dynamite shots recorded on a 100 km-long, 1000 seismometer array

    NASA Astrophysics Data System (ADS)

    Stern, T. A.; Henrys, S. A.; Sato, H.; Okaya, D. A.

    2012-12-01

    Seismic P and S-wave reflections are recorded from a west-dipping horizon at depth of 105 km beneath Wellington, New Zealand. From the depth and dip of this horizon we interpret this horizon to be the bottom of the subducting Pacific plate. In May 2011 the Seismic Array on Hikurangi margin Experiment (SAHKE) recorded reflections on a ~100 km-long high-resolution seismic line across the lower North Island of New Zealand. The main goal of this experiment was to provide a detailed image of the west dipping subducted Pacific plate beneath the Wellington city region. The seismic line had ~1000 seismographs spaced between 50-100 m apart and the 500 kg shots were in 50 m-deep, drill holes. An exceptionally high-resolution image for the top of the subducting Pacific Plate at a depth of 20-25 km beneath the Wellington region is seen. In addition, on most of the shots are a pair of 10-14 Hz reflections between 27 and 29 s two-way-travel-time (twtt) at zero offset. The quality of this reflection pair varies from shot to shot. When converted to depth and ray-traced the best solution for these deep events is a west-dipping ( ~ 15 degrees) horizon at a depth of about 105 km. This is consistent with the dip of the upper surface of the plate beneath Wellington, and therefore we argue that the deep (~105 km) reflector is the base of the Pacific plate. On two of the shots another pair 5-8 Hz reflections can also be seen between 47 and 52 s, and the move-out of these events is consistent with them being S-wave reflections from the same 105 km deep, west-dipping, boundary for a Vp/Vs ~ 1.74. Both the P-and S-wave reflections occur in pairs of twtt-thickness of 2 and 5 s, respectively and appear to define a ~ 6-8 km thick channel at the base of the plate if the Vp/Vs ratio~ 5/2 or 2.5. Such a high value of Vp/Vs is consistent with the channel containing fluids or partial melt of an unknown percent. Although we can't rule out the double reflections in both P and S as being multiples, this seems unlikely as multiples are not seen any where else in the shot gathers. Thus the lithosphere-asthenosphere boundary (LAB), at least in this setting, appears to be a sharp boundary, less than 10 km thick. As the top of the subduction zone is 20-25 km deep beneath our profile, the total thickness of the plate beneath Wellington is about 80 km. This is consistent with the thickness of old oceanic plates measured elsewhere with passive seismic methods.

  18. Xenolith constraints on seismic velocities in the upper mantle beneath southern Africa

    NASA Astrophysics Data System (ADS)

    James, D. E.; Boyd, F. R.; Schutt, D.; Bell, D. R.; Carlson, R. W.

    2004-01-01

    We impose geologic constraints on seismic three-dimensional (3-D) images of the upper mantle beneath southern Africa by calculating seismic velocities and rock densities from approximately 120 geothermobarometrically calibrated mantle xenoliths from the Archean Kaapvaal craton and adjacent Proterozoic mobile belts. Velocity and density estimates are based on the elastic and thermal moduli of constituent minerals under equilibrium P-T conditions at the mantle source. The largest sources of error in the velocity estimates derive from inaccurate thermo-barometry and, to a lesser extent, from uncertainties in the elastic constants of the constituent minerals. Results are consistent with tomographic evidence that cratonic mantle is higher in velocity by 0.5-1.5% and lower in density by about 1% relative to off-craton Proterozoic samples at comparable depths. Seismic velocity variations between cratonic and noncratonic xenoliths are controlled dominantly by differences in calculated temperatures, with compositional effects secondary. Different temperature profiles between cratonic and noncratonic regions have a relatively minor influence on density, where composition remains the dominant control. Low-T cratonic xenoliths exhibit a positive velocity-depth curve, rising from about 8.13 km/s at uppermost mantle depths to about 8.25 km/s at 180-km depth. S velocities decrease slightly over the same depth interval, from about 4.7 km/s in the uppermost mantle to 4.65 km/s at 180-km depth. P and S velocities for high-T lherzolites are highly scattered, ranging from highs close to those of the low-T xenoliths to lows of 8.05 km/s and 4.5 km/s at depths in excess of 200 km. These low velocities, while not asthenospheric, are inconsistent with seismic tomographic images that indicate high velocity root material extending to depths of at least 250 km. One plausible explanation is that high temperatures determined for the high-T xenoliths are a nonequilibrium consequence of relatively recent thermal perturbation and compositional modification associated with emplacement of kimberlitic fluids into the deep tectospheric root. Seismic velocities and densities for cratonic xenoliths differ significantly from those predicted for both primitive mantle peridotite and mantle eclogite. A model primitive mantle under cratonic P-T conditions exhibits velocities about 1% lower for P and about 1.5% lower for S, a consequence of a more fertile composition and different modal composition. Primitive mantle is also about 2% more dense at 150-km depth than low-T garnet lherzolite at cratonic P-T conditions. Similar calculations based on an oceanic geotherm are consistent with the isopycnic hypothesis of comparable density columns beneath oceanic and cratonic regions. Calculations for a hypothetical "cratonic" eclogite (50:50 garnet/omphacite) with an assumed cratonic geotherm produce extremely high VP and VS (8.68 km/s and 4.84 km/s, respectively, at 150 km depth) as well as high density (˜3.54 gm/cc). The very high velocity of eclogite should render it seismically conspicuous in the cratonic mantle if present as large volume blocks or slabs. We discuss how the seismic velocity data we have compiled in this paper from both xenoliths and generic petrologic models of the upper mantle differ from commonly used standard earth models IASPEI and PREM.

  19. Imaging rifting at the lithospheric scale in the northern East African Rift using S-to-P receiver functions

    NASA Astrophysics Data System (ADS)

    Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.

    2017-12-01

    The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.

  20. Mantle transition zone structure and upper mantle S velocity variations beneath Ethiopia: Evidence for a broad, deep-seated thermal anomaly

    NASA Astrophysics Data System (ADS)

    Benoit, Margaret H.; Nyblade, Andrew A.; Owens, Thomas J.; Stuart, Graham

    2006-11-01

    Ethiopia has been subjected to widespread Cenozoic volcanism, rifting, and uplift associated with the Afar hot spot. The hot spot tectonism has been attributed to one or more thermal upwellings in the mantle, for example, starting thermal plumes and superplumes. We investigate the origin of the hot spot by imaging the S wave velocity structure of the upper mantle beneath Ethiopia using travel time tomography and by examining relief on transition zone discontinuities using receiver function stacks. The tomographic images reveal an elongated low-velocity region that is wide (>500 km) and extends deep into the upper mantle (>400 km). The anomaly is aligned with the Afar Depression and Main Ethiopian Rift in the uppermost mantle, but its center shifts westward with depth. The 410 km discontinuity is not well imaged, but the 660 km discontinuity is shallower than normal by ˜20-30 km beneath most of Ethiopia, but it is at a normal depth beneath Djibouti and the northwestern edge of the Ethiopian Plateau. The tomographic results combined with a shallow 660 km discontinuity indicate that upper mantle temperatures are elevated by ˜300 K and that the thermal anomaly is broad (>500 km wide) and extends to depths ≥660 km. The dimensions of the thermal anomaly are not consistent with a starting thermal plume but are consistent with a flux of excess heat coming from the lower mantle. Such a broad thermal upwelling could be part of the African Superplume found in the lower mantle beneath southern Africa.

  1. Crustal structure along the west flank of the Cascades, western Washington

    USGS Publications Warehouse

    Miller, K.C.; Keller, Gordon R.; Gridley, J.M.; Luetgert, J.H.; Mooney, W.D.; Thybo, H.

    1997-01-01

    Knowledge of the crustal structure of the Washington Cascades and adjacent Puget Lowland is important to both earthquake hazards studies and geologic studies of the evolution of this tectonically active region. We present a model for crustal velocity structure derived from analysis of seismic refraction/wide-angle reflection data collected in 1991 in western Washington. The 280-km-long north-south transect skirts the west flank of the Cascades as it crosses three tectonic provinces including the Northwest Cascades Thrust System (NWCS), the Puget Lowland, and the volcanic arc of the southern Cascades. Within the NWCS, upper crustal velocities range from 4.2 to 5.7 km s-1 and are consistent with the presence of a diverse suite of Mesozoic and Paleozoic metasediments and metavolcanics. In the upper 2-3 km of the Puget Lowland velocities drop to 1.7-3.5 km s-1 and reflect the occurrence of Oligocene to recent sediments within the basin. In the southern Washington Cascades, upper crustal velocities range from 4.0 to 5.5 km s-1 and are consistent with a large volume of Tertiary sediments and volcanics. A sharp change in velocity gradient at 5-10 km marks the division between the upper and middle crust. From approximately 10 to 35 km depth the velocity field is characterized by a velocity increase from ???6.0 to 7.2 km s-1. These high velocities do not support the presence of marine sedimentary rocks at depths of 10-20 km beneath the Cascades as previously proposed on the basis of magnetotelluric data. Crustal thickness ranges from 42 to 47 km along the profile. The lowermost crust consists of a 2 to 8-km-thick transitional layer with velocities of 7.3-7.4 km s-1. The upper mantle velocity appears to be an unusually low 7.6-7.8 km s-1. When compared to velocity models from other regions, this model most closely resembles those found in active continental arcs. Distinct seismicity patterns can be associated with individual tectonic provinces along the seismic transect. In the NWCS and Puget Lowland, most of the seismicity occurs below the base of the upper crust as defined by a seismic boundary at 5-10 km depth and continues to 20-30 km depth. The region of transition between the NWCS and the Puget Lowland appears as a gap in seismicity with notably less seismic activity north of the boundary between the two. Earthquakes within the Cascades are generally shallower (0-20 km) and are dominated by events associated with the Rainier Seismic Zone. Copyright 1997 by the American Geophysical Union.

  2. Scattering attenuation profile of the Moon: Implications for shallow moonquakes and the structure of the megaregolith

    NASA Astrophysics Data System (ADS)

    Gillet, K.; Margerin, L.; Calvet, M.; Monnereau, M.

    2017-01-01

    We report measurements of the attenuation of short period seismic waves in the Moon based on the quantitative analysis of envelope records of lunar quakes. Our dataset consists of waveforms corresponding to 62 events, including artificial and natural impacts, shallow moonquakes and deep moonquakes, recorded by the four seismometers deployed during Apollo missions 12, 14, 15 and 16. To quantify attenuation and distinguish between elastic (scattering) and inelastic (absorption) mechanisms we measure the time of arrival of the maximum of energy tmax and the coda quality factor Qc . The former is controlled by both scattering and absorption, while the latter is an excellent proxy for absorption. Consistent with the strong broadening of seismogram envelopes in the Moon, we employ diffusion theory in spherical geometry to model the propagation of seismic energy in depth-dependent scattering and absorbing media. To minimize the misfit between predicted and observed tmax for deep moonquakes and impacts, we employ a genetic algorithm and explore a large number of depth-dependent attenuation models quantified by the scattering quality factor Qsc or equivalently the wave diffusivity D, and the absorption quality factor Qi . The scattering and absorption profiles that best fit the data display very strong scattering attenuation (Qsc ≤ 10) or equivalently very low wave diffusivity (D ≈ 2 km2/s) in the first 10 km of the Moon. These values correspond to the most heterogeneous regions on Earth, namely volcanic areas. Below this surficial layer, the diffusivity rises very slowly up to a depth of approximately 80 km where Qsc and D exhibit an abrupt increase of about one order of magnitude. Below 100 km depth, Qsc increases rapidly up to approximately 2000 at a depth of about 150 km, a value similar to the one found in the Earth's mantle. By contrast, the absorption quality factor on the Moon Qi ≈ 2400 is about one order or magnitude larger than on Earth. Our results suggest the existence of an approximately 100 km thick megaregolith, which is much larger than what was previously thought. The rapid decrease of scattering attenuation below this depth is compatible with crack healing through viscoelastic mechanisms. Using our best attenuation model, we invert for the depth of shallow moonquakes based on the observed variation of tmax with epicentral distance. On average, they are found to originate from a depth of about 50 km ± 20 km, which suggests that these earthquakes are caused by the failure of deep faults in the brittle part of the Moon.

  3. Lithospheric Structure of Northeastern Tibet Plateau from P and S Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Guo, Z.; Chen, Y. J.

    2017-12-01

    We obtain the lithospheric structure of the Northeast Tibet (NE Tibet) along an N-S trending profile using P- and S-wave receiver function recorded by ChinArray-Himalaya II project. Both P- and S-receiver function migration images show highly consistent lithospheric features. The Moho depth is estimated to be 50 km beneath the Songpan-ganzi (SPGZ) and Qaidam-Kunlun-West Qinling (QD) blocks with little or no fluctuation. However, at the northern boundary of QD, the crust abruptly uplifts to 40 km depth within a distance of 50 km. Meanwhile, at the southernmost of QD, the Moho is found at the depth of 60 km, which forms a double Moho conversion beneath the western Qinling fault (WQF). At the Qilian block, the first order feature of the PRF image is the northward crustal thinning from 60 km to 45 km. The strong Moho fluctuations beneath the Qilian block reflects the on-going mountain building processes. Further to the north, the Moho depth begins to deepen to 55 km and then gradually thins to 40 km at the Alxa block. We observe significant Moho variations at the Central Asian Orogenic belt (CAOB). Furthermore, Moho jumps and offsets are shown beneath major thrust and strike-slip faults zones, such as the a >5 km Moho uplift across the North Qilian Fault (NQF), implying that these faults cut through the crust and partly accommodate the continuous deformation/crustal shorting that is propagated from the India-Eurasia collision. Strong negative signals found in both P and S receiver functions at around 100-150 km depth can be interpreted as the lithosphere-asthenosphere boundary (LAB). The LAB deepens from 100 km at the northern to a maximum of 150 km at the southern end of the CAOB. A relatively flat LAB with the depth of 150 km is shown beneath the Alax block, and then it gradually thins to 100 km from the QD to SPGZ. Beneath the SPGZ, our results indicate a thin and flat lithosphere ( 100 km).

  4. Crater Topography on Titan: Implications for Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Kirk, R.L.; Lorenz, R. D.; Bray, V. J.; Schenk, P.; Stiles, B. W.; Turtle, E.; Mitchell, K.; Hayes, A.

    2013-01-01

    We present a comprehensive review of available crater topography measurements for Saturn's moon Titan. In general, the depths of Titan's craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede's average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 +/- 0.0003 (for the largest crater studied, Menrva, D approximately 425 km) and 0.017 +/- 0.004 (for the smallest crater studied, Ksa, D approximately 39 km). When we evaluate the Anderson-Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan's craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close 'airless' analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan's surface, the only body in the outer Solar System with extensive surface-atmosphere exchange.

  5. Rift Structure in Eastern Papua New Guinea From the Joint Inversion of Receiver Functions and Seismic Noise

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Obrebski, M. J.; Jin, G.; Eilon, Z.

    2014-12-01

    The recent CDPapua seismic array in the active D'Entrecasteaux-Woodlark Rift provides insights into how continental crust accommodates large extension. Here, >100 km of extension has occurred in the last 4-6 Ma, exhuming rocks from 100 km depth. To better understand the modes of deformation of the crust, we analyze shear wave velocity (Vs) distribution for a set of temporary land and ocean bottom broadband stations. We resolve the depth of the main velocity contrasts using receiver function (RF) analysis, alleviating the intrinsic trade-off between depth and velocity intrinsic by joint inversion with dispersion constraints (10 - 100 s) from earthquake surface waves and ambient noise. A transdimensional Bayesian scheme explores the model space (Vs in each layer, number of interfaces and their respective depths), minimizing the number of layers required to fit the observations given their noise level. Preliminary results suggest that the Moho is sharp in most places, with a depth of 28-38 km and 20-27 km below the Papuan Peninsula and the highly-extended D'Entracasteaux Islands, respectively. The mid-lower crust of these regions appears to be similar and consistent with felsic compositions, 3.25≤Vs≤3.5 km/s, and may represent the Owen-Stanley Metamorphic Belt or underlying continental rocks. A fast layer (3.75≤Vs≤4 km/s) is observed below the Papuan Peninsula in the 20-30 km depth range and may indicate more mafic lower crust. In contrast, faster velocities between 10 and 20km depth are modeled below the Goodenough Basin (3.75≤Vs≤4 km/s) and the Trobriand Basin (3.5≤Vs≤3.75 km/s) where rocks of the Papuan Ultramafic Belt have been suggested, although these results partly depend upon complicated signals from ocean-bottom seismometers. Well-located seismicity shows that active fault systems generally follow the boundaries between regions of different crustal velocity structure. Overall these results confirm a continental velocity structure for the onshore parts of the rift, but allow for much more mafic crust beneath intervening basins. Much of the rifting at crustal depths could have been accommodated by opening these basins.

  6. Thermomechanical Modeling of the Formation of a Multilevel, Crustal-Scale Magmatic System by the Yellowstone Plume

    NASA Astrophysics Data System (ADS)

    Colón, D. P.; Bindeman, I. N.; Gerya, T. V.

    2018-05-01

    Geophysical imaging of the Yellowstone supervolcano shows a broad zone of partial melt interrupted by an amagmatic gap at depths of 15-20 km. We reproduce this structure through a series of regional-scale magmatic-thermomechanical forward models which assume that magmatic dikes stall at rheologic discontinuities in the crust. We find that basaltic magmas accumulate at the Moho and at the brittle-ductile transition, which naturally forms at depths of 5-10 km. This leads to the development of a 10- to 15-km thick midcrustal sill complex with a top at a depth of approximately 10 km, consistent with geophysical observations of the pre-Yellowstone hot spot track. We show a linear relationship between melting rates in the mantle and rhyolite eruption rates along the hot spot track. Finally, melt production rates from our models suggest that the Yellowstone plume is 175°C hotter than the surrounding mantle and that the thickness of the overlying lithosphere is 80 km.

  7. Lithospheric-Mantle Structure of the Kaapvaal Craton, South Africa, Derived From Thermodynamically Self-Consistent Modelling of Seismic Surface-Wave and S-wave Receiver Function, Heat-flow, Elevation, Xenolith and Magnetotelluric Observations

    NASA Astrophysics Data System (ADS)

    Muller, M. R.; Fullea, J.; Jones, A. G.; Adam, J.; Lebedev, S.; Piana Agostinetti, N.

    2012-12-01

    Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D seismic velocity, density, electrical resistivity and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB as defined above) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: new surface-wave dispersion data, published SRFs, MT responses, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 μWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model (consistent with mantle xenoliths), with lithospheric thickness in excess of 220 km, is required to match all geophysical constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs will assess whether this chemical transition may account for the reported S-to-P conversion event at 160 km depth. However, in this this instance the SRF conversion event would not represent the petrological/thermal LAB.

  8. Shear velocity profiles in the crust and lithospheric mantle across Tibet

    NASA Astrophysics Data System (ADS)

    Agius, M. R.; Lebedev, S.

    2010-12-01

    We constrain variations in the crustal and lithospheric structure across Tibet, using phase velocities of seismic surface waves. The data are seismograms recorded by broadband instruments of permanent and temporary networks within and around the plateau. Phase-velocity measurements are performed in broad period ranges using an elaborate recent implementation of the 2-station method. A combination of the cross-correlation and multimode-waveform-inversion measurements using tens to hundreds of seismograms per station pair produces robust, accurate phase-velocity curves for Rayleigh and Love waves. We use our new measurements to infer phase-velocity variations and to constrain S-velocity profiles in different parts of the plateau, including radial anisotropy and depths of lithospheric discontinuities. We observe a mid-crustal low-velocity zone (LVZ) in the 20-45 km depth range across the plateau, with S-velocities within a 3.2-3.5 km/s range. This LVZ coincides with a low-resistivity layer inferred from magnetotelluric studies, interpreted as evidence for partial melting in the middle crust. Surface-wave data are also consistent with radial anisotropy in this layer, indicative of horizontal flow. At the north-eastern boundary of the plateau, past the Kunlun Fault, the mid-crustal LVZ, in the sense of an S-velocity decrease with depth in the 15-25 km depth range, is not required by the surface-wave data although the velocity is still relatively low. The mantle-lithosphere structure shows a pronounced contrast between the south-western and central-northern parts of the plateau. The south-west is underlain by a thick, high-velocity, craton-like lithospheric mantle. Below central Lhasa the uppermost mantle appears to be close to global average with an increase in velocity between 150 - 250 km depth. Beneath central and northern Tibet, the average S velocity between the Moho and 200 km depth is close to the global continental average (4.5 km/s). In order to investigate the finer detail of the lithosphere in the North we perform an extensive series of test inversions. We find that surface-wave dispersion measurements alone are consistent both with models that have low S velocity just beneath the Moho, increasing with depth below, and with models that display a thin high-velocity mantle lid underlain by a low-velocity zone (asthenosphere). To resolve this non-uniqueness from the inversion model, we combine our surface-wave measurements in the Qiangtang Block with receiver-function constraints on the Moho depth, and Sn constraints on the uppermost mantle S velocities. We show that the data is matched significantly better with models that contain a thin, high-velocity lithosphere (up to 90 km thick) underlain by a low-velocity zone than by models with no wave-speed decrease between the Moho and ~100 km depth. In the deeper upper mantle (below ~150 km depth), S velocity increases and is likely to exceed the global average value.

  9. 3-D Vp/Vs Ratio Distribution in the Geothermal Reservoir at Basel, Switzerland, from Microseismic Data

    NASA Astrophysics Data System (ADS)

    Kummerow, J.; Reshetnikov, A.; Häring, M.; Asanuma, H.

    2012-12-01

    Thousands of microseismic events occurred during and after the stimulation of the 4.5km deep Basel 1 well at the Deep Heat Mining Project in Basel, Switzerland, in December 2006. The located seismicity extends about 1km in vertical direction and also 1km in NNW-SSE direction, consistent with the orientation of the maximum horizontal stress. In this study, we analyze 2100 events with magnitudes Mw>0.0, which were recorded by six borehole seismometers between December 2, 2006, and June 7, 2007. We first identify event multiplets based on waveform similarity and apply an automatic, iterative arrival time optimization to calculate high-precision P and S time picks for the multiplet events. Local estimates of the Vp/Vs ratio in the stimulated Basel geothermal reservoir are then obtained from the slope of the demeaned differential S versus P arrival times. The average value of Vp/Vs=1.70 is close to the characteristic reservoir value of 1.72, which was determined independently from sonic log measurements. Also, in the vicinity of the borehole, the depth distribution of Vp/Vs correlates well with the low-pass filtered sonic log data: Vp/Vs values are less than 1.70 at the top of the seismicity cloud at <3.9km depth, close to average at 4.0-4.4km depth, and exceed the value of 1.75 at larger depth (4.4-4.6km), consistent with the sonic log data. Furthermore, we observe a correlation of anomalous Vp/Vs values with zones of enhanced seismic reflectivity which were resolved by microseismic reflection imaging. Away from the borehole, increased Vp/Vs ratios also seem to correlate with domains of high event density, possibly indicating fluid migration paths.

  10. Seismic anisotropy of 70 Ma Pacific-plate upper mantle

    NASA Astrophysics Data System (ADS)

    Mark, H. F.; Lizarralde, D.; Collins, J. A.; Miller, N. C.; Hirth, G.; Gaherty, J. B.; Evans, R. L.

    2017-12-01

    We present a new measurement of seismic anisotropy and velocity gradients in the Pacific-plate upper mantle based on data from the NoMelt experiment. The seismic velocity structure of oceanic lithosphere reflects the processes involved in its formation at mid-ocean ridges and subsequent evolution off-axis. Increasing mantle depletion with depth due to melt extraction predicts negative velocity gradients, as does cooling with age. Alignment of olivine by corner flow predicts azimuthal anisotropy. Some models predict the strength of anisotropy should decrease with depth. Measurements of uppermost mantle velocities have not fully verified these predictions. Observations of direct Pn phases demonstrate that positive velocity gradients exist; and anisotropy measurements, while consistent with strain-induced olivine alignment, vary widely and generally suggest weaker fabric development than is observed in ophiolite samples. These discrepancies raise questions about the extent to which mantle structure evolves through time due to processes such as cracking and alteration, and hinder the use of seismic measurements to make more detailed inferences on aspects of lithospheric formation processes. We have measured anisotropy and vertical velocity gradients to 10 km below the Moho on 70 Ma lithosphere between the Clarion and Clipperton fracture zones. The lithosphere at the study site has not been obviously affected by tectonic or magmatic events since its formation. We find 6.2% anisotropy at the Moho with a mean velocity of 8.14 km/s and the fast direction parallel to paleospreading. Velocity gradients are estimated at 0.02 km/s/km in the fast direction and near 0 km/s/km in the slow direction. The gradient estimates can be explained by aligned microcracks oriented perpendicular to spreading that close with depth. Cracks are expected to close by 10 km below the Moho. At that depth the strength of anisotropy increases to 9%, close to the strength estimated from ophiolite fabrics. These results are consistent with observed olivine fabrics and the predicted effects of lithospheric formation processes, and suggest that lithospheric evolution is modest even at 70 Ma, involving microcracks oriented by a stress field consistent with thermal contraction.

  11. Magnetotelluric study to characterize Kachchh Mainland Fault (KMF) and Katrol Hill Fault (KHF) in the western part of Kachchh region of Gujarat, India

    NASA Astrophysics Data System (ADS)

    Mohan, Kapil; Chaudhary, Peush; Patel, Pruthul; Chaudhary, B. S.; Chopra, Sumer

    2018-02-01

    The Kachchh Mainland Fault (KMF) is a major E-W trending fault in the Kachchh region of Gujarat extending >150 km from Lakhpat village in the west to the Bhachau town in the east. The Katrol Hill Fault (KHF) is an E-W trending intrabasinal fault located in the central region of Kachchh Basin and the south of KMF. The western parts of both of the faults are characterized, and the sediment thickness has been estimated in the region using a Magnetotelluric (MT) survey at 17 sites along a 55 km long north-south profile with a site spacing of 2-3 km. The analysis reveals that the maximum sediment thickness is 2.3 km (Quaternary, Tertiary, and Mesozoic) in the region, out of which, the Mesozoic sediments feature a maximum thickness of 2 km. The estimated sediment thickness is found consistent with the thickness suggested by a deep borehole (depth approx. 2.5 km) drilled by Oil and Natural Gas Corporation (ONGC) at Nirona (Northern part of the study area). From 2-D inversion of the MT data, three conductive zones are identified from north to south. The first conductive zone is dipping nearly vertical down to 7-8 km depth. It becomes north-dipping below 8 km depth and is inferred as KMF. The second conductive zone is found steeply dipping into the southern limbs near Manjal village (28 km south of Nirona), which is inferred as the KHF. A vertical-dipping (down to 20 km depth) conductive zone has also been observed near Ulat village, located 16 km north of Manjal village and 12 km south of Nirona village. This conductive zone becomes listric north-dipping beyond 20 km depth. It is reported first time by a Geophysical survey in the region.

  12. Detailed seismic velocity structure beneath the Hokkaido corner, NE Japan: Collision process of the forearc sliver

    NASA Astrophysics Data System (ADS)

    Kita, S.; Hasegawa, A.; Okada, T.; Nakajima, J.; Matsuzawa, T.; Katsumata, K.

    2010-12-01

    1. Introduction In south-eastern Hokkaido, the Kuril forearc sliver is colliding with the northeastern Japan arc due to the oblique subduction of the Pacific plate. This collision causes the formation of the Hidaka mountain range since the late Miocene (Kimura, 1986) and delamination of the lower-crust materials of the Kuril forearc sliver, which would be expected to descend into the mantle wedge below (e.g., Ito 2000; Ito and Iwasaki, 2002). In this study, we precisely investigated the three-dimensional seismic velocity structure beneath the Hokkaido corner to examine the collision of two forearcs in this area by using both of data from a dense temporary seismic network deployed in this area (Katsumata et al. [2006]) and those from the Kiban observation network, which covers the entire Japanese Islands with a station separation of 15-20 km. 2. Data and method The double-difference tomography method (Zhang and Thurber, 2003; 2006) was applied to a large number of arrival time data of 201,527 for P-waves and 150,963 for S-waves that were recorded at 125 stations from 10,971 earthquakes that occurred from 1999 to 2010. Grid intervals were set at 10 km in the along-arc direction, 12.5 km perpendicular to it, and 5-10 km in the vertical direction. 3. Results and discussion Inhomogeneous seismic velocity structure was clearly imaged in the Hokkaido corner at depths of 0-120 km. A high-velocity anomaly of P- and S- waves with a volume of 20 km x 90 km x 35km was detected just beneath the main zone of the Hidaka metamorphic belt at depths of 0-35 km. This high-velocity anomaly is continuously distributed from the depths of the mantle wedge to the surface. The western edge of the anomaly exactly corresponds to the Hidaka main thrust (HMT) at the surface. The highest velocity value in the anomaly corresponds to those of the uppermost mantle material (e.g. peridotite). The location of them at depths of 0-35km is also consistent with that of the Horoman-Peridotite belt, which is located at the southwestern edge of the main zone of the Hidaka metamorphic belt.On the other hand, a low-velocity anomaly of P- and S- waves with a volume of 80 km x 100 km x 50 km is distributed to the west of the Hidaka metamorphic belt at depths of 35-90km. This low-velocity anomaly seems to be continuously distributed from the continental crust of the NE Japan forearc. The velocity values of this low-V anomaly correspond to those of crustal materials, which is consistent with results of the tomographic study of Kita et al. [2010, EPSL] and Takanami et al. [1982]. Comparison with the results of seismic reflection surveys of Ito [2000] shows that the boundary between anomalous high-velocity mantle materials and low-velocity continental crustal materials just beneath the Hidaka main thrust (HMT) presently obtained is exactly consistent with the locations of reflection planes of their study. Moreover, our study also suggests that the anomalous low-velocity crustal materials at the mantle wedge depth appears to belong to the NE Japan forearc crust, which does not support the expectation of the previous studies that the delaminated lower-crust materials of the Kuril forearc sliver descends into the mantle wedge due to the collision.

  13. Focal Mechanisms From Moment Tensor Solutions and First Motion Polarities of Shallow to Deep Local Earthquakes in Eastern Nepal and Southern Tibet

    NASA Astrophysics Data System (ADS)

    de La Torre, T. L.; Sheehan, A. F.; Monsalve, G.; Wu, F.

    2004-12-01

    We determined focal mechanisms using waveforms and first motion polarities from local earthquakes recorded during the Himalayan Nepal Tibet Seismic Experiment (HIMNT). The HIMNT experiment included the deployment of 28 broad band seismometers in eastern Nepal and southern Tibet from September 2001 to April 2003. Using a regional moment tensor method (Ammon and Randall, 2001) and first motion polarities for displaying double-couple focal mechanisms (Snokes, 2003), we analyzed the fault plane solutions at three distinct zones of seismicity. Characteristic focal mechanisms in seismically concentrated areas may indicate the presence of fault ramps or a decollement in the Himalayan collision zone. Previous studies of focal mechanisms on the Tibetan Plateau predominantly indicate east-west extension and shallow thrusting at the Himalayan collision zone for shallow to intermediate earthquakes (Ni and Barazangi, 1984; Molnar and Lyon-Caen, 1989; Randall et al., 1995) and east-west extension for intermediate to deep earthquakes (Zhu and Helmberger, 1996; Chen and Yang, 2004). The first zone in southeast Nepal between the Main Boundary and Main Frontal faults consist of earthquakes < Mw 4.0 at depths 40 - 60 km near the epicenter of the 1988 Udaypur earthquake, Mb 6.1, depth 57 km. The second zone north of the Main Central Thrust outcrop in eastern Nepal consists of 14 earthquakes 3.0 - 5.0 Mw at depths < 30 km that indicate north-south strike normal faulting and east-west strike thrust faulting. The third zone is an arc parallel to the Himalayas in southern Tibet and a cluster in northeast Nepal. This zone consists of 45 earthquakes < 4.0 Mw at depths > 50 km. Four earthquakes indicate northwest-southeast compression resulting in northeast strike strike-slip faulting while one earthquake in the northeast cluster indicates east-west compression at a source depth below the crust-mantle boundary. Focal mechanisms from full waveform moment tensor inversions are cross checked with first motion solutions for selected events. Source depths as determined from normalized error of the sum of the squared differences between the data and synthetic seismogram coincide with the source depths determined from the travel time residual inversion.

  14. Composition of the crust beneath the Kenya rift

    USGS Publications Warehouse

    Mooney, W.D.; Christensen, N.I.

    1994-01-01

    We infer the composition of the crust beneath and on the flanks of the Kenya rift based on a comparison of the KRISP-90 crustal velocity structure with laboratory measurements of compressional-wave velocities of rock samples from Kenya. The rock samples studied, which are representative of the major lithologies exposed in Kenya, include volcanic tuffs and flows (primarily basalts and phonolites), and felsic to intermediate composition gneisses. This comparison indicates that the upper crust (5-12 km depth) consists primarily of quartzo-feldspathic gneisses and schists similar to rocks exposed on the flanks of the rift, whereas the middle crust (12-22 km depth) consists of more mafic, hornblende-rich metamorphic rocks, probably intruded by mafic rocks beneath the rift axis. The lower crust on the flanks of the rift may consist of mafic granulite facies rocks. Along the rift axis, the lower crust varies in thickness from 9 km in the southern rift to only 2-3 km in the north, and has a seismic velocity substantially higher than the samples investigated in this study. The lower crust of the rift probably consists of a crust/mantle mix of high-grade metamorphic rocks, mafic intrusives, and an igneous mafic residuum accreted to the base of the crust during differentiation of a melt derived from the upper mantle. ?? 1994.

  15. Seismic observations of Redoubt Volcano, Alaska - 1989-2010 and a conceptual model of the Redoubt magmatic system

    USGS Publications Warehouse

    Power, John A.; Stihler, Scott D.; Chouet, Bernard A.; Haney, Matthew M.; Ketner, D.M.

    2013-01-01

    Seismic activity at Redoubt Volcano, Alaska, has been closely monitored since 1989 by a network of five to ten seismometers within 22 km of the volcano's summit. Major eruptions occurred in 1989-1990 and 2009 and were characterized by large volcanic explosions, episodes of lava dome growth and failure, pyroclastic flows, and lahars. Seismic features of the 1989-1990 eruption were 1) weak precursory tremor and a short, 23-hour-long, intense swarm of repetitive shallow long-period (LP) events centered 1.4 km below the crater floor, 2) shallow volcano-tectonic (VT) and hybrid earthquakes that separated early episodes of dome growth, 3) 13 additional swarms of LP events at shallow depths precursory to many of the 25 explosions that occurred over the more than 128 day duration of eruptive activity, and 4) a persistent cluster of VT earthquakes at 6 to 9 km depth. In contrast the 2009 eruption was preceded by a pronounced increase in deep-LP (DLP) events at lower crustal depths (25 to 38 km) that began in mid-December 2008, two months of discontinuous shallow volcanic tremor that started on January 23, 2009, a strong phreatic explosion on March 15, and a 58-hour-long swarm of repetitive shallow LP events. The 2009 eruption consisted of at least 23 major explosions between March 23 and April 5, again accompanied by shallow VT earthquakes, several episodes of shallow repetitive LP events and dome growth continuing until mid July. Increased VT earthquakes at 4 to 9 km depth began slowly in early April, possibly defining a mid-crustal magma source zone. Magmatic processes associated with the 2009 eruption seismically activated the same portions of the Redoubt magmatic system as the 1989-1990 eruption, although the time scales and intensity vary considerably among the two eruptions. The occurrence of precursory DLP events suggests that the 2009 eruption may have involved the rise of magma from lower crustal depths. Based on the evolution of seismicity during the 1989-1990 and 2009 eruptions the Redoubt magmatic system is envisioned to consist of a shallow system of cracks extending 1 to 2 km below the crater floor, a magma storage or source region at roughly 3 to 9 km depth, and a diffuse magma source region at 25 to 38 km depth. Close tracking of seismic activity allowed the Alaska Volcano Observatory to successfully issue warnings prior to many of the hazardous explosive events that occurred in 2009.

  16. Anomalies of rupture velocity in deep earthquakes

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Yagi, Y.

    2010-12-01

    Explaining deep seismicity is a long-standing challenge in earth science. Deeper than 300 km, the occurrence rate of earthquakes with depth remains at a low level until ~530 km depth, then rises until ~600 km, finally terminate near 700 km. Given the difficulty of estimating fracture properties and observing the stress field in the mantle transition zone (410-660 km), the seismic source processes of deep earthquakes are the most important information for understanding the distribution of deep seismicity. However, in a compilation of seismic source models of deep earthquakes, the source parameters for individual deep earthquakes are quite varied [Frohlich, 2006]. Rupture velocities for deep earthquakes estimated using seismic waveforms range from 0.3 to 0.9Vs, where Vs is the shear wave velocity, a considerably wider range than the velocities for shallow earthquakes. The uncertainty of seismic source models prevents us from determining the main characteristics of the rupture process and understanding the physical mechanisms of deep earthquakes. Recently, the back projection method has been used to derive a detailed and stable seismic source image from dense seismic network observations [e.g., Ishii et al., 2005; Walker et al., 2005]. Using this method, we can obtain an image of the seismic source process from the observed data without a priori constraints or discarding parameters. We applied the back projection method to teleseismic P-waveforms of 24 large, deep earthquakes (moment magnitude Mw ≥ 7.0, depth ≥ 300 km) recorded since 1994 by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS-DMC) and reported in the U.S. Geological Survey (USGS) catalog, and constructed seismic source models of deep earthquakes. By imaging the seismic rupture process for a set of recent deep earthquakes, we found that the rupture velocities are less than about 0.6Vs except in the depth range of 530 to 600 km. This is consistent with the depth variation of deep seismicity: it peaks between about 530 and 600 km, where the fast rupture earthquakes (greater than 0.7Vs) are observed. Similarly, aftershock productivity is particularly low from 300 to 550 km depth and increases markedly at depth greater than 550 km [e.g., Persh and Houston, 2004]. We propose that large fracture surface energy (Gc) value for deep earthquakes generally prevent the acceleration of dynamic rupture propagation and generation of earthquakes between 300 and 700 km depth, whereas small Gc value in the exceptional depth range promote dynamic rupture propagation and explain the seismicity peak near 600 km.

  17. Lesson learned from monitoring the environmental effects of construction of the first offshore wind farm in the US

    NASA Astrophysics Data System (ADS)

    Miller, J.; Potty, G. R.; King, J. W.; Gallien, D. R.; Khan, A. A.; Vigness Raposa, K.; Giard, J. L.; Frankel, A. S.; Mason, T.; Popper, A. N.; Hawkins, A. D.; Crocker, S. E.

    2016-02-01

    Noise radiation from pile driving activities were monitored using multiple sensors during the construction of the USA's first offshore wind farm located 3 nm off Block Island, RI. The 30-megawatt Block Island Wind Farm (BIWF) consists of five turbines in water depths of approximately 30 m and is scheduled to be online in 2016. The substructure for these turbines consists of jacket type construction with piles driven to pin the structure to the seabed. Pile driving operations generate intense sound, impulsive in nature at close range, which radiates into the surrounding air, water and sediment. The underwater acoustic measurement platforms consisted of a towed array consisting of eight hydrophones, two fixed moorings with four hydrophones each, a fixed sensor package for measuring particle velocity, and boat-deployed dipping hydrophones. The hydrophone array was towed from a position 1 km from the pile driving location to 15 km distance from the construction. The fixed moorings were deployed at 10 km and 15 km from the pile location. The fixed moorings consisted of four hydrophones each at depths of 10, 15, 20 and 25 m. Near field measurements of the underwater acoustic signals from the pile driving were collected with a tetrahedral array deployed at 500 m from the pile driving location about 1 m above the seabed. The boat-deployed dipping hydrophones sampled the acoustic field at locations from 0.5 km to 20 km from the pile driving locations. Based on these acoustic measurements and propagation modeling, the acoustic pressure field as a function of range and depth from the pile is estimated. The transition from fast-rise-time impulsive signals at close range to slow-rise-time non-impulsive signals at longer ranges will be addressed. This study will provide the required information to qualify the different zones of potential marine mammal effects (zones of injury, behavioral effects etc.) and to estimate exposure to fishes and other species. [Work supported by Bureau of Ocean Energy Management (BOEM)

  18. Crustal and mantle shear velocity structure of Costa Rica and Nicaragua from ambient noise and teleseismic Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas; de la Cruz, Mariela Salas; Rychert, Catherine Ann; Abers, Geoffrey; Fischer, Karen

    2013-11-01

    The Costa Rica-Nicaragua subduction zone shows systematic along strike variation in arc chemistry, geology, tectonics and seismic velocity and attenuation, presenting global extremes within a few hundred kilometres. In this study, we use teleseismic and ambient noise derived surface wave tomography to produce a 3-D shear velocity model of the region. We use the 48 stations of the TUCAN array, and up to 94 events for the teleseismic Rayleigh wave inversion, and 18 months of continuous data for cross correlation to estimate Green's functions from ambient noise. In the shallow crust (0-15 km) we observe low-shear velocities directly beneath the arc volcanoes (<3 km s-1) and higher velocities in the backarc of Nicaragua. The anomalies below the volcanoes are likely caused by heated crust, intruded by magma. We estimate crustal thickness by picking the depth to the 4 km s-1 velocity contour. We infer >40-km-thick crust beneath the Costa Rican arc and the Nicaraguan Highlands, thinned crust (˜20 km) beneath the Nicaraguan Depression, and increasing crustal thickness in the backarc region, consistent with receiver function studies. The region of thinned, seismically slow and likely weakened crust beneath the arc in Nicaragua is not localizing deformation associated with oblique subduction. At mantle depths (55-120 km depth) we observe lower shear velocities (up to 3 per cent) beneath the Nicaraguan arc and backarc than beneath Costa Rica. Our low-shear velocity anomaly beneath Nicaragua is in the same location as a low-shear velocity anomaly and displaced towards the backarc from the high VP/VS anomaly observed in body wave tomography. The lower shear velocity beneath Nicaragua may indicate higher melt content in the mantle perhaps due to higher volatile flux from the slab or higher temperature. Finally, we observe a linear high-velocity region at depths >120 km parallel to the trench, which is consistent with the subducting slab.

  19. Crater topography on Titan: implications for landscape evolution

    USGS Publications Warehouse

    Neish, Catherine D.; Kirk, R.L.; Lorenz, R.D.; Bray, V.J.; Schenk, P.; Stiles, B.W.; Turtle, E.; Mitchell, Ken; Hayes, A.

    2013-01-01

    We present a comprehensive review of available crater topography measurements for Saturn’s moon Titan. In general, the depths of Titan’s craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede’s average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 ± 0.0003 (for the largest crater studied, Menrva, D ~ 425 km) and 0.017 ± 0.004 (for the smallest crater studied, Ksa, D ~ 39 km). When we evaluate the Anderson–Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan’s craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close ‘airless’ analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan’s surface, the only body in the outer Solar System with extensive surface–atmosphere exchange.

  20. Lithospheric-Mantle Structure of the Kaapvaal Craton, South Africa, Derived from Thermodynamically Self-Consistent Modelling of Magnetotelluric, Surface-Wave Dispersion, S-wave Receiver Function, Heat-flow, Elevation and Xenolith Observations

    NASA Astrophysics Data System (ADS)

    Muller, Mark; Fullea, Javier; Jones, Alan G.; Adam, Joanne; Lebedev, Sergei; Piana Agostinetti, Nicola

    2013-04-01

    Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained - the tLAB) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D electrical resistivity, seismic velocity, density and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: MT responses, new surface-wave dispersion data, published SRFs, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 µWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model, with lithospheric thickness in excess of 230 km, is required to match all geophysical and xenolith constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs indicate that this chemical transition is able to account for the reported S-to-P conversion event at 160 km depth. In this this instance the 160 km deep SRF event does not represent the petrological/thermal LAB.

  1. The P and S wave velocity structure of the mantle beneath eastern Africa and the African superplume anomaly

    NASA Astrophysics Data System (ADS)

    Mulibo, Gabriel D.; Nyblade, Andrew A.

    2013-08-01

    P and S relative arrival time residuals from teleseismic earthquakes recorded on over 60 temporary AfricaArray broadband seismic stations deployed in Uganda, Tanzania, and Zambia between 2007 and 2011 have been inverted, together with relative arrival time residuals from earthquakes recorded by previous deployments, for a tomographic image of mantle wave speed variations extending to a depth of 1200 km beneath eastern Africa. The image shows a low-wave speed anomaly (LWA) well developed at shallow depths (100-200 km) beneath the Eastern and Western branches of the Cenozoic East African rift system and northwestern Zambia, and a fast wave speed anomaly at depths ≤ 350 km beneath the central and northern parts of the East African Plateau and the eastern and central parts of Zambia. At depths ≥350 km the LWA is most prominent under the central and southern parts of the East African Plateau and dips to the southwest beneath northern Zambia, extending to a depth of at least 900 km. The amplitude of the LWA is consistent with a ˜150-300 K thermal perturbation, and its depth extent indicates that the African superplume, originally identified as a lower mantle anomaly, is likely a whole mantle structure. A superplume extending from the core-mantle boundary to the surface implies an origin for the Cenozoic extension, volcanism, and plateau uplift in eastern Africa rooted in the dynamics of the lower mantle.

  2. Global seismic data reveal little water in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Houser, C.

    2016-08-01

    Knowledge of the Earth's present water content is necessary to constrain the amount of water and other volatiles the Earth acquired during its formation and the amount that is cycled back into the interior from the surface. This study compares 410 and 660 km discontinuity depth with shear wave tomography within the mantle transition zone to identify regions with seismic signals consistent with water. The depth of the 410 and 660 km discontinuities is determined from a large updated dataset of SS-S410S and SS-S660S differential travel times, known as SS precursors. The discontinuity depths measured from binning and stacking the SS precursor data are then compared to the shear velocity model HMSL-S06 in the transition zone. Mapping all the possible combinations, very few locations match the predictions from mineral physics for the effects of water on discontinuity depth and shear velocity. The predictions, although not yet measured at actual transition zone temperatures and pressures, are a shallow 410 km discontinuity, a deep 660 km discontinuity, and a slow shear velocity. Only 8% of the bins with high-quality data are consistent with these predictions, and the calculated average water content within these bins is around 0.6 wt.%. A few isolated locations have patterns of velocity/topography that are consistent with water, while there are large regional-scale patterns consistent with cold/hot temperature anomalies. Combining this global analysis of long period seismic data and the current mineral physics predictions for water in transition zone minerals, I find that the mantle transition zone is generally dry, containing less than one Earth ocean of water. Although subduction zones could be locally hydrated, the combined discontinuity and velocity data show no evidence that wadsleyite or ringwoodite have been globally hydrated by subduction or initial Earth conditions.

  3. Regional Vp, Vs, Vp/Vs, and Poisson's ratios across earthquake source zones from Memphis, Tennessee, to St. Louis, Missouri

    USGS Publications Warehouse

    Catchings, R.D.

    1999-01-01

    Models of P- and S-wave velocity, Vp/Vs ratios, Poisson's ratios, and density for the crust and upper mantle are presented along a 400-km-long profile trending from Memphis, Tennessee, to St. Louis, Missouri. The profile crosses the New Madrid seismic zone and reveals distinct regional variations in the crustal velocity structure north and south of the latitude of New Madrid. In the south near Memphis, the upper few kilometers of the crust are dominated by upper crustal sedimentary basins or graben with P-wave velocities less than 5 km/sec and S-wave velocities of about 2 km/sec. P-wave velocities of the upper and middle crust range from 6.0 to 6.5 km/sec at depths above 25 km, and corresponding S-wave velocities range from 3.5 to 3.7 km/sec. The lower crust consists of a high-velocity layer (Vp = 7.4 km/sec; Vs ~4.2 km/sec) that is up to 20-km thick at the latitude of New Madrid but thins to about 15 km near Memphis. To the north, beneath the western-most Illinois basin, low-velocity (Vp < 5 km/sec; Vs < 2.3 km/sec) sedimentary basins are less than 1-km deep. The average velocities (Vp = 6.0 km/sec; Vs = 3.5 km/sec) of the underlying, near-surface rocks argue against large thickness of unconsolidated noncarbonate sediments within 50 km of the western edge of the Illinois basin. Most of the crust beneath the Illinois basin is modeled as one layer, with velocities up to 6.8 km/sec (Vs = 3.7 km/sec) at 37-km depth. The thick, high-velocity (Vp = 7.4 km/sec; Vs ~4.2 km/sec) lower crustal layer thins from about 20 km near New Madrid to about 6 km beneath the western Illinois basin. Refractions from the Moho and upper mantle occur as first arrivals over distances as a great as 160 km and reveal upper mantle layering to 60 km depth. Upper mantle layers with P-wave velocities of 8.2 km/sec (Vs = 4.5 km/sec) and 8.4 km/sec (Vs = 4.7 km/sec) are modeled at 43 and 60 km depth, respectively. Crustal Vp/Vs ratios range between 1.74 and 1.83, and upper mantle Vp/V s ratios range from 1.78 to 1.84. Poisson's ratios range from about 0.26 to 0.33 in the crust and from about 0.27 to 0.29 in the upper mantle. Modeled average densities range from about 2.55 in the sedimentary basins to 3.43 in the upper mantle. Geophysical characteristics of the crust and upper mantle within the New Madrid seismic zone are consistent with other continental rifts, but the crustal structure of the Illinois basin is not characteristics of most continental rift settings. Seismic and gravity data suggest a buried horst near the middle of Reelfoot rift, beneath which is a vertical zone of seismicity and velocity anomalies. The relative depth of the Reelfoot rift north and south of the Reelfoot graben suggests that the rift and its bounding faults may extend eastward beneath the city of Memphis.

  4. The rheological structure of the lithosphere in the Eastern Marmara region, Turkey

    NASA Astrophysics Data System (ADS)

    Oruç, Bülent; Sönmez, Tuba

    2017-05-01

    The aim of this work is to propose the geometries of the crustal-lithospheric mantle boundary (Moho) and lithosphere-asthenosphere boundary (LAB) and the 1D thermal structure of the lithosphere, in order to establish a rheological model of the Eastern Marmara region. The average depths of Moho and LAB are respectively 35 km and 51 km from radially averaged amplitude spectra of EGM08 Bouguer anomalies. The geometries of Moho and LAB interfaces are estimated from the Parker-Oldenburg gravity inversion algorithm. Our results show the Moho depth varies from 31 km at the northern part of North Anatolian Fault Zone (NAFZ) to 39 km below the mountain belt in the southern part of the NAFZ. The depth to the LAB beneath the same parts of the region ranges from 45 km to 55 km. Having lithospheric strength and thermal boundary layer structure, we analyzed the conditions of development of lithosphere thinning. A two-dimensional strength profile has been estimated for rheology model of the study area. Thus we suggest that the rheological structure consists of a strong upper crust, a weak lower crust, and a partly molten upper lithospheric mantle.

  5. Numerical modeling of Farallon Plate flat-slab subduction: Influence of lithosphere structure and rheology on slab dynamics

    NASA Astrophysics Data System (ADS)

    Liu, X.; Currie, C. A.

    2017-12-01

    The subducted Farallon plate is believed to have evolved to a flat geometry underneath North America plate during Late Cretaceous, triggering Laramide deformation within the continental interior. However, the mechanism that caused the oceanic slab to flatten and the factors that control the flat-slab depth remain uncertain. In this work, we use 2D thermal-mechanical models using the SOPALE code to study the subduction dynamics from 90 Ma to 50 Ma. During this period, an oceanic plateau (Shatsky Conjugate) is inferred to have subducted beneath western North America and interacted with the continental lithosphere, including areas of thicker lithosphere such as the Colorado Plateau and Wyoming Craton. Based on seismic tomography and plate reconstruction data sets, we built a set of models to examine the influence of the structure and rheology of the oceanic and continental plates on slab dynamics. Models include a 600 km wide oceanic plateau consisting of 18 km thick crust and a 36 km thick underlying harzburgite layer, and we ran a series of model experiments to test different continental thicknesses (80 km, 120 km, & 180 km) and continental mantle lithosphere strengths (approximating conditions from wet olivine to dry olivine). Consistent with earlier studies, we find that creation of a long flat slab requires a buoyant oceanic plateau (i.e., non-eclogitized crust) and trenchward motion of the continent. In addition, our models demonstrate the upper plate has an important control on slab dynamics. A flat slab requires either a thin continent or, if the continent is thick, its mantle lithosphere must be relatively weak so that it can be displaced by the flattening slab. The depth of the flat slab is mainly controlled by two factors: (1) the continental thickness and (2) the strength of the continental mantle lithosphere. For the same initial lithosphere thickness (120 km), a shallower flat slab ( 90 km depth) occurs for the weakest mantle lithosphere ( wet olivine) compared to 120 km depth for strong ( dry) mantle lithosphere because the flat slab removes the lowermost weak lithosphere. Moreover, an even deeper slab ( 130 km) can be found underneath the weakest but thicker continental lithosphere (180 km). Future models will focus on how the flat slab may induce hydration and deformation for the overriding continental plate.

  6. The volume and mean depth of Earth's lakes

    NASA Astrophysics Data System (ADS)

    Cael, B. B.; Heathcote, A. J.; Seekell, D. A.

    2017-01-01

    Global lake volume estimates are scarce, highly variable, and poorly documented. We developed a rigorous method for estimating global lake depth and volume based on the Hurst coefficient of Earth's surface, which provides a mechanistic connection between lake area and volume. Volume-area scaling based on the Hurst coefficient is accurate and consistent when applied to lake data sets spanning diverse regions. We applied these relationships to a global lake area census to estimate global lake volume and depth. The volume of Earth's lakes is 199,000 km3 (95% confidence interval 196,000-202,000 km3). This volume is in the range of historical estimates (166,000-280,000 km3), but the overall mean depth of 41.8 m (95% CI 41.2-42.4 m) is significantly lower than previous estimates (62-151 m). These results highlight and constrain the relative scarcity of lake waters in the hydrosphere and have implications for the role of lakes in global biogeochemical cycles.

  7. Variations in creep rate along the Hayward Fault, California, interpreted as changes in depth of creep

    USGS Publications Warehouse

    Simpson, R.W.; Lienkaemper, J.J.; Galehouse, J.S.

    2001-01-01

    Variations ill surface creep rate along the Hayward fault are modeled as changes in locking depth using 3D boundary elements. Model creep is driven by screw dislocations at 12 km depth under the Hayward and other regional faults. Inferred depth to locking varies along strike from 4-12 km. (12 km implies no locking.) Our models require locked patches under the central Hayward fault, consistent with a M6.8 earthquake in 1868, but the geometry and extent of locking under the north and south ends depend critically on assumptions regarding continuity and creep behavior of the fault at its ends. For the northern onshore part of the fault, our models contain 1.4-1.7 times more stored moment than the model of Bu??rgmann et al. [2000]; 45-57% of this stored moment resides in creeping areas. It is important for seismic hazard estimation to know how much of this moment is released coseismically or as aseismic afterslip.

  8. Vertical coherence in mantle heterogeneity from global seismic data

    NASA Astrophysics Data System (ADS)

    Boschi, L.; Becker, T. W.

    2011-10-01

    The vertical coherence of mantle structure is of importance for a range of dynamic issues including convective mass transport and the geochemical evolution of Earth. Here, we use seismic data to infer the most likely depth ranges of strong, global changes in the horizontal pattern of mantle heterogeneity. We apply our algorithm to a comprehensive set of measurements, including various shear- and compressional-wave delay times and Love- and Rayleigh-wave fundamental mode and overtone dispersion, so that tomography resolution is as high as possible at all mantle depths. We find that vertical coherence is minimum at ∼100 km and ∼800 km depths, corresponding to the base of the lithosphere and the transition between upper and lower mantle, respectively. The D″ layer is visible, but not as prominent as the shallower features. The rest of the lower mantle is, essentially, vertically coherent. These findings are consistent with slab stagnation at depths around, and perhaps below, the 660-km phase transition, and inconsistent with global, chemically distinct, mid-mantle layering.

  9. Gravity and geoid anomalies of the Philippine Sea: Evidence on the depth of compensation for the negative residual water depth anomaly

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1982-01-01

    A negative free-air gravity anomaly which occurs in the central part of the Philippine Sea was examined to determine the distribution and nature of possible regional mass excesses or deficiencies. Geoid anomalies from GEOS-3 observation were positive. A negative residual geoid anomaly consistent with the area of negative free-air gravity anomalies were found. Theoretical gravity-topography and geoid-topography admittance functions indicated that high density mantle at about 60 km dept could account for the magnitudes of the gravity and residual geoid anomaly and the 1 km residual water depth anomaly in the Philippine Sea. The negative residual depth anomaly may be compensated for by excess density in the uppermost mantle, but the residual geoid and regional free-air gravity anomalies and a slow surface wave velocity structure might result from low-density warm upper mantle material lying beneath the zone of high-density uppermost mantle. From a horizontal disk approximation, the depth of the low-density warm mantle was estimated to be on the order of 200 km.

  10. Finite-frequency P-wave tomography of the Western Canada Sedimentary Basin: Implications for the lithospheric evolution in Western Laurentia

    NASA Astrophysics Data System (ADS)

    Chen, Yunfeng; Gu, Yu Jeffrey; Hung, Shu-Huei

    2017-02-01

    The lithosphere beneath the Western Canada Sedimentary Basin has potentially undergone Precambrian subduction and collisional orogenesis, resulting in a complex network of crustal domains. To improve the understanding of its evolutionary history, we combine data from the USArray and three regional networks to invert for P-wave velocities of the upper mantle using finite-frequency tomography. Our model reveals distinct, vertically continuous high (> 1%) velocity perturbations at depths above 200 km beneath the Precambrian Buffalo Head Terrane, Hearne craton and Medicine Hat Block, which sharply contrasts with those beneath the Canadian Rockies (<- 1%) at comparable depths. The P velocity increases from - 0.5% above 70 km depth to 1.5% at 330 km depth beneath southern Alberta, which provides compelling evidence for a deep, structurally complex Hearne craton. In comparison, the lithosphere is substantially thinner beneath the adjacent Buffalo Head Terrane (160 km) and Medicine Hat Block (200 km). These findings are consistent with earlier theories of tectonic assembly in this region, which featured distinct Archean and Proterozoic plate convergences between the Hearne craton and its neighboring domains. The highly variable, bimodally distributed craton thicknesses may also reflect different lithospheric destruction processes beneath the western margin of Laurentia.

  11. Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network

    USDA-ARS?s Scientific Manuscript database

    A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity and snow depth. The network consisted of 10 sensor clusters, each with 10 measurement no...

  12. Observations in variations in the amplitude and depths of the 410 and 520 km discontinuities from PdP and SdS bounce point studies.

    NASA Astrophysics Data System (ADS)

    Darensburg, A.; Ainiwaer, A.; Gurrola, H.

    2015-12-01

    To gain a better understanding of the upper mantle transition zone, we beamform EarthScope Transportable array data of events from the western Pacific ring of fire to produce relatively high frequency (0.75 Hz) PdP functions (underside P reflections from a depth d) of the mantle beneath the central Pacific from the society Islands across the Aleutian trench. Like most PdP studies, we fail to image the 660 km discontinuity so we focus on the 410, and 520. It is believed that the 410 and 520 km discontinuities are the result of exothermic phase changes in the Olivine mineral system at pressure and temperatures consistent with the indicated depths. Because these boundaries are hypothesized to be exothermic, we expect them to be deeper in hot regions and shallow in cool. Modeling of these boundaries by mineral physicists suggest the 410 occurs over a 10 km interval and the 520 over about 30 km. Our observed amplitudes of P410P as a function of frequency compared to waveform modeling indicate that the 410 phase change must occur over less 6 km. Our observations of a strong 520 km discontinuity at 0.75 Hz also suggests that this velocity contrast occurs over less than 10 km rather than the hypothesized 30 km. We found that the average depth to the 410 km discontinuity across our study area to be 420 km to 425km. The 520 km discontinuity appears to be strongest around Hawaii and north of the Aleutian trench. The depths of the P410P and P520P phases appear to be correlated in most areas where they occur together; deepest the north of the Aleutian trench and southwestern Alaska; and shallowest south of the westernmost Aleutian trench. One of the more surprising observations was that the P520P phase appears to be the smallest or not observable in regions with the strongest P410P phase. SdS observations will be added to this study for the AGU meeting.

  13. Crustal structure of the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: constraints on shear wave velocities, Poisson's ratios and Moho depths

    NASA Astrophysics Data System (ADS)

    Ramirez, C.; Nyblade, A.; Emry, E. L.; Julià, J.; Sun, X.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Winberry, P.; Wilson, T.

    2017-12-01

    A uniform set of crustal parameters for seismic stations deployed on rock in West Antarctica and the Transantarctic Mountains (TAM) has been obtained to help elucidate similarities and differences in crustal structure within and between several tectonic blocks that make up these regions. P-wave receiver functions have been analysed using the H-κ stacking method to develop estimates of thickness and bulk Poisson's ratio for the crust, and jointly inverted with surface wave dispersion measurements to obtain depth-dependent shear wave velocity models for the crust and uppermost mantle. The results from 33 stations are reported, including three stations for which no previous results were available. The average crustal thickness is 30 ± 5 km along the TAM front, and 38 ± 2 km in the interior of the mountain range. The average Poisson's ratios for these two regions are 0.25 ± 0.03 and 0.26 ± 0.02, respectively, and they have similar average crustal Vs of 3.7 ± 0.1 km s-1. At multiple stations within the TAM, we observe evidence for mafic layering within or at the base of the crust, which may have resulted from the Ferrar magmatic event. The Ellsworth Mountains have an average crustal thickness of 37 ± 2 km, a Poisson's ratio of 0.27, and average crustal Vs of 3.7 ± 0.1 km s-1, similar to the TAM. This similarity is consistent with interpretations of the Ellsworth Mountains as a tectonically rotated TAM block. The Ross Island region has an average Moho depth of 25 ± 1 km, an average crustal Vs of 3.6 ± 0.1 km s-1 and Poisson's ratio of 0.30, consistent with the mafic Cenozoic volcanism found there and its proximity to the Terror Rift. Marie Byrd Land has an average crustal thickness of 30 ± 2 km, Poisson's ratio of 0.25 ± 0.04 and crustal Vs of 3.7 ± 0.1 km s-1. One station (SILY) in Marie Byrd Land is near an area of recent volcanism and deep (25-40 km) seismicity, and has a high Poisson's ratio, consistent with the presence of partial melt in the crust.

  14. Crustal structure of the northern margin of the eastern Tien Shan, China, and its tectonic implications for the 1906 M~7.7 Manas earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Yang, Zhu-En; Luo, Hai; Mooney, W.D.

    2004-01-01

    The Tien Shan orogenic belt is the most active intracontinental mountain belt in the world. We describe an 86-km-long N–S-trending deep seismic reflection profile (which passes through the southern Junggar basin) located on the northeastern Tien Shan piedmont. Two distinct anticlines beneath the northern margin of the Tien Shan are clearly imaged in the seismic section. In addition, we have imaged two detachment surfaces at depths of ∼7 and ∼16 km. The detachment surface at 16-km depth corresponds to the main detachment that converges with the steep angle reverse fault (the Junggar Southern Marginal Fault) on which the 1906 M~7.7 Manas earthquake occurred. A 12–14-km-thick sedimentary basin is imaged beneath the southern Junggar basin near Shihezi. The crust beneath the northern margin of the Tien Shan is 50–55-km thick, and decreases beneath the Junggar basin to 40–45-km thick. The crustal image of the deep seismic reflection profile is consistent with models derived from nearby seismic refraction data and Bouguer gravity anomalies in the same region. The faulting associated with the 1906 Manas earthquake also fits within the structural framework imaged by the seismic reflection profile. Present-day micro-seismicity shows a hypocentral depth-distribution between 5 and 35 km, with a peak at 20 km. We hypothesize that the 1906 Manas earthquake initiated at a depth of ∼20 km and propagated upwards, causing northward slip on the sub-horizontal detachments beneath the southern Junggar basin. Thus, in accord with regional geological mapping, the current shortening within the eastern Tien Shan is accommodated both by high-angle reverse faulting and detachment faulting that can be clearly imaged at depth in seismic reflection data.

  15. 3D Velocity Structure in Southern Haiti from Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Douilly, R.; Ellsworth, W. L.; Kissling, E. H.; Freed, A. M.; Deschamps, A.; de Lepinay, B. M.

    2016-12-01

    We investigate 3D local earthquake tomography for high-quality travel time arrivals from aftershocks following the 2010 M7.0 Haiti earthquake on the Léogâne fault. The data were recorded by 35 stations, including 19 ocean bottom seismometers, from which we selected 595 events to simultaneously invert for hypocenter location and 3D Vp and Vs velocity structures in southern Haiti. We performed several resolution tests and concluded that clear features can be recovered to a depth of 15 km. At 5km depth we distinguish a broad low velocity zone in the Vp and Vs structure offshore near Gonave Island, which correlate with layers of marine sediments. Results show a pronounced low velocity zone in the upper 5 km across the city of Léogâne, which is consistent with the sedimentary basin location from geologic map. At 10 km depth, we detect a low velocity anomaly offshore near the Trois Baies fault and a NW-SE directed low velocity zone onshore across Petit-Goâve and Jacmel, which is consistent with a suspected fault from a previous study and that we refer to it in our study as the Petit-Goâve-Jacmel fault (PGJF). These observations suggest that low velocity structures delineate fault structures and the sedimentary basins across the southern peninsula, which is extremely useful for seismic hazard assessment in Haiti.

  16. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  17. Crustal structure beneath the Kenya Rift from axial profile data

    USGS Publications Warehouse

    Mechie, J.; Keller, Gordon R.; Prodehl, C.; Gaciri, S.; Braile, L.W.; Mooney, W.D.; Gajewski, D.; Sandmeier, K.-J.

    1994-01-01

    Modelling of the KRISP 90 axial line data shows that major crustal thinning occurs along the axis of the Kenya Rift from Moho depths of 35 km in the south beneath the Kenya Dome in the vicinity of Lake Naivasha to 20 km in the north beneath Lake Turkana. Low Pn velocities of 7.5-7.7 km/s are found beneath the whole of the axial line. The results indicate that crustal extension increases to the north and that the low Pn velocities are probably caused by magma (partial melt) rising from below and being trapped in the uppermost kilometres of the mantle. Along the axial line, the rift infill consisting of volcanics and a minor amount of sediments varies in thickness from zero where Precambrian crystalline basement highs occur to 5-6 km beneath the lakes Turkana and Naivasha. Analysis of the Pg phase shows that the upper crystalline crust has velocities of 6.1-6.3 km/s. Bearing in mind the Cainozoic volcanism associated with the rift, these velocities most probably represent Precambrian basement intruded by small amounts of igneous material. The boundary between the upper and lower crusts occurs at about 10 km depth beneath the northern part of the rift and 15 km depth beneath the southern part of the rift. The upper part of the lower crust has velocities of 6.4-6.5 km/s. The basal crustal layer which varies in thickness from a maximum of 2 km in the north to around 9 km in the south has a velocity of about 6.8 km/s. ?? 1994.

  18. Geothermal studies in the San Juan Basin and the Four Corners Area of the Colorado Plateau II. Steady-state models of the thermal source of the San Juan volcanic field

    NASA Astrophysics Data System (ADS)

    Reiter, Marshall; Clarkson, Gerry

    1983-01-01

    The increase of heat flow approaching the San Juan volcanic field depicts a smooth profile having a relatively large half width, perhaps 50-100 km. One may suggest thermal sources creating the observed anomaly at equivalent depths under, or in proximity to, the San Juan volcanic field. Although the cause of the increased heat flow approaching the San Juan field may be in part associated with more regional Southern Rocky Mountain tectonics; geologic, heat-flow, and seismic data support the idea of a separate thermal source associated with the San Juan volcanic field. It can be shown that cooling and solidification of very deep magma bodies (to 75 km) provide less heat than required by the observed anomaly. Replenishment of the thermal source causing the heat-flow anomaly is postulated. This replenishment is approximated in a limiting case by developing finite-difference steady-state models. The best models are consistent with a plume which rises from depths of at least 100 km to depths as shallow as 35 km, whose edge is about 10 km south of Durango.

  19. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Tharimena, Saikiran; Rychert, Catherine A.; Harmon, Nicholas

    2016-09-01

    Ontong Java Plateau (OJP) is a huge, completely submerged volcanic edifice that is hypothesized to have formed during large plume melting events ∼90 and 120 My ago. It is currently resisting subduction into the North Solomon trench. The size and buoyancy of the plateau along with its history of plume melting and current interaction with a subduction zone are all similar to the characteristics and hypothesized mechanisms of continent formation. However, the plateau is remote, and enigmatic, and its proto-continent potential is debated. We use SS precursors to image seismic discontinuity structure beneath Ontong Java Plateau. We image a velocity increase with depth at 28 ± 4 km consistent with the Moho. In addition, we image velocity decreases at 80 ± 5 km and 282 ± 7 km depth. Discontinuities at 60-100 km depth are frequently observed both beneath the oceans and the continents. However, the discontinuity at 282 km is anomalous in comparison to surrounding oceanic regions; in the context of previous results it may suggest a thick viscous root beneath OJP. If such a root exists, then the discontinuity at 80 km bears some similarity to the mid-lithospheric discontinuities (MLDs) observed beneath continents. One possibility is that plume melting events, similar to that which formed OJP, may cause discontinuities in the MLD depth range. Plume-plate interaction could be a mechanism for MLD formation in some continents in the Archean prior to the onset of subduction.

  20. Evidence for mafic lower crust in Tanzania, East Africa, from joint inversion of receiver functions and Rayleigh wave dispersion velocities

    NASA Astrophysics Data System (ADS)

    Julià, Jordi; Ammon, Charles J.; Nyblade, Andrew A.

    2005-08-01

    The S-wave velocity structure of Precambrian terranes in Tanzania, East Africa is modelled by jointly inverting receiver functions and surface wave dispersion velocities from the 1994-1995 Tanzania broad-band seismic experiment. The study region, which consists of an Archean craton surrounded by Proterozoic mobile belts, forms a unique setting for evaluating Precambrian crustal evolution. Our results show a uniform crustal structure across the region, with a 10-15 km thick upper crust with VS= 3.4-3.5 km s-1, overlying a gradational lower crust with S-wave velocities up to 4.1 km s-1 at 38-42 km depth. The upper-mantle lid displays uniform S-wave velocities of 4.5-4.7 km s-1 to depths of 100-150 km and overlays a prominent low-velocity zone. This low-velocity zone is required by the dispersion and receiver function data, but its depth interval is uncertain. The high crustal velocities within the lowermost crust characterize the entire region and suggest that mafic lithologies are present in both Archean and Proterozoic terranes. The ubiquitous mafic lower crust can be attributed to underplating associated with mafic dyke emplacement. This finding suggests that in East Africa there has been little secular variation in Precambrian crustal development.

  1. Mantle transition zone structure beneath India and Western China from migration of PP and SS precursors

    NASA Astrophysics Data System (ADS)

    Lessing, Stephan; Thomas, Christine; Rost, Sebastian; Cobden, Laura; Dobson, David P.

    2014-04-01

    We investigate the seismic structure of the upper-mantle and mantle transition zone beneath India and Western China using PP and SS underside reflections off seismic discontinuities, which arrive as precursors to the PP and SS arrival. We use high-resolution array seismic techniques to identify precursory energy and to map lateral variations of discontinuity depths. We find deep reflections off the 410 km discontinuity (P410P and S410S) beneath Tibet, Western China and India at depths of 410-440 km and elevated underside reflections of the 410 km discontinuity at 370-390 km depth beneath the Tien Shan region and Eastern Himalayas. These reflections likely correspond to the olivine to wadsleyite phase transition. The 410 km discontinuity appears to deepen in Central and Northern Tibet. We also find reflections off the 660 km discontinuity beneath Northern China at depths between 660 and 700 km (P660P and S660S) which could be attributed to the mineral transformation of ringwoodite to magnesiowuestite and perovskite. These observations could be consistent with the presence of cold material in the middle and lower part of the mantle transition zone in this region. We also find a deeper reflector between 700 and 740 km depth beneath Tibet which cannot be explained by a depressed 660 km discontinuity. This structure could, however, be explained by the segregation of oceanic crust and the formation of a neutrally buoyant garnet-rich layer beneath the mantle transition zone, due to subduction of oceanic crust of the Tethys Ocean. For several combinations of sources and receivers we do not detect arrivals of P660P and S660S although similar combinations of sources and receivers give well-developed P660P and S660S arrivals. Our thermodynamic modelling of seismic structure for a range of compositions and mantle geotherms shows that non-observations of P660P and S660S arrivals could be caused by the dependence of underside reflection coefficients on the incidence angle of the incoming seismic waves. Apart from reflections off the 410 and 660 km discontinuities, we observe intermittent reflectors at 300 and 520 km depth. The discontinuity structure of the study region likely reflects lateral thermal and chemical variations in the upper-mantle and mantle transition zone connected to past and present subduction and mantle convection processes.

  2. Forearc structure beneath southwestern British Columbia: A three-dimensional tomographic velocity model

    USGS Publications Warehouse

    Ramachandran, K.; Dosso, S.E.; Spence, G.D.; Hyndman, R.D.; Brocher, T.M.

    2005-01-01

    This paper presents a three-dimensional compressional wave velocity model of the forearc crust and upper mantle and the subducting Juan de Fuca plate beneath southwestern British Columbia and the adjoining straits of Georgia and Juan de Fuca. The velocity model was constructed through joint tomographic inversion of 50,000 first-arrival times from earthquakes and active seismic sources. Wrangellia rocks of the accreted Paleozoic and Mesozoic island arc assemblage underlying southern Vancouver Island in the Cascadia forearc are imaged at some locations with higher than average lower crustal velocities of 6.5-7.2 km/s, similar to observations at other island arc terranes. The mafic Eocene Crescent terrane, thrust landward beneath southern Vancouver Island, exhibits crustal velocities in the range of 6.0-6.7 km/s and is inferred to extend to a depth of more than 20 km. The Cenozoic Olympic Subduction Complex, an accretionary prism thrust beneath the Crescent terrane in the Olympic Peninsula, is imaged as a low-velocity wedge to depths of at least 20 km. Three zones with velocities of 7.0-7.5 km/s, inferred to be mafic and/or ultramafic units, lie above the subducting Juan de Fuca plate at depths of 25-35 km. The forearc upper mantle wedge beneath southeastern Vancouver Island and the Strait of Georgia exhibits low velocities of 7.2-7.5 km/s, inferred to correspond to ???20% serpentinization of mantle peridotites, and consistent with similar observations in other warm subduction zones. Estimated dip of the Juan de Fuca plate beneath southern Vancouver Island is ???11??, 16??, and 27?? at depths of 30, 40, and 50 km, respectively. Copyright 2005 by the American Geophysical Union.

  3. Petrological Constraints on Melt Generation Beneath the Asal Rift (Djibouti)

    NASA Astrophysics Data System (ADS)

    Pinzuti, P.; Humler, E.; Manighetti, I.; Gaudemer, Y.; Bézos, A.

    2010-12-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 95 lava flows sampled along 10 km of the rift axis and 8 km off-axis (that is for the last 650 ky). The major element composition and the trace element ratios of aphyric basalts across the Asal Rift show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. FeO, Fe8.0, Sm/YbN and Zr/Y increase, whereas SiO2 and Lu/HfN decrease from the rift axis to the rift shoulders. These variations are qualitatively consistent with a shallower melting beneath the rift axis than off-axis and the data show that the melting regime is inconsistent with a passive upwelling model. In order to quantify the depth range and extent of melting, we invert Na8.0 and Fe8.0 contents of basalts based on a pure active upwelling model. Beneath the rift axis, melting paths are shallow, from 60 to 30 km. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned mantle lithosphere. In contrast, melting on the rift shoulders occurred beneath a thick mantle lithosphere and required mantle solidus temperature 180°C hotter than normal (melting paths from 110 to 75 km). The calculated rate of lithospheric thinning is high (6.0 cm yr-1) and could explain the survival of a metastable garnet within the mantle at depth shallower than 90 km beneath the modern Asal Rift.

  4. Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation

    USGS Publications Warehouse

    Mori, J.; Abercrombie, R.E.

    1997-01-01

    Statistics of earthquakes in California show linear frequency-magnitude relationships in the range of M2.0 to M5.5 for various data sets. Assuming Gutenberg-Richter distributions, there is a systematic decrease in b value with increasing depth of earthquakes. We find consistent results for various data sets from northern and southern California that both include and exclude the larger aftershock sequences. We suggest that at shallow depth (???0 to 6 km) conditions with more heterogeneous material properties and lower lithospheric stress prevail. Rupture initiations are more likely to stop before growing into large earthquakes, producing relatively more smaller earthquakes and consequently higher b values. These ideas help to explain the depth-dependent observations of foreshocks in the western United States. The higher occurrence rate of foreshocks preceding shallow earthquakes can be interpreted in terms of rupture initiations that are stopped before growing into the mainshock. At greater depth (9-15 km), any rupture initiation is more likely to continue growing into a larger event, so there are fewer foreshocks. If one assumes that frequency-magnitude statistics can be used to estimate probabilities of a small rupture initiation growing into a larger earthquake, then a small (M2) rupture initiation at 9 to 12 km depth is 18 times more likely to grow into a M5.5 or larger event, compared to the same small rupture initiation at 0 to 3 km. Copyright 1997 by the American Geophysical Union.

  5. The intermediate-depth Tonga double-seismic zone and relationship to slab thermal structure

    NASA Astrophysics Data System (ADS)

    Wei, S. S.; Wiens, D.; Van Keken, P. E.; Adams, A. N.; Cai, C.

    2015-12-01

    We used data from the ocean bottom seismographs and island-based stations deployed in the Tonga-Fiji area from 2009 to 2010 to investigate the seismicity of the Tonga subducting slab. We relocated 785 events from the Reviewed ISC Bulletin with local array data, 379 newly detected intermediate-depth events, as well as 1976-2012 events with Global Centroid-Moment-Tensor (CMT) solutions. The events were relocated with both local and teleseismic P, pP, and S arrivals using a hypocentroidal decomposition relative location algorithm. The results show a double-seismic zone (DSZ) with a separation of about 30 km along the Tonga slab within a depth range of about 70 - 300 km. The upper plane is more seismically active and characterized by downdip compressional stress whereas the lower plane is characterized by downdip tensional stress, consistent with the slab unbending model. Accordingly, focal mechanisms of the earthquakes along the surface of the slab show downdip extension above the depth of 80 km, but turn to compression below it, coinciding with the change of the slab dip angle from 30˚ to 60˚ at the same depth. The lower limit of the DSZ beneath Tonga is significantly deeper than that in Japan and Mariana (about 200 km), implying the importance of thermal variations in controlling the DSZ. Since the Tonga slab, with the fastest subduction rate, is cooler than other slabs, thermally controlled processes such as dehydration embrittlement can occur at greater depths, resulting in a deeper depth extent of the DSZ.

  6. Oceanic Residual Depth Anomalies Maintained by a Shallow Asthenospheric Channel

    NASA Astrophysics Data System (ADS)

    Richards, F. D.; Hoggard, M.; White, N.

    2016-12-01

    Oceanic residual depth anomalies vary on wavelengths of 800-2,000 km and have amplitudesof ±1 km. There is also evidence from glacio-isostatic adjustment, plate motions and seismicanisotropy studies for the existence of a low-viscosity asthenospheric channel immediately beneaththe lithospheric plates. Here, we investigate whether global residual depth anomalies are consistentwith temperature variations within a sub-plate channel. For a given channel thickness, we convertresidual depth anomalies into temperature anomalies, assuming thermal isostasy alone (i.e. no mantle flow). Using aparameterisation that is calibrated against stacked oceanic shear wave velocity profiles, we convertthese temperature anomalies into velocity variations. We then compare the inferred velocity vari-ations with published seismic tomographic models. We find that thermal anomalies of ±100 °Cwithin a 150 ± 50 km thick channel yield a good match to > 95% of global residual depth anoma-lies. These temperature variations are consistent with geochemical evidence from mid-oceanic ridgebasalts and oceanic crustal thicknesses. The apparent success of this simple isostatic approach sup-ports the existence of a low-viscosity asthenospheric channel that plays a key role in controllingresidual depth anomalies. Far from subduction zones and from plume conduits, dynamic topog-raphy in the oceanic realm appears to be primarily controlled by temperature-induced buoyancyvariations within this channel.

  7. Complex plume dynamics in the transition zone underneath the Hawaii hotspot: seismic imaging results

    NASA Astrophysics Data System (ADS)

    Cao, Q.; van der Hilst, R. D.; de Hoop, M. V.; Shim, S.

    2010-12-01

    In recent years, progress has been made in seismology to constrain the depth variations of the transition zone discontinuities, e.g. 410 km and 660 km discontinuities, which can be used to constrain the local temperature and chemistry profiles, and hence to infer the existences and morphology of mantle plumes. Taking advantage of the abundance of natural earthquake sources in western Pacific subduction zones and the many seismograph stations in the Americas, we used a generalized Radon transform (GRT), a high resolution inverse-scattering technique, of SS precursors to form 3-D images of the transition zone structures of a 30 degree by 40 degree area underneath Hawaii and the Hawaii-Emperor seamount chain. Rather than a simple mushroom-shape plume, our seismic images suggest complex plume dynamics interacting with the transition zone phase transitions, especially at the 660’ discontinuity. A conspicuous uplift of the 660 discontinuity in a region of 800km in diameter is observed to the west of Hawaii. No correspondent localized depression of the 410 discontinuity is found. This lack of correlation between and differences in lateral length scale of the topographies of the 410 and 660 km discontinuities are consistent with many geodynamical modeling results, in which a deep-mantle plume impinging on the transition zone, creating a pond of hot material underneath endothermic phase change at 660 km depth, and with secondary plumes connecting to the present-day hotspot at Earth’s surface. This more complex plume dynamics suggests that the complicated mass transport process across the transition zone should be taken into account when we try to link the geochemical observations of Hawaiian basalt geochemistry at the Earth’s surface to deep mantle domains. In addition to clear signals at 410km, 520km and 660km depth, the data also reveals rich structures near 350km depth and between 800 - 1000km depth, which may be regional, laterally intermittent scatter interfaces. This may suggest the influence of water or minor chemical constitutes and calls for interpretations from geodynamics and mineral physics.

  8. Depth variations of friction rate parameter derived from dynamic modeling of GPS afterslip associated with the 2003 Mw 6.5 Chengkung earthquake in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J. C.; Liu, Z. Y. C.; Shirzaei, M.

    2016-12-01

    The Chihshang fault lies at the plate suture between the Eurasian and the Philippine Sea plates along the Longitudinal Valley in eastern Taiwan. Here we investigate depth variation of fault frictional parameters derived from the post-seismic slip model of the 2003 Mw 6.5 Chengkung earthquake. Assuming a rate-strengthening friction, we implement an inverse dynamic modeling scheme to estimate the frictional parameter (a-b) and reference friction coefficient (μ*) in depths by taking into account: pre-seismic stress as well as co-seismic and post-seismic coulomb stress changes associated with the 2003 Chengkung earthquake. We investigate two coseismic models by Hsu et al. (2009) and Thomas et al. (2014). Model parameters, including stress gradient, depth dependent a-b and μ*, are determined from fitting the transient post-seismic geodetic signal measured at 12 continuous GPS stations. In our inversion scheme, we apply a non-linear optimization algorithm, Genetic Algorithm (GA), to search for the optimum frictional parameters. Considering the zone with velocity-strengthening frictional properties along Chihshang fault, the optimum a-b is 7-8 × 10-3 along the shallow part of the fault (0-10 km depth) and 1-2 × 10-2 in 22-28 km depth. Optimum solution for μ* is 0.3-0.4 in 0-10 km depth and reaches 0.8 in 22-28 km depth. The optimized stress gradient is 54 MPa/ km. The inferred frictional parameters are consistent with the laboratory measurements on clay-rich fault zone gouges comparable to the Lichi Melange, which is thrust over Holocene alluvial deposits across the Chihshang fault, considering the main rock composition of the Chihshang fault, at least at the upper kilometers level of the fault. Our results can facilitate further studies in particular on seismic cycle and hazard assessment of active faults.

  9. Crustal structure of north Peru from analysis of teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Condori, Cristobal; França, George S.; Tavera, Hernando J.; Albuquerque, Diogo F.; Bishop, Brandon T.; Beck, Susan L.

    2017-07-01

    In this study, we present results from teleseismic receiver functions, in order to investigate the crustal thickness and Vp/Vs ratio beneath northern Peru. A total number of 981 receiver functions were analyzed, from data recorded by 28 broadband seismic stations from the Peruvian permanent seismic network, the regional temporary SisNort network and one CTBTO station. The Moho depth and average crustal Vp/Vs ratio were determined at each station using the H-k stacking technique to identify the arrival times of primary P to S conversion and crustal reverberations (PpPms, PpSs + PsPms). The results show that the Moho depth correlates well with the surface topography and varies significantly from west to east, showing a shallow depth of around 25 km near the coast, a maximum depth of 55-60 km beneath the Andean Cordillera, and a depth of 35-40 km further to the east in the Amazonian Basin. The bulk crustal Vp/Vs ratio ranges between 1.60 and 1.88 with the mean of 1.75. Higher values between 1.75 and 1.88 are found beneath the Eastern and Western Cordilleras, consistent with a mafic composition in the lower crust. In contrast values vary from 1.60 to 1.75 in the extreme flanks of the Eastern and Western Cordillera indicating a felsic composition. We find a positive relationship between crustal thickness, Vp/Vs ratio, the Bouguer anomaly, and topography. These results are consistent with previous studies in other parts of Peru (central and southern regions) and provide the first crustal thickness estimates for the high cordillera in northern Peru.

  10. CCP Receiver-Function Imaging of the Moho beneath Volcanic Fields in Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Blanchette, A. R.; Mooney, W. D.; Klemperer, S. L.; Zahran, H. M.; El-Hadidy, S. Y.

    2015-12-01

    We are searching for structural complexity in the crust and upper mantle beneath the Neogene volcanic fields ('harrats') of western Saudi Arabia. We determined P-wave seismic receiver functions for 50 broadband seismographic stations located within or adjacent to three volcanic fields: Harrats Lunayyir, Rahat, and Khaybar. There are 18 seismographic stations within Lunayyir, 11 in Khaybar, and 15 in Rahat with average interstation spacing of 10 km, 30km, and 50 km. For each station we calculated 300 to 600 receiver functions with an iterative time-domain deconvolution; noisy receiver functions (outliers) were rejected by cross correlating each receiver function with a station stack; we only accepted those with a cross correlation coefficient ≥ 0.6. We used these receiver functions to create a common-conversion point (CCP) image of the crust and upper mantle. The Moho and lithosphere-asthenosphere boundary (LAB) are clearly imaged, particularly beneath Lunayyir, and have average depths of about 38 km and 60 km. We do not find any evidence for structural disruption of the Moho within our ~70 km x 70 km image of the Moho beneath Lunayyir. We image a clear crust-mantle boundary beneath Rahat and Khaybar also at ~38 km, 2-3 km deeper than anticipated from prior receiver function results outside of the harrats. Mid-crustal low velocity zones seen locally beneath all three harrats, most commonly at 10-15 km or 15-20 km in depth, may more likely represent silicic Precambrian basement than accumulations of magma. Estimates of up to ~0.5 km3 of magma erupted during each eruptive episode are consistent with the lack of a disrupted Moho. However, the total erupted volume of magma, e.g. > 1000 km3 at Rahat, together with associated intrusions from the mantle, is consistent with crustal thickening of ~2 km beneath the harrats.

  11. Crustal P-wave velocity structure from Altyn Tagh to Longmen mountains along the Taiwan-Altay geoscience transect

    USGS Publications Warehouse

    Wang, Y.-X.; Mooney, W.D.; Han, G.-H.; Yuan, X.-C.; Jiang, M.

    2005-01-01

    Based upon the seismic experiments along Geoscience Transect from the Altyn Tagh to the Longmen Mountains, the crustal P-wave velocity structure was derived to outline the characteristics of the crustal structure. The section shows a few significant features. The crustal thickness varies dramatically, and is consistent with tectonic settings. The Moho boundary abruptly drops to 73km depth beneath the southern Altyn Tagh from 50km below the Tarim basin, then rises again to about 58km depth beneath the Qaidam basin. Finally, the Moho drops again to about 70km underneath the Songpan-Garze Terrane and rises to 60km near the Longmen Mountains with a step-shape. Further southeast, the crust thins to 52km beneath the Sichuan basin in the southeast of the Longmen Mountains. In the north of the Kunlun fault, a low-velocity zone, which may be a layer of melted rocks due to high temperature and pressure at depth, exists in the the bottom of the middle crust. The two depressions of the Moho correlate with the Qilian and Songpan-Garze terranes, implying that these two mountains have thick roots. According to our results, it is deduced that the thick crust of the northeastern Tibetan Plateau probably is a result of east-west and northwest-southeast crustal shortening since Mesozoic time during the collision between the Asian and Indian plates.

  12. Hydrogeology of the vicinity of Homestake mine, South Dakota, USA

    NASA Astrophysics Data System (ADS)

    Murdoch, Larry C.; Germanovich, Leonid N.; Wang, Herb; Onstott, T. C.; Elsworth, Derek; Stetler, Larry; Boutt, David

    2012-02-01

    The former Homestake mine in South Dakota (USA) cuts fractured metamorphic rock over a region several km2 in plan, and plunges to the SE to a depth of 2.4 km. Numerical simulations of the development and dewatering of the mine workings are based on idealizing the mine-workings system as two overlapping continua, one representing the open drifts and the other representing the host rock with hydrologic properties that vary with effective stress. Equating macroscopic hydrologic properties with characteristics of deformable fractures allows the number of parameters to be reduced, and it provides a physically based justification for changes in properties with depth. The simulations explain important observations, including the co-existence of shallow and deep flow systems, the total dewatering flow rate, the spatial distribution of in-flow, and the magnitude of porosity in the mine workings. The analysis indicates that a deep flow system induced by ~125 years of mining is contained within a surface-truncated ellipsoid roughly 8 km by 4 km in plan view and 5.5 km deep with its long-axis aligned to the strike of the workings. Groundwater flow into the southern side of the workings is characterized by short travel times from the ground surface, whereas flow into the northern side and at depth consists of old water removed from storage.

  13. Seismic imaging of mantle transition zone discontinuities beneath the northern Red Sea and adjacent areas

    NASA Astrophysics Data System (ADS)

    Mohamed, A. A.; Gao, S. S.; Elsheikh, A. A.; Liu, K. H.; Yu, Y.; Fat-Helbary, R. E.

    2014-11-01

    The dramatic asymmetry in terms of surface elevation, Cenozoic volcanisms and earthquake activity across the Red Sea is an enigmatic issue in global tectonics, partially due to the unavailability of broad-band seismic data on the African Plate adjacent to the Red Sea. Here, we report the first comprehensive image of the mantle transition zone (MTZ) discontinuities using data from the Egyptian National Seismic Network, and compare the resulting depths of the 410 and 660-km discontinuities with those observed on the Arabian side. Our results show that when a standard earth model is used for time-to-depth conversion, the resulting depth of the discontinuities increases systematically towards the axis of the Afro-Arabian Dome (AAD) from both the west and east. Relative to the westernmost area, the maximum depression of the 410-km discontinuity is about 30 km, and that of the 660-km discontinuity is about 45 km. The observed systematic variations can best be explained by a model involving a hydrated MTZ and an upper-mantle low-velocity zone beneath the AAD. Models invoking one or more mantle plumes originated from the MTZ or the lower-mantle beneath the study area are not consistent with the observations.

  14. Seismic images of the transition zone: is Hawaiian volcanism produced by a secondary plume from the top of the lower mantle?

    NASA Astrophysics Data System (ADS)

    Cao, Q.; van der Hilst, R. D.; Shim, S.; De Hoop, M. V.

    2011-12-01

    The Hawaiian hotspot is often attributed to hot material rising from depth in the mantle, but efforts to detect a thermal plume seismically have been inconclusive. Most tomographic models reveal anomalously low wavespeeds beneath Hawaii, but the depth extent of this structure is not well known. S or P data used in traveltime inversions are associated with steep rays to distant sources, which degrades depth resolution, and surface wave dispersion does not have sufficient sensitivity at the depths of interest. To investigate pertinent thermal anomalies we mapped depth variations of upper mantle discontinuities using precursors of the surface-reflected SS wave. Instead of stacking the data over geographical bins, which leads to averaging of topography and hence loss of spatial resolution, we used a generalized Radon transform (GRT) to detect and map localized elasticity contrasts in the transition zone (Cao et al., PEPI, 2010). We apply the GRT to produce 3D image volumes beneath a large area of the Pacific Ocean, including Hawaii and the Hawaii-Emperor seamount chain (Cao et al., Science, 2011). The 3D image volumes reveal laterally continuous interfaces near 410 and 660 km depths, that is, the traditional boundaries of the transition zone, but also suggest (perhaps intermittent) scatter horizons near 300-350, 520-550, and 800-1000 km depth. The upper mantle appears generally hot beneath Hawaii, but the most conspicuous topographic (and probably thermal) anomalies are found west of Hawaii. The GRT images reveal a 800 km wide uplift of the 660 discontinuity just west of Hawaii, but there is no evidence for a corresponding localized depression of the 410 discontinuity. This expression of the 410 and 660 km topographies is consistent with some existed geodynamical modeling results, in which a deep-rooted mantle plume impinging on the transition zone, creating a broad pond of hot material underneath endothermic phase change at 660 km depth, and with secondary plumes stemming from this hot pool of materials and rising in the upper mantle to create the present-day hotspot at Earth's surface. West of the upwarp that we interpret as the elevated post-spinel the main interface deepens to nearly 700 km depth. Given this position, it is unlikely that this deep structure is due to low temperatures. Instead, it would be consistent with slightly elevated temperatures (compared to transition temperature of post-spinel) and transitions in the garnet phase. This interpretation, if correct, implies that the area of ponded hot material is at least 2,000 km wide. The presence of an 800- to 2,000-kilometer-wide thermal anomaly deep in the transition zone west of Hawaii suggests that hot material does not rise from the lower mantle through a narrow vertical plume but accumulates near the base of the transition zone before being entrained in flow toward Hawaii and, perhaps, other islands. This implies that geochemical trends in Hawaiian lavas cannot constrain lower mantle domains directly. This type of flow may be a better explanation of bathymetric features in the Pacific (including other seamount chains) than the canonical deep mantle plumes.

  15. Upper mantle seismic velocity structure beneath the Kenya Rift and the Arabian Shield

    NASA Astrophysics Data System (ADS)

    Park, Yongcheol

    Upper mantle structure beneath the Kenya Rift and Arabian Shield has been investigated to advance our understanding of the origin of the Cenozoic hotspot tectonism found there. A new seismic tomographic model of the upper mantle beneath the Kenya Rift has been obtained by inverting teleseismic P-wave travel time residuals. The model shows a 0.5--1.5% low velocity anomaly below the Kenya Rift extending to about 150 km depth. Below ˜150 km depth, the anomaly broadens to the west toward the Tanzania Craton, suggesting a westward dip to the structure. The P- and S-wave velocity structure beneath the Arabian Shield has been investigated using travel-time tomography. Models for the seismic velocity structure of the upper mantle between 150 and 400 depths reveal a low velocity region (˜1.5% in the P model and ˜3% in the S model) trending NW-SE along the western side of the Arabian Shield and broadening to the northeast beneath the MMN volcanic line. The models have limited resolution above 150 km depth everywhere under the Shield, and in the middle part of the Shield the resolution is limited at all depths. Rayleigh wave phase velocity measurements have been inverted to image regions of the upper mantle under the Arabian Shield not well resolved by the body wave tomography. The shear wave velocity model obtained shows upper mantle structure above 200 km depth. A broad low velocity region in the lithospheric mantle (depths of ≤ ˜100 km) across the Shield is observed, and below ˜150 km depth a region of low shear velocity is imaged along the Red Sea coast and MMN volcanic line. A westward dipping low velocity zone beneath the Kenya Rift is consistent with an interpretation by Nyblade et al. [2000] suggesting that a plume head is located under the eastern margin of the Tanzania Craton, or alternatively a superplume rising from the lower mantle from the west and reaching the surface under Kenya [e.g., Debayle et al., 2001; Grand et al., 1997; Ritsema et al., 1999]. For the Arabian Shield, the models are not consistent with a two plume model [Camp and Roobol, 1992] because there is a continuous low velocity zone at depths ≥ 150 km along the western side of the Shield and not separate anomalies. The NW-SE trending low velocity anomaly beneath the western side of the Shield supports the Ebinger and Sleep [1998] model invoking plume flow channeled by thinner lithosphere along the Red Sea coast. The NW-SE low velocity structure beneath the western side of the Shield could also be the northern-most extent of the African Superplume. A low velocity anomaly beneath Ethiopia [Benoit et al., 2006a,b] dips to the west and may extend through the mantle transition zone. The observed low velocities in the upper mantle beneath the Arabian Shield could be caused by hot mantle rock rising beneath Ethiopia and flowing to the north under the Arabian Shield.

  16. Constraints on the structure of the crust and lithosphere beneath the Azores Islands from teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Spieker, Kathrin; Rondenay, Stéphane; Ramalho, Ricardo; Thomas, Christine; Helffrich, George

    2018-05-01

    The Azores Archipelago is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, resting on both sides of the ridge. Various methods including seismic reflection, gravity and passive seismic imaging have previously been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 and 30 km, but until now models of the more fine-scale crustal structure have been lacking. Pending questions include the thickness of the volcanic edifice beneath the islands and whether crustal intrusions or even underplating can be observed beneath any island. In this study, we use data from nine seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. Our results indicate that the base of the volcanic edifice is located approximately 1 to 4 km depth beneath the different islands and that the crust-mantle boundary has an average depth of ˜17 km. There is strong evidence for magmatic underplating beneath the island of São Jorge, and indications that the underplating is also present beneath São Miguel and possibly Santa Maria. Additionally, the seismological lithosphere-asthenosphere boundary, defined as a seismic velocity drop in the uppermost mantle, seems to deepen with increasing distance from the MAR. It has a depth of ˜45 km beneath the islands close to the MAR, compared to depths >70 km beneath the more distal islands.

  17. 2003 AZ84: Size, shape, albedo and first detection of topographic features

    NASA Astrophysics Data System (ADS)

    Dias-Oliveira, Alex; Sicardy, Bruno; Ortiz, Jose-Luis; Braga-Ribas, Felipe; Vieira-Martins, Roberto; BENEDETTI Rossi, Gustavo; camargo, julio; Assafin, Marcelo; Gomes-Júnior, Altair; Baug, Tapas; Chandrasekhar, Thyagarajan; Duffard, Rene; Ergang, Zhao; Ganesh Ganesh, Shashikiran; Ikari, Yasukazu; Irawati, Puji; Jain, Rajmal; Liying, Zhu; Richichi, Andrea; Shengbang, Qian; Behrend, Raoul; Benkhaldoun, Zouhair; Brosch, Noah; Daassou, Ahmed; Gal-Yam's, Avishay; Garcia-Lozano, Rubén; Gillon, Michael; Jehin, Emmanuel; Kaspi, Shai; Klotz, Alain; Lecacheux, Jean; Mahasena, Putra; Manfroid, Jean; Manulis, Ilan; Maury, Alain; Mohan, Vijay; Morales, Nicolas; Rinner, Claudine; Roques, françoise; Sharma, Amar; Sposetti, Stefano; Tanga, Paolo; Thirouin, Audrey; Vachier, Frederic; Widemann, Thomas

    2016-10-01

    We analyze two multi-chord stellar occultations by the Trans-Neptunian Object (TNO) 2003 AZ84 observed on February 3, 2012 and November 15, 2014.They provide different elliptical limb fits that are consistent to within their respective error bars, but could also suggest a possible precession of the object (assumed here to be a Maclaurin spheroid). The derived equatorial radius and oblateness are Re = 393 ± 7 km and ɛ = 0.057 in 2014 and Re = 414 ± 13 km and ɛ = 0.165 in 2012, respectively. Those results are consistent with single-chord events observed in January 2011 and December 2013. The figures above provide geometric visual albedos of pV(2014) = 0.112 ± 0.008 and pV(2012) = 0.114 ± 0.020. Using the Maclaurin assumption, combined with possible rotational periods of 6.67 h and 10.56 h, we estimate density upper limits of 1.89 ± 0.16g/cm3 and 0.77 ± 0.07g/cm3 for the two dates, respectively.The 2014 event provides (for the first time during a TNO occultation) a grazing chord with a gradual disappearance of the star behind 2003AZ84's limb that lasts for more than 10 seconds. We rule out the possibility of a localized dust concentration as it would imply very high optical depth for that cloud. We favor a local topographic feature (chasm) with minimum width and depth of 22 ± 2.5 km and 7 ± 2.0 km, respectively. Features with similar depths are in fact observed on Pluto's main satellite, Charon, which has a radius of about 605 km, comparable to that of 2003AZ84.

  18. Intraplate volcanism in the Danube Basin of NW Hungary: 3D geophysical modelling of the Late Miocene Pásztori volcano

    NASA Astrophysics Data System (ADS)

    Pánisová, Jaroslava; Balázs, Attila; Zalai, Zsófia; Bielik, Miroslav; Horváth, Ferenc; Harangi, Szabolcs; Schmidt, Sabine; Götze, Hans-Jürgen

    2017-12-01

    Three-dimensional geophysical modelling of the early Late Miocene Pásztori volcano (ca. 11-10 Ma) and adjacent area in the Little Hungarian Plain Volcanic Field of the Danube Basin was carried out to get an insight into the most prominent intra-crustal structures here. We have used gridded gravity and magnetic data, interpreted seismic reflection sections and borehole data combined with re-evaluated geological constraints. Based on petrological analysis of core samples from available six exploration boreholes, the volcanic rocks consist of a series of alkaline trachytic and trachyandesitic volcanoclastic and effusive rocks. The measured magnetic susceptibilities of these samples are generally very low suggesting a deeper magnetic source. The age of the modelled Pásztori volcano, buried beneath a 2 km-thick Late Miocene-to-Quaternary sedimentary sequence, is 10.4 +/- 0.3 Ma belonging to the dominantly normal C5 chron. Our model includes crustal domains with different effective induced magnetizations and densities: uppermost 0.3-1.8 km thick layer of volcanoclastics underlain by a trachytic-trachyandesitic coherent and volcanoclastic rock units of a maximum 2 km thickness, with a top situated at minimal depth of 2.3 km, and a deeper magmatic pluton in a depth range of 5-15 km. The 3D model of the Danube Basin is consistent with observed high ΔZ magnetic anomalies above the volcano, while the observed Bouguer gravity anomalies correlate better with the crystalline basement depth. Our analysis contributes to deeper understanding of the crustal architecture and the evolution of the basin accompanied by alkaline intraplate volcanism.

  19. Imaging the 2017 MW 8.2 Tehuantepec intermediate-depth earthquake using Teleseismic P Waves

    NASA Astrophysics Data System (ADS)

    Brudzinski, M.; Zhang, H.; Koper, K. D.; Pankow, K. L.

    2017-12-01

    The September 8, 2017 MW 8.1 Tehuantepec, Mexico earthquakes in the middle American subduction zone is one of the largest intermediate-depth earthquake ever recorded and could provide an unprecedented opportunity for understanding the mechanism of intermediate-depth earthquakes. While the hypocenter and centroid depths for this earthquake are shallower than typically considered for intermediate depth earthquakes, the normal faulting mechanism consistent with down-dip extension and location within the subducting plate align with properties of intermediate depth earthquakes. Back-projection of high-frequency teleseismic P-waves from two regional arrays for this earthquake shows unilateral rupture on a southeast-northwest striking fault that extends north of the Tehuantepec fracture zone (TFZ), with an average horizontal rupture speed of 3.0 km/s and total duration of 60 s. Guided by these back-projection results, 47 globally distributed low-frequency P-waves were inverted for a finite-fault model (FFM) of slip for both nodal planes. The FFM shows a slip deficit in proximity to the extension of the TFZ, as well as the minor rupture beyond the TFZ (confirmed by the synthetic tests), which indicates that the TFZ acted as a barrier for this earthquake. Analysis of waveform misfit leads to the preference of a subvertical plane as the causative fault. The FFM shows that the majority of the rupture is above the focal depth and consists of two large slip patches: the first one is near the hypocenter ( 55 km depth) and the second larger one near 30 km depth. The distribution of the two patches spatially agrees with seismicity that defines the upper and lower zones of a double Benioff zone (DBZ). It appears there was single fault rupture across the two depth zones of the DBZ. This is uncommon because a stark aseismic zone is typically observed between the upper and lower zones of the DBZ. This finding indicates that the mechanism for intraslab earthquakes must allow for rupture to propagate from one of the DBZ to the other despite seismic quiescence in between, suggesting the aseismic zone is conditionally stable: unable to nucleate earthquakes but able to host a large rupture going across.

  20. Oceanic Lithosphere/Asthenosphere Boundary from surface wave dispersion data

    NASA Astrophysics Data System (ADS)

    Burgos, G.; Montagner, J.; Beucler, E.; Capdeville, Y.; Mocquet, A.

    2013-12-01

    The nature of Lithosphere-Asthenosphere boundary (LAB) is controversial according to different types of observations. Using a massive dataset of surface wave dispersions in a broad frequency range (15-300s), we have developed a 3-D tomographic model (1st order perturbation theory) of the upper-mantle at the global scale. It is used to derive maps of LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distributions primarily below oceans according to three different proxies which corresponds to the base of the lithosphere from the vertically polarized shear velocity variation at depth, the top of the radial anisotropy positive anomaly and from the changes in orientation of the fast axis of azimuthal anisotropy. The LAB depth determinations of the different proxies are basically consistent for each oceanic region. The estimations of the LAB depth based on the shear velocity proxy increase from thin (20 km) lithosphere in the ridges to thick (120--130 km) old ocean lithosphere. The radial anisotropy proxy presents a very fast increase of the LAB depth from the ridges, from 50 km to older ocean where it reaches a remarkable monotonic sub-horizontal profile (70--80 km). LAB depths inferred from azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (130--135 km). The results present two types of pattern of the age of oceanic lithosphere evolution with the LAB depth. The shear velocity and azimuthal anisotropy proxies show age-dependent profiles in agreement with thermal plate models while the LAB based on radial anisotropy is characterized by a shallower depth, defining a sub-horizontal interface with a very small age dependence for all three main oceans (Pacific, Atlantic and Indian). These different patterns raise questions about the nature of the LAB in the oceanic regions, and of the formation of oceanic plates.

  1. Comparisons of seismic and electromagnetic structures of the MELT area

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Hirth, G.; Forsyth, D.; Baba, K.; Chave, A.

    2003-04-01

    Both seismic and electromagnetic (EM) models from the MELT experiment show similar broad scale features in the mantle beneath the Southern EPR. In all EM models, the conductivity in the upper 50-60˜km is considerably higher to the west of the ridge than to the east. Similarly, seismic models of short period Love waves are asymmetric in velocity structure, with slower velocities to the west of the ridge within the upper 60˜km. Body wave data suggest a similar asymmetry, although the depth extent is not as well defined. West of the ridge, both the higher conductivities and lower velocities have been attributed to the presence of a small melt fraction, although the anomalous regions estimated from different techniques do not entirely agree. To the east, there is a rapid increase in resistivity and S-wave velocity, indicating that within 25˜km of the axis the mantle above 70˜km is both dry and melt-free. Further away from the ridge, the boundary between a conductive asthenospheric mantle and a resistive overlying mantle flattens, at a depth around 60-80˜km. Rayleigh wave inversions also show fairly flat velocity contours with a broad minimum centered at 60-80˜km. Both of these features are consistent with a transition from dry to damp mantle. Also away from the ridge, EM data, shear-wave splitting, and Rayleigh waves all require an azimuthally anisotropic mantle consistent with the a-axis of olivine being preferentially oriented horizontally and perpendicular to the ridge. Anisotropy in EM data suggests damp mantle conditions in the 100-200˜km depth range, with enhanced conduction along the a-axis of olivine. Rayleigh waves are most sensitive to shallower structure and require anisotropy in the upper 70˜km. In the uppermost 40˜km, the most conductive and lowest velocity regions are close to the axis but offset 5-10˜km to the west. Some anisotropic inversions recover a vertically conductive feature that could be interpreted as a few percent melt distributed in vertically aligned channels or tubes. However, modeling of seismic data rule out the presence of a vertical melt bearing channel larger than 5˜km wide with a velocity reduction of 0.5˜kms-1 (3-4% melt fraction). This apparent discrepancy may provide clues as to how melt is distributed.

  2. The effect of heterogeneous crust on the earthquake -- The case study of the 2004 Chuetsu, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Miyatake, T.; Kato, N.; Yin, J.; Kato, A.

    2010-12-01

    The 2004, Chuetsu, Japan, earthquake of Mw 6.6 occurred as shallow thrust event and the detailed kinematic source model was obtained by Hikima and Koketsu (2005). Just after the event, a dense temporal seismic network was deployed, and the detailed structure was elucidated (A. Kato et al. 2006). The seismic velocities in the hanging wall above the main shock fault are lower than those in the footwall, with the velocity contrast extending to a depth of approximately 10 km (A. Kato et al. 2006). Their results also show the high velocity on the asperity. We investigate that effect of the structure heterogeneity on fault rupture. First, we model the structure of the source region of 100km x 100km x 40km as simple as possible, and then solve the static elastic equation of motion with gravity effect by using finite difference method and GeoFEM. Our structure model consists of two layers, in which the boundary is a dipping surface from ground surface to 10km depth and bend to horizontal plane. The slope of the boundary corresponds to the earthquake fault and a bump located on the asperity between the depths of 4km and 10km. Finite difference grid size is 0.25km horizontally and 0.4km vertically. Ratio of the horizontal to vertical grids corresponds to the dip angle of the main shock. We simply assume the rigidity of 30GPa for lower sediment part and 40GPa for hard rock part. The boundary conditions imposed are, 1) stress free on the ground surface, 2) depth dependent or uniform normal stress are added on the sides that cause horizontal maximum stress, 3) Lithostatic vertical stress on the bottom. The calculated stress field on the main shock fault has the following features, 1) The high shear stress peaks appear around the depth of hypocenter and the top edge of the asperity, corresponding to the depths of the velocity contrast. These high stress zones are caused by stress concentration of the low rigidity wedge shaped sediment. 2) Expected stress drop distribution is around the top edge of the asperity. 3) Strength excess increases with depth. Combining with 2), the rupture expect to propagate toward shallower asperity than deeper part. 4) Uniform normal stress boundary condition seems to be unreasonable because of high stress drop in shallower part. These are important clues to investigate the physical process of the earthquake.

  3. Earthquake sources near Uturuncu Volcano

    NASA Astrophysics Data System (ADS)

    Keyson, L.; West, M. E.

    2013-12-01

    Uturuncu, located in southern Bolivia near the Chile and Argentina border, is a dacitic volcano that was last active 270 ka. It is a part of the Altiplano-Puna Volcanic Complex, which spans 50,000 km2 and is comprised of a series of ignimbrite flare-ups since ~23 ma. Two sets of evidence suggest that the region is underlain by a significant magma body. First, seismic velocities show a low velocity layer consistent with a magmatic sill below depths of 15-20 km. This inference is corroborated by high electrical conductivity between 10km and 30km. This magma body, the so called Altiplano-Puna Magma Body (APMB) is the likely source of volcanic activity in the region. InSAR studies show that during the 1990s, the volcano experienced an average uplift of about 1 to 2 cm per year. The deformation is consistent with an expanding source at depth. Though the Uturuncu region exhibits high rates of crustal seismicity, any connection between the inflation and the seismicity is unclear. We investigate the root causes of these earthquakes using a temporary network of 33 seismic stations - part of the PLUTONS project. Our primary approach is based on hypocenter locations and magnitudes paired with correlation-based relative relocation techniques. We find a strong tendency toward earthquake swarms that cluster in space and time. These swarms often last a few days and consist of numerous earthquakes with similar source mechanisms. Most seismicity occurs in the top 10 kilometers of the crust and is characterized by well-defined phase arrivals and significant high frequency content. The frequency-magnitude relationship of this seismicity demonstrates b-values consistent with tectonic sources. There is a strong clustering of earthquakes around the Uturuncu edifice. Earthquakes elsewhere in the region align in bands striking northwest-southeast consistent with regional stresses.

  4. Structure of the San Andreas Fault Zone in the Salton Trough Region of Southern California: A Comparison with San Andreas Fault Structure in the Loma Prieta Area of Central California

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.

    2016-12-01

    The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active-source data collected after the earthquake for steep reflections.

  5. Spatial patterns of diagenesis during geothermal circulation in carbonate platforms

    USGS Publications Warehouse

    Wilson, A.M.; Sanford, W.; Whitaker, F.; Smart, P.

    2001-01-01

    Geothermal convection of seawater deep in carbonate platforms could provide the necessary supply of magnesium for dolomitization at temperatures high enough to overcome kinetic limitations. We used reactive-transport simulations to predict the rates and spatial patterns of dolomitization during geothermal convection in a platform that was 40 km across and 2 km thick. In the simulations, porosity and permeability decrease with depth to account for sediment compaction. Dolomitization of a platform consisting of medium grained (???0.05 mm) sediments occurred in a broad band ranging from ???2.5 km depth near the margin to ???1.5 km depth near the platform center. The area of dolomitization is deep enough that temperatures exceed ???50??C but not so deep that low permeabilities restrict mass transport. Complete dolomitization in the center of this zone is estimated to require at least 60 my. Incorporation of permeability contrasts, permeable beds, and reactive beds focused dolomitization strongly and reduced the estimated time required for dolomitization by as much as 50 percent. Dolomitization created magnesium-depleted, calcium-rich fluids in less than 10 ky, and results support a link between dolomitization and anhydrite precipitation where adequate sulfate is available.

  6. A Transformation-Induced Shear Instability Model for Deep Earthquakes Based on Laboratory Nanoseismological and Microstructural Observations

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhu, L.; Shi, F.; Schubnel, A.; Hilairet, N.; Yu, T.; Rivers, M. L.; Gasc, J.; Li, Z.; Brunet, F.

    2016-12-01

    Global earthquake hypocenters depth displays a bimodal distribution: a first peak at < 50 km and a second peak around 550 - 600 km, before ceasing abruptly near 700 km. How fractures initiate, nucleate, and propagate at depths >70 km remains one of the greatest puzzles in earth science, since increasing pressure inhibits fracture propagation. Here we report high-resolution acoustic emission (AE) analysis of fractures triggered by partial transformation from olivine to spinel in Mg2GeO4, an analog to (Mg,Fe)2SiO4, the dominant mineral in the upper mantle. State-of-the-art synchrotron techniques and seismological methodologies were used for fault imaging and for event location and waveform analysis. Our results reveal unprecedented details of rupture nucleation and propagation, in both space and time: AE event magnitudes follow the Gutenberg-Richter law, with b values generally consistent with seismological observations, while the empirical relation between magnitude and rupture area is extended to millimeter-sized samples. A new rupture model for deep-focus earthquakes is proposed based on the well-known strain localization theory for pressure sensitive (dilatant) materials. The results show that shear failure processes, even at great depths, are scale-invariant.

  7. Hotspots and Superswell Beneath Africa Inferred From Surface Wave Anisotropic Tomography.

    NASA Astrophysics Data System (ADS)

    Sebai, A.; Stutzmann, E.; Montagner, J.

    2003-12-01

    In order to study the interaction at depth between hotspots and lithosphere we present a new anisotropic S-wave tomographic model of Africa which is derived from Rayleigh and Love wave phase velocity measurements. The strongest negative anomaly corresponds to the Afar plume which is presently the most active area of Africa. This slow anomaly, visible down to the deepest inverted depth (400km), is associated with azimuthal anisotropy that is weak right beneath the Afar and whose direction at further distances is diverging around the plume. This is consistent with active upwelling beneath the Afar. The smaller hotspots of Tibesti, Darfur, Hoggar and Mt Cameroon have appeared in regions that had been weakened by Late Jurassic-Early Cretaceous (145 Ma) rifting of West and Central Africa. They are associated with slow velocities down to about 200km. The smaller amplitude of these anomalies with respect to the Afar area and their limited depth extent may indicate that these hotspots have their origin in the uppermost boundary layer between asthenosphere and lithosphere. Nevertheless, there may be a complex relationship at depths shallower than 150km between these hotspots and the Afar. The superswell, located in the southern part of Africa is characterized by a broad area of positive velocity anomaly visible down to 300km depth. The base of Kalahari craton ( ˜ 280 km) is evidently characterized by an increase of azimuthal anisotropy. The direction of azimuthal axis is roughly North-South that rotates at the longitude of the Eastern rift to move around the Afar. This may suggest a feeding of Victoria and Afar hotspots from the deep South African superplume.

  8. Crustal and upper mantle structure of the north-east of Egypt and the Afro-Arabian plate boundary region from Rayleigh-wave analysis

    NASA Astrophysics Data System (ADS)

    Corchete, V.; Chourak, M.; Hussein, H. M.; Atiya, K.; Timoulali, Y.

    2017-05-01

    The crustal and mantle structure of the north-eastern part of Egypt and the surrounding area is shown by means of S-velocity maps for depths ranging from zero to 45 km, determined by the regionalization and inversion of Rayleigh-wave dispersion. This analysis shows several types of crust with an average S-velocity ranging from 2.5 to 3.9 km/s. The values of S-velocity range from 2.5 km/s at the surface to 3.4 km/s at 10 km depth for the Sinai Peninsula, Gulf of Aqaba, Gulf of Suez, Red Sea, Dead Sea, western part of Dead sea and Arabian Plate. In the lower crust, the values of the S-velocity reach 4.0 km/s. In the uppermost mantle, the S-velocities range from 4.4 to 4.7 km/s. The crustal thickness ranges from the oceanic thin crust (around 15-20 km of thickness), for Red Sea and the extended continental margins, to 35-45 km of thickness for the Arabian plate. A gradual increasing crustal thickness is observed from north-east to south-west. While the Moho is located at 30-35 km of depth under the Sinai Peninsula, Gulf of Aqaba, Dead Sea Fault (DSF) and Dead Sea, a thinner crust (20-25 km of thickness) is found at the east of DSF and under the northern and the southern part of the Gulf of Suez. The crustal thickness varies within Sinai from the southern edge to the north, which provided an evidence for the presence of an Early Mesozoic passive margin with thinned continental crust in the north of Sinai. The change of crustal structure between the Gulf of Aqaba and the Gulf of Suez is due to the different tectonic and geodynamic processes affecting Sinai. In general, our results are consistent with surface geology and the Moho depth inferred from reflection and refraction data, receiver function, surface-wave analysis and P-S tomography. The strong variations in the base of the Moho reflect the complex evolution of the African and Arabian plate boundary region.

  9. Uncertainty Analyses for Back Projection Methods

    NASA Astrophysics Data System (ADS)

    Zeng, H.; Wei, S.; Wu, W.

    2017-12-01

    So far few comprehensive error analyses for back projection methods have been conducted, although it is evident that high frequency seismic waves can be easily affected by earthquake depth, focal mechanisms and the Earth's 3D structures. Here we perform 1D and 3D synthetic tests for two back projection methods, MUltiple SIgnal Classification (MUSIC) (Meng et al., 2011) and Compressive Sensing (CS) (Yao et al., 2011). We generate synthetics for both point sources and finite rupture sources with different depths, focal mechanisms, as well as 1D and 3D structures in the source region. The 3D synthetics are generated through a hybrid scheme of Direct Solution Method and Spectral Element Method. Then we back project the synthetic data using MUSIC and CS. The synthetic tests show that the depth phases can be back projected as artificial sources both in space and time. For instance, for a source depth of 10km, back projection gives a strong signal 8km away from the true source. Such bias increases with depth, e.g., the error of horizontal location could be larger than 20km for a depth of 40km. If the array is located around the nodal direction of direct P-waves the teleseismic P-waves are dominated by the depth phases. Therefore, back projections are actually imaging the reflection points of depth phases more than the rupture front. Besides depth phases, the strong and long lasted coda waves due to 3D effects near trench can lead to additional complexities tested here. The strength contrast of different frequency contents in the rupture models also produces some variations to the back projection results. In the synthetic tests, MUSIC and CS derive consistent results. While MUSIC is more computationally efficient, CS works better for sparse arrays. In summary, our analyses indicate that the impact of various factors mentioned above should be taken into consideration when interpreting back projection images, before we can use them to infer the earthquake rupture physics.

  10. Crustal structure of the eastern Borborema Province, NE Brazil, from the joint inversion of receiver functions and surface wave dispersion: Implications for plateau uplift

    NASA Astrophysics Data System (ADS)

    Luz, Rosana M. N.; Julià, Jordi; do Nascimento, Aderson F.

    2015-05-01

    We investigate the crustal structure of the Borborema Province of NE Brazil by developing 44 S wave velocity-depth profiles from the joint inversion of receiver functions and fundamental mode, Rayleigh wave group velocities. The Borborema Province is located in the northeasternmost corner of the South American continent and represents a portion of a larger Neoproterozoic mobile belt that formed during the Brasiliano-Pan African orogeny. Extensional processes in the Mesozoic—eventually leading to the separation of Africa and South America—left a number of aborted rift basins in the continental interiors, and episodes of diffuse intraplate volcanism and uplift marked the evolution of the Province after continental breakup. Our velocity-depth profiles reveal the existence of two crustal types in the Province: (i) the thin crustal type, which consists of 30-32.5 km thick crust, with an upper layer of 3.4-3.6 km/s overlying a lower layer of 3.7-3.8 km/s and (ii) the thick crustal type, which consists of a 35-37.5 km thick crust, with velocities between 3.5 and 3.9 km/s down to ˜30 km depth and a gradational increase in velocity (VS≥4.0 km/s) down to upper mantle depths. The crustal types correlate well with topography, with the thick crustal type being mainly found in the high-standing southern Borborema Plateau and the thin crustal type being mostly found in the low-lying Sertaneja depression and coastal cuestas. Interestingly, the thin crustal type is also observed under the elevated topography of the northern Plateau. We argue that the thick crustal type is rheologically strong and not necessarily related to postbreakup mantle processes, as it is commonly believed. We propose that extensional processes in the Mesozoic stretched portions of the Brasiliano crust and formed the thin crustal type that is now observed in the regions of low-lying topography, leaving the rheologically strong thick crust of the southern Plateau at higher elevations. The crust making the northern Plateau would have thinned and subsided during Mesozoic extension as part of a greater Sertaneja depression, to then experience uplift in the Cenozoic and achieve its present elevation.

  11. Geological and mechanical properties on the 3-D fault patch of the rapid creeping Chihshang Fault: a plate suture between Luzon arc and Eurasia in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J. C.; Mu, C. H.; Huang, W. J.; Liu, Z. Y. C.; Shirzaei, M.

    2017-12-01

    The 35-km-long Chihshang Fault is a rapidly creeping thrust at plate suture between the converging Philippine and Eurasian plates in eastern Taiwan. We combined geological investigation, geodetic data, seismological information, and a rate-dependant friction model, to illustrate the mechanical frictional properties and their variations along the strike and the depth (30-km-deep) of the fault. During the interseismic period, the Chihshang Fault is characterized by three different slip behaviours at different depths: 1) abundant micro-seismicity and semi-continuous rapid slip at the depth of 10-20 km seismogenic zone; 2) visco-elastic aseismic slip zone beneath 25 km; 3) seasonal locked/creep switch at depth of 0-2 km. Using elastic dislocation model, 1-D diffusion model, Coulomb stress criterion, and rate-dependent frictional law, we simulate the surface creep curves from the creep meters data. The result shows a rate-strengthening zone with positive frictional property (a-b) in the upper 500 meters of fault, which appears to be locked during the dry season. We tend to interpret it as a result of 300-500 m thick of unconsolidated gravels layers in the footwall of the Chihshang Fault. We also implement an inverse dynamic modeling scheme to estimate the frictional parameter () in depths by taking into account pre-seismic stress and coulomb stress changes associated with co- and post-seismic deformation of the 2003 Mw 6.5 Chengkung earthquake. Model parameters are determined from fitting the transient post-seismic geodetic signal measured at 12 continuous GPS stations. We apply a non-linear optimization algorithm, Genetic Algorithm (GA), to search for the optimum parameters. The optimum is 1.4 ×10-2 along the shallow part of the fault (0-10 km depth) and 1.2 × 10-2 in 22-28 km depth. The inferred frictional parameters are consistent with the laboratory measurements on clay rich fault zone gouges comparable to the Lichi mélange, considering the main rock composition of the Chihshang fault. Our results indicate a possibly strong influence from the surface cover of a few hundreds meter thick unconsolidated deposits (i.e., late Quaternary gravel) and the clay rich fault gouge (i.e. the Lichi Melange) on frictional properties.

  12. Three-dimensional P wave velocity model for the San Francisco Bay region, California

    USGS Publications Warehouse

    Thurber, C.H.; Brocher, T.M.; Zhang, H.; Langenheim, V.E.

    2007-01-01

    A new three-dimensional P wave velocity model for the greater San Francisco Bay region has been derived using the double-difference seismic tomography method, using data from about 5,500 chemical explosions or air gun blasts and approximately 6,000 earthquakes. The model region covers 140 km NE-SW by 240 km NW-SE, extending from 20 km south of Monterey to Santa Rosa and reaching from the Pacific coast to the edge of the Great Valley. Our model provides the first regional view of a number of basement highs that are imaged in the uppermost few kilometers of the model, and images a number of velocity anomaly lows associated with known Mesozoic and Cenozoic basins in the study area. High velocity (Vp > 6.5 km/s) features at ???15-km depth beneath part of the edge of the Great Valley and along the San Francisco peninsula are interpreted as ophiolite bodies. The relocated earthquakes provide a clear picture of the geometry of the major faults in the region, illuminating fault dips that are generally consistent with previous studies. Ninety-five percent of the earthquakes have depths between 2.3 and 15.2 km, and the corresponding seismic velocities at the hypocenters range from 4.8 km/s (presumably corresponding to Franciscan basement or Mesozoic sedimentary rocks of the Great Valley Sequence) to 6.8 km/s. The top of the seismogenic zone is thus largely controlled by basement depth, but the base of the seismogenic zone is not restricted to seismic velocities of ???6.3 km/s in this region, as had been previously proposed. Copyright 2007 by the American Geophysical Union.

  13. Crustal structure revealed by a deep seismic sounding profile of Baijing-Gaoming-Jinwan in the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Ye, Xiuwei; Lv, Jinshui; Sun, Jinlong; Wang, Xiaona

    2018-02-01

    The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s-1, exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s-1, exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin.

  14. Shallow Crustal Structure in the Northern Salton Trough, California: Insights from a Detailed 3-D Velocity Model

    NASA Astrophysics Data System (ADS)

    Ajala, R.; Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2017-12-01

    The Coachella Valley is the northern extent of the Gulf of California-Salton Trough. It contains the southernmost segment of the San Andreas Fault (SAF) for which a magnitude 7.8 earthquake rupture was modeled to help produce earthquake planning scenarios. However, discrepancies in ground motion and travel-time estimates from the current Southern California Earthquake Center (SCEC) velocity model of the Salton Trough highlight inaccuracies in its shallow velocity structure. An improved 3-D velocity model that better defines the shallow basin structure and enables the more accurate location of earthquakes and identification of faults is therefore essential for seismic hazard studies in this area. We used recordings of 126 explosive shots from the 2011 Salton Seismic Imaging Project (SSIP) to SSIP receivers and Southern California Seismic Network (SCSN) stations. A set of 48,105 P-wave travel time picks constituted the highest-quality input to a 3-D tomographic velocity inversion. To improve the ray coverage, we added network-determined first arrivals at SCSN stations from 39,998 recently relocated local earthquakes, selected to a maximum focal depth of 10 km, to develop a detailed 3-D P-wave velocity model for the Coachella Valley with 1-km grid spacing. Our velocity model shows good resolution ( 50 rays/cubic km) down to a minimum depth of 7 km. Depth slices from the velocity model reveal several interesting features. At shallow depths ( 3 km), we observe an elongated trough of low velocity, attributed to sediments, located subparallel to and a few km SW of the SAF, and a general velocity structure that mimics the surface geology of the area. The persistence of the low-velocity sediments to 5-km depth just north of the Salton Sea suggests that the underlying basement surface, shallower to the NW, dips SE, consistent with interpretation from gravity studies (Langenheim et al., 2005). On the western side of the Coachella Valley, we detect depth-restricted regions of higher velocities ( 6.4 - 6.6 km/s) that may represent basement rocks from the Eastern Peninsular Ranges that extend beneath this area. Our results will contribute to the SCEC Community Modeling Environment (CME) for use in future ground shaking calculations and in producing more accurate seismic hazard maps for the Coachella Valley.

  15. Crust-mantle density distribution in the eastern Qinghai-Tibet Plateau revealed by satellite-derived gravity gradients

    NASA Astrophysics Data System (ADS)

    LI, Honglei; Fang, Jian; Braitenberg, Carla; Wang, Xinsheng

    2015-04-01

    As the highest, largest and most active plateau on Earth, the Qinghai-Tibet Plateau has a complex crust-mantle structure, especially in its eastern part. In response to the subduction of the lithospheric mantle of the Indian plate, large-scale crustal motion occurs in this area. Despite the many previous studies, geodynamic processes at depth remain unclear. Knowledge of crust and upper mantle density distribution allows a better definition of the deeper geological structure and thus provides critically needed information for understanding of the underlying geodynamic processes. With an unprecedented precision of 1-2 mGal and a spatial resolution better than 100 km, GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission products can be used to constrain the crust-mantle density distribution. Here we used GOCE gravitational gradients at an altitude of 10km after reducing the effects of terrain, sediment thickness variations, and Moho undulations to image the density structures of eastern Tibet up to 200 km depths. We inverted the residual satellite gravitational gradients using a least square approach. The initial density model for the inversion is based on seismic velocities from the tomography. The model is composed of rectangular blocks, having a uniform density, with widths of about 100 km and variable thickness and depths. The thickness of the rectangular cells changes from10 to 60km in accordance with the seismic model. Our results reveal some large-scale, structurally controlled density variations at depths. The lithospheric root defined by higher-density contrast features from southwest to northeast, with shallowing in the central part: base of lithosphere reaches a depth of180 km, less than 100km, and 200 km underneath the Lhasa, Songpan-Ganzi, and Ordos crustal blocks, respectively. However, these depth values only represent a first-order parameterization because they depend on model discretization inherited from the original seismic tomography model. For example, the thickness of the uniform density blocks centered at140 km depth is as large as 60 km. Low-density crustal anomalies beneath the southern Lhasa and Songpan-Ganzi blocks in our model support the idea of weak lower crust and possible crustal flow, as a result of the thermal anomalies caused by the upwelling of hot deep materials. The weak lower crust may cause the decoupling of the upper crust and the mantle. These results are consistent with many other geophysical studies, confirming the effectiveness of the GOCE gravitational gradient data. Using these data in combination with other geodynamic constraints (e.g., gravity and seismic structure and preliminary reference Earth model), an improved dynamic model can be derived.

  16. Minimum distribution of subsea ice-bearing permafrost on the US Beaufort Sea continental shelf

    USGS Publications Warehouse

    Brothers, Laura L.; Hart, Patrick E.; Ruppel, Carolyn D.

    2012-01-01

    Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along <5% of the tracklines at depths of ~5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.

  17. Structure and seismicity of the upper mantle using deployments of broadband seismographs in Antarctica and the Mariana Islands

    NASA Astrophysics Data System (ADS)

    Barklage, Mitchell

    We determine shear wave splitting parameters of teleseismic SKS and SKKS phases recorded at 43 broadband seismometers deployed in South Victoria Land as part of the Transantarctic Mountains seismic experiment (TAMSEIS) from 2000-2003. We use an eigenvalue technique to linearize the rotated and shifted shear wave particle motions and determine the best splitting parameters. The data show a fairly consistent fast direction of azimuthal anisotropy oriented approximately N60°E with splitting times of about 1 second. Based on a previous study of the azimuthal variations of Rayleigh wave phase velocities which show a similar fast direction, we suggest the anisotropy is localized in the uppermost mantle, with a best estimate of 3% anisotropy in a layer of about 150 km thickness. We suggest that the observed anisotropy near the Ross Sea coast, a region underlain by thin lithosphere, results either from upper mantle flow related to Cenozoic Ross Sea extension or to edge-driven convection associated with a sharp change in lithospheric thickness between East and West Antarctica. Both hypotheses are consistent with the more E-W fast axis orientation for stations on Ross Island and along the coast, sub-parallel to the extension direction and the lithospheric boundary. Anisotropy in East Antarctica, which is underlain by cold thick continental lithosphere, must be localized within the lithospheric upper mantle and reflect a relict tectonic fabric from past deformation events. Fast axes for the most remote stations in the Vostok Highlands are rotated by 20° and are parallel to splitting measurements at South Pole. These observations seem to delineate a distinct domain of lithospheric fabric, which may represent the extension of the Darling Mobile Belt or Pinjarra Orogen into the interior of East Antarctica. Seismic tomography imaging provides an opportunity to constrain mantle wedge processes associated with subduction, volatile transport, arc volcanism, and back-arc spreading. We investigate seismic velocity structure of the upper mantle across the Central Mariana subduction system using data from the 2003-2004 Mariana Subduction Factory Imaging Experiment. This 11-month experiment consisted of 20 broadband seismic stations deployed on islands and 58 semi-broadband ocean bottom seismographs deployed across the forearc, island arc, and back-arc spreading center. We determine Vp and Vp/Vs structure on a three dimensional grid using over 25,000 local travel time observations as well as over 2000 teleseismic arrival times determined by waveform cross correlation. The mantle wedge is characterized by a region of low velocity and high Vp/Vs beneath the forearc, an inclined zone of low velocity underlying the volcanic front, and a broad region of low velocity beneath the back-arc spreading center. The slow velocity anomalies are strongest at roughly 20-30 km depth in the forearc, 60-70 km depth beneath the volcanic arc, and 20-30 km beneath the back-arc spreading center. The slow velocity anomalies beneath the arc and back-arc appear as separate and distinct features in our images, with a small channel of connectivity occurring at approximately 75 km depth. The subducting Pacific plate is characterized by high seismic velocities. An exception occurs in the forearc beneath the big blue seamount and at the top of the slab at roughly 80 km depth where slow velocities are observed. We interpret the forearc anomalies to represent a region of large scale serpentinization of the mantle whereas the arc and back-arc anomalies represent regions of high temperature with a small amount of increased water content and/or melt and constrain the source regions in the mantle for arc and back-arc lavas. We investigate the double seismic zone (dsz) beneath the Central Mariana Arc using data from a land-sea array of 58 ocean bottom seismographs and 20 land seismographs deployed during 2003-2004. Nearly 600 well-recorded earthquakes were located using a P and S wave arrival times and a double difference relocation technique. The double seismic zone is well imaged from the forearc region to a depth of nearly 200 km. The width of the dsz is approximately 30 km at shallow depths and gradually becomes narrower with depth until it is now longer resolvable at depths greater than 180-200 km. Focal mechanisms determined from P and S wave polarities and amplitudes indicate that events from 70-150 km depth show along strike extension, whereas events greater than 150 km show downdip extension. Both the upper and lower zones of the dsz show similar focal mechanisms, demonstrating that the dsz is not caused by bending or unbending stresses. Along-strike tension may result from stresses related to the increasing curvature of the Mariana slab over the past few million years, as indicated by plate reconstructions. Downdip extension may result from slab pull forces consistent with the strong density anomaly of an old, cold plate relative to the surrounding mantle.

  18. A Receiver Function Study of Mantle Transition Zone Discontinuities beneath Egypt and Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Liu, K. H.; Mohamed, A. A.; Gao, S. S.; Elsheikh, A. A.; Yu, Y.; Fat-Helbary, R. E.

    2014-12-01

    The dramatic asymmetry in terms of surface elevation, Cenozoic volcanisms, and earthquake activity across the Red Sea is an enigmatic issue in global tectonics, partially due to the unavailability of broadband seismic data on the African plate adjacent to the Red Sea. Here we report the first results from a receiver function study of the mantle transition zone (MTZ) discontinuities using data from the Egyptian National Seismic Network, and compare the resulting depths of the 410 and 660 km discontinuities (d410 and d660) with those observed on the Arabian side. Results using more than 6000 P-to-S receiver functions recorded at 49 broadband seismic stations in Egypt, Saudi Arabia and adjacent areas show that when the IASP91 Earth model is used for time-to-depth conversion, the resulting depth of the discontinuities increases systematically toward the axis of the Afro-Arabian Dome (AAD) from both the west and east. Relative to the westernmost area, the maximum depression of the 410-km discontinuity is about 30 km, and that of the 660-km discontinuity is about 45 km. Highly correlated d410 and d660 depths suggest that the observed apparent depth variations are mostly caused by lateral velocity anomalies in the upper mantle, while the 15 km additional depression of the d660 relative to the d410 requires either a colder-than-normal MTZ or the presence of water in the MTZ. We tested several models involving upper mantle and MTZ velocity anomalies and undulations of the MTZ discontinuities due to temperature anomalies and water content, and found that the observed systematic variations can best be explained by a model involving a hydrated MTZ and an upper-mantle low-velocity zone beneath the AAD (Mohamed et al., 2014, doi: 10.1093/gji/ggu284). Models invoking one or more mantle plumes originated from the MTZ or the lower-mantle beneath the study area are not consistent with the observations.

  19. Deep structure of Pyrenees range (SW Europe) imaged by joint inversion of gravity and teleseismic delay time

    NASA Astrophysics Data System (ADS)

    Dufréchou, G.; Tiberi, C.; Martin, R.; Bonvalot, S.; Chevrot, S.; Seoane, L.

    2018-04-01

    We present a new model of the lithosphere and asthenosphere structure down to 300 km depth beneath the Pyrenees from the joint inversion of recent gravity and teleseismic data. Unlike previous studies, crustal correction were not applied on teleseismic data in order (i) to preserve the consistency between gravity data, which are mainly sensitive to the density structure of the crust.lithosphere, and travel time data, and (ii) to avoid the introduction of biases resulting from crustal reductions. The density model down to 100 km depth is preferentially used here to discuss the lithospheric structure of the Pyrenees, whereas the asthenospheric structure from 100 km to 300 km depth is discussed from our velocity model. The absence of a high density anomaly in our model between 30-100 km depth (except the Labourd density anomaly) in the northern part of the Pyrenees seems to preclude eclogitization of the subducted Iberian crust at the scale of the entire Pyrenean range. Local eclogitization of the deep Pyrenean crust beneath the western part of the Axial Zone (West of Andorra) associated with the positive Central density anomaly is proposed. The Pyrenean lithosphere in density and velocity models appears segmented from East to West. No clear relation between the along-strike segmentation and mapped major faults is visible in our models. The Pyrenees' lithosphere segments are associated to different seismicity pattern in the Pyrenees suggesting a possible relation between the deep structure of the Pyrenees and its seismicity in the upper crust. The concentration of earthquakes localized just straight up the Central density anomaly can result of the subsidence and/or delamination of an eclogitized Pyrenean deep root. The velocity model in the asthenosphere is similar to previous studies. The absence of a high-velocity anomaly in the upper mantle and transition zone (i.e. 125 to 225 km depth) seems to preclude the presence of a detached oceanic lithosphere beneath the European lithosphere.

  20. Mapping the sound field of an erupting submarine volcano using an acoustic glider.

    PubMed

    Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W

    2011-03-01

    An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds. © 2011 Acoustical Society of America

  1. 3-D Shear Velocity Structure of Costa Rica and Nicaragua from Teleseismic and Ambient Noise Rayleigh Wave Tomography

    NASA Astrophysics Data System (ADS)

    Harmon, N.; Salas, M.; Rychert, C. A.; Fischer, K. M.; Abers, G. A.

    2012-12-01

    The Costa Rica-Nicaragua subduction zone shows systematic along strike variation in arc chemistry, geology and seismic velocity and attenuation, presenting global extremes within a few hundred kilometres. In this study we use teleseismic and ambient noise derived surface wave tomography to produce a 3-D shear velocity model of the region. We use the 48 stations of the TUCAN array, and up to 96 events for the teleseismic Rayleigh wave inversion, and 20 months of continuous data for cross correlation to estimate Green's functions from ambient noise. In the shallow crust (0-15 km) we observe low shear velocities directly beneath the arc volcanos (< 3 km/s) with higher velocities in the back arc of Nicaragua. The anomalies are likely caused by heated crust, possibly intruded by magma. We observe > 40 km thick crust beneath the Costa Rican arc and the Nicaraguan Highlands, with thinned crust (~20 km) beneath the Nicaraguan Depression, with increasing crustal thickness in the back arc region. At mantle depths (55-120 km depth) we observe lower shear velocities (~2%) beneath the Nicaraguan arc and back arc relative to Costa Rica. This is well-correlated with a Vp/Vs anomaly beneath Nicaragua. The lower shear velocity beneath Nicaragua may indicate higher melt content in the mantle perhaps due to higher volatile flux from the slab. Finally, we observe a linear high velocity region at depths > 120 km parallel to the trench, which is consistent with the subducting slab.

  2. A S-wave Tomography Study for the First Order of Tectonic Unit Boundaries nearby Eastern Region of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Wu, Q.; Li, Y.; Zhang, R.

    2017-12-01

    The eastern region of Tibetan plateau (ERTP) and North-South seismic zone (NSSZ), which look like an N-S trending rectangle shape, consist of the Sichuan basin in its center, the Yungui plateau to the south, the Qinling mountain range and Ordos plateau range to the north. In the field of geosciences, Sichuan basin and Yungui plateau belong to Yangtze Craton while Ordos plateau belongs to western part of Sino-Korean Craton, and Qinling mountain is the suture zone where Sino-Korean Craton and Yangtze Craton collide between each other. To the west, ERTP is bounded by the Songpan-Ganzi terrane where a branch of the Paleotethys ocean, namely Songpan-Ganzi ocean, closed at late Triassic as a result of convergence between Qiangtang terrane, Sino-Korean Craton and Yangtze Craton. To the east, ERTP is bounded by South China block which was separated from Rodinia supercontinent by rifting processes during Neoproterozoic and was made up of two major crustal blocks-the Yangtze block in the north and the Cathysia block in the south. Tomography results using Chinaarray data from 2011 to 2015 show prominent heterogeneity beneath ERTP and NSSZ to 600 km depth. At depth range from 10 km to 100 km, the patterns of high-veloicty (high-V) and low-velocity (low-V) are well correlated with the tectonic features. The broad high-V anomalies mainly underlie Alashan, Ordos, Sichuan basin blocks, as well as part of the southern Chuandian fragment. In contrast, the broad low-V anomalies are approximately located beneath the Kunlun-Qilian fold zone, Songpan-Ganzi blocks, northern Chuandian fragment and southwestern part of Yunnan. At depth of 200 km and 300 km, the high-V zone beneath the southern Chuandian fragment slightly enlarges and is connected to Sichuan basin high-V zone. A weak striped low-V zone, located between Ordos and Sichuan basin blocks, is revealed in the Qinling fold zone. Both the amplitudes of high-V and low-V anomalies decrease to within -2% and 2%, comparing with that above the depth of 100 km. At the depth below 400 km, the wave speed patterns seem to be quite different from that above 300 km depth, and the big areas characterized by high-V or low-V anomalies disappear and change to (splits up) small regions. Moreover, an obvious mixture of high-V and low-V small zones is imaged clearly with respect to the increasing depth.

  3. Characterization of intrabasin faulting and deformation for earthquake hazards in southern Utah Valley, Utah, from high-resolution seismic imaging

    USGS Publications Warehouse

    Stephenson, William J.; Odum, Jack K.; Williams, Robert A.; McBride, John H.; Tomlinson, Iris

    2012-01-01

    We conducted active and passive seismic imaging investigations along a 5.6-km-long, east–west transect ending at the mapped trace of the Wasatch fault in southern Utah Valley. Using two-dimensional (2D) P-wave seismic reflection data, we imaged basin deformation and faulting to a depth of 1.4 km and developed a detailed interval velocity model for prestack depth migration and 2D ground-motion simulations. Passive-source microtremor data acquired at two sites along the seismic reflection transect resolve S-wave velocities of approximately 200 m/s at the surface to about 900 m/s at 160 m depth and confirm a substantial thickening of low-velocity material westward into the valley. From the P-wave reflection profile, we interpret shallow (100–600 m) bedrock deformation extending from the surface trace of the Wasatch fault to roughly 1.5 km west into the valley. The bedrock deformation is caused by multiple interpreted fault splays displacing fault blocks downward to the west of the range front. Further west in the valley, the P-wave data reveal subhorizontal horizons from approximately 90 to 900 m depth that vary in thickness and whose dip increases with depth eastward toward the Wasatch fault. Another inferred fault about 4 km west of the mapped Wasatch fault displaces horizons within the valley to as shallow as 100 m depth. The overall deformational pattern imaged in our data is consistent with the Wasatch fault migrating eastward through time and with the abandonment of earlier synextensional faults, as part of the evolution of an inferred 20-km-wide half-graben structure within Utah Valley. Finite-difference 2D modeling suggests the imaged subsurface basin geometry can cause fourfold variation in peak ground velocity over distances of 300 m.

  4. Parallel Fault Strands at 9-km Depth Resolved on the Imperial Fault, Southern California

    NASA Astrophysics Data System (ADS)

    Shearer, P. M.

    2001-12-01

    The Imperial Fault is one of the most active faults in California with several M>6 events during the 20th century and geodetic results suggesting that it currently carries almost 80% of the total plate motion between the Pacific and North American plates. We apply waveform cross-correlation to a group of ~1500 microearthquakes along the Imperial Fault and find that about 25% of the events form similar event clusters. Event relocation based on precise differential times among events in these clusters reveals multiple streaks of seismicity up to 5 km in length that are at a nearly constant depth of ~9 km but are spaced about 0.5 km apart in map view. These multiples are unlikely to be a location artifact because they are spaced more widely than the computed location errors and different streaks can be resolved within individual similar event clusters. The streaks are parallel to the mapped surface rupture of the 1979 Mw=6.5 Imperial Valley earthquake. No obvious temporal migration of the event locations is observed. Limited focal mechanism data for the events within the streaks are consistent with right-lateral slip on vertical fault planes. The seismicity not contained in similar event clusters cannot be located as precisely; our locations for these events scatter between 7 and 11 km depth, but it is possible that their true locations could be much more tightly clustered. The observed streaks have some similarities to those previously observed in northern California along the San Andreas and Hayward faults (e.g., Rubin et al., 1999; Waldhauser et al., 1999); however those streaks were imaged within a single fault plane rather than the multiple faults resolved on the Imperial Fault. The apparent constant depth of the Imperial streaks is similar to that seen in Hawaii at much shallower depth by Gillard et al. (1996). Geodetic results (e.g., Lyons et al., 2001) suggest that the Imperial Fault is currently slipping at 45 mm/yr below a locked portion that extends to ~10 km depth. We interpret our observed seismicity streaks as representing activity on multiple fault strands at transition depths between the locked shallow part of the Imperial Fault and the slipping portion at greater depths. It is likely that these strands extend into the aseismic region below, suggesting that the lower crustal shear zone is at least 2 km wide.

  5. Mantle transition zone beneath central-eastern Greenland: Possible evidence for a deep tectosphere from receiver functions

    NASA Astrophysics Data System (ADS)

    Kraft, Helene Anja; Vinnik, Lev; Thybo, Hans

    2018-03-01

    We investigate the mantle of central-eastern Greenland by using recordings with data from 24 local broad-band seismograph stations. We apply P wave receiver function technique and evaluate the difference in the arrival times of seismic phases that are formed by P to SV mode conversion at the 410-km and 660-km seismic discontinuities. These boundaries mark the top and bottom of the mantle transition zone (MTZ). The difference in the arrival time of the phases from the 410-km and 660-km discontinuities is sensitive to the thickness of the MTZ and relatively insensitive to volumetric velocity anomalies above the 410-km discontinuity. Near the east coast of Greenland in the region of the Skaergaard basalt intrusions we find two regions where the differential time is reduced by more than 2 s. The 410-km discontinuity in these regions is depressed by more than 20 km. The depression may be explained by a temperature elevation of 150 °C. We hypothesize that the basaltic intrusions and the temperature anomalies at a depth of 400 km are, at least partly, effects of the passage of Greenland over the Iceland hotspot at about 55 Ma. This explanation is consistent with the concept of tectosphere and implies that the upper mantle to a depth of 400 km translates coherently with the Greenland plate.

  6. Evidence of partial melting beneath a continental margin: case of Dhofar, in the Northeast Gulf of Aden (Sultanate of Oman)

    NASA Astrophysics Data System (ADS)

    Basuyau, C.; Tiberi, C.; Leroy, S.; Stuart, G.; Al-Lazki, A.; Al-Toubi, K.; Ebinger, C.

    2010-02-01

    Gravity data and P-wave teleseismic traveltime residuals from 29 temporary broad-band stations spread over the northern margin of the Gulf of Aden (Dhofar region, Oman) were used to image lithospheric structure. We apply a linear relationship between density and velocity to provide consistent density and velocity models from mid-crust down to about 250 km depth. The accuracy of the resulting models is investigated through a series of synthetic tests. The analysis of our resulting models shows: (1) crustal heterogeneities that match the main geological features at the surface; (2) the gravity edge effect and disparity in anomaly depth locations for layers at 20 and 50 km; (3) two low-velocity anomalies along the continuation of Socotra-Hadbeen and Alula-Fartak fracture zones between 60 and 200 km depth; and (4) evidence for partial melting (3-6 per cent) within these two negative anomalies. We discuss the presence of partial melting in terms of interaction between the Sheba ridge melts and its along-axis segmentation.

  7. Shallow drilling in the 'Bunte Breccia' impact deposits, Ries Crater, Germany

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Gall, H.; Huettner, R.; Oberbeck, V. R.

    1977-01-01

    The paper is a field report concerning a shallow core drilling program in the multicolored breccia deposits which constitute 90% of all the impact breccias beyond the outer rim of the Ries, a 26-km-diam impact crater. About 480 m of core was recovered from 11 locations with radial ranges between 16.5 and 35 km from the crater center. The cores consist of breccias, whose components are derived from the crater itself and the terrain outside the crater. The local components dominate the breccias at the larger ranges, and possibly constitute more than 90% of the breccia volume at the greatest distances investigated. The great depth of the Bunte Breccia (84 m at 27 km range), together with the preponderance of local components, necessitates an emplacement mechanism that ploughed up and mixed the crater surroundings to depths greater than 50 m.

  8. Anatomy of a metamorphic core complex: seismic refraction/wide-angle reflection profiling in southeastern California and western Arizona

    USGS Publications Warehouse

    McCarthy, J.; Larkin, S.P.; Fuis, G.S.; Simpson, R.W.; Howard, K.A.

    1991-01-01

    The metamorphic core complex belt in southeastern California and western Arizona is a NW-SE trending zone of unusually large Tertiary extension and uplift. Midcrustal rocks exposed in this belt raise questions about the crustal thickness, crustal structure, and the tectonic evolution of the region. Three seismic refraction/wide-angle reflection profiles were collected to address these issues. The results presented here, which focus on the Whipple and Buckskin-Rawhide mountains, yield a consistent three-dimensiional image of this part of the metamorphic core complex belt. The final model consists of a thin veneer (<2 km) of upper plate and fractured lower plate rocks (1.5-5.5 km s-1) overlying a fairly homogeneous basement (~6.0 km s-1) and a localized high-velocity (6.4 km s -1) body situated beneath the western Whipple Mountains. A prominent midcrustal reflection is identified beneath the Whipple and Buckskin Rawhide mountains between 10 and 20km depth. -from Authors

  9. Crustal structure between Lake Mead, Nevada, and Mono Lake, California

    USGS Publications Warehouse

    Johnson, Lane R.

    1964-01-01

    Interpretation of a reversed seismic-refraction profile between Lake Mead, Nevada, and Mono Lake, California, indicates velocities of 6.15 km/sec for the upper layer of the crust, 7.10 km/sec for an intermediate layer, and 7.80 km/sec for the uppermost mantle. Phases interpreted to be reflections from the top of the intermediate layer and the Mohorovicic discontinuity were used with the refraction data to calculate depths. The depth to the Moho increases from about 30 km near Lake Mead to about 40 km near Mono Lake. Variations in arrival times provide evidence for fairly sharp flexures in the Moho. Offsets in the Moho of 4 km at one point and 2 1/2 km at another correspond to large faults at the surface, and it is suggested that fracture zones in the upper crust may displace the Moho and extend into the upper mantle. The phase P appears to be an extension of the reflection from the top of the intermediate layer beyond the critical angle. Bouguer gravity, computed for the seismic model of the crust, is in good agreement with the measured Bouguer gravity. Thus a model of the crustal structure is presented which is consistent with three semi-independent sources of geophysical data: seismic-refraction, seismic-reflection, and gravity.

  10. Numerical and Observational Investigations of Long-Lived Mcs-Induced Severe Surface Wind Events: the Derecho

    NASA Astrophysics Data System (ADS)

    Schmidt, Jerome Michael

    This study addresses the production of sustained, straight-line, severe surface winds associated with mesoscale convective systems (MCSs) of extratropical origin otherwise known as derechos. The physical processes which govern the observed derecho characteristics are identified and their possible forcing mechanisms are determined. Detailed observations of two derechos are presented along with simulations using the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS). The observations revealed a derecho environment characterized by strong vertical wind shear through the depth of the troposphere and large values of convective available potential energy (CAPE). The thermodynamic environment of the troposphere in each case had a distinct three-layer structure consisting of: (i) a surface-based stable layer of 1-to-2 km in depth, (ii) an elevated well -mixed layer of 2-4 km in depth, and (iii) an upper tropospheric layer of intermediate stability that extended to the tropopause. Two primary sets of simulations were performed to assess the impact of the observed environmental profiles on the derecho structure, propagation, and longevity. The first set consisted of nested-grid regional-scale simulations initialized from the standard NMC analyses on a domain having relatively coarse horizontal resolution (75 km). The second set of simulations consisted of two and three-dimensional experiments initialized in a horizontally homogeneous environment having a relatively fine horizontal resolution (2 km) and explicit microphysics. The results from these experiments indicate the importance of convectively -induced gravity waves on the MCS structure, propagation, longevity, and severe surface wind development. The sensitivity of the simulated convection and gravity waves to variations in the vertical wind shear and moisture profiles are described. Detailed Doppler radar analyses and 3-D simulations of a severe, bow echo squall line are presented which reveal the unique 3-D circulation features which accompany these mesoscale convective systems. We illustrate how the mesoscale and convective-scale flow fields within the bow echo establish the severe surface wind maximum. (Abstract shortened with permission of author.).

  11. Results From a Borehole Seismometer Array I: Microseismicity at a Productive Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Shalev, E.; Malin, P.; Kaleikini, M.; Dahl, G.

    2008-12-01

    Borehole seismometer arrays have proven successful in both the exploration and monitoring of geothermal fields. Because the seismometers are located at depth, they are isolated from human noise and record microearthquakes with clearly identifiable seismic phases that can be used for event location. Further analysis of these events can be used to resolve earthquake clouds into identifiable faults. The local fault and dike structures in Puna, in southeastern Hawaii, are of interest both in terms of electricity production and volcanic hazard monitoring. The geothermal power plant at Puna has a 30MW capacity and is built on a section of the Kilauea Lower East Rift Zone where lava flows erupted as recently as 1955. In order to improve seismic monitoring in this area, we installed eight 3-component borehole seismometers. The instrument depths range from 24 to 210 m (80 to 690 ft); the shallower instruments have 2 Hz geophones and the deepest have 4.5 Hz geophones. The seismometers are located at the vertices of two rhombs, 2 km wide x 4 km long and 4 km wide x 8 km long, both centered at the power plant. Since June 2006, we have located >4500 earthquakes; P- and S-wave arrivals were hand picked and events located using Hypoinverse-2000. Most of the earthquakes occurred at depths between 2.5 and 3 km. The large majority of events were M-0.5 to M0.5; the Gutenberg-Richter b-value is 1.4, which is consistent with microearthquake swarms. Frequency analysis indicates a 7-day periodicity; a Schuster diagram confirms increased seismicity on a weekly cycle. The location, depth, and period of the microearthquakes suggest that power plant activity affects local seismicity. Southwest of the geothermal facility, up-rift towards the Kilauea summit, earthquakes were progressively deeper at greater distances. Depths also increased towards the south, which is consistent with the eastern extension of the south-dipping, east-striking Hilina fault system. To the northeast, down-rift of the array, there is a sudden cessation of seismicity not accounted for by known geologic structures. This borehole seismometer network is providing essential data for the detailed characterization of the Kilauea Lower East Rift Zone and the Puna geothermal field.

  12. Fine-scale crustal structure of the Azores Islands from teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Spieker, K.; Rondenay, S.; Ramalho, R. S.; Thomas, C.; Helffrich, G. R.

    2016-12-01

    The Azores plateau is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, most of which lie east of the MAR. Various methods including seismic reflection, gravity, and passive seismic imaging have been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 km and 30 km, but until now models of the fine-scale crustal structure have been lacking. A comparison of the crustal structure beneath the islands that lie west and east of the MAR might give further constraints on the evolution of the islands. For example, geochemical studies carried out across the region predict the existence of volcanic interfaces that should be detected seismically within the shallow crust of some of the islands. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. We query our resulting receiver functions for signals associated with the volcanic edifice, the crust-mantle boundary, and potential underplated layers beneath the various islands. The islands west of the MAR have a crustal structure comprising two discontinuities - an upper one at 1-2 km depth marking the base of the volcanic edifice, and a lower one at 10 km depth that we interpret as crust-mantle boundary. The islands east of the MAR can be subdivided into two groups. The central islands that are closer to the MAR exhibit a crustal structure similar to that of the western islands, with a volcanic edifice reaching a depth of 2 km and an average crust-mantle boundary at around 12 km depth. The easternmost islands, located on the oldest lithosphere, exhibit a more complex crustal structure with evidence for a mid-crustal interface and an underplated layer, yielding an effective crust-mantle boundary at >15 km depth. The difference in structure between proximal and distal islands might be related to the age of the plate at the time of emplacement of the islands, with an older plate providing conditions that are more favourable for basaltic underplating.

  13. Continental Delamination of the Romanian Eastern Carpathians: A Lower Crustal Origin of the Vrancea Seismogenic Zone?

    NASA Astrophysics Data System (ADS)

    Fillerup, M. A.; Knapp, J. H.; Knapp, C. C.

    2006-12-01

    Two lithosphere-scale, explosive-source seismic reflection profiles (DRACULA I and DACIA PLAN), inclusive of the hinterland and foreland of the Romanian Eastern Carpathians, provide new evidence for the geodynamic origin of the Vrancea Seismogenic Zone (VSZ) of Romania. These data, collected to evaluate existing subduction-related and delamination geodynamic models proposed to explain the intermediate depth seismicity associated with the Vrancea zone, show evidence of continental crust extending continuously above the VSZ from the Carpathian foreland well into the Transylvanian hinterland. Crustal thicknesses inferred from these data based on reflectivity show a 40-45 km crust below the Transylvanian basin abruptly shallowing to 32 km for ~120 km beneath the fold and thrust belt of the main Carpathian orogen and thickening again to 38-42 km crust in the foreland. This thinned crust outlines an apparent lower crustal sub-orogenic cavity that is overlain by a relatively subhorizontal reflective fabric absent of dipping reflectivity. The northwest dipping Vrancea seismogenic body, a 30x70x200 km volume of intermediate depth earthquakes, is located on the eastern flank of the apparently thin crust beneath the Carpathian orogen. Amplitude decay curves show penetration of seismic energy to a depth of ~60 km in the vicinity of the sub-orogenic cavity, implying this non- reflective zone is a geologic signature. Rotation of the VSZ about a hinge beneath the foreland basin at a depth of ~50 km restores to fill the lower-crustal cavity under the orogen, suggesting the VSZ represents a portion of brittle lower crust delaminated during continental lithospheric delamination which may have caused regional uplift of the Transylvanian basin. The lack of through-going, dipping crustal-scale boundaries along this composite lithospheric transect would appear to preclude subduction as an explanation for seismicity in the VSZ, consistent with abundant surface geologic data. These seismic data advocate possible lower crustal continental lithospheric delamination as a mechanism for generating intermediate depth seismicity in the absence of a plate boundary.

  14. Oceanic Volcanism from the Low-Velocity Zone - Without Mantle Plumes (Invited)

    NASA Astrophysics Data System (ADS)

    Presnall, D. C.; Gudfinnsson, G. H.

    2010-12-01

    The existence of hot mantle plumes is addressed by using a combination of regional and global shear-wave data, major-element compositions of Hawaiian and MORB glasses (including Iceland), and phase relations for natural lherzolite and the systems CaO-MgO-Al2O3-SiO2-CO2 and CaO-MgO-Al2O3-SiO2-Na2O-FeO. At the East Pacific Rise, the depth of minimum shear wave velocity (Vsv), which we interpret to be the depth of maximum melting, occurs at ~65 km (Webb & Forsyth, 1998, Science, 280, 1229; Conder et al., 2002, JGR, 107, 2344)). This depth increases with lithospheric age and stabilizes at ~150 km (~5 GPa) for ages > ~75 my (Maggi et al., 2006, GJI, 166, 1384). Variations in shear wave anisotropy follow the same pattern (Ekström, 2000, Geophys. Mon. 121, 239) but with a slightly shallower depth of ~130 km for the maximum shear wave anisotropy of the mature Pacific. For a given volcano, the classical Hawaiian sequence of volcanism is early alkalic lavas extracted at ~3 GPa, 1350°C (Sisson et al., 2009, CMP, 158, 803), then voluminous tholeiitic lavas at ~ 4-5 GPa, 1450-1560°C (~150 km), and final alkalic lavas that contain, on Oahu, nanodiamond-bearing xenoliths (Wirth & Rocholl, 2003, EPSL, 211, 357; Frezotti & Peccerillo, 2007, EPSL, 262, 273) and require melt extraction at a pressure slightly > 6 GPa. This progressive increase in P-T conditions of the Hawaiian source matches the equilibrium magma-stratigraphy vs depth indicated by phase relations along a mature-ocean geotherm. This consistency indicates that Hawaiian volcanism occurs by progressively deeper extraction of magmas from a mature LVZ by fracturing of the overlying LID. No decompression melting or enhanced temperature is indicated. At spreading ridges, including Iceland, the absence of glass compositions that define olivine-controlled crystallization trends and the phase equilibrium constraint that all MORBs are extracted at ~1250-1280°C, 1.2-1.5 GPa (Presnall & Gudfinnsson, 2008, JPet., 49, 615) are in excellent agreement with the seismic observation of minimum shear-wave velocity and maximum shear-wave anisotropy (maximum melting) beneath ridges at ~ 65 km. Thus, all MORBs, including those at Iceland, are extracted within the thermal boundary layer along a perturbed geotherm at temperatures cooler than magma-extraction temperatures at Hawaii. This requires a steepened dT/dP slope of the conductive portion of the geotherm at ridges, which is consistent with oceanic heat-flow data vs crustal age. Mantle temperatures for the strongest plume candidate, Hawaii, are consistent with temperatures of oceanic mantle elsewhere of a corresponding age. Temperatures of magma-extraction along all oceanic ridges are far below temperatures consistent with hot mantle plumes.

  15. Hemispheric variation of the depth dependent attenuation and velocity structures of the top half of the inner core determined from global seismic array data

    NASA Astrophysics Data System (ADS)

    Iritani, R.; Takeuchi, N.; Kawakatsu, H.

    2012-12-01

    Previous studies suggested the existence of the hemispheric heterogeneities in the top 100 km of the inner core [eg. Wen and Niu, 2002]. Although depth profiles of the attenuation and velocity of the inner core provide important clues to constrain the physical mechanism and the growing process of the inner core, they have not yet been well constrained primarily due to difficulties in analyzing core phases with phase overlapping. We have previously developed a waveform inversion method to be applicable to such complex waveforms [Iritani et al., 2010, GRL] and revealed the depth profile of the attenuation beneath North America [Iritani et al., 2011, AGU]. In this study, we applied our method to a large number of broadband seismic arrays to compare depth profiles of the top half of the inner core in various regions. The data set consists of about 8,500 traces from Japanese F-net, NECESSArray (a large temporary broadband seismic array installed in northeastern China), permanent European stations, USArray and PASSCAL arrays deployed in a number of places in the world. Regions of the inner core sampled by core phases are beneath eastern Pacific, North America and Africa in the western hemisphere (WH), and beneath eastern and central Asia in the eastern hemisphere (EH). The obtained attenuation models for the WH show the gradually increase from ICB and have a peak around a 200 km depth. In contrast, the models for the EH have a high attenuation zone at the top 150 km layer. However, almost all models show common features below a depth of 250 km where the attenuation starts to gradually decrease with depth. It appears that hemispheric heterogeneities of the inner core are confined to the top 150 - 250 km of the inner core. Velocity models obtained by using various core phase data (PKP(DF), PKP(BC), PKP(CD) and PKP(Cdiff)) will be also presented to infer the origin of hemispherical heterogeneities and their relationship to the growing process of the inner core.

  16. The crustal structure of the Cocos ridge off Costa Rica

    NASA Astrophysics Data System (ADS)

    Walther, Christian H. E.

    2003-03-01

    The submarine Cocos ridge in the northwestern Panamá basin, a bathymetric feature more than 1000-km long and 250-500 km broad, is about 2 km shallower than the adjacent basin. It is generally interpreted as the trace of the Galápagos hot spot. Two 127- and 260-km long seismic wide-angle sections were recorded along and across this ridge, offshore the Osa peninsula, Costa Rica. Crustal thickening is seen everywhere along the sections. On the northwestern outer ridge flank, increased thickness is exclusively attributed to the upper crust and expressed by 2-km thick flow basalts. The Quepos plateau caps the upper crust in this area. Toward the center of the Cocos ridge, the Moho deepens from 11-12 to 21 km depth and crustal thickening is almost entirely attributed to the lower crust which makes up 80% of the crust and is three times the thickness of normal oceanic lower crust. It is homogeneously structured and the velocities which range from 6.5 km/s at the top to 7.35 km/s at the base are comparable to normal lower crust under these depth conditions and suggest no differences to a gabbroic rock composition. Similarities to the crustal velocity structure of Iceland, central Kerguelen plateau, and Broken ridge are consistent with a formation of this 13-15 Ma old Cocos ridge segment by excessive magmatism in a near-plate boundary setting.

  17. Thermal and unroofing history of a thick, tilted Basin-and-Range crustal section in the Tortilla Mountains, Arizona

    USGS Publications Warehouse

    Howard, K.A.; Foster, D.A.

    1996-01-01

    We estimate here a geothermal gradient of only 17 ?? 5??C km-1 for the tilted Grayback fault block in southeastern Arizona when extension began ???25 Ma. This gradient is lower than preextension gradients estimated elsewhere in the Basin and Range, is only about 50% of typical gradients in the Basin and Range today, and needs to be accounted for in models of continental extension. The Grayback block exposes a 12-km-thick crustal section of Proterozoic and Cretaceous granitoids, which was tilted 90?? during extension between 25 and 15 Ma. Zircon fission-track ages decrease structurally downward (westward) across the block and were all within a zone of partial track annealing prior to tilting and quenching. The zircon age gradient suggests that the 220??-240??C isotherm migrated downward 5-6 km during Paleogene erosion and regional cooling. Apatite fission-track ages decrease westward from ???83 Ma in the structurally highest crystalline rocks to ???24 Ma at ???6-km paleodepth and then to ???15 Ma another 6 km farther west. Track-length analysis confirms that apatites above the break in slope in age at ???5.7-km paleodepth resided in a zone of partial annealing prior to tilting, and deeper apatites record rapid cooling upon tilting and unroofing beginning ???25 Ma. At that time the 110 ?? 10??C isotherm determined by the depth at which tracks in apatite were fully erased was at a basement paleodepth of ???5.7 km, and the 220 ?? 30??C isotherm as estimated from zircon data resided at a pretilting basement depth of ???12.15 km. From consistent values of paleogeothermal gradient for two depth intervals we estimate the pretilt gradient was 17 ?? 5??C km-1. From 25 to 15 Ma the rotating Grayback block cooled rapidly as higher, westward moving blocks unroofed it tectonically at a rate of ???1 km m.y.-1.

  18. Ocean Nowcast/Forecast Systems for Naval Undersea Capability

    DTIC Science & Technology

    2007-01-01

    Tonkin to the Taiwan Strait is consistently nearly 70 m deep, averaging 150 km in width; the central deep basin is 1900 km along its major axis...shaped basin in the center, and numerous reef islands 5 and underwater plateaus scattered throughout. The shelf that extends from the Gulf of...connection between southeastern Asia, Malaysia, Sumatra , Java, and Borneo and reaches 100 m depth in the middle; the center of the Gulf of Thailand is about

  19. Receiver Functions Imaging of the Moho and LAB in the Southern Caribbean plate boundary and Venezuela

    NASA Astrophysics Data System (ADS)

    Masy, J.; Levander, A.; Niu, F.

    2011-12-01

    We have made teleseismic Ps and Sp receiver functions from data recorded from 2003 to 2009 by the permanent national seismic network of Venezuela, the BOLIVAR (Broadband Onshore-offshore Lithospheric Investigation of Venezuela and the Antilles arc Region) and WAVE (Western Array for Venezuela) experiments. The receiver functions show rapid variations in Moho and lithosphere-asthenosphere boundary (LAB) depths both across and along the southern Caribbean plate boundary region. We used a total of 69 events with Mw > 6 occurring at epicentral distances from 30° to 90° for the Ps receiver functions, and 43 events with Mw > 5.7 from 55° to 85° to make Sp receiver functions. For CCP stacking we constructed a 3D velocity model from numerous active source profiles (Schmitz et al., 2001; Bezada et al., 2007; Clark et al., 2008; Guedez, 2008; Magnani et al., 2009), from finite-frequency P wave upper mantle tomography model of Bezada et al., (2010) and the Rayleigh wave tomography model of Miller et al., (2009). The Moho ranges in depth from ~25 km beneath the Caribbean Large Igneous Provinces to ~55 km beneath the Mérida Andes in western Venezuela. These results are consistent with previous receiver functions studies (Niu et al., 2007) and the available active source profiles. Beneath the Maracaibo Block in northwestern Venezuela, we observe a strong positive signal at 40 to 60 km depth dipping ~6° towards the continent. We interpret this as the Moho of the Caribbean slab subducting beneath northernmost South America from the west. Beneath northern Colombia and northwestern Venezuela the top of this slab has been previously inferred from intermediate depth seismicity (Malavé and Suarez, 1995), which indicates a slab dipping between 20° - 30° beneath Lake Maracaibo. Our results could indicate that the slab is tearing beneath Lake Maracaibo as suggested previously by Masy et al. (2011). The deeper (> 100 km depth) part of the slab has been imaged using P-wave tomography (Bezada et al, 2010). Like others we attribute the uplift of the Mérida Andes to flat Caribbean slab subduction (for example Kellogg and Bonini, 1982). In central Venezuela beneath the Cordillera de la Costa we observe a positive signal shallower than the Moho at <30 km depth beneath the entire range. We interpret this as a detachment surface beneath Caribbean & arc terranes thrust onto the SA margin (Bezada et al., 2010). The lithosphere-asthenosphere boundary (LAB) beneath the Mérida Andes is shallow, ~65km depth, and parallels the range. In the plate boundary region under the Cordillera de la Costa the lithosphere is also thin, ~65km, beneath the Cariaco basin the lithosphere thickens to 85 km. In the far east under Serranía del Interior the lithosphere is ~75 km. Cratonic lithosphere thickness varies from 85 to 100 km.

  20. Hot Alps (Invited)

    NASA Astrophysics Data System (ADS)

    Speranza, F.; Minelli, L.; Pignatelli, A.; Gilardi, M.

    2013-12-01

    Although it is frequently assumed that crust of Alpine orogens is hot due to the occurrence of thick and young (hence radiogenic) crust, evidence on the thermal ranking of orogens is contradictory. Heat flow measurements from shallow wells (depth ≤ 1 km) in the Alps yield a relatively cold thermal regime of 50-80 mW/m2, but data are likely biased by meteoric cold-water circulation. Here we report on the spectral analysis of the aeromagnetic residuals of northern Italy to derive the Curie point depth (CPD), assumed to represent the 600°C isotherm depth. Airborne magnetics were acquired on whole Italy during the 1970s by the national oil company AGIP (now Eni). Data were gathered by several surveys carried out at 1000-13,300 feet (300-4000 m) altitude, with flight line spacing of 2-10 km. Surveys of the Alps and Po Plain (northern Italy) were obtained both with a line spacing of 5 km (and 5 km tie lines), at an altitude of 4000-5000 and 13,300 feet, respectively. To evaluate CPDs we used the centroid method (routinely adopted in recent CPD studies on East Asia and central-southern Europe) on 72 square windows of 100-110 km edge, with a 50% degree of superposition. CPDs vary between 16 and 38 km (22 km on average) in the Po Plain, located south of the Alps and representing the Adriatic-African foreland area. Conversely, the Alps yield very shallow CPDs, ranging between 6 and 15 km (10 km on average). CPDs fall systematically above local Moho depths, implying that magnetic source bottoms documented in this study do not represent a lithological boundary over non-magnetic peridotitic mantle, but can be safely associated with CPDs and the 600°C isotherm. CPDs from the Po Plain are in rough agreement with reported heat flow values of 25-60 mW/m2, and imply and average thermal conductivity (k) of the Po Plain crust of 1.5 W/m°K, at the lower bound of k values measured and inferred for the crust. Conversely, the average 10 km CPD documented in the Alps translates into heat flow values ranging from 90 to 150 mW/m2, if k values of 1.5 to 2.5 W/m°K (respectively) are assumed (the latter is average k value of the crust assumed for other world provinces, such as California). A ~150 mW/m2 heat flow value turns out to be similar to that observed in Tuscany and the Tyrrhenian Sea back-arc basin, as well as to values documented for active rifts and young oceans. Di Stefano et al. (2009) documented P wave velocities around 8 km/sec in the upper mantle of the Alps, suggesting the lack of shallow asthenosphere. Thus high heat flow of the Alps must be produced by radiogenic crust, instead of asthenospheric upwelling. A 600°C isotherm at ~10 km depth implies widespread melting at mid-lower crustal depths, considering the 60 km crustal thickness of the Alps. This is consistent with the very low P-wave velocities observed at 20-40 km depth beneath the chain by Di Stefano et al. (2009). When extrapolated to other orogens of the geological past, the thermal regime of the Alps may explain the extensive occurrence of intrusives exposed in eroded pre-Alpine orogens and cratons. Reference: Di Stefano, R., et al. (2009), J. Geophys. Res., 114, doi:10.1029/2008JB005641.

  1. Crustal Structure and Evidence for a Hales Discontinuity Beneath the Seychelles Microcontinent

    NASA Astrophysics Data System (ADS)

    Hammond, J.; Kendall, J.; Collier, J.; Rumpker, G.; Pilidou, S.; Stuart, G.

    2005-12-01

    It is well known that the Seychelles Plateau consists of a sliver of continental crust cast adrift during the formation of the Indian ocean. However the extent of the continental crust beneath the microcontinent and the cause of its isolation is poorly understood. Here we use receiver functions, interstation phase velocities obtained from surface waves, and wide angle reflections from controlled-source seismic data to investigate the lithospheric structure of the region. The H-κ method is used to calculate depths and Poison's ratio at 26 temporary stations distributed across the plateau and Mascarene basin. The Vp/V_s ratios and depths at stations on the plateau are typical of continental crust. To explain the major features of the RFs a simple two layer crust is proposed for the island of Mahé. The islands of Silhouette and Nord display a more complex crust consistent with the islands volcanic history. Praslin and its satellite islands display a simpler crust but display signs of a deeper discontinuity (~40 km) beneath the Moho which is possible evidence for underplating associated with Deccan age volcanism. Bird Island (Moho~18 km) and Desroche (Moho~23 km) show signs of being situated on islands above the transition from continental to oceanic crust. Alphonse, Coetivy and Platte all show receiver functions expected for oceanic crust, with Moho depths ~10 km. Inter-station phase velocity inversions from surface waves support these results with paths sampling the plateau region showing dispersion curves expected for continental crust, and those travelling between stations off the plateau showing evidence for oceanic crust. A deeper arrival is observed on the plateau stations at ~7 s or ~65 km. This feature is also seen in wide-angle controlled source work and the inter-station phase velocity inversions. Candidate interpretion for this Hales discontinuity include a Precambrian suture assoicated with shallow subduction or a shear-zone assoicated with deformation during breakup. Either feature may have influenced plume-related breakup in the region.

  2. Mapping the megathrust beneath the northern Gulf of Alaska using wide-angle seismic reflection/refraction profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brocher, T.M.; Fuis, G.S.; Fisher, M.A.

    1993-04-01

    In the northern Gulf of Alaska and Prince William Sound, wide-angle seismic reflection/refraction profiling, earthquake studies, and laboratory measurements of physical properties are used to determine the geometry of the Prince William and Yakutat terranes, and the subducting Pacific plate. In this complex region, the Yakutat terrane is underthrust beneath the Prince William terrane, and both terranes are interpreted to be underlain by the Pacific plate. Wide-angle seismic reflection/refraction profiles recorded along 5 seismic lines are used to unravel this terrane geometry. Modeled velocities in the upper crust of the Prince William terrane (to 18-km depth) agree closely with laboratorymore » velocity measurements of Orca Group phyllites and quartzofeldspathic graywackes (the chief components of the Prince William terrane) to hydrostatic pressures as high as 600 MPa (6 KBAR). An interpretation consistent with these data extends the Prince William terrane to at least 18-km depth. A landward dipping reflection at depths of 16--24 km is interpreted as the base of the Prince William terrane. This reflector corresponds to the top of the Wadati-Benioff zone seismicity and is interpreted as the megathrust. Beneath this reflector is a 6.9-km/s refractor, that is strongly reflective and magnetic, and is interpreted to be gabbro in Eocene age oceanic crust of the underthrust Yakutat terrane. Both wide-angle seismic and magnetic anomaly data indicate that the Yakutat terrane has been underthrust beneath the Prince William terrane for at least a few hundred kilometers. Wide-angle seismic data are consistent with a 9 to 10[degree] landward dip of the subducting Pacific plate, distinctly different from the inferred average 3 to 4[degree] dip of the overlying 6.9-km/s refractor and Wadati-Benioff seismic zone. The preferred interpretation of the geophysical data is that one composite plate, composed of the Pacific and Yakutat plates, is subducting beneath southern Alaska.« less

  3. Systematic Heat Flow Measurements Across the Wagner Basin, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, F.; Negrete-Aranda, R.; Harris, R. N.; Contreras, J.; Sclater, J. G.; Gonzalez-Fernandez, A.

    2017-12-01

    A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. Seismic reflection profiles show sediment in excess of 5 s two-way travel time, implying a sediment thickness of > 7 km. The heat flow profile is 40 km long, has a nominal measurement spacing of 1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Most measurements are of good quality in that the probe fully penetrated sediments and measurements were stable enough to invert for heat flow and thermal properties. We have estimated corrections for environmental perturbations due to changes in bottom water temperature and sedimentation. The mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220±60, 99±14, 1058±519 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Based on an observed fault depth of 1.75 km we estimated the maximum Darcy velocities through the western and eastern flanks as 3 and 10 cm yr-1, respectively. Heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.

  4. Effects of Elastoplastic Material Properties on Shallow Fault Slip and Surface Displacement Fields

    NASA Astrophysics Data System (ADS)

    Nevitt, J. M.; Brooks, B. A.; Minson, S. E.; Lockner, D. A.; Moore, D. E.; Ericksen, T. L.; Hudnut, K. W.; Glennie, C. L.; Madugo, C. M.

    2016-12-01

    A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. Seismic reflection profiles show sediment in excess of 5 s two-way travel time, implying a sediment thickness of > 7 km. The heat flow profile is 40 km long, has a nominal measurement spacing of 1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Most measurements are of good quality in that the probe fully penetrated sediments and measurements were stable enough to invert for heat flow and thermal properties. We have estimated corrections for environmental perturbations due to changes in bottom water temperature and sedimentation. The mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220±60, 99±14, 1058±519 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Based on an observed fault depth of 1.75 km we estimated the maximum Darcy velocities through the western and eastern flanks as 3 and 10 cm yr-1, respectively. Heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.

  5. Seismic Discontinuities beneath the Southwestern United States from S Receiver Functions

    NASA Astrophysics Data System (ADS)

    Akanbi, O. E.; Li, A.

    2015-12-01

    S- Receiver functions along the Colorado Plateau-Rio Grande Rift-Great Plains Transect known as La RISTRA in the southwestern United States have been utilized to map the Moho and lithosphere-asthenosphere boundary (LAB) beneath this tectonically active region. The receiver functions were stacked according to ray piercing points with moveout corrections in order to improve the signal-to-noise ratio of converted S-to-P phases. The Moho appears at 30-40 km beneath the Rio Grande Rift (RGR) and deepens to 35-45 km beneath the Great Plains (GP) and the Colorado Plateau (CP). A sharp discontinuity is observed along the profile with the average depth of 80 km beneath the RGR, 100 km beneath the GP, and 160 km beneath the CP. This discontinuity is consistent with the top of a low velocity zone in a shear wave model beneath the array and is interpreted as the LAB. Strong phases imaged at ~90 km beneath the CP and GP could be a combination of side-lobes of the Moho conversions and primary Sp phases from a mid-lithosphere discontinuity (MLD). The relatively shallow Moho and LAB beneath the Rio Grande Rift is indicative of lithosphere extension and asthenosphere upwarp. In addition, the LAB shows depth-step depressions at the RGR-CP and RGR-GP boundaries, providing evidence for mantle downwelling. The variation of the lithospheric depth across the RISTRA array supports that edge-driven, small-scale mantle convection is largely responsible for the recent extension and uplift in the Rio Grande Rift and the Colorado Plateau.

  6. Imaging of Fine Shallow Structure Beneath the Longmenshan Fault Zone from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Campillo, M.; Chen, J.; Liu, Q.

    2016-12-01

    Short period seismic ambient noise group velocity dispersion curve, obtained from cross correlation of vertical component of 57 stations around the Longmenshan fault zone deployed after the Wenchuan earthquake and continuously observed for 1 year, is used to inverse the S wave velocity structure of the top 25 km of the central to northern part of Longmenshan fault zone. A iterative correction method based on 3-D simulation is proposed to reduce the influence of elevation. After 7 times of correction, a fine shllow S-wave velocity structure comes out. The results show that (1) Velocity structure above 10 km keeps good consistency with the surface fault system around Longmenshan, and controls the deep extension features of most major faults. Below the depth of 15 km, the velocity structure presents cross tectonic frame work along both Longmenshan and Minshan. The complex structure may have affected the rupture process of the Wenchuan earthquake. (2) The depth velocity structure profiles give good constraint for the deep geometry of main faults. The characteristics of the high angle, listric, reverse structure of the Longmenshan faults is further confirmed by our results.(3) At southern part of the study area, low-velocity structure is found at about 20km depth beneath the Pengguan massif, which is related to the low velocity layer in the middle crust of Songpan-Ganzi block. This may be an evidence for the existence of brittle-ductile transition zone in southern part of the rupture zone of the Wenchuan earthquake at the depth around 22km. Our results show the great potential of short period ambient noise tomography with data from densepassive seismic array in the study of fine velocity structure and fault zone imaging.

  7. P wave velocity of Proterozoic upper mantle beneath central and southern Asia

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew A.; Vogfjord, Kristin S.; Langston, Charles A.

    1996-05-01

    P wave velocity structure of Proterozoic upper mantle beneath central and southern Africa was investigated by forward modeling of Pnl waveforms from four moderate size earthquakes. The source-receiver path of one event crosses central Africa and lies outside the African superswell while the source-receiver paths for the other events cross Proterozoic lithosphere within southern Africa, inside the African superswell. Three observables (Pn waveshape, PL-Pn time, and Pn/PL amplitude ratio) from the Pnl waveform were used to constrain upper mantle velocity models in a grid search procedure. For central Africa, synthetic seismograms were computed for 5880 upper mantle models using the generalized ray method and wavenumber integration; synthetic seismograms for 216 models were computed for southern Africa. Successful models were taken as those whose synthetic seismograms had similar waveshapes to the observed waveforms, as well as PL-Pn times within 3 s of the observed times and Pn/PL amplitude ratios within 30% of the observed ratio. Successful models for central Africa yield a range of uppermost mantle velocity between 7.9 and 8.3 km s-1, velocities between 8.3 and 8.5 km s-1 at a depth of 200 km, and velocity gradients that are constant or slightly positive. For southern Africa, successful models yield uppermost mantle velocities between 8.1 and 8.3 km s-1, velocities between 7.9 and 8.4 km s-1 at a depth of 130 km, and velocity gradients between -0.001 and 0.001 s-1. Because velocity gradients are controlled strongly by structure at the bottoming depths for Pn waves, it is not easy to compare the velocity gradients obtained for central and southern Africa. For central Africa, Pn waves turn at depths of about 150-200 km, whereas for southern Africa they bottom at ˜100-150 km depth. With regard to the origin of the African superswell, our results do not have sufficient resolution to test hypotheses that invoke simple lithospheric reheating. However, our models are not consistent with explanations for the African superswell invoking extensive amounts of lithospheric thinning. If extensive lithospheric thinning had occurred beneath southern Africa, as suggested previously, then upper mantle P wave velocities beneath southern Africa would likely be lower than those in our models.

  8. Testing a New Method for Imaging Crustal Magma Bodies: A Pilot Study at Newberry Volcano, Central OR

    NASA Astrophysics Data System (ADS)

    Beachly, M. W.; Hooft, E. E.; Toomey, D. R.; Waite, G. P.; Durant, D. T.

    2010-12-01

    Magmatic systems are often imaged using delay time seismic tomography, though a known limitation is that wavefront healing limits the ability of transmitted waves to detect small, low-velocity regions such as magma chambers. Crustal magma chambers have been successfully identified using secondary arrivals, including both P and S wave reflections and conversions. Such secondary phases are often recorded by marine seismic experiments owing to the density and quality of airgun data, which improves the identification of coherent arrivals. In 2008 we conducted a pilot study at Newberry volcano to test a new method of detecting secondary arrivals in a terrestrial setting. Our experimental geometry used a line of densely spaced (~300 m), three-component seismometers to record a shot-of-opportunity from the High Lave Plains Experiment. An ideal study would record several shots, however, data from this single event proves the concept. As part of our study, we also reanalyze all existing seismic data from Newberry volcano to obtain a tomographic image of the velocity structure to 6 km depth. Newberry is a lone shield volcano in central Oregon, located 40 km east of the Cascade axis. Newberry eruptions are silicic within the central caldera and mafic on its periphery suggesting a central silicic magma storage system, possibly located at upper crustal depths. The system may still be active with a recent eruption ~1300 years ago, and a central drill hole temperature of 256° C at only 932 m depth. A low-velocity anomaly previously imaged at 3-5 km beneath the caldera indicates either a magma body or a fractured pluton. Our tomographic study combines our 2008 seismic data with profile and array data collected in the 1980s by the USGS. In total, the inversion includes 16 active sources and 322 receivers yielding 1007 P-wave first arrivals. Beneath the caldera ring faults we image a high-velocity ring-like anomaly extending to 2 km depth. This anomaly is inferred to be near-vertical ring-dikes, 200-500 m thick, that resulted from caldera formation 5 mya. Low velocities imaged within the ring are attributed to caldera fill. Below 2.5 km depth a pair of high velocity bodies may be solidified intrusive complexes east and west of the caldera. Our results also indicate a low velocity body between 4-6 km depth although it is poorly resolved by delay time data. Tomographic inversions of synthetic data suggest that the observed travel times are consistent with a low-velocity body up to 35 km3 with up to 40% velocity reduction. Using data from our densely instrumented 2008 seismic profile, we identify a secondary P-wave arrival that originates from beneath the caldera. Preliminary finite-difference waveform modeling produces a similar arrival for a model including a low-velocity body with a 2-km-long melt sill at 3 km depth underlain by a partial-melt region to 5 km depth. The secondary arrival provides additional evidence for an active crustal magmatic system beneath Newberry volcano and demonstrates the potential of novel experimental geometries for detecting and locating terrestrial crustal magma bodies.

  9. Imaging the crustal magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii

    USGS Publications Warehouse

    Okubo, Paul G.; Benz, Harley M.; Chouet, Bernard A.

    1997-01-01

    Three-dimensional seismic P-wave traveltime tomography is used to image the magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii. High-velocity bodies (>6.4 km/s) in the upper 9 km of the crust beneath the summits and rift zones of the volcanoes correlate with zones of high magnetic intensities and are interpreted as solidified gabbro-ultramafic cumulates from which the surface volcanism is derived. The proximity of these high-velocity features to the rift zones is consistent with a ridge-spreading model of the volcanic flank. Southeast of the Hilina fault zone, along the south flank of Kilauea, low-velocity material (<6.0 km/s) is observed extending to depths of 9–11 km, indicating that the Hilina fault may extend possibly as deep as the basal decollement. Along the southeast flank of Mauna Loa, a similar low-velocity zone associated with the Kaoiki fault zone is observed extending to depths of 6–8 km. These two upper crustal low-velocity zones suggest common stages in the evolution of the Hawaiian shield volcanoes in which these fault systems are formed as a result of upper crustal deformation in response to magma injection within the volcanic edifice.

  10. Seismic structure of the uppermost mantle beneath the Kenya rift

    USGS Publications Warehouse

    Keller, Gordon R.; Mechie, J.; Braile, L.W.; Mooney, W.D.; Prodehl, C.

    1994-01-01

    A major goal of the Kenya Rift International Seismic Project (KRISP) 1990 experiment was the determination of deep lithospheric structure. In the refraction/wide-angle reflection part of the KRISP effort, the experiment was designed to obtain arrivals to distances in excess of 400 km. Phases from interfaces within the mantle were recorded from many shotpoints, and by design, the best data were obtained along the axial profile. Reflected arrivals from two thin (< 10 km), high-velocity layers were observed along this profile and a refracted arrival was observed from the upper high-velocity layer. These mantle phases were observed on record sections from four axial profile shotpoints so overlapping and reversed coverage was obtained. Both high-velocity layers are deepest beneath Lake Turkana and become more shallow southward as the apex of the Kenya dome is approached. The first layer has a velocity of 8.05-8.15 km/s, is at a depth of about 45 km beneath Lake Turkana, and is observed at depths of about 40 km to the south before it disappears near the base of the crust. The deeper layer has velocities ranging from 7.7 to 7.8 km/s in the south to about 8.3 km/s in the north, has a similar dip as the upper one, and is found at depths of 60-65 km. Mantle arrivals outside the rift valley appear to correlate with this layer. The large amounts of extrusive volcanics associated with the rift suggest compositional anomalies as an explanation for the observed velocity structure. However, the effects of the large heat anomaly associated with the rift indicate that composition alone cannot explain the high-velocity layers observed. These layers require some anisotropy probably due to the preferred orientation of olivine crystals. The seismic model is consistent with hot mantle material rising beneath the Kenya dome in the southern Kenya rift and north-dipping shearing along the rift axis near the base of the lithosphere beneath the northern Kenya rift. This implies lithosphere thickening towards the north and is consistent with a thermal thinning of the lithosphere from below in the south changing to thinning of the lithosphere due to stretching in the north. ?? 1994.

  11. Updating default depths in the ISC bulletin

    NASA Astrophysics Data System (ADS)

    Bolton, Maiclaire K.; Storchak, Dmitry A.; Harris, James

    2006-09-01

    The International Seismological Centre (ISC) publishes the definitive global bulletin of earthquake locations. In the ISC bulletin, we aim to obtain a free depth, but often this is not possible. Subsequently, the first option is to obtain a depth derived from depth phases. If depth phases are not available, we then use the reported depth from a reputable local agency. Finally, as a last resort, we set a default depth. In the past, common depths of 10, 33, or multiples of 50 km have been assigned. Assigning a more meaningful default depth, specific to a seismic region will increase the consistency of earthquake locations within the ISC bulletin and allow the ISC to publish better positions and magnitude estimates. It will also improve the association of reported secondary arrivals to corresponding seismic events. We aim to produce a global set of default depths, based on a typical depth for each area, from well-constrained events in the ISC bulletin or where depth could be constrained using a consistent set of depth phase arrivals provided by a number of different reporters. In certain areas, we must resort to using other assumptions. For these cases, we use a global crustal model (Crust2.0) to set default depths to half the thickness of the crust.

  12. Seismicity and structure of Nazca Plate subduction zone in southern Peru

    NASA Astrophysics Data System (ADS)

    Lim, H.; Kim, Y.; Clayton, R. W.

    2015-12-01

    We image the Nazca plate subduction zone system by detecting and (re)locating intra-slab earthquakes in southern Peru. Dense seismic arrays (PeruSE, 2013) were deployed along four lines to target geophysical characterization of the subduction system in the transition zone between flat and normal dipping segments of the Nazca plate (2-15°S). The arc volcanism is absent near the flat slab segment, and currently, the correlation between the location of the active volcanic front and corresponding slab depth is neither clear nor consistent between previously published models from seismicity. We detect 620 local earthquakes from August 2008 to February 2013 by manually picking 6559 and 4145 arrival times for P- and S-phases, respectively. We observe that the S-phase data is helpful to reduce the trade-off between origin time and depth of deeper earthquakes (>100 km). Earthquake locations are relocated to constrain the Nazca slab-mantle interface in the slab-dip transition zone using 7322 measurements of differential times of nearby earthquake pairs by waveform cross-correlation. We also employ the double-difference tomography (Zhang and Thurber, 2003) to further improve earthquake source locations and the spatial resolution of the velocity structure simultaneously. The relocated hypocenters clearly delineate the dipping Wadati-Benioff zone in the slab-dip transition zone between the shallow- (25°) to-flat dipping slab segment in the north and the normal (40°) dipping segment in the south. The intermediate-depth seismicity in the flat slab region stops at a depth of ~100 km and a horizontal distance of ~400 km from the trench. We find a significant slab-dip difference (up to 10°) between our relocated seismicity and previously published slab models along the profile region sampling the normal-dip slab at depth (>100 km).

  13. Coseismic slip distribution of the February 27, 2010 Mw 8.9 Maule, Chile earthquake

    USGS Publications Warehouse

    Pollitz, Fred F.; Brooks, Ben; Tong, Xiaopeng; Bevis, Michael G.; Foster, James H.; Burgmann, Roland

    2011-01-01

    [1] Static offsets produced by the February 27, 2010 Mw = 8.8 Maule, Chile earthquake as measured by GPS and InSAR constrain coseismic slip along a section of the Andean megathrust of dimensions 650 km (in length) × 180 km (in width). GPS data have been collected from both campaign and continuous sites sampling both the near-field and far field. ALOS/PALSAR data from several ascending and descending tracks constrain the near-field crustal deformation. Inversions of the geodetic data for distributed slip on the megathrust reveal a pronounced slip maximum of order 15 m at ∼15–25 km depth on the megathrust offshore Lloca, indicating that seismic slip was greatest north of the epicenter of the bilaterally propagating rupture. A secondary slip maximum appears at depth ∼25 km on the megathrust just west of Concepción. Coseismic slip is negligible below 35 km depth. Estimates of the seismic moment based on different datasets and modeling approaches vary from 1.8 to 2.6 × 1022 N m. Our study is the first to model the static displacement field using a layered spherical Earth model, allowing us to incorporate both near-field and far-field static displacements in a consistent manner. The obtained seismic moment of 1.97 × 1022 N m, corresponding to a moment magnitude of 8.8, is similar to that obtained by previous seismic and geodetic inversions.

  14. Local earthquake tomography with the inclusion of full topography and its application to Kīlauea volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Li, Peng; Lin, Guoqing

    2016-04-01

    We develop a new three-dimensional local earthquake tomography algorithm with the inclusion of full topography (LETFT). We present both synthetic and real data tests based on the P- and S-wave arrival time data for Kīlauea volcano in Hawai'i. A total of 33,768 events with 515,711 P-picks and 272,217 S-picks recorded by 35 stations at the Hawaiian Volcano Observatory are used in these tests. The comparison between the new and traditional methods based on the synthetic test shows that our new algorithm significantly improves the accuracy of the velocity model, especially at shallow depths. In the real data application, the P- and S-wave velocity models of Kīlauea show several intriguing features. We observe discontinuous high Vp (> 7.0 km/s) and Vs (> 3.9 km/s) zones at 5-14 km depth below Kīlauea caldera, its East Rift Zone (ERZ) and the Southwest Rift Zone, which may represent consolidated intrusive gabbro-ultramafic cumulates. At Kīlauea caldera, Vp and Vs decrease from ~ 3.9 km/s and ~ 2.6 km/s from the surface to ~ 3.7 km/s and ~ 2.3 km/s at 2 km depth. We resolve a high Vp zone (> 7.0 km/s) at 5-14 km depth and high Vs zone (> 3.9 km/s) at 5-11 km depth. This high Vp and Vs zone extends to the north of the ERZ at 5-10 km depth and to the upper ERZ at 8-12 km depth. In the Hilina Fault System, there is a high Vp layer (~ 7.0 km/s) at 4-6 km depth and a low Vp body of ~ 5.7 km/s at 6-11 km depth. The high Vp layer could be associated with the intrusive ultramafic gabbro sills. The velocity contrast on the north and south sides of the Koa'e Fault System indicates that the intrusive activities mainly occur to the north of the fault. Our new LETFT method performs well in both the synthetic and real data tests and we expect that it will reveal more robust velocity structures in areas with larger topographic variations.

  15. Seismic reflection images of the central California coast ranges and the tremor region of the San-Andreas-Fault system near Cholame

    NASA Astrophysics Data System (ADS)

    Gutjahr, Stine; Buske, Stefan

    2010-05-01

    The SJ-6 seismic reflection profile was acquired in 1981 over a distance of about 180 km from Morro Bay to the Sierra Nevada foothills in South Central California. The profile runs across several prominent fault systems, e.g. the Riconada Fault (RF) in the western part as well as the San Andreas Fault (SAF) in its central part. The latter includes the region of increased tremor activity near Cholame, as reported recently by several authors. We have recorrelated the original field data to 26 seconds two-way traveltime which allows us to image the crust and uppermost mantle down to approximately 40 km depth. A 3D tomographic velocity model derived from local earthquake data (Thurber et al., 2006) was used and Kirchhoff prestack depth migration as well as Fresnel-Volume-Migration were applied to the data set. Both imaging techniques were implemented in 3D by taking into account the true shot and receiver locations. The imaged subsurface volume itself was divided into three separate parts to correctly account for the significant kink in the profile line near the SAF. The most prominent features in the resulting images are areas of high reflectivity down to 30 km depth in particular in the central western part of the profile corresponding to the Salinian Block between the RF and the SAF. In the southwestern part strong reflectors can be identified that are dipping slightly to the northeast at depths of around 15-25 km. The eastern part consists of west dipping sediments at depths of 2-10 km that form a syncline structure in the west of the eastern part. The resulting images are compared to existing interpretations (Trehu and Wheeler, 1987; Wentworth and Zoback, 1989; Bloch et al., 1993) and discussed in the frame of the suggested tremor locations in that area.

  16. Cooling rates and the depth of detachment faulting at oceanic core complexes: Evidence from zircon Pb/U and (U-Th)/He ages

    USGS Publications Warehouse

    Grimes, Craig B.; Cheadle, Michael J.; John, Barbara E.; Reiners, P.W.; Wooden, J.L.

    2011-01-01

    Oceanic detachment faulting represents a distinct mode of seafloor spreading at slow spreading mid-ocean ridges, but many questions persist about the thermal evolution and depth of faulting. We present new Pb/U and (U-Th)/He zircon ages and combine them with magnetic anomaly ages to define the cooling histories of gabbroic crust exposed by oceanic detachment faults at three sites along the Mid-Atlantic Ridge (Ocean Drilling Program (ODP) holes 1270D and 1275D near the 15??20???N Transform, and Atlantis Massif at 30??N). Closure temperatures for the Pb/U (???800??C-850??C) and (U-Th)/He (???210??C) isotopic systems in zircon bracket acquisition of magnetic remanence, collectively providing a temperature-time history during faulting. Results indicate cooling to ???200??C in 0.3-0.5 Myr after zircon crystallization, recording time-averaged cooling rates of ???1000??C- 2000??C/Myr. Assuming the footwalls were denuded along single continuous faults, differences in Pb/U and (U-Th)/He zircon ages together with independently determined slip rates allow the distance between the ???850??C and ???200??C isotherms along the fault plane to be estimated. Calculated distances are 8.4 ?? 4.2 km and 5.0 2.1 km from holes 1275D and 1270D and 8.4 ?? 1.4 km at Atlantis Massif. Estimating an initial subsurface fault dip of 50 and a depth of 1.5 km to the 200??C isotherm leads to the prediction that the ???850??C isotherm lies ???5-7 km below seafloor at the time of faulting. These depth estimates for active fault systems are consistent with depths of microseismicity observed beneath the hypothesized detachment fault at the TAG hydrothermal field and high-temperature fault rocks recovered from many oceanic detachment faults. Copyright 2011 by the American Geophysical Union.

  17. Lithospheric structure of the westernmost Mediterranean inferred from finite frequency Rayleigh wave tomography S-velocity model.

    NASA Astrophysics Data System (ADS)

    Palomeras, Imma; Villasenor, Antonio; Thurner, Sally; Levander, Alan; Gallart, Josep; Harnafi, Mimoun

    2016-04-01

    The Iberian Peninsula and Morocco, separated by the Alboran Sea and the Algerian Basin, constitute the westernmost Mediterranean. From north to south this region consists of the Pyrenees, the result of interaction between the Iberian and Eurasian plates; the Iberian Massif, a region that has been undeformed since the end of the Paleozoic; the Central System and Iberian Chain, regions with intracontinental Oligocene-Miocene deformation; the Gibraltar Arc (Betics, Rif and Alboran terranes) and the Atlas Mountains, resulting from post-Oligocene subduction roll-back and Eurasian-Nubian plate convergence. In this study we analyze data from recent broad-band array deployments and permanent stations on the Iberian Peninsula and in Morocco (Spanish IberArray and Siberia arrays, the US PICASSO array, the University of Munster array, and the Spanish, Portuguese, and Moroccan National Networks) to characterize its lithospheric structure. The combined array of 350 stations has an average interstation spacing of ~60 km, comparable to USArray. We have calculated the Rayleigh waves phase velocities from ambient noise for short periods (4 s to 40 s) and teleseismic events for longer periods (20 s to 167 s). We inverted the phase velocities to obtain a shear velocity model for the lithosphere to ~200 km depth. The model shows differences in the crust for the different areas, where the highest shear velocities are mapped in the Iberian Massif crust. The crustal thickness is highly variable ranging from ~25 km beneath the eastern Betics to ~55km beneath the Gibraltar Strait, Internal Betics and Internal Rif. Beneath this region a unique arc shaped anomaly with high upper mantle velocities (>4.6 km/s) at shallow depths (<65 km) is observed. We interpret this body as the subducting Alboran slab that is depressing the crust of the western Gibraltar arc to ~55 km depth. Low upper mantle velocities (<4.2 km/s) are observed beneath the Atlas, the northeastern end of the Betic Mountains and the Late Cenozoic volcanic fields in Iberia and Morocco, indicative of high temperatures at relatively shallow depths, and suggesting that the lithosphere has been removed beneath these areas

  18. Seismic wide-angle constraints on the crust of the southern Urals

    NASA Astrophysics Data System (ADS)

    Carbonell, R.; Gallart, J.; PéRez-Estaún, A.; Diaz, J.; Kashubin, S.; Mechie, J.; Wenzel, F.; Knapp, J.

    2000-06-01

    A wide-angle seismic reflection/refraction data set was acquired during spring 1995 across the southern Urals to characterize the lithosphere beneath this Paleozoic orogen. The wide-angle reflectivity features a strong frequency dependence. While the lower crustal reflectivity is in the range of 6-15 Hz, the PmP is characterized by frequencies below 6 Hz. After detailed frequency filtering, the seismic phases constrain a new average P wave velocity crustal model that consists of an upper layer of 5.0-6.0 km/s, which correlates with the surface geology; 5-7 km depths at which the velocities increase to 6.2-6.3 km/s; 10-30 km depths at which, on average, the crust is characterized by velocities of 6.6 km/s; and finally, the lower crust, from 30-35 km down to the Moho, which has velocities ranging from 6.8 to 7.4 km/s. Two different S wave velocity models, one for the N-S and one for the E-W, were derived from the analysis of the horizontal component recordings. Crustal sections of Poisson's ratio and anisotropy were calculated from the velocity models. The Poisson's ratio increases in the lower crust at both sides of the root zone. A localized 2-3% anisotropy zone is imaged within the lower crust beneath the terranes east of the root. This feature is supported by time differences in the SmS phase and by the particle motion diagrams, which reveal two polarized directions of motion. Velocities are higher in the central part of the orogen than for the Siberian and eastern plates. These seismic recordings support a 50-56 km crustal thickness beneath the central part of the orogen in contrast to Moho depths of ≈ 45 km documented at the edges of the transect. The lateral variation of the PmP phase in frequency content and in waveform can be taken as evidence of different genetic origins of the Moho in the southern Urals.

  19. Lithospheric Layering beneath the Contiguous United States Constrained by S-to-P Receiver Functions

    NASA Astrophysics Data System (ADS)

    Liu, L.; Liu, K. H.; Kong, F.; Gao, S. S.

    2017-12-01

    The greatly-improved spatial coverage of broadband seismic stations as a result of the deployment of the EarthScope Transportable Array (TA) stations and the diversity of tectonic environments in the contiguous United States provide a unique opportunity to investigate the depth variation and nature of intra-lithospheric interfaces in different tectonic regimes. A total of 284,121 high-quality S-to-P receiver functions (SRFs) are obtained from 3,809 broadband seismic stations in the TA and other permanent and temporary deployments in the contiguous United States. The SRFs are computed using frequency domain deconvolution, and are stacked in consecutive circles with a radius of 2°. They are converted to depth series after move-out corrections using the IASP91 Earth model. Similar to previous SRF studies, a robust negative arrival, representing a sharp discontinuity of velocity reduction with depth, is visible in virtually all the stacked traces in the depth range of 30-110 km. Beneath the western US, the depth of this discontinuity is 69±17 km, and beneath the eastern US, it ranges from 75 to 90 km, both of which are comparable to the depth of the tomographically-determined lithosphere-asthenosphere boundary (LAB). In contrast, the depth of the discontinuity beneath the central US is 83±10 km which is significantly smaller than the 250 km LAB depth determined by seismic surface wave tomography. Based on previous seismic tomography, shear-wave splitting and mantle xenolith studies, we interpret this discontinuity as the top of a frozen-in layer of volatile-rich melt beneath the central US. The observations and the discrepancy between the SRF and seismic tomography results for the central US as well as the amplitude of the corresponding arrival on the SRFs may be explained by spatial variations of the thickness of the transitional layer between the "pure" lithosphere and the "pure" asthenosphere. Under this hypothesis, the consistency between the results from the SRFs and seismic tomography for the western and eastern US suggests a thin transitional layer. On the contrary, a thick transitional layer is inferred for the central US. For this area, while the long-period surface waves can detect the transitional layer, the gradual natural of its lower boundary makes it hard for the short wavelength SRFs to detect.

  20. The added value of stochastic spatial disaggregation for short-term rainfall forecasts currently available in Canada

    NASA Astrophysics Data System (ADS)

    Gagnon, Patrick; Rousseau, Alain N.; Charron, Dominique; Fortin, Vincent; Audet, René

    2017-11-01

    Several businesses and industries rely on rainfall forecasts to support their day-to-day operations. To deal with the uncertainty associated with rainfall forecast, some meteorological organisations have developed products, such as ensemble forecasts. However, due to the intensive computational requirements of ensemble forecasts, the spatial resolution remains coarse. For example, Environment and Climate Change Canada's (ECCC) Global Ensemble Prediction System (GEPS) data is freely available on a 1-degree grid (about 100 km), while those of the so-called High Resolution Deterministic Prediction System (HRDPS) are available on a 2.5-km grid (about 40 times finer). Potential users are then left with the option of using either a high-resolution rainfall forecast without uncertainty estimation and/or an ensemble with a spectrum of plausible rainfall values, but at a coarser spatial scale. The objective of this study was to evaluate the added value of coupling the Gibbs Sampling Disaggregation Model (GSDM) with ECCC products to provide accurate, precise and consistent rainfall estimates at a fine spatial resolution (10-km) within a forecast framework (6-h). For 30, 6-h, rainfall events occurring within a 40,000-km2 area (Québec, Canada), results show that, using 100-km aggregated reference rainfall depths as input, statistics of the rainfall fields generated by GSDM were close to those of the 10-km reference field. However, in forecast mode, GSDM outcomes inherit of the ECCC forecast biases, resulting in a poor performance when GEPS data were used as input, mainly due to the inherent rainfall depth distribution of the latter product. Better performance was achieved when the Regional Deterministic Prediction System (RDPS), available on a 10-km grid and aggregated at 100-km, was used as input to GSDM. Nevertheless, most of the analyzed ensemble forecasts were weakly consistent. Some areas of improvement are identified herein.

  1. Tectonic contrasts between Venus and the earth

    NASA Technical Reports Server (NTRS)

    Kaula, W. M.

    1984-01-01

    The long-wave features of the gravity field of Venus differ from those of the earth's field not only in their strong positive correlation with topography, but also in their gentler spectral slope. These properties are inconsistent with generation of the gravity field by plate tectonics or by processes at great depths; they are consistent with generation by a mantle convective system supporting the broad features in topography with an effective compensation depth of about 450 km.

  2. A Blind Hydrothermal System in an Ocean Island Environment: Humu'ula Saddle, Hawaii Island

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Wallin, E.; Lautze, N. C.; Lienert, B. R.; Pierce, H. A.

    2014-12-01

    A recently drilled groundwater investigation borehole, drilled to a depth of 1760 m in the Humu'ula Saddle of Hawaii Island, encountered an unexpectedly high temperature gradient of more than 160 ̊C/km. Although prior MT surveys across the region identified conductive formations of modest extent in the region, there were few surface manifestations of geologic structures likely to host a geothermal system and no evidence of an active, extensive hydrothermal system. Cores recovered from the borehole showed the presence of intrusive formations and moderate hydrothermal alteration at depth with progressive infilling of fractures and vesicles with depth and temperature. Independent modeling of gravity data (Flinders et al., 2013) suggests the presence of a broad intrusive complex within the region that is consistent with the borehole's confirmation of a high-elevation (~1400 m amsl) regional water table. A subsequent MT survey covering much of the western Saddle region has confirmed the presence of highly conductive conditions, consistent with thermal activity, to depths of 4 km and greater. Light stable isotope data for the borehole fluids indicate that the regional water table is derived from recharge from the upper elevations of Mauna Kea; major element chemistry indicates that formation temperatures exceed 200 ̊C. A conceptual model of the hydrothermal system, along with isotopic and fluid chemistry of the thermal fluids will be presented.

  3. Constraining formation of the Eggvin Bank (West of Jan Mayen, N. Atlantic) from OBS data

    NASA Astrophysics Data System (ADS)

    Tan, P.; Breivik, A. J.; Mjelde, R.; Azuma, R.

    2015-12-01

    The anomalously high magma flux in the Eggvin Bank area has triggered new research efforts to better understand the crustal development in this area. The Eggvin Bank is located between the Jan Mayen Island and the west coast of Greenland. Some proposed origins of the Eggvin Bank are: a distinct plume located beneath Jan Mayen; an extension of the Iceland plume; minor spreading or leakage along West Jan Mayen Fracture Zone (WJMFZ); intruded continental crust extending from Jan Mayen Microcontinent (JMMC); and rifted Greenland sub-continental lithospheric mantle. In this first modern refraction seismic study of the Eggvin Bank, we present a 2D velocity model based on OBS data. The OBSs were deployed approx. N-S over the Eggvin Bank with good data quality constrained by 4 OBSs. The air-gun array used during OBS shooting produced good quality reflection data. Three distinct seamounts are observed along the profile: the northern seamount (water depth 730m), has a flat top with a thin sedimentary veneer on top, which indicates it has been eroded at sea surface; while the southern two seamounts, one (water depth 550m) is less flat with around 100m thick sedimentary units on top, another one is rounded with tiny sedimentary veneer on top having the shallowest water depth (460m). This could suggest that the southern seamounts are younger, since they are shallower but without obvious signs that they were subaerially exposed. However, increased cooling of the lithosphere across the WJMFZ in the north may also contribute to depth differences. A normal fault offsetting sedimentary strata (~300 m) in the Greenland Basin indicates recent tectonic activity north of the Eggvin Bank. The velocity modeling shows crustal thickness with large variations, ranging from 8 km to 14 km, where crustal thickness changes of 4-5 km are associated with 20-30 km wide segments with thick crust under the seamounts. The crust consists of three oceanic crustal layers: upper crust (2.8km/s-4.8km/s); middle crust (5.5 km/s -6.5 km/s); lower crust (6.7 km/s - 7.35 km/s). The high crustal thickness and crustal morphology differ from the more uniform Kolbeinsey Ridge crust to the south, and it may represent oceanic crust with multiphase off-axis volcanic activity.

  4. Adélie penguin foraging behaviour and krill abundance along the Wilkes and Adélie land coasts, Antarctica

    NASA Astrophysics Data System (ADS)

    Wienecke, B. C.; Lawless, R.; Rodary, D.; Bost, C.-A.; Thomson, R.; Pauly, T.; Robertson, G.; Kerry, K. R.; LeMaho, Y.

    2000-08-01

    The foraging behaviour of Adélie penguins Pygoscelis adeliae was studied simultaneously at Shirley Island (SI, 110°E) and at Petrel Island (PI, 140°E) in approximate conjunction with the ship-based krill survey conducted on board the RSV Aurora Australis. Acoustic and trawl data were collected near both study sites, albeit at the end of the penguins' breeding season. The distances travelled by Adélie penguins from Shirley Island were significantly greater than those travelled by penguins from Petrel Island (SI 31-144 km; PI 6-79 km). Mean foraging trip durations and mean maximal distances travelled were also significantly different between colonies (duration: SI guard 55±32 h, crèche 113±17 h; PI guard 32±9 h, crèche 25±7 h; distance: SI guard 182±135 km, crèche 353±93 km; PI guard 100±42 km, crèche 86±28 km). All penguins foraged over the continental shelf or the shelf break and not in oceanic waters. The percentage distribution of dive depths was similar at both colonies; nearly 70% of all dives were to <35 m. Trawls from the ship contained krill Euphausia superba and E. crystallorophias near SI but only E. superba near PI. Biomass measurements showed that near SI 61% of krill biomass occurred at 63-97 m but the penguins dived to this depth range only 12% of their time; near PI 83% of the biomass was found from 43 to 63 m and 20% of dives reached these depths. The diet of the SI penguins consisted mainly of E. crystallorophias (51-53% by mass), while penguins from PI ingested large amounts of both euphausiids (27-38% E. superba, 22-39% E. crystallorophias). At SI, the remainder of the diet consisted of fish, mainly Pleuragramma antarcticum (26-30%), and amphipods (<1%). Similarly, at PI, fish contributed 19-37% to the penguins' diet and amphipods constituted 1-3%.

  5. Eastern North American finite-frequency, compressional and shear tomographic models

    NASA Astrophysics Data System (ADS)

    Savage, B.; Shen, Y.

    2017-12-01

    The Eastern North American margin and continental interior is imaged using a finite-frequency, tomographic method. Each of the P and S teleseismic body wave date sets consists of over 80,000 usable measurements recorded on the Transportable Array (TA). Sensitivity kernels are computed from a 1D model with grid spacing of 50 x 50 x 25 km. Measurements are performed automatically at three individual frequency bands, allowing a more effective use of the available broadband data. Imaged shear and compressional wave speeds show similar long-wavelength features of reduced wave speeds along the continent-ocean margin and increased wave speeds within the stable interior. Wave speeds throughout the model are highly variable at the scale of 100 to 200 km. Large wave speed reductions are present near New England, the Mid-Atlantic states, and the Gulf Coast states; these variations are present in previous models. Interestingly, the strongly reduced wave speeds near South Carolina are absent at depths greater than of 150 km within this model and recent teleseismic body-wave models. This result is contrary to a variety of surface wave models which contain an intense, reduced wave speed anomaly extending past 250 km depth and interpreted as a mantle upwelling associated with edge driven convection. An anomaly along the West Virginia-Virginia border, associated with volcanism and mantle upwelling, is also present, tightly constrained, and extends to 200 km depth. Moreover, the interior of the continent contains significant, regional wave speed variations. Variation of this style is present in other surface and body wave models and is not consistent with a massive, homogeneous continent with no internal variations. These internal continental variations suggest a compositional influence as temperature, melt and water are thought to have minimal effect. Unlike surface wave models that include a distinct continental base around 175 km, teleseismic body wave models, including this one, do not show this base. However, this model does include the deep, positive wave speed anomaly within the mantle transition zone interpreted as a slab fragment, agreeing with previous models.

  6. Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    NASA Astrophysics Data System (ADS)

    Medici, Giacomo; West, L. J.; Mountney, N. P.

    2018-03-01

    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to 1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability ( K 10-1-100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K 10-2 m/day at 150-400 m BGL to 10-3 m/day down-dip at 1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs ( 0.7-1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields.

  7. Seismic and thermal evidences for subduction of exhumed mantle oceanic crust beneath the seismically quiet Antigua-St Martin Margin segment in the Northern Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Marcaillou, Boris; Klingelhoefer, Frauke; Laurencin, Muriel; Biari, Youssef; Graindorge, David; Lebrun, Jean-Frederic; Laigle, Mireille; Lallemand, Serge

    2017-04-01

    Wide-angle, multichannel reflection seismic data and heat-flow measurements from the Lesser Antilles subduction zone depict a large patch of atypical oceanic basement in the trench and beneath the outer fore-arc offshore of the Antigua-Saint Martin active margin segment. This segment triggers a very low number of earthquakes compared to the seismicity beneath the Virgin Island Platform to the north or in the Central Antilles (Martinique-Guadeloupe) to the south. Seven along-dip and two along-strike multichannel seismic lines acquired in this region show high amplitude steep reflectors that extend downward to 15-km depth in the downgoing slab. These lines also substantiate the absence of any reflections at Moho depth. Based on the wide-angle velocity model, the oceanic basement consists of a 5-km-thick unique layer with p-wave velocities ranging from 5.2 to 7.4 km/s, which is atypical for an oceanic crust. Heat-flow measurements along a transect perpendicular to the margin indicate a "flat" heat-flow trend from the trench to the fore-arc at 40 ± 15 mW.m-2 (Biari et al., same session). This heat flow profile contrasts with the expected trench-to-forearc decreasing heat-flow and the 50% higher heat-flow values measured in the trench offshore off the central Antilles. Calculated heat-flow for an incoming oceanic plate with a depressed geothermal gradient in the trench and heat source at depth in the subduction zone corresponding with temperatures of 200-250°C fit the measurements. We propose that a large patch of exhumed and serpentinized mantle rocks solidified at the slow-spreading mid-Atlantic Ridge is currently subducting beneath the studied margin segment. The fact that the crust here consists of one single layer and comprises velocities higher than found in igneous rocks (> 7.2 km/s) are consistent with this hypothesis. The plate bending possibly triggers long and deep delamination planes that extend into the mantle beneath the serpentinization front, which has been identified as a reflector in the wide-angle seismic data. These delamination planes outcrop at the interplate contact creating weak zones that focus the tectonic deformation in the upper plate. An incoming oceanic crust made of serpentinized mantle rocks is consistent with a depressed geothermal gradient in the trench due to water alteration and heat generation at depth due to serpentinite dehydration. This fluid-rich altered and weak oceanic crust likely reduces the seismic activity along this margin segment.

  8. The Volume of Earth's Lakes

    NASA Astrophysics Data System (ADS)

    Cael, B. B.

    How much water do lakes on Earth hold? Global lake volume estimates are scarce, highly variable, and poorly documented. We develop a mechanistic null model for estimating global lake mean depth and volume based on a statistical topographic approach to Earth's surface. The volume-area scaling prediction is accurate and consistent within and across lake datasets spanning diverse regions. We applied these relationships to a global lake area census to estimate global lake volume and depth. The volume of Earth's lakes is 199,000 km3 (95% confidence interval 196,000-202,000 km3) . This volume is in the range of historical estimates (166,000-280,000 km3) , but the overall mean depth of 41.8 m (95% CI 41.2-42.4 m) is significantly lower than previous estimates (62 - 151 m). These results highlight and constrain the relative scarcity of lake waters in the hydrosphere and have implications for the role of lakes in global biogeochemical cycles. We also evaluate the size (area) distribution of lakes on Earth compared to expectations from percolation theory. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 2388357.

  9. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    NASA Astrophysics Data System (ADS)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  10. Upper mantle velocity structure beneath southern Africa from modeling regional seismic data

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Langston, Charles A.; Nyblade, Andrew A.; Owens, Thomas J.

    1999-03-01

    The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data which come from a large mine tremor in South Africa (mb 5.6) recorded by the Tanzania broadband seismic experiment and by several stations in southern Africa. The waveform data show upper mantle triplications for both the 410- and 670-km discontinuities between distances of 2100 and 3000 km. Auxiliary travel time data along similar profiles obtained from other moderate events are also used. P wave travel times are inverted for velocity structure down to ˜800-km depth using the Wiechert-Herglotz technique, and the resulting model is evaluated by perturbing it at three depth intervals and then testing the perturbed model against the travel time and waveform data. The results indicate a typical upper mantle P wave velocity structure for a shield. P wave velocities from the top of the mantle down to 300-km depth are as much as 3% higher than the global average and are slightly slower than the global average between 300- and 420-km depth. Little evidence is found for a pronounced low-velocity zone in the upper mantle. A high-velocity gradient zone is required above the 410-km discontinuity, but both sharp and smooth 410-km discontinuities are permitted by the data. The 670-km discontinuity is characterized by high-velocity gradients over a depth range of ˜80 km around 660-km depth. Limited S wave travel time data suggest fast S wave velocities above ˜150-km depth. These results suggest that the bouyant support for the African superswell does not reside at shallow depths in the upper mantle.

  11. Cenozoic extension, volcanism and plateau uplift in eastern Africa and the African Superplume

    NASA Astrophysics Data System (ADS)

    Nyblade, A.; O'Donnell, J.; Mulibo, G. D.; Adams, A. N.

    2013-12-01

    Recent body and surface wave studies combine to image mantle velocity structure to a depth of 1200 km beneath eastern Africa using teleseismic earthquake data recorded by the AfricaArray East African Seismic Experiment in conjunction with permanent stations and previously deployed temporary stations. The combined network spans Kenya, Uganda, Tanzania, Zambia and Malawi. The 3-D shear wave velocity structure of the uppermost mantle was imaged using fundamental-mode Rayleigh wave phase velocities measured at periods ranging from 20 to 182 s, subsequently inverted for shear velocity structure. When considered in conjunction with mapped seismicity, the shear velocity model supports a secondary western rift branch striking southwestwards from Lake Tanganyika, likely exploiting the relatively weak lithosphere of the southern Kibaran Belt between the Bangweulu Block and the Congo Craton. In eastern Tanzania a low-velocity region suggests that the eastern rift branch trends southeastwards offshore eastern Tanzania coincident with the purported location of the northern margin of the proposed Ruvuma microplate. The results suggest that existing lithospheric structures exert a significant governing influence on rift development. Sub-lithospheric mantle wave speed variations extending to a depth of 1200 km were tomographically imaged from the inversion of P and S wave relative arrival time residuals. The images shows a low wave speed anomaly (LWA) well developed at shallow depths (100-200 km) beneath the Eastern and Western branches of the rift system and northwestern Zambia, and a fast wave speed anomaly at depths greater than 350 km beneath the central and northern parts of the East African Plateau and the eastern and central parts of Zambia. At depths below 350 km the LWA is most prominent under the central and southern parts of the East African Plateau and dips to the southwest beneath northern Zambia, extending to a depth of at least 900 km. The amplitude of the LWA is consistent with a 150-300 K thermal perturbation, and its depth extent indicates that the African superplume, originally identified as a lower mantle anomaly, is likely a whole mantle structure. A mantle transition zone about 30-40 km thinner than the global average in a region 200-400 km wide extending in a SW-NE direction from central Zambia, across Tanzania and into Kenya was inferred from P to S conversions from the 410 and 660 km discontinuities observed in receiver function stacks. The thinning of the transition zone indicates a 190-300 K thermal anomaly in the same location where the P and S wave tomography models suggest that the lower mantle African superplume structure connects to thermally perturbed upper mantle beneath eastern Africa. These findings provide compelling evidence for the existence of a continuous thermal structure extending from the core-mantle boundary to the surface associated with the African superplume, implying an origin for the Cenozoic extension, volcanism and plateau uplift in eastern Africa rooted in the dynamics of the lower mantle.

  12. The Syrtis Major volcano, Mars: A multidisciplinary approach to interpreting its magmatic evolution and structural development

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Dufek, Josef; Kiefer, Walter S.; Black, Benjamin A.; Manga, Michael; Richardson, Jacob A.; Bleacher, Jacob E.

    2015-09-01

    Very weak crustal magnetic fields over the Syrtis Major volcanic complex imply almost total thermal demagnetization via magmatic intrusions over a large area less than ~4 Ga. We fit a model of these intrusions and the resulting thermal demagnetization to maps of crustal magnetic field strength at 185 km altitude. The best fits are most consistent with a "dog bone"-shaped region of intrusive material, elongated approximately north-south, with an area of ~350,000 km2 and an inferred volume of ~4-19 × 106 km3. Such a large volume is best explained by a long-lived mantle plume beneath the Syrtis edifice. A free-air gravity anomaly high over the Syrtis Major caldera is consistent with dense mafic residue remaining at depth following crystal fractionation that produced the silicic magmas seen at the surface. The elongation of this region is consistent with ascent and north-south emplacement of magma enabled by structures parallel to and associated with the preexisting Isidis impact basin.

  13. Seismic anisotropy in the uppermost mantle beneath oceanic regions from data of broadband OBSs

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Nishida, K.; Isse, T.; Kawakatsu, H.; Shiobara, H.; Sugioka, H.; Ito, A.; Kanazawa, T.; Suetsugu, D.

    2011-12-01

    For improving vertical resolution of seismic-anisotropy structure at depths of 10-100 km beneath oceanic regions, we measured phase velocities of surface waves in a broadband frequency range by two methods: the ambient noise interferometry in frequency higher than 0.035 Hz, and array analysis of event waveforms in lower frequency. We use seismograms recorded by broadband ocean bottom seismometers (BBOBSs) in two regions: (i) the Shikoku Basin in the Philippine Sea by Stagnant Slab Project, and (ii) east of Tahiti Island by a project called the tomographic investigation by seafloor array experiment for Society hotspot (TIARES). The frequency ranges of phase-velocity measurements in each region are summarized in Table. For the case of Shikoku Basin, we invert phase velocities for radially anisotropic structure. The resultant structure shows decrease of shear-wave velocity by 6-8 % at depths of 50-70 km, and intensification of radial anisotropy (VSH>VSV) from 1-2 % at 10-20 km depth to 4-6 % at 40-70 km depth. These results indicate increasing amount of preferred-oriented olivine crystal, and/or horizontal layering of partial melt near the boundary between the lithosphere and the asthenosphere. The azimuthal anisotropy of phase velocity in the Shikoku Basin is also investigated by array analysis of event waveforms for the fundamental mode of Rayleigh wave at 0.03 Hz. The fastest direction is NW, and consistent with direction of present plate motion. The velocity difference between fastest and slowest directions is 1-2 %. These results mainly reflect shear-wave velocity at depth of 30-60 km, and imply that lattice preferred orientation is, at least, partly (though may not be fully) responsible for the anisotropy in the depth range. We will obtain radially anisotropic structure and azimuthal anisotropy in Tahiti region, and will present difference between two regions.
    Frequency range of phase-velocity measurements for two regions of analyses.

  14. Subduction of lower continental crust beneath the Pamir imaged by receiver functions from the seismological TIPAGE network

    NASA Astrophysics Data System (ADS)

    Schneider, F. M.; Yuan, X.; Schurr, B.; Mechie, J.; Sippl, C.; Kufner, S.; Haberland, C. A.; Minaev, V.; Oimahmadov, I.; Gadoev, M.; Abdybachaev, U.; Orunbaev, S.

    2013-12-01

    As the northwestern promontory of the Tibetan Plateau, the Pamir forms an outstanding part of the India-Asia convergence zone. The Pamir plateau has an average elevation of more than 4000 m surrounded by peaks exceeding 7000 m at its northern, eastern and southern borders. The Pamir is thought to consist of the same collage of continental terranes as Tibet. However, in this region the Indian-Asian continental collision presents an extreme situation since, compared to Tibet, in the Pamir a similar amount of north-south convergence has been accommodated within a much smaller distance. The Pamir hosts a zone of intermediate depth earthquakes being the seismic imprint of Earth's most spectacular active intra-continental subduction zone. We present receiver function (RF) images from the TIPAGE seismic profile giving evidence that the intermediate depth seismicity is situated within a subducted layer of lower continental crust: We observe a southerly dipping 10-15 km thick low-velocity zone (LVZ), that starts from the base of the crust and extends to a depth of more than 150 km enveloping the intermediate depth earthquakes that have been located with high precision from our local network records. In a second northwest to southeast cross section we observe that towards the western Pamir the dip direction of the LVZ bends to the southeast following the geometry of the intermediate depth seismic zone. Our observations imply that the complete arcuate intermediate depth seismic zone beneath the Pamir traces a slab of subducting Eurasian continental lower crust. These observations provide important implications for the geodynamics of continental collision: First, it shows that under extreme conditions lower crust can be brought to mantle depths despite its buoyancy, a fact that is also testified by the exhumation of ultra-high pressure metamorphic rocks. Recent results from teleseismic tomography show a signal of Asian mantle lithosphere down to 600 km depth, implying a great amount of mantle lithosphere to be involved in the subduction, which possibly transmits pull forces to the lower crust to overcome its buoyancy. Secondly, the observation that earthquakes occur within the subducted crust implies that similar to oceanic subduction, metamorphic processes within the lower continental crust can cause or enable earthquakes at depths, where the high pressure and temperature conditions would normally not allow brittle failure of rocks. For imaging of the dipping LVZ, cross sections of Q- and T-component RFs are generated using a migration technique that accounts for the inclination of the conversion layers. Furthermore we present a Moho map of the Pamir, showing crustal thickness in most places of the Pamir ranging between 65 km and 75 km, while the greatest Moho depths of around 80 km are observed at the upper end of the LVZ. The surrounding areas namely the Tajik Depression, and the Ferghana and Tarim Basins show Moho depths of around 40 to 45 km giving an estimate of the pre-collisional crustal thickness of the former Basin area that was overthrust by the Pamir.

  15. The velocity structure of the lunar crust.

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.

    1973-01-01

    Seismic refraction data, obtained at the Apollo 14 and 16 sites, when combined with other lunar seismic data, allow a compressional wave velocity profile of the lunar near-surface and crust to be derived. The regolith, although variable in thickness over the lunar surface, possesses surprisingly similar seismic properties. Underlying the regolith at both the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is low-velocity brecciated material or impact derived debris. Key features of the lunar seismic velocity profile are: (1) velocity increases from 100 to 300 m/sec in the upper 100 m to about 4 km/sec at 5 km depth, (2) a more gradual increase from about 4 km/sec to about 6 km/sec at 25 km depth,(3) a discontinuity at a depth of 25 km, and (4) a constant value of about 7 km/sec at depths from 25 km to about 60 km.

  16. Tectonic Setting and Aftershocks of the Mw 6.7 Feburary 14, 2013 Earthquake in Yakutia, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Rappolee, E.; Burk, D. R.; Mackey, K. G.; Fujita, K.; Shibaev, S. V.; Koz'min, B. M.

    2016-12-01

    The details of the seismotectonics along the boundary between the Eurasian, North American, and Okhotsk plates are poorly understood. Infrequent earthquakes of moderate size (Mw > 4) in this remote region make it difficult to characterize its tectonic activity. On February 14, 2013, an Mw 6.7 earthquake along this boundary in Northern Yakutia, Russia, resulted in a long sequence of aftershocks that provide an opportunity to better understand the region's geology. A temporary deployment of four seismic stations was installed around the main shock to supplement regional station coverage. During the ten day deployment, several thousand aftershocks were recorded. We have located 112 events using both first-arriving Pn and Sn and secondary arriving Pg and Sg phase time picks. The located aftershocks define a SSE striking zone approximately 30 km long and 10 km wide, east of the Illin'-Tas fault and northwest of the Indigirka River. Location depths range from 0 to 20 km. In conjunction with locating aftershocks, a local three-layer best-fit velocity was determined consisting of an upper crust (14 km thick, VPg = 6.06 km/s and VSg = 3.53 km/s), a lower crust (21 km thick, VP* = 6.45 km/s and VS* = 3.65 km/s), and a Moho (35 km deep, VPn = 7.98 km/s and VSn = 4.53 km/s). The mainshock epicenter falls in the northwestern corner of the aftershock zone, however its focal depth is not well established. Aftershock analysis is ongoing and will possibly provide a better understanding of the earthquake rupture zone. Nonetheless, results of this study support active thrusting and mountain building as a mechanism to accommodate compression along the North America-Eurasia boundary.

  17. IRETHERM: The geothermal energy potential of Irish radiothermal granites

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas; Jones, Alan; Muller, Mark; Feely, Martin; Brock, Andrew; Long, Mike; Waters, Tim

    2014-05-01

    The IRETHERM project is developing a strategic understanding of Ireland's deep geothermal energy potential through integrated modelling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), surface heat-flow (SHF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is important to assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Galway granite in western Ireland, and the Leinster and the buried Kentstown granites in eastern Ireland. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of a 1980's geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite, to the SW of Dublin. In the Galway granite batholith, on the west coast of Ireland, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Rossaveal borehole. The buried Kentstown granite, 35 km NW of Dublin, has an associated negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 490 m. Heat production is measured at 2.4 μWm-3 in core samples taken from the weathered top 30 m of the granite. The core of this study consists of a program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite (40 km SW of Dublin) extend to depths of 2-5 km. Preliminary results from the southern profile suggest a greater thickness of granite to a depth of 6-9 km beneath the Tullow pluton, 75 km SW of Dublin. Over the Galway granite, MT and AMT data have been collected at a total of 75 sites (33 consist of only AMT data acquisition, with both MT and AMT recorded at the remaining 42). Preliminary results show a deep resistor extending to depths of 15-20 km beneath the central block, with the resistive upper layer extending to depths of 3.5-7 km west of the Shannawona fault, a major structure that cuts the batholith. MT and AMT data acquired along a profile at 22 locations over the Kentstown granite suggests that this buried granite is at a depth of 400 m beneath the centre of the gravity anomaly. The MT and AMT data will be integrated with gravity and seismic refraction data (in the case of the Leinster granite) to identify deeply penetrating faults, which may provide conduits for hydrothermal fluids, and to produce a robust estimation of the volumetric extent of the granites, which is crucial in defining their geothermal energy potential. Thermal conductivity and geochemical data will be incorporated to constrain the heat contribution of granites to the Irish crust.

  18. S-Wave Velocity Models Under the Saudi Arabian Portable Broadband Deployment: Evidence for Lithospheric Erosion Beneath the Arabian Shield

    NASA Astrophysics Data System (ADS)

    Julià, J.; Ammon, C. J.; Herrmann, R. B.

    2002-12-01

    Models of crustal evolution strongly rely on our knowledge on the mineralogical composition of subsurface rocks, as well as pressure and temperature conditions. Direct sampling of subsurface rocks is often not possible, so that constraints have to be placed from indirect estimates of rock properties. Detailed seismic imaging of subsurface rocks has the potential for providing such constraints, and probe the extent at depth of surface geologic observations. In this study, we provide detailed S-wave velocity profiles for the crust and uppermost mantle beneath the Saudi Arabian Portable Broadband Deployment stations. Seismic velocities have been estimated from the joint inversion of receiver functions and fundamental mode group velocities. Receiver functions are sensitive to S-wave velocity contrasts and vertical travel times, and surface-wave dispersion is sensitive to vertical S-wave velocity averages, so that their combination bridge resolution gaps associated with each individual data set. Our resulting models correlate well with surface geology observations in the Arabian Shield and characterize its terranes at depth: the Asir terrane consists of a 10-km thick upper crust of 3.3~km/s overlying a lower crust with shear-wave velocities of 3.7-3.8 km/s; the Afif terrane is made of a 20-km thick upper crust with average velocity of 3.6 km/s and a lower crust with a shear-velocity of about 3.8~km/s; the Nabitah mobile belt has a gradational, 15-km thick upper crust up to 3.6 km/s overlying a gradational lower crust with velocities up to 4.0 km/s. The crust-mantle transition is sharper in terranes of continental affinity and more gradational beneath terranes of oceanic affinity. In the uppermost mantle, our models suggest a thin lid between up to 50-60 km depth overlying a low velocity zone beneath station TAIF, located close to a region of upwelling mantle material. Temperatures in the lid are estimated to be about 1000 C, which are in good agreement with independent xenolith data, and suggest that the lithosphere could be eroded to a thickness as little as 50~km under this station.

  19. A recent deep earthquake doublet in light of long-term evolution of Nazca subduction

    NASA Astrophysics Data System (ADS)

    Zahradník, J.; Čížková, H.; Bina, C. R.; Sokos, E.; Janský, J.; Tavera, H.; Carvalho, J.

    2017-03-01

    Earthquake faulting at ~600 km depth remains puzzling. Here we present a new kinematic interpretation of two Mw7.6 earthquakes of November 24, 2015. In contrast to teleseismic analysis of this doublet, we use regional seismic data providing robust two-point source models, further validated by regional back-projection and rupture-stop analysis. The doublet represents segmented rupture of a ˜30-year gap in a narrow, deep fault zone, fully consistent with the stress field derived from neighbouring 1976-2015 earthquakes. Seismic observations are interpreted using a geodynamic model of regional subduction, incorporating realistic rheology and major phase transitions, yielding a model slab that is nearly vertical in the deep-earthquake zone but stagnant below 660 km, consistent with tomographic imaging. Geodynamically modelled stresses match the seismically inferred stress field, where the steeply down-dip orientation of compressive stress axes at ˜600 km arises from combined viscous and buoyant forces resisting slab penetration into the lower mantle and deformation associated with slab buckling and stagnation. Observed fault-rupture geometry, demonstrated likelihood of seismic triggering, and high model temperatures in young subducted lithosphere, together favour nanometric crystallisation (and associated grain-boundary sliding) attending high-pressure dehydration as a likely seismogenic mechanism, unless a segment of much older lithosphere is present at depth.

  20. A magnetic and gravity investigation of the Liberia Basin, West Africa

    NASA Astrophysics Data System (ADS)

    Morris Cooper, S.; Liu, Tianyou

    2011-02-01

    Gravity and magnetic analysis provide an opportunity to deduce and understand to a large extent the stratigraphy, structure and shape of the substructure. Euler deconvolution is a useful tool for providing estimates of the localities and depth of magnetic and gravity sources. Wavelet analysis is an interesting tool for filtering and improving geophysical data. The application of these two methods to gravity and magnetic data of the Liberia Basin enable the definition of the geometry and depth of the subsurface geologic structures. The study reveals the basin is sub-divided and the depth to basement of the basin structure ranges from about 5 km at its North West end to 10 km at its broadest section eastward. Magnetic data analysis indicates shallow intrusives ranging from a depth of 0.09 km to 0.42 km with an average depth of 0.25 km along the margin. Other intrusives can be found at average depths of 0.6 km and 1.7 km respectively within the confines of the basin. An analysis of the gravity data indicated deep faults intersecting the transform zone.

  1. Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere

    NASA Astrophysics Data System (ADS)

    Wortel, M. J. R.; Vlaar, N. J.

    1988-09-01

    In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.

  2. Evaluation of Regional Travel-Time and Location Improvement Along the Tethyan Margin Using a New Three-Dimensional Velocity Model

    DTIC Science & Technology

    2008-09-01

    part of the Atlantic Ocean for reference. The Moho depth result is broadly consistent with CRUST2.0, except in mid-northern Africa, where the crust...plate boundaries is shown by the pink line in Figure 1. The interaction of these five major tectonic plates with each other and with several microplates ...acquired from literatures. Artificial point constraints of 10 km depth are placed to the Atlantic and Indian Oceans where measurements are absent

  3. Crustal structure of an exhumed IntraCONtinental Sag (ICONS): the Mekele Basin in Northern Ethiopia.

    NASA Astrophysics Data System (ADS)

    Alemu, T. B.; Abdelsalam, M. G.

    2017-12-01

    The Mekele Sedimentary Basin (MSB) in Ethiopia is a Paleozoic-Mesozoic IntraCONtinental Sag (ICONS) exposed due to Cenozoic domal and rift flank uplift associated with the Afar mantle plume and Afar Depression (AD). ICONS are formed over stable lithosphere, and in contrast to rift and foreland basins, show circular-elliptical shape in map view, saucer shaped in cross section, and concentric gravity minima. Surface geological features of the MSB have been shown to exhibit geologic characteristics similar to those of other ICONS. We used the World Gravity Map (WGM 2012) data to investigate subsurface-crustal structure of the MSB. We also used 2D power spectrum analysis and inversion of the gravity field to estimate the Moho depth. Our results show the Bouguer anomalies of the WGM 2012 ranges between 130 mGal and - 110 mGal with the highest values within the AD. Despite the effect of the AD on the gravity anomalies, the MSB is characterized by the presence of gravity low anomaly that reaches in places -110 mGal, especially in its western part. The Moho depth estimates, from both spectral analysis and inversion of the gravity data, is between 36 and 40 km depth over most of the western and southern margins of the MSB. However, as the AD is approached, in the eastern margins of the MSB, crustal thickness estimates are highly affected by the anomalously thin and magmatic segment of the AD, and the Moho depth range between 30 and 25 km. Our results are consistent with that of seismic studies in areas far from the MSB, but within the Northwestern Ethiopian Plateau where the MSB is located. Those studies have reported an abrupt decrease in Moho depth from 40 km beneath the Northwestern plateau, to 20 km in the adjacent AD. Though the MSB is small (100 kmX100 km) compared to other ICONS, and affected by the neighboring AD, it is characterized by elliptical gravity minima and a relatively thicker crust that gradually thickens away from the rift. In addition, seismic imaging of faster shear wave velocity beneath the southwestern MSB at 80 km depth by previous studies mimic the surface and shallow subsurface features that we interpret as indicative of major characteristics of ICONS. Due to their location away from active plate boundaries, most ICONS are buried since the time of their formation. The MSB represents a rare example of a completely exhumed ICONS.

  4. Seismic Discontinuities within the Crust and Mantle Beneath Indonesia as Inferred from P Receiver Functions

    NASA Astrophysics Data System (ADS)

    Woelbern, I.; Rumpker, G.

    2015-12-01

    Indonesia is situated at the southern margin of SE Asia, which comprises an assemblage of Gondwana-derived continental terranes, suture zones and volcanic arcs. The formation of SE Asia is believed to have started in Early Devonian. Its complex history involves the opening and closure of three distinct Tethys oceans, each accompanied by the rifting of continental fragments. We apply the receiver function technique to data of the temporary MERAMEX network operated in Central Java from May to October 2004 by the GeoForschungsZentrum Potsdam. The network consisted of 112 mobile stations with a spacing of about 10 km covering the full width of the island between the southern and northern coast lines. The tectonic history is reflected in a complex crustal structure of Central Java exhibiting strong topography of the Moho discontinuity related to different tectonic units. A discontinuity of negative impedance contrast is observed throughout the mid-crust interpreted as the top of a low-velocity layer which shows no depth correlation with the Moho interface. Converted phases generated at greater depth beneath Indonesia indicate the existence of multiple seismic discontinuities within the upper mantle and even below. The strongest signal originates from the base of the mantle transition zone, i.e. the 660 km discontinuity. The phase related to the 410 km discontinuity is less pronounced, but clearly identifiable as well. The derived thickness of the mantle-transition zone is in good agreement with the IASP91 velocity model. Additional phases are observed at roughly 33 s and 90 s relative to the P onset, corresponding to about 300 km and 920 km, respectively. A signal of reversed polarity indicates the top of a low velocity layer at about 370 km depth overlying the mantle transition zone.

  5. Relocation of Seismicity at Mauna Loa, Hawaii and Hengill, Iceland: Improved Delineation of Seismogenic Structures.

    NASA Astrophysics Data System (ADS)

    Baher, S. A.; Thurber, C.; Roberts, K.; Rowe, C.

    2002-12-01

    Waveform cross-correlation based refinement of P arrival times and subsequent relocation of earthquakes was determined for events that occurred near the summit of Mauna Loa, Hawaii prior to the March, 1984 eruption and at the Hengill volcano, Iceland during a two-month survey in 1991. Hengill and Mauna Loa volcanoes have a similar rift structure and are hot-spot related volcanoes. The relocated events at Mauna Loa illuminated a previously obscured structure beneath the northwestern flank. Simultaneous inversion for hypocenters and velocity model parameters using the refined arrival times resulted in well-constrained relative earthquake locations with very low arrival time misfits (average RMS 0.03 s). Pre-eruption seismicity from this time period occurred in two groups: a shallow group located near the Mauna Loa summit region, at depths of 1-3 km, and a deeper group located 4-6 km northwest of the summit, at depths of 5-10 km. After relocation, we found that most of the northwest flank earthquakes occurred along a 1 km planar feature striking about 60o E of North in a thin band about 500 m thick. This feature we interpret to be related to a rift zone that was stunted by the buttressing of the adjacent volcanoes Hualalai and Mauna Kea. Previous gravity and magnetic studies provide supporting evidence for the existence of a failed rift zone. Northwest flank focal mechanisms reveal a change in faulting from strike-slip in the southwest to a mix of strike-slip and normal faulting in the northeast. The near summit seismicity that was previously diffuse (4.5 km in width) is reduced to a 6 km long feature (0.5 km in width) extending from depth (6 km) toward the summit. The focal mechanisms analyzed from the summit events showed a mix of faulting without a consistent pattern. Previous studies at Hengill yielded locations of seismic activity that extend from 2-6 km in depth and no apparent correlation with surface features. The existence of non-double-couple focal mechanisms has been confirmed and attributed to high fluid pressures arising from geothermal activity. With the application of these relocation techniques, we hope to improve the resolution of any existing hypocenter clusters and/or fine scale subsurface structures.

  6. Salton Seismic Imaging Project Line 6: San Andreas Fault and Northern Coachella Valley Structure, Riverside and San Bernardino Counties, California

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Fuis, G.; Rymer, M. J.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.

    2012-12-01

    The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas fault (SAF) and adjacent basins (Imperial and Coachella Valleys) in southernmost California. Data and preliminary results from many of the seismic profiles are reported elsewhere (including Fuis et al., Rymer et al., Goldman et al., Langenheim et al., this meeting). Here, we focus on SSIP Line 6, one of four 2-D seismic profiles that were acquired across the Coachella Valley. The 44-km-long, SSIP-Line-6 seismic profile extended from the east flank of Mt. San Jacinto northwest of Palm Springs to the Little San Bernardino Mountains and crossed the SAF (Mission Creek (MCF), Banning (BF), and Garnet Hill (GHF) strands) roughly normal to strike. Data were generated by 10 downhole explosive sources (most spaced about 3 to 5 km apart) and were recorded by approximately 347 Texan seismographs (average spacing 126 m). We used first-arrival refractions to develop a P-wave refraction tomography velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 7 km depth, P-wave velocities range from about 2.5 km/s to about 7.2 km/s, with the lowest velocities within an ~2-km-deep, ~20-km-wide basin, and the highest velocities below the transition zone from the Coachella Valley to Mt. San Jacinto and within the Little San Bernardino Mountains. The BF and GHF strands bound a shallow sub-basin on the southwestern side of the Coachella Valley, but the underlying shallow-depth (~4 km) basement rocks are P-wave high in velocity (~7.2 km/s). The lack of a low-velocity zone beneath BF and GHF suggests that both faults dip northeastward. In a similar manner, high-velocity basement rocks beneath the Little San Bernardino Mountains suggest that the MCF dips vertically or southwestward. However, there is a pronounced low-velocity zone in basement rocks between about 2 and 7 km depth beneath and southwest of the MCF, suggesting a vertical or slightly southwest-dipping MCF. The apparent northeast dip of the BF and the apparent vertical or southwest dip of the MCF suggests that the two main strands of the SAF (MCF and BF) merge at about 10 km depth. A plot of double-difference earthquake hypocenters (Hauksson, 2000) along the seismic profile shows events that occurred between 1980-2000 (excluding those in 1992, prior to and after the Joshua Tree and Landers earthquakes) are largely confined to the vicinity of the basement low-velocity zone between the MCF and BF. However, a separate alignment of hypocenters occurs southwest of the BF and projects toward the surface beneath Mt. San Jacinto. Collectively, the velocity images and the seismicity data suggest the BF strand of the SAF dips to the northeast at about 50 degrees in the upper 10 km, and the MCF strand is either vertical or dips southwestward about 80 degrees, with both strands merging at about 10 km depth and forming a near-vertical zone of faults to at least 15 km depth. The SSIP Line 6 data are consistent with structures interpreted by Catchings et al. (2009).

  7. Upper mantle seismic structure beneath southwest Africa from finite-frequency P- and S-wave tomography

    NASA Astrophysics Data System (ADS)

    Youssof, Mohammad; Yuan, Xiaohui; Tilmann, Frederik; Heit, Benjamin; Weber, Michael; Jokat, Wilfried; Geissler, Wolfram; Laske, Gabi; Eken, Tuna; Lushetile, Bufelo

    2015-04-01

    We present a 3D high-resolution seismic model of the southwestern Africa region from teleseismic tomographic inversion of the P- and S- wave data recorded by the amphibious WALPASS network. We used 40 temporary stations in southwestern Africa with records for a period of 2 years (the OBS operated for 1 year), between November 2010 and November 2012. The array covers a surface area of approximately 600 by 1200 km and is located at the intersection of the Walvis Ridge, the continental margin of northern Namibia, and extends into the Congo craton. Major questions that need to be understood are related to the impact of asthenosphere-lithosphere interaction, (plume-related features), on the continental areas and the evolution of the continent-ocean transition that followed the break-up of Gondwana. This process is supposed to leave its imprint as distinct seismic signature in the upper mantle. Utilizing 3D sensitivity kernels, we invert traveltime residuals to image velocity perturbations in the upper mantle down to 1000 km depth. To test the robustness of our tomographic image we employed various resolution tests which allow us to evaluate the extent of smearing effects and help defining the optimum inversion parameters (i.e., damping and smoothness) used during the regularization of inversion process. Resolution assessment procedure includes also a detailed investigation of the effect of the crustal corrections on the final images, which strongly influenced the resolution for the mantle structures. We present detailed tomographic images of the oceanic and continental lithosphere beneath the study area. The fast lithospheric keel of the Congo Craton reaches a depth of ~250 km. Relatively low velocity perturbations have been imaged within the orogenic Damara Belt down to a depth of ~150 km, probably related to surficial suture zones and the presence of fertile material. A shallower depth extent of the lithospheric plate of ~100 km was observed beneath the ocean, consistent with plate-cooling models. In addition to tomographic images, the seismic anisotropy measurements within the upper mantle inferred from teleseismic shear waves indicate a predominant NE-SW orientation for most of the land stations. Current results indicate no evidence for a consistent signature of fossil plume.

  8. Geophysical constraints on the mantle structure of the Canadian Cordillera and North America Craton

    NASA Astrophysics Data System (ADS)

    Yu, T. C.; Currie, C. A.; Unsworth, M. J.

    2017-12-01

    In western Canada, geophysical data indicate that there is a pronounced contrast in mantle structure between the Canadian Cordillera (CC) and North America craton (NAC). The CC is characterized by lower mantle seismic velocity, higher surface heat flow, lower mantle electrical resistivity and lower effective elastic thickness. These observations are consistent with two distinct thermal regimes: the CC has hot and thin lithosphere, while the NAC lithosphere is cool and thick. The boundary between the CC and NAC coincides with the south-north trending Rocky Mountain Trench - Tintina Fault system. Earlier studies have hypothesized that the thin CC lithosphere is maintained by small-scale convection of hydrated mantle, whereas the NAC lithosphere is dry and resistant to thinning. Here, we test this hypothesis through a detailed examination of two independent data sets: (1) seismic shear-wave (Vs) tomography models and (2) magnetotelluric (MT) measurements of mantle electrical resistivity. We analyze tomography model NA07 at 50-250 km depth and create a mapping of Vs to temperature based on mantle composition (via Perple_X) and a correction for anelasticity. For the CC, the calculated temperature is relatively insensitive to mantle composition but strongly depends on the water content and anelastic correction. With a laboratory-based correction, the estimated temperature is 1150 °C at 100 km depth for wet mantle, compared to 1310 °C for dry mantle; no melt is predicted in either case. An empirical anelastic correction predicts a 115 °C hotter mantle and likely some melt. In contrast, composition is the main control on the calculated temperature for the NAC, especially at depths < 125 km. At 100 km depth, estimated temperatures are 690 °C for a pyrolite mantle and 760 °C for a dunite mantle. In the seismic analysis, there is a trade-off between temperature and water content for the CC; the observed velocities are consistent with a warm wet mantle and a hot dry mantle. To resolve this uncertainty, future work will analyze MT data, as electrical resistivity is sensitive to mantle temperature and hydration.

  9. Non-linear 3-D Born shear waveform tomography in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Panning, Mark P.; Cao, Aimin; Kim, Ahyi; Romanowicz, Barbara A.

    2012-07-01

    Southeast (SE) Asia is a tectonically complex region surrounded by many active source regions, thus an ideal test bed for developments in seismic tomography. Much recent development in tomography has been based on 3-D sensitivity kernels based on the first-order Born approximation, but there are potential problems with this approach when applied to waveform data. In this study, we develop a radially anisotropic model of SE Asia using long-period multimode waveforms. We use a theoretical 'cascade' approach, starting with a large-scale Eurasian model developed using 2-D Non-linear Asymptotic Coupling Theory (NACT) sensitivity kernels, and then using a modified Born approximation (nBorn), shown to be more accurate at modelling waveforms, to invert a subset of the data for structure in a subregion (longitude 75°-150° and latitude 0°-45°). In this subregion, the model is parametrized at a spherical spline level 6 (˜200 km). The data set is also inverted using NACT and purely linear 3-D Born kernels. All three final models fit the data well, with just under 80 per cent variance reduction as calculated using the corresponding theory, but the nBorn model shows more detailed structure than the NACT model throughout and has much better resolution at depths greater than 250 km. Based on variance analysis, the purely linear Born kernels do not provide as good a fit to the data due to deviations from linearity for the waveform data set used in this modelling. The nBorn isotropic model shows a stronger fast velocity anomaly beneath the Tibetan Plateau in the depth range of 150-250 km, which disappears at greater depth, consistent with other studies. It also indicates moderate thinning of the high-velocity plate in the middle of Tibet, consistent with a model where Tibet is underplated by Indian lithosphere from the south and Eurasian lithosphere from the north, in contrast to a model with continuous underplating by Indian lithosphere across the entire plateau. The nBorn anisotropic model detects negative ξ anomalies suggestive of vertical deformation associated with subducted slabs and convergent zones at the Himalayan front and Tien Shan at depths near 150 km.

  10. Preliminary result of P-wave speed tomography beneath North Sumatera region

    NASA Astrophysics Data System (ADS)

    Jatnika, Jajat; Nugraha, Andri Dian; Wandono

    2015-04-01

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  11. Preliminary result of P-wave speed tomography beneath North Sumatera region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jatnika, Jajat; Indonesian Meteorological, Climatological and Geophysical Agency; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was setmore » up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.« less

  12. Measurement of acoustic attenuation in South Pole ice

    NASA Astrophysics Data System (ADS)

    IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Gustafsson, L.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2011-01-01

    Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient α = 3.20 ± 0.57 km-1 between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for λ ≡ 1/α of ˜300 m with 20% uncertainty. No significant depth or frequency dependence has been found.

  13. Topography of closed depressions, scarps, and grabens in the North Tharsis region of Mars: implications for shallow crustal discontinuities and graben formation

    USGS Publications Warehouse

    Davis, Philip A.; Tanaka, Kenneth L.; Golombek, Matthew P.

    1995-01-01

    Using Viking Orbiter images, detailed photoclinometric profiles were obtained across 10 irregular depressions, 32 fretted fractures, 49 troughs and pits, 124 solitary scarps, and 370 simple grabens in the north Tharsis region of Mars. These data allow inferences to be made on the shallow crustal structure of this region. The frequency modes of measured scarp heights correspond with previous general thickness estimates of the heavily cratered and ridged plains units. The depths of the flat-floored irregular depressions (55-175 m), fretted fractures (85-890 m), and troughs and pits (60-1620 m) are also similar to scarp heights (thicknesses) of the geologic units in which these depressions occur, which suggests that the depths of these flat-floored features were controlled by erosional base levels created by lithologic contacts. Although the features have a similar age, both their depths and their observed local structural control increase in the order listed above, which suggests that the more advanced stages of associated fracturing facilitated the development of these depressions by increasing permeability. If a ground-ice zone is a factor in development of these features, as has been suggested, our observation that the depths of these features decrease with increasing latitude suggests that either the thickness of the ground-ice zone does not increase poleward or the depths of the depressions were controlled by the top of the ground-ice zone whose depth may decrease with latitude. Deeper discontinuities are inferred from fault-intersection depths of 370 simple grabens (assuming 60° dipping faults that initiate at a mechanical discontinuity) in Tempe Terra and Alba Patera and from the depths of the large, flat-floored troughs in Tempe Terra. The frequency distributions of these fault-intersection and large trough depths show a concentration at 1.0-1.6 km depth, similar to data obtained for Syria, Sinai, and Lunae Plana. The consistency of these depth data over such a large region of western Mars suggests that a discontinuity or a process that transcends local and regional geology is responsible for the formation of these features. If this discontinuity is represented by the base of the cryosphere, its uniform depth over 55° of latitude suggests that the cryosphere did not thicken poleward. Alternatively, the concentration of depths at 1.0-1.6 km may represent the upper level of noneruptive dike ascent (lateral dike propagation) of Mars, which is controlled by gravity and atmospheric pressure and magma and country-rock characteristics, and was probably controlled, in part, by ground ice. Fault-intersection depths in the north Tharsis region locally extend down to a depth of 5-7 km. The depth data between 2 and 3 km are attributed to the discontinuity at the interface of megaregolith and basement or to the upper limit of noneruptive dike ascent of magma with a high volatile content. Intersection depths greater than 3 km, which were found at Alba Patera, may be due to the megaregolith-basement discontinuity, which was buried and depressed by volcanic loading, or to the upper level of noneruptive dike ascent of magma with a low volatile content. The near absence of narrow simple grabens with fault-initiation depths less than 0.6-1.0 km in this study area, as well as in most of western Mars, suggests that this depth represents the minimum depth that normal faults can initiate; at shallower depths tension cracks or joints would form instead. This hypothesis is supported by the application of the Griffith failure criterion to this minimum depth of normal fault initiation, which suggests that shallow crustal materials have a tensile strength of 2-4 MPa throughout most of western Mars, in close agreement with previous estimates of tensile strength of martian basaltic rock.

  14. Lower crustal earthquakes in the North China Basin and implications for crustal rheology

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; Dong, Y.; Ni, S.; LI, Z.

    2017-12-01

    The North China Basin is a Mesozoic-Cenozoic continental rift basin on the eastern North China Craton. It is the central region of craton destruction, also a very seismically active area suffering severely from devastating earthquakes, such as the 1966 Xingtai M7.2 earthquake, the 1967 Hejian M6.3 earthquake, and the 1976 Tangshan M7.8 earthquake. We found remarkable discrepancies of depth distribution among the three earthquakes, for instance, the Xingtai and Tangshan earthquakes are both upper-crustal earthquakes occurring between 9 and 15 km on depth, but the depth of the Hejian earthquake was reported of about 30 72 km, ranging from lowermost crust to upper mantle. In order to investigate the focal depth of earthquakes near Hejian area, we developed a method to resolve focal depth for local earthquakes occurring beneath sedimentary regions by P and S converted waves. With this method, we obtained well-resolved depths of 44 local events with magnitudes between M1.0 and M3.0 during 2008 to 2016 at the Hejian seismic zone, with a mean depth uncertainty of about 2 km. The depth distribution shows abundant earthquakes at depth of 20 km, with some events in the lower crust, but absence of seismicity deeper than 25 km. In particular, we aimed at deducing some constraints on the local crustal rheology from depth-frequency distribution. Therefore, we performed a comparison between the depth-frequency distribution and the crustal strength envelop, and found a good fit between the depth profile in the Hejian seismic zone and the yield strength envelop in the Baikal Rift Systems. As a conclusion, we infer that the seismogenic thickness is 25 km and the main deformation mechanism is brittle fracture in the North China Basin . And we made two hypotheses: (1) the rheological layering of dominant rheology in the North China Basin is similar to that of the Baikal Rift Systems, which can be explained with a quartz rheology at 0 10 km depth and a diabase rheology at 10 35 km depth; (2) the temperature is moderate in the seismogenic zone of crust and relative high below 25 km. We also suggest that, many accurately resolved earthquake locations can shed light on the nature of the crustal rheology locally, and that our method can be employed in other sedimentary regions which are seismically active.

  15. Constraints on a plume in the mid-mantle beneath the Iceland region from seismic array data

    USGS Publications Warehouse

    Pritchard, M.J.; Foulger, G.R.; Julian, B.R.; Fyen, J.

    2000-01-01

    Teleseismic P waves passing through low-wave-speed bodies in the mantle are refracted, causing anomalies in their propagation directions that can be measured by seismometer arrays. Waves from earthquakes in the eastern Pacific and western North America arriving at the NORSAR array in Norway and at seismic stations in Scotland pass beneath the Iceland region at depths of ~ 1000-2000 km. Waves arriving at NORSAR have anomalous arrival azimuths consistent with a low-wave-speed body at a depth of ~ 1500 km beneath the Iceland-Faeroe ridge with a maximum diameter of ~ 250 km and a maximum wave-speed contrast of ~ 1.5 per cent. This agrees well with whole-mantle tomography results, which image a low-wave-speed body at this location with a diameter of ~ 500 km and a wave-speed anomaly of ~ 0.5 per cent, bearing in mind that whole-mantle tomography, because of its limited resolution, broadens and weakens small anomalies. The observations cannot resolve the location of the body, and the anomaly could be caused in whole or in part by larger bodies farther away, for example by a body imaged beneath Greenland by whole-mantle tomography.

  16. Instability induced by orthopyroxene phase transformation and implications for deep earthquakes below 300 km depth

    NASA Astrophysics Data System (ADS)

    Shi, F.; Wang, Y.; Zhang, J.; Yu, T.; Zhu, L.

    2017-12-01

    Global earthquake occurrence rate falls exponentially from the surface to 300 km depth, and then peaks again near 500 km depth. Unassisted frictional sliding will not function at depth below the brittle-ductile transition depth (10-15 km) because increasing pressure trends to inhibit frictional sliding and increasing temperature promotes ductile flow. Two main hypotheses have been proposed and demonstrated in the laboratory for the generation of earthquakes at depth, including dehydration embrittlement (e.g., Rayleigh and Paterson, 1965) for intermediate-depth (70-300 km) earthquakes, metastable olivine phase transformation induced anticrack faulting (e.g., Green and Burnley, 1989) for deep-focus (410-660 km) earthquakes. However, the possibility of earthquake generation by pyroxene phase transformation, another important constituent mineral in the upper mantle and transition zone has never been explored in the laboratory. Here we report axial deformation experiments on hypersthene [(Mg,Fe)SiO3], which has the same structure as enstatite, with the phase transformation to high-pressure monoclinic phase (same structure as the high-pressure clinoenstatite) occurring at lower pressures, in a deformation-DIA (D-DIA) apparatus interfaced with an acoustic emission (AE) monitoring system. Our results show that hypersthene deformed within its stability field (<2GPa and 1000 oC) behaves in a ductile manner without any AE activity. In contrast, numerous AE events were observed during the deformation of metastable hyposthene in its high pressure monoclinic phase field (>5GPa, 1000-1300 oC). This finding provides an additional viable mechanism for earthquakes at depths >300km and moonquakes at 700 - 1200 km depths. Reference: Barcheck, C. Grace, et al. EPSL,349 (2012): 153-160;van Keken, Peter E., et al.JGR,116.B1 (2011);Green II, H. W., and P. C. Burnley. Nature 341.6244 (1989): 733-737.

  17. VS of the uppermost crust structure of the Campi Flegrei caldera (southern Italy) from ambient noise Rayleigh wave analysis

    NASA Astrophysics Data System (ADS)

    Costanzo, M. R.; Nunziata, C.; Strollo, R.

    2017-11-01

    Shear wave velocities (VS) are defined in the uppermost 1-2 km of the Campi Flegrei caldera through the non-linear inversion of the group velocity dispersion curves of fundamental-mode Rayleigh waves extracted from ambient noise cross-correlations between two receivers. Noise recordings, three months long, at 12 seismic stations are cross-correlated between all couples of stations. The experiment provided successful results along 54 paths (inter-stations distance), of which 27 sampled a depth > 1 km. VS contour lines are drawn from 0.06 km b.s.l. to 1 km depth b.s.l. and show difference between the offshore (gulf of Pozzuoli and coastline) and the onshore areas. At 0.06 km b.s.l., the gulf of Pozzuoli and the coastline are characterized by VS of 0.3-0.5 km/s and of 0.5-0.7 km/s, respectively. Such velocities are typical of Neapolitan pyroclastic soils and fractured or altered tuffs. The inland shows VS in the range 0.7-0.9 km/s, typical of Neapolitan compact tuffs. Velocities increase with depth and, at 1 km depth b.s.l., velocities lower than 1.5 km/s are still present in the gulf and along the coastline while velocities higher than 1.9 km/s characterize the eastern sector (grossly coincident with the Neapolitan Yellow Tuff caldera rim), the S. Vito plain and the area between Solfatara and SW of Astroni. Such features are much more evident along two cross-sections drawn in the offshore and onshore sectors by integrating our VS models with literature data. Our models join previous noise cross-correlation studies at greater scale at depths of 0.7-0.8 km, hence the picture of the Campi Flegrei caldera is shown up to a depth of 15 km. VS of about 1.7 km/s, corresponding to compression velocities (VP) of about 3 km/s (computed by using the VP/VS ratio resulted in the inversion), are found at depths of 1.1 km, in the centre of the gulf of Pozzuoli, and at a depth of about 0.7 km b.s.l. onshore. An increment of VS velocity ( 1.9-2.0 km/s) is locally observed onshore which might be attributed to a layer of tuffs and tuffites interbedded with thin lava beds, according to the correlation of VS with stratigraphies in the deep drillings of S. Vito.

  18. Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle

    USGS Publications Warehouse

    Foulger, G.R.; Pritchard, M.J.; Julian, B.R.; Evans, J.R.; Allen, R.M.; Nolet, G.; Morgan, W.J.; Bergsson, B.H.; Erlendsson, P.; Jakobsdottir, S.; Ragnarsson, S.; Stefansson, R.; Vogfjord, K.

    2001-01-01

    We report the results of the highest-resolution teleseismic tomography study yet performed of the upper mantle beneath Iceland. The experiment used data gathered by the Iceland Hotspot Project, which operated a 35-station network of continuously recording, digital, broad-band seismometers over all of Iceland 1996-1998. The structure of the upper mantle was determined using the ACH damped least-squares method and involved 42 stations, 3159 P-wave, and 1338 S-wave arrival times, including the phases P, pP, sP, PP, SP, PcP, PKIKP, pPKIKP, S, sS, SS, SKS and Sdiff. Artefacts, both perceptual and parametric, were minimized by well-tested smoothing techniques involving layer thinning and offset-and-averaging. Resolution is good beneath most of Iceland from ??? 60 km depth to a maximum of ??? 450 km depth and beneath the Tjornes Fracture Zone and near-shore parts of the Reykjanes ridge. The results reveal a coherent, negative wave-speed anomaly with a diameter of 200-250 km and anomalies in P-wave speed, Vp, as strong as -2.7 per cent and in S-wave speed, Vs, as strong as -4.9 per cent. The anomaly extends from the surface to the limit of good resolution at ??? 450 km depth. In the upper ??? 250 km it is centred beneath the eastern part of the Middle Volcanic Zone, coincident with the centre of the ??? 100 mGal Bouguer gravity low over Iceland, and a lower crustal low-velocity zone identified by receiver functions. This is probably the true centre of the Iceland hotspot. In the upper ??? 200 km, the low-wave-speed body extends along the Reykjanes ridge but is sharply truncated beneath the Tjornes Fracture Zone. This suggests that material may flow unimpeded along the Reykjanes ridge from beneath Iceland but is blocked beneath the Tjornes Fracture Zone. The magnitudes of the Vp, Vs and Vp/Vs anomalies cannot be explained by elevated temperature alone, but favour a model of maximum temperature anomalies <200 K, along with up to ??? 2 per cent of partial melt in the depth range ??? 100-300 km beneath east-central Iceland. The anomalous body is approximately cylindrical in the top 250 km but tabular in shape at greater depth, elongated north-south and generally underlying the spreading plate boundary. Such a morphological change and its relationship to surface rift zones are predicted to occur in convective upwellings driven by basal heating, passive upwelling in response to plate separation and lateral temperature gradients. Although we cannot resolve structure deeper than ??? 450 km, and do not detect a bottom to the anomaly, these models suggest that it extends no deeper than the mantle transition zone. Such models thus suggest a shallow origin for the Iceland hotspot rather than a deep mantle plume, and imply that the hotspot has been located on the spreading ridge in the centre of the north Atlantic for its entire history, and is not fixed relative to other Atlantic hotspots. The results are consistent with recent, regional full-thickness mantle tomography and whole-mantle tomography images that show a strong, low-wave-speed anomaly beneath the Iceland region that is confined to the upper mantle and thus do not require a plume in the lower mantle. Seismic and geochemical observations that are interpreted as indicating a lower mantle, or core-mantle boundary origin for the North Atlantic Igneous Province and the Iceland hotspot should be re-examined to consider whether they are consistent with upper mantle processes.

  19. Electrical conductivity of the Earth's mantle after one year of SWARM magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Civet, François; Thebault, Erwan; Verhoeven, Olivier; Langlais, Benoit; Saturnino, Diana

    2015-04-01

    We present a global EM induction study using L1b Swarm satellite magnetic field measurements data down to a depth of 2000 km. Starting from raw measurements, we first derive a model for the main magnetic field, correct the data for a lithospheric field model, and further select the data to reduce the contributions of the ionospheric field. These computations allowed us to keep a full control on the data processes. We correct residual field from outliers and estimate the spherical harmonic coefficients of the transient field for periods between 2 and 256 days. We used full latitude range and all local times to keep a maximum amount of data. We perform a Bayesian inversion and construct a Markov chain during which model parameters are randomly updated at each iteration. We first consider regular layers of equal thickness and extra layers are added where conductivity contrast between successive layers exceed a threshold value. The mean and maximum likelihood of the electrical conductivity profile is then estimated from the probability density function. The obtained profile particularly shows a conductivity jump in the 600-700 km depth range, consistent with the olivine phase transition at 660 km depth. Our study is the first one to show such a conductivity increase in this depth range without any a priori informations on the internal strucutres. Assuming a pyrolitic mantle composition, this profile is interpreted in terms of temperature variations in the depth range where the probability density function is the narrowest. We finally obtained a temperature gradient in the lower mantle close to adiabatic.

  20. The P wavespeed structure in the mantle to 800 km depth below the Philippines region: geodynamic implications

    NASA Astrophysics Data System (ADS)

    Wright, C.

    2009-03-01

    P waves from earthquakes south of Taiwan, recorded by the BATS seismic array and CWB seismic network, were used define the P wavespeed structure between depths of 100 and 800 km below the Philippines region. The presence of a low wavespeed zone in the upper mantle is inferred, although the details are unclear. Wavespeeds in the uppermost mantle are low, as expected for seismic energy propagating within an oceanic plate. The estimated depths of the 410- and 660-km discontinuities are 325 and 676 km respectively. The unusually shallow depth of the upper discontinuity below and to the east of Luzon is inferred by clearly resolving the travel-time branch produced by refraction through the transition zone. A possible explanation for the northern part of the region covered is that seismic energy reaches its maximum depth within or close to the cool, subducted oceanic South China Sea slab where subduction has been slow and relatively recent. Further south, however, the presence of a broken remnant of the South China Sea slab, formed during a period of shallower subduction, is suggested at depths below 300 km to explain the broad extent of the elevated 410-km discontinuity. The 660-km discontinuity is slightly deeper than usual, implying that low temperatures persist to lower mantle depths. The wavespeed gradients within the transition zone between depths of 450 and 610 km are higher than those predicted by both the pyrolite and piclogite models of the mantle, possibly due to the presence of water in the transition zone.

  1. Structure of the crust and upper mantle beneath the Balearic Islands (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Banda, E.; Ansorge, J.; Boloix, M.; Córdoba, D.

    1980-09-01

    Data are presented from deep seismic sounding along the strike of the Balearic Islands carried out in 1976. The interpretation of the data gives the following results: A sedimentary cover of 4 km around Ibiza to 7 km under Mallorca overlies the crystalline basement. This basement with a P-wave velocity of 6.0 km/s at the top reaches a depth of at least 15 km under Ibiza and 17 km under Mallorca with an increase to 6.1 km/s at these depths. The crust-mantle boundary lies at a depth of 20 km and 25 km, respectively. A well documented upper-mantle velocity of 7.7 km/s is found along the entire profile. The Moho rises to a depth of 20 km about 30 km north of Mallorca and probably continues rising towards the center of the North Balearic Sea. The newly deduced crustal structure together with previously determined velocity-depth sections in the North Balearic Sea as well as heat flow and aeromagnetic data can be interpreted as an extended rift structure caused by large-scale tensional processes in the upper mantle. The available data suggest that the entire zone from the eastern Alboran Sea to the area north of the Balearic Islands represents the southeastern flank of this rift system. In this model the provinces of Spain along the east coast would represent the northwestern rift flank.

  2. Thermal Aging of Oceanic Asthenosphere

    NASA Astrophysics Data System (ADS)

    Paulson, E.; Jordan, T. H.

    2013-12-01

    To investigate the depth extent of mantle thermal aging beneath ocean basins, we project 3D Voigt-averaged S-velocity variations from an ensemble of global tomographic models onto a 1x1 degree age-based regionalization and average over bins delineated by equal increments in the square-root of crustal age. From comparisons among the bin-averaged S-wave profiles, we estimate age-dependent convergence depths (minimum depths where the age variations become statistically insignificant) as well as S travel times from these depths to a shallow reference surface. Using recently published techniques (Jordan & Paulson, JGR, doi:10.1002/jgrb.50263, 2013), we account for the aleatory variability in the bin-averaged S-wave profiles using the angular correlation functions of the individual tomographic models, we correct the convergence depths for vertical-smearing bias using their radial correlation functions, and we account for epistemic uncertainties through Bayesian averaging over the tomographic model ensemble. From this probabilistic analysis, we can assert with 90% confidence that the age-correlated variations in Voigt-averaged S velocities persist to depths greater than 170 km; i.e., more than 100 km below the mean depth of the G discontinuity (~70 km). Moreover, the S travel time above the convergence depth decays almost linearly with the square-root of crustal age out to 200 Ma, consistent with a half-space cooling model. Given the strong evidence that the G discontinuity approximates the lithosphere-asthenosphere boundary (LAB) beneath ocean basins, we conclude that the upper (and probably weakest) part of the oceanic asthenosphere, like the oceanic lithosphere, participates in the cooling that forms the kinematic plates, or tectosphere. In other words, the thermal boundary layer of a mature oceanic plate appears to be more than twice the thickness of its mechanical boundary layer. We do not discount the possibility that small-scale convection creates heterogeneities in the oceanic upper mantle; however, the large-scale flow evidently advects these small-scale heterogeneities along with the plates, allowing the upper part of the asthenosphere to continue cooling with lithospheric age. The dominance of this large-scale horizontal flow may be related to the high stresses associated with its channelization in a thin (~100 km) asthenosphere, as well as the possible focusing of the subtectospheric strain in a low-viscosity channel immediately above the 410-km discontinuity. These speculations aside, the observed thermal aging of oceanic asthenosphere is inconsistent with a tenet of plate tectonics, the LAB hypothesis, which states that lithospheric plates are decoupled from deeper mantle flow by a shear zone in the upper part of the asthenosphere.

  3. Finite Frequency Traveltime Tomography of Lithospheric and Upper Mantle Structures beneath the Cordillera-Craton Transition in Southwestern Canada

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Gu, Y. J.; Hung, S. H.

    2014-12-01

    Based on finite-frequency theory and cross-correlation teleseismic relative traveltime data from the USArray, Canadian National Seismograph Network (CNSN) and Canadian Rockies and Alberta Network (CRANE), we present a new tomographic model of P-wave velocity perturbations for the lithosphere and upper mantle beneath the Cordillera-cration transition region in southwestern Canada. The inversion procedure properly accounts for the finite-volume sensitivities of measured travel time residuals, and the resulting model shows a greater resolution of upper mantle velocity heterogeneity beneath the study area than earlier approaches based on the classical ray-theoretical approach. Our model reveals a lateral change of P velocities from -0.5% to 0.5% down to ~200-km depth in a 50-km wide zone between the Alberta Basin and the foothills of the Rocky Mountains, which suggests a sharp structural gradient along the Cordillera deformation front. The stable cratonic lithosphere, delineated by positive P-velocity perturbations of 0.5% and greater, extends down to a maximum depth of ~180 km beneath the Archean Loverna Block (LB). In comparison, the mantle beneath the controversial Medicine Hat Block (MHB) exhibits significantly higher velocities in the uppermost mantle and a shallower (130-150 km depth) root, generally consistent with the average depth of the lithosphere-asthenosphere boundary beneath Southwest Western Canada Sedimentary Basin (WCSB). The complex shape of the lithospheric velocities under the MHB may be evidence of extensive erosion or a partial detachment of the Precambrian lithospheric root. Furthermore, distinct high velocity anomalies in LB and MHB, which are separated by 'normal' mantle block beneath the Vulcan structure (VS), suggest different Archean assembly and collision histories between these two tectonic blocks.

  4. Migrating slow slip detected by slow and repeating earthquakes along the Nankai trough, Japan

    NASA Astrophysics Data System (ADS)

    Uchida, N.; Obara, K.; Takagi, R.; Asano, Y.

    2017-12-01

    In the western part of the Nankai trough region, successive occurrences of deep non-volcanic tremors and shallow very low frequency earthquakes (VLFEs) associated with long-term slow slip events (SSEs) are reported in 2003 and 2010. To understand the link between the two seismic slow earthquakes, we identify small repeating earthquake in and around the region from the waveform similarity of earthquakes observed by NIED Hi-net. The result shows the repeaters are located in 15-30 km depth that is in between the depth range of the shallow VLFEs (depth <=15 km) and deep SSEs (depth>= 25km). They are also located outside of the source area of the 1946 Mw8.3 Nankai earthquake, consistent with the hypothesis that repeaters occur due to stress concentration to a locked patch by aseismic slip (creep) in the surrounding area. The long-term trend of aseismic slip estimated from the repeaters shows that the slip rate were faster during 2-3 years period before the 2003 and 2010 episodes. We also found short-term (days to month) accelerations of aseismic slip during the episode of 2010 that migrated toward north. The migration detected from repeaters follows shallow migration of VLFEs and precedes the deep migration of tremors. Therefore we consider that during the period of the long-term SSE of 3 years period, short-term slow slip migrated about 300 km length in 1 month from shallower and south part to deeper and north part of the plate boundary near the edge of the slip area of the Nankai earthquake. Such long-distance migration probably related to large-scale locking of plate boundary that is responsible to the Nankai earthquake and the interseismic stress concentration to the locked area.

  5. High resolution images of the mid- to lower-crust beneath the North Anatolian Fault obtained using the scattered seismic wavefield

    NASA Astrophysics Data System (ADS)

    Thompson, D. A.; Rost, S.; Houseman, G.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Rondenay, S.; Frederiksen, A. W.

    2014-12-01

    Deformation along major strike-slip faults is typically focussed into narrow damage zones at the surface, but the distribution at greater depths is more enigmatic. For instance, deformation in the lower crust beneath these faults is often attributed to much broader ductile shear zones. Deciphering how strain is distributed throughout the crust and lithospheric mantle is important because it has ramifications on the earthquake loading cycle. In order to better understand the structure of these systems at depth, we investigate the North Anatolian Fault Zone (NAFZ) as part of a multidisciplinary project entitled FaultLab. This fault system extends ~1200km across Turkey and has shown a clear west-east progression in seismicity over the last century, culminating in 2 catastrophic earthquakes located close to the population centers of Izmit and Duzce in 1999. In this contribution, we will present new data from a dense seismic array (Dense Array for North Anatolia, DANA, a 6x11 grid with a nominal station spacing of 7km) located across a part of the ruptured segment of the Izmit earthquake. Using the techniques of teleseismic scattering tomography and scattering migration, the excellent resolution afforded by DANA highlights sharp (< 5km) lateral variations in structure at mid- to lower-crustal depths (~20-25 km) across two branches of the NAFZ. This suggests that deformation zones between distinct crustal blocks remain narrow at these depths. Integrating complementary results from other parts of the FaultLab project (satellite geodesy, geodynamical modelling, structural geology), the results appear to be consistent with postseismic deformation being accommodated through afterslip on the deep extension of a narrow fault zone as opposed to a broad ductile region beneath the seismogenic extent of the fault.

  6. Spatial averaging of oceanic rainfall variability using underwater sound: Ionian Sea rainfall experiment 2004.

    PubMed

    Nystuen, Jeffrey A; Amitai, Eyal; Anagnostou, Emmanuel N; Anagnostou, Marios N

    2008-04-01

    An experiment to evaluate the inherent spatial averaging of the underwater acoustic signal from rainfall was conducted in the winter of 2004 in the Ionian Sea southwest of Greece. A mooring with four passive aquatic listeners (PALs) at 60, 200, 1000, and 2000 m was deployed at 36.85 degrees N, 21.52 degrees E, 17 km west of a dual-polarization X-band coastal radar at Methoni, Greece. The acoustic signal is classified into wind, rain, shipping, and whale categories. It is similar at all depths and rainfall is detected at all depths. A signal that is consistent with the clicking of deep-diving beaked whales is present 2% of the time, although there was no visual confirmation of whale presence. Co-detection of rainfall with the radar verifies that the acoustic detection of rainfall is excellent. Once detection is made, the correlation between acoustic and radar rainfall rates is high. Spatial averaging of the radar rainfall rates in concentric circles over the mooring verifies the larger inherent spatial averaging of the rainfall signal with recording depth. For the PAL at 2000 m, the maximum correlation was at 3-4 km, suggesting a listening area for the acoustic rainfall measurement of roughly 30-50 km(2).

  7. Variation in crustal structure in Iran and the surrounding region

    NASA Astrophysics Data System (ADS)

    Rham, D.; Tatar, M.; Ashtiany, M.; Mokhtari, M.; Priestley, K.; Paul, A.

    2007-12-01

    We present a model for the topography of the Moho discontinuity for Iran and its surrounding regions. This is produced using data from field deployments within Iran by the University of Cambridge (UK) and the Universite Joseph-Fourier (FRA) in conjunction with International Institute of Earthquake Engineering and Seismology (Iran), in addition to data from IRIS and Geofone. We determine tomographic group velocity maps for periods between 10 and 60 s from multiple filter analysis of ~5500 seismograms. Because of the dense path coverage, these images have substantially higher lateral resolution for this region than is currently available from global and regional group velocity studies. Joint inversion of receiver functions and Rayleigh wave dispersion give accurate crustal velocity structures at 96 sites within Iran These provide a constraint for the less sharp crustal velocity profile produced by inverting the Rayleigh wave dispersion curve across all of Iran. We observe variations in the crustal thickness across the region, consistent with the surface topography. The thickest crust (55-60 km) is found beneath the central Zagros mountains, with the crust in the remainder of Iran having a thicknesses of 40-50 km. No significant increase in Moho depth is seen beneath the Alborz or Kopet Dagh mountains. The structure of the South Caspian Basin is presented with a different structure to that found in previous studies, with a crustal thickness of 50 km in the west, and beneath the Caucasus and Talesh mountains, in the middle part of the basin, over the course of the ~100km, this decreases to 40km, and continues to 35 km beneath the Turkmen Platform. Comparisons are also made between the joint inversion results, and accurate hypocentre depths for regional earthquakes. This shows most events occur in the upper crystalline crust (~10-20km depth), with few in the lowest velocity layer. Almost no events are located in the lower crust, and only in the Makran and Aspheron- Balkhan Sill do earthquakes appear in the Upper Mantle.

  8. A simple Bouguer gravity anomaly map of southwestern Saudi Arabia and an initial interpretation

    USGS Publications Warehouse

    Gettings, M.E.

    1983-01-01

    Approximately 2,200 gravity stations on a 10-km2 grid were used to construct a simple Bouguer gravity anomaly map at 1:2,000,000 scale along a 150-km-wide by 850-km-long strip of the Arabian Peninsula from Sanam, southwest of Ar Riyad, through the Farasan Islands and including offshore islands, the coastal plain, and the Hijaz-Asir escarpment from Jiddah to the Yemen border. On the Precambrian Arabian Shield, local positive gravity anomalies are associated with greenstone belts, gneiss domes, and the Najd fault zones. Local negative gravity anomalies correlate with granitic plutonic rocks. A steep gravity gradient of as much as 4 mgal-km-1 marks the continental margin on the coastal plain near the southwestern end of the strip. Bouguer gravity anomaly values range from -10 to +40 mgal southwest of this gradient and from -170 to -100 mgal in a 300-km-wide gravity minimum northeast of the gradient. Farther northeast, the minimum is terminated by a regional gradient of about 0.1 mgal-km-1 that increases toward the Arabian Gulf. The regional gravity anomaly pattern has been modeled by using seismic refraction and Raleigh wave studies, heat-flow measurements, and isostatic considerations as constraints. The model is consistent with the hypothesis of upwelling of hot mantle material beneath the Red Sea and lateral mantle flow beneath the Arabian plate. The model yields best-fitting average crustal densities of 2.80 g-cm-3 (0-20 km depth) and 3.00 g-cm-3 (20-40 km depth) southwest of the Nabitah suture zone and 2.74 g-cm-3 (0-20 km depth) and 2.94 g-cm-3 (20-40 km depth) northeast of the suture zone. The gravity model requires that the crust be about 20 km thick at the continental margin and that the lower crust between the margin and Bishah (lat 20? N., long 42.5? E.) be somewhat denser than the lower crust to the northeast. Detailed correlations between 1:250,000- and 1:500,000-scale geologic maps and the gravity anomaly map suggest that the greenstone belts associated with gravity highs contain a large proportion of gabbroic and dioritic intrusive rocks and that the bulk density of the upper crust associated with some of the batholithic complexes has been lowered by the large-scale intrusion of granitic material at depth, as well as by that exposed at the surface. A comparison of known base and precious metals occurrences with the Bouguer gravity anomaly field shows, in some cases, a correlation between such occurrences and the features of the gravity anomaly map. Several areas were identified between known mineral occurrences along gravity-defined structures that may contain mineral deposits if the lithologic environment is favorable.

  9. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea

    NASA Astrophysics Data System (ADS)

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian

    2016-12-01

    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  10. CAFE: a seismic investigation of water percolation in the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Rondenay, S.; Abers, G. A.; Creager, K. C.; Malone, S. D.; MacKenzie, L.; Zhang, Z.; van Keken, P. E.; Wech, A. G.; Sweet, J. R.; Melbourne, T. I.; Hacker, B. R.

    2008-12-01

    Subduction zones transport water into the Earth's interior. The subsequent release of this water through dehydration reactions may trigger intraslab earthquakes and arc volcanism, regulate slip on the plate interface, control plate buoyancy, and regulate the long-term budget of water on the planet's surface. As part of Earthscope, we have undertaken an experiment named CAFE (Cascadia Arrays for Earthscope) seeking to better constrain these effects in the Cascadia subduction zone. The basic experiment has four components: (1) a 47-element broadband imaging array of Flexible Array instruments integrated with Bigfoot; (2) three small-aperture seismic arrays with 15 additional short-period instruments near known sources of Episodic Tremor and Slip (ETS) events; (3) analysis of the PBO and PANGA GPS data sets to define the details of episodic slip events; and (4) integrative modeling with complementary constraints from petrology and geodynamics. Here, we present a summary of the results that have been obtained to date by CAFE, with a focus on high-resolution seismic imaging. A 250 km-long by 120 km-deep seismic profile extending eastward from the Washington coast was generated by 2-D Generalized Radon Transform Inversion of the broadband data. It images the subducted crust as a shallow-dipping, low-velocity layer from 20km depth beneath the coast to 40km depth beneath the forearc. The termination of the low-velocity layer is consistent with the depth at which hydrated metabasalts of the subducted crust are expected to undergo eclogitization, a reaction that is accompanied by the release of water and an increase in seismic velocities. Slab earthquakes are located in both the oceanic crust and mantle at depths <40 km, and exclusively in the oceanic mantle at greater depth, as would be expected if they are related to slab dehydration. Two ETS events have occurred during the course of the deployment. They were precisely located and are confined to the region above which the crust exhibits low-velocities and is believed to undergo progressive dehydration, further supporting the proposition that water plays a role in ETS.

  11. Three-dimensional imaging of the S-velocity structure for the crust and the upper mantle beneath the Arabian Sea from Rayleigh wave analysis

    NASA Astrophysics Data System (ADS)

    Corchete, V.

    2017-04-01

    A 3D imaging of S-velocity for the Arabian Sea crust and upper mantle structure is presented in this paper, determined by means of Rayleigh wave analysis, for depths ranging from zero to 300 km. The crust and upper mantle structure of this region of the earth never has been the subject of a surface wave tomography survey. The Moho map performed in the present study is a new result, in which a crustal thickening beneath the Arabian Fan sediments can be observed. This crustal thickening can be interpreted as a quasi-continental oceanic transitional structure. A crustal thickness of up to 20 km also can be observed for the Murray Ridge system in this Moho map. This crustal thickening can be due to that the Murray Ridge System consists of Indian continental crust. This continental crust is extremely thinned to the southwest of this region, as shown in this Moho map. This area can be interpreted as oceanic in origin. In the depth range from 30 to 60 km, the S-velocity presents its lower values at the Carlsberg Ridge region, because it is the younger region of the study area. In the depth range from 60 to 105 km of depth, the S-velocity pattern is very similar to that shown for the previous depth range, except for the regions in which the asthenosphere is reached, for these regions appear a low S-velocity pattern. The lithosphere-asthenosphere boundary (LAB), or equivalently the lithosphere thickness, determined in the present study is also a new result, in which the lithosphere thickness for the Arabian Fan can be estimated in 60-70 km. The lower lithospheric thickness observed in the LAB map, for the Arabian Fan, shows that this region may be in the transition zone between continental and oceanic structure. Finally, a low-velocity zone (LVZ) has been determined, for the whole study area, located between the LAB and the boundary of the asthenosphere base (or equivalently the lithosphere-asthenosphere system thickness). The asthenosphere-base map calculated in the present study is also a new result.

  12. A quantitative analysis of global intermediate and deep seismicity

    NASA Astrophysics Data System (ADS)

    Ruscic, Marija; Becker, Dirk; Le Pourhiet, Laetitita; Agard, Philippe; Meier, Thomas

    2017-04-01

    The seismic activity in subduction zones around the world shows a large spatial variabilty with some regions exhibiting strong seismic activity down to depths of almost 700km while in other places seismicity terminates at depths of about 200 or 300 km. Also the decay of the number of seismic events or of the seismic moment with depth is more pronounced in some regions than in others. The same is true for the variability of the ratio of large to small events (the b-value of the Gutenberg-Richter relation) that is varying with depth. These observations are often linked to parameters of the downgoing plate like age or subduction velocity. In this study we investigate a subset of subduction zones utilizing the revised ISC catalogue of intermediate and deep seismicity to determine statistical parameters well suited to describe properties of intermediate deep and deep events. The seismicity is separated into three depth intervals from 50-175km, 175-400km and >400km based on the depth at which the plate contact decouples, the observed nearly exponential decay of the event rate with depth and the supposed depth of phase transition at 410 km depth where also an increase of the event number with depth is observed. For estimation of the b-value and the exponential decay with depth, a restriction of the investigated time interval to the period after 1997 produced significantly better results indicating a globally homogeneous magnitude scale with the magnitude of completeness of about Mw 5. On a global scale the b-value decreases with depth from values of about 1 at 50-175km to values of slightly below 0.8 for events below 400km. Also, there is a slight increase of the b-value with the age of the subducting plate. These changes in the b-value with depth and with age may indicate a varying fragmentation of the slab. With respect to the ratio of the seismic moment between deeper and shallower parts of the subduction zones a dependence on the age is apparent with older slabs exhibiting higher ratios indicating stronger hydration of older slabs and consequently stronger seismic activity at depth in older and thicker slabs. Furthermore, older slabs show the tendency to larger b-values. This indicates stronger fragmentation of older slabs favoring smaller events. Between 50 km and 300 km depth, seismicity in subduction zones decays nearly exponentially with depth. However, the majority of subduction zones show between about 60 km and 100 km lower seismic activity than expected by an exponential decay. This observation correlates well with findings from petrological studies that rocks are rarely scraped off from the downgoing plate at these depths indicating low seismic coupling and low stresses at the plate interface in a depth range below the seismogenic zone and above 100 km depth were dehydration reactions become virulent. Interestingly, the percentage of this deficit becomes larger with plate age for event frequency (reduced number of events), but decreases for moment release (events have larger magnitudes). It is observed that the forearc high is located above the plate interface with reduced seismic coupling. The forearc high is thus an indication of upward directed return flow along the seismically decoupled plate interface. In addition, it is found that the topography of the forearc high is larger above shallow dipping slabs. A correlation of the depth dependent seismic behavior with the subduction or trench velocity is not observed for the investigated subduction zones. Plate age seems to be the dominating factor for properties of intermediate deep and deep seismicity.

  13. Array-Based Receiver Function Analysis of the Subducting Juan de Fuca Plate Beneath the Mount St. Helens Region and its Implications for Subduction Geometry and Metamorphism

    NASA Astrophysics Data System (ADS)

    Mann, M. E.; Abers, G. A.; Creager, K. C.; Ulberg, C. W.; Crosbie, K.

    2017-12-01

    Mount St. Helens (MSH) is unusual as a prolific arc volcano located 50 km towards the forearc of the main Cascade arc. The iMUSH (imaging Magma Under mount St. Helens) broadband deployment featured 70 seismometers at 10-km spacing in a 50-km radius around MSH, spanning a sufficient width for testing along-strike variation in subsurface geometry as well as deep controls on volcanism in the Cascade arc. Previous estimates of the geometry of the subducting Juan de Fuca (JdF) slab are extrapolated to MSH from several hundred km to the north and south. We analyze both P-to-S receiver functions and 2-D Born migrations of the full data set to locate the upper plate Moho and the dip and depth of the subducting slab. The strongest coherent phase off the subducting slab is the primary reverberation (Ppxs; topside P-to-S reflection) from the Moho of the subducting JdF plate, as indicated by its polarity and spatial pattern. Migration images show a dipping low velocity layer at depths less than 50 km that we interpret as the subducting JdF crust. Its disappearance beyond 50 km depth may indicate dehydration of subducting crust or disruption of high fluid pressures along the megathrust. The lower boundary of the low velocity zone, the JdF Moho, persists in the migration image to depths of at least 90 km and is imaged at 74 km beneath MSH, dipping 23 degrees. The slab surface is 68 km beneath MSH and 85 km beneath Mount Adams volcano to the east. The JdF Moho exhibits 10% velocity contrasts as deep as 85 km, an observation difficult to reconcile with simple models of crustal eclogitization. The geometry and thickness of the JdF crust and upper plate Moho is consistent with similar transects of Cascadia and does not vary along strike beneath iMUSH, indicating a continuous slab with no major disruption. The upper plate Moho is clear on the east side of the array but it disappears west of MSH, a feature we interpret as a result of both serpentinization of the mantle wedge and a westward increase in wavespeed of the continental crust. The seismically-imaged surface of the subducting JdF slab at 68 km beneath MSH is the shallowest yet documented beneath an arc volcano. Combined with the inference of serpentinization in the mantle wedge, this geometry presents a problem in that vertical mantle melt migration seems unfeasible, yet mantle melts contribute to erupted MSH magmas.

  14. Nonlinear 1D and 2D waveform inversions of SS precursors and their applications in mantle seismic imaging

    NASA Astrophysics Data System (ADS)

    Dokht, R.; Gu, Y. J.; Sacchi, M. D.

    2016-12-01

    Seismic velocities and the topography of mantle discontinuities are crucial for the understanding of mantle structure, dynamics and mineralogy. While these two observables are closely linked, the vast majority of high-resolution seismic images are retrieved under the assumption of horizontally stratified mantle interfaces. This conventional correction-based process could lead to considerable errors due to the inherent trade-off between velocity and discontinuity depth. In this study, we introduce a nonlinear joint waveform inversion method that simultaneously recovers discontinuity depths and seismic velocities using the waveforms of SS precursors. Our target region is the upper mantle and transition zone beneath Northeast Asia. In this region, the inversion outcomes clearly delineate a westward dipping high-velocity structure in association with the subducting Pacific plate. Above the flat part of the slab west of the Japan sea, our results show a shear wave velocity reduction of 1.5% in the upper mantle and 10-15 km depression of the 410 km discontinuity beneath the Changbaishan volcanic field. We also identify the maximum correlation between shear velocity and transition zone thickness at an approximate slab dip of 30 degrees, which is consistent with previously reported values in this region.To validate the results of the 1D waveform inversion of SS precursors, we discretize the mantle beneath the study region and conduct a 2D waveform tomographic survey using the same nonlinear approach. The problem is simplified by adopting the discontinuity depths from the 1D inversion and solving only for perturbations in shear velocities. The resulting models obtained from the 1D and 2D approaches are self-consistent. Low-velocities beneath the Changbai intraplate volcano likely persist to a depth of 500 km. Collectively, our seismic observations suggest that the active volcanoes in eastern China may be fueled by a hot thermal anomaly originating from the mantle transition zone.

  15. Stress drops for intermediate-depth intraslab earthquakes beneath Hokkaido, northern Japan

    NASA Astrophysics Data System (ADS)

    Kita, S.; Katsumata, K.

    2015-12-01

    Spatial variations in the stress drop for 1726 intermediate-depth intraslab earthquakes in the subducting Pacific plate beneath Hokkaido were examined, using precisely relocated hypocenters, the corner frequencies of events, and detailed determined geometry of the upper interface of the Pacific plate. The analysis results show that median stress drop for intraslab earthquakes generally increases with an increase in depth from 10 to 157 Mpa at depths of 70-300 km. Median stress drops for events in the oceanic crust decrease (9.9-6.8 MPa) at depths of 70-120 km and increase (6.8-17 MPa) at depths of 120- 170 km, whereas median stress drop for events in the oceanic mantle decrease (21.6-14.0 MPa) at depths of 70-170 km, where the geometry of the Pacific plate is well determined. The increase in stress drop with depth in the oceanic crust at depths of 120-170 km can be explained by a lithofacies change (increases in velocity and density and a decrease in the water content) due to the phase change with dehydration in the oceanic crust. At depths of 70-110 km, the decrease in the median stress drop in the oceanic crust would also be explained by that the temperature-induced rigidity decrease would be larger than that of the rigidity increase caused by lithofacies change and water content. Stress drops for events in the oceanic mantle were larger than those for events in the oceanic crust at depths of 70-120 km. Differences in both the rigidity of the rock types and in the rupture mechanisms for events between the oceanic crust and mantle could be causes for the stress drop differences within a slab. These analysis results can help clarify the nature of intraslab earthquakes and provide information useful for the prediction of strong motion associated with earthquakes in the slab at intermediate depths.

  16. Flexural bending of the Zagros foreland basin

    NASA Astrophysics Data System (ADS)

    Pirouz, Mortaza; Avouac, Jean-Philippe; Gualandi, Adriano; Hassanzadeh, Jamshid; Sternai, Pietro

    2017-09-01

    We constrain and model the geometry of the Zagros foreland to assess the equivalent elastic thickness of the northern edge of the Arabian plate and the loads that have originated due to the Arabia-Eurasia collision. The Oligo-Miocene Asmari formation, and its equivalents in Iraq and Syria, is used to estimate the post-collisional subsidence as they separate passive margin sediments from the younger foreland deposits. The depth to these formations is obtained by synthesizing a large database of well logs, seismic profiles and structural sections from the Mesopotamian basin and the Persian Gulf. The foreland depth varies along strike of the Zagros wedge between 1 and 6 km. The foreland is deepest beneath the Dezful embayment, in southwest Iran, and becomes shallower towards both ends. We investigate how the geometry of the foreland relates to the range topography loading based on simple flexural models. Deflection of the Arabian plate is modelled using point load distribution and convolution technique. The results show that the foreland depth is well predicted with a flexural model which assumes loading by the basin sedimentary fill, and thickened crust of the Zagros. The model also predicts a Moho depth consistent with Free-Air anomalies over the foreland and Zagros wedge. The equivalent elastic thickness of the flexed Arabian lithosphere is estimated to be ca. 50 km. We conclude that other sources of loading of the lithosphere, either related to the density variations (e.g. due to a possible lithospheric root) or dynamic origin (e.g. due to sublithospheric mantle flow or lithospheric buckling) have a negligible influence on the foreland geometry, Moho depth and topography of the Zagros. We calculate the shortening across the Zagros assuming conservation of crustal mass during deformation, trapping of all the sediments eroded from the range in the foreland, and an initial crustal thickness of 38 km. This calculation implies a minimum of 126 ± 18 km of crustal shortening due to ophiolite obduction and post-collisional shortening.

  17. The pattern of deep structure and recent tectonics of the Greater Caucasus in the Ossetian sector from the complex geophysical data

    NASA Astrophysics Data System (ADS)

    Gorbatikov, A. V.; Rogozhin, E. A.; Stepanova, M. Yu.; Kharazova, Yu. V.; Andreeva, N. V.; Perederin, F. V.; Zaalishvili, V. B.; Mel'kov, D. A.; Dzeranov, B. V.; Dzeboev, B. A.; Gabaraev, A. F.

    2015-01-01

    Microseismic sounding along the profile in the Ossetian sector of the Greater Caucasus revealed two domains with characteristic properties and morphology deep beneath the mountain system. One subvertical domain is marked with low velocities and the other, also subvertical, has high velocities. The high-velocity zone is largely located beneath the northern limb and axial part of the Greater Caucasus mega-anticlinorium, whereas the low velocity zone projects on the southern limb. Almost throughout the entire structure of the block part of the northern limb of mega-anticlinorium, the top of the high-velocity zone beneath it is consistently horizontal at a depth of ˜10 km. This pattern is violated by the apparent steep rise of the top of the high-velocity zone to the surface in the southern direction, which starts approximately from the main thrust. Beneath the southern limb, the top boundary can also be guessed at a depth of ˜10 km, although less reliably. The roots of the low-velocity zone stretch to a depth of ˜50-60 km and narrow with the depth. The weak regional seismicity quite distinctly maps onto the high-velocity zone. In the depth interval of 10 to 25 km, weak seismicity abruptly drops northwards at the transition to the low-velocity zone. The independent magnetotelluric data show that electric resistivity of the low-velocity zone significantly exceeds the resistivity of the hosting rocks. The model of a medium filled with isolated fractures with mineralized fluid is suggested for the low-velocity zone. According to a series of features, the low-velocity zone tends to float up; in particular, there is a high lateral correlation between the most elevated part of the mountain relief, morphology, and age of the rocks, on one hand, and the position of the low-velocity zone, on the other hand.

  18. Long-period seismology on Europa: 1. Physically consistent interior models

    NASA Astrophysics Data System (ADS)

    Cammarano, F.; Lekic, V.; Manga, M.; Panning, M.; Romanowicz, B.

    2006-12-01

    In order to examine the potential of seismology to determine the interior structure and properties of Europa, it is essential to calculate seismic velocities and attenuation for the range of plausible interiors. We calculate a range of models for the physical structure of Europa, as constrained by the satellite's composition, mass, and moment of inertia. We assume a water-ice shell, a pyrolitic or a chondritic mantle, and a core composed of pure iron or iron plus 20 weight percent of sulfur. We consider two extreme mantle thermal states: hot and cold. Given a temperature and composition, we determine density, seismic velocities, and attenuation using thermodynamical models. While anelastic effects will be negligible in a cold mantle and the brittle part of the ice shell, strong dispersion and dissipation are expected in a hot convective mantle and the bulk of the ice shell. There is a strong relationship between different thermal structures and compositions. The ``hot'' mantle may maintain temperatures consistent with a liquid core made of iron plus light elements. For the ``cold scenarios,'' the possibility of a solid iron core cannot be excluded, and it may even be favored. The depths of the ocean and core-mantle boundary are determined with high precision, 10 km and 40 km, respectively, once we assume a composition and thermal structure. Furthermore, the depth of the ocean is relatively insensitive (4 km) to the core composition used.

  19. Seismic anisotropy of the Slave craton, NW Canada, from joint interpretation of SKS and Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Snyder, David; Bruneton, Marianne

    2007-04-01

    Teleseismic events recorded at a 25-element array in NW Canada between 2001 and 2006 provided sufficient distribution in back azimuth to demonstrate birefringence in SKS and SKKS waves as well as directional dependence of Rayleigh-wave phase velocities. Typical delays between orthogonally polarized SKS waves are 0.8-1.2 s, and modelling of azimuthal dependence indicates two nearly horizontal layers of anisotropy within the mantle. Anisotropy of Rayleigh waves is generally consistent with models of layered Vs anisotropies that increase with depth from 1 per cent at the Moho to 9 per cent at 200 km but vary between subarrays. Consistency between the SKS and Rayleigh wave anisotropies in one subarray suggests that the assumption of symmetry about a horizontal axis is valid there but is not fully valid in other parts of the craton. The upper layer of anisotropy occupies approximately the uppermost 120 km in which the fast polarization direction strikes generally north-south, coinciding with regional-scale fold axes mapped at the surface. The fast polarization direction of the deeper layer aligns with current North America plate motion, but its correlation with trends of coeval kimberlite eruptions within the Lac de Gras field suggests it can be at least partly attributed to structural preferred orientation of vertical dykes inferred to exist to depths of 200 km.

  20. A Nonlinear Inversion Approach to Map the Magnetic Basement: A Case Study from Central India Using Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Bansal, A. R.; Anand, S. P.; Rao, V. K.; Singh, U. K.

    2016-12-01

    The central India region is having complex geology covering various geological units e.g., Precambrian Bastar Craton (including Proterozoic Chhattisgarh Basin, granitic intrusions etc.) and Eastern Ghat Mobile Belt, Gondwana Godavari and Mahanadi Grabens, Late Cretaceous Deccan Traps etc. The central India is well covered by reconnaissance scale aeromagnetic data. We analyzed this data for mapping the basement by dividing into143 overlapping blocks of 100×100km using least square nonlinear inversion method for fractal distribution of sources. The scaling exponents and depth values are optimized using grid search method. We interpreted estimated depths of anomalous sources as magnetic basement and shallow anomalous magnetic sources. The shallow magnetic anomalies are found to vary from 1 to 3km whereas magnetic basement depths are found to vary from 2km to 7km. The shallowest basement depth of 2km found corresponding to Kanker granites a part of Bastar Craton whereas deepest basement depth of 7km is associated with Godavari Graben and south eastern part of Eastern Ghat Mobile Belts near the Parvatipuram Bobbili fault. The variation of magnetic basement, shallow depths and scaling exponent in the region indicate complex tectonic, heterogeneity and intrusive bodies at different depths which is due to different tectonic processes in the region. The detailed basement depth of central India is presented in this study.

  1. Mechanisms of intracratonic and rift basin formation: Insights from Canning Basin, northwest Australia

    NASA Astrophysics Data System (ADS)

    Bender, Andre Adriano

    2000-10-01

    The Canning basin was investigated in order to determine the mechanisms responsible for its initiation and development. The basement morphology, determined using magnetic and gravity inversion techniques, was used to map the distribution, amplitude and subsidence history of the basin. The sag development of the Canning basin is hypothesized to be a consequence of a major late Proterozoic thermal event that induced broad-scale uplift, extrusion of tholeiitic basalt, and substantial crustal erosion. The development of the Canning basin is consistent with removal of up to 11 km of crustal rocks, followed by isostatic re-adjustment during the cooling of the lithosphere. Earlier models that employed both lower crustal metamorphism and erosion are considered inappropriate mechanisms for intracratonic basin formation because this work has shown that their effects are mutually exclusive. The time scale for the metamorphic-related subsidence is typically short (<10 m.y.) and the maximum subsidence is small (<4 km) compared to the long subsidence (ca. 200 m.y.) and maximum depths (6--7 km) recorded in the Canning basin. Observed amplitudes and rates of basement subsidence are compatible with a thermal anomaly that began to dissipate in the early Cambrian and lasted until the Permian. Punctuating the long-lived intracratonic basin subsidence is a series of extensional pulses that in Silurian to Carboniferous/Permian time led to the development of several prominent normal faults in the northeastern portion of the Canning basin (Fitzroy graben). Stratigraphic and structural data and section-balancing techniques have helped to elucidate the geometry and evolution of the basin-bounding fault of the Fitzroy graben. The fault is listric, with a dip that decreases from approximately 50° at the surface to 20° at a depth of 20 km, and with an estimated horizontal offset of 32--41 km. The southern margin of the Fitzroy graben was tilted, truncated, and onlapped from the south, consistent with the flexural rebound of a lithosphere with an elastic thickness of ca. 30 km.

  2. Seismic Monitoring at the Decatur, IL, Geologic Carbon Dioxide Sequestration Site

    NASA Astrophysics Data System (ADS)

    Hickman, S. H.; Kaven, J. O.; McGarr, A.; Walter, S. R.; Ellsworth, W. L.; Svitek, J. F.; Burke, L. A.

    2014-12-01

    The viability of carbon capture and storage (CCS) depends on safely sequestering large quantities of carbon dioxide over geologic time scales. One concern is the potential for induced seismicity. We report on seismic monitoring by the U.S. Geological Survey (USGS) at a CCS demonstration site in Decatur, IL. This is the first (and to date only) CCS project in the U.S. to inject large volumes of CO2 into an extensive undisturbed saline reservoir, and thus serves as an important test for future industrial-scale CCS projects. At Decatur, supercritical CO2 is injected at 2.1 km depth into the Mt. Simon Sandstone, which directly overlies granitic basement. The primary sealing cap is the Eau Claire Shale at a depth of about 1.5 km. The Illinois State Geological Survey (ISGS) manages the ongoing Illinois Basin - Decatur Project, a three-year project beginning in November 2011 during which CO2 is injected at an average rate of 1000 metric tons/day. Archer Daniels Midland (ADM) manages the nearby Illinois Industrial Carbon Capture and Storage project, which, pending permit approval, plans to inject 3000 metric tons/day for five years. The USGS seismic network was installed starting in July 2013 and consists of 12 stations, three of which include borehole sensors at depths of 150 m. The aperture of this network is roughly 8 km, centered on the injection well. A one-dimensional velocity model was derived from a vertical seismic profile survey acquired by ADM and the ISGS to a depth of 2.2 km, tied into acoustic logs from a deep observation well and the USGS borehole stations. This model was used together with absolute and double-difference techniques to locate seismic events. These events group into two clusters: 0.4 to 1.0 km NE and 1.8 to 2.6 km WNW from the injection well, with moment magnitudes ranging from -0.8 to 1.1. Most of these events are in the granitic basement, well below the cap rock, and are unlikely to have compromised the integrity of the seal.

  3. Volcanic eruptions on mid-ocean ridges: New evidence from the superfast spreading East Pacific Rise, 17°-19°S

    NASA Astrophysics Data System (ADS)

    Sinton, John; Bergmanis, Eric; Rubin, Ken; Batiza, Rodey; Gregg, Tracy K. P.; Grönvold, Karl; Macdonald, Ken C.; White, Scott M.

    2002-06-01

    Side-scan sonar, submersible observations and sampling of lava flows from the East Pacific Rise, 17°-19°S constrain the character and variability of submarine volcanic eruptions along mid-ocean ridges. Nine separate lava sequences were mapped using relative age and lithological contrasts among recovered samples. Axial lengths activated during eruptive episodes range from ~1 to >18 km; individual flow field areas vary from <1 to >19 km2. Estimated erupted volumes range from <1 to >200 × 106 m3. The largest unit is the chemically uniform Animal Farm lava near 18°37'S. The youngest lava is the Aldo-Kihi flow field, 17°24'-34'S, probably erupted in the early 1990s from a fissure system extending >18 km along axis. Near 18°33'S two distinct lava compositions with uniform sediment cover were recovered from lava that buries older faulted terrain. The boundary in lava composition coincides with a change in depth to the top of an axial magma lens seismic reflector, consistent with magmas from two separate reservoirs being erupted in the same event. Chemical compositions from throughout the area indicate that lavas with identical compositions can be emplaced in separate volcanic eruptions within individual segments. A comparison of our results to global data on submarine mid-ocean ridge eruptions suggests consistent dependencies of erupted volume, activated fissure lengths, and chemical heterogeneity with spreading rate, consistent with expected eruptive characteristics from ridges with contrasting thermal properties and magma reservoir depths.

  4. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    USGS Publications Warehouse

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea’s east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.

  5. Magma transport and olivine crystallization depths in Kīlauea's east rift zone inferred from experimentally rehomogenized melt inclusions

    NASA Astrophysics Data System (ADS)

    Tuohy, Robin M.; Wallace, Paul J.; Loewen, Matthew W.; Swanson, Donald A.; Kent, Adam J. R.

    2016-07-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2 concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai'i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n = 10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n = 38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea's summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea's east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.

  6. Double-difference Relocation of the Aftershocks of the Tecomán, Colima, Mexico Earthquake of 22 January 2003

    NASA Astrophysics Data System (ADS)

    Andrews, Vanessa; Stock, Joann; Ramírez Vázquez, Carlos Ariel; Reyes-Dávila, Gabriel

    2011-08-01

    On 22 January 2003, the M w = 7.6 Tecomán earthquake struck offshore of the state of Colima, Mexico, near the diffuse triple junction between the Cocos, Rivera, and North American plates. Three-hundred and fifty aftershocks of the Tecomán earthquake with magnitudes between 2.6 and 5.8, each recorded by at least 7 stations, are relocated using the double difference method. Initial locations are determined using P and S readings from the Red Sismológica Telemétrica del Estado de Colima (RESCO) and a 1-D velocity model. Because only eight RESCO stations were operating immediately following the Tecomán earthquake, uncertainties in the initial locations and depths are fairly large, with average uncertainties of 8.0 km in depth and 1.4 km in the north-south and east-west directions. Events occurring between 24 January and 31 January were located using not only RESCO phase readings but also additional P and S readings from 11 temporary stations. Average uncertainties decrease to 0.8 km in depth, 0.3 km in the east-west direction, and 0.7 km in the north-south direction for events occurring while the temporary stations were deployed. While some preliminary studies of the early aftershocks suggested that they were dominated by shallow events above the plate interface, our results place the majority of aftershocks along the plate interface, for a slab dipping between approximately 20° and 30°. This is consistent with the slab positions inferred from geodetic studies. We do see some upper plate aftershocks that may correspond to forearc fault zones, and faults inland in the upper plate, particularly among events occurring more than 3 months after the mainshock.

  7. Frictional strength and heat flow of southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Zhu, P. P.

    2016-01-01

    Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called "fault friction heat." On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault friction heat at various seismogenic depths in the southern SAF. The new data show that as depth increases, regional friction stress increases within the depth of 15 km; its increment per kilometer equals 5.75 ± 0.05 MPa/km. As depth increases, regional long-term fault friction heat increases; its increment per kilometer is equal to 3.68 ± 0.03 mW/m2/km. The values of regional long-term fault friction heat provided by this study are always lower than those from heat flow measurements. The difference between them and the scatter existing in the measured heat flow data are mainly caused by the following processes: (i) heat convection, (ii) heat advection, (iii) stress accumulation, (iv) seismic bursts between short-term lull periods in a long-term period, and (v) influence of seismicity in short-term periods upon long-term slip rate and heat flow. Fault friction heat is a fundamental parameter in research on heat flow.

  8. Geomechanical Considerations for the Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Park, B. Y.

    2015-12-01

    Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Rhyolite thermobarometry and the shallowing of the magma reservoir, Coso volcanic field, California

    USGS Publications Warehouse

    Manley, C.R.; Bacon, C.R.

    2000-01-01

    The compositionally bimodal Pleistocene Coso volcanic field is located at the western margin of the Basin and Range province ~ 60 km north of the Garlock fault. Thirty-nine nearly aphyric high-silica rhyolite domes were emplaced in the past million years: one at 1 Ma from a transient magma reservoir, one at ~ 0.6 Ma, and the rest since ~ 0.3 Ma. Over the past 0.6 My, the depth from which the rhyolites erupted has decreased and their temperatures have become slightly higher. Pre-eruptive conditions of the rhyolite magmas, calculated from phenocryst compositions using the two-oxide thermometer and the Al-in-hornblende barometer, ranged from 740??C and 270 MPa (2.7 kbar; ~ 10 km depth) for the ~ 0.6 Ma magma, to 770??C and 140 MPa (1.4 kbar; ~ 5.5 km) for the youngest (~ 0.04 Ma) magma. Results are consistent with either a single rhyolitic reservoir moving upward through the crust, or a series of successively shallower reservoirs. As the reservoir has become closer to the surface, eruptions have become both more frequent and more voluminous.

  10. Temperature and electrical conductivity of the lunar interior from magnetic transient measurements in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients in the geomagnetic tail field, were analyzed to calculate an electrical conductivity profile for the moon: the conductivity increases rapidly with depth from 10 to the minus 9 power mhos/meter at the lunar surface to .0001 mhos/meter at 200 km depth, then less rapidly to .02 mhos/meter at 1000 km depth. A temperature profile is calculated from conductivity: temperature rises rapidly with depth to 1100 K at 200 km depth, then less rapidly to 1800 K at 1000 km depth. Velocities and thicknesses of the earth's magnetopause and bow shock are estimated from simultaneous magnetometer measurements. Average speeds are determined to be about 50 km/sec for the magnetopause and 70 km/sec for the bow shock, although there are large variations in the measurements for any particular boundary crossing.

  11. Seismic monitoring at the Decatur, Ill., CO2 sequestration demonstration site

    USGS Publications Warehouse

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Walter, Steve R.; Ellsworth, William L.

    2014-01-01

    The viability of carbon capture and storage (CCS) to reduce emissions of greenhouse gases depends on the ability to safely sequester large quantities of CO2 over geologic time scales. One concern with CCS is the potential of induced seismicity. We report on ongoing seismic monitoring by the U.S. Geological Survey (USGS) at a CCS demonstration site in Decatur, IL, in an effort to understand the potential hazards posed by injection-induced seismicity associated with geologic CO2 sequestration. At Decatur, super-critical CO2 is injected at 2.1 km depth into the 550-m-thick Mt. Simon Sandstone, which directly overlies granitic basement. The primary sealing cap rock is the Eau Claire Shale, a 100- to 150-m-thick unit at a depth of roughly 1.5 km. The USGS seismic network consists of 12 stations, three of which have surface accelerometers and three-component borehole geophones. We derived a one-dimensional velocity models from a vertical seismic profile acquired by Archer-Daniels-Midland (ADM) and the Illinois State Geological Survey (ISGS) to a depth of 2.2 km, tied into shallow acoustic logs from our borehole stations and assuming a 6 km/sec P-wave velocity for granite below 2.2 km. We further assume a constant ratio of P- to S-wave velocities of 1.83, as derived from velocity model inversions. We use this velocity model to locate seismic events, all of which are within the footprint of our network. So far magnitudes of locatable events range from Mw = -1.52 to 1.07. We further improved the hypocentral precision of microseismic events when travel times and waveforms are sufficiently similar by employing double-difference relocation techniques, with relative location errors less than 80 m horizontally and 100 m vertically. We observe tend to group in three distinct clusters: ∼0.4 to 1.0 km NE, 1.6 to 2.4 km N, and ∼1.8 to 2.6 km WNW from the injection well. The first cluster of microseismicity forms a roughly linear trend, which may represent a pre-existing geologic structure. Most of these microearthquakes occur in the granitic basement at depths greater than 2.2 km, well below the caprock, and likely do not compromise the integrity of the seal. We conclude that because the observed microseismicity is occurring in the granitic basement, the integrity of the caprock seal has not been compromised by CCS activities.

  12. 3D absolute hypocentral determination - 13 years of seismicity in Ecuadorian subduction zone

    NASA Astrophysics Data System (ADS)

    Font, Yvonne; Segovia, Monica; Theunissen, Thomas

    2010-05-01

    In Ecuador, the Nazca plate is subducting beneath the North Andean Block. This subduction triggered, during the last century, 4 major earthquakes of magnitude greater than 7.7. Between 1994 and 2007, the Geophysical Institute (Escuela National Politecnica, Quito) recorded about 40 000 events in whole Ecuador ranging from Mb 1.5 to 6.9. Unfortunately, the local network shows great density discrepancy between the Coastal and Andean regions where numerous stations were installed to survey volcanic activity. Consequently, seismicity in and around the interplate seismogenic zone - producer of the most destructive earthquakes and tsunamis - is not well constrained. This study aims to improve the location of 13 years seismicity occurred during an interseismic period in order to better localize the seismic deformation and gaps. The first step consists in the construction of a 3D "georealistic" velocity model. Because local tomography cannot provide satisfactory model, we combined all local crustal/lithospheric information on the geometry and velocity properties of different geological units. Those information cover the oceanic Nazca plate and sedimentary coverture the subducting plate dip angle; the North Andean Block margin composed of accreted oceanic plateaus (the Moho depth is approximated using gravity modeling); the metamorphic volcanic chain (oceanic nature for the occidental cordillera and inter-andean valley, continental one for the oriental cordillera); The continental Guyana shield and sedimentary basins. The resulting 3D velocity model extends from 2°N to 6.5°S and 277°E to 283°E and reaches a depth of 300 km. It is discretized in constant velocity blocks of 12 x 12 x 3 km in x, y and z, respectively. The second step consists in selecting an adequate sub-set of seismic stations in order to correct the effect of station density disequilibrium between coastal and volcanic regions. Consequently, we only keep the most representative volcanic stations in terms of azimuthal coverage, record frequency and signal quality. Then, we define 5 domains: Offshore/coast, North-Andean margin, Volcanic chain, Southern Ecuador, and a domain deeper than 50 km. We process earthquake location only if at least 3 proximal stations exist in the event's domain. This data selection allows providing consistent quality location. The third step consists in improving the 3D MAXI technique that is well adapted to perform absolute earthquake location in velocity model presenting strong lateral Vp heterogeneities. The resulting catalogue allows specifying the deformation in the subduction system. All seismicity previously detected before trench occurs indeed between the trench and the coastal range. South of 0°, facing the subducting Carnegie Ridge, the seismicity aligns along the interplate seismogenic zone between an updip limit shallower than ~8 km and a downdip limit that reaches up to 50 km depth. The active seismogenic zone is interrupted by a gap that extends right beneath the coastal range. At these latitudes, a diffuse intraplate deformation also affects the subducting plate, probably induced by the locally thickened lithosphere flexure. Between the trench and the coast, earthquake distribution clearly defines a gap, which size is comparable to the 1942 M7.9 asperity (ellipse of axes ~55/35 km). A slab is clearly defines and dips around 25 to 30°. The slab seismicity is systematically interrupted between 100-170 km, approximately beneath the volcanic chain. North of 0°, i.e. in the megathrust earthquake domain, the interseismic activity is clearly reduced. The interplate distribution seems to gather along alignments perpendicular to the trench attesting probably of the margin segmentation. The North Andean overriding margin is undergoing active deformation, especially at the location where the Andean Chain strike changes of direction. At these latitudes, no earthquake occurs deeper than 100 km depth.

  13. Estimating the composition of hydrates from a 3D seismic dataset near Penghu Canyon on Chinese passive margin offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Chi, Wu-Cheng

    2016-04-01

    A bottom-simulating reflector (BSR), representing the base of the gas hydrate stability zone, can be used to estimate geothermal gradients under seafloor. However, to derive temperature estimates at the BSR, the correct hydrate composition is needed to calculate the phase boundary. Here we applied the method by Minshull and Keddie to constrain the hydrate composition and the pore fluid salinity. We used a 3D seismic dataset offshore SW Taiwan to test the method. Different from previous studies, we have considered the effects of 3D topographic effects using finite element modelling and also depth-dependent thermal conductivity. Using a pore water salinity of 2% at the BSR depth as found from the nearby core samples, we successfully used 99% methane and 1% ethane gas hydrate phase boundary to derive a sub-bottom depth vs. temperature plot which is consistent with the seafloor temperature from in-situ measurements. The results are also consistent with geochemical analyses of the pore fluids. The derived regional geothermal gradient is 40.1oC/km, which is similar to 40oC/km used in the 3D finite element modelling used in this study. This study is among the first documented successful use of Minshull and Keddie's method to constrain seafloor gas hydrate composition.

  14. Vein networks in hydrothermal systems provide constraints for the monitoring of active volcanoes.

    PubMed

    Cucci, Luigi; Di Luccio, Francesca; Esposito, Alessandra; Ventura, Guido

    2017-03-10

    Vein networks affect the hydrothermal systems of many volcanoes, and variations in their arrangement may precede hydrothermal and volcanic eruptions. However, the long-term evolution of vein networks is often unknown because data are lacking. We analyze two gypsum-filled vein networks affecting the hydrothermal field of the active Lipari volcanic Island (Italy) to reconstruct the dynamics of the hydrothermal processes. The older network (E1) consists of sub-vertical, N-S striking veins; the younger network (E2) consists of veins without a preferred strike and dip. E2 veins have larger aperture/length, fracture density, dilatancy, and finite extension than E1. The fluid overpressure of E2 is larger than that of E1 veins, whereas the hydraulic conductance is lower. The larger number of fracture intersections in E2 slows down the fluid movement, and favors fluid interference effects and pressurization. Depths of the E1 and E2 hydrothermal sources are 0.8 km and 4.6 km, respectively. The decrease in the fluid flux, depth of the hydrothermal source, and the pressurization increase in E2 are likely associated to a magma reservoir. The decrease of fluid discharge in hydrothermal fields may reflect pressurization at depth potentially preceding hydrothermal explosions. This has significant implications for the long-term monitoring strategy of volcanoes.

  15. A comparison of upper mantle subcontinental electrical conductivity for North America, Europe, and Asia.

    USGS Publications Warehouse

    Campbell, W.H.; Schiffmacher, E.R.

    1986-01-01

    Spherical harmonic analysis coefficients of the external and internal parts of the quiet-day geomagnetic field variations (Sq), separated for the N American, European, Central Asian and E Asian regions, were used to determine conductivity profiles to depths of about 600km by the Schmucker equivalent-substitute conductor method. All 3 regions showed a roughly exponential increase of conductivity with depth. Distinct discontinuities seemed to be evident near 255-300km and near 450-600km. Regional differences in the conductivity profiles were shown by the functional fittings to the data. For depths less than about 275km, the N American conductivities seemed to be significantly higher than the other regions. For depths greater than about 300km, the E Asian conductivities were largest. -Authors

  16. Crustal Deformation across the Jericho Valley Section of the Dead Sea Fault as Resolved by Detailed Field and Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Hamiel, Yariv; Piatibratova, Oksana; Mizrahi, Yaakov; Nahmias, Yoav; Sagy, Amir

    2018-04-01

    Detailed field and geodetic observations of crustal deformation across the Jericho Fault section of the Dead Sea Fault are presented. New field observations reveal several slip episodes that rupture the surface, consist with strike slip and extensional deformation along a fault zone width of about 200 m. Using dense Global Positioning System measurements, we obtain the velocities of new stations across the fault. We find that this section is locked for strike-slip motion with a locking depth of 16.6 ± 7.8 km and a slip rate of 4.8 ± 0.7 mm/year. The Global Positioning System measurements also indicate asymmetrical extension at shallow depths of the Jericho Fault section, between 0.3 and 3 km. Finally, our results suggest the vast majority of the sinistral slip along the Dead Sea Fault in southern Jorden Valley is accommodated by the Jericho Fault section.

  17. Fast Moment Magnitude Determination from P-wave Trains for Bucharest Rapid Early Warning System (BREWS)

    NASA Astrophysics Data System (ADS)

    Lizurek, Grzegorz; Marmureanu, Alexandru; Wiszniowski, Jan

    2017-03-01

    Bucharest, with a population of approximately 2 million people, has suffered damage from earthquakes in the Vrancea seismic zone, which is located about 170 km from Bucharest, at a depth of 80-200 km. Consequently, an earthquake early warning system (Bucharest Rapid earthquake Early Warning System or BREWS) was constructed to provide some warning about impending shaking from large earthquakes in the Vrancea zone. In order to provide quick estimates of magnitude, seismic moment was first determined from P-waves and then a moment magnitude was determined from the moment. However, this magnitude may not be consistent with previous estimates of magnitude from the Romanian Seismic Network. This paper introduces the algorithm using P-wave spectral levels and compares them with catalog estimates. The testing procedure used waveforms from about 90 events with catalog magnitudes from 3.5 to 5.4. Corrections to the P-wave determined magnitudes according to dominant intermediate depth events mechanism were tested for November 22, 2014, M5.6 and October 17, M6 events. The corrections worked well, but unveiled overestimation of the average magnitude result of about 0.2 magnitude unit in the case of shallow depth event ( H < 60 km). The P-wave spectral approach allows for the relatively fast estimates of magnitude for use in BREWS. The average correction taking into account the most common focal mechanism for radiation pattern coefficient may lead to overestimation of the magnitude for shallow events of about 0.2 magnitude unit. However, in case of events of intermediate depth of M6 the resulting M w is underestimated at about 0.1-0.2. We conclude that our P-wave spectral approach is sufficiently robust for the needs of BREWS for both shallow and intermediate depth events.

  18. Fault kinematics and active tectonics of the Sabah margin: Insights from the 2015, Mw 6.0, Mt. Kinabalu earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wei, S.; Tapponnier, P.; WANG, X.; Lindsey, E.; Sieh, K.

    2016-12-01

    A gravity-driven "Mega-Landslide" model has been evoked to explain the shortening seen offshore Sabah and Brunei in oil-company seismic data. Although this model is considered to account simultaneously for recent folding at the edge of the submarine NW Sabah trough and normal faulting on the Sabah shelf, such a gravity-driven model is not consistent with geodetic data or critical examination of extant structural restorations. The rupture that produced the 2015 Mw6.0 Mt. Kinabalu earthquake is also inconsistent with the gravity-driven model. Our teleseismic analysis shows that the centroid depth of that earthquake's mainshock was 13 to 14 km, and its favored fault-plane solution is a 60° NW-dipping normal fault. Our finite-rupture model exhibits major fault slip between 5 and 15 km depth, in keeping with our InSAR analysis, which shows no appreciable surface deformation. Both the hypocentral depth and the depth of principal slip are far too deep to be explained by gravity-driven failure, as such a model would predict a listric normal fault connecting at a much shallower depth with a very gentle detachment. Our regional mapping of tectonic landforms also suggests the recent rupture is part of a 200-km long system of narrowly distributed active extension in northern Sabah. Taken together, the nature of the 2015 rupture, the belt of active normal faults, and structural consideration indicate that active tectonic shortening plays the leading role in controlling the overall deformation of northern Sabah and that deep-seated, onland normal faulting likely results from an abrupt change in the dip-angle of the collision interface beneath the Sabah accretionary prism.

  19. Constructing the deep temperature section of the Travale geothermal area in Italy, with the use of an electromagnetic geothermometer

    NASA Astrophysics Data System (ADS)

    Spichak, V. V.; Zakharova, O. K.

    2015-01-01

    The technology of electromagnetic geothermometer is applied for constructing the two-dimensional (2D) section of temperature in the Travale geothermal region in Italy up to a depth of 10 km. The joint analysis of this section, together with the previously constructed model of electric resistivity suggests that the heat transfer in the Travale region is rendered by the overheated vapor-gas fluids instead of liquid fluids as it was previously believed based on the interpretation of the resistivity model. Another important conclusion consists in the fact that, instead of two geothermal reservoirs, whose existence was previously tentatively inferred from the interpretation of the electromagnetic and seismic data, it is likely that there is a single deep reservoir with a shallow (near-surface) offshoot. From the constructed temperature distribution it can be seen that the temperature below a depth of 4 km exceeds 500°C, which indicates that drilling down to these depths could be useful for the subsequent exploitation of this geothermal reservoir.

  20. The Mw 5.8 Mineral, Virginia, earthquake of August 2011 and aftershock sequence: constraints on earthquake source parameters and fault geometry

    USGS Publications Warehouse

    McNamara, Daniel E.; Benz, H.M.; Herrmann, Robert B.; Bergman, Eric A.; Earle, Paul; Meltzer, Anne; Withers, Mitch; Chapman, Martin

    2014-01-01

    The Mw 5.8 earthquake of 23 August 2011 (17:51:04 UTC) (moment, M0 5.7×1017  N·m) occurred near Mineral, Virginia, within the central Virginia seismic zone and was felt by more people than any other earthquake in United States history. The U.S. Geological Survey (USGS) received 148,638 felt reports from 31 states and 4 Canadian provinces. The USGS PAGER system estimates as many as 120,000 people were exposed to shaking intensity levels of IV and greater, with approximately 10,000 exposed to shaking as high as intensity VIII. Both regional and teleseismic moment tensor solutions characterize the earthquake as a northeast‐striking reverse fault that nucleated at a depth of approximately 7±2  km. The distribution of reported macroseismic intensities is roughly ten times the area of a similarly sized earthquake in the western United States (Horton and Williams, 2012). Near‐source and far‐field damage reports, which extend as far away as Washington, D.C., (135 km away) and Baltimore, Maryland, (200 km away) are consistent with an earthquake of this size and depth in the eastern United States (EUS). Within the first few days following the earthquake, several government and academic institutions installed 36 portable seismograph stations in the epicentral region, making this among the best‐recorded aftershock sequences in the EUS. Based on modeling of these data, we provide a detailed description of the source parameters of the mainshock and analysis of the subsequent aftershock sequence for defining the fault geometry, area of rupture, and observations of the aftershock sequence magnitude–frequency and temporal distribution. The observed slope of the magnitude–frequency curve or b‐value for the aftershock sequence is consistent with previous EUS studies (b=0.75), suggesting that most of the accumulated strain was released by the mainshock. The aftershocks define a rupture that extends between approximately 2–8 km in depth and 8–10 km along the strike of the fault plane. Best‐fit modeling of the geometry of the aftershock sequence defines a rupture plane that strikes N36°E and dips to the east‐southeast at 49.5°. Moment tensor solutions of the mainshock and larger aftershocks are consistent with the distribution of aftershock locations, both indicating reverse slip along a northeast–southwest striking southeast‐dipping fault plane.

  1. Design and production of the digital optical module of the KM3NeT project

    NASA Astrophysics Data System (ADS)

    Leonora, Emanuele; Giordano, Valentina

    2017-03-01

    The KM3NeT collaboration is building the ARCA and ORCA neutrino telescopes in the depths of the Mediterranean Sea. They will consist of 3-dimensional arrays of photodetectors, called digital optical modules, suspended in the sea by means of vertical string structures, called detection units. The optical modules are composed of a pressure-resistant 17-inch spherical glass vessel, which contains 31 small photomultiplier tubes and all the associated electronics. The multi- photomultiplier solution represents an innovative design with respect to optical modules of all currently operated neutrino telescopes comprising a single large photomultipliers.

  2. Structure of the San Bernardino Basin Along Two Seismic Transects: Rialto-Colton Fault to the San Andreas Fault and Along the I-215 Freeway (I-10 to SR30)

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.; Steedman, C.E.

    2008-01-01

    In this report, we present seismic data and acquisition parameters for two seismic profiles acquired in the San Bernardino, California area in May and October 2003. We refer to these seismic profiles as the San Bernardino Regional (SBR) and San Bernardino High-Resolution (SBHR) seismic profiles. We present both un-interpreted and interpreted seismic images so that the structure of the area can independently interpreted by others. We explain the rationale for our interpretations within the text of this report, and in addition, we provide a large body of supporting evidence. The SBR seismic profile extended across the San Bernardino Basin approximately N30?E from the town of Colton to the town of Highland. The data were acquired at night when the signal-to-noise ratios were reasonably good, and for the larger shots, seismic energy propagated across the ~20-km-long array. Tomographic velocity data are available to depths of about 4 km, and low-fold reflection data are available to depths in excess of 5 km. The SBR seismic data reveal an asymmetric, fault-bound basin to about 5 km depth. The SBHR seismic profile trended along the I-215 freeway from its intersection with the Santa Ana River to approximately State Road 30 in San Bernardino. Seismic data acquired along the I-215 freeway provide detailed images, with CDP spacing of approximately 2.5 m along an approximately 8.2-km-long profile; shot and geophone spacing was 5 m. For logistical reasons, the high-resolution (SBHR) seismic data were acquired during daylight hours on the shoulder of the I-215 freeway and within 5 to 10 m of high-traffic volumes, resulting in low signal-to-noise ratios. The limited offset at which refracted first-arrivals could be measured along the SBHR seismic profile limited our measurements of tomographic refraction velocities to relatively shallow (< 150 m) depths. The SBHR reflection data reveal a basin with complex structural details within the upper kilometer. The two seismic profiles show internal consistency and consistency with other existing geophysical data. Collectively, the data suggest that the I-215 freeway trends along the faulted edge of a pull-apart basin, within a zone where the principal slip of the San Jacinto Fault is transferred to the San Andreas Fault. Because the I-215 freeway trends at low angles to these flower-structure faults, both primary and numerous secondary faults are apparent between the I-10 exchange and State Road-30, suggesting that much of the 8-km-long segment of the I-215 freeway could experience movement along primary or secondary faults.

  3. The P wavespeed structure below and around the Kaapvaal craton to depths of 800 km, from traveltimes and waveforms of local and regional earthquakes and mining-induced tremors

    NASA Astrophysics Data System (ADS)

    Simon, R. E.; Wright, C.; Kgaswane, E. M.; Kwadiba, M. T. O.

    2002-10-01

    An average P-wavespeed model from the surface to depths of 800 km was derived for southern Africa using traveltimes and waveforms from earthquakes recorded at stations of the Kaapvaal and South African National networks. In this first study of the transition zone for the central part of the African superswell, a damped least-squares inversion was used to minimize effects of origin time errors. Triplications were observed for both the 410 and 670 km discontinuities, with crossover points between first arrival branches at average distances of 19.61° and 23.92°, respectively. The Herglotz-Wiechert method combined with ray tracing was used to derive a preliminary model, followed by refinements using phase-weighted stacking and synthetic seismograms to yield the final model BPI1A. This model shows a prominent 410 km discontinuity, but a weakly-defined 670 km discontinuity, in agreement with the SATZ model for a region of southern Africa to the north of the region covered by the present study. The wavespeeds of BPI1A from the base of the crust to 270 km depth lie between those of the SATZ model and the IASP91 model, which have higher and lower wavespeeds respectively. Between depths of 270 km and the 410 km discontinuity, models BPI1A, IASP91 and SATZ have similar wavespeeds but the 410 km discontinuity for BPI1A is about 10 km deeper than in IASP91. Model GNEM for Eurasia has lower wavespeeds than the other three models above the 410 km discontinuity. Within the transition zone models BPI1A and SATZ converge as the depth increases, with wavespeeds that exceed those of IASP91 below 500 km depth. These models and model GNEM all have similar wavespeeds below 750 km depth. The seismic results indicate no regions of anomalous low wavespeeds within the uppermost 800 km of the mantle that could be associated with high temperatures and the uplift of the African superswell. However, higher seismic wavespeeds in the transition zone than elsewhere are suggested for the southern part of the region, which may result from iron depletion and therefore lower densities that might contribute to buoyant uplift of the overlying crust and upper mantle.

  4. Evidence for Depth-Dependent Metasomatism in Cratonic Lithosphere

    NASA Astrophysics Data System (ADS)

    Eeken, T.; Goes, S. D. B.; Pedersen, H.; Arndt, N. T.; Bouilhol, P.

    2017-12-01

    The long-term stability of the cratonic cores of continents has been attributed to low temperatures and depletion in iron and water. However, a long-standing enigma is that steady-state thermal models based on heat flow measurements and xenoliths systematically overpredict the seismic velocities in Archean lithospheric mantle. We perform a Monte-Carlo inversion for thermal parameters and water content (leading to metasomatism) to fit 1-D geotherms to average Rayleigh-wave dispersion curves for the Archean Kaapvaal, Yilgarn and Slave cratons and the Proterozoic Baltic Shield below Finland. To satisfactorily match the seismic profiles, we need a significant amount of hydrous and/or carbonated minerals starting between the Moho and 70 km depth and extending down to at least 100-150 km depth (if distributed over this depth range, this requires 0.5 and 1 wt% water for amphiboles, or 0.2 wt% water plus sufficient potassium to form phlogopites or 5 wt% CO2 and sufficient Ca to make carbonate, or a combination thereof). Lithospheric temperatures that lead to a good fit of the seismic constraints are commonly lower than those inferred from xenoliths, but consistent with heat flow constraints. The dispersion data also require differences in Moho heatflux between regions and 100-200°C lower sublithospheric mantle temperatures below Yilgarn, Slave and Finland than below Kaapvaal, consistent with regional tectonic settings inferred from global tomography. Thus, significant upward-increasing metasomatism by water and CO2-rich fluids is a plausible mechanism to explain the average seismic structure of cratonic lithosphere. Such metasomatism would also contribute to the positive chemical buoyancy of cratonic roots.

  5. Seismic evidence for depth-dependent metasomatism in cratons

    NASA Astrophysics Data System (ADS)

    Eeken, Thomas; Goes, Saskia; Pedersen, Helle A.; Arndt, Nicholas T.; Bouilhol, Pierre

    2018-06-01

    The long-term stability of cratons has been attributed to low temperatures and depletion in iron and water, which decrease density and increase viscosity. However, steady-state thermal models based on heat flow and xenolith constraints systematically overpredict the seismic velocity-depth gradients in cratonic lithospheric mantle. Here we invert for the 1-D thermal structure and a depth distribution of metasomatic minerals that fit average Rayleigh-wave dispersion curves for the Archean Kaapvaal, Yilgarn and Slave cratons and the Proterozoic Baltic Shield below Finland. To match the seismic profiles, we need a significant amount of hydrous and/or carbonate minerals in the shallow lithospheric mantle, starting between the Moho and 70 km depth and extending down to at least 100-150 km. The metasomatic component can consist of 0.5-1 wt% water bound in amphibole, antigorite and chlorite, ∼0.2 wt% water plus potassium to form phlogopite, or ∼5 wt% CO2 plus Ca for carbonate, or a combination of these. Lithospheric temperatures that fit the seismic data are consistent with heat flow constraints, but most are lower than those inferred from xenolith geothermobarometry. The dispersion data require differences in Moho heat flux between individual cratons, and sublithospheric mantle temperatures that are 100-200 °C less beneath Yilgarn, Slave and Finland than beneath Kaapvaal. Significant upward-increasing metasomatism by water and CO2-rich fluids is not only a plausible mechanism to explain the average seismic structure of cratonic lithosphere but such metasomatism may also lead to the formation of mid-lithospheric discontinuities and would contribute to the positive chemical buoyancy of cratonic roots.

  6. Focal Depth of the WenChuan Earthquake Aftershocks from modeling of Seismic Depth Phases

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zeng, X.; Chong, J.; Ni, S.; Chen, Y.

    2008-12-01

    After the 05/12/2008 great WenChuan earthquake in Sichuan Province of China, tens of thousands earthquakes occurred with hundreds of them stronger than M4. Those aftershocks provide valuable information about seismotectonics and rupture processes for the mainshock, particularly accurate spatial distribution of aftershocks is very informational for determining rupture fault planes. However focal depth can not be well resolved just with first arrivals recorded by relatively sparse network in Sichuan Province, therefore 3D seismicity distribution is difficult to obtain though horizontal location can be located with accuracy of 5km. Instead local/regional depth phases such as sPmP, sPn, sPL and teleseismic pP,sP are very sensitive to depth, and be readily modeled to determine depth with accuracy of 2km. With reference 1D velocity structure resolved from receiver functions and seismic refraction studies, local/regional depth phases such as sPmP, sPn and sPL are identified by comparing observed waveform with synthetic seismograms by generalized ray theory and reflectivity methods. For teleseismic depth phases well observed for M5.5 and stronger events, we developed an algorithm in inverting both depth and focal mechanism from P and SH waveforms. Also we employed the Cut and Paste (CAP) method developed by Zhao and Helmberger in modeling mechanism and depth with local waveforms, which constrains depth by fitting Pnl waveforms and the relative weight between surface wave and Pnl. After modeling all the depth phases for hundreds of events , we find that most of the M4 earthquakes occur between 2-18km depth, with aftershocks depth ranging 4-12km in the southern half of Longmenshan fault while aftershocks in the northern half featuring large depth range up to 18km. Therefore seismogenic zone in the northern segment is deeper as compared to the southern segment. All the aftershocks occur in upper crust, given that the Moho is deeper than 40km, or even 60km west of the Longmenshan fault. Absence of mid-lower crustal shocks supports the model of lower crustal flow beneath eastern Tibetan plateau, which is probably responsible for Longmenshan uplifting and hence the Wenchuan earthquake.

  7. Staged storage and magma convection at Ambrym volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Sheehan, Fionnuala; Barclay, Jenni

    2016-08-01

    New mineral-melt thermobarometry and mineral chemistry data are presented for basaltic scoriae erupted from the Mbwelesu crater of Ambrym volcano, Vanuatu, during persistent lava lake activity in 2005 and 2007. These data reveal crystallisation conditions and enable the first detailed attempt at reconstruction of the central magma plumbing system of Ambrym volcano. Pressures and temperatures of magma crystallisation at Ambrym are poorly constrained. This study focuses on characterising the magma conditions underlying the quasi-permanent lava lakes at the basaltic central vents, and examines petrological evidence for magma circulation. Mineral-melt equilibria for clinopyroxene, olivine and plagioclase allow estimation of pressures and temperatures of crystallisation, and reveal two major regions of crystallisation, at 24-29 km and 11-18 km depth, in agreement with indications from earthquake data of crustal storage levels at c. 25-29 km and 12-21 km depth. Temperature estimates are 1150-1170 °C for the deeper region, and 1110-1140 °C in the mid-crustal region, with lower temperatures of 1090-1100 °C for late-stage crystallisation. More primitive plagioclase antecrysts are thought to sample a slightly more mafic melt at sub-Moho depths. Resorption textures combined with effectively constant mafic mineral compositions suggest phenocryst convection in a storage region of consistent magma composition. In addition, basalt erupted at Ambrym has predominantly maintained a constant composition throughout the volcanic succession. This, coupled with recurrent periods of elevated central vent activity on the scale of months, suggest frequent magmatic recharge via steady-state melt generation at Ambrym.

  8. Curie Point Depth of the Iberian Peninsula and Surrounding Margins. A Thermal and Tectonic Perspective of its Evolution

    NASA Astrophysics Data System (ADS)

    Andrés, J.; Marzán, I.; Ayarza, P.; Martí, D.; Palomeras, I.; Torné, M.; Campbell, S.; Carbonell, R.

    2018-03-01

    In this work the thermal structure of the Iberian Peninsula is derived from magnetic data by calculating the bottom of the magnetization, assumed to be the Curie-point depth (CPD) isotherm, which accounts for the depth at which magnetite becomes paramagnetic (580°C). Comparison of the CPD with crustal thickness maps along with a heat flow map derived from the CPD provides new insights on the lithospheric thermal regime. Within Iberia, the CPD isotherm has thickness in the range of 17 to 29 km. This isotherm is shallow (<18 km) offshore, where the lithosphere is thinner. In continental Iberia, the NW Variscan domain presents a magnetic response that is most probably linked to thickening and later extension processes during the late Variscan Orogeny, which resulted in widespread crustal melting and emplacement of granites (in the Central Iberian Arc). The signature of the CPD at the Gibraltar Arc reveals a geometry consistent with the slab roll-back geodynamic model that shaped the western Mediterranean. In offshore areas, a broad extension of magnetized upper mantle is found. Serpentinization of the upper mantle, probably triggered in an extensional context, is proposed to account for the magnetic signal. The Atlantic margin presents up to 8 km of serpentinites, which, according to the identification of exhumed mantle, correlates with a hyperextended margin. The Mediterranean also presents generalized serpentinization up to 6 km in the Algerian Basin. Furthermore, a heat flow map and a Moho temperature map derived from the CPD are presented.

  9. Depth variations of the 410 and 520 km-discontinuities beneath Asia and the Pacific from PP precursors

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Wölbern, I.; Rümpker, G.

    2009-06-01

    We investigate depth variations of the 410 and 520 km-discontinuities beneath Asia and the Pacific which serve as examples for a continental and an oceanic region, respectively. The depths are derived from travel-time differences between the PP-phase and its precursors that are reflected at the discontinuities. After accounting for differences in average crustal thickness, we find that the depth of the ‘410’ is rather uniform but larger than expected beneath both regions with a value of approximately 418 km. Signals from the ‘520’ are slightly less pronounced. However, while the average depth of the ‘520’ beneath Asia is about 519 km, we obtain a value of about 531.5 km for the Pacific. Here, the depression of the discontinuities can be explained in view of thermal anomalies in relation to mantle plumes. For Asia, however, the observations seem to require a more complex pattern of thermal anomalies possibly complemented by variations in chemical composition.

  10. Complex N-S variations in Moho depth and Vp/Vs ratio beneath the western Tibetan Plateau as revealed by receiver function analysis

    NASA Astrophysics Data System (ADS)

    Murodov, Davlatkhudzha; Zhao, Junmeng; Xu, Qiang; Liu, Hongbing; Pei, Shunping

    2018-04-01

    We present herein detailed images of the Moho depth and Vp/Vs ratio along ANTILOPE-1 profile beneath the western Tibetan Plateau derived from receiver function analysis. Along the ANTILOPE -1 profile, a rapidly northward dipping Moho extends from ˜50 km below the Himalaya to ˜80 km across the Indus-Yarlung suture (IYS), shallowing to ˜66 km under the central Lhasa terrane. The Moho depth shows a dramatic increase from ˜66 km north of the Bangong-Nujiang suture (BNS) to ˜93 km beneath central Qiangtang terrane where it reaches the maximum depth observed along this profile before steeply rising to ˜73 km. We interpret both the 15 km and 20 km offsets of Moho depth occurring beneath the central Lhasa and central Qiangtang terranes as being related to the northern frontiers of the decoupled underthrusting Indian lower crust and lithospheric mantle, respectively. The Moho remains at a depth of ˜70 km with a slight undulation beneath the northern Qiangtang and Songpan-Ganzi terranes, and then abruptly shallows to ˜45 km near the Altyn Tagh Fault. The ˜25 km Moho offset observed at the conjunction of the Tarim Basin and the Altyn Tagh mountain range suggests that the crustal shortening is achieved by pure shear thickening without much underthrusting. The average crustal Vp/Vs ratio changes from 1.66 to 1.80 beneath the Himalaya, the Lhasa terrane and the Tarim Basin indicating a felsic-to-intermediate composition. However, higher Vp/Vs ratios between 1.76 and 1.83 (except for a few outlying low values) are found beneath the Qiangtang and Songpan-Ganzi terranes, which could be attributed to the joint effects of the more mafic composition and partial melt within the crust. The Moho depth and Vp/Vs ratio exhibit complex N-S variations along this profile, which can be attributed to the joint effects of Indian lower crust underthrusting, the low velocity zone of the mid-upper crust, crustal shortening and thickening and other involved dynamic mechanisms.

  11. Inferred rheological structure and mantle conditions from postseismic deformation following the 2010 Mw 7.2 El Mayor-Cucapah Earthquake

    NASA Astrophysics Data System (ADS)

    Dickinson-Lovell, Haylee; Huang, Mong-Han; Freed, Andrew M.; Fielding, Eric; Bürgmann, Roland; Andronicos, Christopher

    2018-06-01

    The 2010 Mw7.2 El Mayor-Cucapah earthquake provides a unique target of postseismic study as deformation extends across several distinct geological provinces, including the cold Mesozoic arc crust of the Peninsular Ranges and newly formed, hot, extending lithosphere within the Salton Trough. We use five years of global positioning system measurements to invert for afterslip and constrain a 3-D finite-element model that simulates viscoelastic relaxation. We find that afterslip cannot readily explain far-field displacements (more than 50 km from the epicentre). These displacements are best explained by viscoelastic relaxation of a horizontally and vertically heterogeneous lower crust and upper mantle. Lower viscosities beneath the Salton Trough compared to the Peninsular Ranges and other surrounding regions are consistent with inferred differences in the respective geotherms. Our inferred viscosity structure suggests that the depth of the Lithosphere/Asthenosphere Boundary (LAB) is ˜65 km below the Peninsular Ranges and ˜32 km beneath the Salton Trough. These depths are shallower than the corresponding seismic LAB. This suggests that the onset of partial melting in peridotite may control the depth to the base of the mechanical lithosphere. In contrast, the seismic LAB may correspond to an increase in the partial melt percentage associated with the change from a conductive to an adiabatic geotherm.

  12. Is Ceres' deep interior ice-rich? Constraints from crater morphology

    NASA Astrophysics Data System (ADS)

    Bland, M. T.; Raymond, C. A.; Fu, R.; Marchi, S.; Castillo, J. C.; King, S. D.; Schenk, P.; Preusker, F.; Park, R. S.; Russell, C. T.

    2016-12-01

    Determining the composition and internal structure of Ceres is critical to understanding its origin and evolution. Analysis of the depths of Ceres' largest impact craters [Bland et al. 2016] and global shape [Fu et al. 2016] using data returned by NASA's Dawn spacecraft indicate that the dwarf planet's subsurface contains no more than 30% water ice by volume, with the other 70% consisting of salts (hydrated and/or anhydrous), clathrates, and phyllosilicates. Despite these findings, Ceres is unlikely to be ice-free. The GRaND instrument has detected probable water ice at decimeter depths (with strong latitudinal variations) [Prettyman et al. 2016], water ice has been detected in fresh [Combe et al. 2016] and permanently shadowed craters [Schorghofer et al. 2016], and the simple-complex morphologic transition diameter is consistent with a weak (icy) surface layer [Schenk et al. 2016]. Furthermore, a cryovolcanic origin for Ahuna Mons requires a source of water-rich material [Ruesch et al. 2016]. Here we use numerical simulations of the viscous relaxation of impact craters to provide new constraints on the water ice content of Ceres as a function of depth that enable a more complete understanding of the thickness and composition of its outer layer. These new simulations include three rheological layers: a high-viscosity near-surface layer, a weaker (possibly ice-rich layer), and an essentially immobile rocky layer at depth. Results are latitude (temperature) dependent; however, we generally find that retaining crater topography requires a high-viscosity (ice-poor) layer with a thickness of 50% the crater radius. For example, retaining a 100-km diameter crater at latitudes below 50o requires a high-viscosity (103x water ice) layer at least 30 km thick, if the underlying layer is pure ice. Deep, low-latitude craters 150 km in diameter are observed on Ceres [Bland et al. 2016], so the high-viscosity layer is likely >40 km thick. However, our results do not exclude the existence of a reservoir enriched in water ice at the base of Ceres' outer layer. We also find that the unique morphology of Ceres' largest crater, Kerwan, may result from viscous relaxation in a thin outer layer, potentially providing a constraint on the local thickness of Ceres outer shell.

  13. Elastic plate flexure above mantle plumes explains the upstream offset of volcanic activity at la Réunion and Hawaii

    NASA Astrophysics Data System (ADS)

    Gerbault, Muriel; Fontaine, Fabrice; Rabinowicz, Michel; Bystricky, Micha

    2017-04-01

    Surface volcanism at la Réunion and Hawaii occurs with an offset of 150-180 km upstream to the plume axis with respect to the plate motion. This striking observation raises questions about the forcing of plume-lithosphere thermo-mechanical interactions on melt trajectories beneath these islands. Based on visco-elasto-plastic numerical models handled at kilometric resolution, we propose to explain this offset by the development of compressional stresses at the base of the lithosphere, that result from elastic plate bending above the upward load exerted by the plume head. This horizontal compression adopts a disc shape centered around the plume axis, 20 km thick and 150 km in radius, at 50-70 km depth where the temperature varies from 600°C to 750°C. It lasts for 5 to 10 My in an oceanic plate of age greater than 70 My, a timing that is controlled by the visco-elastic relaxation time at 50-70 km depth. This period of time exceeds the time during which both the Somalian/East-African and Pacific plates drift over the Reunion and Hawaii plumes, respectively, thus rendering this basal compression a persistent feature. It is inferred that the buoyant melts percolating in the plume head pond below this zone of compression and eventually spread laterally until the most compressive principal elastic stresses reverse to the vertical, i.e., 150 km away from the plume head. There, melts propagate through dikes upwards to 35 km depth, where the plate curvature reverses and ambient compression diminishes. This 30-35 km depth may thus host magmatic reservoirs where melts pond, until further differentiation can relaunch ascension up to the surface and form a volcanic edifice. In a second stage, as the volcano grows because of melt accumulation at the top of the plate, the lithosphere is flexed downwards, inducing extra tensile stress at 30-35 km depth and compression at 15 km depth. It implies that now the melts pond at 15 km and form another magmatic reservoir lying just underneath the crust. These two processes explain the ponding of primary (shield) melts at 35 km and 15 km depths as partialy recorded below La Reunion, Mauritius or Hawaii volcanoes with seismic tomography.

  14. Hot spot heat transfer - Its application to Venus and implications to Venus and earth

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Phillips, R. J.

    1983-01-01

    Using a model that gives a relationship between surface elevation, lithospheric thickness, and heat flux, the hot spot heat loss mechanism is tested for Venus. The mechanism is found to readily explain the predicted heat loss of the planet with a modest number of hot spots (of the order of 35). Lithospheric thickness variations can explain approximately 93 percent of the mapped topography of Venus. Above a radius of 6053 km, additional compensation is required, and this can be effected by incorporating a variable thickness crust into the model. If it is assumed that the crust is generated on the crests of the hot spots, probably by processes associated with volcanism, the model is consistent with nearly 99 percent of the mapped topography of Venus. In addition, the model is basically consistent with available gravity data and interpretations that suggest compensated topography and great depths of compensation (100-1000 km) for the midlatitudes of the planet. It is thought that the approximately 1 percent of the topography not explained by hot spot crustal generation is compensated at a shallower depth primarily by variations in crustal thickness that are not directly related to hot spot volcanism.

  15. The Iceland Deep Drilling Project 4.5 km deep well, IDDP-2, in the seawater-recharged Reykjanes geothermal field in SW Iceland has successfully reached its supercritical target

    NASA Astrophysics Data System (ADS)

    Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.

    2017-11-01

    The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.

  16. A Three - Dimensional Receiver Function Study of the Western United States

    NASA Astrophysics Data System (ADS)

    Lindsey, C.; Gurrola, H.

    2008-12-01

    The western United States has a complex geologic history and has been the focus of many regional scale PASSCAL seismic studies that investigate depth variations to the Moho, the 410 km discontinuity, and the 660 km discontinuities. Analysis of depth variations to the Moho in relation to topography is important in understanding the isostatic compensation depth, the thermal state of the upper mantle and boundaries between tectonic provinces. Analysis of the 410 and 660 km discontinuities allow us to determine variations in mantle temperature at these depths and facilitates comparison with tectonic boundaries. This abstract summarizes results from stacking Pds phases throughout the western US using data from all available previous PASSCAL studies in the western U.S. together with data from the EarthScope Transportable array. These data sets enable us to produce an image over the entire western US from the Pacific coast to the Rocky mountain front. Common conversion point stacking of Pds phases was performed by back projecting the data through a 3-D seismic velocity model (surface wave tomography model NA04 by Van der Lee). The images produced show large variations in Moho topography with an average depth of 39.6 kilometer over the western US with ± 7.2 km standard deviation in depth. As would be expected the Moho appears to be deepest beneath the Colorado Plateau and central Montana and shallowest throughout the Basin and Raange. The Moho also appears very shallow beneath eastern Washington. There is a band oof thick crust along the Yellowstone hot spot track. The 410 km discontinuity appears to have a mean depth of 427 km with a standard deviation in depth of ± 10.2 km. At this time the images are still very noisy but in a regional sense the 410 appears deepest beneath the southern part of the image and shallower to the north. Depths to the 660 km discontinuity appear to average 675 km with standard deviation of ± 9.8 km. The 660 does not appear to have a north-south change in depth but appears deepest to the Eastern part of the image and shallower to the west. This relationship may indicate that the thermal state of the 410 is controlled by high temperatures to the south associated with the Basin and Range and cooler to the north were subduction is present. The 660 may be controlled by the transition from warm oceanic and transitional lithosphere to the west and cooler continental lithosphere to the east.

  17. A Comparison of Snow Depth on Sea Ice Retrievals Using Airborne Altimeters and an AMSR-E Simulator

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Marksu, T.; Ivanoff, A.; Miller, J. A.; Brucker, L.; Sturm, M.; Maslanik, J. A.; Heinrichs, J. F.; Gasiewski, A.; Leuschen, C.; hide

    2011-01-01

    A comparison of snow depths on sea ice was made using airborne altimeters and an Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) simulator. The data were collected during the March 2006 National Aeronautics and Space Administration (NASA) Arctic field campaign utilizing the NASA P-3B aircraft. The campaign consisted of an initial series of coordinated surface and aircraft measurements over Elson Lagoon, Alaska and adjacent seas followed by a series of large-scale (100 km ? 50 km) coordinated aircraft and AMSR-E snow depth measurements over portions of the Chukchi and Beaufort seas. This paper focuses on the latter part of the campaign. The P-3B aircraft carried the University of Colorado Polarimetric Scanning Radiometer (PSR-A), the NASA Wallops Airborne Topographic Mapper (ATM) lidar altimeter, and the University of Kansas Delay-Doppler (D2P) radar altimeter. The PSR-A was used as an AMSR-E simulator, whereas the ATM and D2P altimeters were used in combination to provide an independent estimate of snow depth. Results of a comparison between the altimeter-derived snow depths and the equivalent AMSR-E snow depths using PSR-A brightness temperatures calibrated relative to AMSR-E are presented. Data collected over a frozen coastal polynya were used to intercalibrate the ATM and D2P altimeters before estimating an altimeter snow depth. Results show that the mean difference between the PSR and altimeter snow depths is -2.4 cm (PSR minus altimeter) with a standard deviation of 7.7 cm. The RMS difference is 8.0 cm. The overall correlation between the two snow depth data sets is 0.59.

  18. The GEORIFT 2013 wide-angle seismic profile, along Pripyat-Dnieper-Donets Basin

    NASA Astrophysics Data System (ADS)

    Starostenko, Vitaliy; Janik, Tomasz; Yegorova, Tamara; Czuba, Wojciech; Sroda, Piotr; Lysynchuk, Dmytro; Aizberg, Roman; Garetsky, Radim; Karataev, German; Gribik, Yaroslav; Farfuliak, Lliudmyla; Kolomiyets, Katerina; Omelchenko, Victor; Gryn, Dmytro; Guterch, Aleksander; Komminaho, Kari; Legostaeva, Olga; Thybo, Hans; Tiira, Timo; Tolkunov, Anatoly

    2017-04-01

    The GEORIFT 2013 deep seismic sounding (DSS) experiment was carried in August 2013 on territory of Belarus and Ukraine in wide international co-operation. The aim of the work is to study basin architecture and the deep structure of the Pripyat-Dnieper-Donets Basin (PDDB), which is the deepest and best studied Palaeozoic rift basin in Europe. The PDDB locates in the southern part of the East European Craton (EEC) and crosses in NW direction the Sarmatia, the southernmost of three major segments forming the EEC. The long PDDB was formed by Late Devonian rifting in the arch of the ancient Sarmatian shield. During the Late Devonian, rifting, associated with domal basement uplift and magmatism, was widespread in the EEC from the PDDB rift basin in the south to Eastern Barents Sea in the north. The GEORIFT 2013 runs in NW-SE direction along the PDDB and crosses the Pripyat Trough and Dnieper Graben separated by Bragin uplift of the basement. The total profile length was 675 km: 315 km on the Belarusian territory and 360 km in Ukraine. The field acquisition included 14 shot points (charge 600-1000 kg of TNT), and 309 recording stations every 2.2 km. The data quality of the data was good, with visible first arrivals even up to 670 km. We present final model of the structure to the depth of 80 km. Ray-tracing forward modelling (SEIS83 package) was used for the modelling of the seismic data. The thickness of the sedimentary layer (Vp < 6.0 km/s) changes along the profile from 1-4 km in the NW, through 5 km in the central part, to 10-13 km in the SE part of the profile. In 330-530 km distance range, an updoming of the lower crust (with Vp of 7.1 km/s) to 25 km depth is observed. Large variations in the internal structure of the crust and the Moho topography were detected. The depth of the Moho varies from 47 km in the northwestern part of the model, to 40 km in central part, and to 38 km in the southeastern part of the profile. The sub-Moho velocities are 8.25 km/s. Second, near-horizontal mantle discontinuity was found in the northwestern part of the profile at the depth of 50-47 km. It dips to the depth of 60 km at distances of 360-405 km, similarly as on crossing EUROBRIDGE'97 profile (Thybo et al., 2003). In the central part of the profile (distances 180-330 km and 300-480 km) two reflectors were found in the lower lithosphere at depths of about 62 km and 75 km, respectively.

  19. The 2011 Mw 7.1 Van (Eastern Turkey) earthquake

    USGS Publications Warehouse

    Elliot, John R.; Copley, Alex C.; Holley, R.; Scharer, Katherine M.; Parsons, Barry

    2013-01-01

    We use interferometric synthetic aperture radar (InSAR), body wave seismology, satellite imagery, and field observations to constrain the fault parameters of the Mw 7.1 2011 Van (Eastern Turkey) reverse-slip earthquake, in the Turkish-Iranian plateau. Distributed slip models from elastic dislocation modeling of the InSAR surface displacements from ENVISAT and COSMO-SkyMed interferograms indicate up to 9 m of reverse and oblique slip on a pair of en echelon NW 40 °–54 ° dipping fault planes which have surface extensions projecting to just 10 km north of the city of Van. The slip remained buried and is relatively deep, with a centroid depth of 14 km, and the rupture reaching only within 8–9 km of the surface, consistent with the lack of significant ground rupture. The up-dip extension of this modeled WSW striking fault plane coincides with field observations of weak ground deformation seen on the western of the two fault segments and has a dip consistent with that seen at the surface in fault gouge exposed in Quaternary sediments. No significant coseismic slip is found in the upper 8 km of the crust above the main slip patches, except for a small region on the eastern segment potentially resulting from the Mw 5.9 aftershock on the same day. We perform extensive resolution tests on the data to confirm the robustness of the observed slip deficit in the shallow crust. We resolve a steep gradient in displacement at the point where the planes of the two fault segments ends are inferred to abut at depth, possibly exerting some structural control on rupture extent.

  20. The Surface Displacement Field of the November 8, 1997, Mw7.6 Manyi (Tibet) Earthquake Observed with ERS InSAR Data

    NASA Technical Reports Server (NTRS)

    Peltzer, G.; Crampe, F.

    1998-01-01

    ERS2 radar data acquired before and after the Mw7.6, Manyi (Tibet) earthquake of November 8, 1997, provide geodetic information about the surface displacement produced by the earthquake in two ways. (1) The sub-pixel geometric adjustment of the before and after images provides a two dimensional offset field with a resolution of approx, 1m in both the range (radar line of sight) and azimuth (satellite track) directions. Comparison of offsets in azimuth and range indicates that the displacement along the fault is essentially strike-slip and in a left-lateral sense. The offset map reveals a relatively smooth and straight, N78E surface rupture that exceeds 150 km in length, consistent with the EW plane of the Harvard CMT solution. The rupture follows the trace of a quaternary fault visible on satellite imagery (Tapponnier and Molnar, 1978; Wan Der Woerd, pers. comm.). (2) Interferometric processing of the SAR data provides a range displacement map with a precision of a few millimeters. The slip distribution along the rupture reconstructed from the range change map is a bell-shaped curve in the 100-km long central section of the fault with smaller, local maxima near both ends. The curve shows that the fault slip exceeds 2.2 m in range, or 6.2 in strike-slip, along a 30-km long section of the fault and remains above 1 m in range, approx. 3 m strike-slip, along most of its length. Preliminary forward modeling of the central section of the rupture, assuming a uniform slip distribution with depth, indicates that the slip occur-red essentially between 0 and the depth of 10 km, consistent with a relatively shallow event (Velasco et al., 1998).

  1. California State Waters Map Series: offshore of Pacifica, California

    USGS Publications Warehouse

    Edwards, Brian D.; Phillips, Eleyne L.; Dartnell, Peter; Greene, H. Gary; Bretz, Carrie K.; Kvitek, Rikk G.; Hartwell, Stephen R.; Johnson, Samuel Y.; Cochrane, Guy R.; Dieter, Bryan E.; Sliter, Ray W.; Ross, Stephanie L.; Golden, Nadine E.; Watt, Janet Tilden; Chinn, John L.; Erdey, Mercedes D.; Krigsman, Lisa M.; Manson, Michael W.; Endris, Charles A.; Cochran, Susan A.; Edwards, Brian D.

    2015-01-01

    The continental shelf in the map area is about 40 km wide, with water depths at the shelf break that range from about 80 to 120 m. Within California’s State Waters, the midshelf to inner shelf areas are characterized by a relatively flat, shallow (water depths of as much as 44 m) seafloor that dips gently (about 0.2° to 0.3°) westward. The seafloor is composed primarily of unconsolidated Holocene sediment (marine deposits), as well as some nearshore bedrock outcrops that consist primarily of rocks of the Tertiary Purisima Formation and also Cretaceous plutonic rocks (granite or granodiorite).

  2. Elastic and anelastic structure of the lowermost mantle beneath the Western Pacific from waveform inversion

    NASA Astrophysics Data System (ADS)

    Konishi, Kensuke; Fuji, Nobuaki; Deschamps, Frédéric

    2017-03-01

    We investigate the elastic and anelastic structure of the lowermost mantle at the western edge of the Pacific large low shear velocity province (LLSVP) by inverting a collection of S and ScS waveforms. The transverse component data were obtained from F-net for 31 deep earthquakes beneath Tonga and Fiji, filtered between 12.5 and 200 s. We observe a regional variation of S and ScS arrival times and amplitude ratios, according to which we divide our region of interest into three subregions. For each of these subregions, we then perform 1-D (depth-dependent) waveform inversions simultaneously for radial profiles of shear wave velocity (VS) and seismic quality factor (Q). Models for all three subregions show low VS and low Q structures from 2000 km depth down to the core-mantle boundary. We further find that VS and Q in the central subregion, sampling the Caroline plume, are substantially lower than in the surrounding regions, whatever the depth. In the central subregion, VS-anomalies with respect to PREM (dVS) and Q are about -2.5 per cent and 216 at a depth of 2850 km, and -0.6 per cent and 263 at a depth of 2000 km. By contrast, in the two other regions, dVS and Q are -2.2 per cent and 261 at a depth of 2850 km, and -0.3 per cent and 291 at a depth of 2000 km. At depths greater than ∼2500 km, these differences may indicate lateral variations in temperature of ∼100 K within the Pacific LLSVP. At shallower depths, they may be due to the temperature difference between the Caroline plume and its surroundings, and possibly to a small fraction of iron-rich material entrained by the plume.

  3. The Kovdor-2015 experiment: study of the parameters of a conductive layer of dilatancy-diffusion nature (DD Layer) in the Archaean crystalline basement of the Baltic Shield

    NASA Astrophysics Data System (ADS)

    Zhamaletdinov, A. A.; Velikhov, E. P.; Shevtsov, A. N.; Kolobov, V. V.; Kolesnikov, V. E.; Skorokhodov, A. A.; Korotkova, T. G.; Ivonin, V. V.; Ryazantsev, P. A.; Birulya, M. A.

    2017-06-01

    This paper addresses the Kovdor-2015 Experiment involving frequency electromagnetic soundings of the Archaean basement of the Earth's crust in the southwestern part of the Kola Peninsula. Eleven soundings were carried out using two transmitting arrangements, 85 km apart. Each arrangement consisted of two mutually orthogonal grounded electric dipoles of 1.5 km long. The distances between the source and the receiver were 25 and 50 km. Interpretation of the results took into account the influence of displacement currents and static distortions. It is found that there is an intermediate conductive layer of the dilatancy-diffusion nature (DD layer) with a longitudinal conductivity of about one siemens at depths ranging from 1.5-2 to 5-7 km. The results are interpreted in the terms of geodynamics.

  4. Seismic Imaging of the Lesser Antilles Subduction Zone Using S-to-P Receiver Functions: Insights From VoiLA

    NASA Astrophysics Data System (ADS)

    Chichester, B.; Rychert, C.; Harmon, N.; Rietbrock, A.; Collier, J.; Henstock, T.; Goes, S. D. B.; Kendall, J. M.; Krueger, F.

    2017-12-01

    In the Lesser Antilles subduction zone Atlantic oceanic lithosphere, expected to be highly hydrated, is being subducted beneath the Caribbean plate. Water and other volatiles from the down-going plate are released and cause the overlying mantle to melt, feeding volcanoes with magma and hence forming the volcanic island arc. However, the depths and pathways of volatiles and melt within the mantle wedge are not well known. Here, we use S-to-P receiver functions to image seismic velocity contrasts with depth within the subduction zone in order to constrain the release of volatiles and the presence of melt in the mantle wedge, as well as slab structure and arc-lithosphere structure. We use data from 55-80° epicentral distances recorded by 32 recovered broadband ocean-bottom seismometers that were deployed during the 2016-2017 Volatiles in the Lesser Antilles (VoiLA) project for 15 months on the back- and fore-arc. The S-to-P receiver functions are calculated using two methods: extended time multi-taper deconvolution followed by migration to depth to constrain 3-D discontinuity structure of the subduction zone; and simultaneous deconvolution to determine structure beneath single stations. In the south of the island arc, we image a velocity increase with depth associated with the Moho at depths of 32-40 ± 4 km on the fore- and back-arc, consistent with various previous studies. At depths of 65-80 ± 4 km beneath the fore-arc we image a strong velocity decrease with depth that is west-dipping. At 96-120 ± 5 km beneath the fore-arc, we image a velocity increase with depth that is also west-dipping. The dipping negative-positive phase could represent velocity contrasts related to the top of the down-going plate, a feature commonly imaged in subduction zone receiver function studies. The negative phase is strong, so there may also be contributions to the negative velocity discontinuity from slab dehydration and/or mantle wedge serpentinization in the fore-arc.

  5. Time functions of deep earthquakes from broadband and short-period stacks

    USGS Publications Warehouse

    Houston, H.; Benz, H.M.; Vidale, J.E.

    1998-01-01

    To constrain dynamic source properties of deep earthquakes, we have systematically constructed broadband time functions of deep earthquakes by stacking and scaling teleseismic P waves from U.S. National Seismic Network, TERRAscope, and Berkeley Digital Seismic Network broadband stations. We examined 42 earthquakes with depths from 100 to 660 km that occurred between July 1, 1992 and July 31, 1995. To directly compare time functions, or to group them by size, depth, or region, it is essential to scale them to remove the effect of moment, which varies by more than 3 orders of magnitude for these events. For each event we also computed short-period stacks of P waves recorded by west coast regional arrays. The comparison of broadband with short-period stacks yields a considerable advantage, enabling more reliable measurement of event duration. A more accurate estimate of the duration better constrains the scaling procedure to remove the effect of moment, producing scaled time functions with both correct timing and amplitude. We find only subtle differences in the broadband time-function shape with moment, indicating successful scaling and minimal effects of attenuation at the periods considered here. The average shape of the envelopes of the short-period stacks is very similar to the average broadband time function. The main variations seen with depth are (1) a mild decrease in duration with increasing depth, (2) greater asymmetry in the time functions of intermediate events compared to deep ones, and (3) unexpected complexity and late moment release for events between 350 and 550 km, with seven of the eight events in that depth interval displaying markedly more complicated time functions with more moment release late in the rupture than most events above or below. The first two results are broadly consistent with our previous studies, while the third is reported here for the first time. The greater complexity between 350 and 550 km suggests greater heterogeneity in the failure process in that depth range. Copyright 1998 by the American Geophysical Union.

  6. Crustal structure of a transform plate boundary: San Francisco Bay and the central California continental margin

    USGS Publications Warehouse

    Holbrook, W.S.; Brocher, T.M.; ten Brink, Uri S.; Hole, J.A.

    1996-01-01

    Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at-15-18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75??0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4-6.6 km/s and 6.9-7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the "6-s reflector" of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40-50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0-6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma. Copyright 1996 by the American Geophysical Union.

  7. Abundant aftershock sequence of the 2015 Mw7.5 Hindu Kush intermediate-depth earthquake

    NASA Astrophysics Data System (ADS)

    Li, Chenyu; Peng, Zhigang; Yao, Dongdong; Guo, Hao; Zhan, Zhongwen; Zhang, Haijiang

    2018-05-01

    The 2015 Mw7.5 Hindu Kush earthquake occurred at a depth of 213 km beneath the Hindu Kush region of Afghanistan. While many early aftershocks were missing from the global earthquake catalogues, this sequence was recorded continuously by eight broad-band stations within 500 km. Here we use a waveform matching technique to systematically detect earthquakes around the main shock. More than 3000 events are detected within 35 d after the main shock, as compared with 42 listed in the Advanced National Seismic System catalogue (or 196 in the International Seismological Centre catalogue). The aftershock sequence generally follows the Omori's law with a decay constant p = 0.92. We also apply the recently developed double-pair double-difference technique to relocate all detected aftershocks. Most of them are located to the west of the hypocentre of the main shock, consistent with the westward propagation of the main-shock rupture. The aftershocks outline a nearly vertical southward dipping plane, which matches well with one of the nodal planes of the main shock. We conclude that the aftershock sequence of this intermediate-depth earthquake shares many similarities with those for shallow earthquakes and infer that there are some common mechanisms responsible for shallow and intermediate-depth earthquakes.

  8. The 1999 (Mw 7.1) Hector Mine, California, Earthquake: Near-Field Postseismic Deformation from ERS Interferometry

    NASA Technical Reports Server (NTRS)

    Jacobs, Allison; Sandwell, David; Fialko, Yuri; Sichoix, Lydie

    2002-01-01

    Interferometric synthetic aperture radar (InSAR) data over the area of the Hector Mine earthquake (Mw 7.1, 16 October 1999) reveal postseismic deformation of several centimeters over a spatial scale of 0.5 to 50 km. We analyzed seven SAR acquisitions to form interferograms over four time periods after the event. The main deformations seen in the line-of-sight (LOS) displacement maps are a region of subsidence (60 mm LOS increase) on the northern end of the fault, a region of uplift (45 mm LOS decrease) located to the northeast of the primary fault bend, and a linear trough running along the main rupture having a depth of up to 15 mm and a width of about 2 km. We correlate these features with a double left-bending, rightlateral, strike-slip fault that exhibits contraction on the restraining side and extension along the releasing side of the fault bends. The temporal variations in the near-fault postseismic deformation are consistent with a characteristic time scale of 135 + 42 or - 25 days, which is similar to the relaxation times following the 1992 Landers earthquake. High gradients in the LOS displacements occur on the fault trace, consistent with afterslip on the earthquake rupture. We derive an afterslip model by inverting the LOS data from both the ascending and descending orbits. Our model indicates that much of the afterslip occurs at depths of less than 3 to 4 km.

  9. Curie Depth Analysis of the Salton Sea Region, Southern California

    NASA Astrophysics Data System (ADS)

    Mickus, Kevin; Hussein, Musa

    2016-02-01

    Aeromagnetic data were analyzed to determine the bottom of magnetic bodies that might be related to the Curie point depth (CPD) by 2D spectral and 3D inversion methods within the Salton Trough and the surrounding region in southern California. The bottom of the magnetic bodies for 55 × 55 km windows varied in depth between 11 and 23 km in depth using 2D spectral methods. Since the 55 × 55 km square window may include both shallow and deep source, a 3D inversion method was used to provide better resolution of the bottom of the magnetic bodies. The 3D models indicate the depth to the bottom of the magnetic bodies varied between 5 and 23 km. Even though both methods produced similar results, the 3D inversion method produced higher resolution of the CPD depths. The shallowest depths (5-8 km) occur along and west of the Brawley Seismic Zone and the southwestern portion of the Imperial Valley. The source of these shallow CPD values may be related to geothermal systems including hydrothermal circulation and/or partially molten material. Additionally, shallow CPD depths (7-12 km) were found in a northwest-trending zone in the center of the Salton Trough. These depths coincide with previous seismic analyses that indicated a lower crustal low velocity region which is believed to be caused by partially molten material. Lower velocity zones in several regions may be related to fracturing and/or hydrothermal fluids. If the majority of these shallow depths are related to temperature, they are likely associated with the CPD, and the partially molten material extends over a wider zone than previously known. Greater depths within the Salton Trough coincide with the base of basaltic material and/or regions of intense metamorphism intruded by mafic material in the middle/lower crust.

  10. Coseismic displacement caused by the Mw 6.1 Mashhad earthquake in NE Iran from Sentinel-1A TOPS radar images

    NASA Astrophysics Data System (ADS)

    Su, Z.; Hu, J. C.; Talebian, M.

    2017-12-01

    Determining the relationship between crustal movement and associated slip partitioning is essential for understanding earthquake source and addressing the proposed models of a potential earthquake hazard. An Mw 6.1 earthquake struck the southeastern margin of the Mashhad valley in the northeast of Iran on 5 April 2017. In this study, we use both the ascending and descending mode of Sentinel-1A TOPS satellite data to characterize coseismic deformation pattern and to inverse the coseismic slip distribution on the fault patches. The best fitting model predicts that the coseismic rupture occurs along a fault plane with strike of 324.4º and dip of 28.1ºE. Our results show the fault tip does not propagate to the ground surface, and the predicted coseismic slip on the surface is about 0.11 m located on the hanging wall of the fault. Significant slip is concentrated on the fault patches at depth of 4-8 km and an along-strike distance of 10 km with varying slip magnitude from 0.1 m to 0.9 m. The fault slip is composed by thrusting with right-lateral strike slip, which is consistent with the focal mechanism solution. The over-thrusting was occurred from the depth of 14 km and terminated at the 4 km depth. While the right-lateral strike slip was only concentrated at a shallower depth of 4 to 8 km depth with the maximum slip of 0.9 m. The seismic moment release of our preferred fault model is 1.71×1018 Nm, equivalent to Mw 6.16 event. The Coulomb failure stress (CFS) calculated by the preferred fault model predicts significant positive CFS change on the three paralleled subsidiary faults of the southernmost Mashhad and Kashafrud fault, the Tus, Sorkhdeh and Natu faults. Consequently, these segments should be considered to have increasing of risk for future seismic hazard. Although most of the northward motion of the Lut and Central Iranian Blocks have been absorbed by the crustal shortening (e.g. thrusting and folding along the Binalud and Kopeh Dagh), simple strike-slip faulting also play an important role in the slip partitioning from the north to the south in NE Iran.

  11. Trial aerial survey of sea otters in Prince William Sound, Alaska, 1993. Restoration project 93043-2. Exxon Valdez oil spill restoration project final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodkin, J.L.; Udevitz, M.S.

    1996-05-01

    We developed an aerial survey method for sea otters, using a strip transect design where otters observed in a strip along one side of the aircraft are counted. Two strata are sampled, one lies close to shore and/or in shallow. The other strata lies offshore and over deeper water. We estimate the proportion of otters not seen by the observer by conducting intensive searches of units (ISU`s) within strips when otters are observed. The first study found no significant differences in sea otter detection probabilities between ISU`s initiated by the sighting of an otter group compared to systematically located ISU`s.more » The second study consisted of a trial survey of all of Prince William Sound, excluding Orca Inlet. The survey area consisted of 5,017 sq km of water between the shore line and an offshore boundary based on shoreline physiography, the 100 m depth contour or a distance of 2 km from the shore. From 5-13 August 1993, two observers surveyed 1,023 linear km of high density sea otter habitat and 355 linear km of low density habitat.« less

  12. Measurement and interpretation of subtle deformation signals at Unimak Island from 2003 to 2010 using weather model-assisted time series InSAR

    NASA Astrophysics Data System (ADS)

    Gong, W.; Meyer, F. J.; Lee, C.-W.; Lu, Z.; Freymueller, J.

    2015-02-01

    A 7 year time series of satellite radar images over Unimak Island, Alaska—site of Westdahl Volcano, Fisher Caldera, and Shishaldin Volcano—was processed using a model-free Persistent Scatterer Interferometry technique assisted by numerical weather prediction model. The deformation-only signals were optimally extracted from atmosphere-contaminated phase records. The reconstructed deformation time series maps are compared with campaign and continuous Global Positioning System (GPS) measurements as well as Small Baseline Subset interferometric synthetic aperture radar (InSAR) results for quality assessment and geophysical interpretation. We observed subtle surface inflation at Westdahl Volcano that can be fit by a Mogi source located at approximately 3.6 km north of Westdahl peak and at depth of about 6.9 km that is consistent with the GPS-estimated depth for the 1998 to 2001 time period. The magma chamber volume change decays during the period of 2003 to 2010. The deformation field over Fisher Caldera is steadily subsiding over time. Its best fit analytical model is a sill source that is about 7.9 km in length, 0.54 km in width, and located at about 5.5 km below sea level underneath the center of Fisher Caldera with strike angle of N52°E. Very little deformation was detected near Shishaldin peak; however, a region approximately 15 km east of Shishaldin, as well as an area at the Tugamak range at about 30 km northwest of Shishaldin, shows evidence for movement toward the satellite, with a temporal signature correlated with the 2004 Shishaldin eruption. The cause of these movements is unknown.

  13. Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Remer, Lorraine A.; Levy, Robert C.; Mattoo, Shana

    2018-05-01

    In addition to the standard resolution product (10 km), the MODerate resolution Imaging Spectroradiometer (MODIS) Collection 6 (C006) data release included a higher resolution (3 km). Other than accommodations for the two different resolutions, the 10 and 3 km Dark Target (DT) algorithms are basically the same. In this study, we perform global validation of the higher-resolution aerosol optical depth (AOD) over global land by comparing against AErosol RObotic NETwork (AERONET) measurements. The MODIS-AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error bounds of ±(0.05 + 0.2 × AOD), with a high correlation (R = 0.87). The scatter is not random, but exhibits a mean positive bias of ˜ 0.06 for Terra and ˜ 0.03 for Aqua. These biases for the 3 km product are approximately 0.03 larger than the biases found in similar validations of the 10 km product. The validation results for the 3 km product did not have a relationship to aerosol loading (i.e., true AOD), but did exhibit dependence on quality flags, region, viewing geometry, and aerosol spatial variability. Time series of global MODIS-AERONET differences show that validation is not static, but has changed over the course of both sensors' lifetimes, with Terra MODIS showing more change over time. The likely cause of the change of validation over time is sensor degradation, but changes in the distribution of AERONET stations and differences in the global aerosol system itself could be contributing to the temporal variability of validation.

  14. Upper mantle electrical conductivity for seven subcontinental regions of the Earth

    USGS Publications Warehouse

    Campbell, W.H.; Schiffmacher, E.R.

    1988-01-01

    Spherical harmonic analysis coefficients of the external and internal parts of the quiet-day geomagnetic field variations (Sq) separated for the 7 continental regions of the observatories have been used to determine conductivity profiles to depths of about 600 km by the Schmucker equivalent substitute conductor method. The profiles give evidence of increases in conductivity between about 150 and 350 km depth, then a general increase in conductivity thereafter. For South America we found a high conductivity at shallow depths. The European profile showed a highly conducting layer near 125 km. At the greater depths, Europe, Australia and South America had the lowest values of conductivity. North America and east Asia had intermediate values whereas the African and central Asian profiles both showed the conductivities rising rapidly beyond 450 km depth. The regional differences indicate that there may be considerable lateral heterogeneity of electrical conductivity in the Earth's upper mantle. -Authors

  15. Transect across the West Antarctic rift system in the Ross Sea, Antarctica

    USGS Publications Warehouse

    Trey, H.; Cooper, A. K.; Pellis, G.; Della, Vedova B.; Cochrane, G.; Brancolini, Giuliano; Makris, J.

    1999-01-01

    In 1994, the ACRUP (Antarctic Crustal Profile) project recorded a 670-km-long geophysical transect across the southern Ross Sea to study the velocity and density structure of the crust and uppermost mantle of the West Antarctic rift system. Ray-trace modeling of P- and S-waves recorded on 47 ocean bottom seismograph (OBS) records, with strong seismic arrivals from airgun shots to distances of up to 120 km, show that crustal velocities and geometries vary significantly along the transect. The three major sedimentary basins (early-rift grabens), the Victoria Land Basin, the Central Trough and the Eastern Basin are underlain by highly extended crust and shallow mantle (minimum depth of about 16 km). Beneath the adjacent basement highs, Coulman High and Central High, Moho deepens, and lies at a depth of 21 and 24 km, respectively. Crustal layers have P-wave velocities that range from 5.8 to 7.0 km/s and S-wave velocities from 3.6 to 4.2 km/s. A distinct reflection (PiP) is observed on numerous OBS from an intra-crustal boundary between the upper and lower crust at a depth of about 10 to 12 km. Local zones of high velocities and inferred high densities are observed and modeled in the crust under the axes of the three major sedimentary basins. These zones, which are also marked by positive gravity anomalies, may be places where mafic dikes and sills pervade the crust. We postulate that there has been differential crustal extension across the West Antarctic rift system, with greatest extension beneath the early-rift grabens. The large amount of crustal stretching below the major rift basins may reflect the existence of deep crustal suture zones which initiated in an early stage of the rifting, defined areas of crustal weakness and thereby enhanced stress focussing followed by intense crustal thinning in these areas. The ACRUP data are consistent with the prior concept that most extension and basin down-faulting occurred in the Ross Sea during late Mesozoic time, with relatively small extension, concentrated in the western half of the Ross Sea, during Cenozoic time.

  16. Basement depth and sedimentary infill from deep seismic reflection data at the western tip of the offshore Corinth Rift

    NASA Astrophysics Data System (ADS)

    Beckers, Arnaud; Tripsanas, Efthymios; Hubert-Ferrari, Aurélia; Beck, Christian; Sakellariou, Dimitris

    2015-04-01

    The Corinth rift is a young continental rift located in central Greece. The active part of the rift forms an E-W striking depression - the Gulf of Corinth - that is the deepest in its central part. Extensive seismic surveys have imaged the basin's basement and allowed to estimate the total extension across most of the Gulf except its western tip. Extension is high in the central part and decreases westward and eastward, as reflected in the present-day bathymetry. Two decades of GPS measurements have shown that the extension rate increases westwards from ~5 to 10-15 mm yr-1, but this is not consistent with the long term pattern. However, no data allowed so far to estimate the basement depth at the western tip of the Gulf, where the geodetic extension rate is the largest. Such data would allow to check the apparent inconsistency between the present rate and the long-term estimates of crustal extension. We present here an unpublished multichannel seismic line dating from 1979 and crossing the western tip of the Gulf of Corinth. The line is 22 km long and strikes WNW-ESE, from the Mornos delta to the West-Channel fault. A Maxipulse source has been used, allowing to image the basement below the synrift sedimentary infill. To the east, a ~1.6 km deep basin is imaged between the southern margin of the Gulf and an inactive south-dipping fault located between the Aigion and the Trizonia faults. The sedimentary infill consists in an alternation between basin-focused bodies made of incoherent reflections and more extensive high-amplitude reflectors. Attributing this alternation to eustatic variations give an age of 300-350 ka to the oldest well imaged deposits. Northwest of the Trizonia fault, the basement is imaged at shallower depth, i.e. ~450 m. The western tip of the seismic line reaches the Mornos delta, close to the northern shoreline. There, the depth to the basement is larger, reaching ~1.2 km. The infill is made of 3 units : on the basement lies a thin unit of incoherent reflections that may corresponds to coarse-grained fluvial deposits. A second unit of parallel, high-amplitude, low-frequency reflections could represent deeper-water deposits. The last seismic unit represents the Mornos delta coarse-grained deposits, from 0 to ~0.7 km deep. The depth of the basement deduced from this seismic line at the western tip of the Gulf of Corinth (1.2-1.6 km) is shallower than the one in the central part of the Gulf (2.5-3 km). This reinforce the inconsistency between long-term and short-term rates of extension in the Corinth Rift, which may be explained by assuming that the Western Corinth Rift initiated much later than the Central Rift. These data also allow to constrain the total displacement on the N-dipping Psathopyrgos fault, one of the major, normal, basin-bounding faults at the western tip of the Rift. The total offset would reach 2.1-2.3 km and the uplift/subsidence ratio would be ~1:1.7, implying a slip rate of 2.2-2.5 mm yr-1 based on footwall uplift rate data.

  17. Seismic and Aseismic Behavior of the Altotiberina Low-angle Normal Fault System (Northern Apennines, Italy) through High-resolution Earthquake Locations and Repeating Events

    NASA Astrophysics Data System (ADS)

    Valoroso, L.; Chiaraluce, L.

    2017-12-01

    Low-angle normal faults (dip < 30°) are geologically widely documented and considered responsible for accommodating the crustal extension within the brittle crust although their mechanical behavior and seismogenic potential is enigmatic. We study the anatomy and slip-behavior of the actively slipping Altotiberina low-angle (ATF) normal fault system using a high-resolution 5-years-long (2010-2014) earthquake catalogue composed of 37k events (ML<3.9 and completeness magnitude MC=0.5 ML), recorded by a dense permanent seismic network of the Altotiberina Near Fault Observatory (TABOO). The seismic activity defines the fault system dominated at depth by the low-angle ATF surface (15-20°) coinciding to the ATF geometry imaged through seismic reflection data. The ATF extends for 50km along-strike and between 4-5 to 16km of depth. Seismicity also images the geometry of a set of higher angle faults (35-50°) located in the ATF hanging-wall (HW). The ATF-related seismicity accounts for 10% of the whole seismicity (3,700 events with ML<2.4), occurring at a remarkably constant rate of 2.2 events/day. This seismicity describes an about 1.5-km-thick fault zone composed by multiple sub-parallel slipping planes. The remaining events are instead organized in multiple mainshocks (MW>3) seismic sequences lasting from weeks to months, activating a contiguous network of 3-5-km-long syn- and antithetic fault segments within the ATF-HW. The space-time evolution of these minor sequences is consistent with subsequence failures promoted by fluid flow. The ATF-seismicity pattern includes 97 clusters of repeating events (RE) made of 299 events with ML<1.9. RE are located around locked patches identified by geodetic modeling, suggesting a mixed-mode (stick-slip and stable-sliding) slip-behavior along the fault plane in accommodating most of the NE-trending tectonic deformation with creeping dominating below 5 km depth. Consistently, the seismic moment released by the ATF-seismicity accounts for a small portion (30%) of the geodetic one. The rate of occurrence of RE, mostly composed by doublets with short inter-event time (e.g. hours), appears to modulate the seismic release of the ATF-HW, suggesting that creeping may drive the strain partitioning of the system.

  18. Crustal Structure Beneath the Luangwa Rift, Zambia: Constraints from Potential Field Data

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.; Matende, K.; Abdelsalam, M. G.; Mickus, K. L.; Atekwana, E. A.; Gao, S. S.; Sikazwe, O.; Liu, K. H.; Evans, R. L.

    2015-12-01

    We used gravity and magnetic data to examine the thermal and crustal structure beneath the Luangwa Rift Valley (LRV) in Zambia in order to examine the geodynamic controls of its formation.. The LRV lies at the boundary between the Mesoproterozoic-Neoproterozoic Irumide and Southern Irumide orogenic belts between the Zimbabwe craton and the Bangwelu Block. We computed the Curie Point Depth (CPD) using two-dimensional (2D) power spectrum analysis of the aeromagnetic data, and these results were used to estimate heat flow beneath the LRV. We also inverted the aeromagnetic data for three-dimensional (3D) magnetic susceptibility distribution. We further determined the depths to the Moho using 2D power spectrum analysis of the satellite gravity data and 2D forward modeling of the terrestrial gravity data. We found that: (1) there is no consistent pattern of elevated CPD beneath the LRV, and as such no consistent pattern of elevated heat flow anomaly, (2) there are numerous 5-15 km wide magnetic bodies at shallow depth (5-20 km) beneath the LRV and the 2D forward gravity modeling suggests these to be dense intrusive bodies, (3) a thick crust (49-52 km) underlies the northwestern margin of the rift centered beneath the ~ 1 km high Muchinga escarpment which represents the main border fault of the LRV. This thick crust contrasts with the thinner crust (35-45 km) outside the rift, and (4) the thickened crust coincides with a NE-SE elongated belt of 1.05-1.0 Ga granitoids previously interpreted as manifestations of the metacratonization of the southeastern edge of the Bangweulu Block. Our 2D forward gravity model suggests that the thickened crust is due to the presence of possibly Karoo-aged magmatic under-plated mafic body (UPMB) whose thermal anomaly has since decayed. We suggest that the initiation of the LRV was associated with this deep magmatic activity that introduced rheological weaknesses that facilitated strain localization although it never breached the surface. It is also possible that metacratonization of the southeastern edge of the Bangwelu cratonic block might have facilitated the localization of the UPMB emplacement. New passive seismic and magnetotelluric data acquired as part of the NSF-funded PRIDE experiment will likely contribute to testing the validity of our interpretations.

  19. Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra

    NASA Astrophysics Data System (ADS)

    Venkataraman, Anupama; Nyblade, Andrew A.; Ritsema, Jeroen

    2004-08-01

    We measure P wave spectral amplitude ratios from deep-focus earthquakes recorded at broadband seismic stations of the Tanzania network to estimate regional variation of sublithospheric mantle attenuation beneath the Tanzania craton and the eastern branch of the East African Rift. One-dimensional profiles of QP adequately explain the systematic variation of P wave attenuation in the sublithospheric upper mantle: QP ~ 175 beneath the cratonic lithosphere, while it is ~ 80 beneath the rifted lithosphere. By combining the QP values and a model of P wave velocity perturbations, we estimate that the temperature beneath the rifted lithosphere (100-400 km depth) is 140-280 K higher than ambient mantle temperatures, consistent with the observation that the 410 km discontinuity in this region is depressed by 30-40 km.

  20. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina.

    PubMed

    Booker, John R; Favetto, Alicia; Pomposiello, M Cristina

    2004-05-27

    Beneath much of the Andes, oceanic lithosphere descends eastward into the mantle at an angle of about 30 degrees (ref. 1). A partially molten region is thought to form in a wedge between this descending slab and the overlying continental lithosphere as volatiles given off by the slab lower the melting temperature of mantle material. This wedge is the ultimate source for magma erupted at the active volcanoes that characterize the Andean margin. But between 28 degrees and 33 degrees S the subducted Nazca plate appears to be anomalously buoyant, as it levels out at about 100 km depth and extends nearly horizontally under the continent. Above this 'flat slab', volcanic activity in the main Andean Cordillera terminated about 9 million years ago as the flattening slab presumably squeezed out the mantle wedge. But it is unknown where slab volatiles go once this happens, and why the flat slab finally rolls over to descend steeply into the mantle 600 km further eastward. Here we present results from a magnetotelluric profile in central Argentina, from which we infer enhanced electrical conductivity along the eastern side of the plunging slab, indicative of the presence of partial melt. This conductivity structure may imply that partial melting occurs to at least 250 km and perhaps to more than 400 km depth, or that melt is supplied from the 410 km discontinuity, consistent with the transition-zone 'water-filter' model of Bercovici and Karato.

  1. Mirages and the nature of Pluto's atmosphere

    NASA Technical Reports Server (NTRS)

    Stansberry, J. A.; Lunine, J. I.; Hubbard, W. B.; Yelle, R. V.; Hunten, D. M.

    1994-01-01

    We present model occultation lightcurves demonstrating that a strong thermal inversion layer at the base of Pluto's stratosphere can reproduce the minimum flux measured by the Kuiper Airborne Observatory (KAO) during the 1988 occultation of a star by Pluto. The inversion layer also forms the occultation equivalent of a mirage at a radius of 1198 km, which is capable of hiding tropospheres of significant depth. Pluto's surface lies below 1198 km, its radius depending on the depth of the troposphere. We begin by computing plausible temperature structures for Pluto's lower atmosphere, constrained by a calculation of the temperature of the atmosphere near the surface. We then trace rays from the occulted star through the model atmosphere, computing the resultant bending of the ray. Model light curves are obtained by summing the contribution of individual rays within the shadow of Pluto on Earth. We find that we can reproduce the KAO lightcurve using model atmospheres with a temperature inversion and no haze. We have explored models with tropospheres as deep as 40 km (implying a Pluto radius of 1158 km) that reproduce the suite of occultation data. Deeper tropospheres can be fitted to the data, but the mutual event radius of 1150 km probably provides a lower bound. If Pluto has a shallow or nonexistent troposphere, its density is consistent with formation in the solar nebula with modest water loss due to impact ejection. If the troposhere is relatively deep, implying a smaller radius and larger density, significant amounts of water loss are required.

  2. Lithospheric structure beneath the Caribbean- South American plate boundary from S receiver functions

    NASA Astrophysics Data System (ADS)

    Masy, J.; Levander, A.; Niu, F.

    2010-12-01

    We have analyzed teleseismic S-wave data recorded by the permanent national seismic network of Venezuela and the BOLIVAR broadband array (Broadband Onshore-offshore Lithospheric Investigation of Venezuela and the Antilles arc Region) deployed from 2003 to 2005. A total of 28 events with Mw > 5.7 occurring at epicentral distances from 55° to 85° were used. We made Sp receiver functions to estimate the rapid variations of lithospheric structure in the southern Caribbean plate boundary region to try to better understand the complicated tectonic history of the region. Estimated Moho depth ranges from ~20 km beneath the Caribbean Large Igneous Provinces to ~50 km beneath the Mérida Andes in western Venezuela and the Sierra del Interior in northeastern Venezuela. These results are consistent with previous receiver functions studies (Niu et al., 2007) and active source profiles (Schmitz et al., 2001; Bezada et al., 2007; Clark et al., 2008; Guedez, 2008; Magnani et al., 2009). Beneath the Maracaibo Block we observe a signal at a depth of 100 km dipping ~24° towards the continent, which we interpret as the top of the oceanic Caribbean slab that is subducting beneath South America from the west. The deeper part of the slab was previously imaged using P-wave tomography (Bezada et al, 2010), and the upper part inferred from intermediate depth seismicity (Malavé and Suarez, 1995). These studies indicate flat slab subduction beneath northern Colombia and northwestern Venezuela with the slab dipping between 20° - 30° beneath Lake Maracaibo. Like others we attribute the flat slab subduction to the uplift of the Mérida Andes (for example Kellogg and Bonini, 1982). In eastern Venezuela beneath the Sierra del Interior we also observe a deep signal that we interpret as deep South American lithosphere that is detaching from the overriding plate as the Atlantic subducts and tears away from SA (Bezada et al., 2010; Clark et al, 2008). The lithosphere-asthenosphere boundary (LAB) is not a continuous feature under the entire region, instead it is seen beneath the Cordillera de la Costa in central Venezuela at ~130 km, also under the Perijá Range and the Sierra del Interior. Under the Guayana Shield we observe two distinct regions with LAB depths at ~150 km depth. We also see the LAB at this depth in places north of the Orinoco River, suggesting the presence of cratonic structures north of the river. These results are in good agreement with the structures observed by Miller et al. (2009) in Rayleigh wave tomography images.

  3. Modeling of the Foca-Uzunada magnetic anomaly and thermal structure in the gulf of Izmir, western Turkey

    NASA Astrophysics Data System (ADS)

    Aydemir, Attila; Bilim, Funda; Cifci, Gunay; Okay, Seda

    2018-05-01

    The Gulf of Izmir (GoI) is one of the largest gulfs in the Aegean Sea, Turkey. There is a large magnetic anomaly extending in the NE-SW direction between Foca and Uzunada (Uzun Island) in the gulf. Previously, Curie Point Depth (CPD), geothermal gradient, heat-flow and radiogenic heat production maps of the onshore part of the Aegean region were constructed from the aeromagnetic data. In this study, the same maps except radiogenic heat production map are presented for the offshore part and the largest magnetic anomaly in the northern part of the gulf is focused, particularly. As a result, the thermal structure of GoI is clearly defined and according to the results of this study, CPD values were found from 7 km in the NE of Foca to 10 km through the south of the gulf. The geothermal gradient values vary between 50 and 80 °C/km. Maximum heat flow values around the anomaly are calculated as 200 and 215 mW/m2 according to the thermal conductivity coefficients of 2.5 W m-1 K-1 and 2.7 W m-1 K-1, respectively. Although the anomaly is located in the Izmir Gulf; CPD, geothermic gradient, heat flow anomalies are shifted through the north of Foca and Aliaga towns in the Candarli Bay. This prominent anomaly in the Gulf of Izmir is associated with the magmatics that were encountered at 969 m in the Foca-1 well although it was drilled about 2 km away from the outermost closed contour of the magnetic anomaly. The anomaly is also modeled three dimensionally (3D) in this study. In the model map, the top of the causative body is completely located in the outer part of the gulf, and is very shallow at about 0.5 km while its bottom is inclined through the west of Cigli and Menemen. From this viewpoint, it is possible to suggest that the causative body is inclined through the Foca Peninsula. However, its closed contours are in the NE direction, through the Candarli Bay. Top depth of the causative body is also calculated from the basement horizon on the seismic sections crossing this anomaly. Depth calculations are consistent in these sections and confirm the top depths from the modeling study. The basement geometry in the seismic sections also reflects the shape of 3D model geometry, and bottom depth of the magmatics is also verified by the basement depth calculations in seismic sections.

  4. Depth Discrimination Using Rg-to-Sg Spectral Amplitude Ratios for Seismic Events in Utah Recorded at Local Distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tibi, Rigobert; Koper, Keith D.; Pankow, Kristine L.

    Short-period fundamental-mode Rayleigh waves (Rg) are commonly observed on seismograms of anthropogenic seismic events and shallow, naturally occurring tectonic earthquakes (TEs) recorded at local distances. In the Utah region, strong Rg waves traveling with an average group velocity of about 1.8 km/s are observed at ~1 Hz on waveforms from shallow events ( depth<10 km ) recorded at distances up to about 150 km. At these distances, Sg waves, which are direct shear waves traveling in the upper crust, are generally the dominant signals for TEs. Here in this study, we leverage the well-known notion that Rg amplitude decreases dramaticallymore » with increasing event depth to propose a new depth discriminant based on Rg-to-Sg spectral amplitude ratios. The approach is successfully used to discriminate shallow events (both earthquakes and anthropogenic events) from deeper TEs in the Utah region recorded at local distances ( <150 km ) by the University of Utah Seismographic Stations (UUSS) regional seismic network. Using Mood’s median test, we obtained probabilities of nearly zero that the median Rg-to-Sg spectral amplitude ratios are the same between shallow events on the one hand (including both shallow TEs and anthropogenic events), and deeper earthquakes on the other, suggesting that there is a statistically significant difference in the estimated Rg-to-Sg ratios between the two populations. We also observed consistent disparities between the different types of shallow events (e.g., mining blasts vs. mining-induced earthquakes), implying that it may be possible to separate the subpopulations that make up this group. Lastly, this suggests that using local distance Rg-to-Sg spectral amplitude ratios one can not only discriminate shallow events from deeper events but may also be able to discriminate among different populations of shallow events.« less

  5. Depth-Dependent Earthquake Properties Beneath Long-Beach, CA: Implications for the Rheology at the Brittle-Ductile Transition Zone

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Clayton, R. W.; Ampuero, J. P.

    2015-12-01

    Except for a few localities, seismicity along faults in southern California is generally confined to depths shallower than 15 km. Among faults hosting deep seismicity, the Newport-Inglewood Fault (NIF), which traverses the Los-Angeles basin, has an exceptionally mild surface expression and low deformation rates. Moreover, the NIF structure is not as well resolved as other, less well instrumented faults because of poor signal-to-noise ratio. Here we use data from three temporary dense seismic arrays, which were deployed for exploration purposes and contain up to several thousands of vertical geophones, to investigate the properties of deep seismicity beneath Long-Beach (LB), Compton and Santa-Fe Springs (SFS). The latter is located 15 km northeast of the NIF, presumably above a major detachment fault underthrusting the basin.Event detection is carried out using a new approach for microseismic multi-channel picking, in which downward-continued data are back-projected onto the volume beneath the arrays, and locations are derived from statistical analysis of back-projection images. Our technique reveals numerous, previously undetected events along the NIF, and confirms the presence of an active shallow structure gently dipping to the north beneath SFS. Seismicity characteristics vary along the NIF strike and dip. While LB seismicity is uncorrelated with the mapped trace of the NIF, Compton seismicity illuminates a sub-vertical fault that extends down to about 20 km. This result, along with the reported high flux of mantle Helium along the NIF (Boles et al., 2015), suggests that the NIF is deeply rooted and acts as a major conduit for mantle fluids. We find that the LB size distribution obeys the typical power-law at shallow depths, but falls off exponentially for events occurring below 20 km. Because deep seismicity occurs uniformly beneath LB, this transition is attributed to a reduction in seismic asperity density with increasing depth, consistent with a transition to a diffuse deformation regime.

  6. A conceptual model for the asthenosphere: redox melting in the C-O-H-bearing mantle vs. geophysical observations

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Tarits, Pascal; Massuyeau, Malcolm; David, Sifre; Leila, Hashim; Emmanuel, Gardes

    2013-04-01

    The asthenosphere has classically been considered as a convective layer, with its viscosity decreased by the presence of 100's ppm water in olivine, and being overtopped by a rigid and dry lithosphere. It, however, needs a new conceptual definition as the presence of water seems not able to affect the rheology of olivine; furthermore, properties such as electrical conductivity and seismic wave's velocity are not sensibly affected by water content in olivine, leaving the geophysical features of the asthenosphere unexplained. An asthenosphere impregnated by low melt fractions is consistent with constraints on melting behavior of C-O-H-bearing peridotites and may also better explain electrical conductivity and seismic features. The challenge is therefore to confront and reconcile the complexity of mantle melting in the C-O-H system with geophysical observations. This work reviews and discusses several key properties of the asthenosphere and relates their vertical and lateral heterogeneities to geodynamic processes. The first discussion is about the top of the Lithosphere-Asthenosphere boundary in the oceanic mantle. The discontinuity identified by seismic and electrical surveys is located at an average depth of 65km and is weakly influenced by the age, and therefore, the temperature of the lithosphere. This puzzling observation is shown here to be in perfect line the onset of peridotite melting in presence of both H2O and CO2. Mantle melting is therefore expected at 65 km depth, where the melt is essentially carbonatitic, inducing weakening and imposing transition in the regime of thermal transfer. Deeper, the melt evolve to silica-richer compositions. Twenty years of petrological investigations on processes that control mantle redox state unanimously concur on an increasingly reduced mantle with increasing depth. The conventional wisdom defines garnet as being increasingly abundant and increasingly able to concentrate ferric iron with increasing depth. Such oxygen pump results in an increasingly reduced mantle with depth. Recent surveys have calibrated the carbon-carbonate redox transition at mantle pressure and have located its depth around 180-250 km (depth of redox melting); Deeper, only diamond is stable; Shallower, carbonates, mostly in its molten state, are expected. This petrological model is confronted to the most recent geophysical observations. Such observations indicate that melting must occur at depth down to 400 km, which conflict with the concept of redox melting. What is the composition of the melt? Hydrous silicate melt or hydrous carbonated melt? What does it mean in terms of deep upper mantle redox state?

  7. Crustal and Moho Reflections Beneath Mount St. Helens from the iMUSH Experiment

    NASA Astrophysics Data System (ADS)

    Levander, A.; Kiser, E.; Schmandt, B.; Hansen, S. M.; Creager, K.

    2017-12-01

    The multi-disciplinary iMUSH project (imaging Magma Under St. Helens) was designed to illuminate the magmatic system beneath Mount St Helens (MSH) from the subducting Juan de Fuca slab to the surface using seismic, magnetotelluric, and petrologic data. The iMUSH active source experiment consisted of 23 large shots and 6000 seismograph stations. Included in the active-source seismic experiment were 2 dense linear profiles striking NW-SE and NE-SW, each with over 1000 receivers ( 150 m spacing) and 8 shots. Using averaged 1D velocity models around each shotpoint taken from the 2D velocity models of Kiser et al., 2016 (Geology), we have made CMP stacked sections of the two profiles. We made images using several types of signal preconditioning and enhancement methods, including analytic signal and STA/LTA envelopes. Reflection time corrections were determined using standard NMO, long-offset NMO, p-tau, and 2D travel time analyses. Bright reflection events in the CMP sections show remarkably close correspondence to abrupt velocity changes in the mid to lower crust and at the Moho in the 2D velocity models: Reflections appear at 20-25 km depth at the tops of two lower crustal high velocity (Vp > 7.5 km/s) bodies. One of these high velocity bodies is directly beneath MSH. The other is 40 km SE of MSH, under the 9ka Indian Heaven basaltic volcanic field. We interpret the high Vp bodies as cumulates from Quaternary or Tertiary volcanism. Separating the two high Vp bodies is a lower velocity column (Vp ≤ 6.5 km/s) dipping to the SE from the midcrust to the Moho. In the CMP section, the Moho reflection is bright under the region of low velocity and dims beneath both of the high velocity lower crustal bodies. The CMP images of the Moho are consistent with the PmP reflection amplitude analysis of Hansen et al, 2016 (Nature Communications). The 1980 eruption seismicity extended from the MSH summit to 20 km depth, stopping just above the bright reflection at the top of the MSH high Vp body. Deep long period events under MSH, often associated with motion of magmatic fluids, cluster at 20-30 km depth along the southeastern edge of the same reflection. We suggest that lower crustal magmas migrate from the southeast at the boundary of the MSH high velocity body, and then laterally across its top to continue vertical ascent to the magma storage zone under the summit.

  8. Age and petrology of the Tertiary As Sarat volcanic field, southwestern Saudi Arabia

    USGS Publications Warehouse

    du Bray, E.A.; Stoeser, D.B.; McKee, E.H.

    1991-01-01

    Harrat As Sarat forms the second smallest and southernmost of the basalt fields of western Saudi Arabia and is part of a voluminous Red Sea rift-related continental alkali basalt province. The rocks of the As Sarat were emplaced during the first stage of Red Sea rifting and represent the northernmost extension of the Tertiary Trap Series volcanics that occur mainly in the Yemen Arab Republic and Ethiopia. The field consists of up to 580 m of basalt flows, that are intruded by basaltic plugs, necks, minor dikes, and highly evolved peralkaline trachyte intrusions. K-Ar ages indicate that the As Sarat field formed between 31 and 22 Ma and contains an eruption hiatus of one million years that began about 25 Ma ago. Pre-hiatus flows are primarily hypersthene normative intersertal subalkaline basalt, whereas the majority of post-hiatus flows are nepheline normative alkali basalt and hawaiite with trachytic textures. Normative compositions of the basalts are consistent with their genesis by partial melting at varying depths. Trace element abundances in the basalt indicate that varying degrees of partial melting and fractional crystallization (or crystal accumulation) had major and minor roles, respectively, in development of compositional variation in these rocks. Modeling indicates that the pre-hiatus subalkaline basalts represent 8-10 percent mantle melting at depths of about 70 km and the post-hiatus alkali basalts represent 4-9 percent mantle melting at depths greater than 70 km. ?? 1991.

  9. Deep crustal structure between the Selkirk Crest, Idaho and the Whitefish Range, Montana from magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Bedrosian, P. A.; Box, S. E.; Pellerin, L.

    2006-12-01

    The Middle Proterozoic Belt Basin, spanning parts of Montana, Idaho, Washington, and British Columbia, is one of the deepest basins in North America. More than 18 km of fine-grained sedimentary strata were deposited rapidly between 1.5-1.4 Ga and split by rifting during late Proterozoic development of the North American passive margin. Basin strata were relatively undeformed until Mesozoic Cordilleran thrusting and early Eocene extension. Many outstanding questions require an understanding of deep basin structure, including the flexural load of the Basin, its role during Cordilleran deformation, and controls on ore-forming fluids that produced stratabound Cu-Ag deposits within the Basin. Long-period (deep-crustal) and broadband (shallow-crustal) magnetotelluric (MT) data were collected in 2005 along a 140 km transect within the central Belt Basin, with an average site spacing of 4 km. A portion of the transect is coincident with two deep-crustal seismic reflection profiles (COCORP lines MT-2 and ID-2). The data generally confirm the NW strike of the Sylvanite anticline and Purcell anticlinorium and the more northerly strike of the Libby Thrust Belt. A best-fit, two-dimensional (2D) resistivity model was generated from the MT data down to 50 km. The model is characterized by two subhorizontal, highly conductive horizons. A shallow horizon at 10-15 km depth begins 10 km west of the Whitefish Range front and continues to the west for 60 km to an abrupt end beneath the Sylvanite anticline. A deeper highly-conductive, concave-up layer occurs at 25-35 km depth from just west of southern Lake Koocanusa to an abrupt end about 20 km east of the Purcell trench. From that point west to the Selkirk Crest, the entire crust is very resistive. A crude resistivity stratigraphy is delineated: highly resistive (>104 Ømega m) middle and upper Belt Supergroup (above the Prichard Fm.), moderately conductive (30-1000 Ømega m) Prichard Fm. (to the present depth of exposure), a highly conductive (1-10 Ømega m) sub-Prichard layer (below the lowest Prichard unit mapped at the surface), and moderately to highly resistive (103-104 Ømega m) pre-Belt crystalline basement. The Eocene Purcell trench detachment fault can be traced dipping 25-30° east down to about 20 km depth, flattening along the base of the shallow conductive layer to its eastern end, fully 100 km east of the surface trace of the fault. Realignment of the eastern edges of the shallow and deep conductive layers produces a single west-dipping horizon and suggests about 35 km of Eocene top-to-the-east extension along the northern Purcell trench detachment fault. Reversal of that displacement reveals the crustal structure as it existed at the end of late Mesozoic Cordilleran thrusting. A major thrust decollement at 10-12 km, well-defined below the Sylvanite anticline, occurs below the deepest exposed Prichard units but above the shallow conductive layer. The shallow and deep conductive layers are suggested to be thrust repetitions of a single original layer separated by a thrust imbricate of Archean crystalline basement, 35 km wide and 5-8 km thick, centered below the Sylvanite anticline. The conductive layers are interpreted as sub-Prichard sedimentary strata with disseminated carbonaceous matter or sulfide grains interconnected by shearing. This interpretation is consistent with disseminated sulfides within the lowest exposed Prichard, and emphasizes the dramatic increase in conductivity effected by shearing. Total Cordilleran thrust shortening of 150-200 km is indicated.

  10. Assessing the biogeochemical impact of AMOC collapse during Heinrich Stadial 1: New surface and mid-depth records from the South Atlantic

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Lacerra, M.; Schmittner, A.; Yu, J.

    2017-12-01

    Carbon isotope minima were a ubiquitous feature in the mid-depth (1.5-2.5 km) Atlantic during Heinrich Stadial 1 (HS1, 14.5-17.5 kyr BP), with the most likely driver being a collapse of the Atlantic Meridional Overturning Circulation (AMOC) [1, 2]. Model simulations suggest a weaker AMOC increases the residence time of deep water and causes accumulation of isotopically light respired carbon at mid-depths [3]. Subsequent weakening of the biological pump also causes light carbon to accumulate in the surface ocean and atmosphere, potentially accounting for surface ocean δ13C minima and the initial rise in atmospheric CO2. Here, we test the AMOC hypothesis using high resolution planktonic and benthic δ13C records from the Brazil Margin (1.8 km and 2.1 km water depth). We show that N. dutertrei and G. sacculifer δ13C lags benthic δ13C during HS1 by 500 years. Because the planktonic and benthic results are based on analyses of the same samples, the relative timing is constrained by the stratigraphic offset of the δ13C time series. Our results are consistent with the model prediction of an initial collapse of the AMOC causing δ13C minima at mid-depth followed by weakening of the biological pump and equilibration of the surface ocean with a 13C-depleted atmosphere. We also assess ΣCO2 storage in the mid-depth Atlantic during HS1 using benthic foraminiferal B/Ca as a proxy for [CO32-]. Using replicated high resolution B/Ca records, we show that [CO32-] decreased during HS1, synchronous with apparent weakening of the AMOC. The [CO32-] response is smaller than in the tropical North Atlantic [4], indicating there was a north-south gradient in the [CO32-] signal similar to that for δ13C [5]. The implied ΣCO2 signal is consistent with model results [3], suggesting that carbon is temporarily sequestered in the mid-depth Atlantic during millennial-scale stadial events. We estimate that approximately 75% of the mid-depth δ13C signal was driven by accumulation of remineralized carbon, highlighting the non-conservative nature of δ13C during the last deglaciation. 1 McManus, J. et al. (2004) Nature, 428, 834. 2 Oppo, D. et al. (2015) Paleoceanography, 30, 353. 3 Schmittner, A., & Lund, D. (2015) Clim. Past, 11, 135. 4 Yu, J. et al. (2010) Science, 330 (6007), 1084. 5 Lund, D., et al. (2015) Paleoceanography, 30, 477.

  11. Constraining Seismic Structure of Upper-Mantle Discontinuities: A New Approach Using High-Frequency Triplication Data

    NASA Astrophysics Data System (ADS)

    Ishii, M.; Park, S.

    2016-12-01

    Constraining elastic properties of the 410- and 660-km discontinuities is crucial for understanding the mantle composition and dynamics. One approach to study the transition zone is to use the "triplicated" arrivals of seismic data. These arrivals consist of three seismic phases that are sensitive to seismic structure slightly above, at, and below the discontinuity. Thus, these data are powerful tools in providing constraints on the depth and velocity jump of the discontinuities with consequences for the studies of mantle composition and relevant phase transitions. One of the most challenging aspects of using the triplication data, however, is to identify the three individual phases that arrive close in time. In order to separate the three phases, we apply Radon transform to short-period seismograms recorded by a dense array of stations. This approach unwraps the triplication pattern, and brings out the high-frequency information that is not easily accessible in the original form of data. Subsequent modeling of the unwrapped data allows velocity jump, depth, and width of the discontinuities to be obtained. This method is applied to study the transition zone around the Kuril subduction zone, a region northeast of Japan. We take advantage of the High-Sensitivity Seismograph Network in Japan that consists of more than 700 stations. These stations provide dense sampling in distance that allows us to capture the triplication pattern. The wave speeds immediately above and below the 410- and 660-km discontinuities as well as their depths and widths are constrained. In general, both discontinuities are depressed compared to the global average, and exhibit finite widths. The width estimates have implications on effects such as the existence of water or melt, and garnet transformations occurring at similar depths as the post-spinel transition.

  12. Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2015-08-01

    We study the influence of topography on groundwater fluxes and water table depths across the contiguous United States (CONUS). Groundwater tables are often conceptualized as subdued replicas of topography. While it is well known that groundwater configuration is also controlled by geology and climate, nonlinear interactions between these drivers within large real-world systems are not well understood and are difficult to characterize given sparse groundwater observations. We address this limitation using the fully integrated physical hydrology model ParFlow to directly simulate groundwater fluxes and water table depths within a complex heterogeneous domain that incorporates all three primary groundwater drivers. Analysis is based on a first of its kind, continental-scale, high-resolution (1 km), groundwater-surface water simulation spanning more than 6.3 million km2. Results show that groundwater fluxes are most strongly driven by topographic gradients (as opposed to gradients in pressure head) in humid regions with small topographic gradients or low conductivity. These regions are generally consistent with the topographically controlled groundwater regions identified in previous studies. However, we also show that areas where topographic slopes drive groundwater flux do not generally have strong correlations between water table depth and elevation. Nonlinear relationships between topography and water table depth are consistent with groundwater flow systems that are dominated by local convergence and could also be influenced by local variability in geology and climate. One of the strengths of the numerical modeling approach is its ability to evaluate continental-scale groundwater behavior at a high resolution not possible with other techniques. This article was corrected on 11 SEP 2015. See the end of the full text for details.

  13. Inversion of Orkney M5.5 earthquake South Africa using strain meters at very close distances

    NASA Astrophysics Data System (ADS)

    Yasutomi, T.; Mori, J. J.; Yamada, M.; Ogasawara, H.; Okubo, M.; Ogasawara, H.; Ishida, A.

    2017-12-01

    The largest event recorded in a South African gold mining region, a M5.5 earthquake took place near Orkney on 5 August 2014. The mainshock and afterhocks were recorded by 46 geophones at 2-3 km depths, 3 Ishii borehole strainmeters at 2.9km depth, and 17 surface strong motion instruments at close distances. The upper edge of the planar distribution of aftershock activity dips almost vertically and was only several hundred meters below the sites where the strainmeters were installed. In addition the seismic data, drilling across this fault is now in progress (Jun 2017 to December 2017) and will contribute valuable geological and stress information. Although the geophones data were saturated during the mainshock, the strainmeters recorded clear nearfield waveforms. We try to model the source of the M5.5 mainshock using the nearfield strainmeter data. Two strain meters located at same place, depth at 2.8km. Remaining one is located depth at 2.9km. Distance of each other is only 150m. Located at depth 2.9km recorded large stable strain, on the other hand, located at depth 2.8 km recorded three or four times smaller stable strain than 2.9km. These data indicates the distance between M5.5 fault and 2.9km depth strainmeter is a few hundred meters order. The strain Green functions were calculated assuming an infinite medium and using a finite difference method. We use small aftershocks to verify the Green function. Matching of the waveforms for the small events validates and Green functions used for the mainshock inversion. We present a model of the source rupture using these strain data. The nearfield data provide good resolution of the nearby earthquake rupture. There are two large subevents, one near the hypocenter and the second several hundred meters to the west.

  14. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle

    NASA Astrophysics Data System (ADS)

    Beghein, Caroline; Trampert, Jeannot

    2004-01-01

    The presence of radial anisotropy in the upper mantle, transition zone and top of the lower mantle is investigated by applying a model space search technique to Rayleigh and Love wave phase velocity models. Probability density functions are obtained independently for S-wave anisotropy, P-wave anisotropy, intermediate parameter η, Vp, Vs and density anomalies. The likelihoods for P-wave and S-wave anisotropy beneath continents cannot be explained by a dry olivine-rich upper mantle at depths larger than 220 km. Indeed, while shear-wave anisotropy tends to disappear below 220 km depth in continental areas, P-wave anisotropy is still present but its sign changes compared to the uppermost mantle. This could be due to an increase with depth of the amount of pyroxene relative to olivine in these regions, although the presence of water, partial melt or a change in the deformation mechanism cannot be ruled out as yet. A similar observation is made for old oceans, but not for young ones where VSH> VSV appears likely down to 670 km depth and VPH> VPV down to 400 km depth. The change of sign in P-wave anisotropy seems to be qualitatively correlated with the presence of the Lehmann discontinuity, generally observed beneath continents and some oceans but not beneath ridges. Parameter η shows a similar age-related depth pattern as shear-wave anisotropy in the uppermost mantle and it undergoes the same change of sign as P-wave anisotropy at 220 km depth. The ratio between dln Vs and dln Vp suggests that a chemical component is needed to explain the anomalies in most places at depths greater than 220 km. More tests are needed to infer the robustness of the results for density, but they do not affect the results for anisotropy.

  15. Geophysical Investigations of the Smoke Creek Desert and their Geologic Implications, Northwest Nevada and Northeast California

    USGS Publications Warehouse

    Ponce, David A.; Glen, Jonathan M.G.; Tilden, Janet E.

    2006-01-01

    The Smoke Creek Desert is a large basin about 100 km (60 mi) north of Reno near the California-Nevada border, situated along the northernmost parts of the Walker Lane Belt, a physiographic region defined by diverse topographic expression consisting of northweststriking topographic features and strike-slip faulting. Because geologic and geophysical framework studies play an important role in understanding the hydrogeology of the Smoke Creek Desert, a geophysical effort was undertaken to help determine basin geometry, infer structural features, and estimate depth to basement. In the northernmost parts of the Smoke Creek Desert basin, along Squaw Creek Valley, geophysical data indicate that the basin is shallow and that granitic rocks are buried at shallow depths throughout the valley. These granitic rocks are faulted and fractured and presumably permeable, and thus may influence ground-water resources in this area. The Smoke Creek Desert basin itself is composed of three large oval sub-basins, all of which reach depths to basement of up to about 2 km (1.2 mi). In the central and southern parts of the Smoke Creek Desert basin, magnetic anomalies form three separate and narrow EW-striking features. These features consist of high-amplitude short-wavelength magnetic anomalies and probably reflect Tertiary basalt buried at shallow depth. In the central part of the Smoke Creek Desert basin a prominent EW-striking gravity and magnetic prominence extends from the western margin of the basin to the central part of the basin. Along this ridge, probably composed of Tertiary basalt, overlying unconsolidated basin-fill deposits are relatively thin (< 400 m). The central part of the Smoke Creek Desert basin is also characterized by the Mid-valley fault, a continuous geologic and geophysical feature striking NS and at least 18-km long, possibly connecting with faults mapped in the Terraced Hills and continuing southward to Pyramid Lake. The Mid-valley fault may represent a lateral (east-west) barrier to ground-water flow. In addition, the Mid-valley fault may also be a conduit for along-strike (north-south) ground-water flow, channeling flow to the southernmost parts of the basin and the discharge areas north of Sand Pass.

  16. Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California

    USGS Publications Warehouse

    Grove, T.L.; Donnelly-Nolan, J. M.; Housh, T.

    1997-01-01

    Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust.

  17. The effects of alteration and porosity on seismic velocities in oceanic basalts and diabases

    NASA Astrophysics Data System (ADS)

    Carlson, R. L.

    2014-12-01

    velocities in the lavas that cap normal oceanic crust are affected by both crack porosity and alteration of the primary mineral phases, chiefly to clays. Porosity accounts for 75-80% of the velocity variation in sonic log velocities in the lava sections of Holes 504B and 1256D, but the effect of alteration on the properties of the basalts has not been assessed. In this analysis, the grain velocities in basalt and diabase samples are estimated from an empirical linear relationship between grain density and the P wave modulus. The theoretical velocity in fresh, zero-porosity basalt, or diabase is 6.96 ± 0.07 km/s. Grain velocities in the diabase samples are statistically indistinguishable from the theoretical velocity, and show no variation with depth; alteration does not significantly affect the velocities in the diabase samples from Hole 504B. This result is consistent with previous analyses, which demonstrated that velocities in the dikes are controlled by crack porosity. In basalt lab samples, alteration reduces the average sample grain velocity to 6.74 ± 0.02 km/s; cracks at the sample scale further reduce the velocity to 5.86 ± 0.03 km/s, and large-scale cracks in the lavas reduce the average in situ velocity to 5.2 ± 0.3 km/s. Cracks account for nearly 90% of the difference between seismic (in situ) velocities and the theoretical velocity in the unaltered solid material. Basalt grain velocities show a small, but significant systematic increase with depth; the influence of alteration decreases with depth in the lavas, reaching near zero at the base of the lavas in Holes 504B and 1256D. This article was corrected on 16 JAN 2015. See the end of the full text for details.

  18. Constraints on the anisotropic contributions to velocity discontinuities at ∼60 km depth beneath the Pacific

    PubMed Central

    Harmon, Nicholas

    2017-01-01

    Abstract Strong, sharp, negative seismic discontinuities, velocity decreases with depth, are observed beneath the Pacific seafloor at ∼60 km depth. It has been suggested that these are caused by an increase in radial anisotropy with depth, which occurs in global surface wave models. Here we test this hypothesis in two ways. We evaluate whether an increase in surface wave radial anisotropy with depth is robust with synthetic resolution tests. We do this by fitting an example surface wave data set near the East Pacific Rise. We also estimate the apparent isotropic seismic velocity discontinuities that could be caused by changes in radial anisotropy in S‐to‐P and P‐to‐S receiver functions and SS precursors using synthetic seismograms. We test one model where radial anisotropy is caused by olivine alignment and one model where it is caused by compositional layering. The result of our surface wave inversion suggests strong shallow azimuthal anisotropy beneath 0–10 Ma seafloor, which would also have a radial anisotropy signature. An increase in radial anisotropy with depth at 60 km depth is not well‐resolved in surface wave models, and could be artificially observed. Shallow isotropy underlain by strong radial anisotropy could explain moderate apparent velocity drops (<6%) in SS precursor imaging, but not receiver functions. The effect is diminished if strong anisotropy also exists at 0–60 km depth as suggested by surface waves. Overall, an increase in radial anisotropy with depth may not exist at 60 km beneath the oceans and does not explain the scattered wave observations. PMID:29097907

  19. Constraints on the anisotropic contributions to velocity discontinuities at ∼60 km depth beneath the Pacific.

    PubMed

    Rychert, Catherine A; Harmon, Nicholas

    2017-08-01

    Strong, sharp, negative seismic discontinuities, velocity decreases with depth, are observed beneath the Pacific seafloor at ∼60 km depth. It has been suggested that these are caused by an increase in radial anisotropy with depth, which occurs in global surface wave models. Here we test this hypothesis in two ways. We evaluate whether an increase in surface wave radial anisotropy with depth is robust with synthetic resolution tests. We do this by fitting an example surface wave data set near the East Pacific Rise. We also estimate the apparent isotropic seismic velocity discontinuities that could be caused by changes in radial anisotropy in S-to-P and P-to-S receiver functions and SS precursors using synthetic seismograms. We test one model where radial anisotropy is caused by olivine alignment and one model where it is caused by compositional layering. The result of our surface wave inversion suggests strong shallow azimuthal anisotropy beneath 0-10 Ma seafloor, which would also have a radial anisotropy signature. An increase in radial anisotropy with depth at 60 km depth is not well-resolved in surface wave models, and could be artificially observed. Shallow isotropy underlain by strong radial anisotropy could explain moderate apparent velocity drops (<6%) in SS precursor imaging, but not receiver functions. The effect is diminished if strong anisotropy also exists at 0-60 km depth as suggested by surface waves. Overall, an increase in radial anisotropy with depth may not exist at 60 km beneath the oceans and does not explain the scattered wave observations.

  20. Shear wave velocity structure in the lithosphere and asthenosphere across the Southern California continent and Pacific plate margin using inversion of Rayleigh wave data from the ALBACORE project.

    NASA Astrophysics Data System (ADS)

    Price, A. C.; Weeraratne, D. S.; Kohler, M. D.; Rathnayaka, S.; Escobar, L., Sr.

    2015-12-01

    The North American and Pacific plate boundary is a unique example of past subduction of an oceanic spreading center which has involved oceanic plate capture and inception of a continental transform boundary that juxtaposes continental and oceanic lithosphere on a single plate. The amphibious ALBACORE seismic project (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deployed 34 ocean bottom seismometers (OBS) on 15-35 Ma seafloor and offers a unique opportunity to compare the LAB in continental and oceanic lithosphere in one seismic study. Rayleigh waves were recorded simultaneously by our offshore array and 82 CISN network land stations from 2010-2011. Here we predict phase velocities for a starting shear wave velocity model for each of 5 regions in our study area and compare to observed phase velocities from our array in a least-squares sense that produces the best fit 1-D shear wave velocity structure for each region. Preliminary results for the deep ocean (seafloor 25-32 Ma) indicates high velocities reaching 4.5 km/s at depths of 50 km associated with the lithosphere for seafloor 25-32 Ma. A negative velocity gradient is observed below this which reaches a minimum of 4.0 km/s at 160 km depth. The mid-ocean region (age 13-25 Ma) indicates a slightly lower magnitude and shallower LVZ. The Inner Borderland displays the highest lithospheric velocities offshore reaching 4.8 km/s at 40 km depth indicating underplating. The base of the LVZ in the Borderland increases sharply from 4.0 km/s to 4.5 km/s at 80-150 km depth indicating partial melt and compositional changes. The LVZ displays a very gradual positive velocity gradient in all other regions such as the deep seafloor and continent reaching 4.5 km/s at 300 km depth. The deep ocean, Borderlands, and continental region each have unique lithospheric velocities, LAB depths, and LVZ character that indicate stark differences in mantle structure that occur on a single plate as well as across the continental margin.

  1. Local Variations in the Upper-Mantle Transition Zone Structure From a Novel Approach Using High-Frequency Triplication Data

    NASA Astrophysics Data System (ADS)

    Park, S.; Ishii, M.

    2017-12-01

    Constraining elastic properties of the 410- and 660-km discontinuities is vital for understanding the mantle composition and dynamics. One approach to study the transition zone is to use the "triplicated" arrivals of seismic data. These arrivals consist of three seismic phases that are sensitive to seismic structure slightly above, at, and below the discontinuity. Therefore, these data provide powerful constraints on the depth, width, and magnitude of velocity jump of the discontinuities with consequences for the studies of mantle composition, relevant phase transitions, and dynamics. Nevertheless, one of the most challenging aspects of using the triplication data is to identify the three individual phases that arrive close in time. In order to separate the three phases, we apply Radon transform to short-period seismograms recorded by a dense array of stations. This approach unwraps the triplication pattern, and brings out the high-frequency information that is not easily accessible in the original form of data. This method is applied to study the transition zone around the Kuril subduction zone, a region northeast of Japan. We take advantage of the High-Sensitivity Seismograph Network in Japan comprised of more than 700 stations whose dense sampling in distance allows us to capture the triplication pattern. The data are processed to obtain the variations in wave speeds around the discontinuities, i.e., at 410±100 and 660±100 km, resulting in models of topography and sharpness of discontinuities at various sampling locations. Both discontinuities exhibit local topography undulations consistent with the temperature effect; the 410- and 660-km discontinuities become shallower and deeper, respectively, nearer to the slab. Additional discontinuities around 660 km are also detected, which may be attributed to the garnet transitions occurring at similar depths as the post-spinel transition. The 410-km discontinuity is observed to be more diffuse than 660-km discontinuity. The wide transition cannot be explained solely by the presence of water or melt, suggesting the importance of other effects such as high Fe content of olivine or olivine-poor composition.

  2. Seismic evidence for water transport out of the mantle transition zone beneath the European Alps

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Park, Jeffrey; Karato, Shun-ichiro

    2018-01-01

    The mantle transition zone has been considered a major water reservoir in the deep Earth. Mass transfer across the transition-zone boundaries may transport water-rich minerals from the transition zone into the water-poor upper or lower mantle. Water release in the mantle surrounding the transition zone could cause dehydration melting and produce seismic low-velocity anomalies if some conditions are met. Therefore, seismic observations of low-velocity layers surrounding the transition zone could provide clues of water circulation at mid-mantle depths. Below the Alpine orogen, a depressed 660-km discontinuity has been imaged clearly using seismic tomography and receiver functions, suggesting downwellings of materials from the transition zone. Multitaper-correlation receiver functions show prominent ∼0.5-1.5% velocity reductions at ∼750-800-km depths, possibly caused by partial melting in the upper part of lower mantle. The gap between the depressed 660-km discontinuity and the low-velocity layers is consistent with metallic iron as a minor phase in the topmost lower mantle reported by laboratory studies. Velocity drops atop the 410-km discontinuity are observed surrounding the Alpine orogeny, suggesting upwelling of water-rich rock from the transition zone in response to the downwelled materials below the orogeny. Our results provide evidence that convective penetration of the mantle transition zone pushes hydrated minerals both upward and downward to add hydrogen to the surrounding mantle.

  3. Rayleigh-wave tomography of the Ontong-Java Plateau

    NASA Astrophysics Data System (ADS)

    Richardson, W. Philip; Okal, Emile A.; Van der Lee, Suzan

    2000-02-01

    The deep structure of the Ontong-Java Plateau (OJP) in the westcentral Pacific is investigated through a 2-year deployment of four PASSCAL seismic stations used in a passive tomographic experiment. Single-path inversions of 230 Rayleigh waveforms from 140 earthquakes mainly located in the Solomon Trench confirm the presence of an extremely thick crust, with an average depth to the Mohorovičić discontinuity of 33 km. The thickest crusts (38 km) are found in the southcentral part of the plateau, around 2°S, 157°E. Lesser values remaining much thicker than average oceanic crust (15-26 km) are found on either side of the main structure, suggesting that the OJP spills over into the Lyra Basin to the west. Such thick crustal structures are consistent with formation of the plateau at the Pacific-Phoenix ridge at 121 Ma, while its easternmost part may have formed later (90 Ma) on more mature lithosphere. Single-path inversions also reveal a strongly developed low-velocity zone at asthenospheric depths in the mantle. A three-dimensional tomographic inversion resolves a low-velocity root of the OJP extending as deep as 300 km, with shear velocity deficiencies of ˜5%, suggesting the presence of a keel, dragged along with the plateau as the latter moves as part of the drift of the Pacific plate over the mantle.

  4. A Review of Spatial and Seasonal Changes in Condensation Clouds Observed During Aerobraking by MGS TES

    NASA Technical Reports Server (NTRS)

    Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.

    1999-01-01

    Successful operation of the Mars Global Surveyor spacecraft beginning in September 1997, has permitted extensive infrared observations of condensation clouds during the martian southern summer and fall seasons (184 deg

  5. Variations in interior morphology of 15-20 km lunar craters - Implications for a major subsurface discontinuity

    NASA Technical Reports Server (NTRS)

    De Hon, R. A.

    1980-01-01

    Craters vary in morphology as a function of crater diameter, age, and mode of origin. This study concentrates on the morphology of young lunar impact craters within a limited size range. Elimination of morphologic variations generally attributed to crater size or age leaves a small population which should nearly reflect the varying properties of the lunar substrate. The sample consists of 17 craters 15-20 km in diameter with both simple and complex morphologies. While depth/diameter ratios do not obviously differ between mare and highland subsets, apparent depth, rim height, and profile data do differ distinctly. Highland craters tend to be deep, simple, and bowl-shaped. Mare craters tend to be shallow and flat-floored. Rim heights of complex mare craters are typically greater than those of simple craters. Differences of highland and mare crater morphologies are attributed to variations in the thickness of the lunar megaregolith. Highland craters in this size range do not penetrate the megaregolith. The depth and morphology of complex craters are controlled by the discontinuity at the transition from highly brecciated megaregolith to more coherent crystalline material of the upper crust.

  6. Thickness and Lower Limit Seismogenic Layer within the Crust beneath Japanese Islands on the Japan Sea Side

    NASA Astrophysics Data System (ADS)

    Matsubara, M.; Sato, H.

    2015-12-01

    1. Introduction I investigate the depth of the seismogenic layer in order to estimate the lower limit of the seismogenic fault plane since this depth is related to the size of the earthquake caused by the active fault. I have indexes D10 and D90 as the upper and lower limits of the seismogenic layer defined as the depth above which 10 % and 90 % of the whole crustal earthquakes occurred from the surface, respectively. The difference between the D10 and D90 is the thickness of the seismogenic layer. 2. Data and method The NIED Hi-net has a catalog of hypocenters determined with one-dimensional velocity (1D) structure (Ukawa et al., 1984) and I estimated the D10 and D90 with this catalog at first. I construct the system to relocate the hypocenters from 2001 to 2013 with magnitude greater than 1.5 on the Japan Sea side shallower than 50 km depth with the three-dimensional velocity (3D) structure (Matsubara and Obara, 2011) obtained by seismic tomography. I estimate the D10 and D90 from the hypocenter catalog with 3D structure. 3. Result Many earthquakes shallower than 5 km with 1D structure are relocated to deeper with 3D structure and the earthquakes deeper than 15 km are relocated to about 5 km shallower. With 3D structure D10 deepens and D90 shallows from 1D structure. D90 beneath the northern Honshu is deeper than the other area and D90 beneath the Japan Sea is much deeper than the inland area. The thickness of the seismogenic layer beneath the Japan Sea is also thick from 8-16 km. D90 on the Japan Sea side of the southwestern Japan on the west side of the Itoigawa Shizuoka Tectonic Line is very shallow as 11-16 km and the thickness of the seismogenic layer is also thin as 2-7 km. 4. Discussion Omuralieva et al. (2012) relocated the JMA unified hypocenters with 3D structure and estimated shallower D90 than that from the JMA catalog. Very deep D90 beneath the northern Hokkaido and northern Honshu is consistent with our result. 5. Conclusion Using 3D velocity structure D10 deepens, D90 shallows, and the thickness of the seismogenic layer becomes thinner. The thickness of the seismogenic layer is thick beneath the northern Honshu, however, that is very thin beneath southwestern Japan on the Japan Sea side.

  7. The Salton Seismic Imaging Project: Seismic velocity structure of the Brawley Seismic Zone, Salton Buttes and Geothermal Field, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.

    2011-12-01

    The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from <2 km/s to >5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (<6 km/s) crystalline basement comprised of recently metamorphosed sediment reaching greenschist to lower amphibolite facies. The depth of this basement is about 4-km below the aseismic region of the valley west of the Brawley Seismic Zone, but rises sharply to ~2 km depth beneath the seismically, geothermally, and volcanically active area of the Brawley Seismic Zone. The basement deepens to the northeast of the active tectonic zone and then is abruptly offset to shallower depth on the northeast side of the valley. This offset may be the subsurficial expression of a paleofault, most likely an extension of the Sand Hills Fault, which bounds the basin to the east. Basement velocity east of the fault is ~5.7 km/s, consistent with the granitic rocks of the Chocolate Mountains. The tomographic model shows that the shallow metasedimentary basement as well as the geothermal and volcanic activity seem to be bounded by the sharp western and eastern margins of the Brawley Seismic Zone. At this location, strongly fractured crust allows both hydrothermal and magmatic fluids to rise to the surface in the most rapidly extending portion of the rift basin.

  8. Slab Penetration vs. Slab Stagnation: Mantle Reflectors as an Indicator

    NASA Astrophysics Data System (ADS)

    Okeler, A.; Gu, Y. J.; Schultz, R.; Contenti, S. M.

    2011-12-01

    Subducting oceanic lithosphere along convergent margins may stagnate near the base of the upper mantle or penetrate into the lower mantle. These dynamic processes cause extensive thermal and compositional variations, which can be observed in terms of impedance contrast (reflectivity) and topography of mantle transition zone (MTZ) discontinuities, i.e., 410- and 660-km discontinuities. In this study, we utilize ~ 15000 surface-reflected shear waves (SS) and their precursory arrivals (S410S and S660S) to analyze subduction related deformations on mantle reflectivity structure. We apply pre-stack, time-to-depth migration technique to SS precursors, and move weak underside reflections using PREM-predicted travel-time curves. Common Mid-point gathers are formed to investigate structure under the western Pacific, south America, and Mediterranean convergent boundaries. In general, mantle reflectivity structures are consistent with previous seismic tomography models. In regions of slab penetration (e.g., southern Kurile arc, Aegean Sea), our results show 1) a substantial decrease in S660S amplitude, and 2) strong lower mantle reflector(s) at ~ 900 km depth. These reflective structures are supported by zones of high P and S velocities extending into the lower mantle. Our 1-D synthetic simulations suggest that the decreasing S660S amplitudes are, at least partially, associated with shear wave defocusing due to changes in reflector depth (by ±20 km) within averaging bin. Assuming a ~500 km wide averaging area, a dipping reflector with 6-8 % slope can reduce the amplitude of a SS precursor by ~50%. On the other hand, broad depressions with strong impedance contrast at the base of the MTZ characterize the regions of slab stagnation, such as beneath the Tyrrhenian Sea and northeastern China. For the latter region, substantial topography on the 660-km discontinuity west of the Wadati-Benioff zone suggests that the stagnant part of the Pacific plate across Honshu arc is not nearly as flat as previously suggested.

  9. Seismicity and Structure of the Incoming Pacific Plate Subducting into the Japan Trench off Miyagi

    NASA Astrophysics Data System (ADS)

    Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Sato, T.; Yamashita, M.; Nakamura, Y.; Miura, S.

    2015-12-01

    Stresses within the oceanic plate in trench axis and outer-rise region have been characterized by shallow extension and deep compression due to the bending of the plate subducting into the trench. The stress state within the incoming/subducting oceanic plate is an important factor not only for the occurrence of shallow intraplate normal-faulting earthquakes in the trench-outer rise region but also the hydration of the oceanic plate through the shallow normal faults cutting the oceanic lithosphere. We investigate seismic velocity structure and stress state within the incoming/subducting Pacific Plate in the Japan Trench based on the OBS aftershock observations for the December 2012 intraplate doublet, which consists of a deep reverse faulting (Mw 7.2) and a shallow normal faulting (Mw 7.2) earthquake, in the Japan Trench off Miyagi. Hypocenter locations and seismic velocity structures were estimated from the arrival time data of about 3000 earthquakes by using double-difference tomography method (Zhang and Thurber, 2003). Also, focal mechanisms were estimated from first motion polarities by using the program HASH by Hardebeck and Shearer (2002). The results show that the earthquakes occurred mainly within the oceanic crust and the uppermost mantle. The deepest event was located at a depth of about 60 km. Focal mechanisms of the earthquakes shallower than a depth of 40 km indicate normal-faulting with T-axis normal to the trench. On the other hand, first motion polarities of the events at depths between 50 and 60 km can be explained a reverse faulting. The results suggest that the neutral plane of the stress between shallow extension and deep compression locates at 40 to 50 km deep. Seismic velocity structures indicate velocity decrease in the oceanic mantle toward the trench. Although the velocity decrease varies with locations, the results suggest the bending-related structure change could extend to at least about 15 km below the oceanic Moho in some locations.

  10. Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography

    NASA Astrophysics Data System (ADS)

    Sebai, Amal; Stutzmann, Eléonore; Montagner, Jean-Paul; Sicilia, Déborah; Beucler, Eric

    2006-04-01

    The geodynamics of the mantle below Africa is not well understood and anisotropy tomography can provide new insight into the coupling between the African plate and the underlying mantle convection. In order to study the anisotropic structure of the upper mantle beneath Africa, we have measured phase velocities of 2900 Rayleigh and 1050 Love waves using the roller-coaster algorithm [Beucler, E., Stutzmann, E., Montagner, J.-P., 2003. Surface-wave higher mode phase velocity measurments, using a roller-coaster type algorithm. Geophys. J. Int. 155 (1), 289-307]. These phase velocities have been inverted to obtain a new tomographic model that gives access to isotropic S V-wave velocity perturbations, azimuthal and radial anisotropies. Isotropic S V-wave velocity maps have a lateral resolution of 500 km. Anisotropy parameters have a lateral resolution of 1000 km which is uniform over Africa for azimuthal anisotropy but decreases at the West and South of Africa for radial anisotropy. At shallow depth, azimuthal anisotropy varies over horizontal distances much smaller than the continent scale. At 280 km depth, azimuthal anisotropy is roughly N-S, except in the Afar area, which might indicate differential motion between the African plate and the underlying mantle. The three cratons of West Africa, Congo and Kalahari are associated with fast velocities and transverse anisotropy that decrease very gradually down to 300 km depth. On the other hand, we observe a significant change in the direction and amplitude of azimuthal anisotropy at about 180 km depth, which could be the signature of the root of these cratons. The Tanzania craton is a shallower structure than the other African cratons and the slow velocities (-2%) observed on the maps at 180 and 280 km depth could be the signature of hot material such as a plume head below the craton. This slow velocity anomaly extends toward the Afar and azimuthal anisotropy fast directions are N-S at 180 km depth, indicating a possible interaction between the Tanzania small plume and the Afar. The Afar plume is associated with a very slow velocity anomaly (-6%) which extens below the Red sea, the Gulf of Aden and the Ethiopian rift at 80 km depth. The Afar plume can be observed down to our deepest depth (300 km) and is associated with radial anisotropy smaller than elsewhere in Africa, suggesting active upwelling. Azimuthal anisotropy directions change with increasing depth, being N-S below the Red sea and Gulf of Aden at 80 km depth and E-W to NE-SW at 180 km depth. The Afar plume is not connected with the smaller hotspots of Central Africa, which are associated either with shallow slow velocities for Mt Cameroon or with no particular velocity anomaly and N-S azimuthal anisotropy for the hotspots of Tibesti, Darfur and Hoggar. A shallow origin for these hotspots is in agreement with their normal 3He/4He ratio and with their location in a region that had been weakened by the rifting of West and Central Africa.

  11. Geochemical and Geophysical Estimates of Lithospheric Thickness Variation Beneath Galápagos

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D.

    2010-12-01

    Active volcanism in Galápagos is far more widespread (>40,000 km2) than in other hotspot-related archipelagos, such as Hawaii (~20,000 km2). We have employed geochemical and geophysical data to constrain the causes of this widespread volcanism. Basaltic magmas recently erupted across the Galápagos Archipelago are linked to the variable distribution of ‘enriched’, depleted MORB (DMM) and FOZO-like plume (PLUME) components in anomalously-hot upwelling mantle. We have used rare-earth-element inversion modelling for basalts dominated by PLUME and DMM components to constrain the depth to the top of the melt column beneath different Galápagos volcanoes. Basalts erupted on islands in the southwest of the Galápagos Archipelago (e.g. Fernandina and Isabela) -- and closest to the postulated axis of the present-day plume -- have the highest [Sm/Yb]n (typically 2.3 to 3). REE inversion models suggest that adiabatic decompression melting of anhydrous peridotite occurs beneath these islands between ~ 85 and 58 km. In the northeast of the archipelago (e.g. Genovesa, Marchena, eastern Santiago and northern Santa Cruz) [Sm/Yb]n ratios are lower (1.0 to 2.3) and inversion models predict that melting of anhydrous peridotite occurs between 85 and 48 km depth. Models run with different PLUME and DMM source compositions give almost identical depth estimates for the base and top of the anhydrous melt column, because primitive mantle, MORB and recycled oceanic crust all have [Sm/Yb]n close to unity. Incipient melting (of volatile-rich peridotite and or pyroxenite) at depths between ~85 and 150 km is required to explain elevated concentrations of strongly-incompatible trace elements. The length of this small-fraction melt ‘tail’ is greatest for basalts erupted closest to the plume axis, which have super-chondritic Nb/La ratios but variable 3He/4He. By converting surface wave data from a recently published tomographic experiment [1] to temperature we have been able to map the base of the Galápagos thermal lithosphere. An excellent correlation exists between the results of this modelling and our estimates of the top of the melt column from geochemical modelling. The seismic data suggest that the base of the thermal lithosphere is ~56 km beneath western Galapagos and ~50 km beneath the northeast of the archipelago. These estimates are also consistent with those derived from models of conductive geotherms for plate ages of 5 and 10 Ma and a mantle potential temperature of 1400oC. We propose that thinner lithosphere away from the postulated site of the present-day Galápagos plume axis, combined with the lateral deflection of the plume head, is responsible for active volcanism over a relatively large area. Non-uniform variations in lithospheric thickness relative to distance from the Galápagos Spreading Centre are consistent with the complex nature of the oceanic lithosphere beneath this part of the Pacific. [1] Villagomez, D.R. et al., 2007. Upper mantle structure beneath the Galápagos Archipelago from surface wave tomography. JGR 112.

  12. Stress Drops for Oceanic Crust and Mantle Intraplate Earthquakes in the Subduction Zone of Northeastern Japan Inferred from the Spectral Inversion Analysis

    NASA Astrophysics Data System (ADS)

    Si, H.; Ishikawa, K.; Arai, T.; Ibrahim, R.

    2017-12-01

    Understanding stress drop related to intraplate earthquakes in the subducting plate is very important for seismic hazard mitigation. In previous studies, Kita et al. (2015) analyzed stress drops for intraplate earthquakes under Hokkaido, Northern Japan, using S-coda wave spectral ratio analysis methods, and found that the stress drop for events occurring more than 10 km beneath the upper surface of the subducting plate (within the oceanic mantle) was larger than the stress drop for events occurring within 10 km of the upper surface of the subducting plate (in the oceanic crust). In this study, we focus on intraplate earthquakes that occur under Tohoku, Northeastern Japan, to determine whether similar stress drop differences may exist between earthquakes occurring within the upper 10 km of the subducting plate (within the oceanic crust) and those occurring deeper than 10 km (within the oceanic mantle), based on spectral inversion analysis of seismic waveforms recorded during the earthquakes. We selected 64 earthquakes with focal depths between 49-76 km and Mw 3.5-5.0 that occurred in the source area of the 2003 Miyagi-ken-oki earthquake (Mw 7.0) (region 1), and 82 earthquakes with focal depths between 49-67 km and Mw 3.5-5.5 in the source area of the 2011 Miyagi- ken-oki earthquake (Mw 7.1) (region 2). Records from the target earthquakes at 24 stations in region 1 and 21 stations in region 2 were used in the analysis. A 5-sec time window following S-wave onset was used for each station record. Borehole records of KiK-net station (MYGH04) was used as a reference station for both regions 1 and 2. We applied the spectral inversion analysis method of Matsunami et al. (2003) separately to regions 1 and 2. Our results show that stress drop generally increases with focal depth and that the stress drop for events occurring deeper than 10 km in the plate (within the oceanic mantle) were larger than the stress drop for events occurring within 10 km of the upper surface of the plate (within the oceanic crust). These results are consistent with previous studies.

  13. Evidence for foraging -site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the gulf of Alaska

    USGS Publications Warehouse

    Kotzerka, J.; Hatch, Shyla A.; Garthe, S.

    2011-01-01

    The Pelagic Cormorant (Phalacrocorax pelagicus) is the most widespread cormorant in the North Pacific, but little is known about its foraging and diving behavior. However, knowledge of seabirds' foraging behavior is important to understanding their function in the marine environment. In 2006, using GPS dataloggers, we studied the foraging behavior of 14 male Pelagic Cormorants rearing chicks on Middleton Island, Alaska. For foraging, the birds had high fidelity to a small area 8 km north of the colony. Within that area, the cormorants' diving activity was of two distinct kinds-near-surface dives (1-6 m) and benthic dives (28-33 m). Individuals were consistent in the depths of their dives, either mostly shallow or mostly deep. Few showed no depth preference. Dive duration, time at maximum depth, and pauses at the water surface between consecutive dives were shorter for shallow dives than for deep dives. The cormorants made dives of both types throughout the day, but the frequency of deep dives increased toward evening. Maximum foraging range was 9 km; maximum total distance traveled per trip was 43.4 km. Trip durations ranged from 0.3 to 7.7 hr. Maximum depth of a dive was 42.2 m, and duration of dives ranged from 4 to 120 sec. We found that Pelagic Cormorants at Middleton Island were faithful to one particular foraging area and individuals dived in distinct patterns. Distinct, specialized foraging behavior may be advantageous in reducing intra- and interspecific competition but may also render the species vulnerable to changing environmental conditions. Copyright ?? The Cooper Ornithological Society 2011.

  14. Imaging high-pressure rock exhumation along the arc-continent suture in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Brown, Dennis; Feng, Kuan-Fu; Wu, Yih-Min; Huang, Hsin-Hua

    2015-04-01

    Imaging high-pressure rock exhumation in active tectonic settings is considered to be one of the important observations that could potentially help to move forward the understanding of how this process works. Petrophysical analyses carried out along a high velocity zone imaged by seismic travel time tomography along the suture zone between the actively colliding Luzon Arc and the southeastern margin of Eurasia in Taiwan suggests that high-pressure rocks are being exhumed from at least a depth of 50 km below the arc-continent suture to the shallow subsurface where they coincide with an outcropping tectonic mélange called the Yuli Belt. The Yuli Belt comprises mainly greenschist facies quartz-mica schist, with lesser metabasite, metamorphosed mantle fragments and, importantly, minor blueschist. Modeling of published data bases of measured seismic velocities for a large suite of rocks suggests that all of the Yuli belt lithologies fit well with the measured Vp, Vs, and Vp/Vs at ambient pressures and temperatures (a 20 oC/km geotherm is used) from 10 to about 20 km depth. With the exception of hornblendite, mantle rocks need 30% to 40 % serpentinization to approximate the in situ range of Vp and and Vs at these depths. From about 20 km to 30 km, most continental crust and volcanic arc lithologies move out of the range of velocities measured by the tomography model at these depths. Blueschist (including the calculated Vp and Vs for the Yuli Belt samples), pyroxenite, and harzburgite, lherzolite, and dunite with around 20% to 30% serpentinization now enter into the range of velocities for these depths. From 40 km to 50 km depth, the mantle rocks pyroxenite, and weakly to unserpentinized harzburgite, lherzolite, and dunite, together with mafic eclogite velocities best fit the range of Vp, Vs and Vp/Vs at these depths. Seismicity along the arc-continent suture, the upper bounding fault of the high velocity zone examined here, indicate that it is a moderately oblique-slip thrust. The western boundary is a near vertical, sharp velocity gradient that, in the upper 10 to 15 km appears to link with a sinistral strike-slip fault. The high velocity zone itself is very seismically active down to a depth of 50 km. Focal mechanisms determined from within the high velocity zone are mostly strike-slip, oblique-slip, and extensional, with rare thrust mechanisms.

  15. The Plumbing System Feeding the Lusi Eruption Revealed by Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Fallahi, Mohammad Javad; Obermann, Anne; Lupi, Matteo; Karyono, Karyono; Mazzini, Adriano

    2017-10-01

    Lusi is a sediment-hosted hydrothermal system featuring clastic-dominated geyser-like eruption behavior in East Java, Indonesia. We use 10 months of ambient seismic noise cross correlations from 30 temporary seismic stations to obtain a 3-D model of shear wave velocity anomalies beneath Lusi, the neighboring Arjuno-Welirang volcanic complex, and the Watukosek fault system connecting the two. Our work reveals a hydrothermal plume, rooted at a minimum 6 km depth that reaches the surface at the Lusi site. Furthermore, the inversion shows that this vertical anomaly is connected to the adjacent volcanic complex through a narrow ( 3 km wide) low velocity corridor slicing the survey area at a depth of 4-6 km. The NE-SW direction of this elongated zone matches the strike of the Watukosek fault system. Distinct magmatic chambers are also inferred below the active volcanoes. The large-scale tomography features an exceptional example of a subsurface connection between a volcanic complex and a solitary erupting hydrothermal system hosted in a hydrocarbon-rich back-arc sedimentary basin. These results are consistent with a scenario where deep-seated fluids (e.g., magmas and released hydrothermal fluids) flow along a region of enhanced transmissivity (i.e., the Watukosek fault system damage zone) from the volcanic arc toward the back arc basin where Lusi resides. The triggered metamorphic reactions occurring at depth in the organic-rich sediments generated significant overpressure and fluid upwelling that is today released at the spectacular Lusi eruption site.

  16. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    USGS Publications Warehouse

    Han, Liang; Hole, John; Stock, Joann; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan; Davenport, Kathy; Livers, Amanda

    2016-01-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65–90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ∼7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ∼1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ∼3 km depth in most of the valley, but at only ∼1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7–8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  17. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    NASA Astrophysics Data System (ADS)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan R.; Davenport, Kathy K.; Livers, Amanda J.

    2016-11-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65-90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ˜7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ˜1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ˜3 km depth in most of the valley, but at only ˜1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7-8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  18. Elastic flexure controls magma trajectories and explains the offset of primary volcanic activity upstream of mantle plume axis at la Réunion and Hawaii hotspot islands

    NASA Astrophysics Data System (ADS)

    Gerbault, Muriel; Fontaine, Fabrice J.; Rabinowicz, Michel; Bystricky, Misha

    2017-03-01

    Surface volcanism at la Réunion and Hawaii occurs with an offset of 150-180 km upstream to the plume axis with respect to the plate motion. This striking observation raises questions about the forcing of plume-lithosphere thermo-mechanical interactions on melt trajectories beneath these islands. Based on visco-elasto-plastic numerical models handled at kilometric resolution, we propose to explain this offset by the development of compressional stresses at the base of the lithosphere, that result from elastic plate bending above the upward load exerted by the plume head. This horizontal compression adopts a disc shape centered around the plume axis: (i) it is 20 km thick, (ii) it has a 150 km radius, (iii) it lays at the base of the elastic part of the lithosphere, i.e., around ∼50-70 km depth where the temperature varies from ∼600 °C to ∼750 °C, (iv) it lasts for 5 to 10 My in an oceanic plate of age greater than 70 My, and (vi) it is controlled by the visco-elastic relaxation time at ∼50-70 km depth. This period of time exceeds the time during which both the Somalian/East-African and Pacific plates drift over the Reunion and Hawaii plumes, respectively. This indicates that this basal compression is actually a persistent feature. It is inferred that the buoyant melts percolating in the plume head pond below this zone of compression and eventually spread laterally until the most compressive principal elastic stresses reverse to the vertical, i.e., ∼150 km away from the plume head. There, melts propagate through dikes upwards to ∼35 km depth, where the plate curvature reverses and ambient compression diminishes. This 30-35 km depth may thus host a magmatic reservoir where melts transported by dykes pond. Only after further magmatic differentiation can dykes resume their ascension up to the surface and begin forming a volcanic edifice. As the volcano grows because of melt accumulation at the top of the plate, the lithosphere is flexed downwards, inducing extra tensile stress at 30-35 km depth and compression at ∼15 km depth (induced by the edifice load). It implies that now the melts pond at ∼15 km and form another magmatic reservoir lying just underneath the crust. These processes explain the ponding of primary (shield) melts at ∼35 km and ∼15 km depths as recorded below La Reunion, Mauritius or Hawaii volcanoes, all shifted by ∼150 km with respect to the plume axis.

  19. Dominant seismic sources for the cities in South Sumatra

    NASA Astrophysics Data System (ADS)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  20. Moment-tensor solutions for the 24 November 1987 Superstition Hills, California, earthquakes

    USGS Publications Warehouse

    Sipkin, S.A.

    1989-01-01

    The teleseismic long-period waveforms recorded by the Global Digital Seismograph Network from the two largest Superstition Hills earthquakes are inverted using an algorithm based on optimal filter theory. These solutions differ slightly from those published in the Preliminary Determination of Epicenters Monthly Listing because a somewhat different, improved data set was used in the inversions and a time-dependent moment-tensor algorithm was used to investigate the complexity of the main shock. The foreshock (origin time 01:54:14.5, mb 5.7, Ms6.2) had a scalar moment of 2.3 ?? 1025 dyne-cm, a depth of 8km, and a mechanism of strike 217??, dip 79??, rake 4??. The main shock (origin time 13:15:56.4, mb 6.0, Ms6.6) was a complex event, consisting of at least two subevents, with a combined scalar moment of 1.0 ?? 1026 dyne-cm, a depth of 10km, and a mechanism of strike 303??, dip 89??, rake -180??. -Authors

  1. Spatial variability of Chinook salmon spawning distribution and habitat preferences

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2017-01-01

    We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.

  2. Microstructures, composition, and seismic properties of the Ontong Java Plateau mantle root

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa.; Ishikawa, Akira

    2014-11-01

    To study how an impacting plume modifies the mantle lithosphere, we analyzed the microstructures and crystal preferred orientations (CPO) of 29 peridotites and 37 pyroxenites that sample the mantle root of the Ontong Java Plateau (OJP) from 60 to 120 km depth. The peridotites show a strong compositional variability, but homogeneous coarse granular to tabular microstructures, except for those equilibrated at the shallowest and deepest depths, which are porphyroclastic. All peridotites have clear olivine CPO, with dominant fiber-[010] patterns. Low intragranular misorientations and straight grain boundaries in olivine suggest that, above 100 km depth, annealing often followed deformation. Calculated density and P wave velocities of the peridotites decrease weakly with depth. S wave velocities decrease faster, resulting in increasing Vp/Vs ratio with depth. Calculated densities and seismic velocity profiles are consistent with those estimated for normal mantle compositions under a cold oceanic geotherm. Enrichment in pyroxenites may further increase seismic velocities. The calculated seismic properties cannot therefore explain the low S waves velocities predicted by Rayleigh wave tomography and ScS data in the mantle beneath the OJP. Calculated P and S waves anisotropy is variable (2-12%). It is higher on average in the deeper section of the lithosphere. Because olivine has dominantly [010]-fiber CPO patterns, if foliations are horizontal, vertically propagating S waves and Rayleigh waves will sample very weak anisotropy in the OJP mantle lithosphere. Moreover, if the orientation of the lineation changes with depth, the anisotropy-induced contrast in seismic properties might produce an intralithospheric reflector marking the stratification of the OJP mantle root.

  3. Understanding Snow Depth Variability with Respect to the Canopy in Multiple Climates Using Airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Currier, W. R.; Giulia, M.; Pflug, J. M.; Jonas, T.; Jessica, L.

    2017-12-01

    Snow depth within a typical hydrologic model grid cell (150 m or 1 km) can vary from 0.5 meters to 6 meters, or more. This variability is driven by the meteorological conditions throughout the winter as well as the forest architecture. To better understand this variability, we used airborne LiDAR from Olympic National Park, WA, Yosemite National Park, CA, Jemez Caldera, NM, and Niwot Ridge, CO to determine unique spatial patterns of snow depth in forested regions. Specifically, we compared snow depth distributions along north facing forest edges and south facing forest edges to those in the open or directly under the canopy. When categorizing the north facing and south facing edges based on distance from the canopy, distances relative to tree height, and distances relative to the fraction of the sky that is visible (sky view factor) we found unique snow depth patterns for each of these regions. In all regions besides Olympic National Park, WA, north facing edges contained more snow than open areas, forested areas, or along the south facing edges. These snow distributions were relatively consistent regardless of the metric used to define the forest edge and the size of the domain (150 m through 1 km). The absence of the forest edge effect in Olympic National Park was attributed to the meteorological data and climate conditions, which showed significantly less incoming shortwave radiation and more incoming longwave radiation. Furthermore, this study evaluated the effect that wind speed and direction have on the spatial distribution of snow depth.

  4. Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis

    NASA Astrophysics Data System (ADS)

    Xia, B.; Thybo, H.; Artemieva, I. M.

    2017-07-01

    We present a new digital model (NCcrust) of the seismic crustal structure of the Neoarchean North China Craton (NCC) and its surrounding Paleozoic-Mesozoic orogenic belts (30°-45°N, 100°-130°E). All available seismic profiles, complemented by receiver function interpretations of crustal thickness, are used to constrain a new comprehensive crustal model NCcrust. The model, presented on a 0.25° × 0.25°grid, includes the Moho depth and the internal structure (thickness and velocity) of the crust specified for four layers (the sedimentary cover, upper, middle, and lower crust) and the Pn velocity in the uppermost mantle. The crust is thin (30-32 km) in the east, while the Moho depth in the western part of the NCC is 38-44 km. The Moho depth of the Sulu-Dabie-Qinling-Qilian orogenic belt ranges from 31 km to 51 km, with a general westward increase in crustal thickness. The sedimentary cover is 2-5 km thick in most of the region, and typical thicknesses of the upper crust, middle crust, and lower crust are 16-24 km, 6-24 km, and 0-6 km, respectively. We document a general trend of westward increase in the thickness of all crustal layers of the crystalline basement and as a consequence, the depth of the Moho. There is no systematic regional pattern in the average crustal Vp velocity and the Pn velocity. We examine correlation between the Moho depth and topography for seven tectonic provinces in the North China Craton and speculate on mechanisms of isostatic compensation.

  5. Using twelve years of USGS refraction lines to calibrate the Brocher and others (1997) 3D velocity model of the Bay Area

    USGS Publications Warehouse

    Boatwright, John; Blair, Luke; Catchings, Rufus; Goldman, Mark; Perosi, Fabio; Steedman, Clare

    2004-01-01

    Campbell (1983) demonstrated that site amplification correlates with depths to the 1.0, 1.5, and 2.5 km/s S-wave velocity horizons. To estimate these depths for the Bay Area stations in the PEER/NGA database, we compare the depths to the 3.2 and 4.4 km/s P-wave velocities in the Brocher and others (1997) 3D velocity model with the depths to these horizons determined from 6 refraction lines shot in the Bay Area from 1991 to 2003. These refraction lines range from two recent 20 km lines that extend from Los Gatos to downtown San Jose, and from downtown San Jose into Alum Rock Park, to two older 200 km lines than run axially from Hollister up the San Francisco Peninsula to Inverness and from Hollister up the East Bay across San Pablo Bay to Santa Rosa. Comparison of these cross-sections with the Brocher and others (1997) model indicates that the 1.5 km/s S-wave horizon, which we correlate with the 3.2 km/s P-wave horizon, is the most reliable horizon that can be extracted from the Brocher and others (1997) velocity model. We determine simple adjustments to bring the Brocher and others (1997) 3.2 and 4.4 km/s P-wave horizons into an average agreement with the refraction results. Then we apply these adjustments to estimate depths to the 1.5 and 2.5 km/s S-wave horizons beneath the strong motion stations in the PEER/NGA database.

  6. Shape and Size of Patroclus and Menoetius from a Stellar Occultation

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Olkin, Catherine B.; Merline, William J.; Timerson, Brad; Herald, Dave; Owen, William M.; Abramson, Harry B.; Abramson, Katherine J.; Breit, Derek C.; Caton, D. B.; Conard, Steve J.; Croom, Mark A.; Dunford, R. W.; Dunford, J. A.; Dunham, David W.; Ellington, Chad K.; Liu, Yanzhe; Maley, Paul D.; Olsen, Aart M.; Royer, Ronald; Scheck, Andrew E.; Sherrod, Clay; Sherrod, Lowell; Swift, Theodore J.; Taylor, Lawrence W.; Venable, Roger

    2014-11-01

    We will present results of a stellar occultation by the Jupiter Trojan asteroid, Patroclus and its nearly equal size moon, Menoetius. The occultation was observed widely across the United States on 2013 Oct 21 UT. Eleven sites out of 36 successfully recorded an occultation. Seven chords across Patroclus yielded a elliptical limb fit of 124.6 km by 98.2 km. There were six chords across Menoetius that yielded an elliptical limb fit of 117.2 km by 93.0 km. There were three sites that got chords on both objects. At the time of the occultation we measured a separation of 0.247 arcsec and a position angle for Menoetius of 265.7 deg measured eastward from J2000 North. More surprisingly, there were two sites that should have seen an occultation by Menoetius but instead never saw the star disappear. These two non-detections indicate the presence of a large void on the southern limb of the satellite. The observations are consistent with a large impact basin centered on the rotation pole. The depth of the projected crater profile is roughly 15 km, measured from the elliptical limb profile. The inferred diameter of the crater would be about 85 km. Combining this occultation data with previous lightcurve data, the axial ratios (ignoring the mass void) of both objects is 1.26:1.19:1 indicative of a mostly oblate ellipsoid with a slight asymmetry in its equatorial projection. These results are consistent with a fully tidally evolved system with the mass void or putative crater in a position consistent with principal axis rotation that is itself consistent with the largely oblate shape. Note: the location for IOTA listed in the affiliations is not correct (but was required to be entered) as there is no location for this global virtual organization. This research is funded, in part, by NSF AST-1212159.

  7. Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy

    NASA Astrophysics Data System (ADS)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Doglioni, Carlo

    2017-08-01

    In August and October 2016, two normal fault earthquakes (Mw 6.0 and Mw 6.5, respectively) struck the Amatrice-Norcia area in the central Apennines, Italy. The mainshocks nucleated at depths of 7-9 km with the co-seismic slip propagating upward along the Mt. Gorzano Fault (MGF) and Mt. Vettore Fault System (MVFS). To recognize possible weakening mechanisms along the carbonate-hosted seismogenic faults that generated the Amatrice-Norcia earthquakes, the fresh co-seismic fault exposure (i.e., "nastrino") exposed along the Mt. Vettoretto Fault was sampled and analyzed. This exposed fault belongs to the MVFS and was exhumed from 2-3 km depth. Over the fresh fault surface, phyllosilicates concentrated and localized along mm- to μm-thick layers, and truncated clasts and fluid-like structures were found. At the nano-scale, instead of their common platy-lamellar crystallographic texture, the analyzed phyllosilicates consist of welded nm-thick nanospherules and nanotubes similar to phyllosilicates deformed in rotary shear apparatus at seismic velocities or altered under high hydrothermal temperatures (> 250 °C). Moreover, the attitude of the Mt. Vettoretto Fault and its kinematics inferred from exposed slickenlines are consistent with the co-seismic fault and slip vectors obtained from the focal mechanisms computed for the 2016 mainshocks. All these pieces of evidence suggest that the Mt. Vettoretto Fault slipped seismically during past earthquakes and that co-seismic slip was assisted and facilitated at depths of < 3 km by phyllosilicate-rich layers and overpressured fluids. The same weakening processes may also have been decisive in facilitating the co-seismic slip propagation during the 2016 Mw 6.0 Amatrice and Mw 6.5 Norcia earthquakes. The microstructures found along the Mt. Vettoretto Fault, which is certainly a seismogenic fault, provide a realistic synoptic picture of co-seismic processes and weakening mechanisms that may occur in carbonate-hosted seismogenic faults.

  8. Spatial variations in the frequency-magnitude distribution of earthquakes at Soufriere Hills Volcano, Montserrat, West Indies

    USGS Publications Warehouse

    Power, J.A.; Wyss, M.; Latchman, J.L.

    1998-01-01

    The frequency-magnitude distribution of earthquakes measured by the b-value is determined as a function of space beneath Soufriere Hills Volcano, Montserrat, from data recorded between August 1, 1995 and March 31, 1996. A volume of anomalously high b-values (b > 3.0) with a 1.5 km radius is imaged at depths of 0 and 1.5 km beneath English's Crater and Chance's Peak. This high b-value anomaly extends southwest to Gage's Soufriere. At depths greater than 2.5 km volumes of comparatively low b-values (b-1) are found beneath St. George's Hill, Windy Hill, and below 2.5 km depth and to the south of English's Crater. We speculate the depth of high b-value anomalies under volcanoes may be a function of silica content, modified by some additional factors, with the most siliceous having these volumes that are highly fractured or contain high pore pressure at the shallowest depths. Copyright 1998 by the American Geophysical Union.

  9. Lithospheric structure beneath Eastern Africa from joint inversion of receiver functions and Rayleigh wave velocities

    NASA Astrophysics Data System (ADS)

    Dugda, Mulugeta Tuji

    Crust and upper mantle structure beneath eastern Africa has been investigated using receiver functions and surface wave dispersion measurements to understand the impact of the hotspot tectonism found there on the lithospheric structure of the region. In the first part of this thesis, I applied H-kappa stacking of receiver functions, and a joint inversion of receiver functions and Rayleigh wave group velocities to determine the crustal parameters under Djibouti. The two methods give consistent results. The crust beneath the GEOSCOPE station ATD has a thickness of 23+/-1.5 km and a Poisson's ratio of 0.31+/-0.02. Previous studies give crustal thickness beneath Djibouti to be between 8 and 10 km. I found it necessary to reinterprete refraction profiles for Djibouti from a previous study. The crustal structure obtained for ATD is similar to adjacent crustal structure in many other parts of central and eastern Afar. The high Poisson's ratio and Vp throughout most of the crust indicate a mafic composition, suggesting that the crust in Afar consists predominantly of new igneous rock emplaced during the late synrift stage where extension is accommodated within magmatic segments by diking. In the second part of this thesis, the seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Crustal structure from the joint inversion for Ethiopia and Djibouti is similar to previously published models. Beneath the Main Ethiopian Rift (MER) and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the lithosphere beneath the Ethiopian Plateau can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30--50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure. In the final part of this thesis, the shear-wave velocity structure of the crust and upper mantle beneath Kenya has been obtained from a joint inversion of receiver functions, and Rayleigh wave group and phase velocities. The crustal structure from the joint inversion is consistent with crustal structure published previously by different authors. The lithospheric mantle beneath the East African Plateau in Kenya is similar to the lithosphere under the East African Plateau in Tanzania. Beneath the Kenya Rift, the lithosphere extends to a depth of at most ˜75 km. The lithosphere under the Kenya Plateau is not perturbed when compared to the highly perturbed lithosphere beneath the Ethiopian Plateau. On the other hand, the lithosphere under the Kenya Rift is perturbed as compared to the Kenya Plateau or the rest of the East African Plateau, but is not as perturbed as the lithosphere beneath the Main Ethiopian Rift or the Afar. Although Kenya and Ethiopia have similar uplift and rifting histories, they have different volcanic histories. Much of Ethiopia has been affected by the Afar Flood Basalt volcanism, which may be the cause of this difference in lithospheric structure between these two regions.

  10. The 2017 Mw = 8.2 Tehuantepec earthquake: a slab bending or slab pull rupture?

    NASA Astrophysics Data System (ADS)

    Duputel, Z.; Gombert, B.; Simons, M.; Fielding, E. J.; Rivera, L. A.; Bekaert, D. P.; Jiang, J.; Liang, C.; Moore, A. W.; Liu, Z.

    2017-12-01

    On September 8th 2017, a regionally destructive Mw 8.2 intra-slab earthquake struck Mexico in the Gulf of Tehuantepec. While large intermediate depth intra-slab earthquakes are a major hazard, we have only a limited knowledge of the strain budgets within subducting slabs. Several mechanisms have been proposed to explain intraplate earthquakes in subduction zones. Bending stresses might cause the occurrence of seismic events located at depths where the slab dip changes abruptly. However, an alternative explanation is needed if the ruptures are found to propagate through the entire lithosphere. Depending on the coupling of the subduction interface, intraplate earthquakes occurring updip or downdip of the locked zone could also be caused by the negative buoyancy of the sinking slab (i.e., slab pull). The increasing availability of near-fault data provides a unique opportunity to better constrain the seismogenic behavior of large intra-slab earthquakes. Teleseismic analyses of the 2017 Tehuantepec earthquake lead to contrasting statements about the depth extent of the rupture: while most of long period centroid moment tensor inversions yield fairly large centroid depths (>40 km), some finite-fault models suggest much shallower slip concentrated at depths less than 30 km. In this study, we analyze GPS, InSAR, tsunami and seismological data to constrain the earthquake location, fault geometry and slip distribution. We use a Bayesian approach devoid of significant spatial smoothing to characterize the range of allowable rupture depths. In addition, to cope with potential artifacts in centroid depth estimates due to unmodeled lateral heterogeneities, we also analyze long-period seismological data using a full 3D Earth model. Preliminary results suggest a fairly deep rupture consistent with a slab-pull process breaking a significant proportion of the lithosphere and potentially reflecting at least local detachment of the slab.

  11. Freeboard, Snow Depth and Sea-Ice Roughness in East Antarctica from In Situ and Multiple Satellite Data

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Masson, Robert; Worby, Anthony; Lytle, Victoria; Kurtz, Nathan; Maksym, Ted

    2011-01-01

    In October 2003 a campaign on board the Australian icebreaker Aurora Australis had the objective to validate standard Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. Additionally, the satellite laser altimeter on the Ice, Cloud and land Elevation Satellite (ICESat) was in operation. To capture the large-scale information on the sea-ice conditions necessary for satellite validation, the measurement strategy was to obtain large-scale sea-ice statistics using extensive sea-ice measurements in a Lagrangian approach. A drifting buoy array, spanning initially 50 km 100 km, was surveyed during the campaign. In situ measurements consisted of 12 transects, 50 500 m, with detailed snow and ice measurements as well as random snow depth sampling of floes within the buoy array using helicopters. In order to increase the amount of coincident in situ and satellite data an approach has been developed to extrapolate measurements in time and in space. Assuming no change in snow depth and freeboard occurred during the period of the campaign on the floes surveyed, we use buoy ice-drift information as well as daily estimates of thin-ice fraction and rough-ice vs smooth-ice fractions from AMSR-E and QuikSCAT, respectively, to estimate kilometer-scale snow depth and freeboard for other days. The results show that ICESat freeboard estimates have a mean difference of 1.8 cm when compared with the in situ data and a correlation coefficient of 0.6. Furthermore, incorporating ICESat roughness information into the AMSR-E snow depth algorithm significantly improves snow depth retrievals. Snow depth retrievals using a combination of AMSR-E and ICESat data agree with in situ data with a mean difference of 2.3 cm and a correlation coefficient of 0.84 with a negligible bias.

  12. A study of microseismicity in northern Baja California, Mexico

    NASA Technical Reports Server (NTRS)

    Johnson, T. L.; Koczynski, T.; Madrid, J.

    1976-01-01

    Five microearthquake instruments were operated for 2 months in 1974 in a small mobile array deployed at various sites near the Agua Blanca and San Miguel faults. An 80-km-long section of the San Miguel fault zone is presently active seismically, producing the vast majority of recorded earthquakes. Very low activity was recorded on the Agua Blanca fault. Events were also located near normal faults forming the eastern edge of the Sierra Juarez suggesting that these faults are active. Hypocenters on the San Miguel fault range in depth from 0 to 20 km although two-thirds are in the upper 10 km. A composite focal mechanism showing a mixture of right-lateral and dip slip, east side up, is similar to a solution obtained for the 1956 San Miguel earthquake which proved consistent with observed surface deformation.

  13. The crustal structure from the Altai Mountains to the Altyn Tagh fault, northwest China

    USGS Publications Warehouse

    Wang, Y.; Mooney, W.D.; Yuan, X.; Coleman, R.G.

    2003-01-01

    We present a new crustal section across northwest China based on a seismic refraction profile and geologic mapping. The 1100-km-long section crosses the southern margin of the Chinese Altai Mountains, Junggar Accretional Belt and eastern Junggar basin, easternmost Tianshan Mountains, and easternmost Tarim basin. The crustal velocity structure and Poisson's ratio (??), which provide a constraint on crustal composition, were determined from P and S wave data. Despite the complex geology, the crustal thickness along the entire profile is nearly uniform at 50 km. The thickest crust (56 km) occurs at the northern end of the profile beneath the Altai Mountains and the thinnest (46 km) crust is beneath the Junggar basin. Beneath surficial sediments, the crust is found to have three layers with P wave velocities (Vp) of 6.0-6.3, 6.3-6.6, and 6.9-7.0 km/s, respectively. The southern half of the profile, including the eastern Tianshan Mountains and eastern margin of the Tarim basin, shows low P wave velocities and ?? = 0.25 to a depth of 30 km, which suggests a quartz-rich, granitic upper crustal composition. The northern half of the profile below the Altai Mountains and Junggar Accretional Belt has a higher Poisson's ratio of ?? = 0.26-0.27 to a depth of 30 km, indicative of an intermediate crustal composition. The entire 1100-km-long profile is underlain by a 15-30 km thick high velocity (6.9-7.0 km/s; ?? = 0.26-0.28) lower-crustal layer that we interpret to have a bulk composition of mafic granulite. At the southern end of the profile, a 5-km-thick midcrustal low-velocity layer (Vp = 5.9 km/s, ?? = 0.25) underlies the Tianshan and the region to the south, and may be indicative of a near-horizontal detachment interface. Pn velocities are ???7.7-7.8 km/s between the Tianshan and the Junggar basin, and ???7.9-8.0 km/s below the Altai Mountains and eastern margin of the Tarim basin. We interpret the consistent three-layer stratification of the crust to indicate that the crust has undergone partial melting and differentiation after Paleozoic terrane accretion. The thickness (50 km) of the crust appears to be related to compression resulting from the Indo-Asian collision.

  14. Lithospheric shear velocity structure of South Island, New Zealand, from amphibious Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    Ball, Justin S.; Sheehan, Anne F.; Stachnik, Joshua C.; Lin, Fan-Chi; Yeck, William L.; Collins, John A.

    2016-05-01

    We present a crust and mantle 3-D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath the South Island as well as the Campbell and Challenger Plateaus. Our model is constructed via linearized inversion of both teleseismic (18-70 s period) and ambient noise-based (8-25 s period) Rayleigh wave dispersion measurements. We augment an array of 4 land-based and 29 ocean bottom instruments deployed off the South Island's east and west coasts in 2009-2010 by the Marine Observations of Anisotropy Near Aotearoa experiment with 28 land-based seismometers from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs < 4.4 km/s) body extending from near surface to greater than 75 km depth beneath the Banks and Otago Peninsulas and high-velocity (Vs~4.7 km/s) mantle anomalies underlying the Southern Alps and off the northwest coast of the South Island. Using the 4.5 km/s contour as a proxy for the lithosphere-asthenosphere boundary, our model suggests that the lithospheric thickness of Challenger Plateau and central South Island is substantially greater than that of the inner Campbell Plateau. The high-velocity anomaly we resolve at subcrustal depths (>50 km) beneath the central South Island exhibits strong spatial correlation with upper mantle earthquake hypocenters beneath the Alpine Fault. The ~400 km long low-velocity zone we image beneath eastern South Island and the inner Bounty Trough underlies Cenozoic volcanics and the locations of mantle-derived helium measurements, consistent with asthenospheric upwelling in the region.

  15. Saudi Arabian seismic deep-refraction profiles; final project report

    USGS Publications Warehouse

    Healy, J.H.; Mooney, W.D.; Blank, H.R.; Gettings, M.E.; Kohler, W.M.; Lamson, R.J.; Leone, L.E.

    1983-01-01

    In February 1978 a seismic deep-refraction profile was recorded by the U.S. Geological Survey along a 1000-km line across the Arabian Shield in western Saudi Arabia. The line begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, leads southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan (Tihamat-Asir), and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, including 19 in the Farasan Islands. Six shot points were used: five on land, with most charges placed below the water table in drill holes, and one at sea, with charges placed on the sea floor and detonated from a ship. Slightly more than 61 metric tons of explosives were used in 19 discrete firings. Seismic energy was recorded by 100 newly-developed portable seismic stations deployed in approximately 200 km-long arrays for each firing. Each station consisted of a standard 2-Hz vertical component geophone coupled to a self-contained analog recording instrument equipped with a magnetic-tape cassette. In this final report, we fully document the field and data-processing procedures and present the final seismogram data set as both a digital magnetic tape and as record sections for each shot point. Record sections include a normalized set of seismograms, reduced at 6 km/s, and a true-amplitude set, reduced at 8 km/s, which have been adjusted for amplifier gain, individual shot size, and distance from the shot point. Appendices give recorder station and shot information, digital data set descriptions, computer program listings, arrival times used in the interpretation, and a bibliography of reports published as a result of this project. We used two-dimensional ray-tracing techniques in the data analysis, and our interpretation is based primarily on horizontally layered models. The Arabian Shield is composed, to first-order, of two layers, each about 20 km thick, with average velocities of 6.3 km/s and 7.0 km/s, respectively. At the western shield margin the crust thins to less than 20 km total thickness, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust. A major crustal lateral velocity inhomogeneity northeast of Sabhah in the Shammar Tectonic Province is interpreted as the suture zone of two crustal blocks of different composition. Several high-velocity anomalies in the upper crust correlate with mapped gneissic dome structures. Two intra-crustal reflectors at13 km depth are interpreted as the tops of mafic intrusives. The Mohorovicic discontinuity beneath the shield varies from 43 km depth in the northeast with 8.2 km/s mantle velocity to 38 km depth in the southwest with 8.0 km/s mantle velocity. Two velocity discontinuities are identified in the upper mantle, at 59 and 70 km depth. We suggest further work, including refined analyses of the data employing filtering and synthetic seismogram techniques, as well as consideration of attenuation properties. Extension of the seismic refraction profile to the Arabian Gulf and some short profiles perpendicular to the existing profile would be fruitful areas for future field work.

  16. Controls on Early-Rift Geometry: New Perspectives From the Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, Å.; Biggs, J.; Mdala, H.

    2018-05-01

    We use the ˜110-km long Bilila-Mtakataka fault in the amagmatic southern East African Rift, Malawi, to investigate the controls on early-rift geometry at the scale of a major border fault. Morphological variations along the 14 ± 8-m high scarp define six 10- to 40-km long segments, which are either foliation parallel or oblique to both foliation and the current regional extension direction. As the scarp is neither consistently parallel to foliation nor well oriented for the current regional extension direction, we suggest that the segmented surface expression is related to the local reactivation of well-oriented weak shallow fabrics above a broadly continuous structure at depth. Using a geometrical model, the geometry of the best fitting subsurface structure is consistent with the local strain field from recent seismicity. In conclusion, within this early-rift, preexisting weaknesses only locally control border fault geometry at subsurface.

  17. Velocity model of the crust and upper mantle at the southern margin of the East European Craton (Azov Sea-Crimea-Black Sea area), DOBRE-2 & DOBRE'99 transect

    NASA Astrophysics Data System (ADS)

    Starostenko, Vitaly; Janik, Tomasz; Stephenson, Randell; Gryn, Dmytro; Tolkunov, Anatoliy; Czuba, Wojciech; Środa, Piotr; Sydorenko, Grigoriy; Lysynchuk, Dmytro; Omelchenko, Victor; Grad, Marek; Guterch, Aleksander; Kolomiyets, Katerina; Thybo, Hans; Dannowski, Anke; Flűh, Ernst R.; Legostaeva, Olga

    2013-04-01

    The southern part of the eastern European continental landmass consists mainly of a thick platform of Vendian and younger sediments overlying Precambrian basement, part of the East European Craton (EEC). The Scythian Platform (SP) lies between the EEC and the (mainly Alpine) deformed belt running from Dobrudja (Romania) to Crimea (Ukraine) and the Greater Caucasus (Russia), along the northern margin of the Black Sea. Hard constraints on the Palaeozoic history on the SP are very sparse and little is known of its crustal structure in this area. The poster presents the seismic results of a multidisciplinary project that fills some of this gap. The project is called DOBRE-2 (as it forms a prolongation of the successful DOBRE project executed in 1999-2001). The main objectives of DOBRE-2 were to elucidate the deep-seated structure of the lithosphere and geodynamic setting of the shelf zones of the Azov and Black seas and the Crimean peninsula and to study the deep controls on the structure of basement and sedimentary cover. DOBRE-2 traverses a number of major faults and suture zones separating the EEC from the SP, the Crimean Mountains, and the Black Sea depression. Significant hydrocarbon reserves occur in the basins traversed by DOBRE-2. Deep seismic reflection profiling (30 second, Vibroseis) has been completed on a 100-km segment of the profile on the Azov massif (part of the Ukrainian Shield) as well as a 47-km segment in Crimea. These are complemented by refraction profiling on the shelf zones of the Azov (~53 km) and Black (~160 km) seas and coincident near-vertical (CDP) in the Black Sea, using a combination of onshore seismograph stations, ocean-bottom seismometers, onshore explosive energy sources (6 shot points), as well as ship-borne seismic acquisition. We present a 2-D seismic velocity model (Vp in the crust, depth to the Moho and depth to the intracrustal reflectors) along (~780 km) the DOBRE-2 & DOBRE'99 transect. Our model extends the model published for the DOBRE'99 profile (The DOBREfraction'99 Working Group, 2003) to the southwest. The Moho dips in this direction, from a depth of 40 km below the Azov Sea to ~47 km, below Crimea. A short segment of a reflector interpreted to represent Moho was detected at a depth of ~37 km in the Black Sea part of the profile. We also present a comparison of the DOBRE-2 velocity model with an interpretation of a coincident CDP profile.

  18. Continental lithospheric subduction and intermediate-depth seismicity: Constraints from S-wave velocity structures in the Pamir and Hindu Kush

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chen, Yun; Yuan, Xiaohui; Schurr, Bernd; Mechie, James; Oimahmadov, Ilhomjon; Fu, Bihong

    2018-01-01

    The Pamir has experienced more intense deformation and shortening than Tibet, although it has a similar history of terrane accretion. Subduction as a primary way to accommodate lithospheric shortening beneath the Pamir has induced the intermediate-depth seismicity, which is rare in Tibet. Here we construct a 3D S-wave velocity model of the lithosphere beneath the Pamir by surface wave tomography using data of the TIPAGE (Tien Shan-Pamir Geodynamic program) and other seismic networks in the area. We imaged a large-scale low velocity anomaly in the crust at 20-50 km depth in the Pamir overlain by a high velocity anomaly at a depth shallower than 15 km. The high velocity anomalies colocate with exposed gneiss domes, which may imply a similar history of crustal deformation, partial melting and exhumation in the hinterland, as has occurred in the Himalaya/Tibet system. At mantle depths, where the intermediate-depth earthquakes are located, a low velocity zone is clearly observed extending to about 180 km and 150 km depth in the Hindu Kush and eastern Pamir, respectively. Moreover, the geometry of the low-velocity anomaly suggests that lower crustal material has been pulled down into the mantle by the subducting Asian and Indian lithospheric mantle beneath the Pamir and Hindu Kush, respectively. Metamorphic processes in the subducting lower crust may cause the intermediate-depth seismicity down to 150-180 km depth beneath the Pamir and Hindu Kush. We inverted focal mechanisms in the seismic zone for the stress field. Differences in the stress field between the upper and lower parts of the Indian slab imply that subduction and detachment of the Indian lithosphere might cause intense seismicity associated with the thermal shear instability in the deep Hindu Kush.

  19. Repeated Earthquakes in the Vrancea Subcrustal Source and Source Scaling

    NASA Astrophysics Data System (ADS)

    Popescu, Emilia; Otilia Placinta, Anica; Borleasnu, Felix; Radulian, Mircea

    2017-12-01

    The Vrancea seismic nest, located at the South-Eastern Carpathians Arc bend, in Romania, is a well-confined cluster of seismicity at intermediate depth (60 - 180 km). During the last 100 years four major shocks were recorded in the lithosphere body descending almost vertically beneath the Vrancea region: 10 November 1940 (Mw 7.7, depth 150 km), 4 March 1977 (Mw 7.4, depth 94 km), 30 August 1986 (Mw 7.1, depth 131 km) and a double shock on 30 and 31 May 1990 (Mw 6.9, depth 91 km and Mw 6.4, depth 87 km, respectively). The probability of repeated earthquakes in the Vrancea seismogenic volume is relatively large taking into account the high density of foci. The purpose of the present paper is to investigate source parameters and clustering properties for the repetitive earthquakes (located close each other) recorded in the Vrancea seismogenic subcrustal region. To this aim, we selected a set of earthquakes as templates for different co-located groups of events covering the entire depth range of active seismicity. For the identified clusters of repetitive earthquakes, we applied spectral ratios technique and empirical Green’s function deconvolution, in order to constrain as much as possible source parameters. Seismicity patterns of repeated earthquakes in space, time and size are investigated in order to detect potential interconnections with larger events. Specific scaling properties are analyzed as well. The present analysis represents a first attempt to provide a strategy for detecting and monitoring possible interconnections between different nodes of seismic activity and their role in modelling tectonic processes responsible for generating the major earthquakes in the Vrancea subcrustal seismogenic source.

  20. Upper mantle shear wave velocity structure beneath northern Victoria Land, Antarctica: Volcanism and uplift in the northern Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Graw, Jordan H.; Adams, Aubreya N.; Hansen, Samantha E.; Wiens, Douglas A.; Hackworth, Lauren; Park, Yongcheol

    2016-09-01

    The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth, and while a variety of uplift mechanisms have been proposed, the origin of the TAMs is still a matter of great debate. Most previous seismic investigations of the TAMs have focused on a central portion of the mountain range, near Ross Island, providing little along-strike constraint on the upper mantle structure, which is needed to better assess competing uplift models. Using data recorded by the recently deployed Transantarctic Mountains Northern Network, as well as data from the Transantarctic Mountains Seismic Experiment and from five stations operated by the Korea Polar Research Institute, we investigate the upper mantle structure beneath a previously unexplored portion of the mountain range. Rayleigh wave phase velocities are calculated using a two-plane wave approximation and are inverted for shear wave velocity structure. Our model shows a low velocity zone (LVZ; ∼4.24 km s-1) at ∼160 km depth offshore and adjacent to Mt. Melbourne. This LVZ extends inland and vertically upwards, with more lateral coverage above ∼100 km depth beneath the northern TAMs and Victoria Land. A prominent LVZ (∼4.16-4.24 km s-1) also exists at ∼150 km depth beneath Ross Island, which agrees with previous results in the TAMs near the McMurdo Dry Valleys, and relatively slow velocities (∼4.24-4.32 km s-1) along the Terror Rift connect the low velocity anomalies. We propose that the LVZs reflect rift-related decompression melting and provide thermally buoyant support for the TAMs uplift, consistent with proposed flexural models. We also suggest that heating, and hence uplift, along the mountain front is not uniform and that the shallower LVZ beneath northern Victoria Land provides greater thermal support, leading to higher bedrock topography in the northern TAMs. Young (0-15 Ma) volcanic rocks associated with the Hallett and the Erebus Volcanic Provinces are situated directly above the imaged LVZs, suggesting that these anomalies are also the source of Cenozoic volcanic rocks throughout the study area.

  1. Unusually Deep Bonin Earthquake (M7.9) of May 30, 2015 Suggests that Stagnant Slab Transforms into Penetration Stage

    NASA Astrophysics Data System (ADS)

    Obayashi, M.; Fukao, Y.; Yoshimitsu, J.

    2015-12-01

    A great shock occurred at an unusual depth of 678 km far away from the well-defined Wadati-Benioff zone of the Izu-Bonin arc (Fig.1). To the north of this region the slab is stagnant above the 660 km discontinuity and to the south it penetrates the discontinuity (Fig.2). Thus, the slab in this region can be viewed as in a transitional state from the stagnant to penetrating slab. Here, the steeply dipping part of the slab bends sharply to horizontal and the great shock happened at the lowest corner of this bending. The CMT indicates a pure normal faulting with the trench-normal near horizontal tensional axis and the near vertical compressional axis (Fig.1). We suggest that this mechanism reflects a transitional state of slab deformation from the bending-dominant mode to the penetration-dominant mode. The mechanism is consistent with either of these two two modes. We show that the mechanism is also consistent with the resultant stress field generated by many deep shocks occurring along the Wadati-Benioff zone. The calculated stress field changes rapidly along a trench-normal profile at a depth of 680 km and becomes similar to that generated by the great shock at points near the hypocenter (Fig.3). Thus, the stress field due to the Wadati-Benioff zone earthquakes works to enhance the occurrence of deep shocks of the type of the 2015 great shock, which represents slab deformation associated with the transition from stagnant to penetrating slab.

  2. Systematic heat flow measurements across the Wagner Basin, northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, Florian; Negrete-Aranda, Raquel; Harris, Robert N.; Contreras, Juan; Sclater, John G.; González-Fernández, Antonio

    2017-12-01

    A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. The heat flow profile is 40 km long, has a nominal measurement spacing of ∼1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Although heat flow data were collected in shallow water, where there are significant temporal variations in bottom water temperature, we use CTD data collected over many years to correct our measurements to yield accurate values of heat flow. After correction for bottom water temperature, the mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220 ± 60, 99 ± 14, 889 ± 419 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Moreover, heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.

  3. Magnitude and location of historical earthquakes in Japan and implications for the 1855 Ansei Edo earthquake

    USGS Publications Warehouse

    Bakun, W.H.

    2005-01-01

    Japan Meteorological Agency (JMA) intensity assignments IJMA are used to derive intensity attenuation models suitable for estimating the location and an intensity magnitude Mjma for historical earthquakes in Japan. The intensity for shallow crustal earthquakes on Honshu is equal to -1.89 + 1.42MJMA - 0.00887?? h - 1.66log??h, where MJMA is the JMA magnitude, ??h = (??2 + h2)1/2, and ?? and h are epicentral distance and focal depth (km), respectively. Four earthquakes located near the Japan Trench were used to develop a subducting plate intensity attenuation model where intensity is equal to -8.33 + 2.19MJMA -0.00550??h - 1.14 log ?? h. The IJMA assignments for the MJMA7.9 great 1923 Kanto earthquake on the Philippine Sea-Eurasian plate interface are consistent with the subducting plate model; Using the subducting plate model and 226 IJMA IV-VI assignments, the location of the intensity center is 25 km north of the epicenter, Mjma is 7.7, and MJMA is 7.3-8.0 at the 1?? confidence level. Intensity assignments and reported aftershock activity for the enigmatic 11 November 1855 Ansei Edo earthquake are consistent with an MJMA 7.2 Philippine Sea-Eurasian interplate source or Philippine Sea intraslab source at about 30 km depth. If the 1855 earthquake was a Philippine Sea-Eurasian interplate event, the intensity center was adjacent to and downdip of the rupture area of the great 1923 Kanto earthquake, suggesting that the 1855 and 1923 events ruptured adjoining sections of the Philippine Sea-Eurasian plate interface.

  4. Heterogeneous seismic anisotropy in the transition zone and uppermost lower mantle: evidence from South America, Izu-Bonin and Japan

    NASA Astrophysics Data System (ADS)

    Lynner, Colton; Long, Maureen D.

    2015-06-01

    Measurements of seismic anisotropy are commonly used to constrain deformation in the upper mantle. Observations of anisotropy at mid-mantle depths are, however, relatively sparse. In this study we probe the anisotropic structure of the mid-mantle (transition zone and uppermost lower mantle) beneath the Japan, Izu-Bonin, and South America subduction systems. We present source-side shear wave splitting measurements for direct teleseismic S phases from earthquakes deeper than 300 km that have been corrected for the effects of upper mantle anisotropy beneath the receiver. In each region, we observe consistent splitting with delay times as large as 1 s, indicating the presence of anisotropy at mid-mantle depths. Clear splitting of phases originating from depths as great as ˜600 km argues for a contribution from anisotropy in the uppermost lower mantle as well as the transition zone. Beneath Japan, fast splitting directions are perpendicular or oblique to the slab strike and do not appear to depend on the propagation direction of the waves. Beneath South America and Izu-Bonin, splitting directions vary from trench-parallel to trench-perpendicular and have an azimuthal dependence, indicating lateral heterogeneity. Our results provide evidence for the presence of laterally variable anisotropy and are indicative of variable deformation and dynamics at mid-mantle depths in the vicinity of subducting slabs.

  5. Topography of the 410 km and 660 km discontinuities beneath the Japan Sea and adjacent regions by analysis of multiple-ScS waves

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Juan; Chen, Qi-Fu

    2017-02-01

    The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Due to the sparse distribution of seismic stations in the sea, previous studies mostly focus on mantle transition zone (MTZ) structures beneath continents or island arcs, leaving the vast area of the Japan Sea and Okhotsk Sea untouched. In this study, we analyzed multiple-ScS reverberation waves, and a common-reflection-point stacking technique was applied to enhance consistent signals beneath reflection points. A topographic image of the 410 km and 660 km discontinuities is obtained beneath the Japan Sea and adjacent regions. One-dimensional and 3-D velocity models are adapted to obtain the "apparent" and "true" depth. We observe a systematic pattern of depression ( 10-20 km) and elevation ( 5-10 km) of the 660, with the topography being roughly consistent with the shift of the olivine-phase transition boundary caused by the subducting Pacific plate. The behavior of the 410 is more complex. It is generally 5-15 km shallower at the location where the slab penetrates and deepened by 5-10 km oceanward of the slab where a low-velocity anomaly is observed in tomography images. Moreover, we observe a wide distribution of depressed 410 beneath the southern Okhotsk Sea and western Japan Sea. The hydrous wadsleyite boundary caused by the high water content at the top of the MTZ could explain the depression. The long-history trench rollback motion of Pacific slab might be responsible for the widely distributed depression of the 410 ranging upward and landward from the slab.

  6. Birch's Mantle

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    2002-12-01

    Francis Birch's 1952 paper started the sciences of mineral physics and physics of the Earth's interior. Birch stressed the importance of pressure, compressive strain and volume in mantle physics. Although this may seem to be an obvious lesson many modern paradoxes in the internal constitution of the Earth and mantle dynamics can be traced to a lack of appreciation for the role of compression. The effect of pressure on thermal properties such as expansivity can gravitational stratify the Earth irreversibly during accretion and can keep it chemically stratified. The widespread use of the Boussinesq approximation in mantle geodynamics is the antithesis of Birchian physics. Birch pointed out that eclogite was likely to be an important component of the upper mantle. Plate tectonic recycling and the bouyancy of oceanic crust at midmantle depths gives credence to this suggestion. Although peridotite dominates the upper mantle, variations in eclogite-content may be responsible for melting- or fertility-spots. Birch called attention to the Repetti Discontinuity near 900 km depth as an important geodynamic boundary. This may be the chemical interface between the upper and lower mantles. Recent work in geodynamics and seismology has confirmed the importance of this region of the mantle as a possible barrier. Birch regarded the transition region (TR ; 400 to 1000 km ) as the key to many problems in Earth sciences. The TR contains two major discontinuities ( near 410 and 650 km ) and their depths are a good mantle thermometer which is now being exploited to suggest that much of plate tectonics is confined to the upper mantle ( in Birch's terminology, the mantle above 1000 km depth ). The lower mantle is homogeneous and different from the upper mantle. Density and seismic velocity are very insensitive to temperature there, consistent with tomography. A final key to the operation of the mantle is Birch's suggestion that radioactivities were stripped out of the deeper parts of Earth and placed in the crust and upper mantle. This resolves the lower mantle overheating paradox but the stratified mantle slows down the cooling of the Earth. A completely thermodynamically self-consistent treatment of mantle dynamics, with volume and temperature-dependent parameters has not yet been attempted but the essence of this approach is contained in the 1952 paper, which is must reading for all students of Earth's interior. One implication of this paper is that lower mantle structures should be gigantic and long-lived, a prediction spectacularly confirmed by modern seismic tomography.

  7. Constraining the Size and Depth of a Shallow Crustal Magma Body at Newberry Volcano Using P-Wave Tomography and Finite-Difference Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Beachly, M. W.; Hooft, E. E.; Toomey, D. R.; Waite, G. P.

    2011-12-01

    Imaging magmatic systems improves our understanding of magma ascent and storage in the crust and contributes to hazard assessment. Seismic tomography reveals crustal magma bodies as regions of low velocity; however the ability of delay-time tomography to detect small, low-velocity bodies is limited by wavefront healing. Alternatively, crustal magma chambers have been identified from secondary phases including P and S wave reflections and conversions. We use a combination of P-wave tomography and finite-difference waveform modeling to characterize a shallow crustal magma body at Newberry Volcano, central Oregon. Newberry's eruptions are silicic within the central caldera and mafic on its periphery suggesting a central silicic magma storage system. The system may still be active with a recent eruption ~1300 years ago and a drill hole temperature of 256° C at only 932 m depth. A low-velocity anomaly previously imaged at 3-5 km beneath the caldera indicates either a magma body or a fractured pluton. With the goal of detecting secondary arrivals from a magma chamber beneath Newberry Volcano, we deployed a line of densely-spaced (~300 m), three-component seismometers that recorded a shot of opportunity from the High Lava Plains Experiment in 2008. The data record a secondary P-wave arrival originating from beneath the caldera. In addition we combine travel-time data from our 2008 experiment with data collected in the 1980's by the USGS for a P-wave tomography inversion to image velocity structure to 6 km depth. The inversion includes 16 active sources, 322 receivers and 1007 P-wave first arrivals. The tomography results reveal a high-velocity, ring-like anomaly beneath the caldera ring faults to 2 km depth that surrounds a shallow low-velocity region. Beneath 2.5 km high-velocity anomalies are concentrated east and west of the caldera. A central low-velocity body lies below 3 km depth. Tomographic inversions of synthetic data suggest that the central low-velocity body beneath 3 km depth is not well resolved and that, for example, an unrealistically large low-velocity body with a volume up to 72 km3 at 40% velocity reduction (representing 30±7% partial melt) could be consistent with the observed travel-times. We use the tomographically derived velocity structure to construct 2D finite difference models and include synthetic low-velocity bodies in these models to test various magma chamber geometries and melt contents. Waveform modeling identifies the observed secondary phase as a transmitted P-wave formed by delaying and focusing P-wave energy through the low-velocity region. We will further constrain the size and shape of the low-velocity region by comparing arrival times and amplitudes of observed and synthetic primary and secondary phases. Secondary arrivals provide compelling evidence for an active crustal magmatic system beneath Newberry volcano and demonstrate the ability of waveform modeling to constrain the nature of magma bodies beyond the limits of seismic tomography.

  8. Lithospheric structure of the Eastern Iranian plateau from integrated geophysical modeling: A transect from Makran to the Turan platform

    NASA Astrophysics Data System (ADS)

    Entezar-Saadat, Vahid; Motavalli-Anbaran, Seyed-Hani; Zeyen, Hermann

    2017-05-01

    We present a 2D profile of density and temperature distribution in the lithosphere across Iran along a more than 1600 km long profile extending from the Oman Gulf in the South to the Kopeh-Dagh and the Turan platform in the North. Gravity, geoid, topography and surface heat flow data were used for modeling, assuming local isostatic equilibrium. As much as possible, crustal structure has been constrained by seismic data. Crustal thickening is found under the Taftan-Bazman volcanic-arc (up to 47 km), under the Binalud foreland (∼54 km) and beneath the Kopeh-Dagh mountains (up to 50 km) whereas thin crust has been obtained under the Oman Gulf (20 km). Moho depth under the Lut block and the Turan platform is about 40 km. The lithospheric thickness is ∼90 km under the Oman Gulf and increases slightly until the Jazmourian depression. Then the lithospheric-asthenospheric boundary (LAB) bends significantly and sinks to ∼260 km under the Taftan-Bazman volcanic-arc. The LAB depth is about 190 km beneath the Lut block. A slight increase of LAB depth under the Binalud foreland towards the North may indicate a suture zone. Under the Turan platform, the LAB depth reaches ∼210 km. We also modeled two possible positions of the deep suture zone in NE Iran (along the main Kopeh-Dagh fault or along the Atrak River) and concluded that, when the suture zone is along the Atrak River, we obtained the better fit between calculated and measured data.

  9. Aeromagnetic measurements in the Cascade Range and Modoc Plateau of northern California; report on work done from December 1, 1980, to May 31, 1981

    USGS Publications Warehouse

    Couch, Richard W.; Gemperle, Michael

    1982-01-01

    Spectral analysis of aeromagnetic data collected over 6orth-central California during the summer of 1980 aided in determining magnetic-source bottom depths beneath the survey area. Five regions of shallow magnetic source bottom depths were detected: 1) Secret Spring Mountain and National Lava Beds Monument area, 2) the Mount Shasta area, 3) the Eddys Mountain area, 4) the Big Valley Mountains area, and 5) an area northeast of Lassen Peak. Except for the Eddys Mountain area, all regions exhibiting shallow depths are suggested to be due to elevated Curie-point isotherms. The elevated Curie-point depth beneath Secret Spring Mountain and the National Lava Beds Monument area was found to be 4-7 km BSL (Below Sea Level) and is an extension of a zone mapped beneath an area immediately to the north in Oregon. A similar depth was detected for the Mount Shasta area and the area northeast of Lassen Peak. A depth of 4-6 km BSL was detected beneath the Big Valley Mountains area. The shallow Curie-point depths beneath Secret Spring Mountain, Mount Shasta, Big Valley Mountains, and the area northeast of Lassen Peak appear to form a segmented Zone of elevated Curie-point isotherm depths which underlies the High Cascade Mountains and Modoc Plateau in north-central California. A small area of shallow depths to magnetic-source bottoms, 4-5 km BSL, beneath the Eddys Mountain area is attributed to a lithologic boundary rather than an elevated Curie-point isotherm. Deeper magnetic source bottom depths were mapped throughout the remainder of the study area, with depths greater than 9 km BSL indicated beneath Lassen Peak and greater than ii km BSL indicated beneath the Western Cascades, Eastern Klamath Mountains, and Great Valley.

  10. Aftershocks of the june 20, 1978, Greece earthquake: A multimode faulting sequence

    USGS Publications Warehouse

    Carver, D.; Bollinger, G.A.

    1981-01-01

    A 10-station portable seismograph network was deployed in northern Greece to study aftershocks of the magnitude (mb) 6.4 earthquake of June 20, 1978. The main shock occurred (in a graben) about 25 km northeast of the city of Thessaloniki and caused an east-west zone of surface rupturing 14 km long that splayed to 7 km wide at the west end. The hypocenters for 116 aftershocks in the magnitude range from 2.5 to 4.5 were determined. The epicenters for these events cover an area 30 km (east-west) by 18 km (north-south), and focal depths ranges from 4 to 12 km. Most of the aftershocks in the east half of the aftershock zone are north of the surface rupture and north of the graben. Those in the west half are located within the boundaries of the graben. Composite focalmechanism solutions for selected aftershocks indicate reactivation of geologically mapped normal faults in the area. Also, strike-slip and dip-slip faults that splay off the western end of the zone of surface ruptures may have been activated. The epicenters for four large (M ??? 4.8) foreshocks and the main shock were relocated using the method of joint epicenter determination. Collectively, those five epicenters form an arcuate pattern convex southward, that is north of and 5 km distant from the surface rupturing. The 5-km separation, along with a focal depth of 8 km (average aftershock depth) or 16 km (NEIS main-shock depth), implies that the fault plane dips northward 58?? or 73??, respectively. A preferred nodal-plane dip of 36?? was determined by B.C. Papazachos and his colleagues in 1979 from a focal-mechanism solution for the main shock. If this dip is valid for the causal fault and that fault projects to the zone of surface rupturing, a decrease of dip with depth is required. ?? 1981.

  11. Estimating crustal thickness in Belgium and surrounding regions from Moho-reflected waves

    NASA Astrophysics Data System (ADS)

    Sichien, E.; Henriet, J.-P.; Camelbeeck, T.; De Baets, B.

    2012-08-01

    The Moho depth underneath parts of Belgium and neighbouring regions was evaluated, by analysing more than 750 PmP and SmS arrival times recorded by 37 seismic stations for 209 earthquakes or explosions. First the reflection points for all the recorded seismic source-station couples were located in a grid covering the studied region. Then the Moho depth was evaluated using data corresponding to reflection points located in the same cell of 400 km2. The results show that the crustal thickness varies between 28 and 37 km, with a maximum uncertainty of 2.5 km. Underneath the Brabant Massif, the Moho has been determined for the first time, and is situated at a depth of around 31 km. Underneath the Roer Valley Graben, the Moho depth is also 31-32 km, showing no evidence of an uplift. A small Moho uplift (29 km) is evidenced underneath the Campine Basin and the Eifel Volcanic Province. The first should be confirmed by complementary measurements. The second is in agreement with previous investigations. An abrupt change in the Moho depth is determined in the southeast of the studied region. It is not clear whether this change represents a double Moho as observed on the ECORS profile or just a very steep Moho. Furthermore, two reflections are determined here: one at a depth of 17 to 24 km and the other one at 29 to 37 km. The deepest reflections correspond to the Moho, whereas the shallow reflections could correspond to reflections on a granitic magma chamber or on an old crust-mantle boundary that has been thrust into the middle crust during the Variscan orogeny. This study also demonstrates that the Moho reflected PmP wave is best visible in the low frequency domain (< 8 Hz). This can help to improve the determination of PmP-arrival times in comparable studies.

  12. Familiar Phases: Receiver Function Study of the Lithospheric Structure Across the Eastern Margin of the Superior Craton

    NASA Astrophysics Data System (ADS)

    Levin, V. L.; Servali, A.; Dunham, B.; Klaser, M.

    2015-12-01

    A 1200 km long array of seismic observatories from James Bay to the Atlantic coast covers nearly 2 Ga in time, from the Archean Superior Province to the Paleozoic Appalachian Orogen. We use traditional (P-to-SV) receiver function analysis for detailed characterization of the lithospheric mantle along the array, focusing on the 5-15 s delay range where direct conversions from within the lithosphere and crustal multiples are expected.Superior craton sites show exceptionaly clear receiver functions dominated by the first crustal multiple. Also, a negative phase consistent with impedance decrease at the Mid-Lithospheric Discontinuity (~8 s delay) is observed north of 51°N, within the La Grande and Opinaca terranes of the Superior province. In the Opatica terrane further south we see a positive phase at similar delays instead. This implies a downward impedance increase 70-80 km deep within the lithosphere, consistent with the Hales discontinuity. In the Abitibi terrane just north of the Grenville Front we see evidence for two impedance drops in the 60-130 km depth range. Within the Proterozoic Grenvile province receiver functions vary with direction at individual sites, and lack regional consistency. Crustal multiples are noticeably weaker. South of 49°N we once again find negative phases in the 8-10 s delay range. While weak and directionally-dependent in the central Grenville province, these phases are clear near the Appalachian Front (AF), and are followed by positive phases, suggesting thin low-velocity layers in the lower part of the lithosphere. Similarity of receiver function signatures on opposite sides of the AF suggests continuity of the lithosphere beneath it.South of the AF and north of the Norumbega Fault Zone (NFZ) in Maine we find positive phases at ~10 s delays. The implied increase in impedance at ~75 km depth is puzzling. We also find previously-reported weak negative phases in the 6-8 s delay range. South of the NFZ a strong negative phase at ~9 s delay likely marks the bottom of the lithosphere.

  13. Crustal structure of Tolfa domes complex (northern Latium - Italy) inferred from receiver functions analysis: an interplay between tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Buttinelli, M.; Bianchi, I.; Anselmi, M.; Chiarabba, C.; de Rita, D.; Quattrocchi, F.

    2010-12-01

    The Tolfa-Cerite volcanic district developed along the Tyrrhenian passive margin of central Italy, as part of magmatic processes started during the middle Pliocene. In this area the uncertainties on the deep crustal structures and the definition of the intrusive bodies geometry are focal issues that still need to be addressed. After the onset of the spreading of the Tyrrhenian sea during the Late Miocene, the emplacement of the intrusive bodies of the Tolfa complex (TDC), in a general back-arc geodynamical regime, generally occurred in a low stretching rate, in correspondence of the junctions between major lithospheric discontinuities. Normal faults, located at the edge of Mio-Pliocene basins, were used as preferential pathways for the rising of magmatic masses from the mantle to the surface. We used teleseismic recordings at the TOLF and MAON broad band station of the INGV seismic network (located between the Argentario promontory and Tolfa-Ceriti dome complexes -TDC-) to image the principal seismic velocity discontinuities by receiver function analysis (RF's). Together with RF’s velocity models of the area computed using the teleseismic events recorded by a temporary network of eight stations deployed around the TDC, we achieve a general crustal model of this area. The geometry of the seismic network has been defined to focus on the crustal structure beneath the TDC, trying to define the main velocity changes attributable to the intrusive bodies, the calcareous basal complex, the deep metamorphic basement, the lower crust and the Moho. The analysis of these data show the Moho at a depth of 23 km in the TDC area and 20 km in the Argentario area. Crustal models also show an unexpected velocity decrease between 12 and 18 km, consistent with a slight dropdown of the Vp/Vs ratio, imputable to a regional mid-crustal shear zone inherited from the previous alpine orogenesis, re-activated in extensional tectonic by the early opening phases of the Tyrrhenian sea. Above this low Vs layer, we find some interesting features corresponding to: - a low Vs shallow and 2 km thick layer of Liguride and Plio-Pleistocene units (z = 0-2 km of depth) - a high Vs 4-5 km thick anisotropic layer of limestones (z = 2-7 km of depth) - a very high Vs (3.8 km/s) 4 km thick layer probably corresponding to the metamorphic basement. The analysis of the geometry of the velocity changes between these layers (from the surface to the bottom of metamorphic basement), also yield evidence of crustal block tilting, due to the development of the eastern continental passive margin of the Tyrrhenian sea. The general crustal setting observed between the TDC and the Argentario areas is also consistent with the simple shear models suggested for back-arc basins opening. Comparison of RF’s TDC models with MAON station data also led to important considerations confirming the initial evolutive phase of the Tyrrhenian sea opening, in association with the first occurrences of intrusive magmatism in these areas.

  14. Curie point depth from spectral analysis of aeromagnetic data for geothermal reconnaissance in Afghanistan

    NASA Astrophysics Data System (ADS)

    Saibi, H.; Aboud, E.; Gottsmann, J.

    2015-11-01

    The geologic setting of Afghanistan has the potential to contain significant mineral, petroleum and geothermal resources. However, much of the country's potential remains unknown due to limited exploration surveys. Here, we present countrywide aeromagnetic data to estimate the Curie point depth (CPD) and to evaluate the geothermal exploration potential. CPD is an isothermal surface at which magnetic minerals lose their magnetization and as such outlines an isotherm of about 580 °C. We use spectral analysis on the aeromagnetic data to estimate the CPD spatial distribution and compare our findings with known geothermal fields in the western part of Afghanistan. The results outline four regions with geothermal potential: 1) regions of shallow Curie point depths (∼16-21 km) are located in the Helmand basin. 2) regions of intermediate depths (∼21-27 km) are located in the southern Helmand basin and the Baluchistan area. 3) Regions of great depths (∼25-35 km) are located in the Farad block. 4) Regions of greatest depths (∼35-40 km) are located in the western part of the northern Afghanistan platform. The deduced thermal structure in western Afghanistan relates to the collision of the Eurasian and Indian plates, while the shallow CPDs are related to crustal thinning. This study also shows that the geothermal systems are associated with complex magmatic and tectonic association of major intrusions and fault systems. Our results imply geothermal gradients ranging from 14 °C/km to 36 °C/km and heat-flow values ranging from 36 to 90 mW/m2 for the study area.

  15. Perspectives of the KM3NeT project

    NASA Astrophysics Data System (ADS)

    Margiotta, A.; KM3NeT Collaboration

    2016-10-01

    KM3NeT is a large distributed research infrastructure that comprises a network of deep-sea neutrino telescopes in the Mediterranean Sea with user ports for Earth and Sea sciences. The main objectives of KM3NeT are the discovery and subsequent observation of high-energy neutrino sources in the Universe (ARCA) and the determination of the mass hierarchy of neutrinos (ORCA). Technically, the network of telescopes will consist of building blocks of 115 vertical detection units anchored at the seabed and connected to shore via a deep sea electro-optical cable. Each detection unit carries 18 optical modules equipped with 31 3; photomultipliers. Two configurations for the building blocks are defined to optimally detect neutrinos in different ranges of energy. The modular technical design of the KM3NeT telescope allows for a progressive implementation and for data taking even with an incomplete detector. The first phase of implementation has started. The next phase foresees the installation of three building blocks: two building blocks, for a total instrumented volume of 1 km3 (ARCA), at the KM3NeT-It site, at a depth of 3500 m, about 100 km offshore Capo Passero, Sicily. The main scientific goals of the ARCA detector is the exploration of the neutrino sky with unprecedented resolution, searching for neutrinos coming from defined sources or sky regions, like the Galactic Plane. It will also look for diffuse high energy neutrino fluxes following the indication provided by the IceCube signal. The third building block, with a more compact distribution of the optical modules, will be deployed at the KM3NeT-Fr site, 40 km offshore Toulon at a depth of 2500 m (ORCA). The main objective of ORCA is studying the neutrino mass-hierarchy problem and exploring the low energy region of the spectrum. The status of the first phase of the KM3NeT implementation is described and a survey of the physics potentiality of the telescope is given in this contribution, with particular emphasis on the high energy studies.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 23 local earthquakes during the third quarter of FY 2010. Sixteen earthquakes were located at shallow depths (less than 4 km), five earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and two earthquakes were located at depths greater than 9 km, within the basement. Geographically, twelve earthquakes were located in known swarm areas, 3 earthquakes occurred near a geologic structure (Saddle Mountain anticline), and eight earthquakes were classified as random events. The highest magnitude event (3.0 Mc) was recorded on May 8, 2010 at depth 3.0 km with epicenter located near the Saddle Mountain anticline. Later in the quarter (May 24 and June 28) two additional earthquakes were also recorded nearly at the same location. These events are not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al; 2007). Six earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter were a continuation of the swarm events observed during the 2009 and 2010 fiscal years and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b, 2009c, 2010a, and 2010b). All events were considered minor (coda-length magnitude [Mc] less than 1.0) with a maximum depth estimated at 1.7 km. Based upon this quarters activity it is likely that the Wooded Island swarm has subsided. Pacific Northwest National Laboratory (PNNL) will continue to monitor for activity at this location.« less

  17. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002-2013

    NASA Astrophysics Data System (ADS)

    Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.

    2016-05-01

    Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.

  18. The DSeis Project: Drilling into Seismogenic zones of M2.0 to M5.5 earthquakes in South African gold mines

    NASA Astrophysics Data System (ADS)

    Yabe, Y.; Ogasawara, H.; Ito, T.; van Aswegen, G.; Durrheim, R. J.; Cichowicz, A.; Onstott, T. C.; Kieft, T. L.; Boettcher, M. S.; Wiemer, S.; Ziegler, M.; Shapiro, S. A.; Gupta, H. K.; Dight, P.

    2017-12-01

    The DSeis project under ICDP consists of drilling in three mines; MK, TT and C4 mines. Common scientific targets among them are the stress state and the microstructure in the seismogenic zone. In addition to these targets, specific targets in individual mines are detailed below. A M5.5 earthquake occurred beneath the MK mine on 5 August 2014. The hypocenter of this event was 5km depth from the surface. In contrast to the normal faulting of induced earthquakes in mining horizons (<4km depth), the M5.5 event was a strike-slip one with an N-S striking, sub-vertical nodal plane along which aftershocks aligned. Aftershocks extend up to 3.5km depth. We established a drilling site at 2.8km depth in the mine, from where two boreholes 800m-long penetrate into the areas of high and low aftershock densities. Targets of these drilling are 1) to investigate a depth variation in the stress state from the normal faulting to the strike-slip one, 2) to know what controls the spatial variation in the aftershock activity, and 3) to explore a limit of deep life that might be trapped in Archean sediments. Our site in the TT mine is 50m under the hypocenter of a M3.2 earthquake which occurred on 28 January 2017 at 3.6km depth. Although aftershock activity recorded by the seismic network operated by the mine is low, the source fault looks to extend along or parallel to a pre-existing, N-S striking fault. Three boreholes go through the fault at the hypocenter and the northern and the southern margins of the fault to compare the stress states and the microfracture distributions. Further, monitoring of microseismicity down to M -4 and geochemistry is planned to evaluate how much is a ratio of microseismicity associated with creation of new fractures. In the C4 mine, there was the site of a previous project, in which the microseismicity monitoring and the stress measurement by the CCBO technique were carried out. A M2.8 earthquake occurred 1 year after the CCBO and its hypocenter was only 100m away from the CCBO site. Due to little mining activity in the source region, the stress state just after the M2.8 event should be preserved. We will measure the stress again. Damage zones that evolved quasi-statically were seen by the microseismicity monitoring. Drilling into these zones would provide a clue to see a difference between faults evolved dynamically and quasi-statically.

  19. Variations in Melt Generation and Migration along the Aleutian Arc (Invited)

    NASA Astrophysics Data System (ADS)

    Plank, T. A.; Van Keken, P. E.

    2013-12-01

    The generation and ascent of mantle melt beneath volcanic arcs sets the course for how magmas differentiate to form the continental crust and erupt explosively from volcanoes. Although the basic framework of melting at subduction zones is understood to involve the convective influx of hot mantle (Tp ≥ 1300°C) and advective transport of water-rich fluids from the subducting slab, the P-T paths that melts follow during melt generation and migration are still not well known. The Aleutian Arc provides an opportunity to explore the conditions of mantle melting in the context of volcanoes that span an unusually large range in the depth to the slab, from Seguam island, with among the shallowest depths to the slab worldwide (~65 km, [1]) to Bogoslof island, behind the main volcanic front and twice the depth to the slab (~130 km). Here we combine thermal models tuned to Aleutian subduction parameters [after 2] with petrological estimates of the T and P of mantle-melt equilibration, using a major element geothermometer [3] and estimates of H2O and fO2 from olivine-hosted melt inclusion measurements [4] for basaltic magmas from 6 volcanoes in the central Aleutians (Korovin, Seguam, Bogoslof, Pakushin, Akutan, Shishaldin). We find mantle-melt equilibration conditions to vary systematically as a function of the depth to the slab, from 30 km and 1220°C (for Seguam) to 60 km and 1300°C (for Bogoslof). Such shallow depths, which extend up to the Moho, define a region perched well above the hot core of the mantle wedge predicted from thermal models, even considering the shallow depths of slab-mantle coupling (< 60 km) required to supply hot mantle beneath Seguam. Thus, even though the greatest melt production will occur in the hot core of the wedge (50-100 km depth), melts apparently ascend and re-equilibrate in the shallowest mantle. Volcanoes that overlie the greatest depth to the slab, and lie furthest from the wedge corner, stall at greater depths (~60 km), at the base of the conductive upper plate (i.e., lithosphere). The conductive lid and isotherms shallow toward the wedge corner. This leads to shallower depths of melt equilibration at shallower depths to the slab. A second effect is infiltration of melt into the thinning lithosphere, likely due to the increase in strain-rate toward the wedge corner, which favors melt segregation, migration, and shallow equilibration [5]. Such a process is developed most beneath Seguam, where melts collect at the Moho (~ 30km), but are still > 1200°C. Such equilibration depths in the uppermost mantle (30-60 km) and temperatures typical of the base of the conductive lid appear to characterize most modeled primary arc magmas [6], and point to a final re-setting point in the mantle that controls the composition of bulk arc crust. [1] Syracuse & Abers, 2006, G3. [2] Syracuse, van Keken, Abers, (2010) PEPI. [3] Lee, Luffi, Plank, Dalton, Leeman (2009) EPSL. [4] Zimmer et al. (2010) J.Pet. [5] Holzman & Kendall (2010). [6] Ruscitto et al. (2012) G3.

  20. Carbonate clumped-isotope constraints on the burial and exhumation history of the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Ryb, U.; Lloyd, M. K.; Eiler, J. M.

    2016-12-01

    Reconstruction of the thermal history of rocks is key to study the geodynamic evolution of sedimentary basins. Carbonate clumped-isotope measurements of minerals formed or re-equilibrated at elevated temperatures can constrain thermal histories of rocks. Experimental constraints on solid state isotopic reordering in carbonates let us translate clumped-isotope measurements into quantitative statements about the thermal history, and thus burial and exhumation. We use this approach to constrain peak burial temperatures of Paleozoic rocks across the Colorado Plateau, sampled carbonate rocks from the southwestern Plateau margin and from borehole cores in the Plateau interior. We sub-sampled specific fabrics (fossils, cements, etc.), determined their calcite and dolomite proportions using XRD, and analyzed clumped-isotope compositions (reported as apparent temperatures using Stolper and Eiler's (2015) calibration) for pure calcite or dolomite samples (>97 wt.%). At the Plateau margin, calcite and dolomite apparent temperatures are 49-79°C and 67-97°C, respectively. The maximum apparent temperature constrains the minimum peak burial temperature. The distribution of calcite apparent temperatures independently constrains the maximum burial temperature as follows: If the "coldest" sample had an initial apparent temperature of 20°C, then its observed value can be explained by isotopic reordering to a peak temperature of 105-120°C. We therefore hypothesize peak temperature at the base of the Paleozoic was 97-120°C. At the Plateau interior, apparent temperatures of Mississippian calcite samples are depth-dependent: Samples cored from <2km depth have apparent temperatures of 54-68°C; similar samples from 3km depth have apparent temperatures of 105-165°C and a smaller variability between sub-samples, interpreted to result from isotopic reordering at >150°C. Assuming a surface temperature of 20°C and a thermal gradient of 25°C km-1, we calculate total overburden (above the Mississippian) and exhumation of 2.7-3.7 km and 1.8-2.8 km, respectively, at the Plateau margin; and total overburden and exhumation of 5.8-6.6 km, and 3-3.8 km, respectively, at the Plateau interior. Our findings are consistent with peak burial estimates based on thermochronometry and other proxies.

  1. Do it yourself remote sensing: Generating an inexpensive, high tech, real science lake mapping project for the classroom

    NASA Technical Reports Server (NTRS)

    Metzger, Stephen M.

    1993-01-01

    The utilization of modest equipment and software revealed bottom contours and water column conditions of a dynamic water body. Classroom discussions of field techniques and equipment capabilities followed by exercises with the data sets in cause-and-effect analysis all contributed to participatory education in the process of science. This project is presented as a case study of the value of engaging secondary and collegiate level students in planning, executing and appraising a real world investigation which they can directly relate to. A 1 km wide bay, experiencing marsh inflow, along an 8 km long lake situated 120 km north of Ottawa, Canada, on the glaciated Canadian Precambrian Shield was mapped in midsummer for submerged topography, bottom composition, temperature profile, turbudity, dissolved oxygen and biota distribution. Low level aerial photographs scanned into image processing software are permitting spatial classification of bottom variations in biology and geology. Instrumentation consisted of a portable sport fishing SONAR depth finder, an electronic lead line multiprobe with photocell, thermistor and dissolved oxygen sensors, a selective depth water sampler, portable pH meter, an underwater camera mounted on a home-made platform with a bottom-contact trigger and a disposable underwater camera for shallow survey work. Sampling transects were referenced using a Brunton hand transit triangulating several shore markers.

  2. Rupture distribution of the 1977 western Argentina earthquake

    USGS Publications Warehouse

    Langer, C.J.; Hartzell, S.

    1996-01-01

    Teleseismic P and SH body waves are used in a finite-fault, waveform inversion for the rupture history of the 23 November 1977 western Argentina earthquake. This double event consists of a smaller foreshock (M0 = 5.3 ?? 1026 dyn-cm) followed about 20 s later by a larger main shock (M0 = 1.5 ?? 1027 dyn-cm). Our analysis indicates that these two events occurred on different fault segments: with the foreshock having a strike, dip, and average rake of 345??, 45??E, and 50??, and the main shock 10??, 45??E, and 80??, respectively. The foreshock initiated at a depth of 17 km and propagated updip and to the north. The main shock initiated at the southern end of the foreshock zone at a depth of 25 to 30 km, and propagated updip and unilaterally to the south. The north-south separation of the centroids of the moment release for the foreshock and main shock is about 60 km. The apparent triggering of the main shock by the foreshock is similar to other earthquakes that have involved the failure of multiple fault segments, such as the 1992 Landers, California, earthquake. Such occurrences argue against the use of individual, mapped, surface fault or fault-segment lengths in the determination of the size and frequency of future earthquakes.

  3. Two-dimensional basement modeling of central loop transient electromagnetic data from the central Azraq basin area, Jordan

    NASA Astrophysics Data System (ADS)

    Yogeshwar, P.; Tezkan, B.

    2017-01-01

    Thick sedimentary sequences are deposited in the central area of the Azraq basin in Jordan consisting mostly of hyper-saline clay and various evaporates. These sediment successions form the 10 km × 10 km large Azraq mudflat and are promising archives for a palaeoclimatical reconstruction. Besides palaeoclimatical research, the Azraq area is of tremendous importance to Jordan due to groundwater and mineral resources. The heavy exploitation of groundwater has lead to a drastic decline of the water table and drying out of the former Azraq Oasis. Two 7 and 5 km long transects were investigated from the periphery of the mudflat across its center using a total of 150 central loop transient electromagnetic (TEM) soundings. The scope of the survey was to detect the thickness of sedimentary deposits along both transects and to provide a basis for future drilling activities. We derive a two-dimensional model which can explain the TEM data for all soundings along each profile simultaneously. Previously uncertain depths of geological boundaries were determined along both transects. Particularly the thickness of the deposited mudflat sediments was identified and ranges from 40 m towards the periphery down to approximately 130 m at the deepest location. Besides that, the depth and lateral extent of a buried basalt layer was identified. In the basin center the groundwater is hyper-saline. The lateral extent of the saline water body was determined precisely along both transects. In order to investigate the detectability of the basement below the high conductive mudflat sediments an elaborate two-dimensional modeling study was performed. Both, the resistivity and depth of the basement were varied systematically. The basement resistivity cannot be determined precisely in most zones and may range roughly between 1 and 100 Ωm without deteriorating the misfit. In contrast to that, the depth down to the basement is detected accurately in most zones and along both transects. Varying the depth of the basement or removing it completely results in a poor data fitting and, therefore, proves its significance. From the modeling study we derived bounds for the resistivity and depth of the base layer as a measure of their uncertainty.

  4. Estimating crustal thickness using SsPmp in regions covered by low-velocity sediments: Imaging the Moho beneath the Southeastern Suture of the Appalachian Margin Experiment (SESAME) array, SE Atlantic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Parker, E. Horry, Jr.; Hawman, Robert B.; Fischer, Karen M.; Wagner, Lara S.

    2016-09-01

    Deconvolved waveforms for two earthquakes (Mw: 6.0 and 5.8) show clear postcritical SsPmp arrivals for broadband stations deployed across the coastal plain of Georgia, allowing mapping of crustal thickness in spite of strong reverberations generated by low-velocity sediments. Precritical SsPmp arrivals are also identified. For a basement in which velocity increases linearly with depth, a bootstrapped grid search suggests an average basement velocity of 6.5 ± 0.1 km/s and basement thickness of 29.8 ± 2.0 km. Corresponding normal-incidence Moho two-way times (including sediments) are 10.6 ± 0.6 s, consistent with times for events interpreted as Moho reflections on coincident active-source reflection profiles. Modeling of an underplated mafic layer (Vp = 7.2-7.4 km/s) using travel time constraints from SsPmp data and vertical-incidence Moho reflection times yields a total basement thickness of 30-35 km and average basement velocity of 6.35-6.65 km/s for an underplate thickness of 0-15 km.

  5. Spin and valence dependence of iron partitioning in Earth’s deep mantle

    PubMed Central

    Piet, Hélène; Badro, James; Nabiei, Farhang; Dennenwaldt, Teresa; Shim, Sang-Heon; Cantoni, Marco; Hébert, Cécile; Gillet, Philippe

    2016-01-01

    We performed laser-heated diamond anvil cell experiments combined with state-of-the-art electron microanalysis (focused ion beam and aberration-corrected transmission electron microscopy) to study the distribution and valence of iron in Earth’s lower mantle as a function of depth and composition. Our data reconcile the apparently discrepant existing dataset, by clarifying the effects of spin (high/low) and valence (ferrous/ferric) states on iron partitioning in the deep mantle. In aluminum-bearing compositions relevant to Earth’s mantle, iron concentration in silicates drops above 70 GPa before increasing up to 110 GPa with a minimum at 85 GPa; it then dramatically drops in the postperovskite stability field above 116 GPa. This compositional variation should strengthen the lowermost mantle between 1,800 km depth and 2,000 km depth, and weaken it between 2,000 km depth and the D” layer. The succession of layers could dynamically decouple the mantle above 2,000 km from the lowermost mantle, and provide a rheological basis for the stabilization and nonentrainment of large low-shear-velocity provinces below that depth. PMID:27647917

  6. Confirmation of a change in the global shear velocity pattern at around 1000 km depth

    NASA Astrophysics Data System (ADS)

    Durand, S.; Debayle, E.; Ricard, Y.; Zaroli, C.; Lambotte, S.

    2017-12-01

    In this study, we confirm the existence of a change in the shear velocity spectrum around 1000 km depth based on a new shear velocity tomographic model of the Earth's mantle, SEISGLOB2. This model is based on Rayleigh surface wave phase velocities, self- and cross-coupling structure coefficients of spheroidal normal modes and body wave traveltimes which are, for the first time, combined in a tomographic inversion. SEISGLOB2 is developed up to spherical harmonic degree 40 and in 21 radial spline functions. The spectrum of SEISGLOB2 is the flattest (i.e. richest in 'short' wavelengths corresponding to spherical harmonic degrees greater than 10) around 1000 km depth and this flattening occurs between 670 and 1500 km depth. We also confirm various changes in the continuity of slabs and mantle plumes all around 1000 km depth where we also observed the upper boundary of Large Low Shear Velocity Provinces. The existence of a flatter spectrum, richer in short-wavelength heterogeneities, in a region of the mid-mantle can have great impacts on our understanding of the mantle dynamics and should thus be better understood in the future. Although a viscosity increase, a phase change or a compositional change can all concur to induce this change of pattern, its precise origin is still very uncertain.

  7. A global reference model of Moho depths based on WGM2012

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Li, C.

    2017-12-01

    The crust-mantle boundary (Moho discontinuity) represents the largest density contrast in the lithosphere, which can be detected by Bouguer gravity anomaly. We present our recent inversion of global Moho depths from World Gravity Map 2012. Because oceanic lithospheres increase in density as they cool, we perform thermal correction based on the plate cooling model. We adopt a temperature Tm=1300°C at the bottom of lithosphere. The plate thickness is tested by varying by 5 km from 90 to 140 km, and taken as 130 km that gives a best-fit crustal thickness constrained by seismic crustal thickness profiles. We obtain the residual Bouguer gravity anomalies by subtracting the thermal correction from WGM2012, and then estimate Moho depths based on the Parker-Oldenburg algorithm. Taking the global model Crust1.0 as a priori constraint, we adopt Moho density contrasts of 0.43 and 0.4 g/cm3 , and initial mean Moho depths of 37 and 20 km in the continental and oceanic domains, respectively. The number of iterations in the inversion is set to be 150, which is large enough to obtain an error lower than a pre-assigned convergence criterion. The estimated Moho depths range between 0 76 km, and are averaged at 36 and 15 km in continental and oceanic domain, respectively. Our results correlate very well with Crust1.0 with differences mostly within ±5.0 km. Compared to the low resolution of Crust1.0 in oceanic domain, our results have a much larger depth range reflecting diverse structures such as ridges, seamounts, volcanic chains and subduction zones. Base on this model, we find that young(<5 Ma) oceanic crust thicknesses show dependence on spreading rates: (1) From ultraslow (<4mm/yr) to slow (4 45mm/yr) spreading ridges, the thicknesses increase dramatically; (2)From slow to fast (45 95mm/yr) spreading ridges , the thickness decreases slightly; (3) For the super-fast ridges (>95mm/yr) we observe relatively thicker crust. Conductive cooling of lithosphere may constrain the melting of the mantle at ultraslow spreading centers. Lower mantle temperatures indicated by deeper Curie depths at slow and fast spreading ridges may decrease the volume of magmatism and crustal thickness. This new global model of gravity-derived Moho depth, combined with geochemical and Curie point depth, can be used to investigate thermal evolution of lithosphere.

  8. Elasticity of superhydrous phase B at the mantle temperature and pressure: Implications for 800-km discontinuity and water flow into lower mantle

    NASA Astrophysics Data System (ADS)

    Yang, D.; Wang, W.; Wu, Z.

    2017-12-01

    Plate subduction can transport the water to the Earth's interior by forming hydrous phases and water can exert important effects on global dynamics and many processes within the deep Earth. Superhydrous phase B (ShyB), as an important candidate for transporting water into the mantle transition zone and lower mantle, is stable up to 31 GPa and will decompose into bridgmanite, periclase and water at a depth of 800 km [Komabayashi and Omori, 2006]. The decomposition of ShyB may be related to the seismic discontinuity at the depth of 800 km in Western-Pacific Subduction Zones [Liu et al., 2016; Porritt and Yoshioka, 2016]. The detail discussions on this topic require the elasticity of ShyB at the P-T conditions of the transition zone and lower mantle. In this contribution, we obtained the thermal elasticity of ShyB using first-principles calculations. ShyB shows a very low velocity and density compared to the bridgmanite and periclase, the major minerals in the lower mantle. The accumulation of ShyB will generate the low-velocity anomaly in the uppermost lower mantle. The dehydration of ShyB will cause the Vp, Vs, and density increase by 7.5%, 15.0% and 12%, respectively. It means that a slab with 10% ShyB could cause an impedance contrast of 2.7% at a depth of 800 km for shear wave. Furthermore, the released waters by the dehydration of ShyB probably migrate upward and promote the partial melt to reduce the sound velocity at shallower depth, which can further explain the low-velocity zones just above 800-km discontinuity in Western-Pacific Subduction Zones [Liu et al., 2016]. Komabayashi, T., and S. Omori (2006), Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35GPa, 1600°C: Implications for water circulation in the Earth's deep mantle, Physics of the Earth and Planetary Interiors, 156(1-2), 89-107. Liu, Z., J. Park, and S. I. Karato (2016), Seismological detection of low-velocity anomalies surrounding the mantle transition zone in Japan subduction zone, Geophysical Research Letters, 43(6), 2480-2487. Porritt, R. W., and S. Yoshioka (2016), Slab pileup in the mantle transition zone and the 30 May 2015 Chichi-jima earthquake, Geophysical Research Letters, 43(10), 4905-4912.

  9. The Transition from Complex Crater to Peak-Ring Basin on the Moon: New Observations from the Lunar Orbiter Laser Altimeter (LOLA) Instrument

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.; Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.

    2012-01-01

    Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.

  10. A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling

    USGS Publications Warehouse

    Wang, Chun-Yong; Zeng, Rong-Sheng; Mooney, W.D.; Hacker, B.R.

    2000-01-01

    We present a new crustal cross section through the east-west trending ultrahigh-pressure (UHP) Dabie Shan orogenic belt, east central China, based on a 400-km-long seismic refraction profile. Data from our profile reveal that the cratonal blocks north and south of the orogen are composed of 35-km-thick crust consisting of three layers (upper, middle, and lower crust) with average seismic velocities of 6.0±0.2 km/s, 6.5±0.1 km/s, and 6.8±0.1 km/s. The crust reaches a maximum thickness of 41.5 km beneath the northern margin of the orogen, and thus the present-day root beneath the orogen is only 6.5 km thick. The upper mantle velocity is 8.0±0.1 km/s. Modeling of shear wave data indicate that Poisson's ratio increases from 0.24±0.02 in the upper crust to 0.27±0.03 in the lower crust. This result is consistent with a dominantly felsic upper crustal composition and a mafic lower crustal composition within the amphibolite or granulite metamorphic facies. Our seismic model indicates that eclogite, which is abundant in surface exposures within the orogen, is not a volumetrically significant component in the middle or lower crust. Much of the Triassic structure associated with the formation of the UHP rocks of the Dabie Shan has been obscured by post-Triassic igneous activity, extension and large-offset strike-slip faulting. Nevertheless, we can identify a high-velocity (6.3 km/s) zone in the upper (<5 km depth) crustal core of the orogen which we interpret as a zone of ultrahigh-pressure rocks, a north dipping suture, and an apparent Moho offset that marks a likely active strike-slip fault.

  11. Array analyses of SmKS waves and the stratification of Earth's outermost core

    NASA Astrophysics Data System (ADS)

    Kaneshima, Satoshi

    2018-03-01

    We perform array analyses of SmKS waves in order to investigate the Vp structure of the Earth's outermost core. For earthquakes recorded by broadband seismometer networks in the world, we measure differential travel times between S3KS and S2KS, between S4KS and S3KS, and between S5KS and S3KS by array techniques. The differential times are well fit by a Vp model of the Earth's outermost core, KHOMC (Kaneshima and Helffrich, 2013). Differential slownesses of S4KS and S2KS relative to S2KS are also measured for the highest quality data. The measured slownesses, with unique sensitivity to the outer core 200-400 km below the CMB, are matched by KHOMC. These observations consolidate the evidence for the presence at the top of the outer core of a layer that has a distinctively steeper Vp gradient than the bulk of the outer core. We invert new SmKS differential time data set by a tau-p method and attempt to refine the Vp profile of KHOMC. The essential features of KHOMC are preserved after the model refinement. However, the newly estimated layer thickness is nearly 450 km, which is thicker than that of KHOMC. The Vp anomalies relative to PREM for the depths 400-800 km below the CMB are less than 0.03 km/s, consistent with the degree of agreement between different Vp models for the depth range.

  12. Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China

    NASA Astrophysics Data System (ADS)

    Bai, Denghai; Meju, Maxwell A.; Liao, Zhijie

    2001-12-01

    Broadband (0.004-4096s) magnetotelluric (MT) soundings have been applied to the determination of the deep structure across the Rehai geothermal field in a Quaternary volcanic area near the Indo-Eurasian collisional margin. Tensorial analysis of the data show evidence of weak to strong 3-D effects but for approximate 2-D imaging, we obtained dual-mode MT responses for an assumed strike direction coincident with the trend of the regional-scale faults and with the principal impedance azimuth at long periods. The data were subsequently inverted using different approaches. The rapid relaxation inversion models are comparable to the sections constructed from depth-converted invariant impedance phase data. The results from full-domain 2-D conjugate-gradient inversion with different initial models are concordant and evoke a picture of a dome-like structure consisting of a conductive (<10 Ωm) core zone, c . 2km wide, and a resistive (>50-1000 Ωm) cap which is about 5-6km thick in the central part of the known geothermal field and thickens outwards to about 15-20km. The anomalous structure rests on a mid-crustal zone of 20-30 Ωm resistivity extending down to about 25km depth where there appears to be a moderately resistive (>30 Ωm) substratum. The MT images are shown to be in accord with published geological, isotopic and geochemical results that suggested the presence of a magma body underneath the area of study.

  13. Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging

    USGS Publications Warehouse

    Bleibinhaus, F.; Hole, J.A.; Ryberg, T.; Fuis, G.S.

    2007-01-01

    A seismic reflection and refraction survey across the San Andreas Fault (SAF) near Parkfield provides a detailed characterization of crustal structure across the location of the San Andreas Fault Observatory at Depth (SAFOD). Steep-dip prestack migration and frequency domain acoustic waveform tomography were applied to obtain highly resolved images of the upper 5 km of the crust for 15 km on either side of the SAF. The resulting velocity model constrains the top of the Salinian granite with great detail. Steep-dip reflection seismic images show several strong-amplitude vertical reflectors in the uppermost crust near SAFOD that define an ???2-km-wide zone comprising the main SAF and two or more local faults. Another prominent subvertical reflector at 2-4 km depth ???9 km to the northeast of the SAF marks the boundary between the Franciscan terrane and the Great Valley Sequence. A deep seismic section of low resolution shows several reflectors in the Salinian crust west of the SAF. Two horizontal reflectors around 10 km depth correlate with strains of seismicity observed along-strike of the SAF. They represent midcrustal shear zones partially decoupling the ductile lower crust from the brittle upper crust. The deepest reflections from ???25 km depth are interpreted as crust-mantle boundary. Copyright 2007 by the American Geophysical Union.

  14. Imaging crust and mantle discontinuities across tectonic boundaries in North America with Sp receiver functions

    NASA Astrophysics Data System (ADS)

    Fischer, Karen M.; Hopper, Emily

    2015-04-01

    When broadband stations are spaced at ~70 km or less, as with the EarthScope Transportable Array in North America, common conversion point stacking of Sp receiver functions is capable of continuous three-dimensional imaging of velocity gradients at shallow mantle depths, provided that the gradients are localized over ~30 km or less. In the tectonically active western United States, Sp common conversion points stacks reveal a strong and coherent negative velocity gradient (velocity drop with increasing depth) that falls within the transition from high velocity lithosphere to low velocity asthenosphere seen in surface wave tomography. This negative velocity gradient is interpretable as the seismological lithosphere-asthenosphere boundary. Its depth varies significantly across certain tectonic boundaries at horizontal length scales of less than ~75 km, consistent with a rheologically strong mantle lithosphere in which strain can localize. When station spacing is sufficiently dense (~5 km) coherent imaging of discontinuities in the upper and lower crust is possible, even for Sp phases with dominant periods close to 10 s. With data from the 85 broadband stations of the SESAME array in the southeastern United States (an EarthScope Flexible Array experiment) and adjacent Transportable Array and permanent stations, common conversion point stacking of Sp phases resolves strong velocity gradients in the upper and lower crust that are continuous over hundreds of horizontal kilometers. Across the Suwannee suture (the northern edge of the Gondwanan or peri-Gondwanan Suwannee lithosphere that accreted to Laurentia in the last stages of the Appalachian orogeny) a strong positive velocity discontinuity dips southward from the surface expression of the suture to depths of 25-30 km. Modeling with common conversion point stacks of synthetic Sp phases demonstrates that Sp data can resolve the dipping discontinuity, despite the presence of sediment-filled Mesozoic rift basins and younger sedimentary cover. We interpret the dipping discontinuity as the contact between Suwannee crust and the crust of either Laurentia or previously accreted peri-Gondwanan terranes. The positive sign of the discontinuity could represent an increase in isotropic velocity between the Suwannee crust and the crust to which it accreted, or it could correspond to the base of a strongly foliated radially anisotropic crustal shear zone. In contrast to the more steeply-dipping suture previously inferred from COCORP reflection profiles, the positive discontinuity imaged by the Sp data dips southward at an angle of less than 10˚. This geometry implies that Suwannee crust overthrust the continental margin by more than 300 km and that the final assembly of Pangea in this region included significant convergence.

  15. Evidence of a possible NNE-trending fault zone in the Summerville, South Carolina, area from shallow seismic reflection surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marple, R.T.; Talwani, P.

    1994-03-01

    Five high-resolution seismic-reflection surveys trending approximately WNW-ESE and totaling about 31 km were acquired in the Summerville, South Carolina, area. The surveys trend across the postulated Woodstock fault zone. These newly acquired data together with earlier data revealed the existence of an [approximately]50-km-long feature associated with gentle warping of the shallow sediments that lies along a recently described zone of river anomalies (ZRA). The first ([approximately]5.9-km-long) seismic reflection profile located about 14 km NNE of Summerville revealed that the J reflector (basalt) at about 670 m depth is offset about 30--40 m with the west side up. The overlying sedimentsmore » displayed upwarping rather than brittle offset. A second ([approximately]6.7-km-long) survey located along interstate Highway 26 revealed as much as 30--40 m of upwarping of the sediments above about 450 m depth. A third ([approximately]7.3-km-long) profile acquired through the town of Summerville revealed four, [approximately]200--300 m wide, nearly vertical zones in which the reflectors are noncoherent. Away from these zones the reflectors are relatively flat and are slightly higher on the west side of each zone. The fourth (3-km-long) survey was located about 5 km SW of Middleton Gardens and indicated minor faulting at about 500 m depth. The fifth ([approximately]6.4-km-long) seismic survey acquired just north of Ravenel revealed an [approximately]0.5-km-wide zone in which the reflectors in the top 350 m displayed as much as 20 m of upwarping. On all the surveys, except for the first, the basalt was at too great a depth to be resolved.« less

  16. Deep crustal melt plumbing of Bárðarbunga volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Hudson, T. S.; White, R. S.; Greenfield, T.; Ágústsdóttir, T.; Brisbourne, A.; Green, R. G.

    2017-09-01

    Understanding magmatic plumbing within the Earth's crust is important for understanding volcanic systems and improving eruption forecasting. We discuss magma plumbing under Bárðarbunga volcano, Iceland, over a 4 year period encompassing the largest Icelandic eruption in 230 years. Microseismicity extends through the usually ductile region of the Earth's crust, from 7 to 22 km depth in a subvertical column. Moment tensor solutions for an example earthquake exhibits opening tensile crack behavior. This is consistent with the deep (>7 km) seismicity being caused by the movement of melt in the normally aseismic crust. The seismically inferred melt path from the mantle source is offset laterally from the center of the Bárðarbunga caldera by 12 km, rather than lying directly beneath it. It is likely that an aseismic melt feed also exists directly beneath the caldera and is aseismic due to elevated temperatures and pervasive partial melt under the caldera.

  17. “FRIED EGG”: AN OCEANIC IMPACT CRATER IN THE MID-ATLANTIC?

    NASA Astrophysics Data System (ADS)

    Dias, F. C.; Lourenco, N.; Lobo, A.; Santos de Campos, A.; Pinto de Abreu, M.

    2009-12-01

    Analysis of a multibeam echosounder hydrographic survey performed in the Southern Azores Platform under the scope of the Portuguese Continental Shelf Project has revealed a large scale bathymetric structure nicknamed “Fried Egg” due to its well defined morphology. Laying at about 2km depth, this structure consists of a roughly circular 6km wide depression 110m below the surrounding ocean bottom, with a circular dome shaped central uplift 3km in diameter and with a base to top height of 300m. The associated backscatter signal presents a distinctive ring-like signature corresponding to the lower flank section of the dome, suggesting the outcrop of hard rock material. The remaining backscatter signal seems to correspond to widespread sediments. No lava flows are apparent either within the structure or on its surroundings. All these properties are compatible with the record of terrestrial impact craters, thus making of “Fried Egg” a potential oceanic impact crater.

  18. Limited role for thermal erosion by turbulent lava in proximal Athabasca Valles, Mars

    PubMed Central

    Cataldo, Vincenzo; Williams, David A.; Dundas, Colin M.; Keszthelyi, Laszlo P.

    2017-01-01

    The Athabasca Valles flood lava is among the most recent (<50 Ma) and best preserved effusive lava flows on Mars and was probably emplaced turbulently. The Williams et al. [2005] model of thermal erosion by lava has been applied to what we term “proximal Athabasca,” the 75 km long upstream portion of Athabasca Valles. For emplacement volumes of 5000 and 7500 km3 and average flow thicknesses of 20 and 30 m, the duration of the eruption varies between ~11 and ~37 days. The erosion of the lava flow substrate is investigated for three eruption temperatures (1270°C, 1260°C, and 1250°C), and volatile contents equivalent to 0–65 vol% bubbles. The largest erosion depths of ~3.8–7.5 m are at the lava source, for 20 m thick and bubble-free flows that erupted at their liquidus temperature (1270°C). A substrate containing 25 vol% ice leads to maximum erosion. A lava temperature 20°C below liquidus reduces erosion depths by a factor of ~2.2. If flow viscosity increases with increasing bubble content in the lava, the presence of 30–50 vol % bubbles leads to erosion depths lower than those relative to bubble-free lava by a factor of ~2.4. The presence of 25 vol % ice in the substrate increases erosion depths by a factor of 1.3. Nevertheless, modeled erosion depths, consistent with the emplacement volume and flow duration constraints, are far less than the depth of the channel (~35–100 m). We conclude that thermal erosion does not appear to have had a major role in excavating Athabasca Valles. PMID:29082120

  19. Limited role for thermal erosion by turbulent lava in proximal Athabasca Valles, Mars

    USGS Publications Warehouse

    Cataldo, Vincenzo; Williams, David A.; Dundas, Colin M.; Kestay, Laszlo P.

    2015-01-01

    The Athabasca Valles flood lava is among the most recent (<50 Ma) and best preserved effusive lava flows on Mars and was probably emplaced turbulently. The Williams et al. (2005) model of thermal erosion by lava has been applied to what we term “proximal Athabasca,” the 75 km long upstream portion of Athabasca Valles. For emplacement volumes of 5000 and 7500 km3and average flow thicknesses of 20 and 30 m, the duration of the eruption varies between ~11 and ~37 days. The erosion of the lava flow substrate is investigated for three eruption temperatures (1270°C, 1260°C, and 1250°C), and volatile contents equivalent to 0–65 vol % bubbles. The largest erosion depths of ~3.8–7.5 m are at the lava source, for 20 m thick and bubble-free flows that erupted at their liquidus temperature (1270°C). A substrate containing 25 vol % ice leads to maximum erosion. A lava temperature 20°C below liquidus reduces erosion depths by a factor of ~2.2. If flow viscosity increases with increasing bubble content in the lava, the presence of 30–50 vol % bubbles leads to erosion depths lower than those relative to bubble-free lava by a factor of ~2.4. The presence of 25 vol % ice in the substrate increases erosion depths by a factor of 1.3. Nevertheless, modeled erosion depths, consistent with the emplacement volume and flow duration constraints, are far less than the depth of the channel (~35–100 m). We conclude that thermal erosion does not appear to have had a major role in excavating Athabasca Valles.

  20. Constraining the slip distribution and fault geometry of the Mw 7.9, 3 November 2002, Denali fault earthquake with Interferometric Synthetic Aperture Radar and Global Positioning System data

    USGS Publications Warehouse

    Wright, Tim J.; Lu, Z.; Wicks, Charles

    2004-01-01

    The Mw 7.9, Denali fault earthquake (DFE) is the largest continental strike-slip earthquake to occur since the development of Interferometric Synthetic Aperture Radar (InSAR). We use five interferograms, constructed using radar images from the Canadian Radarsat-1 satellite, to map the surface deformation at the western end of the fault rupture. Additional geodetic data are provided by displacements observed at 40 campaign and continuous Global Positioning System (GPS) sites. We use the data to determine the geometry of the Susitna Glacier fault, thrusting on which initiated the DFE, and to determine a slip model for the entire event that is consistent with both the InSAR and GPS data. We find there was an average of 7.3 ± 0.4 m slip on the Susitna Glacier fault, between 1 and 9.5 km depth on a 29 km long fault that dips north at 41 ± 0.7° and has a surface projection close to the mapped rupture. On the Denali fault, a simple model with large slip patches finds a maximum of 8.7 ± 0.7 m of slip between the surface and 14.3 ± 0.2 km depth. A more complex distributed slip model finds a peak of 12.5 ± 0.8 m in the upper 4 km, significantly higher than the observed surface slip. We estimate a geodetic moment of 670 ± 10 × 1018 N m (Mw 7.9), consistent with seismic estimates. Lack of preseismic data resulted in an absence of InSAR coverage for the eastern half of the DFE rupture. A dedicated geodetic InSAR mission could obviate coverage problems in the future.

  1. Determination of Mantle Discontinuity Depths beneath the South Pacific Superswell As Inferred Using Data From Broadband OBS Array

    NASA Astrophysics Data System (ADS)

    Suetsugu, D.; Shiobara, H.; Sugioka, H.; Kanazawa, T.; Fukao, Y.

    2005-12-01

    We determined depths of the mantle discontinuities (the 410-km and 660-km discontinuities) beneath the South Pacific Superswell using waveform data from broadband ocean bottom seismograph (BBOBS) array to image presumed mantle plumes and their temperature anomalies. Seismic structure beneath this region had not previously been well explored in spite of its significance for mantle dynamics. The region is characterized by a topographic high of more than 680 m (Adam and Bonneville, 2005), a concentration of hotspot chains (e.g., Society, Cook-Austral, Marquesas, and Pitcairn) whose volcanic rocks have isotopic characteristics suggesting deep mantle origin, and a broad low velocity anomaly in the lower mantle revealed by seismic tomography. These observations suggest the presence of a whole-mantle scale upwelling beneath the region, which is called a 'superplume' (McNutt, 1998). However, the seismic structure has been only poorly resolved so far and the maximum depth of anomalous material beneath the hotspots has not yet been determined, mainly due to the sparseness of seismic stations in the region. To improve the seismic coverage, we deployed an array of 10 BBOBS over the French Polynesia area from 2003 to 2005. The BBOBS has been developed by Earthquake Research Institute of University of Tokyo and are equipped with the broadband CMG-3T/EBB sensor. The observation was conducted as a Japan-France cooperative project (Suetsugu et al., 2005, submitted to EOS). We computed receiver functions from the BBOBS data to detect Ps waves from the mantle discontinuities. The Velocity Spectrum Stacking method (Gurrola et al., 1994) were employed to enhance the Ps waves for determination of the discontinuity depths, in which receiver functions were stacked in a depth-velocity space. The Ps-waves from the mantle discontinuities were successfully detected at the most of the BBOBS stations, from which the discontinuity depths were determined with the Iasp91 velocity model. The 410-km discontinuity depths were estimated to be 403-431 km over the Superswell region, which are not substantially different from the global average considering the estimation error of 10 km. The 660-km discontinuity depths were also determined to be 654-674 km, close to the global average, at most of the stations. Data from a station near the Society hot spot, however, provide an anomalously shallow depth of 623 km, indicating a presence of a local hot anomaly at the bottom of the mantle transition zone beneath near the Society hot spot. Taking into consideration a possible effect of velocity anomalies on the depth estimation, the shallow anomaly is significant. The present result suggests that the thermal anomalies are not obvious in the Superswell-scale, but present locally beneath the Society hot spot.

  2. Fault creep rates of the Chaman fault (Afghanistan and Pakistan) inferred from InSAR

    NASA Astrophysics Data System (ADS)

    Barnhart, William D.

    2017-01-01

    The Chaman fault is the major strike-slip structural boundary between the India and Eurasia plates. Despite sinistral slip rates similar to the North America-Pacific plate boundary, no major (>M7) earthquakes have been documented along the Chaman fault, indicating that the fault either creeps aseismically or is at a late stage in its seismic cycle. Recent work with remotely sensed interferometric synthetic aperture radar (InSAR) time series documented a heterogeneous distribution of fault creep and interseismic coupling along the entire length of the Chaman fault, including an 125 km long creeping segment and an 95 km long locked segment within the region documented in this study. Here I present additional InSAR time series results from the Envisat and ALOS radar missions spanning the southern and central Chaman fault in an effort to constrain the locking depth, dip, and slip direction of the Chaman fault. I find that the fault deviates little from a vertical geometry and accommodates little to no fault-normal displacements. Peak-documented creep rates on the fault are 9-12 mm/yr, accounting for 25-33% of the total motion between India and Eurasia, and locking depths in creeping segments are commonly shallower than 500 m. The magnitude of the 1892 Chaman earthquake is well predicted by the total area of the 95 km long coupled segment. To a first order, the heterogeneous distribution of aseismic creep combined with consistently shallow locking depths suggests that the southern and central Chaman fault may only produce small to moderate earthquakes (

  3. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity

    USGS Publications Warehouse

    Wannamaker, Philip E.; Evans, Rob L.; Bedrosian, Paul A.; Unsworth, Martyn J.; Maris, Virginie; McGary, R. Shane

    2014-01-01

    Five magnetotelluric (MT) profiles have been acquired across the Cascadia subduction system and transformed using 2-D and 3-D nonlinear inversion to yield electrical resistivity cross sections to depths of ∼200 km. Distinct changes in plate coupling, subduction fluid evolution, and modes of arc magmatism along the length of Cascadia are clearly expressed in the resistivity structure. Relatively high resistivities under the coasts of northern and southern Cascadia correlate with elevated degrees of inferred plate locking, and suggest fluid- and sediment-deficient conditions. In contrast, the north-central Oregon coastal structure is quite conductive from the plate interface to shallow depths offshore, correlating with poor plate locking and the possible presence of subducted sediments. Low-resistivity fluidized zones develop at slab depths of 35–40 km starting ∼100 km west of the arc on all profiles, and are interpreted to represent prograde metamorphic fluid release from the subducting slab. The fluids rise to forearc Moho levels, and sometimes shallower, as the arc is approached. The zones begin close to clusters of low-frequency earthquakes, suggesting fluid controls on the transition to steady sliding. Under the northern and southern Cascadia arc segments, low upper mantle resistivities are consistent with flux melting above the slab plus possible deep convective backarc upwelling toward the arc. In central Cascadia, extensional deformation is interpreted to segregate upper mantle melts leading to underplating and low resistivities at Moho to lower crustal levels below the arc and nearby backarc. The low- to high-temperature mantle wedge transition lies slightly trenchward of the arc.

  4. Resistivity structures across the Humboldt River basin, north-central Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Williams, Jackie M.

    2002-01-01

    Magnetotelluric data collected along five profiles show deep resistivity structures beneath the Battle Mountain-Eureka and Carlin gold trends in north-central Nevada, which appear consistent with tectonic breaks in the crust that possibly served as channels for hydrothermal fluids. It seems likely that gold deposits along these linear trends were, therefore, controlled by deep regional crustal fault systems. Two-dimensional resistivity modeling of the magnetotelluric data generally show resistive (30 to 1,000 ohm-m) crustal blocks broken by sub-vertical, two-dimensional, conductive (1 to 10 ohmm) zones that are indicative of large-scale crustal fault zones. These inferred fault zones are regional in scale, trend northeast-southwest, north-south, and northwest-southeast, and extend to mid-crustal (20 km) depths. The conductors are about 2- to 15-km wide, extend from about 1 to 4 km below the surface to about 20 km depth, and show two-dimensional electrical structure. By connecting the locations of similar trending conductors together, individual regional crustal fault zones within the upper crust can be inferred that range from about 4- to 10-km wide and about 30- to 150-km long. One of these crustal fault zones coincides with the Battle Mountain-Eureka mineral trend. The interpreted electrical property sections also show regional changes in the resistive crust from south to north. Most of the subsurface in the upper 20 km beneath Reese River Valley and southern Boulder Valley are underlain by rock that is generally more conductive than the subsurface beneath Kelly Creek Basin and northern Boulder Valley. This suggests that either elevated-temperature or high-salinity fluids, alteration, or carbonaceous rocks are more pervasive in the more conductive area (Battle Mountain Heat-Flow High), which implies that the crust beneath these valleys is either more fractured or has more carbonaceous rocks than in the area surveyed along the 41st parallel.

  5. Seismic Reflection Images of Deep Lithospheric Faults and Thin Crust at the Actively Deforming Indo-Australian Plate Boundary in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Carton, H.; Chauhan, A.; Dyment, J.; Cannat, M.; Hananto, N.; Hartoyo, D.; Tapponnier, P.; Davaille, A.

    2007-12-01

    Recently, we acquired deep seismic reflection data using a state-of-the-art technology of Schlumberger having a powerful source (10,000 cubic inch) and a 12 km long streamer along a 250 km long trench parallel line offshore Sumatra in the Indian Ocean deformation zone that provides seismic reflection image down to 40 km depth over the old oceanic lithosphere formed at Wharton spreading centre about 55-57 Ma ago. We observe deep penetrating faults that go down to 37 km depth (~24 km in the oceanic mantle), providing the first direct evidence for full lithospheric-scale deformation in an intra-plate oceanic domain. These faults dip NE and have dips between 25 and 40 degrees. The majority of faults are present in the mantle and are spaced at about 5 km, and do not seem cut through the Moho. We have also imaged active strike-slip fault zones that seem to be associated with the re-activation of ancient fracture zones, which is consistent with previous seismological and seafloor observations. The geometries of the deep penetrating faults neither seem to correspond to faulting associated with the plate bending at the subduction front nor with the re-activation of fracture zone that initiated about 7.5 Ma ago, and therefore, we suggest that these deep mantle faults were formed due to compressive stress at the beginning of the hard collision between India and Eurasia, soon after the cessation of seafloor spreading in the Wharton basin. We also find that the crust generated at the fast Wharton spreading centre 55-57 Ma ago is only 3.5-4.5 km thick, the thinnest crust ever observed in a fast spreading environment. We suggest that this extremely thin crust is due to 40-50°C lower than normal mantle temperature in this part of the Indian Ocean during its formation.

  6. Crustal P-Wave Speed Structure Under Mount St. Helens From Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Moran, S. C.

    2006-12-01

    We used local earthquake data to model the P-wave speed structure of Mount St. Helens with the aim of improving our understanding of the active magmatic system. Our study used new data recorded by a dense array of 19 broadband seismographs that were deployed during the current eruption together with permanent network data recorded since the May 18, 1980 eruption. Most earthquakes around Mount St. Helens during the last 25 years were clustered in a narrow vertical column beneath the volcano from the surface to a depth of about 10 km. Earthquakes also occurred in a well-defined zone extending to the NNW from the volcano known as the St. Helens Seismic Zone (SHZ). During the current eruption, earthquakes have been confined to within 3 km of the surface beneath the crater floor. These earthquakes apparently radiate little shear-wave energy and the shear arrivals are usually contaminated by surface waves. Thus, we focused on developing an improved P- wave speed model. We used two data sources: (1) the short-period, vertical-component Pacific Northwest Seismograph Network and (2) new data recorded on a temporary array between June 2005 and February 2006. We first solved for a minimum one-dimensional model, incorporating the Moho depth found during an earlier wide-aperture refraction study. The three-dimensional model was solved simultaneously with hypocenter locations using the computer code SIMULPS14, extended for full three-dimensional ray shooting. We modified the code to force raypaths to remain below the ground surface. We began with large grid spacing and progressed to smaller grid spacing where the earthquakes and stations were denser. In this way we achieve a 40 km by 40 km regional model as well as a 10 km by 10 km fine-scale model directly beneath Mount St. Helens. The large-scale model is consistent with mapped geology and other geophysical data in the vicinity of Mount St. Helens. For example, there is a zone of relatively low velocities (-2% to -5% lower than background model) from 3 to at least 10 km depth extending NNW from the volcano parallel to the SHZ. The low-wave- speed zone coincides with a linear magnetic low, the western edge of a magnetotelluric conductive anomaly, and a localized gravity low. The coincidence of the volcano and these anomalies indicates this preexisting zone of weakness may control the location of Mount St. Helens, as has been suggested by previous investigators. Prominent high-wave-speed anomalies (+3% to +6% relative to background) on either side of this zone are due to plutons, which are also imaged with other geophysical data. Fine-scale modeling of the upper crust directly beneath Mount St. Helens reveals subtle structures not seen in the larger-scale model. The key structure is a cylindrical volume with speeds almost 10% slower than the background model extending from 6 to at least 10 km depth. The vertical, cylindrical volume of earthquakes, which reaches from the surface to more than 10 km depth, splits around this low-wave-speed volume creating an aseismic zone coincident with the low P-wave speeds. We interpret this volume as a melt-rich reservoir surrounded by hot rock.

  7. In situ seismic anisotropy around deep earthquakes in Japan subduction slabs using Japan Meteorological Agency moment tensors

    NASA Astrophysics Data System (ADS)

    Li, J.; Zheng, Y.; Thomsen, L.

    2017-12-01

    Knowing the in situ seismic anisotropy around deep earthquakes in slabs is important in understanding deep-earthquake mechanism as it may provide critically needed information about the rock fabric where deep earthquakes occur. It has been recognized for about 50 years that many deep earthquakes are not double-couple (DC) events. Previously we showed that in situ anisotropy around deep earthquakes could explain such observed non-DC events. Traditionally, the shear wave splitting method has been used to infer such anisotropy around deep earthquakes but this is challenging because it will need many crossing ray paths for the method to localize the anisotropic region (Long 2013). In this abstract, we adopt the same procedure to obtain anisotropy in the Pacific slab under Japan using moment tensors provided by the Japan Meteorological Agency using the F-net data. We directly probe the in situ anisotropy within the subducting slabs using the radiation patterns (represented by the moment tensors) of deep earthquakes (with depth greater than 60 km). By assuming a group of shear dislocation events embedded in a common tilted transversely isotropic (TTI) medium, we used the moment tensors as our input data to invert for the anisotropy in Mariana-Japan-Kuril subducting zone. The TTI medium is characterized by the P and S wave velocities along the symmetry axis (described by two free angles) and three Thomsen parameters. We divided the deep earthquake events into 9 groups by their spatial proximity using the k-means clustering method (Hartigan and Wong 1979). These 9 groups include 2 intermediate-depth groups (depth from 60 km to 300 km) and 7 deep-focus groups (depth greater than 300 km). Our inversion results show that the inverted TTI symmetry axes are perpendicular to the slab interface for two intermediate-depth groups (consistent with dehydration metamorphic reactions) and parallel to the slab interface for 7 deep-focus group. The shear wave anisotropy is best resolved by our inversion algorithm with a typical value of around 28% (ranging from 25% to 41%). Our inverted anisotropy provides direct information of stress and rock fabric inside the subducting slab and may help explain the mechanisms of deep earthquakes.

  8. Subduction and dehydration of slow-spread oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Laigle, M.; Galve, A.; Charvis, P.

    2016-12-01

    Water transported by subducting slabs affects the dynamics of subduction zones and is a major gateway in the global geochemical water cycle. During subduction much of the water stored in the slab is released via pore fluid escape and through metamorphic reactions that depend on the thermal regime. The most notable are eclogitization of hydrated basalt and gabbro and breakdown of serpentinite. Most constraints to date have been obtained at Pacific subduction zones, and have contributed to a model of slab dehydration applicable to normal fast-spread oceanic lithosphere with a mafic crust. Slow-spread crust however, is heterogeneous in thickness and composition and has a different water distribution than fast-spread crust. We use P-wave traveltimes from several active source seismic experiments and P- and S-wave traveltimes from shallow and intermediate depth (< 160 km) local earthquakes recorded on a vast amphibious array of OBSs and land seismometers to recover the 3D Vp and Vp/Vs structure of the central Lesser Antilles subduction zone from the surface to 160 km depth. This slab was formed by slow accretion at the Mid-Atlantic ridge and represents the global slow accretion rate end-member. We image the dipping low-Vp layer at the top of the slab corresponding to the hydrated slab crust penetrating to about 100 km depth. High Vp/Vs ratio on the slab top and in the forearc crust is interpreted as evidence of elevated fluid content either as free fluids or as bound water in hydrated minerals. A local minimum in Vp is observed on the slab top at 50 km depth, and forms an elongated trench-parallel anomaly. This anomaly is interrupted at the projection of the Marathon fracture zone. We suggest that this is the result of lateral variations in slab crust composition from normal mafic oceanic crust to tectonized oceanic crust consisting to a large extent of serpentinized peridotite near the fracture zone. Slab regions with normal mafic oceanic crust likely undergo eclogitization, resulting in voluminous water release over a narrow depth range. Serpentinized ultramafic crust, in contrast, may release water at a more constant rate. We infer that subduction of slow-spread lithosphere may result in heterogeneous water transport and release at subduction zones with implications for seismicity, magma generation and the geochemical budget.

  9. The Dandridge-Vonore Fault Zone in the Eastern Tennessee Seismic Zone (and Rejuvenation of the Smokies?)

    NASA Astrophysics Data System (ADS)

    Cox, R. T.; Hatcher, R. D., Jr.; Forman, S. L.; Gamble, E. D. S.; Warrell, K. F.

    2017-12-01

    The eastern Tennessee seismic zone (ETSZ) trends 045o from NE Alabama and NW Georgia through Tennessee to SE Kentucky, and seismicity is localized 5-26 km deep in the basement. The ETSZ is the second most seismically active region in North America east of the Rocky Mountains, although no historic earthquakes larger than Mw 4.8 have been recorded here. Late Quaternary paleoiseismic evidence suggests that the ETSZ is capable of M7+ earthquakes and that neotectonic faults may have significantly influenced the regional relief. We have identified an 80 km-long, 060o-trending corridor in eastern Tennessee that contains collinear northeast-striking thrust, strike-slip, and normal Quaternary faults with displacements of 1-2 m, herein termed the Dandridge-Vonore fault zone (DVFZ). French Broad River alluvium in the northeast DVFZ near Dandridge, TN, is displaced by a 050o-striking, SE-dipping thrust fault and by a set of related fissures that record at least two significant post 25 ka paleo-earthquakes. Southwest of Dandridge near Alcoa, TN, a 060o-striking, SE-dipping thrust fault cuts Little River alluvium and records two significant post-15 ka paleo-earthquakes. Farther southwest at Vonore, colluvium with alluvial cobbles is thrust >1 m by a 057o-striking, steeply SE-dipping fault that may also have a significant strike-slip component, and Little Tennessee River alluvium is dropped >2 m along a 070o- striking normal fault. The DVFZ partly overlaps and is collinear with a local trend of maximum seismicity that extends 30 km farther SW of the DVFZ (as currently mapped), for a total length of 110 km. The DVFZ is coincident with a steep gradient in S-wave velocities (from high velocity on the SE to low velocity on the NW) at mid-crustal depths of 20 to 24 km, consistent with a fault and source zone at hypocentral depths in the crystalline basement. Moreover, the DVFZ parallels the NW foot of Blue Ridge Mountains, and the sense of thrusting at all sites of Quaternary faulting in the DVFZ is consistent with uplift of the Blue Ridge.

  10. Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: Tectonic or impact shock metamorphic origin?

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew Y.; Uysal, I. Tonguç; Fitz Gerald, John D.; Saygin, Erdinc

    2013-03-01

    The Eastern Warburton Basin, Northeast South Australia, features major geophysical anomalies, including a magnetic high of near-200 nT centred on a 25 km-wide magnetic low (< 100 nT), interpreted in terms of a magmatic body below 6 km depth. A distinct seismic tomographic low velocity anomaly may reflect its thick (9.5 km) sedimentary section, high temperatures and possible deep fracturing. Scanning electron microscope (SEM) analyses of granites resolves microbreccia veins consisting of micron-scale particles injected into resorbed quartz grains. Planar and sub-planar elements in quartz grains (Qz/PE) occur in granites, volcanics and sediments of the > 30,000 km-large Eastern Warburton Basin. The Qz/PE include multiple intersecting planar to curved sub-planar elements with relic lamellae less than 2 μm wide with spacing of 4-5 μm. Qz/PE are commonly re-deformed, displaying bent and wavy patterns accompanied with fluid inclusions. U-stage measurements of a total of 243 planar sets in 157 quartz grains indicate dominance of ∏{10-12}, ω{10-13} and subsidiary §{11-22}, {22-41}, m{10-11} and x{51-61} planes. Transmission Electron Microscopy (TEM) analysis displays relic narrow ≤ 1 μm-wide lamellae and relic non-sub grain boundaries where crystal segments maintain optical continuity. Extensive sericite alteration of feldspar suggests hydrothermal alteration to a depth of 500 m below the unconformity which overlies the Qz/PE-bearing Warburton Basin terrain. The data are discussed in terms of (A) Tectonic-metamorphic deformation and (B) impact shock metamorphism producing planar deformation features (Qz/PDF). Deformed Qz/PE are compared to re-deformed Qz/PDFs in the Sudbury, Vredefort, Manicouagan and Charlevoix impact structures. A 4-5 km uplift of the Big Lake Granite Suite during 298-295 Ma is consistent with missing of upper Ordovician to Devonian strata and possible impact rebound. The occurrence of circular seismic tomography anomalies below the east Warburton Basin, the Poolowana Basin and the Woodleigh impact structure signifies a potential diagnostic nature of circular tomographic anomalies.

  11. Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for rift development in eastern Africa

    NASA Astrophysics Data System (ADS)

    Dugda, Mulugeta T.; Nyblade, Andrew A.; Julia, Jordi; Langston, Charles A.; Ammon, Charles J.; Simiyu, Silas

    2005-01-01

    Crustal structure in Kenya and Ethiopia has been investigated using receiver function analysis of broadband seismic data to determine the extent to which the Cenozoic rifting and magmatism has modified the thickness and composition of the Proterozoic crust in which the East African rift system developed. Data for this study come from broadband seismic experiments conducted in Ethiopia between 2000 and 2002 and in Kenya between 2001 and 2002. Two methods have been used to analyze the receiver functions, the H-κ method, and direct stacks of the waveforms, yielding consistent results. Crustal thickness to the east of the Kenya rift varies between 39 and 42 km, and Poisson's ratios for the crust vary between 0.24 and 0.27. To the west of the Kenya rift, Moho depths vary between 37 and 38 km, and Poisson's ratios vary between 0.24 and 0.27. These findings support previous studies showing that crust away from the Kenya rift has not been modified extensively by Cenozoic rifting and magmatism. Beneath the Ethiopian Plateau on either side of the Main Ethiopian Rift, crustal thickness ranges from 33 to 44 km, and Poisson's ratios vary from 0.23 to 0.28. Within the Main Ethiopian Rift, Moho depths vary from 27 to 38 km, and Poisson's ratios range from 0.27 to 0.35. A crustal thickness of 25 km and a Poisson's ratio of 0.36 were obtained for a single station in the Afar Depression. These results indicate that the crust beneath the Ethiopian Plateau has not been modified significantly by the Cenozoic rifting and magmatism, even though up to a few kilometers of flood basalts have been added, and that the crust beneath the rifted regions in Ethiopia has been thinned in many places and extensively modified by the addition of mafic rock. The latter finding is consistent with models for rift evolution, suggesting that magmatic segments with the Main Ethiopian Rift, characterized by dike intrusion and Quaternary volcanism, act now as the locus of extension rather than the rift border faults.

  12. Regional and sediment depth differences in nematode community structure greater than between habitats on the New Zealand margin: Implications for vulnerability to anthropogenic disturbance

    NASA Astrophysics Data System (ADS)

    Rosli, Norliana; Leduc, Daniel; Rowden, Ashley A.; Probert, P. Keith; Clark, Malcolm R.

    2018-01-01

    Deep-sea community attributes vary at a range of spatial scales. However, identifying the scale at which environmental factors affect variability in deep-sea communities remains difficult, as few studies have been designed in such a way as to allow meaningful comparisons across more than two spatial scales. In the present study, we investigated nematode diversity, community structure and trophic structure at different spatial scales (sediment depth (cm), habitat (seamount, canyon, continental slope; 1-100 km), and geographic region (100-10000 km)), while accounting for the effects of water depth, in two regions on New Zealand's continental margin. The greatest variability in community attributes was found between sediment depth layers and between regions, which explained 2-4 times more variability than habitats. The effect of habitat was consistently stronger in the Hikurangi Margin than the Bay of Plenty for all community attributes, whereas the opposite pattern was found in the Bay of Plenty where effect of sediment depth was greater in Bay of Plenty. The different patterns at each scale in each region reflect the differences in the environmental variables between regions that control nematode community attributes. Analyses suggest that nematode communities are mostly influenced by sediment characteristics and food availability, but that disturbance (fishing activity and bioturbation) also accounts for some of the observed patterns. The results provide new insight on the relative importance of processes operating at different spatial scales in regulating nematode communities in the deep-sea, and indicate potential differences in vulnerability to anthropogenic disturbance.

  13. Insights into a fossil plate interface of an erosional subduction zone: a tectono-metamorphic study of the Tianshan metamorphic belt.

    NASA Astrophysics Data System (ADS)

    Bayet, Lea; Moritz, Lowen; Li, Jilei; Zhou, Tan; Agard, Philippe; John, Timm; Gao, Jun

    2016-04-01

    Subduction zone seismicity and volcanism are triggered by processes occurring at the slab-wedge interface as a consequence of metamorphic reactions, mass-transfer and deformation. Although the shallow parts of subduction zones (<30-40 km) can be partly accessed by geophysical methods, the resolution of these techniques is insufficient to characterize and image the plate interface at greater depths (>60km). In order to better understand the plate interface dynamics at these greater depths, one has to rely on the rock record from fossil subduction zones. The Chinese Tianshan metamorphic belt (TMB) represents an ideal candidate for such studies, because structures are well exposed with exceptionally fresh high-pressure rocks. Since previous studies from this area focused on fluid-related processes and its metamorphic evolution was assessed on single outcrops, the geodynamic setting of this metamorphic belt is unfortunately heavily debated. Here, we present a new geodynamic concept for the TMB based on detailed structural and petrological investigations on a more regional scale. A ~11km x 13km area was extensively covered, together with E-W and N-S transects, in order to produce a detailed map of the TMB. Overall, the belt is composed of two greenschist-facies units that constitute the northern and southern border of a large high-pressure (HP) to ultra high-pressure (UHP) unit in the center. This HP-UHP unit is mainly composed of metasediments and volcanoclastic rocks, with blueschist, eclogite and carbonate lenses. Only the southern part of the HP-UHP unit is composed of the uppermost part of an oceanic crust (e.g., pillow basalts and deep-sea carbonates). From south to north, the relative abundance and size of blueschist massive boudins and layers (as well as eclogite boudins) decreases and the sequence is increasingly interlayered with metasedimentary and carbonate-rich horizons. This indicates that the subducted material was dominated by trench filling made of sediments and volcanoclastic rocks, with only subordinate pieces of oceanic crust/lithosphere. The whole sequence is cut by km-scale major shear planes orientated WNW-ESE showing consistent top-to-the north shear senses. Lineations marked by glaucophane indicate that most of the deformation occurred during exhumation-related blueschist-facies conditions. Peak pressure and temperatures (P-T) were estimated by Raman spectroscopy, using the degree of organisation of carbonaceous material in metapelites for T and Raman peak shifts of quartz inclusions in garnets for P. In the whole HP-UHP region, consistent and homogeneous peak P-T conditions of 530±30°C and 2.3±3 GPa point to depths around 70 km and HP to UHP conditions, which is further supported by the local presence of coesite. The continuity of the lithological sequence and the lack of significant P/T offsets across the major shear planes indicate that, during exhumation, the HP-UHP unit primarily behaved as a single stack of essentially metasedimentary slices, and was only poorly dismembered on its way to the surface. Our study thus advocates for deep accretion/underplating and stacking of these tectonic slices (dominated by trench infill material) at depths of ~70 km, which has so far rarely been documented.

  14. Preliminary study of crust-upper mantle structure of the Tibetan Plateau by using broadband teleseismic body waveforms

    NASA Astrophysics Data System (ADS)

    Zhu, Lu-Pei; Zeng, Rong-Sheng; Wu, Francis T.; Owens, Thomas J.; Randall, George E.

    1993-05-01

    As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations are estimated from inversions of the receiver function. The crustal shear wave velocities at WNDO and TUNL are vertically homogeneous, with value between 3.5 3.6 km/s down to Moho. This value in the lower crust is lower than the normal value for the lower crust of continents, which is consistent with the observed strong Sn attenuation in this region. The velocity structure at XIGA shows a velocity discontinuity at depth of 20 km and high velocity value of 4.0 km/s in the midcrust between 20 30 km depth. Similar results are obtained from a DSS profile in southern Tibet. The velocity under XIGA decreases below a depth of 30 km, reaching the lowest value of 3.2 km/s between 50 55 km. depth. This may imply that the Indian crust underthrusts the low part of Tibetan crust in the southern Plateau, forming a “double crust”. The crustal thickness at each of these sites is: WNDO, 68 km; TUNL, 70 km; XI-GA, 80 km.

  15. A Review of Spatial and Seasonal Changes in Condensation Clouds Observed During Aerobraking by MGS TES

    NASA Technical Reports Server (NTRS)

    Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.

    1999-01-01

    Successful operation of the Mars Global Surveyor spacecraft, beginning in September 1997, has permitted extensive infrared observations of condensation clouds during the martian southern summer and fall seasons (184 deg less than L(sub s) less than 28 deg). Initially, thin (normal optical depth less than 0.06 at 825/ cm) ice clouds and hazes were widespread, showing a latitudinal gradient. With the onset of a regional dust storm at L(sub s) = 224 deg, ice clouds essentially vanished in the southern hemisphere, to reappear gradually after the decay of the storm. The thickest clouds (optical depth approx. 0.6) were associated with major volcanic features. At L(exp s) = 318 deg, the cloud at Ascraeus Mons was observed to disappear between 21:30 and 09:30, consistent with historically recorded diurnal behavior for clouds of this type. Limb observations showed extended optically thin (depth less than 0.04) stratiform clouds at altitudes up to 55 km. A water ice haze was present in the north polar night at altitudes up to 40 km; this probably provided heterogeneous nucleation sites for the formation of CO2 clouds at altitudes below the 1 mbar pressure level, where atmospheric temperatures dropped to the condensation point of CO2.

  16. Effects of upper ocean sound-speed structure on deep acoustic shadow-zone arrivals at 500- and 1000-km range.

    PubMed

    Van Uffelen, Lora J; Worcester, Peter F; Dzieciuch, Matthew A; Rudnick, Daniel L; Colosi, John A

    2010-04-01

    Deep acoustic shadow-zone arrivals observed in the late 1990s in the North Pacific Ocean reveal significant acoustic energy penetrating the geometric shadow. Comparisons of acoustic data obtained from vertical line arrays deployed in conjunction with 250-Hz acoustic sources at ranges of 500 and 1000 km from June to November 2004 in the North Pacific, with simulations incorporating scattering consistent with the Garrett-Munk internal-wave spectrum, are able to describe both the energy contained in and vertical extent of deep shadow-zone arrivals. Incoherent monthly averages of acoustic timefronts indicate that lower cusps associated with acoustic rays with shallow upper turning points (UTPs), where sound-speed structure is most variable and seasonally dependent, deepen from June to October as the summer thermocline develops. Surface-reflected rays, or those with near-surface UTPs, exhibit less scattering due to internal waves than in later months when the UTP deepens. Data collected in November exhibit dramatically more vertical extension than previous months. The depth to which timefronts extend is a complex combination of deterministic changes in the depths of the lower cusps as the range-average profiles evolve with seasonal change and of the amount of scattering, which depends on the mean vertical gradients at the depths of the UTPs.

  17. Tectonic history of the Syria Planum province of Mars

    USGS Publications Warehouse

    Tanaka, K.L.; Davis, P.A.

    1988-01-01

    We attribute most of the development of extensive fractures in the Tharsis region to discrete tectonic provinces within the region, rather than to Tharsis as a single entity. One of these provinces is in Syria Planum. Faults and collapse structures in the Syria Planum tectonic province on Mars are grouped into 13 sets based on relative age, areal distribution, and morphology. According to superposition and fault crosscutting relations and crater counts we designate six distinct episodes of tectonic activity. Photoclinometric topographic profiles across 132 grabens and fault scarps show that Syria Planum grabens have widths (average of 2.5 km, and most range from 1 to 6 km) similar to lunar grabens, but the Martian grabens have slightly higher side walls (average abour 132 m) and gentler wall slopes (average of 9?? and range of 2??-25??) than lunar grabens (93 m high and 18?? slopes). Estimates of the amount of extension for individual grabens range from 20 to 350 m; most estimates of the thickness of the faulted layer range from 0.5 to 4.5 km (average is 1.5 km). This thickness range corresponds closely to the 0.8- to 3.6-km range in depth for pits, troughs, and canyons in Noctis Labyrinthus and along the walls of Valles Marineris. We propose that the predominant 1- to 1.5-km values obtained for both the thickness of the faulted layer and the depths of the pits, troughs, and theater heads of the canyons reflect the initial depth to the water table in this region, as governed by the depth to the base of ground ice. Maximum depths for these features may indicate lowered groundwater table depths and the base of ejecta material. -from Authors

  18. Statistical characterization of Earth’s heterogeneities from seismic scattering

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, R.

    2009-12-01

    The distortion of a teleseismic wavefront carries information about the heterogeneities through which the wave propagates and it is manifestited as logarithmic amplitude (logA) and phase fluctuations of the direct P wave recorded by a seismic network. By cross correlating the fluctuations (e.g., logA-logA or phase-phase), we obtain coherence functions, which depend on spatial lags between stations and incident angles between the incident waves. We have mathematically related the depth-dependent heterogeneity spectrum to the observable coherence functions using seismic scattering theory. We will show that our method has sharp depth resolution. Using the HiNet seismic network data in Japan, we have inverted power spectra for two depth ranges, ~0-120km and below ~120km depth. The coherence functions formed by different groups of stations or by different groups of earthquakes at different back azimuths are similar. This demonstrates that the method is statistically stable and the inhomogeneities are statistically stationary. In both depth intervals, the trend of the spectral amplitude decays from large scale to small scale in a power-law fashion with exceptions at ~50km for the logA data. Due to the spatial spacing of the seismometers, only information from length scale 15km to 200km is inverted. However our scattering method provides new information on small to intermediate scales that are comparable to scales of the recycled materials and thus is complimentary to the global seismic tomography which reveals mainly large-scale heterogeneities on the order of ~1000km. The small-scale heterogeneities revealed here are not likely of pure thermal origin. Therefore, the length scale and strength of heterogeneities as a function of depth may provide important constraints in mechanical mixing of various components in the mantle convection.

  19. The Mechanics of Peak-Ring Impact Crater Formation from the IODP-ICDP Expedition 364

    NASA Astrophysics Data System (ADS)

    Melosh, H.; Collins, G. S.; Morgan, J. V.; Gulick, S. P. S.

    2017-12-01

    The Chicxulub impact crater is one of very few peak-ring impact craters on Earth. While small (less than 3 km on Earth) impact craters are typically bowl-shaped, larger craters exhibit central peaks, which in still larger (more than about 100 km on Earth) craters expand into mountainous rings with diameters close to half that of the crater rim. The origin of these peak rings has been contentious: Such craters are far too large to create in laboratory experiments and remote sensing of extraterrestrial examples has not clarified the mechanics of their formation. Two principal models of peak ring formation are currently in vogue, the "nested crater" model, in which the peak ring originates at shallow depths in the target, and the "dynamic collapse" model in which the peak ring is uplifted at the base of a collapsing, over-steepened central peak and its rocks originate at mid-crustal depths. IODP-ICDP Expedition 364 sought to elucidate, among other important goals, the mechanics of peak ring formation in the young (66 Myr), fresh, but completely buried Chicxulub impact crater. The cores from this borehole now show unambiguously that the rocks in the Chicxulub peak ring originated at mid-crustal depths, apparently ruling out the nested crater model. These rocks were shocked to pressures on the order of 10-35 GPa and were so shattered that their densities and seismic velocities now resemble those of sedimentary rocks. The morphology of the final crater, its structure as revealed in previous seismic imaging, and the results from the cores are completely consistent with modern numerical models of impact crater excavation and collapse that incorporate a model for post-impact weakening. Subsequent to the opening of a ca. 100 km diameter and 30 km deep transient crater, this enormous hole in the crust collapsed over a period of about 10 minutes. Collapse was enabled by movement of the underlying rocks, which briefly behaved in the manner of a high-viscosity fluid, a brittle deformation state described by the process of "acoustic" fluidization initiated by strong elastic vibrations accompanying the opening and collapse of the crater. The shattered core, cut by both melt rock and clastic dikes, is consistent with the block model of acoustic fluidization supporting its application to crater collapse both on the Earth and on other planets.

  20. GLIMPCE Seismic reflection evidence of deep-crustal and upper-mantle intrusions and magmatic underplating associated with the Midcontinent Rift system of North America

    USGS Publications Warehouse

    Behrendt, John C.; Hutchinson, D.R.; Lee, M.; Thornber, C.R.; Tréhu, A.; Cannon, W.; Green, A.

    1990-01-01

    Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth. 

  1. Interpretation of aeromagnetic data over Abeokuta and its environs, Southwest Nigeria, using spectral analysis (Fourier transform technique)

    NASA Astrophysics Data System (ADS)

    Olurin, Oluwaseun T.; Ganiyu, Saheed A.; Hammed, Olaide S.; Aluko, Taiwo J.

    2016-10-01

    This study presents the results of spectral analysis of magnetic data over Abeokuta area, Southwestern Nigeria, using fast Fourier transform (FFT) in Microsoft Excel. The study deals with the quantitative interpretation of airborne magnetic data (Sheet No. 260), which was conducted by the Nigerian Geological Survey Agency in 2009. In order to minimise aliasing error, the aeromagnetic data was gridded at spacing of 1 km. Spectral analysis technique was used to estimate the magnetic basement depth distributed at two levels. The result of the interpretation shows that the magnetic sources are mainly distributed at two levels. The shallow sources (minimum depth) range in depth from 0.103 to 0.278 km below ground level and are inferred to be due to intrusions within the region. The deeper sources (maximum depth) range in depth from 2.739 to 3.325 km below ground and are attributed to the underlying basement.

  2. A Geophysical Study in Grand Teton National Park and Vicinity, Teton County, Wyoming: With Sections on Stratigraphy and Structure and Precambrian Rocks

    USGS Publications Warehouse

    Behrendt, John Charles; Tibbetts, Benton L.; Bonini, William E.; Lavin, Peter M.; Love, J.D.; Reed, John C.

    1968-01-01

    An integrated geophysical study - comprising gravity, seismic refraction, and aeromagnetic surveys - was made of a 4,600-km2 area in Grand Teton National Park and vicinity, Wyoming, for the purpose of obtaining a better understanding of the structural relationships in the region. The Teton range is largely comprised of Precambrian crystalline rocks and layered metasedimentary gneiss, but it also includes granitic gneiss, hornblende-plagioclase gneiss, granodiorite, and pegmatite and diabase dikes. Elsewhere, the sedimentary section is thick. The presence of each system except Silurian provides a chronological history of most structures. Uplift of the Teton-Gros Ventre area began in the Late Cretaceous; most of the uplift occurred after middle Eocene time. Additional uplift of the Teton Range and downfaulting of Jackson Hole began in the late Pliocene and continues to the present. Bouguer anomalies range from -185 mgal over Precambrian rocks of the Teton Range to -240 mgal over low-density Tertiary and Cretaceous sedimentary rocks of Jackson Hole. The Teton fault (at the west edge of Jackson Hole), as shown by steep gravity gradients and seismic-refraction data, trends north-northeast away from the front of the Teton Range in the area of Jackson Lake. The Teton fault either is shallowly inclined in the Jenny Lake area, or it consists of a series of fault steps in the fault zone; it is approximately vertical in the Arizona Creek area. Seismic-refraction data can be fitted well by a three-layer gravity model with velocities of 2.45 km per sec for the Tertiary and Cretaceous rocks above the Cloverly Formation, 3.9 km per sec for the lower Mesozoic rocks, and 6.1 km per sec for the Paleozoic (limestone and dolomite) and Precambrian rocks. Gravity models computed along two seismic profiles are in good agreement (sigma=+- 2 mgal) if density contrasts with the assumed 2.67 g per cm2 Paleozoic and Precambrian rocks are assumed to be -0.35 and -0.10 g per cm2 for the 2.45 and 3.9 km per sec velocity layers, respectively. The Teton Range has a maximum vertical uplift of about 7 km, as inferred from the maximum depth to basement of about 5 km. Aeromagnetic data show a 400gamma positive anomaly in the Gros Ventre Range, which trends out of the surveyed area at the east edge. Exposed Precambrian rocks contain concentrations of magnetite and hematite. A prominent anomaly of about 100gamma is associated with the Gros Ventre Range, and 100gamma anomalies are associated with the layered gneiss of the Teton Range. On this basis the unmapped Precambrian rocks of the Gross Ventre Range are interpreted as layered gneiss. The sources of the magnetic anomalies, as indicated by depth determination, are at the surface of the Precambrian rocks. A model fitted to a profile across the Gros Ventre Range gives a depth to the Precambrian surface and a susceptibility of 0.0004 emu (electromagnetic units) for the source, which is consistent with modal analyses of the layered gneisses. A residual magnetic map shows that the granitic rocks and layered gneiss probably continue beneath the floor of Jackson Hole east of the Teton fault. The location of aeromagnetic anomalies is consistent with the interpretation that the Teton fault diverges from the front of the Teton Range.

  3. Nemo:. a Project for a KM3 Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Amore, I.; Aiello, S.; Ambriola, M.; Ameli, F.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Capone, A.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M. S.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sedita, M.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    The status of the project is described: the activity on long term characterization of water optical and oceanographic parameters at the Capo Passero site candidate for the Mediterranean km3 neutrino telescope; the feasibility study; the physics performances and underwater technology for the km3; the activity on NEMO Phase 1, a technological demonstrator that has been deployed at 2000 m depth 25 km offshore Catania; the realization of an underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).

  4. Mantle structure and composition to 800-km depth beneath southern Africa and surrounding oceans from broadband body waves

    NASA Astrophysics Data System (ADS)

    Simon, R. E.; Wright, C.; Kwadiba, M. T. O.; Kgaswane, E. M.

    2003-12-01

    Average one-dimensional P and S wavespeed models from the surface to depths of 800 km were derived for the southern African region using travel times and waveforms from earthquakes recorded at stations of the Kaapvaal and South African seismic networks. The Herglotz-Wiechert method combined with ray tracing was used to derive a preliminary P wavespeed model, followed by refinements using phase-weighted stacking and synthetic seismograms to yield the final model. Travel times combined with ray tracing were used to derive the S wavespeed model, which was also refined using phase-weighted stacking and synthetic seismograms. The presence of a high wavespeed upper mantle lid in the S model overlying a low wavespeed zone (LWZ) around 210- to ˜345-km depth that is not observed in the P wavespeed model was inferred. The 410-km discontinuity shows similar characteristics to that in other continental regions, but occurs slightly deeper at 420 km. Depletion of iron and/or enrichment in aluminium relative to other regions are the preferred explanation, since the P wavespeeds throughout the transition zone are slightly higher than average. The average S wavespeed structure beneath southern Africa within and below the transition zone is similar to that of the IASP91 model. There is no evidence for discontinuity at 520-km depth. The 660-km discontinuity also appears to be slightly deeper than average (668 km), although the estimated thickness of the transition zone is 248 km, similar to the global average of 241 km. The small size of the 660-km discontinuity for P waves, compared with many other regions, suggests that interpretation of the discontinuity as the transformation of spinel to perovskite and magnesiowüstite may require modification. Alternative explanations include the presence of garnetite-rich material or ilmenite-forming phase transformations above the 660-km discontinuity, and the garnet-perovskite transformation as the discontinuity.

  5. Crustal structure and evolution of the Arctic Caledonides: Results from controlled-source seismology

    NASA Astrophysics Data System (ADS)

    Aarseth, Iselin; Mjelde, Rolf; Breivik, Asbjørn Johan; Minakov, Alexander; Faleide, Jan Inge; Flueh, Ernst; Huismans, Ritske S.

    2017-10-01

    The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates ;root structures; that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica.

  6. Constraining magma ascent and degassing paths with olivine- and clinopyroxene-hosted melt inclusions: Evidence for multiple depths of crystallization and boundary-layer entrapment

    NASA Astrophysics Data System (ADS)

    Lloyd, A. S.; Newcombe, M. E.; Plank, T. A.

    2016-12-01

    Although olivine-hosted melt inclusions (MIs) remain the gold standard for recovering volatile concentrations of primitive magmas, later-fractionating minerals may be more appropriate for assessing magma storage conditions immediately prior to eruption. We present volatile analyses of MIs entrapped in early (Mg# 81-83) olivine and later (Mg# 70-80) clinopyroxene (Cpx) from the 1977 eruption of Seguam volcano, to assess the ascent history prior to this violent strombolian eruption. The olivine-hosted MIs contain average volatile concentrations (n=16) of 3.79 wt% H2O, 167 ppm CO2, 592 ppm Cl, and 133 ppm F, consistent with an entrapment pressure of 200 to 300 MPa ( 10-13 km depth) if the CO2 contained in the bubble is taken into account (Moore et al., 2015). Cpx phenocrysts contain two distinct MI assemblages; the inner assemblage consists of randomly distributed, rounded MIs which never contain a vapor bubble. Average volatile concentrations of the inner assemblage MIs (n=11) are 0.96 wt% H2O, 98 ppm CO2, 798 ppm Cl, and 280 ppm F, consistent with an entrapment at much shallower depth, 2 km. The outer assemblage contains inclusions too small for routine volatile analysis. Inner assemblage Cpx-hosted MIs preserve average enrichments of 1.3x and 2x for Cl and F respectively, and are similarly enriched in incompatible minor and trace elements (up to a factor of 5x). Two potential scenarios can explain these observations. The enrichments may represent the entrapment of an unrelated highly-fractionated, shallow magma (which is unsupported by the whole rock record at Seguam). A second possibility is enrichment through boundary layer entrapment during a period of rapid crystal growth during ascent through the upper crust. Boundary layer entrapment during MI formation is further supported by a negative correlation between the degree of enrichment and the diffusivity of individual elements, which is consistent with growth rates 10-8 m/s. Although the olivine-hosted MIs record a volatile-rich storage region, the later-fractionating Cpx indicate a phase of rapid crystallization, likely driven by water loss from the melt at shallow depths. This work highlights the information added by analyzing multiple phases in order to reconstruct the degassing path of magma prior to eruption.

  7. Crustal structure of the southern Dead Sea basin derived from project DESIRE wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Mechie, J.; Abu-Ayyash, K.; Ben-Avraham, Z.; El-Kelani, R.; Qabbani, I.; Weber, M.

    2009-07-01

    As part of the DEad Sea Integrated REsearch project (DESIRE) a 235 km long seismic wide-angle reflection/refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin (DSB). The DST with a total of about 107 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1100 km. With a sedimentary infill of about 10 km in places, the southern DSB is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one-component instruments spaced 300 m to 1.2 km apart along the whole length of the E-W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern DSB is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern DSB is about 11 km below sea level beneath the profile. Seismic refraction data from an earlier experiment suggest that the seismic basement continues to deepen to a maximum depth of about 14 km, about 10 km south of the DESIRE profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, probably show less than 3 km variation in depth beneath the profile as it crosses the southern DSB. Thus the Dead Sea pull-apart basin may be essentially an upper crustal feature with upper crustal extension associated with the left-lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth might act as a decoupling zone. Below this boundary the two plates move past each other in what is essentially a shearing motion. Thermo-mechanical modelling of the DSB supports such a scenario. As the DESIRE seismic profile crosses the DST about 100 km north of where the DESERT seismic profile crosses the DST, it has been possible to construct a crustal cross-section of the region before the 107 km left-lateral shear on the DST occurred.

  8. Constraints on the thermal history of Taylorsville Basin, Virginia, U.S.A., from fluid-inclusion and fission-track analyses: Implications for subsurface geomicrobiology experiments

    USGS Publications Warehouse

    Tseng, H.-Y.; Onstott, T.C.; Burruss, R.C.; Miller, D.S.

    1996-01-01

    Microbial populations have been found at the depth of 2621-2804 m in a borehole near the center of Triassic Taylorsville Basin, Virginia. To constrain possible scenarios for long-term survival in or introduction of these microbial populations to the deep subsurface, we attempted to refine models of thermal and burial history of the basin by analyzing aqueous and gaseous fluid inclusions in calcite/quartz veins or cements in cuttings from the same borehole. These results are complemented by fission-track data from the adjacent boreholes. Homogenization temperatures of secondary aqueous fluid inclusions range from 120?? to 210??C between 2027- and 3069-m depth, with highest temperatures in the deepest samples. The salinities of these aqueous inclusions range from 0 to ??? 4.3 eq wt% NaCl. Four samples from the depth between 2413 and 2931 m contain both two-phase aqueous and one-phase methane-rich inclusions in healed microcracks. The relative CH4 and CO2 contents of these gaseous inclusions was estimated by microthermometry and laser Raman spectroscopy. If both types of inclusions in sample 2931 m were trapped simultaneously, the density of the methane-rich inclusions calculated from the Peng - Robinson equation of state implies an entrapment pressure of 360 ?? 20 bar at the homogenization temperature (162.5 ?? 12.5??C) of the aqueous inclusions. This pressure falls between the hydrostatic and lithostatic pressures at the present depth 2931 m of burial. If we assume that the pressure regime was hydrostatic at the time of trapping, then the inclusions were trapped at 3.6 km in a thermal gradient of ??? 40??C/km. The high temperatures recorded by the secondary aqueous inclusions are consistent with the pervasive resetting of zircon and apatite fission-track dates. In order to fit the fission-track length distributions of the apatite data, however, a cooling rate of 1-2??C/Ma following the thermal maximum is required. To match the integrated dates, the thermal maximum would have occurred at ??? 200 Ma. The timing of the maximum temperature is consistent with rapid burial of the Taylorsville Basin to twice its present-day depth and thermal re-equilibration with a 40??C/km geothermal gradient, followed by slow exhumation. The results may imply that the microorganisms did not survive in situ, but were transported from the cooler portions of the basin sometime after maximum burial and heating.

  9. Seismicity Structure of the Downgoing Nazca Slab in Northern Chile

    NASA Astrophysics Data System (ADS)

    Sippl, C.; Schurr, B.

    2017-12-01

    We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.

  10. Calculation of the 3D density model of the Earth

    NASA Astrophysics Data System (ADS)

    Piskarev, A.; Butsenko, V.; Poselov, V.; Savin, V.

    2009-04-01

    The study of the Earth's crust is a part of investigation aimed at extension of the Russian Federation continental shelf in the Sea of Okhotsk Gathered data allow to consider the Sea of Okhotsk' area located outside the exclusive economic zone of the Russian Federation as the natural continuation of Russian territory. The Sea of Okhotsk is an Epi-Mesozoic platform with Pre-Cenozoic heterogeneous folded basement of polycyclic development and sediment cover mainly composed of Paleocene - Neocene - Quaternary deposits. Results of processing and complex interpretation of seismic, gravity, and aeromagnetic data along profile 2-DV-M, as well as analysis of available geological and geophysical information on the Sea of Okhotsk region, allowed to calculate of the Earth crust model. 4 layers stand out (bottom-up) in structure of the Earth crust: granulite-basic (density 2.90 g/cm3), granite-gneiss (limits of density 2.60-2.76 g/cm3), volcanogenic-sedimentary (2.45 g/cm3) and sedimentary (density 2.10 g/cm3). The last one is absent on the continent; it is observed only on the water area. Density of the upper mantle is taken as 3.30 g/cm3. The observed gravity anomalies are mostly related to the surface relief of the above mentioned layers or to the density variations of the granite-metamorphic basement. So outlining of the basement blocks of different constitution preceded to the modeling. This operation is executed after Double Fourier Spectrum analysis of the gravity and magnetic anomalies and following compilation of the synthetic anomaly maps, related to the basement density and magnetic heterogeneity. According to bathymetry data, the Sea of Okhotsk can be subdivided at three mega-blocks. Taking in consideration that central Sea of Okhotsk area is aseismatic, i.e. isostatic compensated, it is obvious that Earth crust structure of these three blocks is different. The South-Okhotsk depression is characteristics by 3200-3300 m of sea depths. Moho surface in this area is at the depth 15-17 km and intracrustal Konrad surface - at the depth 8-9 km. Thickness of sediment cover in the South-Okhotsk depression is up to 4-6 km. Type of the Earth's crust in the South-Okhotsk depression has to be defined as suboceanic. Steep slope with the more than 1.5 km depth difference separates South-Okhotsk depression from mega-block including Academy of Sciences and Institute of Oceanology Uplifts and Central Okhotsk and Deryugin Depression. Sea depths in this area are alterating mostly between 1000 and 1500 m. Moho surface in this mega-block is at the depth 23-25 km and intracrustal Konrad surface - at the depth 13-14 km with the exception of Deryugin Depression (10 km). Thickness of sediment cover varies up to 2-4 km and only in the Deryugin Depression reaches 9 km. Type of the Earth's crust in this mega-block has to be defined as continental. Northern and north-eastern parts of the Sea of Okhotsk is characteristics by 200-300 m sea depths (with the exclusion of the Tinro depression). Moho surface in this area is at the depth 28-32 km and intracrustal Konrad surface - at the depth 13-18 km with the exception of Tinro Depression (10 km). Thickness of sediment cover is minimal and only in the Tinro Depression reaches 8-9 km. Complete similarity of the potential field anomaly distribution in this region and in the western Kamchatka region is remarkable. The distribution of the potential field anomalies and features of the constructed Earth's crust density model give us evidences of Pre-Late Cretaceous consolidation of basement in northern and north-eastern parts of the Sea of Okhotsk as well as in the Russian territory of western Kamchatka peninsula.

  11. What We Do Not Yet Know About Global Ocean Depths, and How Satellite Altimetry Can Help

    NASA Astrophysics Data System (ADS)

    Smith, W. H. F.; Sandwell, D. T.; Marks, K. M.

    2017-12-01

    Half Earth's ocean floor area lies several km or more away from the nearest depth measurement. Areas more than 50 km from any sounding sum to a total area larger than the entire United States land area; areas more than 100 km from any sounding comprise a total area larger than Alaska. In remote basins the majority of available data were collected before the mid-1960s, and so often are mis-located by many km, as well as mis-digitized. Satellite altimetry has mapped the marine gravity field with better than 10 km horizontal resolution, revealing nearly all seamounts taller than 2 km; new data can detect some seamounts less than 1 km tall. Seafloor topography can be estimated from satellite altimetry if sediment is thin and relief is due to seafloor spreading and mid-plate volcanism. The accuracy of the estimate depends on the geological nature of the relief and on the accuracy of the soundings available to calibrate the estimation. At best, the estimate is a band-pass-filtered version of the true depth variations, but does not resolve the small-scale seafloor roughness needed to model mixing and dissipation in the ocean. In areas of thick or variable sediment cover there can be little correlation between depth and altimetry. Yet altimeter-estimated depth is the best guess available in most of the ocean. The MH370 search area provides an illustration. Prior to the search it was very sparsely (1% to 5%) covered by soundings, many of these were old, low-tech data, and plateaus with thick sediments complicate the estimation of depth from altimetry. Even so, the estimate was generally correct about the tectonic nature of the terrain and the extent of depth variations to be expected. If ships will fill gaps strategically, visiting areas where altimetry shows that interesting features will be found, and passing near the centroids of the larger gaps, the data will be exciting in their own right and will also improve future altimetry estimates.

  12. A conceptual model of the Mount Spurr magmatic system from seismic and geochemical observations of the 1992 Crater Peak eruption sequence

    USGS Publications Warehouse

    Power, J.; Jolly, A.; Nye, C.; Harbin, M.

    2002-01-01

    A conceptual model of the geometry and dynamics of the Mount Spurr magmatic system is developed using seismic, geochemical, and visual observations of the 1992 Crater Peak eruption sequence. The basis for this model is a new classification of all located seismic events and results from prior studies of seismology, geology, geochemistry, and geophysics of the Mount Spurr area. Significant seismic features of the 1992 eruption sequence include (1) a distinct swarm of volcano-tectonic (VT) earthquakes in August 1991 directly beneath the Crater Peak vent, (2) a caldera-wide increase in VT earthquakes, lasting 7 months, which preceded the 27 June eruption, (3) two shallow swarms of VT earthquakes that occured on 5 June and 27 June, the latter immediately preceding the 27 June eruption, (4) a mix of VT, long-period (LP), and hybrid events at depths of 20-40 km, which began coincident with the onset of seismic unrest and reached a peak after eruptive activity ended, (5) a strong swarm of VT earthquakes that began as the 16-17 September eruption was ending, (6) a prominent swarm of VT earthquakes on 9-10 November at depths of 1 to 4 km beneath Crater Peak, and (7) a smaller swarm of VT earthquakes in late December 1992, which were located between 7 and 10 km depth. These seismic observations, combined with geological, geochemical, and geophysical data and observations, suggest a deep magmatic source zone for Crater Peak andesites at depths of 20-40 km, a smaller mid-crustal storage zone at about 10 km depth, and a conduit that extends to the surface. We infer that the magmas erupted in 1992 were generated at depths of 20-40 km and rose to the mid-crustal storage zone that fed all three 1992 eruptions. The 1992 eruption sequence may have terminated when additional magma solidified at shallow depths.

  13. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases

    NASA Astrophysics Data System (ADS)

    Warr, Oliver; Sherwood Lollar, Barbara; Fellowes, Jonathan; Sutcliffe, Chelsea N.; McDermott, Jill M.; Holland, Greg; Mabry, Jennifer C.; Ballentine, Christopher J.

    2018-02-01

    We show that fluid volumes residing within the Precambrian crystalline basement account for ca 30% of the total groundwater inventory of the Earth (> 30 million km3). The residence times and scientific importance of this groundwater are only now receiving attention with ancient fracture fluids identified in Canada and South Africa showing: (1) microbial life which has existed in isolation for millions of years; (2) significant hydrogen and hydrocarbon production via water-rock reactions; and (3) preserving noble gas components from the early atmosphere. Noble gas (He, Ne, Ar, Kr, Xe) abundance and isotopic compositions provide the primary evidence for fluid mean residence time (MRT). Here we extend the noble gas data from the Kidd Creek Mine in Timmins Ontario Canada, a volcanogenic massive sulfide (VMS) deposit formed at 2.7 Ga, in which fracture fluids with MRTs of 1.1-1.7 Ga were identified at 2.4 km depth (Holland et al., 2013); to fracture fluids at 2.9 km depth. We compare here the Kidd Creek Mine study with noble gas compositions determined in fracture fluids taken from two mines (Mine 1 & Mine 2) at 1.7 and 1.4 km depth below surface in the Sudbury Basin formed by a meteorite impact at 1.849 Ga. The 2.9 km samples at Kidd Creek Mine show the highest radiogenic isotopic ratios observed to date in free fluids (e.g. 21Ne/22Ne = 0.6 and 40Ar/36Ar = 102,000) and have MRTs of 1.0-2.2 Ga. In contrast, resampled 2.4 km fluids indicated a less ancient MRT (0.2-0.6 Ga) compared with the previous study (1.1-1.7 Ga). This is consistent with a change in the age distribution of fluids feeding the fractures as they drain, with a decreasing proportion of the most ancient end-member fluids. 129Xe/136Xe ratios for these fluids confirm that boreholes at 2.4 km versus 2.9 km are sourced from hydrogeologically distinct systems. In contrast, results for the Sudbury mines have MRTs of 0.2-0.6 and 0.2-0.9 Ga for Mines 1 and 2 respectively. While still old compared to almost all groundwaters reported in the literature to date, these younger residence times compared to Kidd Creek Mine are consistent with significant fracturing created by the impact event, facilitating more hydrogeologic connection and mixing of fluids in the basin. In all samples from both Kidd Creek Mine and Sudbury, a 124-128Xe excess is identified over modern air values. This is attributed to an early atmospheric xenon component, previously identified at Kidd Creek Mine but which has to date not been observed in fluids with a residence time as recent as 0.2-0.6 Ga. The temporal and spatial sampling at Kidd Creek Mine is also used to verify our proposed conceptual model which provides key constraints regarding distribution, volumes and residence times of fracture fluids on the smaller, regional, scale.

  14. The structure of 0- to 0.2-m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles

    NASA Astrophysics Data System (ADS)

    Vera, E. E.; Mutter, J. C.; Buhl, P.; Orcutt, J. A.; Harding, A. J.; Kappus, M. E.; Detrick, R. S.; Brocher, T. M.

    1990-09-01

    We analyze four expanded spread profiles acquired at distances of 0, 2.1, 3.1, and 10 km (0-0.2 m.y.) from the axis of the East Pacific Rise between 9° and 10°N. Velocity-depth models for these profiles have been obtained by travel time inversion in the τ-p domain, and by x-t forward modeling using the WKBJ and the reflectivity methods. We observe refracted arrivals that allow us to determine directly the uppermost crustal velocity structure (layer 2A). At the seafloor we find very low Vp and VS/Vp values around 2.2 km/s and ≤ 0.43. In the topmost 100-200 m of the crust, Vp remains low (≤ 2.5 km/s) then rapidly increases to 5 km/s at ˜500 m below the seafloor. High attenuation values (Qp < 100) are suggested in the topmost ˜500 m of the crust. The layer 2-3 transition probably occurs within the dike unit, a few hundred meters above the dike-gabbro transition. This transition may mark the maximum depth of penetration by a cracking front and associated hydrothermal circulation in the axial region above the axial magma chamber (AMC). The on-axis profile shows arrivals that correspond to the bright AMC event seen in reflection lines within 2 km of the rise axis. The top of the AMC lies 1.6 km below the seafloor and consists of molten material where Vp ≈ 3 km/s and VS = 0. Immediately above the AMC, there is a zone of large negative velocity gradients where, on the average, Vp decreases from ˜6.3 to 3 km/s over a depth of approximately 250 m. Associated with the AMC there is a low velocity zone (LVZ) that extends to a distance no greater than 10 km away from the rise axis. At the top of the LVZ, sharp velocity contrasts are confined to within 2 km of the rise axis and are associated with molten material or material with a high percentage of melt which would be concentrated only in a thin zone at the apex of the LVZ, in the axial region where the AMC event is seen in reflection lines. Away from the axis, the transition to the LVZ is smoother, the top of the LVZ is deeper, and the LVZ is less pronounced. The bottom of the LVZ is probably located near the bottom of the crust and above the Moho. Moho arrivals are observed in the profiles at zero and at 10 km from the rise axis. Rather than a single discontinuity, these arrivals indicate an approximately 1-km-thick Moho transition zone.

  15. Electrical structure of the central Cascadia subduction zone: The EMSLAB Lincoln Line revisited

    NASA Astrophysics Data System (ADS)

    Evans, Rob L.; Wannamaker, Philip E.; McGary, R. Shane; Elsenbeck, Jimmy

    2014-09-01

    The EMSLAB experiment was an ambitious onshore-offshore magnetotelluric (MT) transect of the Cascadia subduction zone. When completed (1985-1988), it was the largest experiment of its kind. Modeling and inversion capabilities at the time were, however, not sufficiently sophisticated to handle a fully regularized inversion of the data, including the seafloor data and bathymetric constraints, with the main final model presented based on trial and error forward modeling of the responses. Moreover, new data collected as part of the Earthscope USArray program are of higher quality due to improvements in instrument technology, and augment the original EMSLAB data set, presenting an opportunity to revisit the structure in this part of the subduction system. We have integrated the original wide-band MT data as well as several long-period stations from the original EMSLAB data set and invert these in conjunction with EMSLAB seafloor responses and new Earthscope data on land. This new composite data set has been analyzed in several ways, within a two-dimensional geometry in which conductivity is assumed to be invariant along a strike direction roughly coincident with that of the subduction zone. We have solved for fully smooth regularized models, as well as solutions that allow discontinuities in conductivity along the top surface of the descending slab. Finally, we have tested specific features in the EMSLAB model, notably a moderately shallow ( 30 km depth) forearc conductor. A feature similar to this shallow conductor is a consistent and required feature in our new inversion models, but the new models highlight the connection between the slab and what is interpreted to be an accumulation of aqueous fluids in the deep crust. The depth ( 40 km) at which the conductor intersects the slab suggests that the fluids are released by the transition of hydrous basalt to eclogite at upper greenschist facies and higher metamorphic grade. The nose of the mantle wedge has a conductivity consistent with a dry peridotite composition and thermal models of the system. At a depth of around 80 km the mantle intersecting the slab shows a slight increase in conductivity. This increase is not sufficient to require the presence of melt, but a conductor indicative of melt can be inserted into the model at this depth without compromising the fit.

  16. 23 October 2011 (Mw=7.2) Van Earthquake (Turkey): Revised Coseismic and Postseismic Models from New GPS Observations

    NASA Astrophysics Data System (ADS)

    Dogan, U.; Demir, D. O.; Cakir, Z.; Ergintav, S.; Cetin, S.; Ozdemir, A.; Reilinger, R. E.

    2017-12-01

    The 23 October 2011, Mw=7.2 Van Earthquake occurred in eastern Turkey on a thrust fault trending NE-SW and dipping to the north. We use GPS time series from the survey and continuous stations to determine coseismic deformation and to identify spatial and temporal changes in the near and far field due to postseismic processes (2011-2017). The coseismic deformation in the near field is derived from GPS data collected at 25 cadastral GPS survey sites. The coseismic horizontal displacements reach nearly 50 cm close to the surface trace of the fault that ruptured at depth during the earthquake. The density and distribution of the GPS sites allow us to better constrain the extent of the coseismic rupture using elastic dislocations on triangular faults embedded in a homogeneous, elastic half space. Modeling studies suggest that the coseismic rupture stopped west of the Erçek Lake before veering to the north. Estimated seismic moment is in good agreement with the seismologically and geodetically estimated seismic moment, estimated from the finite-fault model. Our preferred coseismic model consists of a simple elliptical slip patch centered at around 8 km depth with a maximum slip of about 2.5 m, consistent with the previous estimates based on InSAR measurements. The postseismic deformation field is derived from far field continuous GPS observations (10.2011 - 11.2017) and near field GPS campaigns (10.2011 - 09.2015). The postseismic time-series are fit better with a logarithmic than an exponential function, suggesting that the postseismic deformation is due to afterslip. Then, we modified our published postseismic model, using the coseismic model and data sets, extended until the end of 2017. The results show that during 6 years following the earthquake, after slip of up to 65 cm occurred at relatively shallow (< 10 km) depths, mostly above the deep coseismic slip that reaches depths > 15 km. New interpretations of the shallow afterslip, also, adds further evidence that the surface break observed after the earthquake was caused by coseismic stress changes rather than representing the coseismic fault. (This study is supported by TUBITAK no: 112Y109 project). Keywords: Van earthquake, GPS, coseismic, postseismic, deformation, elastic modeling

  17. Elasticity of ferropericlase and seismic heterogeneity in the Earth's lower mantle: Ferropericlase High Pressure-Temperature Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jing; Lin, Jung-Fu; Jacobsen, Steven D.

    2016-12-16

    Deciphering the origin of seismic heterogeneity has been one of the major challenges in understanding the geochemistry and geodynamics of the deep mantle. Fully anisotropic elastic properties of constituent minerals at relevant pressure-temperature conditions of the lower mantle can be used to calculate seismic heterogeneity parameters in order to better understand chemically and thermally induced seismic heterogeneities. In this study, the single-crystal elastic properties of ferropericlase (Mg0.94Fe0.06)O were measured using Brillouin spectroscopy and X-ray diffraction at conditions up to 50 GPa and 900 K. The velocity-density results were modeled using third-order finite-strain theory and thermoelastic equations along a representative geothermmore » to investigate high pressure-temperature and compositional effects on the seismic heterogeneity parameters. Our results demonstrate that from 660 to 2000 km, compressional wave anisotropy of ferropericlase increased from 4% to 9.7%, while shear wave anisotropy increased from 9% to as high as 22.5%. The thermally induced lateral heterogeneity ratio (RS/P = ∂lnVS/∂lnVP) of ferropericlase was calculated to be 1.48 at ambient pressure but decreased to 1.43 at 40 GPa along a representative geotherm. The RS/P of a simplified pyrolite model consisting of 80% bridgmanite and 20% ferropericlase was approximately 1.5, consistent with seismic models at depths from 670 to 1500 km, but showed an increased mismatch at lower mantle depths below ~1500 km. This discrepancy below mid-lower mantle could be due to either a contribution from chemically induced heterogeneity or the effects of the Fe spin transition in the deeper parts of the Earth's lower mantle.« less

  18. Physical properties and seismic structure of Izu-Bonin-Mariana fore-arc crust: Results from IODP Expedition 352 and comparison with oceanic crust

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.; Almeev, R. R.; Michibayashi, K.; Sakuyama, T.; Ferré, E. C.; Kurz, W.

    2016-12-01

    Most of the well-preserved ophiolite complexes are believed to form in suprasubduction zone (SSZ) settings. We compare physical properties and seismic structure of SSZ crust at the Izu-Bonin-Mariana (IBM) fore arc with oceanic crust drilled at Holes 504B and 1256D to evaluate the similarities of SSZ and oceanic crust. Expedition 352 basement consists of fore-arc basalt (FAB) and boninite lavas and dikes. P-wave sonic log velocities are substantially lower for the IBM fore arc (mean values 3.1-3.4 km/s) compared to Holes 504B and 1256D (mean values 5.0-5.2 km/s) at depths of 0-300 m below the sediment-basement interface. For similar porosities, lower P-wave sonic log velocities are observed at the IBM fore arc than at Holes 504B and 1256D. We use a theoretical asperity compression model to calculate the fractional area of asperity contact Af across cracks. Af values are 0.021-0.025 at the IBM fore arc and 0.074-0.080 at Holes 504B and 1256D for similar depth intervals (0-300 m within basement). The Af values indicate more open (but not necessarily wider) cracks in the IBM fore arc than for the oceanic crust at Holes 504B and 1256D, which is consistent with observations of fracturing and alteration at the Expedition 352 sites. Seismic refraction data constrain a crustal thickness of 10-15 km along the IBM fore arc. Implications and inferences are that crust-composing ophiolites formed at SSZ settings could be thick and modified after accretion, and these processes should be considered when using ophiolites as an analog for oceanic crust.

  19. Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity

    NASA Astrophysics Data System (ADS)

    Tesoniero, Andrea; Auer, Ludwig; Boschi, Lapo; Cammarano, Fabio

    2015-11-01

    We present a new global model of shear and compressional wave speeds for the entire mantle, partly based on the data set employed for the shear velocity model savani. We invert Rayleigh and Love surface waves up to the sixth overtone in combination with major P and S body wave phases. Mineral physics data on the isotropic δlnVS/δlnVP ratio are taken into account in the form of a regularization constraint. The relationship between VP and VS that we observe in the top 300 km of the mantle has important thermochemical implications. Back-arc basins in the Western Pacific are characterized by large VP/VS and not extremely low VS at ˜150 km depth, consistently with presence of water. Most pronounced anomalies are located in the Sea of Japan, in the back-arc region of the Philippine Sea, and in the South China Sea. Our results indicate the effectiveness of slab-related processes to hydrate the mantle and suggest an important role of Pacific plate subduction also for the evolution of the South China Sea. We detect lateral variations in composition within the continental lithospheric mantle. Regions that have been subjected to rifting, collisions, and flood basalt events are underlain by relatively large VP/VS ratio compared to undeformed Precambrian regions, consistently with a lower degree of chemical depletion. Compositional variations are also observed in deep lithosphere. At ˜200 km depth, mantle beneath Australia and African cratons has comparable positive VS anomalies with other continental regions, but VP is ˜1% higher.

  20. Topography of Sputnik Planitia Basin on Pluto: What We Know and Don't Know

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Beyer, R. A.; McKinnon, W. B.; Moore, J.; Spencer, J. R.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.

    2017-12-01

    Pluto's topography is complex and reflects a diversity of geologic processes throughout its history. The most dominant feature is the deep 1200-by-2000-km-wide topographic depression enclosing the Sputnik Planitia nitrogen-rich ice sheet. Centered in the encounter hemisphere this large basin is ideally suited for topographic analysis. Despite this, considerable effort is required to constrain the true depth of this giant feature due to the uncertainties in controlling MVIC line-scan images, our primary source for long-wavelength information. Here we will summarize the current state of knowledge of this feature, as processing continues. Current estimates are that the floor of the observed basin (i.e., the top of the ice sheet) is 2-2.5 km depressed below the mean elevation of the surface. There is a highly eroded annular raised arched-ridge surrounding most of the basin that rises up to 1 km above mean surface. The surface of most of the ice sheet appears to be remarkably level within the limits of measurement ( 125 m). Comparison to other similar-sized depressions on Mars and the Moon support the interpretation that this is a large ancient impact structure. The outer 20-40- km of the ice sheet can be either depressed or raised several hundred meters, with the depressed moat forming north of 30° latitude or so, the raised portions forming south of this and corresponding to areas where glacier-like flow of material from the elevated rim regions meets the ice sheet. This suggests that the equatorial areas are areas of net accumulation of ice and the areas to the north are net deflation or lateral flow. The ice sheet is also characterized by polygonal and ovoid `cells' diagnostic of convection. These have shading patterns consistent with cell centers being raised in elevation. Preliminary shape-from-shading measurements suggest elevations of 100-200 m, consistent with weak stereo observations, though much more work is required on all these topics. Interpolation of d/D statistics for smaller craters implies a minimum depth of the original basin floor of 10 km below the rim (assuming that low angle or low-impact-velocity effects do not produce an anomalous basin profile). Pending updates, this would imply a possible maximum thickness of the observed ice sheet of 6 km.

  1. Comparing Three-Dimensional Geophysical Models of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Creager, K. C.; Ulberg, C. W.; Vidale, J. E.; Levander, A.; Kiser, E.; Abers, G. A.; Crosbie, K.; Mann, M. E.; Moran, S. C.; Denlinger, R. P.; Thelen, W. A.; Hansen, S. M.; Schmandt, B.; Schultz, A.; Bowles-martinez, E.; Bedrosian, P.; Peacock, J.; Hill, G.

    2017-12-01

    The iMUSH project integrates active- and passive-source seismic experiments with magnetotelluric (MT) observations and petrology to better understand the structure and dynamics of the Mount St. Helens (MSH) magmatic system from the subducted plate to the surface. The geophysical experiments included a two-year, 70-element broadband array with 10-km station spacing within 50 km of the MSH edifice, 23 shots recorded by geophones at 6000 sites including 900 Nodal stations, and 147 wideband MT stations with 6-km nominal station spacing. We have determined 3-D models of P-wave, S-wave and P/S-wave velocity as well as 3-D electrical resistivity. Our models from independent data sets and methodologies exhibit remarkable similarity. A narrow low-VP and VS anomaly as well as a high VP/VS and conductivity anomaly is well imaged by nearly all methods at about 6-15 km beneath MSH and coincides with a previously inferred magma storage volume. The St. Helens seismic zone (SHZ), which cuts through MSH with a NNW-SSE orientation, coincides with a narrow, vertical, planar zone of high electrical conductivity and low VP from the near surface to 15 km depth where we lose resolution. The continental Moho shows strong reflectivity east of the SHZ, but is weak to non-existent to the west, perhaps because this marks the eastern edge of hydrous mineral stability in the cold mantle wedge. Farther north, a similar high-conductivity feature is imaged along the west Rainer seismic zone. High Vp/Vs and high electrical conductivity extend under the Indian Heaven volcanic field at depths of 5-15 km, potentially associated with regions of partial melt and/or fluids. Mid- to lower-crustal velocities are generally fast to the west of MSH, consistent with the presence of the accreted Siletz terrane, and slow to the east suggesting both a change in composition and higher temperatures. Moderate lower-crustal resistivity is also present to the east, and is consistent with a small degree of partial melt. Several plutons, including the Spirit Lake, Spud Mountain and Silver Star plutons, are clearly imaged as high wave speeds and high resistivity anomalies in the upper crust, while the Chehalis Basin and Morton Anticline exhibit very low wave speeds and extremely low resistivities, indicative of marine to transitional Tertiary sediments.

  2. A 2006 earthquakes series at the Colima rift and its relationship to the Rivera-Cocos plate boundary

    NASA Astrophysics Data System (ADS)

    Yamamoto, J.; Jimenez, Z.

    2013-12-01

    From July 31 through 13 August 2006 a series of fourteen earthquakes (M 3.9 to 6.1) occurred in the western end of the Central Mexican Volcanic Belt (CMVB) in twenty five days period. The most prominent earthquake (Mw 6.1) occurred on 11 August 2006 at 14:30 UTC (9:30 local time) approximately at 18.37° N, 101.25° W and 81 km depth. The epicenter was less than 40 km from Huetamo, Michoacan a 41,250-inhabitant city and 60 km from the El Infiernillo dam embayment the third largest hydroelectric plant in Mexico. This earthquake was widely felt through out the region with minor to moderate reported damage. In Mexico City 250 km away from the epicenter the earthquake, produced alarm among the population and several buildings evacuated. The earthquake series developed into two activity clusters one centered in the coast and separated about 300 km from a second inland cluster. The initial coastal cluster consisted of a nearly linear activity distribution which includes two shallow-depth earthquakes and reverse faulting mechanism with a slight left lateral strike-slip component and a possible fault planes trending roughly east-west. Two normal faulting earthquakes located at the extremes of the graben system, and fault planes oriented in a nearly north-south direction followed. The earthquakes are located approximately between the trench and the coast along the El Gordo-Colima graben system, which has been proposed as the continuation of the diffuse boundary between the Rivera and Cocos plates. The reverse faulting earthquakes are congruent either, with the expected subduction of the Rivera or Cocos plate under the North America plate and the normal faulting earthquake that can be associated to motions in the graben.

  3. The 2007 Nazko, British Columbia, earthquake sequence: Injection of magma deep in the crust beneath the Anahim volcanic belt

    USGS Publications Warehouse

    Cassidy, J.F.; Balfour, N.; Hickson, C.; Kao, H.; White, Rickie; Caplan-Auerbach, J.; Mazzotti, S.; Rogers, Gary C.; Al-Khoubbi, I.; Bird, A.L.; Esteban, L.; Kelman, M.; Hutchinson, J.; McCormack, D.

    2011-01-01

    On 9 October 2007, an unusual sequence of earthquakes began in central British Columbia about 20 km west of the Nazko cone, the most recent (circa 7200 yr) volcanic center in the Anahim volcanic belt. Within 25 hr, eight earthquakes of magnitude 2.3-2.9 occurred in a region where no earthquakes had previously been recorded. During the next three weeks, more than 800 microearthquakes were located (and many more detected), most at a depth of 25-31 km and within a radius of about 5 km. After about two months, almost all activity ceased. The clear P- and S-wave arrivals indicated that these were high-frequency (volcanic-tectonic) earthquakes and the b value of 1.9 that we calculated is anomalous for crustal earthquakes but consistent with volcanic-related events. Analysis of receiver functions at a station immediately above the seismicity indicated a Moho near 30 km depth. Precise relocation of the seismicity using a double-difference method suggested a horizontal migration at the rate of about 0:5 km=d, with almost all events within the lowermost crust. Neither harmonic tremor nor long-period events were observed; however, some spasmodic bursts were recorded and determined to be colocated with the earthquake hypocenters. These observations are all very similar to a deep earthquake sequence recorded beneath Lake Tahoe, California, in 2003-2004. Based on these remarkable similarities, we interpret the Nazko sequence as an indication of an injection of magma into the lower crust beneath the Anahim volcanic belt. This magma injection fractures rock, producing high-frequency, volcanic-tectonic earthquakes and spasmodic bursts.

  4. Saudi Arabian seismic-refraction profile: A traveltime interpretation of crustal and upper mantle structure

    USGS Publications Warehouse

    Mooney, W.D.; Gettings, M.E.; Blank, H.R.; Healy, J.H.

    1985-01-01

    The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea. Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust. A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives. The Mohorovic??ic?? discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth. The crustal and upper mantle velocity structure of the Arabian Shield is interpreted as revealing a complex crust derived from the suturing of island arcs in the Precarnbrian. The Shield is currently flanked by the active spreading boundary in the Red Sea. ?? 1985.

  5. Why do magmas stall? Insights from petrologic and geodetic data

    NASA Astrophysics Data System (ADS)

    Zimmer, M. M.; Plank, T.; Freymueller, J.; Hauri, E. H.; Larsen, J. F.; Nye, C. J.

    2007-12-01

    Magmas stall at various depths in the crust due to their internal properties (magma viscosity, buoyancy) and external crustal controls (local stress regime, wallrock strength). Annen et al. (JPet 2006) propose a petrological model in which buoyant magma ascends through the crust until the depth of water saturation, after which it crystallizes catastrophically and stalls due to the large increase in magma viscosity. Magmas may erupt from this storage region, or viscous death may result in pluton formation. In order to test this model, and constrain magma storage depths, we combine petrological and geodetic data for several active volcanoes along the Aleutian-Alaska arc. We analyzed glassy, primarily olivine-hosted melt inclusions by SIMS in tephra samples for their pre-eruptive volatile contents, which can be related to the depth of entrapment via pressure-dependent H2O-CO2 solubility models (e.g., VolatileCalc). Melt inclusions are not in equilibrium with pure water vapor (all will contain S and C species), but >50% of the inclusion population are in equilibrium with a vapor containing >85% H2O. Geodetic data (InSAR, GPS) record surface deformation related to volcano inflation/deflation, and can be inverted to solve for the depths of volume change (magma storage) in the crust. In the Aleutians, we find that the maximum melt inclusion trapping depths and geodetic depths correlate, suggesting both techniques record crustal magma storage and crystallization. Melt inclusions from the 1997 Okmok eruption are trapped at ≤3 km; deformation during the eruption and subsequent inflation occurred at 3±0.5 km (Miyagi et al., EPSL 2004; Lu & Masterlark, JGR 2005). At Akutan, melt inclusions and GPS data indicate magma storage at ~5-7 km. Inclusions from flank cones of Makushin yield depths of 7 km, similar to inflation observed beneath the main edifice (6.8 km, Lu et al., JGR 2002). Pleistocene inclusions from Augustine volcano indicate magma storage at 10-18 km, in accord with a deep magma source proposed for the 2006 eruption. Melt inclusions from Shishaldin are trapped at depths up to 4 km, coincident with the base of the conduit (Vergnoille & Caplan Auerbach, BVolc 2006). Other volcanoes record similar depths of melt inclusion entrapment and deformation, including Mt. St. Helens, Irazú, Soufriere Hills, Vesuvius, and Etna. Clearly, crystallization will occur where magmas stall, cool, and degas, so it may not be surprising that the depths of deformation correlate with the depths of melt inclusion entrapment. But the question of why magmas stall at various depths remains. In the Aleutians, maximum H2O contents of melt inclusions (from 2 wt% at Shishaldin to 7 wt% at Augustine) negatively correlate with measures of the degree of mantle melting (Ti6.0 and Y6.0), which is expected if water drives mantle melting beneath arcs (e.g. Kelley et al. JGR 2006; Portnyagin et al EPSL 2007). Thus, if magmas stall near the depths where they reach H2O-saturation, as predicted by Annen et al. and observed here, then magma chamber and pluton depths may ultimately be controlled by the primary magmatic water contents set in the mantle.

  6. Yellowstone Hotspot Geodynamics

    NASA Astrophysics Data System (ADS)

    Smith, R. B.; Farrell, J.; Massin, F.; Chang, W.; Puskas, C. M.; Steinberger, B. M.; Husen, S.

    2012-12-01

    The Yellowstone hotspot results from the interaction of a mantle plume with the overriding N. America plate producing a ~300-m high topographic swell centered on the Late Quaternary Yellowstone volcanic field. The Yellowstone area is dominated by earthquake swarms including a deadly M7.3 earthquake, extraordinary high heat flow up to ~40,000 mWm-2, and unprecedented episodes of crustal deformation. Seismic tomography and gravity data reveal a crustal magma reservoir, 6 to 15 km deep beneath the Yellowstone caldera but extending laterally ~20 km NE of the caldera and is ~30% larger than previously hypothesized. Kinematically, deformation of Yellowstone is dominated by regional crustal extension at up to ~0.4 cm/yr but with superimposed decadal-scale uplift and subsidence episodes, averaging ~2 cm/yr from 1923. From 2004 to 2009 Yellowstone experienced an accelerated uplift episode of up to 7 cm/yr whose source is modeled as magmatic recharge of a sill at the top of the crustal magma reservoir at 8-10-km depth. New mantle tomography suggest that Yellowstone volcanism is fed by an upper-mantle plume-shaped low velocity body that is composed of melt "blobs", extending from 80 km to 650 km in depth, tilting 60° NW, but then reversing tilt to ~60° SE to a depth of ~1500 km. Moreover, images of upper mantle conductivity from inversion of MT data reveal a high conductivity annulus around the north side of the plume in the upper mantle to resolved depths of ~300 km. On a larger scale, upper mantle flow beneath the western U.S. is characterized by eastward flow beneath Yellowstone at 5 cm/yr that deflects the plume to the west, and is underlain by a deeper zone of westerly return flow in the lower mantle reversing the deflection of the plume body to the SE. Dynamic modeling of the Yellowstone plume including a +15 m geoid anomaly reveals low excess plume temperatures, up to 150°K, consistent with a weak buoyancy flux of ~0.25 Mg/s. Integrated kinematic modeling of GPS, Quaternary fault slip, and seismic data suggest that the gravitational potential of the Yellowstone swell creates a regional extension affecting much of the western U.S. Overall, the Yellowstone hotspot swell is the vertex of tensional stress axes rotation from E-W in the Basin-Range to NE-SW at the Yellowstone Plateau as well as the cause of edge faulting, nucleating the nearby Teton and Centennial faults. We extrapolate the original location of the Yellowstone mantle-source southwestward 800 km to an initial position at 17 million years ago beneath eastern Oregon and Washington suggesting a common origin for the YSRP and Columbia Plateau volcanism. We propose that the original plume head ascended vertically behind the subducting Juan de Fuca plate, but was entrained ~12 Ma ago in a faster mantle flow beneath the continental lithosphere and tilted into its present configuration.

  7. Fault zone characteristics and basin complexity in the southern Salton Trough, California

    USGS Publications Warehouse

    Persaud, Patricia; Ma, Yiran; Stock, Joann M.; Hole, John A.; Fuis, Gary S.; Han, Liang

    2016-01-01

    Ongoing oblique slip at the Pacific–North America plate boundary in the Salton Trough produced the Imperial Valley (California, USA), a seismically active area with deformation distributed across a complex network of exposed and buried faults. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project to construct a three-dimensional P-wave velocity model down to 8 km depth and a velocity profile to 15 km depth, both at 1 km grid spacing. A VP = 5.65–5.85 km/s layer of possibly metamorphosed sediments within, and crystalline basement outside, the valley is locally as thick as 5 km, but is thickest and deepest in fault zones and near seismicity lineaments, suggesting a causative relationship between the low velocities and faulting. Both seismicity lineaments and surface faults control the structural architecture of the western part of the larger wedge-shaped basin, where two deep subbasins are located. We estimate basement depths, and show that high velocities at shallow depths and possible basement highs characterize the geothermal areas.

  8. Differences in meiofauna communities with sediment depth are greater than habitat effects on the New Zealand continental margin: implications for vulnerability to anthropogenic disturbance

    PubMed Central

    Leduc, Daniel; Rowden, Ashley A.; Clark, Malcolm R.; Probert, P. Keith; Berkenbusch, Katrin; Neira, Carlos

    2016-01-01

    Studies of deep-sea benthic communities have largely focused on particular (macro) habitats in isolation, with few studies considering multiple habitats simultaneously in a comparable manner. Compared to mega-epifauna and macrofauna, much less is known about habitat-related variation in meiofaunal community attributes (abundance, diversity and community structure). Here, we investigated meiofaunal community attributes in slope, canyon, seamount, and seep habitats in two regions on the continental slope of New Zealand (Hikurangi Margin and Bay of Plenty) at four water depths (700, 1,000, 1,200 and 1,500 m). We found that patterns were not the same for each community attribute. Significant differences in abundance were consistent across regions, habitats, water and sediment depths, while diversity and community structure only differed between sediment depths. Abundance was higher in canyon and seep habitats compared with other habitats, while between sediment layer, abundance and diversity were higher at the sediment surface. Our findings suggest that meiofaunal community attributes are affected by environmental factors that operate on micro- (cm) to meso- (0.1–10 km), and regional scales (> 100 km). We also found a weak, but significant, correlation between trawling intensity and surface sediment diversity. Overall, our results indicate that variability in meiofaunal communities was greater at small scale than at habitat or regional scale. These findings provide new insights into the factors controlling meiofauna in these deep-sea habitats and their potential vulnerability to anthropogenic activities. PMID:27441114

  9. Geochemistry and stratigraphic correlation of basalt lavas beneath the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Reed, M.F.; Bartholomay, R.C.; Hughes, S.S.

    1997-01-01

    Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38-40 m, 125-128 m, 131-137 m, 149-158 m, and 183-198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1-2 km of the eastern Snake River Plain.

  10. NV PFA Regional Data

    DOE Data Explorer

    James Faulds

    2015-10-28

    This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region. Data included in this submission consists of: structural settings (target areas, recency of faulting, slip and dilation potential, slip rates, quality), regional-scale strain rates, earthquake density and magnitude, gravity data, temperature at 3 km depth, permeability models, favorability models, degree of exploration and exploration opportunities, data from springs and wells, transmission lines and wilderness areas, and published maps and theses for the Nevada Play Fairway area.

  11. Mechanical behaviour of the lithosphere beneath the Adamawa uplift (Cameroon, West Africa) based on gravity data

    NASA Astrophysics Data System (ADS)

    Poudjom Djomani, Y. H.; Diament, M.; Albouy, Y.

    1992-07-01

    The Adamawa massif in Central Cameroon is one of the African domal uplifts of volcanic origin. It is an elongated feature, 200 km wide. The gravity anomalies over the Adamawa uplift were studied to determine the mechanical behaviour of the lithosphere. Two approaches were used to analyse six gravity profiles that are 600 km long and that run perpendicular to the Adamawa trend. Firstly, the coherence function between topography and gravity was interpreted; secondly, source depth estimations by spectral analysis of the gravity data was performed. To get significant information for the interpretation of the experimental coherence function, the length of the profiles was varied from 320 km to 600 km. This treatment allows one to obtain numerical estimates of the coherence function. The coherence function analysis points out that the lithosphere is deflected and thin beneath the Adamawa uplift, and the Effective Elastic Thickness is of about 20 km. To fit the coherence, a load from below needs to be taken into account. This result on the Adamawa massif is of the same order of magnitude as those obtained on other African uplifts such as Hoggar, Darfur and Kenya domes. For the depth estimation, three major density contrasts were found: the shallowest depth (4-15 km) can be correlated to shear zone structures and the associated sedimentary basins beneath the uplift; the second density contrast (18-38 km) corresponds to the Moho; and finally, the last depth (70-90 km) would be the top of the upper mantle and demotes the low density zone beneath the Adamawa uplift.

  12. Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data

    USGS Publications Warehouse

    Murray, Jessica R.; Minson, Sarah E.; Svarc, Jerry L.

    2014-01-01

    Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earth's surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earth's surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates.

  13. Rupture process of 2016, 25 January earthquake, Alboran Sea (South Spain, Mw= 6.4) and aftershocks series

    NASA Astrophysics Data System (ADS)

    Buforn, E.; Pro, C.; del Fresno, C.; Cantavella, J.; Sanz de Galdeano, C.; Udias, A.

    2016-12-01

    We have studied the rupture process of the 25 January 2016 earthquake (Mw =6.4) occurred in South Spain in the Alboran Sea. Main shock, foreshock and largest aftershocks (Mw =4.5) have been relocated using the NonLinLoc algorithm. Results obtained show a NE-SW distribution of foci at shallow depth (less than 15 km). For main shock, focal mechanism has been obtained from slip inversion over the rupture plane of teleseismic data, corresponding to left-lateral strike-slip motion. The rupture starts at 7 km depth and it propagates upward with a complex source time function. In order to obtain a more detailed source time function and to validate the results obtained from teleseismic data, we have used the Empirical Green Functions method (EGF) at regional distances. Finally, results of the directivity effect from teleseismic Rayleigh waves and the EGF method, are consistent with a rupture propagation to the NE. These results are interpreted in terms of the main geological features in the region.

  14. Long-term measurements of acoustic background noise in very deep sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.; NEMO Collaboration

    2009-06-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration installed, 25 km E offshore the port of Catania (Sicily) at 2000 m depth, an underwater laboratory to perform long-term tests of prototypes and new technologies for an underwater high energy neutrino km-scale detector in the Mediterranean Sea. In this framework the Collaboration deployed and successfully operated for about two years, starting from January 2005, an experimental apparatus for on-line monitoring of deep-sea noise. The station was equipped with four hydrophones and it is operational in the range 30 Hz-43 kHz. This interval of frequencies matches the range suitable for the proposed acoustic detection technique of high energy neutrinos. Hydrophone signals were digitized underwater at 96 kHz sampling frequency and 24 bits resolution. The stored data library, consisting of more than 2000 h of recordings, is a unique tool to model underwater acoustic noise at large depth, to characterize its variations as a function of environmental parameters, biological sources and human activities (ship traffic, etc.), and to determine the presence of cetaceans in the area.

  15. Loki Patera: A Magma Sea Story

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.; Matson, D. L.; Rathbun, A. G.

    2005-01-01

    We consider Loki Patera on Io as the surface expression of a large uniform body of magma. Our model of the Loki magma sea is some 200 km across; larger than a lake but smaller than an ocean. The depth of the magma sea is unknown, but assumed to be deep enough that bottom effects can be ignored. Edge effects at the shore line can be ignored to first order for most of the interior area. In particular, we take the dark material within Loki Patera as a thin solidified lava crust whose hydrostatic shape follows Io's isostatic surface (approx. 1815 km radius of curvature). The dark surface of Loki appears to be very smooth on both regional and local (subresolution) scales. The thermal contrast between the low and high albedo areas within Loki is consistent with the observed global correlation. The composition of the model magma sea is basaltic and saturated with dissolved SO2 at depth. Its average, almost isothermal, temperature is at the liquidus for basalt. Additional information is included in the original extended abstract.

  16. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  17. Confirmation of a change in the global shear velocity pattern at around 1,000 km depth

    NASA Astrophysics Data System (ADS)

    Debayle, E.; Durand, S.; Ricard, Y. R.; Zaroli, C.; Lambotte, S.

    2017-12-01

    In this study, we confirm the existence of a change in the shear velocity spectrum around 1,000 km depth based on a new shear velocity tomographic model of the Earth's mantle, SEISGLOB2. This model is based on Rayleigh surface wave phase velocities, self- and cross- coupling structure coefficients of spheroidal normal modes and body wave travel times which are, for the first time, combined in a tomographic inversion. SEISGLOB2 is developed up to spherical harmonic degree 40 and in 21 radial spline functions. The spectrum of SEISGLOB2 is the flattest (i.e., richest in "short" wavelengths corresponding to spherical harmonic degrees greater than 10) around 1,000 km depth and this flattening occurs between 670 and 1,500 km depth. We also confirm various changes in the continuity of slabs and mantle plumes all around 1,000 km depth where we also observed the upper boundary of LLSVPs. The existence of a flatter spectrum, richer in short wavelength heterogeneities, in a region of the mid-mantle can have great impacts on our understanding of the mantle dynamics and should thus be better understood in the future. Although a viscosity increase, a phase change or a compositional change can all concur to induce this change of pattern, its precise origin is still very uncertain.

  18. Electrical conductivity imaging in the western Pacific subduction zone

    NASA Astrophysics Data System (ADS)

    Utada, Hisashi; Baba, Kiyoshi; Shimizu, Hisayoshi

    2010-05-01

    Oceanic plate subduction is an important process for the dynamics and evolution of the Earth's interior, as it is regarded as a typical downward flow of the mantle convection that transports materials from the near surface to the deep mantle. Recent seismological study showed evidence suggesting the transportation of a certain amount of water by subduction of old oceanic plate such as the Pacific plate down to 150-200 km depth into the back arc mantle. However it is not well clarified how deep into the mantle the water can be transported. The electromagnetic induction method to image electrical conductivity distribution is a possible tool to answer this question as it is known to be sensitive to the presence of water. Here we show recent result of observational study from the western Pacific subduction zone to examine the electrical conductivity distribution in the upper mantle and in the mantle transition zone (MTZ), which will provide implications how water distributes in the mantle. We take two kinds of approach for imaging the mantle conductivity, (a) semi-global and (b) regional induction approaches. Result may be summarized as follows: (a) Long (5-30 years) time series records from 8 submarine cables and 13 geomagnetic observatories in the north Pacific region were analyzed and long period magnetotelluric (MT) and geomagnetic deep sounding (GDS) responses were estimated in the period range from 1.7 to 35 days. These frequency dependent response functions were inverted to 3-dimensional conductivity distribution in the depth range between 350 and 850 km. Three major features are suggested in the MTZ depth such as, (1) a high conductivity anomaly beneath the Philippine Sea, (2) a high conductivity anomaly beneath the Hawaiian Islands, and (3) a low conductivity anomaly beneath and in the vicinity of northern Japan. (b) A three-year long deployment of ocean bottom electro-magnetometers (OBEM's) was conducted in the Philippine Sea and west Pacific Ocean from 2005 to 2008. As a preliminary investigation, MT response functions from 20 sites in the Philippine Sea and 4 sites in the west Pacific basin in the period range between 300 and 80000 sec were respectively inverted to one-dimensional (1-D) profile of electrical conductivity by quantitatively considering the effect of the heterogeneous conductivity distribution (ocean and lands) at the surface. The resultant 1-D models show three main features: (1) Strong contrast in the conductivity for the shallower 200 km of the upper mantle depths is recognized between the two regions, which is qualitatively consistent with the difference in lithospheric age. (2) The conductivity at 200-300 km depth is more or less similar to each other at about 0.3 S /m. (3) The conductivity around the MTZ depth is higher for the Philippine Sea mantle than for the Pacific mantle, which is consistent with the implication obtained from a semi-global approach (a). As already suggested in our previous work, the high conductivity in the MTZ below the Philippine Sea can be explained by the excess conduction due to the presence of hydrogen (water) in wadesleyite or in ringwoodite. Therefore, it implies a large scale circulation of water in the back arc mantle not only in the upper mantle but also down to the MTZ depth. However, our interpretation indicates that the high conductivity of the Philippine Sea uppermost upper mantle cannot be explained only by the effect of hydrogen conduction in olivine, but that additional conduction enhancement such as the presence of partial melt is required.

  19. Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Ciomadul volcano (SE Carpathians)

    NASA Astrophysics Data System (ADS)

    Novák, A.; Harangi, Sz.; Kiss, B.; Szarka, L.; Molnár, Cs.

    2012-04-01

    The Ciomadul volcano is the youngest in the Carpathian-Pannonian region (eastern-central Europe) and there are indications that magma could still reside at the depth. Therefore, we performed a magnetotelluric investigation with the aim to detect a still hot magma reservoir. The results were compared with those coming from the petrological investigations. The Ciomadul volcanic complex contains a central amalgamated set of lava domes and a few peripheral domes with two explosion craters in the central zone. Geologically the domes were built by effusion of high viscosity dacite magma. Lava dome collapses resulted in volcanoclastic deposits (block-and ash flow deposits). The magmatic activity could have been connected to the seismically powerful region of the nearby Vrancea zone. Twelve long period magnetotelluric (MT) soundings were carried out to aim of define to electric resistivity distribution of the volcanic system and find correlation with the petrologic model to confirm the hot magma chamber beneath the region. At each MT site, the horizontal components of the magnetic and the electric fields were observed between the 0.00006-4 Hz frequency range. The vertical component of the magnetic field was also recorded to analyze the lateral conductivity inhomogenities under the subsurface. Soundings were located in non systematic grid and we selected several profiles which may represent the resistivity distribution of subsurface and cross-sections were applied as well. At started by dimensionality analysis and decomposition parameters the most part of the measuring are multi-dimensional. Traditional MT interpretation - 1D, 2D inversion and modeling - was carried out taking into account the decomposition results. 3D interpretation is not realized because of weak resolution of the data and large memory requirement. Both the local 1D inversion and the 2D inversion along the profiles defined a low resistivity zones at about 2 km depth which in continuation at depth with a deeper and wide extensive conductive anomaly (15-30 km). Its lateral distribution and depth changes can be indicate any melting process in the volcano. The shallower anomaly can be correlated with altered and clayey volcanic materials or groundwater storage. The deeper low resistive layers can be connected to the melt storage or magma volumes which were not emptied during the last eruption. This depth range is consistent with our petrological investigation suggesting a dacitic magma reservoir at 6-14 km depth, whereas another, basaltic magma storage zone could be at the lower crustal depth (25-30 km) This research on the Ciomadul volcano belongs partly to the scientific project supported by the OTKA (Hungarian National Research Fund) No. K68587. This projekt was supported by the János Bolyai Scholarship of the Hungarian Academy of Sciences.

  20. Upper-Crustal Structure of the Møre Margin, Offshore-Norway

    NASA Astrophysics Data System (ADS)

    Moronfoye, A. T.; Ronen, S.; Klemperer, S. L.; Alves, G. C.

    2016-12-01

    The Møre Margin is a segment of the volcanic passive continental margin offshore mid Norway which formed as a result of the early-Cenozoic opening of the Norwegian-Greenland Sea. The Møre Margin has been interpreted as a `volcanic rifted margin', with voluminous basaltic lavas accompanied by a mafic underplate of velocities greater than 7 km/s. The Møre Margin is a region of interest for oil and gas exploration, and characterization of a layer with seismic velocities above 7 km/s could help understand the time-temperature history of its basin. However, seismic exploration of the Møre Margin is greatly complicated by the problems of sub-basalt imaging. We picked refraction arrivals from 2D seismic data acquired by Seabed Geosolutions using a common-receiver gather from a line of 179 4-component ocean-bottom nodes that spanned 85 km west to east. The source was an airgun of 4000 in3 and was fired at 100 m intervals to a maximum offset of 100 km. We used Seismic Unix to apply a linear-moveout reduction velocity, and estimated the velocities and thicknesses of the layers down to a prominent reflector believed to be either the basalt layer or the mafic underplate. The P-wave velocity, Vp, ranges from about 2 km/s at the seabed to 2.4 km/s above the prominent reflecting layer which has a velocity of 5 km/s. Using the horizontal component data, we identified a converted S wave refraction and used its travel time to estimate an average Vp/Vs ratio of just under 2 in the 2 km/s sedimentary layer, a value consistent with compacted sediments. Based on the seismic velocities calculated and an assessment of laboratory sonic-velocity measurements, we concluded that the primary reflector is likely weathered or vesicular basalt. We also generated synthetic travel-time curves from a velocity model that included a mafic underplate at a depth of about 20 km, as proposed in earlier studies. Our calculated refraction travel time curves suggest that our 85 km receiver line may be too short to identify a mafic underplate at such depth, even with a velocity greater than 7 km/s.

  1. Understanding the dynamics of magmatic systems - evidence from Long Valley Caldera and Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Hill, D. P.; Swanson, D. A.

    2001-12-01

    Active magmatic processes produce a wide range of signals that are capable of detection at the Earth's surface by modern geophysical and geochemical instrumentation. The most robust of these signals include spatial-temporal patterns of (1) ground deformation spanning a broad spectrum from gradual secular and quasi-static changes to the high-frequency vibrations associated with seismic waves generated by local, brittle-failure earthquakes and (2) magmatic gas emissions of, most notably, SO2 and CO2. The long records of deformation (in this broad sense) and geochemical data accumulated for Kilauea Volcano on the Island of Hawai`i and in Long Valley Caldera in eastern California exemplify the value of spatially and temporally dense monitoring as a basis for understanding the dynamics of magmatic systems. Kilauea's magma conduit, defined by brittle failure and LP earthquakes, has the form of a narrow, straw-like structure extending from within the lithosphere at a depth of >40 km to a magma chamber centered roughly 5 km beneath the summit crater (Halemaumau). This shallow magma chamber, which consists of a plexus of dikes and sills, is capable of feeding eruptions both within the summit caldera and along the east and southwest rift zones. The current eruption from vents along the east rift zone, which began 18 years ago, appears to be gradually draining this summit magma chamber, as Kilauea's summit has been subsiding about 10 cm/yr since the eruption began. This is equivalent to a volume of about 0.01 km3/yr, 10 percent of the eruption rate of 0.1 km3/yr. Most of the gas released by the magma column escapes through the summit caldera as it ascends from the magma chamber toward the summit and thence through conduits to the active vents on the east rift zone. Indeed, the CO2 flux (about 10,000 tones/yr) from the caldera serves as a proxy for magma flux through the conduit system. Dynamic interaction of the active magma conduit with the hydrothermal system beneath the summit crater produces sequences of shallow LP and VLP earthquakes. Two magmatic systems contribute to the 20 years of unrest in Long Valley Caldera: one beneath the resurgent dome in the center of the caldera and the other beneath Mammoth Mountain on the southwest rim of the caldera. Cumulative uplift of the resurgent dome by 80 cm reflects a volume increase of roughly 0.3 km3 in magma to chamber centered at a depth of 7 to 10 km beneath the surface. Recurring swarms of brittle-failure earthquakes in the south moat follow increased inflation rates with the more energetic episodes associated with intrusions of magma or magmatic brine into the brittle crust. The absence of seismicity at depths greater than 10 km beneath the caldera, however, leaves a question mark for the nature of this magmatic system at mid- to lower-crustal depths. The absence of magmatic gas emissions in the vicinity of the resurgent dome and south moat suggests that the volatile components of this magmatic system remain trapped below an impermeable seal. In contrast, a dike-like distribution of deep LP earthquakes overlain by a volume of brittle-failure earthquakes, including several shallow VLP earthquakes, delineate the magmatic system beneath Mammoth Mountain from mid-crustal depths of 30 km to within 3 or 4 km of the surface. This system, which became activated with a six-month-long earthquake swarm and intrusion beneath Mammoth Mountain in 1989, has continued to produce a diffuse efflux of magmatic CO2 at a rate of 200 to 300 tones/day apparently fed by basaltic magma distributed in a plexus of dikes and sills at mid-crustal depths.

  2. Tectonic deformation of the Andes and the configuration of the subducted slab in central Peru: Results from a micro-seismic experiment

    NASA Technical Reports Server (NTRS)

    Suarez, G.; Gagnepain, J. J.; Cisternas, A.; Hatzfeld, D.; Molnar, P.; Ocola, L.; Roecker, S. W.; Viode, J. P.

    1983-01-01

    The vast majority of the microearthquakes recorded occurred to the east: on the Huaytapallana fault in the Eastern Cordillera or in the western margin of the sub-Andes. The sub-Andes appear to be the physiographic province subjected to the most intense seismic deformation. Focal depths for the crustal events here are as deep as 50 km, and the fault plane solutions, show thrust faulting on steep planes oriented roughly north-south. The Huaytapallana fault in the Cordillera Oriental also shows relatively high seismicity along a northeast-southwest trend that agrees with the fault scarp and the east dipping nodal plane of two large earthquakes that occurred on this fault in 1969. The recorded microearthquakes of intermediate depth show a flat seismic zone about 25 km thick at a depth of about 100 km. This agrees with the suggestion that beneath Peru the slab first dips at an angle of 30 deg to a depth of 100 km and then flattens following a quasi-horizontal trajectory. Fault plane solutions of intermediate depth microearthquakes have horizontal T axes oriented east-west.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Clayton, Ray E.; Sweeney, Mark D.

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2010, the Hanford Seismic Network recorded 873 triggers on the seismometer system, which included 259 seismic events in the southeast Washington area and an additional 324 regional and teleseismic events. There were 210 events determined to be local earthquakes relevant to the Hanford Site. One hundred and fifty-five earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this fiscal year were a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al. 2009a, 2009b, 2009c, 2010a, 2010b, and 2010c). Most events were considered minor (coda-length magnitude [Mc] less than 1.0) with the largest event recorded on February 4, 2010 (3.0Mc). The estimated depths of the Wooded Island events are shallow (averaging approximately 1.5 km deep) placing the swarm within the Columbia River Basalt Group. Based upon the last two quarters (Q3 and Q4) data, activity at the Wooded Island area swarm has largely subsided. Pacific Northwest National Laboratory will continue to monitor for activity at this location. The highest-magnitude events (3.0Mc) were recorded on February 4, 2010 within the Wooded Island swarm (depth 2.4 km) and May 8, 2010 on or near the Saddle Mountain anticline (depth 3.0 km). This latter event is not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al. 2007). With regard to the depth distribution, 173 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 18 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 19 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 178 earthquakes were located in known swarm areas, 4 earthquakes occurred on or near a geologic structure (Saddle Mountain anticline), and 28 earthquakes were classified as random events. The Hanford Strong Motion Accelerometer (SMA) network was triggered several times by the Wooded Island swarm events and the events located on or near the Saddle Mountain anticline. The maximum acceleration value recorded by the SMA network during fiscal year 2010 occurred February 4, 2010 (Wooded Island swarm event), approximately 2 times lower than the reportable action level for Hanford facilities (2% g) with no action required.« less

  4. A baseline for upper crustal velocity variations along the East Pacific Rise at 13 deg N

    NASA Astrophysics Data System (ADS)

    Kappus, Mary E.; Harding, Alistair J.; Orcutt, John A.

    1995-04-01

    A wide aperture profile of the East Pacific Rise at 13 deg N provides data necessary to make a high-resolution seismic velocity profile of the uppermost crust along a 52-km segment of ridge crest. Automated and objective processing steps, including r-p analysis and waveform inversion, allow the construction of models in a consistent way so that comparisons are meaningful. A continuous profile is synthesized from 70 independent one-dimensional models spaced at 750-km intervals along the ridge. The resulting seismic velocity structure of the top 500 m of crust is remarkable in its lack of variability. The main features are a thin low-velocity layer 2A at the top with a steep gradient to layer 2B. The seafloor velocity is nearly constant at 2.45 km/s +/- 3% along the entire ridge. The velocity at the top of layer 2B is 5.0 km/s +/- 10%. The depth to the 4 km/s isovelocity contour within layer 2A is 130 +/- 20 m from 13 deg to 13 deg 20 min N, north of which it increases to 180 m. The increase in thickness is coincident with a deviation from axial linearity (DEVAL) noted by both a slight change in axis depth and orientation and in geochemistry. The waveform inversion, providing more details plus velocity gradient information, shows a layer 2A with about 80 m of constant-velocity material underlain by 150 m of high velocity gradient material, putting the base of layer 2A at approximately 230 m depth south of 13 deg 20 min N and about 50 m thicker north of the DEVAL. The overall lack of variability, combined with other recent measurements of layer 2A thickness along and near the axis, indicates that the thickness of volcanic extrusives is controlled not by levels of volcanic productivity, but the dynamics of emplacement. The homogeneity along axis also provides a baseline of inherent variability in crustal structure of about 10% against which other observed variations in similar regimes can be compared.

  5. Scaling of Viscous Shear Zones with Depth Dependent Viscosity and Power Law Stress-strain Rate Dependence

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Ancuta, L. D.; Carlson, R. W.; Caves, J. K.; Chamberlain, C. P.; Gosse, J. C.; Idleman, B. D.; Ionov, D. A.; McDannell, K. T.; Tamra, M.; Mix, H.; Munkhuu, U.; Russo, R.; Sabaj-Perez, M.; Sahagian, D. L.; Sjostrom, D. J.; Smith, S. G.; Stachnik, J. C.; Tsagaan, B.; Wegmann, K. W.; Winnick, M. J.; Zeitler, P. K.; Prousevitch, A.

    2014-12-01

    Central Mongolia sits deep in the Asian continental interior between the Siberian craton to the north, the edge of the India-Asia collision to the south, and far-field subduction of the Pacific plate to the east. It has a complex geologic history comprising Archean to Early Proterozoic crystalline rocks modified by accretionary events in the Paleozoic, and Cenozoic deformation and basalt volcanism that continues today. Within central Mongolia, the broad domal Hangay upland is embedded in the greater Mongolian Plateau. Elevations within the dome average ~1.5 km above the regional trend and locally reach ~4000 m. This elevated landscape hosts a low-relief surface cut into crystalline basement, and a 30 Ma record of intermittent basalt magmatism. Here we integrate observations from geomorphology, geochronology, paleoaltimetry, biogeography, petrology, geochemistry, and seismology to document the timing, rate, and pattern of surface uplift in the Hangay and more broadly to understand the geodynamics of the Mongolian plateau. Results from mantle and crustal xenoliths, seismology, thermochronology, and basalt geochemistry are consistent with: a high geothermal gradient with temperatures reaching ~900°C at 60 km depth, intercepting the mantle adiabat at ~90 km depth; an uppermost mantle composed mostly of fertile peridotites; low-volume Cenozoic basaltic magmatism sourced below the lithosphere, with isotopic characteristics similar to much east-Asian Cenozoic mafic volcanism; a 42-57 km-thick crust of island-arc affinity formed during accretion of the Central Asia Orogenic Belt; elevations supported primarily by crustal isostasy; slow exhumation (30-100 m/My) over hundreds of millions of years; and long-term thermal stability of the upper crust and relief lowering since the Mesozoic. Results from geomorphology, paleoaltimetry, fish genetics, and basalt geochronology imply that drainage divides are stable since the mid-Miocene with modest surface uplift (up to 1 km) and topographic relief up to 800 m remaining largely unchanged since ~10 Ma. Surprisingly, this area of remarkable stability over significant time and space sits above a shallow convecting mantle and hosts some of the largest recorded intracontinental earthquakes.

  6. Streaks of Aftershocks Following the 2004 Sumatra-Andaman Earthquake

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.; Engdahl, E. R.; Diehl, T.

    2009-12-01

    Five years after the devastating 26 December, 2004 M 9.3 Sumatra-Andaman earthquake, regional and global seismic networks have recorded tens of thousands of aftershocks. We use bulletin data from the International Seismological Centre (ISC) and the National Earthquake Information Center (NEIC), and waveforms from IRIS, to relocate more than 20,000 hypocenters between 1964 and 2008 using teleseimic cross-correlation and double-difference methods. Relative location uncertainties of a few km or less allow for detailed analysis of the seismogenic faults activated as a result of the massive stress changes associated with the mega-thrust event. We focus our interest on an area of intense aftershock activity off-shore Banda Aceh in northern Sumatra, where the relocated epicenters reveal a pattern of northeast oriented streaks. The two most prominent streaks are ~70 km long with widths of only a few km. Some sections of the streaks are formed by what appear to be small, NNE striking sub-streaks. Hypocenter depths indicate that the events locate both on the plate interface and in the overriding Sunda plate, within a ~20 km wide band overlying the plate interface. Events on the plate interface indicate that the slab dip changes from ~20° to ~30° at around 50 km depth. Locations of the larger events in the overriding plate indicate an extension of the steeper dipping mega thrust fault to the surface, imaging what appears to be a major splay fault that reaches the surface somewhere near the western edge of the Aceh basin. Additional secondary splay faults, which branch off the plate interface at shallower depths, may explain the diffuse distribution of smaller events in the overriding plate, although their relative locations are less well constrained. Focal mechanisms support the relocation results. They show a narrowing range of fault dips with increasing distance from the trench. Specifically, they show reverse faulting on ~30° dipping faults above the shallow (20°) dipping plate interface. The observation of active splay faults associated with the mega thrust event is consistent with co- and post-seismic motion data, and may have significant implications on the generation and size of the tsunami that caused 300,000 deaths.

  7. Subsurface structure identification of active fault based on magnetic anomaly data (Case study: Toru fault in Sumatera fault system)

    NASA Astrophysics Data System (ADS)

    Simanjuntak, Andrean V. H.; Husni, Muhammad; Syirojudin, Muhammad

    2017-07-01

    Toru segment, which is one of the active faults and located in the North of Sumatra, broke in 1984 ago on Pahae Jahe's earthquake with a magnitude 6.4 at the northern part of the fault which has a length of 23 km, and also broke again at the same place in 2008. The event of recurrence is very fast, which only 25 years old have repeatedly returned. However, in the elastic rebound theory, it probably happen with a fracture 50 cm and an average of the shear velocity 20 mm/year. The average focus of the earthquake sourced at a depth of 10 km and 23 km along its fracture zones, which can generate enough shaking 7 MMI and could breaking down buildings and create landslides on the cliff. Due to its seismic activity, this study was made to identify the effectiveness of this fault with geophysical methods. Geophysical methods such as gravity, geomagnetic and seismology are powerful tools for detecting subsurface structures of local, regional as well as of global scales. This study used to geophysical methods to discuss about total intensity of the geomagnetic anomaly data, resulted in the distribution of susceptibility values corresponding to the fault movement. The geomagnetic anomalies data was obtained from Geomag, such as total intensity measured by satellite. Data acquisition have been corrected for diurnal variations and reduced by IGRF. The study of earthquake records can be used for differentiating the active and non active fault elements. Modeling has been done using several methods, such as pseudo-gravity, reduce to pole, and upward or downward continuation, which is used to filter the geomagnetic anomaly data because the data has not fully representative of the fault structure. The results indicate that rock layers of 0 - 100 km depth encountered the process of intrusion and are dominated by sedimentary rocks that are paramagnetic, and that the ones of 100 - 150 km depth experienced the activity of subducting slab consisting of basalt and granite which are ferromagnetic and semi-ferromagnetic. This concluded that all the occurences correspond to the high seismicity and seismotectonic condition of Toru fault.

  8. 3D Density Structure of Oceanic Lithosphere Affected by A Plume: A Case Study from the Greater Jan Mayen-East Greenland Region (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Tan, P.; Sippel, J.; Breivik, A. J.; Scheck-Wenderoth, M.; Meeßen, C.

    2017-12-01

    Unraveling the density structure of the oceanic lithosphere north of Iceland is key for understanding the effects of the Iceland Plume on the mid-ocean ridges of the greater Jan Mayen-East Greenland Region. We use a data-integrative approach for 3D gravity modeling to develop new insights into the crust and upper mantle density structure of this region. First, we obtain the 3D density structure of the sediments and crust from interpretations of regional reflection and refraction seismic lines. Then, the temperature and density structure of the mantle between 50 and 250 km are derived from a published shear-wave velocity (Vs) tomography model. To assess the density configuration between the Moho and 50 km depth, we follow a combined forward and inverse 3D gravity modeling approach. The Vs tomography and derived density of the deeper mantle (>50 km depth) reveal that the low-density anomaly related to the Iceland plume gets weaker with increasing distance from the plume, i.e. from the strongly influenced Middle Kolbeinsey Ridge (MKR) to the Mohn's Ridge. The West Jan Mayen Fracture Zone is identified as a main mantle density contrast, indicative of differences in the thermal evolution of the ridge systems it separates. Beneath the MKR region, the low-density anomaly at depths of >50 km continues upwards into the uppermost mantle, where its lateral dimensions narrow considerably. This elongated density anomaly is consistent with a basement high and indicates a channelization of the Iceland plume effects. The NE-SW elongated mantle anomaly does not, however, coincide with the topographical NNE-SSW striking ridge axis. Thus, the modelled plume-affected oceanic lithosphere reveals discrepancies with the half-space cooling model. We discuss the 3D density model in terms of such spatial relations between deeper mantle anomalies and the shallow crustal structure.

  9. Hales discontinuity beneath India: selective appearance and a case for systematic modeling

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Chaudhury, J.

    2016-12-01

    Hales discontinuity was first reported in Lake Superior at depth of 80-90 km, characterized by an increase in P-wave velocity from 8.05 to 8.45 km/s. Subsequent, worldwide studies have observed this discontinuity beneath selected continental regions and Pacific Ocean, with depth varying from 40 to 115 km. The cause for the absence of observable signal corresponding to the Hales discontinuity beneath a number of seismic stations and the large depth variation of the discontinuity are poorly understood. In the Indian subcontinent, the Hales discontinuity has been selectively imaged beneath the Southern Granulite Terrain, Eastern Dharwar, Bastar and Aravalli Cratons. These studies used low frequency P-wave receiver functions (P-RFs) to show that the Hales discontinuity corresponds to a PHs phase arriving between 7.5 and 11 s. A few studies have forwarded modeled this phase to demonstrate that this arrival is distinct from Moho reverberations and corresponds to a depth range of 75-90 km. However, these studies have ignored the effect of mid-crustal discontinuity, which had been observed in P-RF inverted crustal models beneath these stations, and its first reverberation coincide with the reported PHs. We demonstrate through forward modeling that the observed Hales discontinuity PHs can be matched by the PpPs from mid-crustal discontinuity beneath the cratons, with the exception of Hyderabad (HYB), where this discontinuity was reported to be deepest at 90 km. We perform joint inversion of the HYB P-RFs with Rayleigh wave dispersion to obtain a 32 km thick two layer crust, and Hales discontinuity at a depth of 108±2 km, with 4% increase in S-wave velocity from 4.6 to 4.8 km/s. Several mechanisms have been proposed to explain this velocity discontinuity, which include transition from spinel to garnet peridotite or changes in cation partitioning in olivine. We intend to evaluate the velocity increase based on thermoelasticity data of minerals constituting peridotite.

  10. Crustal modeling of the central part of the Northern Western Desert, Egypt using gravity data

    NASA Astrophysics Data System (ADS)

    Alrefaee, H. A.

    2017-05-01

    The Bouguer anomaly map of the central part of the Northern Western Desert, Egypt was used to construct six 2D gravity models to investigate the nature, physical properties and structures of the crust and upper mantle. The crustal models were constrained and constructed by integrating results from different geophysical techniques and available geological information. The depth to the basement surface, from eight wells existed across the study area, and the depth to the Conrad and Moho interfaces as well as physical properties of sediments, basement, crust and upper mantle from previous petrophysical and crustal studies were used to establish the gravity models. Euler deconvolution technique was carried on the Bouguer anomaly map to detect the subsurface fault trends. Edge detection techniques were calculated to outlines the boundaries of subsurface structural features. Basement structural map was interpreted to reveal the subsurface structural setting of the area. The crustal models reveals increasing of gravity field from the south to the north due to northward thinning of the crust. The models reveals also deformed and rugged basement surface with northward depth increasing from 1.6 km to 6 km. In contrast to the basement, the Conrad and Moho interfaces are nearly flat and get shallower northward where the depth to the Conrad or the thickness of the upper crust ranges from 18 km to 21 km while the depth to the Moho (crustal thickness) ranges from 31.5 km to 34 km. The crust beneath the study area is normal continental crust with obvious thinning toward the continental margin at the Mediterranean coast.

  11. Mapping the influence of the deep Nazca slab on the geometry of the 660-km discontinuity beneath stable South America

    NASA Astrophysics Data System (ADS)

    Bianchi, M. B. D.; Assumpcao, M.; Julià, J.

    2017-12-01

    The fate of the deep Nazca subducted plate is poorly mapped under stable South America. Transition zone thickness and position is greatly dependent on mantle temperature and so is influenced by the colder Nazca plate position. We use a database of 35,000 LQT deconvolved receiver function traces to image the mantle transition zone and other upper mantle discontinuities under different terranes of stable South American continent. Data from the entire Brazilian Seismographic Network database, consisting of more than 80 broadband stations supplemented by 35 temporary stations deployed in west Brazil, Argentina, Paraguay, Bolivia and Uruguay were processed. Our results indicates that upper mantle velocities are faster than average under stable cratons and that most of the discontinuities are positioned with small variations in respect to nominal depths, except in places were the Nazca plate interacts with the transition zone. Under the Chaco-Pantanal basin the Nazca plate appears to be trapped in the transition zone for more than 1000 km with variations of up to 30 km in 660 km discontinuity topography under this region consistent with global tomographic models. Additional results obtained from SS precursor analysis of South Sandwich Islands teleseismic events recorded at USArray stations indicates that variations of transition zones thickness occur where the Nazca plate interacts with the upper mantle discontinuities in the northern part of Stable South American continent.

  12. A recipe for consistent 3D management of velocity data and time-depth conversion using Vel-IO 3D

    NASA Astrophysics Data System (ADS)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-04-01

    3D geological model production and related basin analyses need large and consistent seismic dataset and hopefully well logs to support correlation and calibration; the workflow and tools used to manage and integrate different type of data control the soundness of the final 3D model. Even though seismic interpretation is a basic early step in such workflow, the most critical step to obtain a comprehensive 3D model useful for further analyses is represented by the construction of an effective 3D velocity model and a well constrained time-depth conversion. We present a complex workflow that includes comprehensive management of large seismic dataset and velocity data, the construction of a 3D instantaneous multilayer-cake velocity model, the time-depth conversion of highly heterogeneous geological framework, including both depositional and structural complexities. The core of the workflow is the construction of the 3D velocity model using Vel-IO 3D tool (Maesano and D'Ambrogi, 2017; https://github.com/framae80/Vel-IO3D) that is composed by the following three scripts, written in Python 2.7.11 under ArcGIS ArcPy environment: i) the 3D instantaneous velocity model builder creates a preliminary 3D instantaneous velocity model using key horizons in time domain and velocity data obtained from the analysis of well and pseudo-well logs. The script applies spatial interpolation to the velocity parameters and calculates the value of depth of each point on each horizon bounding the layer-cake velocity model. ii) the velocity model optimizer improves the consistency of the velocity model by adding new velocity data indirectly derived from measured depths, thus reducing the geometrical uncertainties in the areas located far from the original velocity data. iii) the time-depth converter runs the time-depth conversion of any object located inside the 3D velocity model The Vel-IO 3D tool allows one to create 3D geological models consistent with the primary geological constraints (e.g. depth of the markers on wells). The workflow and Vel-IO 3D tool have been developed and tested for the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain (Northern Italy) in the frame of the European funded Project GeoMol. The study area was covered by a dense dataset of seismic lines (ca. 12000 km) and exploration wells (130 drilling), mainly deriving from oil and gas exploration activities. The interpretation of the seismic dataset leads to the construction of a 3D model in time domain that has been depth converted using Vel-IO 3D, with a 4 layer-cake 3D instantaneous velocity model. The resulting final 3D geological model, composed of 15 horizons and 150 faults, has been used for basin analysis at regional scale, for geothermal assessment, and for the update of the seismotectonic knowledge of the Po Plain. The Vel-IO 3D has been further used for the depth conversion of the accretionary prism of the Calabrian subduction (Southern Italy) and for a basin scale analysis of the Po Plain Plio-Pleistocene evolution. Maesano F.E. and D'Ambrogi C., (2017), Computers and Geosciences, doi: 10.1016/j.cageo.2016.11.013 Vel-IO 3D is available at: https://github.com/framae80/Vel-IO3D

  13. Three-dimensional P-wave velocity structure of Mt. Etna, Italy

    USGS Publications Warehouse

    Villasenor, A.; Benz, H.M.; Filippi, L.; De Luca, G.; Scarpa, R.; Patane, G.; Vinciguerra, S.

    1998-01-01

    The three-dimensional P-wave velocity structure of Mt. Etna is determined to depths of 15 km by tomographic inversion of first arrival times from local earthquakes recorded by a network of 29 permanent and temporary seismographs. Results show a near-vertical low-velocity zone that extends from beneath the central craters to a depth of 10 km. This low-velocity region is coincident with a band of steeply-dipping seismicity, suggesting a magmatic conduit that feeds the summit eruptions. The most prominent structure is an approximately 8-km-diameter high-velocity body located between 2 and 12 km depth below the southeast flank of the volcano. This high-velocity body is interpreted as a remnant mafic intrusion that is an important structural feature influencing both volcanism and east flank slope stability and faulting.

  14. Diagenetic Layers in the Upper Walls of Valles Marineris, Mars: Evidence for Drastic Climate Change Since the Mid-Hesperian

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Fuks, Kelly H.; Murchie, Scott

    1995-01-01

    A packet of relatively resistant layers, totaling approx. 400 m thickness, is present at the tops of the chasma walls throughout Valles Marineris. The packet consists of an upper dark layer (approx. 50 m thick), a central bright layer (approx. 250 m thick), and a lower dark layer (approx. 100 m thick). The packet appears continuous and of nearly constant thickness and depth below ground surface over the whole Valles system (4000 km E-W, 800 km N-S), independent of elevation (3-10 km) and age of plateau surface (Noachian through upper Hesperian). The packet continues undisturbed beneath the boundary between surface units of Noachian and Hesperian ages, and continues undisturbed beneath impact craters transected by chasma walls. These attributes are not consistent with layer formation by volcanic or sedimentary deposition, and are consistent with layer formation in situ, i.e., by diagenesis, during or after upper Hesperian time. Diagenesis seems to require the action of aqueous solutions in the near subsurface, which are not now stable in the Valles Marineris area. To permit the stability of aqueous solutions, Mars must have had a fairly dense atmosphere, greater than or equal to 1 bar CO2, when the layers formed. Obliquity variations appear to be incapable of producing such a massive atmosphere so late in Mars' history.

  15. Imaging the Crust in the Northern Sector of the 2009 L'Aquila Seismic Sequence through Oil Exploration Data Interpretation

    NASA Astrophysics Data System (ADS)

    Grazia Ciaccio, Maria; Improta, Luigi; Patacca, Etta; Scandone, Paolo; Villani, Fabio

    2010-05-01

    The 2009 L'Aquila seismic sequence activated a complex, about 40 km long, NW-trending and SW-dipping normal fault system, consisting of three main faults arranged in right-lateral en-echelon geometry. While the northern sector of the epicentral area was extensively investigated by oil companies, only a few scattered, poor-quality commercial seismic profiles are available in the central and southern sector. In this study we interpret subsurface commercial data from the northern sector, which is the area where is located the source of the strong Mw5.4 aftershock occurred on the 9th April 2009. Our primary goals are: (1) to define a reliable framework of the upper crust structure, (2) to investigate how the intense aftershock activity, the bulk of which is clustered in the 5-10 km depth range, relates to the Quaternary extensional faults present in the area. The investigated area lies between the western termination of the W-E trending Gran Sasso thrust system to the south, the SW-NE trending Mt. Sibillini thrust front (Ancona-Anzio Line Auctt.) to the north and west, and by the NNW-SSE trending, SW-dipping Mt. Gorzano normal fault to the east. In this area only middle-upper Miocene deposits are exposed (Laga Flysch and underlying Cerrogna Marl), but commercial wells have revealed the presence of a Triassic-Miocene sedimentary succession identical to the well known Umbria-Marche stratigraphic sequence. We have analyzed several confidential seismic reflection profiles, mostly provided by ENI oil company. Seismic lines are tied to two public wells, 5766 m and 2541 m deep. Quality of the reflection imaging is highly variable. A few good quality stack sections contain interpretable signal down to 4.5-5.5 s TWT, corresponding to depths exceeding 10-12 km and thus allowing crustal imaging at seismogenic depths. Key-reflectors for the interpretation correspond to: (1) the top of the Miocene Cerrogna marls, (2) the top of the Upper Albian-Oligocene Scaglia Group, (3) the Aptian-Albian Fucoid Marl horizon, (4) the top of the upper Jurassic "Calcari ad Aptici" Formation, (5) the top of the upper Triassic dolomites plus evaporites of the Burano Formation. Strong but discontinuous deep reflectors can be reasonably attributed to the Paleozoic-Trassic clastic sequence underlying the evaporites. Neogene compression is responsible for a system of NNW-SSE trending fault-propagation folds which have often grown on top of popup-like structures. Extensional features include shallow-seated low-angle faults, likely related to gravitational readjustments on top of compressional features, and younger NNW-SSE trending high-angle faults. The major high-angle fault in the investigated area is represented by the Mt. Gorzano Fault, a regional structure the surface trace of which is at least 20 km long. The Mt. Gorzano Fault is a listric fault that dips around 60° in the first 2 s TWT and flattens at greater depths until it becomes sub-horizontal at about 5 s TWT, i.e. at a depth averaging 12 kilometers. Depth converted sections, calibrated by well data, indicate that the bulk of the aftershock activity is confined between the Triassic dolomites plus evaporites and the underlying Paleozoic-Triassic terrigenous deposits, without affecting the overlying carbonates. Events alignment revealed by accurate Double-Difference relative locations suggests that the Mw5.4 aftershock activated a 12 km-long segment of the Mt. Gorzano Fault at depths ranging from 5 to 10-12 kilometers. Aftershocks cluster in the hanging-wall of the deep portion of the fault recognized in the stack sections, whose geometry is consistent with the fault plane highlighted by earthquakes alignment.

  16. P Wave Velocity Structure Beneath the Baikal Rift Axis

    NASA Astrophysics Data System (ADS)

    Brazier, R. A.; Nyblade, A. A.; Boman, E. C.

    2001-12-01

    Over 100 p wave travel times from the 1500 km en echelon Baikal Rift system are used in this study.The events range 3 to 13 degrees from Talaya, Russia (TLY) along the axis of southwest northeast trending rift in East Siberia. A Herglotz Wiechert inversion of these events resolved a crust of 6.4 km/s and a gradient in the mantle starting at 35 km depth and 7.7 km/s down to 200 km depth and 8.2 km/s. This is compatible with Gao et al,1994 cross sectional structure which cuts the rift at about 400km from TLY. The Baikal Rift hosts the deepest lake and is the most seismically active rift in the world. It is one of the few continental rifts, it separates the Siberian craton and the Syan-Baikal mobile fold belt. Two events, the March 21 1999 magnitude 5.7 earthquake 638 km from TLY and the November 13th 1995 magnitude 5.9 earthquake 863 km from TLY were modeled for there PnL wave structure using the discrete wavenumber method and the Harvard CMT solutions with adjusted depths from p-pP times. The PnL signals match well. A genetic algorithm will used to perturb the velocity structure and compare to a selection of the events between 3 and 13 degrees many will require moment tensor solutions.

  17. Aftershocks of the western Argentina (Caucete) earthquake of 23 November 1977: some tectonic implications

    USGS Publications Warehouse

    Langer, C.J.; Bollinger, G.A.

    1988-01-01

    An aftershock survey, using a network of eight portable and two permanent seismographs, was conducted for the western Argentina (Caucete) earthquake (MS 7.3) of November 23, 1977. Monitoring began December 6, almost 2 weeks after the main shock and continued for 11 days. The data set includes 185 aftershock hypocenters that range in the depth from near surface to more than 30 km. The spatial distribution of those events occupied a volume of about 100 km long ??50 km wide ??30 km thick. The volumnar nature of the aftershock distribution is interpreted to be a result of a bimodal distribution of foci that define east- and west-dipping planar zones. Efforts to select which of those zones was associated with the causal faulting include special attention to the determination of the mainshock focal depth and dislocation theory modeling of the coseismic surface deformation in the epicentral region. Our focal depth (25-35 km) and modeling studies lead us to prefer an east-dipping plane as causal. A previous interpretation by other investigators used a shallower focal depth (17 km) and similar modeling calculations in choosing a west-dipping plane. Our selection of the east-dipping plane is physically more appealing because it places fault initiation at the base of the crustal seismogenic layer (rather than in the middle of that layer) which requires fault propagation to be updip (rather than downdip). ?? 1988.

  18. Comparison of Carbon Dioxide Airborne Measurement over Land and Ocean using 2-μm Double-Pulse Integrated Path Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Refaat, T. F.; Singh, U. N.; Petros, M.; Yu, J.; Remus, R.; Ismail, S.

    2017-12-01

    An airborne Integrated Path Differential Absorption (IPDA) lidar has been developed and validated at NASA Langley Research Center for atmospheric carbon dioxide column measurements. The instrument consists of a tunable, high-energy 2-μm double pulse laser transmitter and 0.4 m telescope receiver coupled to an InGaAs pin detection system. The instrument was validated for carbon dioxide (CO2) measurements from ground and airborne platforms, using a movable lidar trailer and the NASA B-200 aircraft. Airborne validation was conducted over the ocean by comparing the IPDA CO2 optical depth measurement to optical depth model derived using NOAA airborne CO2 air-sampling. Another airborne validation was conducted over land vegetation by comparing the IPDA measurement to a model derived using on-board in-situ measurements using an absolute, non-dispersive infrared gas analyzer (LiCor 840A). IPDA range measurements were also compared to rangefinder and Global Positioning System (GPS) records during ground and airborne validation, respectively. Range measurements from the ground indicated a 0.93 m IPDA range measurement uncertainty, which is limited by the transmitted laser pulse and detection system properties. This uncertainty increased to 2.80 and 7.40 m over ocean and land, due to fluctuations in ocean surface and ground elevations, respectively. IPDA CO2 differential optical depth measurements agree with both models. Consistent CO2 optical depth biases were well correlated with the digitizer full scale input range settings. CO2 optical depth measurements over ocean from 3.1 and 6.1 km altitudes indicated 0.95% and 0.83% uncertainty, respectively, using 10 second (100 shots) averaging. Using the same averaging 0.40% uncertainty was observed over land, from 3.4 km altitude, due to higher surface reflectivity, which increases the return signal power and enhances the signal-to-noise ratio. However, less uncertainty is observed at higher altitudes due to reduced signal shot noise, indicating that detection system noise-equivalent-power dominates the error. These results show that the IPDA technique is well suited for space-based platforms, which includes larger column content integration that enhances the measurement sensitivity.

  19. Constraint on the magma sources in Luzon Island Philippines by using P and S wave local seismic tomography

    NASA Astrophysics Data System (ADS)

    Nghia, N. C.; Huang, B. S.; Chen, P. F.

    2017-12-01

    The subduction of South China Sea beneath the Luzon Island has caused a complex setting of seismicity and magmatism because of the proposed ridge subduction and slab tearing. To constrain the validity of slab tearing induced by ridge subduction and their effect, we performed a P and S wave seismic tomography travel time inversion using LOTOS code. The dataset has been retrieved from International Seismological Centre from 1960 to 2008. A 1D velocity inverted by using VELEST with a Vp/Vs ratio of 1.74 is used as the starting input velocity for tomographic inversion. Total of 20905 P readings and 8126 S readings from 2355 earthquakes events were used to invert for velocity structure beneath Luzon Island. The horizontal tomographic results show low-velocity, high Vp/Vs regions at the shallow depth less than 50 km which are interpreted as the magmatic chambers of the volcanic system in Luzon. At the suspected region of slab tearing at 16oN to 18oN, two sources of magma have been indentified: slab window magma at shallow depth (< 50 km) and magma induced by mantle wedge partial melting from higher depth. This slab melting may have changed the composition of magmatic to become more silicic with high viscosity, which explains the volcanic gap in this region. At the region of 14oN to 15oN, large magma chambers under active volcanos are identified which explain the active volcanism in this region. Contrast to the region of slab tearing, in this region, the magma chambers are fed by only magma from partial melting of mantle wedge from the depth higher than 100 km. These observations are consistent with previous work on the slab tearing of South China Sea and the activities of volcanism in the Luzon Island.

  20. Receiver function imaging of the onset of melting, implications for volcanism beneath the Afar Rift in contrast to hotspot environments

    NASA Astrophysics Data System (ADS)

    Rychert, C. A.; Harmon, N.; Hammond, J. O.; Laske, G.; Kendall, J.; Ebinger, C. J.; Shearer, P. M.; Bastow, I. D.; Keir, D.; Ayele, A.; Belachew, M.; Stuart, G. W.

    2012-12-01

    Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift and hotspot regions such as Hawaii provides additional constraints. We use data from the Ethiopia/Kenya Broadband Seismic Experiment (EKBSE), the Ethiopia Afar Geophysical Lithospheric Experiment (EAGLE), a new UK/US led deployment of 46 stations in the Afar depression and surrounding area, and the PLUME experiment. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift, where the mantle lithosphere has been totally destroyed. Instead a strong velocity increase with depth at ~75 km depth matches geodynamic model predictions for a drop in melt percentage at the onset of decompression melting. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Therefore although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is minimal. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy effects. This contrasts with a similar feature at much deeper depth, ~150 km, just west of Hawaii, where a deep thermal plume is hypothesized to impinge on the lithosphere. Improved high resolution imaging of rifting, ridges, and hotspots in a variety of stages and tectonic settings will increase constraints on the forces sustaining volcanism and the factors that dictate the style of breakup beneath rifts.

  1. Interpretation of a seismic refraction profile across the Roosevelt Hot Springs, Utah and vicinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertson, R.C.; Smith, R.B.

    1979-03-01

    In April 1977, a seismic refraction profile was recorded across the Milford Valley, the Roosevelt Hot Springs KGRA, and the northern Mineral Mountains in southwestern Utah. Seven shot points were used to provide multiple subsurface seismic refraction coverage along the 30 km east-west profile line. Since an inspection of power spectrums revealed large components of 60 Hz noise on some traces, computer routines were used to low-pass filter all seismograms. Amplitude information was utilized by normalizing all traces that recorded the same blast. Subsurface structural modeling was conducted by means of first arrival P-wave delay-time analysis and ray tracing. Herglotz-Wiechertmore » travel-time inversion was used for the velocity-depth distribution in the Mineral Mountains. The interpretation of the P-wave travel-times suggests that the Milford Valley fill consists of two units with a total thickness of at least 1.8 km. In the vicinity of the Roosevelt KGRA, a thin low velocity alluvial layer covers a basement igneous complex with a velocity of 5.2 km/s. Granite velocities between 3.3 km/s and 4.0 km/s were calculated from the travel-times in the Mineral Mountains.« less

  2. Magma addition rates in continental arcs: New methods of calculation and global implications

    NASA Astrophysics Data System (ADS)

    Ratschbacher, B. C.; Paterson, S. R.

    2017-12-01

    The transport of mass, heat and geochemical constituents (elements and volatiles) from the mantle to the atmosphere occurs via magma addition to the lithosphere. Calculation of magma addition rates (MARs) in continental arcs based on exposed proportions of igneous arc rocks is complex and rarely consistently determined. Multiple factors influence MAR calculations such as crust versus mantle contributions to magmas, a change in MARs across the arc and with depths throughout the arc crustal column, `arc tempos' with periods of high and low magmatic activity, the loss of previous emplaced arc rocks by subsequent magmatism and return to the mantle, arc migration, variations in the intrusive versus extrusive additions and evolving arc widths and thicknesses during tectonism. All of these factors need to be considered when calculating MARs.This study makes a new attempt to calculate MARs in continental arcs by studying three arc sections: the Famatinian arc, Argentina, the Sierra Nevada batholith, California and the Coast Mountain batholith, Washington and British Columbia. Arcs are divided into fore-arc, main arc and back arc sections and `boxes' with a defined width, length and thickness spanning upper middle and lower crustal levels are assigned to each section. Representative exposed crustal slices for each depth are then used to calculate MARs based on outcrop proportions for each box. Geochemical data is used to infer crustal recycling percentages and total thickness of the arc. Preliminary results show a correlation between MARs, crustal thicknesses and magmatic flare-up durations. For instance, the Famatinian arc shows a strong decrease in MARs between the main arc section (9.4 km3/Ma/arc-km) and the fore-arc (0.61 km3/Ma/arc-km) and back-arc (1.52 km3/Ma/arc-km) regions and an increase in the amount of magmatism with depth.Global MARs over geologic timescales have the potential to investigate mantle melt generation rates and the volatile outgassing contribution of unerupted arc magmas to the balance of volatile element cycling from the mantle to the surface. We address this question by using exposed arc length estimates from 760 Ma until present (Cao et al. 2017, EPSL) and scale to MARs based on constrains from the detailed study of the three arc sections and a further division into magma-rich and magma-poor arcs.

  3. The electrical conductivity of the Earth's upper mantle as estimated from satellite measured magnetic field variations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Didwall, E. M.

    1981-01-01

    Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.

  4. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1974-01-01

    Lunar igneous rocks are interpreted, which can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Terra rocks, though intensely brecciated, reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 gy. Melting of ilmenite-free olivine pyroxenites at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  5. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1977-01-01

    Lunar igneous rocks, properly interpreted, can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Though intensely brecciated, terra rocks reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 Gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 Gy. Melting of ilmenite-free olivine pyroxenites (also cumulates?) at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 Gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  6. Deep structure of the Afro-Arabian hotspot by S receiver functions

    NASA Astrophysics Data System (ADS)

    Vinnik, L. P.; Farra, V.; Kind, R.

    2004-06-01

    We investigated deep structure of the Afro-Arabian hotspot by using recordings from Geoscope seismograph station ATD. The records are processed with the S receiver function technique, which allows a detection of Sp converted phases from the upper mantle discontinuities. The seismic data reveal two unusual discontinuities. The discontinuity at a depth of 160 km beneath the Gulf of Aden corresponds to the onset of melting. If the water content in olivine is around 800 H/106Si, melting at this depth requires a temperature close to 1550°C, about 120°C higher than the average. Another remarkable discontinuity is found at a depth of 480 km, where S velocity drops with depth by about 0.2 km/s. This can be the head of another plume which is trapped in the mantle transition zone.

  7. Combined Gravimetric-Seismic Crustal Model for Antarctica

    NASA Astrophysics Data System (ADS)

    Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad

    2018-01-01

    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24-28 km), while in West Antarctica the Moho depth minima are along the West Antarctic Rift System under the Bentley depression (20-22 km) and Ross Sea Ice Shelf (16-24 km). The gravimetric result confirmed a maximum extension of the Antarctic continental margins under the Ross Sea Embayment and the Weddell Sea Embayment with an extremely thin continental crust (10-20 km).

  8. Seismic Refraction & Wide-angle Reflection Experiment on the Northern Margin of North China Craton -Data Acquisition and Preliminary Processing Result

    NASA Astrophysics Data System (ADS)

    Li, W.; Gao, R.; Keller, G. R.; Hou, H.; Li, Q.; Cox, C. M.; Chang, J. C.; Zhang, J.; Guan, Y.

    2010-12-01

    The evolution history of Central Asian Orogen Belt (CAOB) is still the main tectonic problems in northeastern Asia. The Siberia Craton (NC), North China Craton (NCC) and several blocks collided, and the resulting tectonic collage formed as the Paleo-Asian Ocean disappeared. Concerning the northern margin of North China Craton, many different geological questions remain unanswered, such as: the intracontinental orogenic process in the Yanshan orogen and the nature and location of the suture between the southern NC and the northern NCC. In Dec 2009, a 400 km long seismic refraction and wide-angle reflection profile was completed jointly by Institute of Geology, CAGS and University of Oklahoma. The survey line extended from the west end of the Yanshan orogen, across a granitoid belt to the Solonker suture zone. The recording of seismic waves from 8 explosions (500~1500 kg each) was conducted in four deployments of 300 Reftek125 (Texan) seismic recorders, with an average spacing of 1 km. For the calculations, we used the Rayinvr, Vmed and Zplot programs for ray tracing, model modification and phase picking. The initial result show that: 1)the depth of low velocity sediment cover ranges from 0.6 to 2.7 km (velocity: 2.8~5.6 km/s); 2)the depth of basement is 5.6~10 km (the depth of basement under the granitoid belt deepens to 10 km and velocity increases to 6.2 km/s); 3)the upper crust extends to a depth of 15.5~21 km and has the P-wave velocities between 5.6 and 6.4 km/s; 4)the thickness of the lower crust ranges from 22~28 km(velocity: 6.4~6.9 km/s); and 5)the depth of Moho varies from 39.5 km under the granitoid belt to 49 km under the Yanshan orogen. Based on these results, we can preliminarily deduce that: 1) the concave depression of the Moho observed represents the root of the Yanshan orogen, and it may prove that the orogen is dominated by thick-skinned tectonics; 2) the shape of velocity variations under the granitoid belt is suggestive of a magma conduit. It may be connected with subduction-collision magmatism between the southern NC and the northern NCC along the Solonker suture zone. Supported by Sinoprobe-02 and US NSF PIRE grant (0730154)

  9. Salton Seismic Imaging Project Line 5—the San Andreas Fault and Northern Coachella Valley Structure, Riverside County, California

    NASA Astrophysics Data System (ADS)

    Rymer, M. J.; Fuis, G.; Catchings, R. D.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.

    2012-12-01

    The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas Fault (SAF) and the adjacent basins (Imperial and Coachella Valleys) in southern California. Here, we focus on SSIP Line 5, one of four 2-D NE-SW-oriented seismic profiles that were acquired across the Coachella Valley. The 38-km-long SSIP-Line-5 seismic profile extends from the Santa Rosa Ranges to the Little San Bernardino Mountains and crosses both strands of the SAF, the Mission Creek (MCF) and Banning (BF) strands, near Palm Desert. Data for Line 5 were generated from nine buried explosive sources (most spaced about 2 to 8 km apart) and were recorded on approximately 281 Texan seismographs (average spacing 138 m). First-arrival refractions were used to develop a refraction tomographic velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 8 km depth, P-wave velocities range from about 2 km/s to more than 7.5 km/s, with the lowest velocities within a well-defined (~2-km-deep, 15-km-wide) basin (< 4 km/s), and the highest velocities below the transition from the Coachella Valley to the Santa Rosa Ranges on the southwest and within the Little San Bernardino Mountains on the northeast. The MCF and BF strands of the SAF bound an approximately 2.5-km-wide horst-type structure on the northeastern side of the Coachella Valley, beneath which the upper crust is characterized by a pronounced low-velocity zone that extends to the bottom of the velocity image. Rocks within the low-velocity zone have significantly lower velocities than those to the northeast and the southwest at the same depths. Conversely, the velocities of rocks on both sides of the Coachella Valley are greater than 7 km/s at depths exceeding about 4 km. The relatively narrow zone of shallow high-velocity rocks between the surface traces of the MCF and BF strands is associated with a zone of uplifted strata. Along SSIP Line 5, we infer that the MCF and BF strands are steeply dipping and merge at about 2 km depth. We base our interpretation on a prominent basement low-velocity zone (fault zone) that is centered southwest of the MCF and BF strands and extends to at least 8 km depth.

  10. Depth-dependent Vertical-to-Horizontal (V/H) Ratios of Free-Field Ground Motion Response Spectra for Deeply Embedded Nuclear Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.; Braverman, J.; Miranda, M.

    2015-02-01

    This report documents the results of a study to determine the depth-dependent V/H ratios of ground motion response spectra in the free field. The V/H ratios reported herein were developed from a worldwide database of surface and downhole acceleration recordings obtained from 45 vertical array stations. This database was specifically compiled for this project, and includes information from a diversity of active tectonic regions (California, Alaska, Taiwan, Japan), site conditions (rock to soft soil), ground motion intensity levels (PGAs between 0.01 g and 0.50 g), magnitudes (between ML 2.78 and JMA 8.1), epicentral distances (between 3.2 km and 812 km),more » and source depths (between 1.2 km and 112 km), as well as sensors at surface and at a wide range of depths relevant to the project. To study the significance of the depth effect, V/H ratios from all the records were sorted into a number of depth bins relevant to the project, and statistics (average, standard deviation, coefficient of variation, 16th, 50th, and 84th percentiles) of the V/H ratios within each bin were computed. Similar analyses were repeated, controlling for different site conditions, ground motion intensity levels, array locations, and source depths, to study their relative effect on the V/H ratios. Our findings confirm the importance of the depth effect on the V/H ratios. The research findings in this report can be used to provide guidance on the significance of the depth effect, and the extent to which this effect should be considered in the seismic design of deeply embedded SMR structures and NPP structures in general.« less

  11. Crustal-scale shear zones and heterogeneous structure beneath the North Anatolian Fault Zone, Turkey, revealed by a high-density seismometer array

    NASA Astrophysics Data System (ADS)

    Kahraman, Metin; Cornwell, David G.; Thompson, David A.; Rost, Sebastian; Houseman, Gregory A.; Türkelli, Niyazi; Teoman, Uğur; Altuncu Poyraz, Selda; Utkucu, Murat; Gülen, Levent

    2015-11-01

    Continental scale deformation is often localised along strike-slip faults constituting considerable seismic hazard in many locations. Nonetheless, the depth extent and precise geometry of such faults, key factors in how strain is accumulated in the earthquake cycle and the assessment of seismic hazard, are poorly constrained in the mid to lower crust. Using a dense broadband network of 71 seismic stations with a nominal station spacing of 7 km in the vicinity of the 1999 Izmit earthquake we map previously unknown small-scale structure in the crust and upper mantle along this part of the North Anatolian Fault Zone (NAFZ). We show that lithological and structural variations exist in the upper, mid and lower crust on length scales of less than 10 km and less than 20 km in the upper mantle. The surface expression of the NAFZ in this region comprises two major branches; both are shown to continue at depth with differences in dip, depth extent and (possibly) width. We interpret a <10 km wide northern branch that passes downward into a shear zone that traverses the entire crust and penetrates the upper mantle to a depth of at least 50 km. The dip of this structure appears to decrease west-east from ∼90° to ∼65° to the north over a distance of 30 to 40 km. Deformation along the southern branch may be accommodated over a wider (>10 km) zone in the crust with a similar variation of dip but there is no clear evidence that this shear zone penetrates the Moho. Layers of anomalously low velocity in the mid crust (20-25 km depth) and high velocity in the lower crust (extending from depths of 28-30 km to the Moho) are best developed in the Armutlu-Almacik block between the two shear zones. A mafic lower crust, possibly resulting from ophiolitic obduction or magmatic intrusion, can best explain the coherent lower crustal structure of this block. Our images show that strain has developed in the lower crust beneath both northern and southern strands of the North Anatolian Fault. Our new high resolution images provide new insights into the structure and evolution of the NAFZ and show that a small and dense passive seismic network is able to image previously undetectable crust and upper mantle heterogeneity on lateral length scales of less than 10 km.

  12. Crustal structure in the Falcón Basin area, northwestern Venezuela, from seismic and gravimetric evidence

    NASA Astrophysics Data System (ADS)

    Bezada, Maximiliano J.; Schmitz, Michael; Jácome, María Inés; Rodríguez, Josmat; Audemard, Franck; Izarra, Carlos; The Bolivar Active Seismic Working Group

    2008-05-01

    The Falcón Basin in northwestern Venezuela has a complex geological history driven by the interactions between the South American and Caribbean plates. Igneous intrusive bodies that outcrop along the axis of the basin have been associated with crustal thinning, and gravity modeling has shown evidence for a significantly thinned crust beneath the basin. In this study, crustal scale seismic refraction/wide-angle reflection data derived from onshore/offshore active seismic experiments are interpreted and forward-modeled to generate a P-wave velocity model for a ˜450 km long profile. The final model shows thinning of the crust beneath the Falcón Basin where depth to Moho decreases to 27 km from a value of 40 km about 100 km to the south. A deeper reflected phase on the offshore section is interpreted to be derived from the downgoing Caribbean slab. Velocity values were converted to density and the resulting gravimetric response was shown to be consistent with the regional gravity anomaly. The crustal thinning proposed here supports a rift origin for the Falcón Basin.

  13. Complementary Ruptures of Surface Ruptures and Deep Asperity during the 2014 Northern Nagano, Japan, Earthquake (MW 6.3)

    NASA Astrophysics Data System (ADS)

    Asano, K.; Iwata, T.; Kubo, H.

    2015-12-01

    A thrust earthquake of MW 6.3 occurred along the northern part of the Itoigawa-Shizuoka Tectonic Line (ISTL) in the northern Nagano prefecture, central Japan, on November 22, 2014. This event was reported to be related to an active fault, the Kamishiro fault belonging to the ISTL (e.g., HERP, 2014). The surface rupture is observed along the Kamishiro fault (e.g., Lin et al., 2015; Okada et al., 2015). We estimated the kinematic source rupture process of this earthquake through the multiple time-window linear waveform inversion method (Hartzell and Heaton, 1983). We used velocity waveforms in 0.05-1 Hz from 12 strong motion stations of K-NET, KiK-net (NIED), JMA, and Nagano prefecture (SK-net, ERI). In order to enhance the reliability in Green's functions, we assumed one-dimensional velocity structure models different for the different stations, which were extracted from the nation-wide three-dimensional velocity structure model, Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012). Considering the spatial distribution of aftershocks (Sakai et al., 2015) and surface ruptures, the assumed fault model consisted of two dip-bending fault segments with different dip angles between the northern and southern segments. The total length and width of the fault plane is 20 km and 13 km, relatively, and the fault model is divided into 260 subfaults of 1 km × 1 km in space and six smoothed ramp functions in time. An asperity or large slip area with a peak slip of 1.9 m was estimated in the lower plane of the northern segment in the approximate depth range of 4 to 8 km. The depth extent of this asperity is consistent with the seismogenic zone revealed by past studies (e.g., Panayotopoulos et al., 2014). In contrast, the slip in the southern segment is relatively concentrated in the shallow portion of the segment where the surface ruptures were found along the Kamishiro fault. The overall spatial rupture pattern of the source fault, in which the deep asperity was located on the northern segment and surface rupture was found on the southern segment, seems to be spatially consistent with the mapped active faults. These findings suggest characteristic and repeating features of fault ruptures along active faults where static offsets have accumulated over past events, and it would be a good constraint on earthquake scenarios along it.

  14. Correlation between elastic energy density and deep earthquakes distribution

    NASA Astrophysics Data System (ADS)

    Gunawardana, P. M.; Morra, G.

    2017-05-01

    The mechanism at the origin of the earthquakes below 30 km remains elusive as these events cannot be explained by brittle frictional processes. In this work we focus on the global total distribution of earthquakes frequency vs. depth from ∼50 km to 670 km depth. We develop a numerical model of self-driven subduction by solving the non-homogeneous Stokes equation using the ;Particle in cell method; in combination with a conservative finite difference scheme, here solved for the first time using Python and NumPy only. We show that most of the elastic energy is stored in the slab core and that it is strongly correlated with the earthquake frequency-depth distribution for a wide range of lithosphere and lithosphere-core viscosities. According to our results, we suggest that 1) slab bending at the bottom of the upper mantle causes the peak of the earthquake frequency-depth distribution that is observed at mantle transition depth; 2) the presence of a high viscous stiff core inside the lithosphere generates an elastic energy distribution that fits better with the exponential decay that is observed at intermediate depth.

  15. Imaging the magmatic system of Mono Basin, California with magnetotellurics in three--dimensions

    USGS Publications Warehouse

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Ponce, David A.

    2015-01-01

    A three–dimensional (3D) electrical resistivity model of Mono Basin in eastern California unveils a complex subsurface filled with zones of partial melt, fluid–filled fracture networks, cold plutons, and regional faults. In 2013, 62 broadband magnetotelluric (MT) stations were collected in an array around southeastern Mono Basin from which a 3D electrical resistivity model was created with a resolvable depth of 35 km. Multiple robust electrical resistivity features were found that correlate with existing geophysical observations. The most robust features are two 300 ± 50 km3 near-vertical conductive bodies (3–10 Ω·m) that underlie the southeast and north-eastern margin of Mono Craters below 10 km depth. These features are interpreted as magmatic crystal–melt mush zones of 15 ± 5% interstitial melt surrounded by hydrothermal fluids and are likely sources for Holocene eruptions. Two conductive east–dipping structures appear to connect each magma source region to the surface. A conductive arc–like structure (< 0.9 Ω·m) links the northernmost mush column at 10 km depth to just below vents near Panum Crater, where the high conductivity suggests the presence of hydrothermal fluids. The connection from the southernmost mush column at 10 km depth to below South Coulée is less obvious with higher resistivity (200 Ω·m) suggestive of a cooled connection. A third, less constrained conductive feature (4–10 Ω·m) 15 km deep extending to 35 km is located west of Mono Craters near the eastern front of the Sierra Nevada escarpment, and is coincident with a zone of sporadic, long–period earthquakes that are characteristic of a fluid-filled (magmatic or metamorphic) fracture network. A resistive feature (103–105 Ω·m) located under Aeolian Buttes contains a deep root down to 25 km. The eastern edge of this resistor appears to structurally control the arcuate shape of Mono Craters. These observations have been combined to form a new conceptual model of the magmatic system beneath Mono Craters to a depth of 30 km.

  16. Three-dimensional structure across the Tintina strike-slip fault, northern Canadian Cordillera, from seismic refraction and reflection tomography

    NASA Astrophysics Data System (ADS)

    Zelt, Colin A.; Ellis, Robert M.; Zelt, Barry C.

    2006-12-01

    The development of the northern Canadian Cordillera involved major strike-slip displacement of accreted terranes relative to North America along faults such as the Tintina, which has experienced ~425 km of dextral motion since the Palaeocene. The SNORE seismic refraction/wide-angle reflection experiment was carried out in 1997 as one component of Lithoprobe's Slave-Northern Cordillera Lithospheric Evolution (SNORCLE) transect. In addition to four 2-D profiles, two sets of broadside recordings were acquired to image the 3-D structure across the Tintina fault (TF) in areas centred at about 59.5°N and 62°N. Simultaneous and independent refraction and reflection traveltime tomography were applied to the combined inline and broadside data set for each region to establish the range of lower crustal velocity, Moho depth and upper mantle velocity structure consistent with the data. Our preferred models are the average of the simultaneous and independent models since they represent the robust features required by the data. The preferred 3-D models are generally consistent with the 2-D models obtained from the inline data in previous independent studies. There are along-strike variations across the TF, perhaps due to the change in strike direction or the amount of motion along the fault in the north compared to the south. In the lower crust, the only correlation with the TF that is required by the data is a 0.1 km s-1 drop in velocity to the southwest of the fault in the northern study area. The absence of a strong correlation with the TF in the lower crust is consistent with the interpreted continuity of lower crustal units across the fault in the SNORCLE reflection data. The Moho is relatively flat throughout the study area, 34-35 km depth, but there is broad crustal thickening of a few kilometres centred ~50 km southwest of the TF in the northern and southern study areas. This thickening may be the result of a period when there was a component of compression along the TF. There is strong evidence for a 0.3-0.4 km s-1 drop in upper mantle velocity to the west of the TF in the south, and weak evidence for ~0.1 km s-1 drop to the southwest in the north. The upper mantle variations in the south indicate that the TF is the boundary between cooler and/or more refractory ancestral North American mantle to the east and warmer and/or more fertile mantle beneath accreted North America to the west. In the north, the mantle appears to be more intermediate in its properties on both sides of the TF.

  17. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    USGS Publications Warehouse

    Stevens, Thomas; Paull, Charles K.; Ussler, William III; McGann, Mary; Buylaert, Jan-Pieter; Lundsten, Eve M.

    2013-01-01

    While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry into the canyon head while the 14C ages of benthic foraminifera record the deposition of hemipelagic sediments that bound the sand horizons. We use both single-grain and small (∼2 mm area) single-aliquot regeneration approaches on vibracore samples from fining-upward sequences at various water depths to demonstrate relatively rapid, decadal-scale sand transport to at least 1.1 km depth and more variable decadal- to millennial-scale transport to a least 3.5 km depth on the fan. Significant differences between the time sand was last exposed at the canyon head (OSL age) and the timing of deposition of the sand (from 14C ages of benthic foraminifera in bracketing hemipelagic sediments) are interpreted as indicating that the sand does not pass through the entire canyon instantly in large individual events, but rather moves multiple times before emerging onto the fan. The increased spread in single-grain OSL dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL ages that are consistent with a sub-decadal recurrence frequency while the fining-upward sand sequences on the fan indicate that the channel is still experiencing events with a 150–250 year recurrence frequency out to 3.5 km water depths.    

  18. Overview of the Mechanics of the Active Mai'iu Low Angle Normal Fault (Dayman Dome), Southeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Boulton, C. J.; Webber, S. M.; Mizera, M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L.; Biemiller, J.; Seward, D.; Boles, A.

    2016-12-01

    The Mai'iu Fault is a corrugated low-angle normal fault (LANF) that has slipped >24 km. It emerges near sea level at 21° N dip, and flattens southward over the dome crest at 3000 m. This reactivated Paleogene suture is slipping at up to 1 cm/year based on previous GPS data and preliminary 10Be cosmogenic nuclide exposure scarp dating. An alignment of microseismicity (Eilon et al. 2015) suggests a dip of 30° N at 15-25 km depth. Pseudotachylites are abundant in lower, mylonitic parts of the footwall. One vein yielded 40Ar/39Ar ages of 1.9-2.2 Ma, implying seismicity at 8-10 km depth at the above slip rate. Widespread, antithetic normal faults in the footwall are attributed to rolling-hinge controlled yielding during exhumation. A single rider block is downfolded into synformal megamullion. Unconformities within this block, and ductile folding and conjugate strike-slip faulting of mylonitic footwall fabrics record prolonged EW shortening and constriction. Many normal and strike-slip faults cut the metabasaltic footwall recording Andersonian stresses and flipping between σ1 and σ2. To exhume the steep faults, the LANF must have remained active despite differential stress being locally high enough to initiate well-oriented faults—relationships that bracket the frictional strength of the LANF. Quantitative XRD on mafic and serpentinitic gouges reveal the Mai'iu fault core is enriched in weak clays corrensite and saponite. Hydrothermal friction experiments were done at effective normal stresses of 30-210 MPa, and temperatures of 50-450oC. At shallow depths (T≤200 oC), clay-rich fault gouges are frictionally weak (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening. At intermediate depths (T>200 oC), the footwall is frictionally strong (μ=0.71-0.78 and 0.50-0.64) and velocity-weakening. Velocity-strengthening is observed at T≥400 oC. The experiments provide evidence for deep unstable slip, consistent with footwall pseudotachylites and microseismicity at depth

  19. Transfer Rates of Magma From Planetary Mantles to the Surface.

    NASA Astrophysics Data System (ADS)

    Wilson, L.; Head, J. W.; Parfitt, E. A.

    2008-12-01

    We discuss the speed at which magma can be transferred to a planetary surface from the deep interior. Current literature describes a combination of slow percolation of melt in the mantle where convection-driven pressure-release melting is occurring, concentration of melt by source region deformation, initiation and growth of magma-filled brittle fractures (dikes) providing wider pathways for melt movement, additional growth and interconnection of dikes with decreasing depth, rise of magma to storage zones (reservoirs) located at levels of neutral buoyancy at the base of or within the crust, and transfer from the storage zones in dikes to feed eruptions or intrusions. We do not take issue with these mechanisms but think that their relative importance in various circumstances is poorly appreciated. On Earth, preservation of diamonds in kimberlites implies very rapid (hours) transfer of melts from depths of 100-300 km, and there is strong geochemical evidence that magmas at mid-ocean ridges reach shallow depths faster than is possible by percolation alone. On the Moon, the petrology of pyroclasts involved in dark-mantle-forming eruptions implies rapid (again probably hours) magma transfer from depths of up to 400 km. The ureilite meteorites, samples of the mantle of a disrupted asteroid 200 km in diameter, have compositions only consistent with the rapid (months) extraction of mafic melt from the mantle. All of these examples imply that brittle fractures (dikes) can sometimes be initiated at depths where mantle rheology would normally be expected to be plastic rather than elastic, and that melt can be fed into these dikes extremely efficiently. Further evidence for this is provided by the giant radial dike swarms observed on Earth, Mars and Venus. The dikes observed (on Earth) and inferred from the presence of radiating graben systems (Mars) and radiating fracture and graben systems (Venus) are so voluminous that they can only be understood if they are fed from extremely large magma reservoirs, probably located at the base of the crust, that are supplied from the mantle (i.e. buffered) while the dikes are being emplaced, again implying extremely efficient melt extraction from mantle source regions.

  20. New constraints on micro-seismicity and stress state in the western part of the North Anatolian Fault Zone: Observations from a dense seismic array

    NASA Astrophysics Data System (ADS)

    Altuncu Poyraz, Selda; Teoman, M. Uğur; Türkelli, Niyazi; Kahraman, Metin; Cambaz, Didem; Mutlu, Ahu; Rost, Sebastian; Houseman, Gregory A.; Thompson, David A.; Cornwell, David; Utkucu, Murat; Gülen, Levent

    2015-08-01

    With the aim of extensively investigating the crustal structure beneath the western segment of the North Anatolian Fault Zone where it splays into northern and southern branches, a temporary seismic network (dense array for North Anatolia-DANA) consisting of 70 stations was deployed in early May 2012 and operated for 18 months in the Sakarya region during the FaultLab experiment. Out of 2437 events contaminated by explosions, we extracted 1371 well located earthquakes. The enhanced station coverage having a nominal station spacing of 7 km, lead to a minimum magnitude calculation of 0.1. Horizontal and vertical location uncertainties within the array do not exceed 0.8 km and 0.9 km, respectively. We observe considerable seismic activity along both branches of the fault where the depth of the seismogenic zone was mostly confined to 15 km. Using our current earthquake catalog we obtained a b-value of 1. We also mapped the b-value variation with depth and observed a gradual decrease. Furthermore, we determined the source parameters of 41 earthquakes with magnitudes greater than 1.8 using P-wave first motion polarity method. Regional Moment Tensor Inversion method was also applied to earthquakes with magnitudes greater than 3.0. Focal mechanism solutions confirm that Sakarya and its vicinity is stressed by a compressional regime showing a primarily oblique-slip motion character. Stress tensor analysis indicates that the maximum principal stress is aligned in WNW-ESE direction and the tensional axis is aligned in NNE-SSW direction.

  1. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust.

    PubMed

    Ernst, W G; Maruyama, S; Wallis, S

    1997-09-02

    Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90-125 km require unusual conditions. Our subduction model involves underflow of a salient (250 +/- 150 km wide, 90-125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2-15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over approximately 20 million years, rapid ( approximately 5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material-otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds.

  2. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust

    PubMed Central

    Ernst, W. G.; Maruyama, S.; Wallis, S.

    1997-01-01

    Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90–125 km require unusual conditions. Our subduction model involves underflow of a salient (250 ± 150 km wide, 90–125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2–15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over ≈20 million years, rapid (≈5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material—otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds. PMID:11038569

  3. Buoyancy-Driven, Rapid Exhumation of Ultrahigh-Pressure Metamorphosed Continental Crust

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.; Maruyama, S.; Wallis, S.

    1997-09-01

    Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90-125 km require unusual conditions. Our subduction model involves underflow of a salient (250 ± 150 km wide, 90-125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2-15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over ≈ 20 million years, rapid (≈ 5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material--otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds.

  4. Seismicity, faulting, and structure of the Koyna-Warna seismic region, Western India from local earthquake tomography and hypocenter locations

    NASA Astrophysics Data System (ADS)

    Dixit, Madan M.; Kumar, Sanjay; Catchings, R. D.; Suman, K.; Sarkar, Dipankar; Sen, M. K.

    2014-08-01

    Although seismicity near Koyna Reservoir (India) has persisted for ~50 years and includes the largest induced earthquake (M 6.3) reported worldwide, the seismotectonic framework of the area is not well understood. We recorded ~1800 earthquakes from 6 January 2010 to 28 May 2010 and located a subset of 343 of the highest-quality earthquakes using the tomoDD code of Zhang and Thurber (2003) to better understand the framework. We also inverted first arrivals for 3-D Vp, Vs, and Vp/Vs and Poisson's ratio tomography models of the upper 12 km of the crust. Epicenters for the recorded earthquakes are located south of the Koyna River, including a high-density cluster that coincides with a shallow depth (<1.5 km) zone of relatively high Vp and low Vs (also high Vp/Vs and Poisson's ratios) near Warna Reservoir. This anomalous zone, which extends near vertically to at least 8 km depth and laterally northward at least 15 km, is likely a water-saturated zone of faults under high pore pressures. Because many of the earthquakes occur on the periphery of the fault zone, rather than near its center, the observed seismicity-velocity correlations are consistent with the concept that many of the earthquakes nucleate in fractures adjacent to the main fault zone due to high pore pressure. We interpret our velocity images as showing a series of northwest trending faults locally near the central part of Warna Reservoir and a major northward trending fault zone north of Warna Reservoir.

  5. Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results

    NASA Astrophysics Data System (ADS)

    Gans, Christine R.; Beck, Susan L.; Zandt, George; Gilbert, Hersh; Alvarado, Patricia; Anderson, Megan; Linkimer, Lepolt

    2011-07-01

    The Pampean flat slab of central Chile and Argentina (30°-32°S) has strongly influenced Cenozoic tectonics in western Argentina, which contains both the thick-skinned, basement-cored uplifts of the Sierras Pampeanas and the thin-skinned Andean Precordillera fold and thrust belt. In this region of South America, the Nazca Plate is subducting nearly horizontally beneath the South American Plate at ˜100 km depth. To gain a better understanding of the deeper structure of this region, including the transition from flat to 'normal' subduction to the south, three IRIS-PASSCAL arrays of broad-band seismic stations have been deployed in central Argentina. Using the dense SIEMBRA array, combined with the broader CHARGE and ESP arrays, the flat slab is imaged for the first time in 3-D detail using receiver function (RF) analysis. A distinct pair of RF arrivals consisting of a negative pulse that marks the top of the oceanic crust, followed by a positive pulse, which indicates the base of the oceanic crust, can be used to map the slab's structure. Depths to Moho and oceanic crustal thicknesses estimated from RF results provide new, more detailed regional maps. An improved depth to continental Moho map shows depths of more than 70 km in the main Cordillera and ˜50 km in the western Sierras Pampeanas, that shallow to ˜35 km in the eastern Sierras Pampeanas. Depth to Moho contours roughly follow terrane boundaries. Offshore, the hotspot seamount chain of the Juan Fernández Ridge (JFR) is thought to create overthickened oceanic crust, providing a mechanism for flat slab subduction. By comparing synthetic RFs, based on various structures, to the observed RF signal we determine that the thickness of the oceanic crust at the top of the slab averages at least ˜13-19 km, supporting the idea of a moderately overthickened crust to provide the additional buoyancy for the slab to remain flat. The overthickened region is broader than the area directly aligned with the path of the JFR, however, and indicates, along with the slab earthquake locations, that the flat slab area is wider than the JFR volcanic chain observed in the offshore bathymetry. Further, RFs indicate that the subducted oceanic crust in the region directly along the path of the subducted ridge is broken by trench-parallel faults. One explanation for these faults is that they are older structures within the oceanic crust that were created when the slab subducted. Alternatively, it is possible that faults formed recently from tectonic underplating caused by increased interplate coupling in the flat slab region.

  6. Preliminary analysis of seismic anisotropy in the uppermost mantle beneath NW Pacific reveled by the Normal Oceanic Mantle project

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Isse, T.; Nishida, K.; Kawakatsu, H.; Shiobara, H.; Sugioka, H.; Ito, A.; Utada, H.

    2013-12-01

    Seismic structure including anisotropy in the oceanic uppermost mantle is essential for understanding deformation related to plate tectonics. Recent reports of a sharp discontinuity between the high velocity LID and the low velocity zone (LVZ) especially emphasize the importance of observation in oceanic basins apart from ridges and hotspots for determining the structure including LID and LVZ. In this study, we analyzed records of four broadband ocean bottom seismometers (BBOBSs) deployed in the northwest of Shatsky Rise by the pilot observation of the Normal Oceanic Mantle (NOMan) project in 2010-2011. We first measured average phase velocities of surface waves at periods of 5-30 s by the ambient-noise cross correlation method. Based on the method of Takeo et al. (in prep. GJI), we analyzed fundamental- and first higher- mode Rayleigh waves and fundamental-mode Love wave simultaneously by waveform fitting after the correction of clock delay. At periods of 25-100 s, we measured phase velocities of fundamental-mode surface waves by the array analysis of teleseismic waveforms. We then determined one-dimensional radially anisotropic structure beneath the array by the method of Takeo et al. (2013, JGR). The obtained structure shows transition from LID to LVZ at depths of 50-80km, which is marginally consistent with the depth of ~80 km estimated by a receiver function analysis at WP2 station situated at east of the studies area (Kawakatsu et al., 2009). The velocity gradient in the LID is almost zero and inconsistent with the simple cooling model of homogeneous oceanic plate. The average intensity of S-wave radial anisotropy at depths of ~10-220 km is ~3% (VSH>VSV). We further estimated S-wave azimuthal anisotropy at depths of ~30-100 km by analyzing teleseismic fundamental-mode Rayleigh waves at periods of 25-50 s. The intensity of anisotropy is 2-3%. The fastest direction is about N35W, close to that of Sn-wave velocity around WP2 station obtained by a refraction survey (Shinohara et al., 2008), and indicates the presence of past mantle flow almost perpendicular to the ancient mid ocean ridge or the presence of current mantle flow parallel to the plate motion at depths of 30-100 km. We will further analyze new records after the recovery of 13 BBOBSs in August 2013 and will present more detailed structure around Shatsky Rise. BBOBS stations of pilot observation of NOMan project (white crosses), WP2 station (circle), isochrons (white lines). Black bars show the fastest directions of Rayleigh wave at periods of 25-50 s and the fastest direction of Sn-wave velocity (Shinohara et al. 2008).

  7. The Larderello-Travale geothermal field (Tuscany, central Italy): seismic imaging as a tool for the analysis and assessment of the reservoir

    NASA Astrophysics Data System (ADS)

    Anselmi, M.; Piccinini, D.; Casini, M.; Spinelli, E.; Ciuffi, S.; De Gori, P.; Saccorotti, G.; chiarabba, C.

    2013-12-01

    The Larderello-Travale is a geothermal field with steam-dominated reservoirs (1300 kg/s of steam and running capacity of 700 MWatt), which is exploited by Enel Green Power, the electric company involved in the renewable energy and resources. The area is located in the pre-Apennine belt of southern Tuscany and has been characterized by extensional tectonics and sporadic events of compression. The result of these tectonic phases is a block-faulting structure with NW-SE trending horsts and basins. Small post-orogenic granitic stocks were emplaced along the main axes of the uplifted structures, causing the anomalous heat flow that marks the area. Results from seismic reflection lines crossing the study area show the presence of the top of a discontinuous reflector in the 3-8 km depth range and with thickness up to ~1 km, referred to as the ';K-horizon'. In this framework we present the results obtained by the processing of a high-quality local earthquake dataset, recorded during the 1977-2005 time interval by the seismic network managed by Enel Green Power. The geothermal target volume was parameterized using a 3-D grid for both Vp (P-wave velocities) and Qp (quality factor of P-waves). Grid nodes are spaced by 5 and 2 km along the two horizontal and vertical directions, respectively. The tomographic Vp images show an overall velocity increase with depth down to the K-horizon. Conversely, some characteristic features are observed in the distribution of Qp anomalies, with high Qp values in the 300-600 range located just below the K-horizon. The relationship between K-horizon and the seismicity distribution doesn't show a clear and homogeneous coupling: the bulk of re-located earthquakes are placed either above or below the top of the K-horizon in the shallower 8 km depth, with an abrupt cut-off at depth greater than 10 km. We then present the preliminary result from the G.A.P.S.S. (Geothermal Area Passive Seismic Sources) experiment, a project that the Istituto Nazionale di Geofisica e Vulcanologia (I.N.G.V.) is conducting since May, 2012. The GAPSS experiment consists of a large aperture seismic array composed by 20 temporary and 2 permanent broad-band seismic stations. Besides the characterization of the seismic release of the geothermal field, our purpose is to investigate in depth the geothermal field applying cost-effective passive seismic techniques, such as local earthquake tomography, attenuation tomography, shear wave splitting analysis and surface-wave dispersion from noise correlation analysis.

  8. Mantle-crust interaction at the Blanco Ridge segment of the Blanco Transform Fault Zone: Results from the Blanco Transform Fault OBS Experiment

    NASA Astrophysics Data System (ADS)

    Kuna, V. M.; Nabelek, J.; Braunmiller, J.

    2016-12-01

    We present results of the Blanco Transform OBS Experiment, which consists of the deployment of 55 three-component broadband and short-period ocean bottom seismometers in the vicinity of the Blanco Fault Zone for the period between September 2012 and October 2013. Our research concentrates on the Blanco Ridge, a purely transform segment of the Blanco Fault Zone, that spans over 130 km between the Cascadia and the Gorda pull-apart depressions. Almost 3,000 well-constrained earthquakes were detected and located along the Blanco Ridge by an automatic procedure (using BRTT Antelope) and relocated using a relative location algorithm (hypoDD). The catalog magnitude of completeness is M=2.2 with an overall b value of 1. Earthquakes extend from 0 km to 20 km depth, but cluster predominantly at two depth levels: in the crust (5-7 km) and in the uppermost mantle (12-17 km). Statistical analysis reveals striking differences between crustal and mantle seismicity. The temporal distribution of crustal events follows common patterns given by Omori's law, while most mantle seismicity occurs in spatially tight sequences of unusually short durations lasting 30 minutes or less. These sequences cannot be described by known empirical laws. Moreover, we observe increased seismic activity in the uppermost mantle about 30 days before the largest (M=5.4) earthquake. Two mantle sequences occurred in a small area of 3x3 km about 4 and 2 weeks before the M=5.4 event. In the week leading up to the M=5.4 event we observe a significant downward migration of crustal seismicity, which results in the subsequent nucleation of the main event at the base of the crust. We hypothesize that the highly localized uppermost mantle seismicity is triggered by aseismic slow-slip of the surrounding ductile mantle. We also suggest that the mantle slip loads the crust eventually resulting in relatively large crustal earthquakes.

  9. Seismic anisotropy and mantle flow below subducting slabs

    NASA Astrophysics Data System (ADS)

    Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy

    2017-05-01

    Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth < 50 km) - suggesting a separate region of anisotropy in the lithospheric slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.

  10. Spectral analysis of the gravity and topography of Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; Frey, Herbert V.; Kiefer, Walter S.; Nerem, R. Steven; Zuber, Maria T.

    1993-01-01

    New spherical harmonic models of the gravity and topography of Mars place important constraints on the structure and dynamics of the interior. The gravity and topography models are significantly phase coherent for harmonic degrees n less than 30 (wavelengths greater than 700 km). Loss of coherence below that wavelength is presumably due to inadequacies of the models, rather than a change in behavior of the planet. The gravity/topography admittance reveals two very different spectral domains: for n greater than 4, a simple Airy compensation model, with mean depth of 100 km, faithfully represents the observed pattern; for degrees 2 and 3, the effective compensation depths are 1400 and 550 km, respectively, strongly arguing for dynamic compensation at those wavelengths. The gravity model has been derived from a reanalysis of the tracking data for Mariner 9 and the Viking Orbiters, The topography model was derived by harmonic analysis of the USGS digital elevation model of Mars. Before comparing gravity and topography for internal structure inferences, we must ensure that both are consistently referenced to a hydrostatic datum. For the gravity, this involves removal of hydrostatic components of the even degree zonal coefficients. For the topography, it involves adding the degree 4 equipotential reference surface, to get spherically referenced values, and then subtracting the full degree 50 equipotential. Variance spectra and phase coherence of orthometric heights and gravity anomalies are addressed.

  11. A comparison study of 2006 Java earthquake and other Tsunami earthquakes

    NASA Astrophysics Data System (ADS)

    Ji, C.; Shao, G.

    2006-12-01

    We revise the slip processes of July 17 2006 Java earthquakes by combined inverting teleseismic body wave, long period surface waves, as well as the broadband records at Christmas island (XMIS), which is 220 km away from the hypocenter and so far the closest observation for a Tsunami earthquake. Comparing with the previous studies, our approach considers the amplitude variations of surface waves with source depths as well as the contribution of ScS phase, which usually has amplitudes compatible with that of direct S phase for such low angle thrust earthquakes. The fault dip angles are also refined using the Love waves observed along fault strike direction. Our results indicate that the 2006 event initiated at a depth around 12 km and unilaterally rupture southeast for 150 sec with a speed of 1.0 km/sec. The revised fault dip is only about 6 degrees, smaller than the Harvard CMT (10.5 degrees) but consistent with that of 1994 Java earthquake. The smaller fault dip results in a larger moment magnitude (Mw=7.9) for a PREM earth, though it is dependent on the velocity structure used. After verified with 3D SEM forward simulation, we compare the inverted result with the revised slip models of 1994 Java and 1992 Nicaragua earthquakes derived using the same wavelet based finite fault inversion methodology.

  12. Combining shock barometry with numerical modeling: Insights into complex crater formation—The example of the Siljan impact structure (Sweden)

    NASA Astrophysics Data System (ADS)

    Holm-Alwmark, Sanna; Rae, Auriol S. P.; Ferrière, Ludovic; Alwmark, Carl; Collins, Gareth S.

    2017-12-01

    Siljan, central Sweden, is the largest known impact structure in Europe. It was formed at about 380 Ma, in the late Devonian period. The structure has been heavily eroded to a level originally located underneath the crater floor, and to date, important questions about the original size and morphology of Siljan remain unanswered. Here we present the results of a shock barometry study of quartz-bearing surface and drill core samples combined with numerical modeling using iSALE. The investigated 13 bedrock granitoid samples show that the recorded shock pressure decreases with increasing depth from 15 to 20 GPa near the (present) surface, to 10-15 GPa at 600 m depth. A best-fit model that is consistent with observational constraints relating to the present size of the structure, the location of the downfaulted sediments, and the observed surface and vertical shock barometry profiles is presented. The best-fit model results in a final crater (rim-to-rim) diameter of 65 km. According to our simulations, the original Siljan impact structure would have been a peak-ring crater. Siljan was formed in a mixed target of Paleozoic sedimentary rocks overlaying crystalline basement. Our modeling suggests that, at the time of impact, the sedimentary sequence was approximately 3 km thick. Since then, there has been around 4 km of erosion of the structure.

  13. Crustal structure along the geosciences transect from Altay to Altun Tagh

    USGS Publications Warehouse

    Wang, Y.-X.; Han, G.-H.; Jiang, M.; Yuan, X.-C.; Mooney, W.D.; Coleman, R.G.

    2004-01-01

    Based upon the P- and S-wave data acquired along the geoscience transect from Altay to Altun Tagh in Northwest China, the crustal structures of velocities and Poisson's ratio are determined. The crustal velocity structure features an obvious three-layer structure with velocities of 6. 0 ??? 6. 3km/s, 6. 3 ??? 6. 6km/s and 6.9 ??? 7. Okm/s from surface to depth, respectively. The crustal thickness along the. entire profile is mostly 50km with the thickest crust (56km) beneath the Altay and the thinnest (46km) beneath the Junggar basin. The velocities underlying Moho are 7.7 to 7.8km/s between the Tianshan and the Junggar basin, and 7.9 to 8.0km/s below the Altay Mountains and eastern margin of the Tarim basin. The southern half of the profile, including the eastern Tianshan Mountains and eastern margin of the Tarim basin, shows low P-wave velocities and ?? = 0. 25 to a depth, of 30km, which suggests a quartz-rich, granitic upper crustal composition. The northern half of the profile below the Altay Mountains and Junggar Accretional Belt has a higher Poisson's ratio of ?? = 0.26 ??? 0.27 to a depth of 30km, indicative of an intermediate crustal composition, The entire profile is underlain by a 15 to 30km thick high-velocity (6.9 ??? 7.0km/s; ?? = 0. 26 - 0.28) lower crustal layer that we interpret to have a bulk composition of mafic granulite. At the southern end of the profile a 5km-thick midcrustal low-velocity layer ( Vp, = 5.9km/s, ?? = 0.25) underlies the Tianshan and the region to the south, and may be indicative of granitic intrusive in Late Paleozoic.

  14. Extremal inversion of lunar travel time data. [seismic velocity structure

    NASA Technical Reports Server (NTRS)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  15. The Iceland Deep Drilling Project (IDDP): (I) Drilling for Supercritical Hydrothermal Fluids is Underway

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2008-12-01

    The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power production should follow in 2010. During 2009-19 two new wells, ~4 km deep, will be drilled at the Hengill and the Reykjanes geothermal fields in southern Iceland, and subsequently deepened into the supercritical zone. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, where the Mid-Atlantic Ridge comes on land. Processes at depth at Reykjanes should be more similar to those responsible for black smokers on oceanic rift systems. Because of the considerable international scientific opportunities afforded by the IDDP, the US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. Research is underway on samples from existing wells in the targeted geothermal fields, and on active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  16. First Quarter Hanford Seismic Report for Fiscal Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    2010-03-29

    The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 81 local earthquakes during the first quarter of FY 2010. Sixty-five of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b,more » 2009c, and 2009d). Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with only 1 event in the 2.0-3.0 range; the maximum magnitude event (2.5 Mc) occurred on December 22 at depth 2.1 km. The average depth of the Wooded Island events during the quarter was 1.4 km with a maximum depth estimated at 3.1 km. This placed the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. The Hanford SMA network was triggered several times by these events and the SMA recordings are discussed in section 6.0. During the last year some Hanford employees working within a few miles of the swarm area and individuals living directly across the Columbia River from the swarm center have reported feeling many of the larger magnitude events. Strong motion accelerometer (SMA) units installed directly above the swarm area at ground surface measured peak ground accelerations approaching 15% g, the largest values recorded at Hanford. This corresponds to strong shaking of the ground, consistent with what people in the local area have reported. However, the duration and magnitude of these swarm events should not result in any structural damage to facilities. The USGS performed a geophysical survey using satellite interferometry that detected approximately 1 inch uplift in surface deformation along an east-west transect within the swarm area. The uplift is thought to be caused by the release of pressure that has built up in sedimentary layers, cracking the brittle basalt layers with the Columbia River Basalt Formation (CRBG) and causing the earthquakes. Similar earthquake swarms have been recorded near this same location in 1970, 1975 and 1988 but not with SMA readings or satellite imagery. Prior to the 1970s, swarming may have occurred, but equipment was not in place to record those events. The Wooded Island swarm, due its location and the limited magnitude of the events, does not appear to pose any significant risk to Hanford waste storage facilities. Since swarms of the past did not intensify in magnitude, seismologists do not expect that these events will persist or increase in intensity. However, Pacific Northwest National Laboratory (PNNL) will continue to monitor the activity. Outside of the Wooded Island swarm, sixteen earthquakes were recorded, all minor events. Seven earthquakes were located at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments and nine earthquakes at depths greater than 9 km, within the basement. Geographically, seven earthquakes were located in known swarm areas and nine earthquakes were classified as random events.« less

  17. Crustal structure beneath the Blue Mountains terranes and cratonic North America, eastern Oregon, and Idaho, from teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Christian Stanciu, A.; Russo, Raymond M.; Mocanu, Victor I.; Bremner, Paul M.; Hongsresawat, Sutatcha; Torpey, Megan E.; VanDecar, John C.; Foster, David A.; Hole, John A.

    2016-07-01

    We present new images of lithospheric structure obtained from P-to-S conversions defined by receiver functions at the 85 broadband seismic stations of the EarthScope IDaho-ORegon experiment. We resolve the crustal thickness beneath the Blue Mountains province and the former western margin of cratonic North America, the geometry of the western Idaho shear zone (WISZ), and the boundary between the Grouse Creek and Farmington provinces. We calculated P-to-S receiver functions using the iterative time domain deconvolution method, and we used the H-k grid search method and common conversion point stacking to image the lithospheric structure. Moho depths beneath the Blue Mountains terranes range from 24 to 34 km, whereas the crust is 32-40 km thick beneath the Idaho batholith and the regions of extended crust of east-central Idaho. The Blue Mountains group Olds Ferry terrane is characterized by the thinnest crust in the study area, 24 km thick. There is a clear break in the continuity of the Moho across the WISZ, with depths increasing from 28 km west of the shear zone to 36 km just east of its surface expression. The presence of a strong midcrustal converting interface at 18 km depth beneath the Idaho batholith extending 20 km east of the WISZ indicates tectonic wedging in this region. A north striking 7 km offset in Moho depth, thinning to the east, is present beneath the Lost River Range and Pahsimeroi Valley; we identify this sharp offset as the boundary that juxtaposes the Archean Grouse Creek block with the Paleoproterozoic Farmington zone.

  18. Lithospheric Layering beneath Southern Africa Constrained by S-to-P Receiver Functions

    NASA Astrophysics Data System (ADS)

    Liu, L.; Liu, K. H.; Gao, S. S.

    2016-12-01

    To investigate the existence of intra-lithospheric interfaces in an area of active rifting of ancient lithosphere, we stack S-to-P receiver functions (SRFs) recorded by broadband seismic stations in the vicinity of the non-volcanic sections of the East African Rift System and the stable Kaapvaal and Zimbabwe cratons. The data set was recorded by about 200 permanent and portable seismic stations installed over the past 30 years. The SRFs are computed using frequency-domain deconvolution, and are stacked in consecutive circles with a radius of 2 degrees. They are converted to depth series after moveout corrections using the IASP91 Earth model. In the upper mantle , a robust negative arrival is found in virtually all the stacked traces in the depth range of 50-100 km. Comparison with results from seismic tomography and mantle xenolith studies suggests that this discontinuity represents a mid-lithospheric discontinuity (MLD), similar to what was observed beneath the North American continent. The absence of observable negative arrivals in the anticipated depth of 250 km or greater beneath the study area suggests a gradual instead of sharp transition from the lithosphere to the asthenosphere. No significant shallowing of the MLD is observed beneath the young rift segments, suggesting that rifting is limited in the crust, an observation that is consistent with recent results from the SAFARI (Seismic Arrays for African Rift Initiation) project. The shallowest MLD of about 65 km in the study area is found in a NW-SE trending zone across central Zimbabwe and western Zambia. The MLD may reflect a low velocity zone caused by metasomatism, a process commonly found beneath ancient cratons.

  19. Earthquake Records of North Anatolian Fault from Sapanca Lake Sediments, NW Anatolia

    NASA Astrophysics Data System (ADS)

    Yalamaz, Burak; Cagatay, Namık; Acar, Dursun; Demirbag, Emin; Gungor, Emin; Gungor, Nurdan; Gulen, Levent

    2014-05-01

    We determined earthquake records in sediment cores of Sapanca Lake which is a pull-apart basin located along the North Anatolian Fault zone in NW Anatolia. The lake has a maximum depth of 55 m, and a surface area of 46.8 km2, measuring 16 km in E-W and 5 km in N-S directions. A systematic study of the sedimentological, physical and geochemical properties of three water-sediment interface cores, up to 75.7 cm long, located along depth transects ranging from 43 to 51.5 m water depths. The cores were analyzed using Geotek Multi Sensor Core Logger (MSCL) for physical properties, laser particle size analyzer for granulometry, TOC Analyzer for Total Organic Content (TOC) and Total Inorganic Carbon (TIC) analysis, Itrax-XRF Core Scanner for elemental analysis and digital X-RAY Radiography. The geochronology was determined using AMS radiocarbon and radionuclide methods. The Sapanca Lake earthquake records are characterized by mass flow units consisting of grey or dark grey coarse to fine sand and silty mud with sharp basal and transional upper boundaries. The units commonly show normal size grading with their basal parts showing high density, and high magnetic susceptibility and enrichment in one or more elements, such as Si, Ca, Tİ, K, Rb, Zr and Fe, indicative of coarse detrial input. Based on radionuclide and radiocarbon analyses the mass flow units are correlated with 1999 İzmit and Düzce earthquakes (Mw=7.4 and 7.2, respectively) , 1967 Mudurnu earthquake (Mw= 6,8), and 1957 Abant (Mw= 7.1) earthquake. Keywords: Sapanca Lake, North Anatolian Fault, Earthquake, Grain size, Itrax-XRF, MSCL

  20. Upper and Middle Crustal Velocity Structure of the Colombian Andes From Ambient Noise Tomography: Investigating Subduction-Related Magmatism in the Overriding Plate

    NASA Astrophysics Data System (ADS)

    Poveda, Esteban; Julià, Jordi; Schimmel, Martin; Perez-Garcia, Nelson

    2018-02-01

    New maps of S velocity variation for the upper and middle crust making up the northwestern most corner of South America have been developed from cross correlation of ambient seismic noise at 52 broadband stations in the region. Over 1,300 empirical Green's functions, reconstructing the Rayleigh wave portion of the seismic wavefield, were obtained after time and frequency-domain normalization of the ambient noise recordings and stacking of 48 months of normalized data. Interstation phase and group velocity curves were then measured in the 6-38 s period range and tomographically inverted to produce maps of phase and group velocity variation in a 0.5° × 0.5° grid. Velocity-depth profiles were developed for each node after simultaneously inverting phase and group velocity curves and combined to produce 3-D maps of S velocity variation for the region. The S velocity models reveal a 7 km thick sedimentary cover in the Caribbean region, the Magdalena Valley, and the Cordillera Oriental, as well as crustal thicknesses in the Pacific and Caribbean region under 35 km, consistent with previous studies. They also display zones of slow velocity at 25-35 km depth under regions of both active and inactive volcanism, suggesting the presence of melts that carry the signature of segmented subduction into the overriding plate. A low-velocity zone in the same depth range is imaged under the Lower Magdalena Basin in the Caribbean region, which may represent either sublithospheric melts ponding at midcrustal levels after breaching through a fractured Caribbean flat slab or fluid migration through major faults within the Caribbean crust.

  1. An Expanded Analysis of Nitrogen Ice Convection in Sputnik Planum

    NASA Astrophysics Data System (ADS)

    Umurhan, Orkan M.; Lyra, Wladimir; Wong, Teresa; McKinnon, William B.; Nimmo, Francis; Howard, Alan D.; Moore, Jeffrey M.; Binzel, Richard; White, Oliver; Stern, S. Alan; Ennico, Kimberly; Olkin, Catherine B.; Weaver, Harold A.; Young, Leslie; New Horizons Geology and Geophysics Science Team

    2016-10-01

    The New Horizons close-encounter flyby of Pluto revealed 20-35 km scale ovoid patterns on the informally named Sputnik Planum. These features have been recently interpreted and shown to arise from the action of solid-state convection of (predominantly) nitrogen ice driven by Pluto's geothermal gradient. One of the major uncertainties in the convection physics centers on the temperature and grain-size dependency of nitrogen ice rheology, which has strong implications for the overturn times of the convecting ice. Assuming nitrogen ice in Sputnik Planum rests on a passive water ice bedrock that conducts Pluto's interior heat flux, and, given the uncertainty of the grain-size distribution of the nitrogen ice in Sputnik Planum, we examine a suite of two-dimensional convection models that take into account the thermal contact between the nitrogen ice layer and the conducting water-ice bedrock for a given emergent geothermal flux. We find for nitrogen ice layers several km deep, the emerging convection efficiently cools the nitrogen-ice water-ice bedrock interface resulting in temperature differences across the convecting layer of 10-20 K (at most) regardless of layer depth. For grain sizes ranging from 0.01 mm to 5 mm the resulting horizontal size to depth ratios of the emerging convection patterns go from 4:1 up to 6:1, suggesting that the nitrogen ice layer in Sputnik Planum may be anywhere between 3.5 and 8 km deep. Such depths are consistent with Sputnik Planum being a large impact basin (in a relative sense) analogous to Hellas on Mars. In this grain-size range we also find, (i) the calculated cell overturn times are anywhere from 1e4 to 5e5 yrs and, (ii) there is a distinct transition from steady state to time dependent convection.

  2. Mapping the Earth's thermochemical and anisotropic structure using global surface wave data

    NASA Astrophysics Data System (ADS)

    Khan, A.; Boschi, L.; Connolly, J. A. D.

    2011-01-01

    We have inverted global fundamental mode and higher-order Love and Rayleigh wave dispersion data jointly, to find global maps of temperature, composition, and radial seismic anisotropy of the Earth's mantle as well as their uncertainties via a stochastic sampling-based approach. We apply a self-consistent thermodynamic method to systematically compute phase equilibria and physical properties (P and S wave velocity, density) that depend only on composition (in the Na2-CaO-FeO-MgO-Al2O3-SiO2 model system), pressure, and temperature. Our 3-D maps are defined horizontally by 27 different tectonic regions and vertically by a number of layers. We find thermochemical differences between oceans and continents to extend down to ˜250 km depth, with continents and cratons appearing chemically depleted (high magnesium number (Mg #) and Mg/Si ratio) and colder (>100°C) relative to oceans, while young oceanic lithosphere is hotter than its intermediate age and old counterparts. We find what appears to be strong radial S wave anisotropy in the upper mantle down to ˜200 km, while there seems to be little evidence for shear anisotropy at greater depths. At and beneath the transition zone, 3-D heterogeneity is likely uncorrelated with surface tectonics; as a result, our tectonics-based parameterization is tenuous. Despite this weakness, constraints on the gross average thermochemical and anisotropic structure to ˜1300 km depth can be inferred, which appear to indicate that the compositions of the upper (low Mg# and high Mg/Si ratio) and lower mantle (high Mg# and low Mg/Si ratio) might possibly be distinct.

  3. Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Virieux, J.; Capuano, P.; Russo, G.

    2005-03-01

    The Campi Flegrei (CF) Caldera experiences dramatic ground deformations unsurpassed anywhere in the world. The source responsible for this phenomenon is still debated. With the aim of exploring the structure of the caldera as well as the role of hydrothermal fluids on velocity changes, a multidisciplinary approach dealing with three-dimensional delay time tomography and rock physics characterization has been followed. Selected seismic data were modeled by using a tomographic method based on an accurate finite difference travel time computation which simultaneously inverts P wave and S wave first-arrival times for both velocity model parameters and hypocenter locations. The retrieved P wave and S wave velocity images as well as the deduced Vp/Vs images were interpreted by using experimental measurements of rock physical properties on CF samples to take into account steam/water phase transition mechanisms affecting P wave and S wave velocities. Also, modeling of petrophysical properties for site-relevant rocks constrains the role of overpressured fluids on velocity. A flat and low Vp/Vs anomaly lies at 4 km depth under the city of Pozzuoli. Earthquakes are located at the top of this anomaly. This anomaly implies the presence of fractured overpressured gas-bearing formations and excludes the presence of melted rocks. At shallow depth, a high Vp/Vs anomaly located at 1 km suggests the presence of rocks containing fluids in the liquid phase. Finally, maps of the Vp*Vs product show a high Vp*Vs horseshoe-shaped anomaly located at 2 km depth. It is consistent with gravity data and well data and might constitute the on-land remainder of the caldera rim, detected below sea level by tomography using active source seismic data.

  4. The action of water films at Å-scales in the Earth: Implications for the Nankai subduction system

    NASA Astrophysics Data System (ADS)

    Brown, Kevin M.; Poeppe, Dean; Josh, Matthew; Sample, James; Even, Emilie; Saffer, Demian; Tobin, Harold; Hirose, Takehiro; Kulongoski, J. T.; Toczko, Sean; Maeda, Lena; IODP Expedition 348 Shipboard Party

    2017-04-01

    Water properties change with confinement within nanofilms trapped between natural charged clay particles. We investigated nanofilm characteristics through high-stress laboratory compression tests in combination with analyses of expelled pore fluids. We utilized sediments obtained from deep drilling of the Nankai subduction zone at Site C0002 of the Integrated Ocean Drilling Program (IODP). We show that below 1-2 km, there should be widespread ultrafiltration of migrating fluids. Experiments to > ∼ 100 MPa normal compression collapse pores below a few ion monofilm thicknesses. A reduction towards a single condensing/dehydrating ion monofilm occurs as stresses rise >100-200 MPa and clay separations are reduced to <10-20 Å. Thus, porosity in high mineral surface area systems only consists of double and single monofilms at depths below a few km leaving little room for either bulk water or the deep biosphere. The resulting semipermeable properties result in variable segregation of ions and charged isotopes and water during active flow. The ultrafiltration and ion dehydration processes are coupled in that both require the partial immobilization of ions between the charged clay surfaces. The general effect is to increase salinities in residual pore fluids at depth and freshen fluids expelled during consolidation. Cessation of nanofilm collapse to a near constant ∼17 Å below 2 km depth at Nankai supports the contention for the onset of substantial geopressuring on the deeper seismogenic fault. The properties of monofilm water, thus, have considerable implications for the deep water properties of subduction zones generating major tremor and Mw 8+ earthquakes. Indeed, the combined effects of advective flow, ultrafiltration, diffusion, and diagenesis could provide a unifying explanation for the origins of overpressuring and pore water geochemical signals observed in many natural systems.

  5. The 27-28 October 1986 FIRE IFO cirrus case study: Cirrus parameter relationships derived from satellite and lidar data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.

    1989-01-01

    Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4 km visible (0.65 microns) and 8 km infrared window (11.5 microns) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance mode. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8 km for the 71 scenes. An average visible scattering efficiency of 2.1 was found for this data set. The results reveal a significant dependence of scattering efficiency on cloud temperature.

  6. The 520 km Discontinuity: No Longer Just the Middle Child of the Transition Zone

    NASA Astrophysics Data System (ADS)

    Houser, C.; Williams, Q.

    2008-12-01

    The 520 km discontinuity is more difficult to image and changes character laterally more relative to its siblings the 410 km and 660 km discontinuities. The 520 km discontinuity is thought to result from the phase change of β-spinel to γ-spinel, a transition which has a smaller impedance contrast than the olivine to β-spinel or the γ-spinel to perovskite and periclase transitions that are associated with the 410 km and 660 km discontinuities, respectively. In addition, there are gradual phase changes occurring in the pyroxene component of the mantle between the 410 km and 660 km discontinuity which complicate imaging and interpretation of the 520 km discontinuity. The best global coverage of discontinuity depth comes from the stacking of SS precursors, seismic phases that bounce off the discontinuities and arrive as precursors to the main SS phase. A recent study by Houser et al. (2008) contains the largest compilation of SS precursor measurements. However, since the 520 km discontinuity is not ubiquitously observed, its characteristics were not addressed. Here, we examine the geographic distribution (which is global, but not even) of high quality 520 km discontinuity measurements derived from precursors. The principal result is that the depth of the 520 km discontinuity has a higher correlation with tomographically-imaged high and low seismic velocities than either the 410 km or 660 km discontinuities. This stronger temperature sensitivity is in accord with determinations of the Clapeyron slopes of the differing transitions. Furthermore, this correlation is observed in a wide range of tectonic environments, and the prospect thus exists that the 520 km discontinuity will, where it is observed, provide a tighter bound on temperature within the transition zone than either of the other major discontinuities. Furthermore, improved constraints on the temperature distribution at depth may produce improved insight into the relative roles of thermal and compositional effects on the 660 km disctoninuity.

  7. Investigating the Relationship Between Fin and Blue Whale Locations, Zooplankton Concentrations and Hydrothermal Venting on the Juan de Fuca Ridge

    DTIC Science & Technology

    2008-01-01

    such correlations in terms of the influences of globally distributed hydrothermal plumes on the trophic ecology of the deep ocean. OBJECTIVES We are...in a 100-m-thick layer of increased acoustic backscatter near the top of the hydrothermal plume at 1.9 km depth (Thomson et al., 1991, Burd et al...zooplankton migrate vertically between the upper ocean and the hydrothermal plume (Burd & Thomson, 1994). This interpretation is consistent with a

  8. Experimental demonstration of multiuser communication in deep water using time reversal.

    PubMed

    Shimura, T; Ochi, H; Song, H C

    2013-10-01

    Multiuser communication is demonstrated using experimental data (450-550 Hz) collected in deep water, south of Japan. The multiple users are spatially distributed either in depth or range while a 114-m long, 20-element vertical array (i.e., base station) is deployed to around the sound channel axis (~1000 m). First, signals received separately from ranges of 150 km and 180 km at various depths are combined asynchronously to generate multiuser communication sequences for subsequent processing, achieving an aggregate data rate of 300 bits/s for up to three users. Adaptive time reversal is employed to separate collided packets at the base station, followed by a single channel decision feedback equalizer. Then it is demonstrated that two users separated by 3 km in range at ~1000 m depth can transmit information simultaneously to the base station at ~500 km range with an aggregate data rate of 200 bits/s.

  9. Water exploration using Magnetotelluric and gravity data analysis; Wadi Nisah, Riyadh, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Aboud, Essam; Saud, Ramzi; Asch, Theodore; Aldamegh, Khaled; Mogren, Saad

    2014-12-01

    Saudi Arabia is a desert country with no permanent rivers or lakes and very little rainfall. Ground water aquifers are the major source of water in Saudi Arabia. In the Riyadh region, several Wadies including Wadi Nisah store about 14 × 106 m3 of water, which is extracted for local irrigation purposes. In such areas, the water wells are as shallow as 200-300 m in depth. The importance of Wadi Nisah is because the subsurface water aquifers that are present there could support the region for many years as a water resource. Accordingly, in this study, we performed a Magnetotelluric survey using a portable broadband sounding system (MT24/LF) to evaluate the ground water aquifer at great depths. We collected 10 broadband Magnetotelluric sounding stations (1 station/day) with an interval of about 2-3 km reaching a profile length of about 25-30 km along Wadi Nisah. Additionally, we used available gravity data to image the subsurface structure containing the aquifer. MT results indicated a low resistivity layer, associated with alluvium deposits, which was defined at a depth of about 1-2 km and extended horizontally about 15 km. Gravity data analysis was used to model this resistivity layer indicating a basement surface at 3-4 km depth.

  10. Dive Europa: a search-for-life initiative.

    PubMed

    Naganuma, T; Uematsu, H

    1998-06-01

    Liquid water, underwater volcanoes and possibly life forms have been suggested to be present beneath the estimated 10 km-thick ice shell of Europa the Jovian satellite J2. Europa's possible ocean is estimated to be 100-200km deep. Despite the great depth of the Europa's ocean, hydrostatic pressure at the seafloor would be 130-260 MPa, corresponding to 13-26 km depth of a theoretical Earth's ocean. The hydrostatic pressure is not beyond the edge of existing deep-sea technology. Here we propose exploration of Europa's deep-sea by the use of current technologies, taking a symbolic example of a deep submergence vehicle Shinkai 6500 which dives to a depth of 6.5 km deep (50 km depth of Europa's ocean). Shinkai 6500 is embarkable in the payload bay of the Space Shuttles in terms of size and weight for the transportation to a Low Earth Orbit (LEO). Secondary boost is needed for interplanetary flight from the LEO. On-orbit assembly of the secondary booster is a technological challenge. The International Space Station (ISS) and ISS-related technologies will facilitate the secondary boost. Also, ice shell drilling is a challenge and is needed before the dive into Europa's ocean. These challenges should be overcome during a certain leading time for matured experience in the ISS operation.

  11. Basement structure of the United Arab Emirates derived from an analysis of regional gravity and aeromagnetic database

    NASA Astrophysics Data System (ADS)

    Ali, M. Y.; Fairhead, J. D.; Green, C. M.; Noufal, A.

    2017-08-01

    Gravity and aeromagnetic data covering the whole territory of the United Arab Emirates (UAE) have been used to evaluate both shallow and deep geological structures, in particular the depth to basement since it is not imaged by seismic data anywhere within the UAE. Thus, the aim has been to map the basement so that its structure can help to assess its control on the distribution of hydrocarbons within the UAE. Power spectrum analysis reveals gravity and magnetic signatures to have some similarities, in having two main density/susceptibility interfaces widely separated in depth such that regional-residual anomaly separation could effectively be undertaken. The upper density/susceptibility interface occurs at a depth of about 1.0 km while the deeper interface varies in depth throughout the UAE. For gravity, this deeper interface is assumed to be due to the combined effect of lateral changes in density structures within the sediments and in depth of basement while for magnetics it is assumed the sediments have negligible susceptibility and the anomalies unrelated to the volcanic/magmatic bodies result from only changes in depth to basement. The power spectrum analysis over the suspect volcanic/magmatic bodies indicates they occur at 5 km depth. The finite tilt-depth and finite local wavenumber methods were used to estimate depth to source and only depths that agree to within 10% of each other were used to generate the depth to basement map. This depth to basement map, to the west of the UAE-Oman Mountains, varies in depth from 5 km to in excess of 15 km depth and is able to structurally account for the location of the shear structures, seen in the residual magnetic data, and the location of the volcanic/magmatic centres relative to a set of elongate N-S to NE-SW trending basement highs. The majority of oilfields in the UAE are located within these basement highs. Therefore, the hydrocarbon distribution in the UAE basin appears to be controlled by the location of the basement ridges.

  12. Mantle Serpentinization near the Central Mariana Trench Constrained by Ocean Bottom Surface Wave Observations

    NASA Astrophysics Data System (ADS)

    Cai, C.; Wiens, D. A.; Lizarralde, D.; Eimer, M. O.; Shen, W.

    2017-12-01

    We investigate the crustal and uppermost mantle seismic structure across the Mariana trench by jointly inverting Rayleigh wave phase and group velocities from ambient noise and longer period phase velocities from Helmholtz tomography of teleseismic waveforms. We use data from a temporary deployment in 2012-2013, consisting of 7 island-based stations and 20 broadband ocean bottom seismographs, as well as data from the USGS Northern Mariana Islands Seismograph Network. To avoid any potential bias from the starting model, we use a Bayesian Monte-Carlo algorithm to invert for the azimuthally-averaged SV-wave velocity at each node. This method also allows us to apply prior constraints on crustal thickness and other parameters in a systematic way, and to derive formal estimates of velocity uncertainty. The results show the development of a low velocity zone within the incoming plate beginning about 80 km seaward of the trench axis, consistent with the onset of bending faults from bathymetry and earthquake locations. The maximum depth of the velocity anomaly increases towards the trench, and extends to about 30 km below the seafloor. The low velocities persist after the plate is subducted, as a 20-30 km thick low velocity layer with a somewhat smaller velocity reduction is imaged along the top of the slab beneath the forearc. An extremely low velocity zone is observed beneath the serpentine seamounts in the outer forearc, consistent with 40% serpentinization in the forearc mantle wedge. Azimuthal anisotropy results show trench parallel fast axis within the incoming plate at uppermost mantle depth (2%-4% anisotropy). All these observations suggest the velocity reduction in the incoming plate prior to subduction results from both serpentinized normal faults and water-filled cracks. Water is expelled from the cracks early in subduction, causing a modest increase in the velocity of the subducting mantle, and moves upward and causes serpentinization of the outer forearc. Assuming the velocity anomaly remaining in the subducting plate mantle is caused by serpentinization, calculations suggest the top 20 km of the slab mantle retains 10-15% serpentinization beyond the outer forearc. The amount of water carried into the deep mantle by this layer ( 54 Tg/Myr/m) is two to three times greater than previous estimates for the entire slab.

  13. Water partitioning in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Inoue, Toru; Wada, Tomoyuki; Sasaki, Rumi; Yurimoto, Hisayoshi

    2010-11-01

    We have conducted H2O partitioning experiments between wadsleyite and ringwoodite and between ringwoodite and perovskite at 1673 K and 1873 K, respectively. These experiments were performed in order to constrain the relative distribution of H2O in the upper mantle, the mantle transition zone, and the lower mantle. We successfully synthesized coexisting mineral assemblages of wadsleyite-ringwoodite and ringwoodite-perovskite that were large enough to measure the H2O contents by secondary ion mass spectrometry (SIMS). Combining our previous H2O partitioning data (Chen et al., 2002) with the present results, the determined water partitioning between olivine, wadsleyite, ringwoodite, and perovskite under H2O-rich fluid saturated conditions are 6:30:15:1, respectively. Because the maximum H2O storage capacity in wadsleyite is ∼3.3 wt% (e.g. Inoue et al., 1995), the possible maximum H2O storage capacity in the olivine high-pressure polymorphs are as follows: ∼0.7 wt% in olivine (upper mantle just above 410 km depth), ∼3.3 wt% in wadsleyite (410-520 km depth), ∼1.7 wt% in ringwoodite (520-660 km depth), and ∼0.1 wt% in perovskite (lower mantle). If we assume ∼0.2 wt% of the H2O content in wadsleyite in the mantle transition zone estimated by recent electrical conductivity measurements (e.g. Dai and Karato, 2009), the estimated H2O contents throughout the mantle are as follows; ∼0.04 wt% in olivine (upper mantle just above 410 km depth), ∼0.2 wt% in wadsleyite (410-520 km depth), ∼0.1 wt% in ringwoodite (520-660 km depth) and ∼0.007 wt% in perovskite (lower mantle). Thus, the mantle transition zone should contain a large water reservoir in the Earth's mantle compared to the upper mantle and the lower mantle.

  14. Source depth dependence of micro-tsunamis recorded with ocean-bottom pressure gauges: The January 28, 2000 Mw 6.8 earthquake off Nemuro Peninsula, Japan

    USGS Publications Warehouse

    Hirata, K.; Takahashi, H.; Geist, E.; Satake, K.; Tanioka, Y.; Sugioka, H.; Mikada, H.

    2003-01-01

    Micro-tsunami waves with a maximum amplitude of 4-6 mm were detected with the ocean-bottom pressure gauges on a cabled deep seafloor observatory south of Hokkaido, Japan, following the January 28, 2000 earthquake (Mw 6.8) in the southern Kuril subduction zone. We model the observed micro-tsunami and estimate the focal depth and other source parameters such as fault length and amount of slip using grid searching with the least-squares method. The source depth and stress drop for the January 2000 earthquake are estimated to be 50 km and 7 MPa, respectively, with possible ranges of 45-55 km and 4-13 MPa. Focal depth of typical inter-plate earthquakes in this region ranges from 10 to 20 km and stress drop of inter-plate earthquakes generally is around 3 MPa. The source depth and stress drop estimates suggest that the earthquake was an intra-slab event in the subducting Pacific plate, rather than an inter-plate event. In addition, for a prescribed fault width of 30 km, the fault length is estimated to be 15 km, with possible ranges of 10-20 km, which is the same as the previously determined aftershock distribution. The corresponding estimate for seismic moment is 2.7x1019 Nm with possible ranges of 2.3x1019-3.2x1019Nm. Standard tide gauges along the nearby coast did not record any tsunami signal. High-precision ocean-bottom pressure measurements offshore thus make it possible to determine fault parameters of moderate-sized earthquakes in subduction zones using open-ocean tsunami waveforms. Published by Elsevier Science B. V.

  15. Continental rupture and the creation of new crust in the Salton Trough rift, Southern California and northern Mexico: Results from the Salton Seismic Imaging Project

    NASA Astrophysics Data System (ADS)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Kell, Annie; Driscoll, Neal W.; Kent, Graham M.; Harding, Alistair J.; Rymer, Michael J.; González-Fernández, Antonio; Lázaro-Mancilla, Octavio

    2016-10-01

    A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17-18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from 3 to 8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched preexisting crust or higher-grade metamorphosed sediment. The lower crust below 12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12-18 km depth as it does to the south, and a weak reflection suggests Moho at 28 km depth. Structure in adjacent Mexico has slower midcrustal velocity, and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism.

  16. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens

    USGS Publications Warehouse

    De Siena, Luca; Thomas, Christine; Waite, Greg P.; Moran, Seth C.; Klemme, Stefan

    2014-01-01

    We present a combined 3-D P wave attenuation, 2-D S coda attenuation, and 3-D S coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of deeper aseismic velocity anomalies. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wavefield, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally extended 3-D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust and caused in our interpretation by the large-scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low-scattering, 4–6 km2 “hole” under the northeastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different nonstandard tomographic methods, leading toward full-waveform tomography, represent the future of seismic volcano imaging.

  17. An automatic procedure for high-resolution earthquake locations: a case study from the TABOO near fault observatory (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Latorre, Diana; Piccinini, Davide

    2014-05-01

    The characterization of the geometry, kinematics and rheology of fault zones by seismological data depends on our capability of accurately locate the largest number of low-magnitude seismic events. To this aim, we have been working for the past three years to develop an advanced modular earthquake location procedure able to automatically retrieve high-resolution earthquakes catalogues directly from continuous waveforms data. We use seismograms recorded at about 60 seismic stations located both at surface and at depth. The network covers an area of about 80x60 km with a mean inter-station distance of 6 km. These stations are part of a Near fault Observatory (TABOO; http://taboo.rm.ingv.it/), consisting of multi-sensor stations (seismic, geodetic, geochemical and electromagnetic). This permanent scientific infrastructure managed by the INGV is devoted to studying the earthquakes preparatory phase and the fast/slow (i.e., seismic/aseismic) deformation process active along the Alto Tiberina fault (ATF) located in the northern Apennines (Italy). The ATF is potentially one of the rare worldwide examples of active low-angle (< 15°) normal fault accommodating crustal extension and characterized by a regular occurrence of micro-earthquakes. The modular procedure combines: i) a sensitive detection algorithm optimized to declare low-magnitude events; ii) an accurate picking procedure that provides consistently weighted P- and S-wave arrival times, P-wave first motion polarities and the maximum waveform amplitude for local magnitude calculation; iii) both linearized iterative and non-linear global-search earthquake location algorithms to compute accurate absolute locations of single-events in a 3D geological model (see Latorre et al. same session); iv) cross-correlation and double-difference location methods to compute high-resolution relative event locations. This procedure is now running off-line with a delay of 1 week to the real-time. We are now implementing this procedure to obtain high-resolution double-difference earthquake locations in real-time (DDRT). We show locations of ~30k low-magnitude earthquakes recorded during the past 4 years (2010-2013) of network operation, reaching a completeness magnitude of the catalogue of 0.2. The spatiotemporal seismicity distribution has an almost constant and high rate of r = 24.30e-04 eqks/day*km2, interrupted by low to moderate magnitude seismic sequences such as the 2010 Pietralunga sequence (M L 3.8) and the still ongoing 2013 Gubbio sequence (M L 4.0 on 22nd December 2013). Low-magnitude seismicity images the fine scale geometry of the ATF: an E-dipping plane at low angle (15°) from 4 km down to ~15 km of depth. While in the ATF hanging-wall we observe the activation of high-angle minor synthetic and antithetic normal faults (4-5 km long) confined at depth by the detachment. Both seismic sequences activated up to now only these high-angle fault segments.

  18. Seabed Motion During Sediment Density Flows as Recorded by Displaced Man-Made Motion-Recording Boulders and a Heavy Instrument Platform

    NASA Astrophysics Data System (ADS)

    Gwiazda, R.; Paull, C. K.; Kieft, B.; Bird, L.; Klimov, D.; Herlien, R.; Sherman, A.; McCann, M. P.; Sumner, E.; Talling, P.; Xu, J.; Parsons, D. R.; Maier, K. L.; Barry, J.

    2017-12-01

    Over a period of 18 months the Coordinated Canyon Experiment documented the passage of at least 15 sediment density flows in Monterey Canyon, offshore California, with an array of moorings and sensors placed from 200 m to 1,850 m water depths. Free-standing `smart' boulders (Benthic Event Detectors, BED) and a 1,000 Kg tripod with an Acoustic Monitoring Transponder (AMT) and a BED attached to it were deployed in the upper canyon to detect seabed motions during sediment density flows. BEDs consist of spheres made of a combination of metal, plastic and syntactic foam ballasted to 2.1 g/cm3 density, containing accelerometers along three orthogonal axes, a time recorder, and a pressure sensor inside a pressure case rated to 500 m water depth. Acceleration of ≥ 0.008 G triggers data collection at a recording rate of 50 Hz until motion stops. Built-in acoustic beacons and modems allow for BEDs to be relocated, and data to be downloaded, even when BEDs are buried in sediment to depths of >1 m. Over the course of the study, depth changes and velocities of 24 BED movements during 9 events were recorded. BEDs moved at the velocity of the propagation of the flows down canyon, as documented by the time of arrival of the flow at successive sensors, but sometimes travelled at lower speeds. Seven movements of the AMT tripod were also recorded. In the largest of these, the heavy AMT tripod was transported over a distance of 4.1 Km. For at least four of these seven motions the AMT temperature record indicates that the movements were initiated while the tripod was buried. In one particular event simultaneous movements of five BEDs over a 100 m depth range indicate that the entire seabed was in motion at the same time over a canyon distance of 3.5 Km. Reconstructions of instrument motions in this event from their internally recorded acceleration data show that the AMT displacement was at the front of the event and had no rotational component. In contrast, free standing BEDs at the same depth advanced through a combination of translational and rotational motion. These data are consistent with sediment density flows involving fluidization and motion of a segment of the seafloor over long distances.

  19. Anisotropic tomography of the Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Silveira, G.; Stutzmann, E.

    2003-04-01

    We present a regional tri-dimensional model of the Atlantic Ocean with anisotropy. The model, derived from Rayleigh and Love phase velocity measurements, is defined from the Moho down to 300 km depth with a lateral resolution of about 500 km and is presented in terms of average isotropic S-wave velocity, azimuthal anisotropy and transverse isotropy. The cratons beneath North America, Brazil and Africa are clearly associated with fast S-wave velocity anomalies. The Mid Atlantic Ridge is a shallow structure in the North Atlantic corresponding to a negative velocity anomaly down to about 150 km depth. In contrast, the ridge negative signature is visible in the South Atlantic down to the deepest depth inverted, that is 300~km depth. This difference is probably related to the presence of hot-spots along or close to the ridge axis in the South Atlantic and may indicate a different mechanism for the ridge between the North and South Atlantic. Negative velocity anomalies are clearly associated with hot-spots from the surface down to at least 300km depth, they are much broader that the supposed size of the hot-spots and seem to be connected along a North-South direction. Down to 100 km depth, a fast S-wave velocity anomaly is extenting from Africa into the Atlantic Ocean within the zone defined as the Africa superswell area. This result indicates that the hot material rising from below does not reach the surface in this area but may be pushing the lithosphere upward. In most parts of the Atlantic, the azimuthal anisotropy directions remain stable with increasing depth. Close to the ridge, the fast S-wave velocity direction is roughly parallel to the sea floor spreading direction. The hot-spot anisotropy signature is striking beneath Bermuda, Cape Verde and Fernando Noronha islands where the fast S-wave velocity direction seems to diverge radially from the hot-spots. The Atlantic average radial anisotropy is similar to that of the PREM model, that is positive down to about 220 km, but with slightly smaller amplitude and null deeper. Cratons have a lower than average radial anisotropy. As for the velocities, there is a difference between North and South Atlantic. Most hot-spots and the South Atlantic ridge are associated with positive radial anisotropy perturbation whereas the North atlantic ridge corresponds to negative radial anisotropy perturbation.

  20. Shear wave reflectivity imaging of the Nazca-South America subduction zone: Stagnant slab in the mantle transition zone?

    NASA Astrophysics Data System (ADS)

    Contenti, Sean; Gu, Yu Jeffrey; Ökeler, Ahmet; Sacchi, Mauricio D.

    2012-01-01

    In this study we utilize over 5000 SS waveforms to investigate the high-resolution mantle reflectivity structure down to 1200 km beneath the South American convergent margin. Our results indicate that the dynamics of the Nazca subduction are more complex than previously suggested. The 410- and 660-km seismic discontinuities beneath the Pacific Ocean and Amazonian Shield exhibit limited lateral depth variations, but their depths vary substantially in the vicinity of the subducting Nazca plate. The reflection amplitude of the 410-km discontinuity is greatly diminished in a ˜1300-km wide region in the back-arc of the subducting plate, which is likely associated with a compositional heterogeneity on top of the upper mantle transition zone. The underlying 660-km discontinuity is strongly depressed, showing localized depth and amplitude variations both within and to the east of the Wadati-Benioff zone. The width of this anomalous zone (˜1000 km) far exceeds that of the high-velocity slab structure and suggesting significant slab deformation within the transition zone. The shape of the 660-km discontinuity and the presence of lower mantle reflectivity imply both stagnation and penetration are possible as the descending Nazca slab impinges upon the base of the upper mantle.

Top