Sample records for km horizontal path

  1. Horizontal Line-of-Sight Turbulence Over Near-Ground Paths and Implications for Adaptive Optics Corrections in Laser Communications.

    PubMed

    Levine, B M; Martinsen, E A; Wirth, A; Jankevics, A; Toledo-Quinones, M; Landers, F; Bruno, T L

    1998-07-20

    Atmospheric turbulence over long horizontal paths perturbs phase and can also cause severe intensity scintillation in the pupil of an optical communications receiver, which limits the data rate over which intensity-based modulation schemes can operate. The feasibility of using low-order adaptive optics by applying phase-only corrections over horizontal propagation paths is investigated. A Shack-Hartmann wave-front sensor was built and data were gathered on paths 1 m above ground and between a 1- and 2.5-km range. Both intensity fluctuations and optical path fluctuation statistics were gathered within a single frame, and the wave-front reconstructor was modified to allow for scintillated data. The temporal power spectral density for various Zernike polynomial modes was used to determine the effects of the expected corrections by adaptive optics. The slopes of the inertial subrange of turbulence were found to be less than predicted by Kolmogorov theory with an infinite outer scale, and the distribution of variance explained by increasing order was also found to be different. Statistical analysis of these data in the 1-km range indicates that at communications wavelengths of 1.3 mum, a significant improvement in transmitted beam quality could be expected most of the time, to a performance of 10% Strehl ratio or better.

  2. Detailed Comparisons of COMBAT Data to Wave-Optics Simulations

    DTIC Science & Technology

    2015-10-18

    2010 along the path between Mauna Loa and Haleakala and is one of many to investigate atmospheric effects in long horizontal optical paths [1-7]. The...Relatively strong jitter sources near transmitter ( atmosphere or telescope). Rationale: Turbulence -induced scintillation alone does not explain the...Characterization of atmospheric turbulence effects over 149 km propagation path using multi-wavelength laser beacons,” in Proceedings of the 2010 AMOS

  3. Wavefront Intensity Statistics for 284-Hz Broadband Transmissions to 107-km Range in the Philippine Sea: Observations and Modeling

    DTIC Science & Technology

    2013-10-01

    structure reveals four distinct purely refracted acoustic paths: One with a single upper turning point near 80 m depth, two with a pair of upper turning... points at a depth of roughly 300 m, and one with three upper turning points at 420 m. Individual path intensity, defined as the absolute square of...contribu- tion to acoustic scattering is thought to occur at upper turning points (UTP) (Flatte et al., 1979). Here, the acoustic path is horizontal

  4. Multiple neutral density measurements in the lower thermosphere with cold-cathode ionization gauges

    NASA Astrophysics Data System (ADS)

    Lehmacher, G. A.; Gaulden, T. M.; Larsen, M. F.; Craven, J. D.

    2013-01-01

    Cold-cathode ionization gauges were used for rocket-borne measurements of total neutral density and temperature in the aurorally forced lower thermosphere between 90 and 200 km. A commercial gauge was adapted as a low-cost instrument with a spherical antechamber for measurements in molecular flow conditions. Three roll-stabilized payloads on different trajectories each carried two instruments for measurements near the ram flow direction along the respective upleg and downleg segments of a flight path, and six density profiles were obtained within a period of 22 min covering spatial separations up to 200 km. The density profiles were integrated below 125 km to yield temperatures. The mean temperature structure was similar for all six profiles with two mesopause minima near 110 and 101 km, however, for the downleg profiles, the upper minimum was warmer and the lower minimum was colder by 20-30 K indicating significant variability over horizontal scales of 100-200 km. The upper temperature minimum coincided with maximum horizontal winds speeds, exceeding 170 m/s.

  5. Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City.

    PubMed

    Sinclair, Laura C; Swann, William C; Bergeron, Hugo; Baumann, Esther; Cermak, Michael; Coddington, Ian; Deschênes, Jean-Daniel; Giorgetta, Fabrizio R; Juarez, Juan C; Khader, Isaac; Petrillo, Keith G; Souza, Katherine T; Dennis, Michael L; Newbury, Nathan R

    2016-10-15

    We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths.

  6. Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City

    PubMed Central

    Sinclair, Laura C.; Swann, William C.; Bergeron, Hugo; Baumann, Esther; Cermak, Michael; Coddington, Ian; Deschênes, Jean-Daniel; Giorgetta, Fabrizio R.; Juarez, Juan C.; Khader, Isaac; Petrillo, Keith G.; Souza, Katherine T.; Dennis, Michael L.; Newbury, Nathan R.

    2018-01-01

    We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths. PMID:29348695

  7. Adaptive optics compensation over a 3 km near horizontal path

    NASA Astrophysics Data System (ADS)

    Mackey, Ruth; Dainty, Chris

    2008-10-01

    We present results of adaptive optics compensation at the receiver of a 3km optical link using a beacon laser operating at 635nm. The laser is transmitted from the roof of a seven-storey building over a near horizontal path towards a 127 mm optical receiver located on the second-floor of the Applied Optics Group at the National University of Ireland, Galway. The wavefront of the scintillated beam is measured using a Shack-Hartmann wavefront sensor (SHWFS) with high-speed CMOS camera capable of frame rates greater than 1kHz. The strength of turbulence is determined from the fluctuations in differential angle-of-arrival in the wavefront sensor measurements and from the degree of scintillation in the pupil plane. Adaptive optics compensation is applied using a tip-tilt mirror and 37 channel membrane mirror and controlled using a single desktop computer. The performance of the adaptive optics system in real turbulence is compared with the performance of the system in a controlled laboratory environment, where turbulence is generated using a liquid crystal spatial light modulator.

  8. VLF Trimpi modelling on the path NWC-Dunedin using both finite element and 3D Born modelling

    NASA Astrophysics Data System (ADS)

    Nunn, D.; Hayakawa, K. B. M.

    1998-10-01

    This paper investigates the numerical modelling of VLF Trimpis, produced by a D region inhomogeneity on the great circle path. Two different codes are used to model Trimpis on the path NWC-Dunedin. The first is a 2D Finite Element Method Code (FEM), whose solutions are rigorous and valid in the strong scattering or non-Born limit. The second code is a 3D model that invokes the Born approximation. The predicted Trimpis from these codes compare very closely, thus confirming the validity of both models. The modal scattering matrices for both codes are analysed in some detail and are found to have a comparable structure. They indicate strong scattering between the dominant TM modes. Analysis of the scattering matrix from the FEM code shows that departure from linear Born behaviour occurs when the inhomogeneity has a horizontal scale size of about 100 km and a maximum electron density enhancement at 75 km altitude of about 6 electrons.

  9. Horizontal wind fluctuations in the stratosphere during large-scale cyclogenesis

    NASA Technical Reports Server (NTRS)

    Chan, K. R.; Scott, S. G.; Danielsen, Edwin F.; Pfister, L.; Bowen, S. W.; Gaines, Steven E.

    1991-01-01

    The meteorological measurement system (MMS) on the U-2 aircraft measured pressure, temperature, and the horizontal wind during a cyclogenesis event over western United States on April 20, 1984. The mean horizontal wind in the stratosphere decreases monotonically with altitude. Superimposed on the mean stratospheric wind is a perturbation wind vector, which is an elliptically polarized wave with an amplitude of 4 to 10 m/s and a vertical wavelength of 2 to 3 km. The perturbation wind vector rotates anticyclonically (clockwise) with altitude and produces alternating advection in the plane of the aircraft flight path. This differential advection folds surfaces of constant tracer mixing ratio and contributes to the observed tracer laminar structures and inferred cross-jet transport.

  10. Measurements of Lorentz air-broadening coefficients and relative intensities in the H2O-16 pure rotational and nu2 bands from long horizontal path atmospheric spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Goldman, Aaron; Malathy Devi, V.

    1991-01-01

    Lorentz air-broadening coefficients and relative intensities have been measured for forty-three lines in the pure rotational band and twenty lines in the nu2 band of H2O-16 between 800 and 1150/cm. The results were derived from analysis of nine 0.017/cm-resolution atmospheric absorption spectra recorded over horizontal paths of 0.5-1.5 km with the McMath Fourier transform spectrometer and main solar telescope operated on Kitt Peak by the National Solar Observatory. A nonlinear least-squares spectral fitting technique was used in the spectral analysis. The results are compared with previous measurements and calculations. In most cases, the measured pressure-broadening coefficients and intensities are significantly different from the values in the 1986 HITRAN line parameters compilation.

  11. Atmospheric turbulence effects on the performance of the laser wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Kapranov, V. V.; Matsak, I. S.; Tugaenko, V. Yu.; Blank, A. V.; Suhareva, N. A.

    2017-02-01

    Application of adaptive correction is necessary to control wandering of the laser beam in wireless power transfer (WPT) system. In this paper we describe experimental results of using different adaptive correction techniques for both weak and strong turbulence conditions. All experiments were performed over a 1.5 km near-horizontal atmospheric path. Some criteria for choosing parameters of adaptive correction are given.

  12. Modeling of Adaptive Optics-Based Free-Space Communications Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Morris, J R; Brase, J M

    2002-08-06

    We introduce a wave-optics based simulation code written for air-optic laser communications links, that includes a detailed model of an adaptive optics compensation system. We present the results obtained by this model, where the phase of a communications laser beam is corrected, after it propagates through a turbulent atmosphere. The phase of the received laser beam is measured using a Shack-Hartmann wavefront sensor, and the correction method utilizes a MEMS mirror. Strehl improvement and amount of power coupled to the receiving fiber for both 1 km horizontal and 28 km slant paths are presented.

  13. Gravity Waves Near 300 km Over the Polar Caps

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.; Hanson, W. B.; Hodges, R. R.; Coley, W. R.; Carignan, G. R.; Spencer, N. W.

    1995-01-01

    Distinctive wave forms in the distributions of vertical velocity and temperature of both neutral particles and ions are frequently observed from Dynamics Explorer 2 at altitudes above 250 km over the polar caps. These are interpreted as being due to internal gravity waves propagating in the neutral atmosphere. The disturbances characterized by vertical velocity perturbations of the order of 100 m/s and horizontal wave lengths along the satellite path of about 500 km. They often extend across the entire polar cap. The associated temperature perturbations indicate that the horizontal phase progression is from the nightside to the dayside. Vertical displacements are inferred to be of the order of 10 km and the periods to be of the order of 10(exp 3) s. The waves must propagate in the neutral atmosphere, but they usually are most clearly recognizable in the observations of ion vertical velocity and ion temperature. By combining the neutral pressure calculated from the observed neutral concentration and temperature with the vertical component of the neutral velocity, an upward energy flux of the order of 0.04 erg/sq cm-s at 250 km has been calculated, which is about equal to the maximum total solar ultraviolet heat input above that altitude. Upward energy fluxes calculated from observations on orbital passes at altitudes from 250 to 560 km indicate relatively little attenuation with altitude.

  14. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  15. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 2: Inversion of differential and rotating Doppler shifts

    NASA Technical Reports Server (NTRS)

    Gay, R. H.; Grossi, M. D.

    1975-01-01

    The preparation of the analytical approach and of the related software used in the inversion of the differential and rotating Doppler data obtained from the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) is discussed. These data were collected in space-to-space paths (between the ASTP Docking Module (DM) and the Apollo Command Service Module and in space-to-ground paths (between the DM and ground). The Doppler links operated at 162 and 324 MHz and have an accuracy better than 3 MHz over 10-sec integration time. The inversion approach was tested with dummy data obtained with a computer simulation. It was found that a measurement accuracy of 1 to 10% in the value of the horizontal electron density gradient at 221-km altitude can be achieved, in space-to-space paths. For space-to-ground paths near the orbital plane, possible effects of the horizontal gradients on the received differential Doppler shifts were identified. It was possible to reduce the gradient-associated errors in the inversion that leads to the columnar electron content by approximately one-half. Accuracies of 5 to 10% in columnar electron content are achievable, with this gradient-compensation technique.

  16. National Centers for Environmental Prediction

    Science.gov Websites

    resolution at T574 becomes ~ 23 km T382 Spectral truncation equivalent to horizontal resolution ~37 km T254 Spectral truncation equivalent to horizontal resolution ~50-55 km T190 Spectral truncation equivalent to horizontal resolution ~70 km T126 Spectral truncation equivalent to horizontal resolution ~100 km UM Unified

  17. Infrared Radiance Structure of the Aurora and Airglow,

    DTIC Science & Technology

    1982-06-30

    rate does not vary strongly over the horizontal path, which is 7 x 80 = 560 km. In practice nonuniformity of the hydroxyl emission profile (discussed in... nonuniformity of the wavelength. From the near-zenith temporal (and spatial) variations anj gravity wave theory, it may be concluded that a broad band of...Private communication (1982). 11-4. D.H. Archer, Further Requirements for Improved Pre- diction Capability: LWIR , DNA 5471F (31 Oct 80). 11-5. B.D

  18. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  19. Investigation of the height dependency of optical turbulence in the surface layer over False Bay (South Africa)

    NASA Astrophysics Data System (ADS)

    Sprung, Detlev; van Eijk, Alexander M. J.; Günter, Willie; Griffith, Derek; Eisele, Christian; Sucher, Erik; Seiffer, Dirk; Stein, Karin

    2017-09-01

    Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the vertical and horizontal distribution (inhomogeneity) of the optical turbulence. In the framework of the First European South African Transmission ExpeRiment (FESTER) optical turbulence was measured between June 2015 and February 2016 over a 1.8 km over-water link over False Bay. The link ran from the Institute of Maritime Technology (IMT) at Simons Town to the lighthouse at Roman Rock Island. Three Boundary layer scintillometers (BLS900) allowed assessing the vertical distribution of optical turbulence at three different heights between 5 and 12 m above the water surface. The expected decrease with Cn2 with height is not always found. These results are analyzed in terms of the meteorological scenario, and a comparison is made with a fourth optical link providing optical turbulence data over a 8.69 km path from IMT to St. James, roughly perpendicular to the three 1.8 km paths.

  20. Assessment of atmospheric models for tele-infrasonic propagation

    NASA Astrophysics Data System (ADS)

    McKenna, Mihan; Hayek, Sylvia

    2005-04-01

    Iron mines in Minnesota are ideally located to assess the accuracy of available atmospheric profiles used in infrasound modeling. These mines are located approximately 400 km away to the southeast (142) of the Lac-Du-Bonnet infrasound station, IS-10. Infrasound data from June 1999 to March 2004 was analyzed to assess the effects of explosion size and atmospheric conditions on observations. IS-10 recorded a suite of events from this time period resulting in well constrained ground truth. This ground truth allows for the comparison of ray trace and PE (Parabolic Equation) modeling to the observed arrivals. The tele-infrasonic distance (greater than 250 km) produces ray paths that turn in the upper atmosphere, the thermosphere, at approximately 120 km to 140 km. Modeling based upon MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and the NOGAPS (Navy Operational Global Atmospheric Prediction System) and NRL-GS2 (Naval Research Laboratory Ground to Space) augmented profiles are used to interpret the observed arrivals.

  1. Further constraints on the African superplume structure

    NASA Astrophysics Data System (ADS)

    Ni, Sidao; Helmberger, Don V.

    2003-11-01

    It is well established that there is a large-scale low velocity structure in the lowermost mantle beneath Africa, extending from the Southeastern Atlantic Ocean to the Southwestern Indian Ocean with a volume greater than 10 billion km 3 (>7000 km long, 1000 km across and 1200 km high) [Earth Planet. Sci. Lett. 206 (2003) 119]. This low velocity structure is often called the African superplume. Various studies also require sharp boundaries for the plume. However, as for its height and shear velocity reduction, there has been some controversy, especially concerning the velocities at the core-mantle-boundary (CMB). Here, we present an assortment of phases involving S diff, SKS, S and S cS with both vertical and horizontal paths sampling a 2D corridor through the structure. Travel time and waveform modeling of these seismic phases argues for a model with shear velocity reduction of approximately 3% within the superplume (which is basically a 200 km thick layer low velocity layer beneath the Southern Atlantic Ocean, and a 1200 km high structure beneath South Africa), and against a model of a substantially reduced low velocity layer (up to 10%, 300 km) beneath the superplume. We also analyzed P diff and the differential times of P cP-P and compared them with S diff and S cS-S observations along the same great circle paths. The P-velocity is not very anomalous, at most -0.5%, much smaller than -1% as expected from a thermal anomaly with -3% lower S-velocity [Geophys. Res. Lett. 27 (2000) 421], thus again arguing for a chemical origin which was suggested from the modeling of African superplume sharp sides [Science 296 (2002) 1850].

  2. Inhomogeneity of optical turbulence over False Bay (South Africa)

    NASA Astrophysics Data System (ADS)

    Ullwer, Carmen; Sprung, Detlev; van Eijk, Alexander M. J.; Gunter, Willi; Stein, Karin

    2017-09-01

    Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the vertical and horizontal distribution (inhomogeneity) of the optical turbulence. In the framework of the First European South African Transmission ExpeRiment (FESTER) optical turbulence was measured between June 2015 and February 2016 on a 2 km over-water link over False Bay. The link ran from the Institute of Maritime Technology (IMT) in Simons Town to the lighthouse at Roman Rock Island. Three Boundary layer scintillometers (BLS900) allowed assessing the vertical distribution of optical turbulence at three different heights between 5 and 12 m above the water surface. The expected decrease of Cn2 with height is not always found. These results are analyzed in terms of the meteorological scenarios, and a comparison is made with a fourth optical link providing optical turbulence data over a 8.7 km path from IMT to Kalk Bay, roughly 36° to the north of the three 2 km paths. The results are related to the inhomogeneous meteorological conditions over the Bay as assessed with the numerical weather prediction tool, the Weather Forecast and Research model WRF.

  3. Inter-Comparison of WRF Model Simulated Winds and MISR Stereoscopic Winds Embedded within Mesoscale von Kármán Wake Vortices

    NASA Astrophysics Data System (ADS)

    Horvath, A.; Nunalee, C. G.; Mueller, K. J.

    2014-12-01

    Several distinct wake regimes are possible when considering atmospheric flow past a steep mountainous island. Of these regimes, coherent vortex shedding in low-Froude number flow is particularly interesting because it can produce laterally focused paths of counter rotating eddies capable of extending downstream for hundreds of kilometers (i.e., a von Kármán vortex street). Given the spatial scales of atmospheric von Kármán vortices, which typically lies on the interface of the meso-scale and the micro-scale, they are uniquely challenging to model using conventional numerical weather prediction platforms. In this presentation, we present high resolution (1-km horizontally) numerical modeling results using the Weather Research and Forecasting (WRF) model, of multiple real-world von Kármán vortex shedding events associated with steep islands (e.g., Madeira island, Gran Canaria island, etc.). In parallel, we also present corresponding cloud-motion wind and cloud-top height measurements from the satellite-based Multiangle Imaging SpectroRadiometer (MISR) instrument. The MISR stereo algorithm enables experimental retrieval of the horizontal wind vector (both along-track and cross-track components) at 4.4-km resolution, in addition to the operational 1.1-km resolution cross-track wind and cloud-top height products. These products offer the fidelity appropriate for inter-comparison with the numerically simulated vortex streets. In general, we find an agreement between the instantaneous simulated cloud level winds and the MISR stereoscopic winds; however, discrepancies in the vortex street length and localized horizontal wind shear were documented. In addition, the simulated fields demonstrate sensitivity to turbulence closure and input terrain height data.

  4. Quantitative estimation of Tropical Rainfall Mapping Mission precipitation radar signals from ground-based polarimetric radar observations

    NASA Astrophysics Data System (ADS)

    Bolen, Steven M.; Chandrasekar, V.

    2003-06-01

    The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall from space using radar. The precipitation radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit with nominal altitude of 350 km, inclination of 35°, and period of 91.5 min. The PR is a single-frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant and as high as 10-15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR signal returns. Quantitative estimation of PR attenuation is made along the PR beam via ground-based polarimetric observations to validate attenuation correction procedures used by the PR. The reflectivity (Zh) at horizontal polarization and specific differential phase (Kdp) are found along the beam from S-band ground radar measurements, and theoretical modeling is used to determine the expected specific attenuation (k) along the space-Earth path at Ku-band frequency from these measurements. A theoretical k-Kdp relationship is determined for rain when Kdp ≥ 0.5°/km, and a power law relationship, k = a Zhb, is determined for light rain and other types of hydrometers encountered along the path. After alignment and resolution volume matching is made between ground and PR measurements, the two-way path-integrated attenuation (PIA) is calculated along the PR propagation path by integrating the specific attenuation along the path. The PR reflectivity derived after removing the PIA is also compared against ground radar observations.

  5. On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model

    NASA Astrophysics Data System (ADS)

    Xu, Jingwei; Koldunov, Nikolay; Remedio, Armelle Reca C.; Sein, Dmitry V.; Zhi, Xiefei; Jiang, Xi; Xu, Min; Zhu, Xiuhua; Fraedrich, Klaus; Jacob, Daniela

    2018-02-01

    A number of studies have shown that added value is obtained by increasing the horizontal resolution of a regional climate model to capture additional fine-scale weather processes. However, the mechanisms leading to this added value are different over areas with complicated orographic features, such as the Tibetan Plateau (TP). To determine the role that horizontal resolution plays over the TP, a detailed comparison was made between the results from the REMO regional climate model at resolutions of 25 and 50 km for the period 1980-2007. The model was driven at the lateral boundaries by the European Centre for Medium-Range Weather Forecasts Interim Reanalysis data. The experiments differ only in representation of topography, all other land parameters (e.g., vegetation characteristics, soil texture) are the same. The results show that the high-resolution topography affects the regional air circulation near the ground surface around the edge of the TP, which leads to a redistribution of the transport of atmospheric water vapor, especially over the Brahmaputra and Irrawaddy valleys—the main water vapor paths for the southern TP—increasing the amount of atmospheric water vapor transported onto the TP by about 5%. This, in turn, significantly decreases the temperature at 2 m by > 1.5 °C in winter in the high-resolution simulation of the southern TP. The impact of topography on the 2 m temperature over the TP is therefore by influencing the transport of atmospheric water vapor in the main water vapor paths.

  6. Impact of Resolution on Simulation of Closed Mesoscale Cellular Convection Identified by Dynamically Guided Watershed Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martini, Matus N.; Gustafson, William I.; Yang, Qing

    2014-11-18

    Organized mesoscale cellular convection (MCC) is a common feature of marine stratocumulus that forms in response to a balance between mesoscale dynamics and smaller scale processes such as cloud radiative cooling and microphysics. We use the Weather Research and Forecasting model with chemistry (WRF-Chem) and fully coupled cloud-aerosol interactions to simulate marine low clouds during the VOCALS-REx campaign over the southeast Pacific. A suite of experiments with 3- and 9-km grid spacing indicates resolution-dependent behavior. The simulations with finer grid spacing have smaller liquid water paths and cloud fractions, while cloud tops are higher. The observed diurnal cycle is reasonablymore » well simulated. To isolate organized MCC characteristics we develop a new automated method, which uses a variation of the watershed segmentation technique that combines the detection of cloud boundaries with a test for coincident vertical velocity characteristics. This ensures that the detected cloud fields are dynamically consistent for closed MCC, the most common MCC type over the VOCALS-REx region. We demonstrate that the 3-km simulation is able to reproduce the scaling between horizontal cell size and boundary layer height seen in satellite observations. However, the 9-km simulation is unable to resolve smaller circulations corresponding to shallower boundary layers, instead producing invariant MCC horizontal scale for all simulated boundary layers depths. The results imply that climate models with grid spacing of roughly 3 km or smaller may be needed to properly simulate the MCC structure in the marine stratocumulus regions.« less

  7. Vertical Distribution of NO, NO(2), and HNO(3) as Derived from Stratospheric Absorption Infrared Spectra.

    PubMed

    Fontanella, J C; Girard, A; Gramont, L; Louisnard, N

    1975-04-01

    This paper is devoted to the results concerning NO, NO(2), and HNO(3) obtained during airborne experiments performed in June-July 1973 on Concorde 001. The altitude of flight was about 16 km. Results concerning NO are, within the accuracy of measurement, in agreement with results of a previousspectrometric balloonborne experiment conducted jointly by IASB and ONERA (14 May 1973). Nitric oxide is concentrated in stratospheric layers clearly above the flight altitude. Integrated amount of NO along the optical path is (4 +/- 1.5) x 10(16) mol cm(-2) for a solar elevation varying from +2 degrees above the horizontal plane to -1 degrees . A value of 6 x 10(8) mol cm(-3) may be given as an upper limit for the local concentration at the flight altitude. Thereis no significant difference in the integrated amount observed at sunset and sunrise. Measured value of NO(2) local concentration at 15.5 km is (1.1 +/- 0.2) x 10(9) mol cm(-3), in sunset conditions. This value is not greatly modified between 15 km and 30 km. Measured value of HNO(3). This value increases with altitude between 15 km and 20 km. The local concentration is maximum at 20 km. The measured value is (2 +/- 1) x 10(10) mol cm(-3) at 20 km. It seems that local concentration decreases rapidly above 20 km.

  8. Detection of Traveling Ionospheric Disturbances Induced by 2010 Mindanao Earthquakes

    NASA Astrophysics Data System (ADS)

    Shahbazi, A.; Park, J.; Huang, C.

    2017-12-01

    Earthquakes precipitate anomalous variations in the concentration of free electrons/ions in the ionosphere being known as the Traveling Ionospheric Disturbance (TID). The TIDs can be detected from the Total Electron Content (TEC), which can be extracted from the ionospheric delay along the ray path of the GNSS signal between a satellite and a receiver. In this study, we utilized the GNSS-derived TEC observed by Communication/Navigation Outage Forecasting System (C/NOFS), which is a Low Earth Orbit (LEO) satellite. As a case study, we detected the ionospheric perturbations triggered by 2010 Mindanao earthquakes in the Moro Gulf, southern Philippines. Since this sequence of the earthquakes was occurred in depths of about 600 km, the low detectability of TID signature was expected while the magnitude of the foreshock, primary shock and aftershock were of 7.3, 7.6, and 7.5 Mb, respectively. Hence, we introduced a novel filtering scheme to assess the performance of space-based TEC observations in identification of earthquake-induced TIDs as well as to cope with the challenge of investigating deep subsequent earthquakes. The proposed approach suppresses the dominant trend of TEC by Hodrick-Prescott (H-P) Filter, which identifies the extremums of the remained signal as the potential TIDs and associates them to the seismic waves. Considering the propagation mechanism of the seismic waves given in the literatures that the wave propagates upward from the earthquake epicenter to the upper atmosphere, and then, moves horizontally through the ionosphere, we applied the first order linear regression model to estimate the propagation velocity of TIDs. Our experimental result demonstrated the vertical propagation velocity of 0.980 km/s and the horizontal propagation velocity through the ionosphere of 1.066 km/s with the std. of 0.364 km/s. The correlation coefficient of the detected TIDs in this model is 0.78 that illustrates the detected TIDs are well correlated with the event under consideration. Also, the average (vertical and horizontal) velocities of wave were matched with the literatures which reveal the 2010 Mindanao earthquakes with near 600km of depth generated the TIDs being detectable by GNSS receivers on a LEO satellite.

  9. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.

  10. Infrasonic array observations at I53US of the 2006 Augustine Volcano eruptions

    USGS Publications Warehouse

    Wilson, C.R.; Olson, J.V.; Szuberla, Curt A.L.; McNutt, Steve; Tytgat, Guy; Drob, Douglas P.

    2006-01-01

    The recent January 2006 Augustine eruptions, from the 11th to the 28th, have produced a series of 12 infrasonic signals that were observed at the I53US array at UAF. the eruption times for the signals were provided by the Alaska Volcanic Observatory at UAF using seismic sensors and a Chaparral microphone that are installed on Augustine Island. The bearing and distance of Augustine from I53US are, respectively, 207.8 degrees and 675 km. The analysis of the signals is done with a least-squares detector/estimator that calculates, from the 28 different sensor-pairs in the array, the mean of the cross-correlation maxima (MCCM), the horizontal trace-velocity and the azimuth of arrival of the signal using a sliding-window of 2000 data points. The data were bandpass filtered from 0.03 to 0.10 Hz. The data are digitized at a rate of 20 Hz. The average values of the signal parameters for all 12 Augustine signals are as follows: MCCM=0.85 (std 0.14), Trace-velocity=0.346 (std 0.016) km/sec, Azimuth=209 (std 2) deg. The celerity for each signal was calculated using the range 675 km and the individual travel times to I53US. The average celerity for all ten eruption signals was 0.27 (std 0.02) km/sec. Ray tracing studies, using mean values of the wind speed and temperature profiles (along the path) from NRL, have shown that there was propagation to I53US by both stratospheric and thermospheric ray paths from the volcano.

  11. Turbulence effects in a horizontal propagation path close to ground: implications for optics detection

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Lars; Allard, Lars; Gustafsson, Ove; Henriksson, Markus; Pettersson, Magnus

    2011-11-01

    Atmospheric turbulence effects close to ground may affect the performance of laser based systems severely. The variations in the refractive index along the propagation path cause effects such as beam wander, intensity fluctuations (scintillations) and beam broadening. Typical geometries of interest for optics detection include nearly horizontal propagation paths close to the ground and up to kilometre distance to the target. The scintillations and beam wander affect the performance in terms of detection probability and false alarm rate. Of interest is to study the influence of turbulence in optics detection applications. In a field trial atmospheric turbulence effects along a 1 kilometre horizontal propagation path were studied using a diode laser with a rectangular beam profile operating at 0.8 micrometer wavelength. Single-path beam characteristics were registered and analysed using photodetectors arranged in horizontal and vertical directions. The turbulence strength along the path was determined using a scintillometer and single-point ultrasonic anemometers. Strong scintillation effects were observed as a function of the turbulence strength and amplitude characteristics were fitted to model distributions. In addition to the single-path analysis double-path measurements were carried out on different targets. Experimental results are compared with existing theoretical turbulence laser beam propagation models. The results show that influence from scintillations needs to be considered when predicting performance in optics detection applications.

  12. An experimental study of stratospheric gravity waves - Design and preliminary results

    NASA Astrophysics Data System (ADS)

    Talagrand, O.; Ovarlez, H.

    1984-02-01

    The design of balloon-borne experimental apparatus for long-term gravitational-wave measurements in the stratosphere is reported, and preliminary results of a first test flight are presented. Two gondolas (each containing a pressure sensor; a temperature sensor; horizontal and vertical sonic anemometers; a fin equipped with crossed magnetometers; and data-processing, data-transmission, and control electronics) are suspended 100 and 300 m below a solar/terrestrial-IR-absorption-heated hot-air balloon drifting between altitudes 22 km (night) and 28 km (day); power is supplied by NiCd batteries recharged by solar cells. The path of the first flight, a circumnavigation beginning in Pretoria, South Africa and crossing South America and northern Australia, from December 11, 1982, to February 2, 1983 (when transmission ceased over southern Africa) is shown on a map, and sample data for a 36-h period are summarized in a graph.

  13. Measurement of the horizontal velocity of wind perturbations in the middle atmosphere by spaced MF radar systems

    NASA Technical Reports Server (NTRS)

    Meek, C. E.; Manson, A. H.; Smith, M. J.

    1983-01-01

    Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves.

  14. Horizontal atmospheric turbulence, beam propagation, and modeling

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Judd, K. Peter; Restaino, Sergio R.

    2017-05-01

    The turbulent effect from the Earth's atmosphere degrades the performance of an optical imaging system. Many studies have been conducted in the study of beam propagation in a turbulent medium. Horizontal beam propagation and correction presents many challenges when compared to vertical due to the far harsher turbulent conditions and increased complexity it induces. We investigate the collection of beam propagation data, analysis, and use for building a mathematical model of the horizontal turbulent path and the plans for an adaptive optical system to use this information to correct for horizontal path atmospheric turbulence.

  15. Data assimilation experiment of precipitable water vapor observed by a hyper-dense GNSS receiver network using a nested NHM-LETKF system

    NASA Astrophysics Data System (ADS)

    Oigawa, Masanori; Tsuda, Toshitaka; Seko, Hiromu; Shoji, Yoshinori; Realini, Eugenio

    2018-05-01

    We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.[Figure not available: see fulltext.

  16. Infrasound wave propagation over near-regional and tele-infrasonic distances

    NASA Astrophysics Data System (ADS)

    McKenna, Sara Mihan House

    2005-11-01

    Infrasound research is experiencing a renaissance due to advances in acoustic propagation calculations and a deeper understanding of the atmosphere. Uniquely combining observed data and propagation modeling, the three papers presented here quantify the effects of the atmosphere on propagation from a variety of sources at distances from less than 100 km (near-regional distances) to nearly 600 km (tele-infrasonic distances) for sources on the surface and at altitude (63 km). Paper one analyzes infrasound signals recorded at the CHNAR seismo-acoustic array. These sources are predominantly on the surface, result from human activity and occur closer than 250 km away. Propagation for these near-regional distances depends on tropospheric weather patterns and temporally varying, low-altitude ducts. To predict the observed arrivals local meteorological data is necessary; MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and NRL-G2S (Naval Research Laboratory Ground To Space) did not predict the observed arrivals. Paper two is the first time a waveform from an explosion at height has ever been reproduced; the recorded waveform was from the break-up of the space shuttle Columbia. For the tele-infrasonic normal mode modeling, MSIS/HWM and NRL-G2S yielded identical waveform results. Paper three looks at the tele-infrasonic path between an iron mine in Minnesota and an infrasound array in Manitoba, Canada. Over a four month period, the IS-10 infrasound array provided infrasound data to compare to archived blast statistics. NRL-G2S better reproduced the observed arrival travel times than MSIS/HWM; whether or not arrivals were observed depended on the noise field at the infrasound array. For any distance range or source height, accurate atmospheric parameters from the corresponding propagation paths are necessary to predict observed infrasound.

  17. Investigation of the Crust of the Pannonian Basin, Hungary Using Low-Altitude CHAMP Horizontal Gradient Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Kis, Karoly I.; Puszta, Sandor; Wittmann, Geza; Kim, Hyung Rae; Toronyi, B.

    2011-01-01

    The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. It is some 600 by 500 km in area and centered on Hungary. This area was chosen since it has one of the thinnest continental crusts in Europe and is the region of complex tectonic structures. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The SWARM constellation, scheduled to be launched next year, will have two lower altitude satellites flying abreast, with a separation of between ca. 150 to 200 km. to record the horizontal magnetic gradient. Since the CHAMP satellite has been in orbit for eight years and has obtained an extensive range of data, both vertically and horizontally there is a large enough data base to compute the horizontal magnetic gradients over the Pannonian Basin region using these many CHAMP orbits. We recomputed a satellite magnetic anomaly map, using the spherical-cap method of Haines (1985), the technique of Alsdorf et al. (1994) and from spherical harmonic coefficients of MF6 (Maus et aI., 2008) employing the latest and lowest altitude CHAMP data. We then computed the horizontal magnetic anomaly gradients (Kis and Puszta, 2006) in order to determine how these component data will improve our interpretation and to preview what the SW ARM mission will reveal with reference to the horizontal gradient anomalies. The gradient amplitude of an 1000 km northeast-southwest profile through our horizontal component anomaly map varied from 0 to 0.025 nT/km with twin positive anomalies (0.025 and 0.023 nT/km) separated by a sharp anomaly negative at o nT/km. Horizontal gradient indicate major magnetization boundaries in the crust (Dole and Jordan, 1978 and Cordell and Grauch, 1985). Our gradient anomaly was modeled with a twodimensional body and the anomaly, of some 200 km, correlates with a 200 km area of crustal thinning in the southwestern Pannonian Basin.

  18. The impact of horizontal heterogeneities, cloud fraction, and cloud dynamics on warm cloud effective radii and liquid water path from CERES-like Aqua MODIS retrievals

    NASA Astrophysics Data System (ADS)

    Painemal, D.; Minnis, P.; Sun-Mack, S.

    2013-05-01

    The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E), and cloud fraction (CF) on MODIS cloud effective radius (re), retrieved from the 2.1 μm (re2.1) and 3.8 μm (re3.8) channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES Edition 4 algorithms are averaged at the CERES footprint resolution (~ 20 km), while heterogeneities (Hσ) are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8 - re2.1 differences are positive (< 1 μm) for homogeneous scenes (Hσ < 0.2) and LWP > 50 g m-2, and negative (up to -4 μm) for larger Hσ. Thus, re3.8 - re2.1 differences are more likely to reflect biases associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.

  19. No-reference image quality assessment for horizontal-path imaging scenarios

    NASA Astrophysics Data System (ADS)

    Rios, Carlos; Gladysz, Szymon

    2013-05-01

    There exist several image-enhancement algorithms and tasks associated with imaging through turbulence that depend on defining the quality of an image. Examples include: "lucky imaging", choosing the width of the inverse filter for image reconstruction, or stopping iterative deconvolution. We collected a number of image quality metrics found in the literature. Particularly interesting are the blind, "no-reference" metrics. We discuss ways of evaluating the usefulness of these metrics, even when a fully objective comparison is impossible because of the lack of a reference image. Metrics are tested on simulated and real data. Field data comes from experiments performed by the NATO SET 165 research group over a 7 km distance in Dayton, Ohio.

  20. Pulsed multiwavelength laser ranging system. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1982-01-01

    A pulsed multiwavelength laser ranging system for measuring atmospheric delay was built and tested, and its theoretical performance limits were calculated. The system uses a dye modelocked ND:YAG laser, which transmits 70 psec wide pulses simultaneously at 1064, 532, and 355 nm. The differential delay of the 1064 and 355 nm pulses is measured by a specially calibrated waveform digitizer to estimate the dry atmospheric delay. The delay time of the 532 nm pulse is used to measure the target distance. Static crossed field photomultipliers are used as detectors for all wavelengths. Theoretical analysis shows that path curvature and atmospheric turbulence are fundamental limits to the ranging accuracy of both single and multicolor systems operating over horizontal paths. For two color systems, an additional error is caused by the uncertainty in the path averaged water vapor. The standard deviation of the multicolor instrument's timing measurements is directly proportional to the laser pulse width plus photomultiplier jitter divided by the square root of the received photoelectron number. The prototype system's maximum range is km, which is limited by atmospheric and system transmission losses at 355 nm. System signal detection and false alarm calculations are also presented.

  1. Windshear certification data base for forward-look detection systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Hinton, David A.; Proctor, Fred H.

    1994-01-01

    Described is an introduction to a comprehensive database that is to be used for certification testing of airborne forward-look windshear detection systems. The database was developed by NASA Langley Research Center, at the request of the Federal Aviation Administration (FAA), to support the industry initiative to certify and produce forward-looking windshear detection equipment. The database contains high-resolution three-dimensional fields for meteorological variables that may be sensed by forward-looking systems. The database is made up of seven case studies that are generated by the Terminal Area Simulation System, a state-of-the-art numerical system for the realistic modeling of windshear phenomena. The selected cases contained in the certification documentation represent a wide spectrum of windshear events. The database will be used with vendor-developed sensor simulation software and vendor-collected ground-clutter data to demonstrate detection performance in a variety of meteorological conditions using NASA/FAA pre-defined path scenarios for each of the certification cases. A brief outline of the contents and sample plots from the database documentation are included. These plots show fields of hazard factor, or F-factor (Bowles 1990), radar reflectivity, and velocity vectors on a horizontal plane overlayed with the applicable certification paths. For the plot of the F-factor field the region of 0.105 and above signify an area of hazardous, performance decreasing windshear, while negative values indicate regions of performance increasing windshear. The values of F-factor are based on 1-Km averaged segments along horizontal flight paths, assuming an air speed of 150 knots (approx. 75 m/s). The database has been released to vendors participating in the certification process. The database and associated document have been transferred to the FAA for archival storage and distribution.

  2. Shuttle high resolution accelerometer package experiment results - Atmospheric density measurements between 60-160 km

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hinson, E. W.; Nicholson, J. Y.

    1988-01-01

    Indirect or inferred values of atmospheric density encountered by the Shuttle Orbiter during reentry have been calculated from acceleration measurements made by the High Resolution Accelerometer Package (HiRAP) and the Orbiter Inertial Measurement Unit (IMU) liner accelerometers. The atmospheric density data developed from this study represent a significant gain with respect to the body of data collected to date by various techniques in the altitude range of 60 to 160 km. The data are unique in that they cover a very wide horizontal range during each flight and provide insight into the actual density variations encountered along the reentry flight path. The data, which were collected over about 3 years, are also characterized by variations in solar activity, geomagnetic index, and local solar time. Comparison of the flight-derived densities with various atmospheric models have been made, and analyses have attempted to characterize the data and to show correlation with selected physical variables.

  3. Deep magma transport at Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Wright, T.L.; Klein, F.W.

    2006-01-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5?? and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325??, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0.4 my for Kilauea and 0.8 my for Mauna Loa are consistent with this model. Younger ages would apply if Kilauea began its growth south of the locus of maximum melting, as is true for Loihi seamount. We conclude that Kilauea is fed from below the eastern end of the zone of deep long-period earthquakes. Magma transport is vertical below 30 km, then sub-horizontal, following the oceanic mantle boundary separating plagioclase- and spinel-peridotite, then near-vertical beneath Kilauea's summit. The migration of the melting region within the hotspot and Kilauea's sampling of different sources within the melting region can explain (1) the long-term geochemical separation of Kilauea from neighboring volcanoes Mauna Loa and Loihi, and (2) the short-term changes in trace-element and isotope signatures within Kilauea. ?? 2005 Elsevier B.V. All rigths reserved.

  4. Deep magma transport at Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Wright, Thomas L.; Klein, Fred W.

    2006-03-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5° and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325°, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0.4 my for Kilauea and 0.8 my for Mauna Loa are consistent with this model. Younger ages would apply if Kilauea began its growth south of the locus of maximum melting, as is true for Loihi seamount. We conclude that Kilauea is fed from below the eastern end of the zone of deep long-period earthquakes. Magma transport is vertical below 30 km, then sub-horizontal, following the oceanic mantle boundary separating plagioclase- and spinel-peridotite, then near-vertical beneath Kilauea's summit. The migration of the melting region within the hotspot and Kilauea's sampling of different sources within the melting region can explain (1) the long-term geochemical separation of Kilauea from neighboring volcanoes Mauna Loa and Loihi, and (2) the short-term changes in trace-element and isotope signatures within Kilauea.

  5. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 1: Computer simulation of ionospheric-induced Doppler shifts

    NASA Technical Reports Server (NTRS)

    Grossi, M. D.; Gay, R. H.

    1975-01-01

    A computer simulation of the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) was performed. ASTP is the first example of USA/USSR cooperation in space and is scheduled for summer 1975. The experiment consists of performing dual-frequency Doppler measurements (at 162 and 324 MHz) between the Apollo Command Service Module (CSM) and the ASTP Docking Module (DM), both orbiting at 221-km height and at a relative distance of 300 km. The computer simulation showed that, with the Doppler measurement resolution of approximately 3 mHz provided by the instrumentation (in 10-sec integration time), ionospheric-induced Doppler shifts will be measurable accurately at all times, with some rare exceptions occurring when the radio path crosses regions of minimum ionospheric density. The computer simulation evaluated the ability of the experiment to measure changes of columnar electron content between CSM and DM (from which horizontal gradients of electron density at 221-km height can be obtained) and to measure variations in DM-to-ground columnar content (from which an averaged columnar content and the electron density at the DM can be deduced, under some simplifying assumptions).

  6. Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvements in the cold pole bias and generation of a QBO-like oscillation in the tropics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, K.; Wilson, R.J.; Hemler, R.S.

    1999-11-15

    The large-scale circulation in the Geophysical Fluid Dynamics Laboratory SKYHI troposphere-stratosphere-mesosphere finite-difference general circulation model is examined as a function of vertical and horizontal resolution. The experiments examined include one with horizontal grid spacing of {approximately}35 km and another with {approximately}100 km horizontal grid spacing but very high vertical resolution (160 levels between the ground and about 85 km). The simulation of the middle-atmospheric zonal-mean winds and temperatures in the extratropics is found to be very sensitive to horizontal resolution. For example, in the early Southern Hemisphere winter the South Pole near 1 mb in the model is colder thanmore » observed, but the bias is reduced with improved horizontal resolution (from {approximately}70 C in a version with {approximately}300 km grid spacing to less than 10 C in the {approximately}35 km version). The extratropical simulation is found to be only slightly affected by enhancements of the vertical resolution. By contrast, the tropical middle-atmospheric simulation is extremely dependent on the vertical resolution employed. With level spacing in the lower stratosphere {approximately}1.5 km, the lower stratospheric zonal-mean zonal winds in the equatorial region are nearly constant in time. When the vertical resolution is doubled, the simulated stratospheric zonal winds exhibit a strong equatorially centered oscillation with downward propagation of the wind reversals and with formation of strong vertical shear layers. This appears to be a spontaneous internally generated oscillation and closely resembles the observed QBO in many respects, although the simulated oscillation has a period less than half that of the real QBO.« less

  7. a Baseline for Upper Crustal Velocity Variations Along the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Kappus, Mary Elizabeth

    Seismic measurements of the oceanic crust and theoretical models of its generation at mid-ocean ridges suggest several systematic variations in upper crustal velocity structure, but without constraints on the inherent variation in newly-formed crust these suggestions remain tentative. The Wide Aperture Profiles (WAPs) which form the database for this study have sufficient horizontal extent and resolution in the upper crust to establish a zero-age baseline. After assessing the adequacy of amplitude preservation in several tau - p transform methods we make a precise estimate of the velocity at the top of the crust from analysis of amplitudes in the tau - p domain. Along a 52-km segment we find less than 5% variation from 2.45 km/s. Velocity models of the uppermost crust are constructed using waveform inversion for both reflection and refraction arrivals. This method exploits the high quality of both primary and secondary phases and provides an objective process for iteratively improving trial models and for measuring misfit. The resulting models show remarkable homogeneity: on-axis variation is 5% or less within layers 2A and 2B, increasing to 10% at the sharp 2A/2B boundary. The extrusive volcanic layer is only 130 m thick along-axis and corresponds to the triangular -shaped neovolcanic zone. From this we infer that the sheeted dikes feeding the extrusive layer 2A come up to very shallow depths on axis. Along axis, a fourth-order deviation from axial linearity identified geochemically is observed as a small increase in thickness of the extrusive layer. Off -axis, the velocity increases only slightly to 2.49 km/s, while the thickness of the extrusives increases to 217 km and the variability in both parameters increases with distance from the ridge axis. In a separate section we present the first published analysis of seismic records of thunder. We calculate multi -taper spectra to determine the peak energy in the lightning bolt and apply time-dependent polarization analysis to determine the lightning propagation path. The peak energies of the intracloud lightning bolts are all infrasonic, but we show that this is not incompatible with the mechanism of thunder production by a rapidly heated gas channel as was previously thought. From polarization analysis we find the direction to the lightning bolt from a single station record, in several cases resolving a significant horizontal component to the lightning path.

  8. Space-borne observation of mesospheric bore by Visible and near Infrared Spectral Imager onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Y.; Saito, A.; Sakanoi, T.; Yamazaki, A.; Hosokawa, K.

    2017-12-01

    Mesospheric bores were observed by Visible and near Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in O2 airglow at 762 nm wavelength. The mesospheric bore is moving front of sharp jump followed by undulations or turbulence in the mesopause region. Since previous studies of mesospheric bore were mainly based on ground-based airglow imaging that is limited in field-of-view and observing site, little is known about its horizontal extent and global behavior. Space-borne imaging by ISS-IMAP/VISI provides an opportunity to study the mesospheric bore with a wide field-of-view and global coverage. A mesospheric bore was captured by VISI in two consecutive paths on 9 July 2015 over the south of African continent (48ºS - 54ºS and 15ºE). The wave front aligned with south-north direction and propagated to west. The phase velocity and wave length of the following undulation were estimated to 100 m/s and 30 km, respectively. Those parameters are similar to those reported by previous studies. 30º anti-clockwise rotation of the wave front was recognized in 100 min. Another mesospheric bore was captured on 9 May 2013 over the south Atlantic ocean (35ºS - 43ºS and 24ºW - 1ºE) with more than 2,200 km horizontal extent of wave front. The wave front aligned with southeast-northwest direction. Because the following undulation is recognized in the southwest side of the wave front, it is estimated to propagate to northeast direction. The wave front was modulated with 1,000 km wave length. This modulation implies inhomogeneity of the phase velocity.

  9. The Electron Density Features Revealed by the GNSS-Based Radio Tomography in the Different Latitudinal and Longitudinal Sectors of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Andreeva, Elena; Tereshchenko, Evgeniy; Nazarenko, Marina; Nesterov, Ivan; Kozharin, Maksim; Padokhin, Artem; Tumanova, Yulia

    2016-04-01

    The ionospheric radio tomography is an efficient method for electron density imaging in the different geographical regions of the world under different space weather conditions. The input for the satellite-based ionospheric radio tomography is provided by the signals that are transmitted from the navigational satellites and recorded by the chains or networks of ground receivers. The low-orbiting (LO) radio tomography employs the 150/400 MHz radio transmissions from the Earth's orbiters (like the Russian Tsikada/Parus and American Transit) flying at a height of ~1000 km above the Earth in the nearly polar orbits. The phases of the signals from a moving satellite which are recorded by the chains of ground receivers oriented along the satellite path form the families of linear integrals of electron density along the satellite-receiver rays that are used as the input data for LORT. The LO tomographic inversion of these data by phase difference method yields the 2D distributions of the ionospheric plasma in the vertical plane containing the receiving chain and the satellite path. LORT provides vertical resolution of 20-30 km and horizontal resolution of 30-40 km. The high-orbiting (HO) radio tomography employs the radio transmissions from the GPS/GLONASS satellites and enables 4D imaging of the ionosphere (3 spatial coordinates and time). HORT has a much wider spatial coverage (almost worldwide) and provides continuous time series of the reconstructions. However, the spatial resolution of HORT is lower (~100 km horizontally with a time step 60-20 min). In the regions with dense receiving networks (Europe, USA, Alaska, Japan), the resolution can be increased to 30-50 km with a time interval of 30-10 min. To date, the extensive RT data collected from the existing RT chains and networks enable a thorough analysis of both the regular and sporadic ionospheric features which are observed systematically or appear spontaneously, whose origin is fairly well understood or requires a dedicated study. We present the examples of the both types of the structures. We show a collection of different ionospheric structures under different space weather conditions: the ionization troughs, with their widely varying shapes, depths, positions, and internal distributions of plasma; isolated spots of the increased or decreased electron density, sharp wall-like density gradients, blobs, wavelike disturbances on different spatiotemporal scales etc. We demonstrate the series of the local isolated irregularities which are observed during both the quiet and disturbed days. We show the examples of the ionospheric plasma distributions strikingly varying during the geomagnetic storms. Some of the RT data are compared to the independent observations by the ionosondes. We also present the examples of RT images comparison with the UV spectroscopy data.

  10. MPI CyberMotion Simulator: implementation of a novel motion simulator to investigate multisensory path integration in three dimensions.

    PubMed

    Barnett-Cowan, Michael; Meilinger, Tobias; Vidal, Manuel; Teufel, Harald; Bülthoff, Heinrich H

    2012-05-10

    Path integration is a process in which self-motion is integrated over time to obtain an estimate of one's current position relative to a starting point (1). Humans can do path integration based exclusively on visual (2-3), auditory (4), or inertial cues (5). However, with multiple cues present, inertial cues - particularly kinaesthetic - seem to dominate (6-7). In the absence of vision, humans tend to overestimate short distances (<5 m) and turning angles (<30°), but underestimate longer ones (5). Movement through physical space therefore does not seem to be accurately represented by the brain. Extensive work has been done on evaluating path integration in the horizontal plane, but little is known about vertical movement (see (3) for virtual movement from vision alone). One reason for this is that traditional motion simulators have a small range of motion restricted mainly to the horizontal plane. Here we take advantage of a motion simulator (8-9) with a large range of motion to assess whether path integration is similar between horizontal and vertical planes. The relative contributions of inertial and visual cues for path navigation were also assessed. 16 observers sat upright in a seat mounted to the flange of a modified KUKA anthropomorphic robot arm. Sensory information was manipulated by providing visual (optic flow, limited lifetime star field), vestibular-kinaesthetic (passive self motion with eyes closed), or visual and vestibular-kinaesthetic motion cues. Movement trajectories in the horizontal, sagittal and frontal planes consisted of two segment lengths (1st: 0.4 m, 2nd: 1 m; ±0.24 m/s(2) peak acceleration). The angle of the two segments was either 45° or 90°. Observers pointed back to their origin by moving an arrow that was superimposed on an avatar presented on the screen. Observers were more likely to underestimate angle size for movement in the horizontal plane compared to the vertical planes. In the frontal plane observers were more likely to overestimate angle size while there was no such bias in the sagittal plane. Finally, observers responded slower when answering based on vestibular-kinaesthetic information alone. Human path integration based on vestibular-kinaesthetic information alone thus takes longer than when visual information is present. That pointing is consistent with underestimating and overestimating the angle one has moved through in the horizontal and vertical planes respectively, suggests that the neural representation of self-motion through space is non-symmetrical which may relate to the fact that humans experience movement mostly within the horizontal plane.

  11. Projection of the change in future extremes over Japan using a cloud-resolving model: (2) Precipitation Extremes and the results of the NHM-1km experiments

    NASA Astrophysics Data System (ADS)

    Kanada, S.; Nakano, M.; Nakamura, M.; Hayashi, S.; Kato, T.; Kurihara, K.; Sasaki, H.; Uchiyama, T.; Aranami, K.; Honda, Y.; Kitoh, A.

    2008-12-01

    In order to study changes in the regional climate in the vicinity of Japan during the summer rainy season due to global warming, experiments by a semi-cloud resolving non-hydrostatic model with a horizontal resolution of 5km (NHM-5km) have been conducted from June to October by nesting within the results of the 10-year time-integrated experiments using a hydrostatic atmospheric general circulation model with a horizontal grid of 20 km (AGCM-20km: TL959L60) for the present and future up to the year 2100. A non-hydrostatic model developed by the Japan Meteorological Agency (JMA) (JMA-NHM; Saito et al. 2001, 2006) was adopted. Detailed descriptions of the NHM-5km are shown by the poster of Nakano et al. Our results show that rainy days over most of the Japanese Islands will decrease in June and July and increase in August and September in the future climate. Especially, remarkable increases in intense precipitations such as larger than 150 - 300 mm/day are projected from the present to future climate. The 90th percentiles of regional largest values among maximum daily precipitations (R-MDPs) grow 156 to 207 mm/day in the present and future climates, respectively. It is well-known that the horizontal distribution of precipitation, especially the heavy rainfall in the vicinity of Japan, much depends on the topography. Therefore, higher resolution experiments by a cloud-resolving model with a horizontal resolution of 1km (NHM-1km) are one-way nested within the results of NHM-5km. The basic frame and design of the NHM-1km is the same as those of the NHM-5km, but the topography is finer and no cumulus parameterization is used in the NHM-1km experiments. The NHM-1km, which treats the convection and cloud microphysics explicitly, can represent not only horizontal distributions of rainfall in detail but also the 3-dimensional structures of meso-beta-scale convective systems (MCSs). Because of the limitation of computation resources, only heavy rainfall events that rank in top 10 % of all rainfall events are selected for the NHM-1km experiments (Heavy rainfall events are defined by R-MDPs > 156 and 207 mm/day for the present and future climates, respectively, from the results of the NHM-5km). Tentative comparisons between the results of the NHM-1km and NHM-1km experiments reveal that the NHM-1km can re-produce more detailed and realistic horizontal distributions of rainfall in many cases. (This study is supported by the Ministry of Education, Culture, Sports, Science and Technology under the framework of the KAKUSHIN program. Numerical simulations are performed in the Earth Simulator)

  12. Quantification of the Intrusion Process at Kïlauea Volcano, Hawai'I

    NASA Astrophysics Data System (ADS)

    Wright, T. L.; Marsh, B. D.

    2014-12-01

    Knowing the time between initial intrusion and later eruption of a given volume of differentiated magma is key to evaluating the connections among magma transport and emplacement, solidification and differentiation, and melt extraction and eruption. Cooling rates for two Kïlauea lava lakes as well as known parent composition and residence times for intrusions that resulted in fractionated lavas later erupted on the East Rift Zone in 1955 (34 years) and 1977 (22 years) allow intrusion dimensions to be calculated. We model intrusions beneath Kïlauea's East Rift Zone near their point of separation from the magma transport path at ~ 5 km depth using Jaeger's (1957) method calibrated against Alae and Makaopuhi lava lakes with wallrock temperatures above the curie point at 450-550°C. Minimum thicknesses of 50-70 meters are found for intrusions that fed the two fractionated lavas, as well as for long-lived magma bodies identified from geodetic monitoring during many East Rift eruptions. These intrusions began as dikes, but probably became sills or laccolithic bodies that remained near the transport path. Short-lived intrusions also arrested near the magma transport path, but that retain a dike geometry, are hypothesized to serve as a trigger for the small but discrete increments of seaward movement on Kïlauea's south flank that characterize slow-slip earthquakes. Two additional thoughts arise from the quantitative modeling of magma cooling. First, long-term heating of the wallrock surrounding the horizontal East Rift Zone transport path slows the rate of cooling within the conduit, possibly contributing to the longevity of the East Rift eruption that began in 1983. Second, the combined effects of heating of the wall rock and ever-increasing magma supply rate from the mantle may have forced breakdown and widening of the vertical transport conduit, which could explain the 5-15-km deep long-period earthquake swarms beneath Kīlauea's summit between 1987 and 1992.

  13. Mapping of Crustal Anisotropy in the New Madrid Seismic Zone with Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Martin, P.; Arroucau, P.; Vlahovic, G.

    2013-12-01

    Crustal anisotropy in the New Madrid seismic zone (NMSZ) is investigated by analyzing shear wave splitting measurements from local earthquake data. For the initial data set, the Center for Earthquake Research and Information (CERI) provided over 3000 events, along with 900 seismograms recorded by the Portable Array for Numerical Data Acquisition (PANDA) network. Data reduction led to a final data set of 168 and 43 useable events from the CERI and PANDA data, respectively. From this, 186 pairs of measurements were produced from the CERI data set as well as 49 from the PANDA data set, by means of the automated shear wave splitting measurement program MFAST. Results from this study identified two dominant fast polarization directions, striking NE-SW and WNW-ESE. These are interpreted to be due to stress aligned microcracks in the upper crust. The NE-SW polarization direction is consistent with the maximum horizontal stress orientation of the region and has previously been observed in the NMSZ, while the WNW-ESE polarization direction has not. Path normalized time delays from this study range from 1-33 ms/km for the CERI network data, and 2-31 ms/km for the PANDA data, giving a range of estimated differential shear wave anisotropy between 1% and 8%, with the majority of large path normalized time delays (>20 ms/km) located along the Reelfoot fault segment. The estimated differential shear wave anisotropy values from this study are higher than those previously determined in the region, and are attributed to high crack densities and high pore fluid pressures, which agree with previous results from local earthquake tomography and microseismic swarm analysis in the NMSZ.

  14. Defining Top-of-Atmosphere Flux Reference Level for Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.; Wielicki, B. A.

    2002-01-01

    To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate TOA flux reference level is used to define satellite TOA fluxes, and horizontal transmission of solar radiation through the planet is not accounted for in the radiation budget equation, systematic errors in net flux of up to 8 W/sq m can result. Since climate models generally use a plane-parallel model approximation to estimate TOA fluxes and the earth radiation budget, they implicitly assume zero horizontal transmission of solar radiation in the radiation budget equation, and do not need to specify a flux reference level. By defining satellite-based TOA flux estimates at a 20-km flux reference level, comparisons with plane-parallel climate model calculations are simplified since there is no need to explicitly correct plane-parallel climate model fluxes for horizontal transmission of solar radiation through a finite earth.

  15. The Effects of a Geomagnetic Storm on Thermospheric Circulation.

    DTIC Science & Technology

    1987-01-01

    frequency. .*. p air density. olU 2 Pedersen and Hall conductivities. a P height intergrated Pedersen conductivity. horizontal viscous stress. * east...equations need to be ex- ,n~panded upon. The energy density is: (.2 1 + V2). I~i~iCPT +<V 2 . The horizontal viscous stress, including molecular and...with Z=0 at 80 km and Z=14.4 at 450 km for a total of 49 levels each 0.3 of a scale height apart. Also, the horizontal wind velocity, gas energy

  16. Saturation of the anisoplanatic error in horizontal imaging scenarios

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey; Bos, Jeremy P.

    2017-09-01

    We evaluate the piston-removed anisoplanatic error for smaller apertures imaging over long horizontal paths. Previous works have shown that the piston and tilt compensated anisoplanatic error saturates to values less than one squared radian. Under these conditions the definition of the isoplanatic angle is unclear. These works focused on nadir pointing telescope systems with aperture sizes between five meters and one half meter. We directly extend this work to horizontal imaging scenarios with aperture sizes smaller than one half meter. We assume turbulence is constant along the imaging path and that the ratio of the aperture size to the atmospheric coherence length is on the order of unity.

  17. Stratospheric Horizontal Wavenumber Spectra of Winds, Potential Temperature, and Atmospheric Tracers Observed by High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Eckermann, Stephen D.; Newman, Paul A.; Lait, Leslie; Chan, K. R.; Loewenstein, Max; Proffitt, Michael H.; Gary, Bruce L.

    1996-01-01

    Horizontal wavenumber power spectra of vertical and horizontal wind velocities, potential temperatures, and ozone and N(2)O mixing ratios, as measured in the mid-stratosphere during 73 ER-2 flights (altitude approx. 20km) are presented. The velocity and potential temperature spectra in the 100 to 1-km wavelength range deviate significantly from the uniform -5/3 power law expected for the inverse energy-cascade regime of two-dimensional turbulence and also for inertial-range, three-dimensional turbulence. Instead, steeper spectra approximately consistent with a -3 power law are observed at horizontal scales smaller than 3 km for all velocity components as well as potential temperature. Shallower spectra are observed at scales longer than 6 km. For horizontal velocity and potential temperature the spectral indices at longer scales are between -1.5 and -2.0. For vertical velocity the spectrum at longer scales become flat. It is argued that the observed velocity and potential temperature spectra are consistent with gravity waves. At smaller scales, the shapes are also superficially consistent with a Lumley-Shur-Weinstock buoyant subrange of turbulence and/or nonlinear gravity waves. Contemporaneous spectra of ozone and N(sub 2)O mixing ratio in the 100 to 1-km wavelength range do conform to an approximately uniform -5/3 power law. It is argued that this may reflect interactions between gravity wave air-parcel displacements and laminar or filamentary structures in the trace gas mixing ratio field produced by enstropy-cascading two-dimensional turbulence.

  18. E-tracers: A New Technique for Wireless Sensing Under Ice Sheets

    NASA Astrophysics Data System (ADS)

    Burrow, S.; Wadham, J. L.; Salter, M.; Barnes, R.

    2009-12-01

    A significant hurdle to the understanding of ice sheet basal hydrology and its coupling with ice motion is the difficulty in making in-situ measurements along a flow path. While dye tracing techniques may be used in small glaciers to determine transit times of surface melt water through the sub-glacial system, they provide no information on in situ conditions (e.g. pressure) and are ineffective at ice-sheet scale where dilution is high. The use of tethered sensor packages is complicated by the long lengths (~100’s m) and torturous path of the moulins and conduits within ice sheets. Recent attempts to pass solid objects (rubber ducks) and other sensor packages through glacial moulins have confirmed the difficultly in deploying sensors into the sub glacial environment. Here, we report the first successful deployment and recovery of compact, electronic units to moulins up to 7 km from the margin of a large land-terminating Greenland outlet. The technique uses RF (Radio Frequency) location to create an electronic tracer (an ‘e-tracer’) enabling a data-logging sensor package to be located in the pro-glacial flood plain once it has passed through the ice sheet. A number of individual packages are used in each deployment mitigating for the risk that some may become stuck within the moulin or lodge in an inaccessible part of the floodplain. In preliminary tests on the Leverett glacier in West Greenland during August 2009 we have demonstrated that this technique can be used to locate and retrieve dummy sensor packages: 50% and 20% of the dummy sensor packages introduced to moulins at 1 and 7 km from the ice sheet terminus respectively, emerged in the sub-glacial stream. It was possible to effectively detect the e-tracer units (which broadcast on 151MHz with 10mW of power) over a horizontal range of up to 5km across the pro-glacial floodplain and locate them to a high accuracy, allowing visual recognition and manual recovery. These performance statistics give this technique strong potential for investigating in-situ conditions along a flow path at ice sheet scale.

  19. Swedish Defence Research Abstracts 79/80-4 (Froe Foersvars Forsknings Referat 79/80-4).

    DTIC Science & Technology

    1980-12-05

    wavelength. In order to verify and modify the model, measurements were made with a transmissometer over a horizontal measuring path . The equipment was...wavelength. In order to verify and modify the model, measurements were made with a transmissometer over a horizontal measuring path . The equipment was in... measurements taken from a number of meteoro loi ca I sensors. Aerosol .xtinc tion was obtained by subtracting the water vapour extinction , as calculated trom

  20. Horizontal Temperature Variability in the Stratosphere: Global Variations Inferred from CRISTA Data

    NASA Technical Reports Server (NTRS)

    Eidmann, G.; Offermann, D.; Jarisch, M.; Preusse, P.; Eckermann, S. D.; Schmidlin, F. J.

    2001-01-01

    In two separate orbital campaigns (November, 1994 and August, 1997), the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument acquired global stratospheric data of high accuracy and high spatial resolution. The standard limb-scanned CRISTA measurements resolved atmospheric spatial structures with vertical dimensions greater than or equal to 1.5 - 2 km and horizontal dimensions is greater than or equal to 100 - 200 km. A fluctuation analysis of horizontal temperature distributions derived from these data is presented. This method is somewhat complementary to conventional power-spectral analysis techniques.

  1. The impact of horizontal heterogeneities, cloud fraction, and liquid water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals

    NASA Astrophysics Data System (ADS)

    Painemal, D.; Minnis, P.; Sun-Mack, S.

    2013-10-01

    The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E), and cloud fraction (CF) on MODIS cloud effective radius (re), retrieved from the 2.1 μm (re2.1) and 3.8 μm (re3.8) channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES algorithms are averaged at the CERES footprint resolution (∼20 km), while heterogeneities (Hσ) are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8-re2.1 differences are positive (<1 μm) for homogeneous scenes (Hσ < 0.2) and LWP > 45 gm-2, and negative (up to -4 μm) for larger Hσ. While re3.8-re2.1 differences in homogeneous scenes are qualitatively consistent with in situ microphysical observations over the region of study, negative differences - particularly evinced in mean regional maps - are more likely to reflect the dominant bias associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.

  2. Daytime tropical D region parameters from short path VLF phase and amplitude

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.

    2010-09-01

    Observed phases and amplitudes of VLF radio signals, propagating on a short (˜300-km) path, are used to find improved parameters for the lowest edge of the (D region of the) Earth's ionosphere. The phases, relative to GPS 1-s pulses, and the amplitudes were measured both near (˜100 km from) the transmitter, where the direct ground wave is very dominant, and at distances of ˜300 km near where the ionospherically reflected waves form a (modal) minimum with the (direct) ground wave. The signals came from the 19.8 kHz, 1 MW transmitter, NWC, on the North West Cape of Australia, propagating ˜300 km ENE, mainly over the sea, to the vicinity of Karratha/Dampier on the N.W. coast of Australia. The bottom edge of the mid-day tropical/equatorial ionosphere was thus found to be well-modeled by H‧ = 70.5 ± 0.5 km and β = 0.47 ± 0.03 km-1 where H‧ and β are the traditional height and sharpness parameters as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. U.S. Navy modal waveguide code calculations are also compared with those from the wave hop code of Berry and Herman (1971). At least for the vertical electric fields on the path studied here, the resulting phase and amplitude differences (between the ˜100-km and ˜300-km sites) agree very well after just a small adjustment of ˜0.2 km in H‧ between the two codes. Such short paths also allow more localization than the usual long paths; here this localization is to low latitudes.

  3. Simulation of climatology and Interannual Variability of Spring Persistent Rains by Meteorological Research Institute Model: Impacts of different horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Li, Puxi; Zhou, Tianjun; Zou, Liwei

    2016-04-01

    The authors evaluated the performance of Meteorological Research Institute (MRI) AGCM3.2 models in the simulations of climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. The possible impacts of different horizontal resolutions were also investigated based on the experiments with three different horizontal resolutions (i.e., 120, 60, and 20km). The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with 120 simulation, it revealed that 60km and 20km simulations show the superiority in simulating rainfall centers anchored by the Nanling-Wuyi Mountains, but overestimate rainfall intensity. Water vapor budget diagnosis showed that, the 60km and 20km simulations tended to overestimate the water vapor convergence over southeastern China, which leads to wet biases. In the aspect of interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in El Niño decaying spring. Compared with the 120km resolution, the large positive biases are substantially reduced in the mid and high resolution models which evidently improve the simulation of horizontal moisture advection in El Niño decaying spring. We highlight the importance of developing high resolution climate model as it could potentially improve the climatology and interannual variability of SPR.

  4. An examination of the degrees of freedom of human jaw motion in speech and mastication.

    PubMed

    Ostry, D J; Vatikiotis-Bateson, E; Gribble, P L

    1997-12-01

    The kinematics of human jaw movements were assessed in terms of the three orientation angles and three positions that characterize the motion of the jaw as a rigid body. The analysis focused on the identification of the jaw's independent movement dimensions, and was based on an examination of jaw motion paths that were plotted in various combinations of linear and angular coordinate frames. Overall, both behaviors were characterized by independent motion in four degrees of freedom. In general, when jaw movements were plotted to show orientation in the sagittal plane as a function of horizontal position, relatively straight paths were observed. In speech, the slopes and intercepts of these paths varied depending on the phonetic material. The vertical position of the jaw was observed to shift up or down so as to displace the overall form of the sagittal plane motion path of the jaw. Yaw movements were small but independent of pitch, and vertical and horizontal position. In mastication, the slope and intercept of the relationship between pitch and horizontal position were affected by the type of food and its size. However, the range of variation was less than that observed in speech. When vertical jaw position was plotted as a function of horizontal position, the basic form of the path of the jaw was maintained but could be shifted vertically. In general, larger bolus diameters were associated with lower jaw positions throughout the movement. The timing of pitch and yaw motion differed. The most common pattern involved changes in pitch angle during jaw opening followed by a phase predominated by lateral motion (yaw). Thus, in both behaviors there was evidence of independent motion in pitch, yaw, horizontal position, and vertical position. This is consistent with the idea that motions in these degrees of freedom are independently controlled.

  5. Optical Tracker For Longwall Coal Shearer

    NASA Technical Reports Server (NTRS)

    Poulsen, Peter D.; Stein, Richard J.; Pease, Robert E.

    1989-01-01

    Photographic record yields information for correction of vehicle path. Tracking system records lateral movements of longwall coal-shearing vehicle. System detects lateral and vertical deviations of path of vehicle moving along coal face, shearing coal as it goes. Rides on rails in mine tunnel, advancing on toothed track in one of rails. As vehicle moves, retroreflective mirror rides up and down on teeth, providing series of pulsed reflections to film recorder. Recorded positions of pulses, having horizontal and vertical orientations, indicate vertical and horizontal deviations, respectively, of vehicle.

  6. Quantification of in situ pore pressure and stress in regions of low frequency earthquakes and anomalously low seismic velocity at the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Kitajima, H.; Saffer, D. M.

    2012-12-01

    Recent seismic reflection and ocean bottom seismometer (OBS) studies reveal broad regions of low seismic velocity along the megathrust plate boundary of the Nankai subduction zone offshore SW Japan. These low velocity zones (LVZ's) extend to ~55 km from the trench, corresponding to depths of >~10 km below sea floor. Elevated pore pressure has been invoked as one potential cause of both the LVZ's and very low frequency earthquakes (VLFE) in the outer forearc. Here, we estimate the in-situ pore fluid pressure and stress state within these LVZ's by combining P-wave velocities (Vp) obtained from seismic reflection and OBS data with well-constrained empirical relations between (1) P-wave velocity and porosity; and (2) porosity and effective mean and differential stresses, defined by triaxial deformation tests on drill core samples of the incoming oceanic sediment. We used cores of Lower Shikoku Basin (LSB) hemipelagic mudstone (322-C0011B-19R-5, initial porosity of 43%), and Middle Shikoku Basin (MSB) tuffaceous sandstone (333-C0011D-51X-2, initial porosity of 46%) that have been recovered from IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Site C0011 (~20 km seaward from the deformation front). Samples were loaded under a range of different stress paths including isotropic loading, triaxial compression, and triaxial extension. During the tests, all pressures, axial displacement, and pore volume change were continuously monitored; and ultrasonic velocity and permeability were measured at regular intervals. The relationship between Vp and porosity for LSB mudstone is independent of stress path, and is well fit by an empirical function derived by Hoffman and Tobin [2004] for LSB sediments sampled by drilling along Muroto transect, located ~150 km southwest of the NanTroSEIZE study area. The MSB sandstone exhibits slightly higher P-wave velocity than LSB mudstone at a given porosity. Based on our experimental results, and assuming that the sediments in the LVZ's are at shear failure defined by a critical state stress condition, we estimate that effective vertical stress in the LVZ ranges from 15 MPa at 13 km landward of the trench, to 41 MPa at a distance of 55 km. The maximum horizontal effective stress ranges from 41-124 MPa over this region. Excess pore fluid pressure ranges from 15-81 MPa, corresponding to modified pore pressure ratios, λ* of 0.44-0.73. If LVZ is composed dominantly of sandstones, both the effective vertical and horizontal stresses would be lower, and the excess pore pressure would be higher, with pore pressure ratios λ* = 0.31-0.90. Our results suggest that the sediments have been loaded under poorly drained conditions, and that pore fluids support ≥~53-91 % of the overburden stress along the base of the accretionary wedge across the outer forearc. The low effective stress should lead to a mechanically weak plate boundary, and is spatially correlated with well-located low-frequency earthquakes in the outer accretionary wedge. The heterogeneous distribution of inferred pore pressure also suggests that fluid sources and drainage are localized and possibly transient.

  7. Estimates of free-tropospheric NO2 and HCHO mixing ratios derived from high-altitude mountain MAX-DOAS observations at midlatitudes and in the tropics

    NASA Astrophysics Data System (ADS)

    Schreier, Stefan F.; Richter, Andreas; Wittrock, Folkard; Burrows, John P.

    2016-03-01

    In this study, mixing ratios of NO2 (XNO2) and HCHO (XHCHO) in the free troposphere are derived from two multi-axis differential optical absorption spectroscopy (MAX-DOAS) data sets collected at Zugspitze (2650 m a.s.l., Germany) and Pico Espejo (4765 m a.s.l., Venezuela). The estimation of NO2 and HCHO mixing ratios is based on the modified geometrical approach, which assumes a single-scattering geometry and a scattering point altitude close to the instrument altitude. Firstly, the horizontal optical path length (hOPL) is obtained from O4 differential slant column densities (DSCDs) in the horizontal (0°) and vertical (90°) viewing directions. Secondly, XNO2 and XHCHO are estimated from the NO2 and HCHO DSCDs at the 0° and 90° viewing directions and averaged along the obtained hOPLs. As the MAX-DOAS instrument was performing measurements in the ultraviolet region, wavelength ranges of 346-372 and 338-357 nm are selected for the DOAS analysis to retrieve NO2 and HCHO DSCDs, respectively. In order to compare the measured O4 DSCDs and moreover to perform some sensitivity tests, the radiative transfer model SCIATRAN with adapted altitude settings for mountainous terrain is operated to simulate synthetic spectra, on which the DOAS analysis is also applied. The overall agreement between measured and synthetic O4 DSCDs is better for the higher Pico Espejo station than for Zugspitze. Further sensitivity analysis shows that a change in surface albedo (from 0.05 to 0.7) can influence the O4 DSCDs, with a larger absolute difference observed for the horizontal viewing direction. Consequently, the hOPL can vary by about 5 % throughout the season, for example when winter snow cover fully disappears in summer. Typical values of hOPLs during clear-sky conditions are 19 km (14 km) at Zugspitze and 34 km (26.5 km) at Pico Espejo when using the 346-372 (338-357 nm) fitting window. The estimated monthly values of XNO2 (XHCHO), averaged over these hOPLs during clear-sky conditions, are in the range of 60-100 ppt (500-950 ppt) at Zugspitze and 8.5-15.5 ppt (255-385 ppt) at Pico Espejo. Interestingly, multi-year-averaged monthly means of XNO2 and XHCHO increase towards the end of the dry season at the Pico Espejo site, suggesting that both trace gases are frequently lifted above the boundary layer as a result of South American biomass burning.

  8. Estimates of free-tropospheric NO2 and HCHO mixing ratios derived from high-altitude mountain MAX-DOAS observations in the mid-latitudes and tropics

    NASA Astrophysics Data System (ADS)

    Schreier, S. F.; Richter, A.; Wittrock, F.; Burrows, J. P.

    2015-11-01

    In this study, mixing ratios of NO2 (XNO2) and HCHO (XHCHO) in the free troposphere are derived from two Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) data sets collected at Zugspitze (2650 m a.s.l., Germany) and Pico Espejo (4765 m a.s.l., Venezuela). The estimation of NO2 and HCHO mixing ratios is based on the modified geometrical approach, which assumes a single-scattering geometry and a scattering point altitude close to the instrument. Firstly, the horizontal optical path length (hOPL) is obtained from O4 differential slant column densities (DSCDs) in the horizontal (0°) and vertical (90°) viewing directions. Secondly, XNO2 and XHCHO are estimated from the NO2 and HCHO DSCDs at the 0 and 90° viewing directions and averaged along the obtained hOPLs. As the MAX-DOAS instrument was performing measurements in the ultraviolet region, wavelength ranges of 346-372 and 338-357 nm are selected for the DOAS analysis to retrieve NO2 and HCHO DSCDs, respectively. In order to compare the measured O4 DSCDs and moreover to perform some sensitivity tests, the radiative transfer model SCIATRAN with adapted altitude settings for mountainous terrain is operated to simulate synthetic spectra, on which the DOAS analysis is also applied. The overall agreement between measured and synthetic O4 DSCDs is better for the higher Pico Espejo station than for Zugspitze. Further sensitivity analysis shows that a change in surface albedo (from 0.05 to 0.7) can influence the O4 DSCDs, with a larger absolute difference observed for the horizontal viewing direction. Consequently, the hOPL can vary by about 5 % throughout the season, for example when winter snow cover fully disappears in summer. Typical values of hOPLs during clear sky conditions are 19 km (14 km) at Zugspitze and 34 km (26.5 km) at Pico Espejo when using the 346-372 nm (338-357 nm) fitting window. The estimated monthly values of XNO2 (XHCHO), averaged over these hOPLs during clear sky conditions, are in the range of 60-100 ppt (500-950 ppt) at Zugspitze and 8.5-15.5 ppt (255-385 ppt) at Pico Espejo. Interestingly, multi-year averaged monthly means of XNO2 and XHCHO increase towards the end of the dry season at the Pico Espejo site, suggesting that both trace gases are frequently lifted above the boundary layer as a result of South American biomass burning.

  9. Assessment of the effects of horizontal grid resolution on long ...

    EPA Pesticide Factsheets

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) conducts research in support of EPA’s mission to protect human health and the environment.

  10. Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, H.; Lin, P.

    2017-12-01

    The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.

  11. Now the Dark Electron Multiplier does Sense Direction of the Daemon Motion

    NASA Astrophysics Data System (ADS)

    Drobyshevski, E. M.; Drobyshevski, M. E.; Pikulin, V. A.

    Detection of the September maximum in the primary near-Earth daemon flux at high (~ 60°) Northern latitudes by our setup with a plane horizontal scintillator is plagued by purely geometric factors; indeed, because of the Earth's rotation axis being tilted, the daemons catching up with the Earth in outer Near-Earth, Almost Circular Heliocentric Orbits (NEACHOs) strike the Earth along close-to-horizontal paths. Nevertheless, application of only two oppositely oriented, specially designed "dark electron multipliers" of the type TEU-167d (only their ø125-mm front disc is coated on the inside by a thick, ~ 0.5 μm Al layer, which permits such multipliers to detect primarily daemons flying inside them from the base to the disc) has made it possible for us to detect in one experiment, at a confidence level of >3σ, a flux of daemons captured from NEACHOs into Geocentric Earth-Surface-Crossing Orbits, as well as to record a decrease in the velocity of these objects from ~ 10 to ~ 7 km/s in a characteristic time of ~ 1 month resulting from their being slowed down in transits through the Earth's body.

  12. 3-D Vp/Vs Ratio Distribution in the Geothermal Reservoir at Basel, Switzerland, from Microseismic Data

    NASA Astrophysics Data System (ADS)

    Kummerow, J.; Reshetnikov, A.; Häring, M.; Asanuma, H.

    2012-12-01

    Thousands of microseismic events occurred during and after the stimulation of the 4.5km deep Basel 1 well at the Deep Heat Mining Project in Basel, Switzerland, in December 2006. The located seismicity extends about 1km in vertical direction and also 1km in NNW-SSE direction, consistent with the orientation of the maximum horizontal stress. In this study, we analyze 2100 events with magnitudes Mw>0.0, which were recorded by six borehole seismometers between December 2, 2006, and June 7, 2007. We first identify event multiplets based on waveform similarity and apply an automatic, iterative arrival time optimization to calculate high-precision P and S time picks for the multiplet events. Local estimates of the Vp/Vs ratio in the stimulated Basel geothermal reservoir are then obtained from the slope of the demeaned differential S versus P arrival times. The average value of Vp/Vs=1.70 is close to the characteristic reservoir value of 1.72, which was determined independently from sonic log measurements. Also, in the vicinity of the borehole, the depth distribution of Vp/Vs correlates well with the low-pass filtered sonic log data: Vp/Vs values are less than 1.70 at the top of the seismicity cloud at <3.9km depth, close to average at 4.0-4.4km depth, and exceed the value of 1.75 at larger depth (4.4-4.6km), consistent with the sonic log data. Furthermore, we observe a correlation of anomalous Vp/Vs values with zones of enhanced seismic reflectivity which were resolved by microseismic reflection imaging. Away from the borehole, increased Vp/Vs ratios also seem to correlate with domains of high event density, possibly indicating fluid migration paths.

  13. Equatorial ion composition, 140-200 km, based on Atmosphere Explorer E data

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Grebowsky, J. M.; Hedin, A. E.; Spencer, N. W.

    1993-01-01

    We have used in situ measurements of ion composition and horizontal winds, taken from equatorial orbiting Atmosphere Explorer E in eccentric orbit during 1975-1976 to investigate the bottomside ionosphere at altitudes 140-200 km. Representative daytime altitude profiles of ionization were stable against wide variations in horizontal wind patterns. Special features that sometimes appeared in the structured nightside ionization were apparent ion composition waves, intermediate layers of enhanced ionization, and ionization depletions similar to equatorial ionization bubbles. Apparent ion composition waves displayed a horizontal wave length of about 650 km. Enhanced layers of ionization appeared to be newly separated from the bottomside midnight F layer; its ions were primarily NO(+) and O2(+) without significant densities of metallic ions, an indication that metallic ions are not required to produce the layers at altitudes above 140 km. Equatorial ionization depletions were observed at lower altitudes than previously reported and displayed molecular ion depletions as well as O(+) depletions.

  14. Total solar eclipse effects on VLF signals: Observations and modeling

    NASA Astrophysics Data System (ADS)

    Clilverd, Mark A.; Rodger, Craig J.; Thomson, Neil R.; Lichtenberger, János; Steinbach, Péter; Cannon, Paul; Angling, Matthew J.

    During the total solar eclipse observed in Europe on August 11, 1999, measurements were made of the amplitude and phase of four VLF transmitters in the frequency range 16-24 kHz. Five receiver sites were set up, and significant variations in phase and amplitude are reported for 17 paths, more than any previously during an eclipse. Distances from transmitter to receiver ranged from 90 to 14,510 km, although the majority were <2000 km. Typically, positive amplitude changes were observed throughout the whole eclipse period on path lengths <2000 km, while negative amplitude changes were observed on paths >10,000 km. Negative phase changes were observed on most paths, independent of path length. Although there was significant variation from path to path, the typical changes observed were ~3 dB and ~50°. The changes observed were modeled using the Long Wave Propagation Capability waveguide code. Maximum eclipse effects occurred when the Wait inverse scale height parameter β was 0.5 km-1 and the effective ionospheric height parameter H' was 79 km, compared with β=0.43km-1 and H'=71km for normal daytime conditions. The resulting changes in modeled amplitude and phase show good agreement with the majority of the observations. The modeling undertaken provides an interpretation of why previous estimates of height change during eclipses have shown such a range of values. A D region gas-chemistry model was compared with electron concentration estimates inferred from the observations made during the solar eclipse. Quiet-day H' and β parameters were used to define the initial ionospheric profile. The gas-chemistry model was then driven only by eclipse-related solar radiation levels. The calculated electron concentration values at 77 km altitude throughout the period of the solar eclipse show good agreement with the values determined from observations at all times, which suggests that a linear variation in electron production rate with solar ionizing radiation is reasonable. At times of minimum electron concentration the chemical model predicts that the D region profile would be parameterized by the same β and H' as the LWPC model values, and rocket profiles, during totality and can be considered a validation of the chemical processes defined within the model.

  15. Ionospheric tomography using ADS-B signals

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Noël, J.-M.

    2014-07-01

    Numerical modeling has demonstrated that Automatic Dependent Surveillance Broadcast (ADS-B) signals can be used to reconstruct two-dimensional (2-D) electron density maps of the ionosphere using techniques for computerized tomography. Ray tracing techniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modeled Faraday rotation was computed and converted to total electron content (TEC) along the raypaths. The resulting TEC was used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique. This study concentrated on reconstructing mesoscale structures 25-100 km in horizontal extent. The primary scientific interest of this study was to show that ADS-B signals can be used as a new source of data for CIT to image the ionosphere and to obtain a better understanding of magneto-ionic wave propagation.

  16. The impact of environmental factors on cycling speed on shared paths.

    PubMed

    Boufous, Soufiane; Hatfield, Julie; Grzebieta, Raphael

    2018-01-01

    Despite the importance of cycling speed on shared paths to the amenity and safety of users, few studies have systematically measured it, nor examined circumstances surrounding it. Speed was measured for 5421 riders who were observed cycling on shared paths across 12 metropolitan and regional locations in Sydney, Australia. Multivariate regression analysis was carried out to examine rider and environmental factors that contribute to riders cycling above the median speed. The study found that observed riders travelled at a median speed of 16km/h (mean 18.4km/h). Nearly 80% of riders travelled at 20km/h or less and 7.8% at speeds of more than 30km/h. Riders were significantly less likely to cycle above the median speed on shared paths that had an average volume of over 20 pedestrians/hour. Riders were significantly more likely to travel above the median speed on paths that had a centreline (OR: 1.71, 95% CI: 1.41-2.07), on wider paths (over 3.5m) (OR: 1.34, 95% CI: 1.12-1.59) and on paths with visual segregation between cyclists and pedestrians. Visual segregation, where cycling and walking areas are differentiated by the type of material or by paint colour used, was the strongest predictor of travelling above median speed on shared paths (OR: 3.9, 95% CI: 3.1-4.8). The findings suggest that riders adjust their speeds to accommodate pedestrians and path conditions. Path characteristics that support separation from pedestrians may allow relatively higher speeds, and associated amenity, without substantial loss of safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Rupture History of the 2001 Nisqually Washington Earthquake

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Creager, K. C.; Crosson, R. S.

    2001-12-01

    We analyze the temporal-spatial rupture history of the magnitude 6.8 February 28, 2001 Nisqually earthquake using about two dozen 3-component strong-motion records from the Pacific Northwest Seismic Network (PNSN) and the USGS National Strong Motion Program (NSMP) network. We employ a finite-fault inversion scheme similar to Hartzell and Heaton [Bull. Seism. Soc. Am., 1983] to recover the slip history. We assume rupture initiates at the epicenter and origin time determined using PNSN P arrival times and a high-resolution 3-D velocity model. Hypocentral depth is 54 km based on our analysis of teleseismic pP-P times and the regional 3-D model. Using the IASP91 standard Earth model to explain the pP-P times gives a depth of 58 km. Three-component strong motion accelerograms are integrated to obtain velocity, low-pass filtered at 4 s period and windowed to include the direct P- and S- wave arrivals. Theoretical Green's functions are calculated using the Direct Solution Method (DSM) [Cummins, etal, Geophys. Res. Lett., 1994] for each of 169, 4km x 4km, subfaults which lie on one of the two fault plates specified by the Harvard CMT solution. A unique 1-D model that gives an adequate representation of velocity structure for each station is obtained by path averaging the 3-D tomographic model. The S velocity model is generated from the P velocity model. For Vp larger than 4.5 km/s, We use the linear relationship Vs=0.18+0.52Vp obtained from laboratory measurements of local mafic rock samples. For slower velocities, probably associated with sedimentary rocks, we derived Vs=Vp/2.04 which best fits the strong-motion S-arrival times. The resulting source model indicates unilateral rupture along a fault that is elongated in the north-south direction. Inversion for the near vertical (strike 1° , dip 72° ) and horizontal (strike 183° , dip 18° ) fault planes reveal the same source directivity, however, the horizontal fault plane gives a slightly better fit to the data than the vertical one. We will also incorporate teleseismic P pP and sP waves into the waveform modeling to provide additional constraints on vertical source directivity.

  18. The bi-directional leader observation in positive cloud-to-ground lightning flashes during summer thunderstorm season

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Manabu, A.; Morimoto, T.; Ushio, T.; Kawasaki, Z.; Miki, M.; Shimizu, M.

    2009-12-01

    In this paper, we present observations of positive cloud-to-ground (+CG) lightning flashes obtained with the VHF BDITF (VHF Broadband Digital InTerFerometer) and the ALPS (Automatic Lightning Discharge Progressing Feature Observation System). The VHF BDITF observed two- (2D) and three-dimensional (3D) developments of lightning flashes with high time resolution. The ALPS observed the luminous propagation of the local process at low altitudes within its observational range. At 2028:59 JST on 8 August, 2008, we observed the 3D spatiotemporal development channels of +CG lightning flash with the VHF BDITF and the RS with the lightning location and protection (LLP) system. This flash is divided before and after the RS. In the former stage, the in-cloud negative breakdown (NB) progress about 15 km horizontally between 6 and 10 km high. The LLP system detects the RS near the initiation point of that negative breakdown (NB) at the end of the former stage. In the latter stage, the new NB runs through the same path as the first NB before the RS. The luminous intensity of the RS near the ground obtained with the ALPS is synchronized with the development of the new NB. The time variation of luminous intensity by the ALPS has two peaks. The time difference of these peaks is corresponding to the blank of the VHF radiation. Since the new NB following the RS runs through the path of the first NB, the positive breakdown (PB), which is not visualized by the VHF BDITF, could be considered to progress from the starting point of the first NB and touches to the ground. The RS current propagates and penetrates in the opposite direction as visualized subsequent NB. This suggests the first NB and the PB progress together. This +CG lightning flash has the bi-directional leader. To assume the path of the PB is straight line, the velocity of the PB is about 4 × 104 m/s.

  19. Short period sound speed oscillation measured by intensive XBT survey and its role on GNSS/acoustic positioning

    NASA Astrophysics Data System (ADS)

    Kido, M.; Matsui, R.; Imano, M.; Honsho, C.

    2017-12-01

    In the GNSS/acoustic measurement, sound speed in ocean plays a key role of accuracy of final positioning. We have shown than longer period sound speed undulation can be properly estimated from GNSS-A analysis itself in our previous work. In this work, we have carried out intensive XBT measurement to get temporal variation of sound speed in short period to be compared with GNSS-A derived one. In the individual temperature profile obtained by intensive XBT measurements (10 minutes interval up to 12 times of cast), clear vertical oscillation up to 20 m of amplitude in the shallow part were observed. These can be interpreted as gravitational internal wave with short-period and hence short wavelength anomaly. Kido et al. (2007) proposed that horizontal variation of the ocean structure can be considered employing five or more transponders at once if the structure is expressed by two quantities, i.e., horizontal gradient in x/y directions. However, this hypothesis requires that the variation must has a large spatial scale (> 2-5km) so that the horizontal variation can be regarded as linear within the extent of acoustic path to seafloor transponders. Therefore the wavelength of the above observed internal wave is getting important. The observed period of internal wave was 30-60 minute. However its wavelength cannot be directly measured. It must be estimate based on density profile of water column. In the comparison between sound speed change and positioning, the delay of their phases were 90 degree, which indicates that most steep horizontal slope of internal wave correspond to largest apparent positioning shift.

  20. Comparison between SAGE II and ISCCP high-level clouds. 1: Global and zonal mean cloud amounts

    NASA Technical Reports Server (NTRS)

    Liao, Xiaohan; Rossow, William B.; Rind, David

    1995-01-01

    Global high-level clouds identified in Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements for January and July in the period 1985 to 1990 are compared with near-nadir-looking observations from the International Satellite Cloud Climatology Project (ISCCP). Global and zonal mean high-level cloud amounts from the two data sets agree very well, if clouds with layer extinction coefficients of less than 0.008/km at 1.02 micrometers wavelength are removed from the SAGE II results and all detected clouds are interpreted to have an average horizontal size of about 75 km along the 200 km transimission path length of the SAGE II observations. The SAGE II results are much more sensitive to variations of assumed cloud size than to variations of detection threshold. The geographical distribution of cloud fractions shows good agreement, but systematic regional differences also indicate that the average cloud size varies somewhat among different climate regimes. The more sensitive SAGE II results show that about one third of all high-level clouds are missed by ISCCP but that these clouds have very low optical thicknesses (less than 0.1 at 0.6 micrometers wavelength). SAGE II sampling error in monthly zonal cloud fraction is shown to produce no bias, to be less than the intraseasonal natural variability, but to be comparable with the natural variability at longer time scales.

  1. Regional spectral analysis of three moderate earthquakes in Northeastern North America

    USGS Publications Warehouse

    Boatwright, John; Seekins, Linda C.

    2011-01-01

    We analyze Fourier spectra obtained from the horizontal components of broadband and accelerogram data from the 1997 Cap-Rouge, the 2002 Ausable Forks, and the 2005 Rivière-du-Loup earthquakes, recorded by Canadian and American stations sited on rock at hypocentral distances from 23 to 602 km. We check the recorded spectra closely for anomalies that might result from site resonance or source effects. We use Beresnev and Atkinson’s (1997) near-surface velocity structures and Boore and Joyner’s (1997) quarter-wave method to estimate site response at hard- and soft-rock sites. We revise the Street et al. (1975) model for geometrical spreading, adopting a crossover distance of ro=50 km instead of 100 km. We obtain an average attenuation of Q=410±25f0.50±0.03 for S+Lg+surface waves with ray paths in the Appalachian and southeastern Grenville Provinces. We correct the recorded spectra for attenuation and site response to estimate source spectral shape and radiated energy for these three earthquakes and the 1988 M 5.8 Saguenay earthquake. The Brune stress drops range from 130 to 419 bars, and the apparent stresses range from 39 to 63 bars. The corrected source spectral shapes of these earthquakes are somewhat variable for frequencies from 0.2 to 2 Hz, falling slightly below the fitted Brune spectra.

  2. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  3. Effect of reflected and refracted signals on coherent underwater acoustic communication: results from the Kauai experiment (KauaiEx 2003).

    PubMed

    Rouseff, Daniel; Badiey, Mohsen; Song, Aijun

    2009-11-01

    The performance of a communications equalizer is quantified in terms of the number of acoustic paths that are treated as usable signal. The analysis uses acoustical and oceanographic data collected off the Hawaiian Island of Kauai. Communication signals were measured on an eight-element vertical array at two different ranges, 1 and 2 km, and processed using an equalizer based on passive time-reversal signal processing. By estimating the Rayleigh parameter, it is shown that all paths reflected by the sea surface at both ranges undergo incoherent scattering. It is demonstrated that some of these incoherently scattered paths are still useful for coherent communications. At range of 1 km, optimal communications performance is achieved when six acoustic paths are retained and all paths with more than one reflection off the sea surface are rejected. Consistent with a model that ignores loss from near-surface bubbles, the performance improves by approximately 1.8 dB when increasing the number of retained paths from four to six. The four-path results though are more stable and require less frequent channel estimation. At range of 2 km, ray refraction is observed and communications performance is optimal when some paths with two sea-surface reflections are retained.

  4. Flight Path Synthesis and HUD Scaling for V/STOL Terminal Area Operations

    DOT National Transportation Integrated Search

    1995-04-01

    A two circle horizontal flightpath synthesis algorithm for Vertical/Short : Takeoff and Landing (V/STOL) terminal area operations is presented. This : algorithm provides a flight-path that is tangential to the aircraft's velocity : vector at the inst...

  5. Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, northeastern China

    NASA Astrophysics Data System (ADS)

    Su, Xiaosi; Lu, Shuai; Yuan, Wenzhen; Woo, Nam Chil; Dai, Zhenxue; Dong, Weihong; Du, Shanghai; Zhang, Xinyue

    2018-03-01

    The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.

  6. Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results

    NASA Astrophysics Data System (ADS)

    Nakano, Masuo; Wada, Akiyoshi; Sawada, Masahiro; Yoshimura, Hiromasa; Onishi, Ryo; Kawahara, Shintaro; Sasaki, Wataru; Nasuno, Tomoe; Yamaguchi, Munehiko; Iriguchi, Takeshi; Sugi, Masato; Takeuchi, Yoshiaki

    2017-03-01

    Recent advances in high-performance computers facilitate operational numerical weather prediction by global hydrostatic atmospheric models with horizontal resolutions of ˜ 10 km. Given further advances in such computers and the fact that the hydrostatic balance approximation becomes invalid for spatial scales < 10 km, the development of global nonhydrostatic models with high accuracy is urgently required. The Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7) is designed to understand and statistically quantify the advantages of high-resolution nonhydrostatic global atmospheric models to improve tropical cyclone (TC) prediction. A total of 137 sets of 5-day simulations using three next-generation nonhydrostatic global models with horizontal resolutions of 7 km and a conventional hydrostatic global model with a horizontal resolution of 20 km were run on the Earth Simulator. The three 7 km mesh nonhydrostatic models are the nonhydrostatic global spectral atmospheric Double Fourier Series Model (DFSM), the Multi-Scale Simulator for the Geoenvironment (MSSG) and the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). The 20 km mesh hydrostatic model is the operational Global Spectral Model (GSM) of the Japan Meteorological Agency. Compared with the 20 km mesh GSM, the 7 km mesh models reduce systematic errors in the TC track, intensity and wind radii predictions. The benefits of the multi-model ensemble method were confirmed for the 7 km mesh nonhydrostatic global models. While the three 7 km mesh models reproduce the typical axisymmetric mean inner-core structure, including the primary and secondary circulations, the simulated TC structures and their intensities in each case are very different for each model. In addition, the simulated track is not consistently better than that of the 20 km mesh GSM. These results suggest that the development of more sophisticated initialization techniques and model physics is needed to further improve the TC prediction.

  7. Allocating emissions to 4 km and 1 km horizontal spatial resolutions and its impact on simulated NOx and O3 in Houston, TX

    NASA Astrophysics Data System (ADS)

    Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Jeon, Wonbae

    2017-09-01

    A WRF-SMOKE-CMAQ air quality modeling system was used to investigate the impact of horizontal spatial resolution on simulated nitrogen oxides (NOx) and ozone (O3) in the Greater Houston area (a non-attainment area for O3). We employed an approach recommended by the United States Environmental Protection Agency to allocate county-based emissions to model grid cells in 1 km and 4 km horizontal grid resolutions. The CMAQ Integrated Process Rate analyses showed a substantial difference in emissions contributions between 1 and 4 km grids but similar NOx and O3 concentrations over urban and industrial locations. For example, the peak NOx emissions at an industrial and urban site differed by a factor of 20 for the 1 km and 8 for the 4 km grid, but simulated NOx concentrations changed only by a factor of 1.2 in both cases. Hence, due to the interplay of the atmospheric processes, we cannot expect a similar level of reduction of the gas-phase air pollutants as the reduction of emissions. Both simulations reproduced the variability of NASA P-3B aircraft measurements of NOy and O3 in the lower atmosphere (from 90 m to 4.5 km). Both simulations provided similar reasonable predictions at surface, while 1 km case depicted more detailed features of emissions and concentrations in heavily polluted areas, such as highways, airports, and industrial regions, which are useful in understanding the major causes of O3 pollution in such regions, and to quantify transport of O3 to populated communities in urban areas. The Integrated Reaction Rate analyses indicated a distinctive difference of chemistry processes between the model surface layer and upper layers, implying that correcting the meteorological conditions at the surface may not help to enhance the O3 predictions. The model-observation O3 bias in our studies (e.g., large over-prediction during the nighttime or along Gulf of Mexico coastline), were due to uncertainties in meteorology, chemistry or other processes. Horizontal grid resolution is unlikely the major contributor to these biases.

  8. Tomographic reconstruction of an aerosol plume using passive multiangle observations from the MISR satellite instrument

    NASA Astrophysics Data System (ADS)

    Garay, Michael J.; Davis, Anthony B.; Diner, David J.

    2016-12-01

    We present initial results using computed tomography to reconstruct the three-dimensional structure of an aerosol plume from passive observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. MISR views the Earth from nine different angles at four visible and near-infrared wavelengths. Adopting the 672 nm channel, we treat each view as an independent measure of aerosol optical thickness along the line of sight at 1.1 km resolution. A smoke plume over dark water is selected as it provides a more tractable lower boundary condition for the retrieval. A tomographic algorithm is used to reconstruct the horizontal and vertical aerosol extinction field for one along-track slice from the path of all camera rays passing through a regular grid. The results compare well with ground-based lidar observations from a nearby Micropulse Lidar Network site.

  9. Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.

    2016-02-01

    In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.

  10. Fault reactivation and seismicity risk from CO2 sequestration in the Chinshui gas field, NW Taiwan

    NASA Astrophysics Data System (ADS)

    Sung, Chia-Yu; Hung, Jih-Hao

    2015-04-01

    The Chinshui gas field located in the fold-thrust belt of western Taiwan was a depleted reservoir. Recently, CO2 sequestration has been planned at shallower depths of this structure. CO2 injection into reservoir will generate high fluid pressure and trigger slip on reservoir-bounding faults. We present detailed in-situ stresses from deep wells in the Chinshui gas field and evaluated the risk of fault reactivation for underground CO2 injection. The magnitudes of vertical stress (Sv), formation pore pressure (Pf) and minimum horizontal stress (Shmin) were obtained from formation density logs, repeat formation tests, sonic logs, mud weight, and hydraulic fracturing including leak-off tests and hydraulic fracturing. The magnitude of maximum horizontal stress (SHmax) was constrained by frictional limit of critically stressed faults. Results show that vertical stress gradient is about 23.02 MPa/km (1.02 psi/ft), and minimum horizontal stress gradient is 18.05 MPa/km (0.80 psi/ft). Formation pore pressures were hydrostatic at depths 2 km, and increase with a gradient of 16.62 MPa/km (0.73 psi/ft). The ratio of fluid pressure and overburden pressure (λp) is 0.65. The upper bound of maximum horizontal stress constrained by strike-slip fault stress regime (SHmax>Sv>Shmin) and coefficient of friction (μ=0.6) is about 18.55 MPa/km (0.82 psi/ft). The orientation of maximum horizontal stresses was calculated from four-arm caliper tools through the methodology suggested by World Stress Map (WMS). The mean azimuth of preferred orientation of borehole breakouts are in ~65。N. Consequently, the maximum horizontal stress axis trends in 155。N and sub-parallel to the far-field plate-convergence direction. Geomechanical analyses of the reactivation of pre-existing faults was assessed using 3DStress and Traptester software. Under current in-situ stress, the middle block fault has higher slip tendency, but still less than frictional coefficient of 0.6 a common threshold value for motion on incohesive faults. The results also indicate that CO2 injection in the Chinshui gas field will not compromise the stability of faults.

  11. Data for Figures and Tables in Journal Article Assessment of the Effects of Horizontal Grid Resolution on Long-Term Air Quality Trends using Coupled WRF-CMAQ Simulations, doi:10.1016/j.atmosenv.2016.02.036

    EPA Pesticide Factsheets

    The dataset represents the data depicted in the Figures and Tables of a Journal Manuscript with the following abstract: The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions.This dataset is associated with the following publication

  12. Evaluation of Regional Extended-Range Prediction for Tropical Waves Using COAMPS®

    NASA Astrophysics Data System (ADS)

    Hong, X.; Reynolds, C. A.; Doyle, J. D.; May, P. W.; Chen, S.; Flatau, M. K.; O'Neill, L. W.

    2014-12-01

    The Navy's Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS1) in a two-way coupled mode is used for two-month regional extended-range prediction for the Madden-Julian Oscillation (MJO) and Tropical Cyclone 05 (TC05) that occurred during the DYNAMO period from November to December 2011. Verification and statistics from two experiments with 45-km and 27-km horizontal resolutions indicate that 27-km run provides a better representation of the three MJO events that occurred during this 2-month period, including the two convectively-coupled Kelvin waves associated with the second MJO event as observed. The 27-km run also significantly reduces forecast error after 15-days, reaching a maximum bias reduction of 89% in the third 15-day period due to the well represented MJO propagation over the Maritime Continent. Correlations between the model forecasts and observations or ECMWF analyses show that the MJO suppressed period is more difficult to predict than the active period. In addition, correlation coefficients for cloud liquid water path (CLWP) and precipitation are relatively low for both cases compared to other variables. The study suggests that a good simulation of TC05 and a good simulation of the Kelvin waves and westerly wind bursts are linked. Further research is needed to investigate the capability in regional extended-range forecasts when the lateral boundary conditions are provided from a long-term global forecast to allow for an assessment of potential operational forecast skill. _____________________________________________________ 1COAMPS is a registered trademark of U.S. Naval Research Laboratory

  13. Biogeochemical responses to meso- and submesoscale oceanic variability in the Kuroshio region

    NASA Astrophysics Data System (ADS)

    Suzue, Y.; Uchiyama, Y.; Yamazaki, H.

    2016-02-01

    Influences of the Kuroshio and associated meso- and submesoscale variability due to frontally- and topographically-induced eddies on biogeochemical processes in the Kuroshio region off Japan are examined with a synoptic downscaling ocean modeling using the UCLA version of ROMS (Shchepetkin and McWilliams, 2005; 2008) coupled with an NPZD (nutrient, phyto/zooplanktons and detritus) nitrogen-based biogeochemical model (e.g., Fasham et al., 1990). The hydrodynamic model is initialized and forced by the JCOPE2 assimilative oceanic reanalysis (Miyazawa et al., 2009) with a horizontal grid resolution of 1/12o (dx ≈ 10 km) to convey the basin-scale information including the transient Kuroshio path though the parent ROMS-L1 model (dx = 3 km) and the child ROMS-L2 model (dx = 1 km) successively with the one-way offline nesting technique (Mason et al., 2011). The JMA GPV-MSM assimilative atmospheric reanalysis (dx = 6 km) is used to force both the ROMS models, while the NPZD model is configured according to Gruber et al. (2006). The model result is extensively compared with satellite (e.g., AVISO, MODIS/Aqua Chl.a) and in-situ data (e.g., the JMA's ship measurement) to confirm good agreement. The submesoscale eddy-resolving L2 output exhibits that intermediate water containing abundant nutrients occasionally surfaces by localized upwelling associated with cyclonic eddies, and that high Chl.a concentration appears around the Kuroshio Front. Furthermore, it is found that meso- and submesoscale eddies developed between the Kuroshio and the coastline also influence on the nearshore biogeochemical productivity.

  14. Ionospheric Tomography Using Faraday Rotation of Automatic Dependant Surveillance Broadcast UHF Signals

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.

    2013-12-01

    The proposed launch of a satellite carrying the first space-borne ADS-B receiver by the Royal Military College of Canada (RMCC) will create a unique opportunity to study the modification of the 1090 MHz radio waves following propagation through the ionosphere from the transmitting aircraft to the passive satellite receiver(s). Experimental work successfully demonstrated that ADS-B data can be used to reconstruct two dimensional (2D) electron density maps of the ionosphere using computerized tomography (CT). The goal of this work is to evaluate the feasibility of CT reconstruction. The data is modelled using Ray-tracing techniques. This allows us to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation (FR) is determined and converted to total electron content (TEC) along the ray-paths. The resulting TEC is used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique (ART). This study concentrated on meso-scale structures 100-1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Multiple feature input electron density profile to ray-tracing program. Top: reconstructed relative electron density map of ray-trace input (Fig. 1) using TEC measurements and line-of-sight path. Bottom: reconstructed electron density map of ray-trace input using quiet background a priori estimate.

  15. Seismic Tomography of Siyazan - Shabran Oil and Gas Region Of Azerbaijan by Data of The Seismic Stations

    NASA Astrophysics Data System (ADS)

    Yetirmishli, Gurban; Guliyev, Ibrahim; Mammadov, Nazim; Kazimova, Sabina; Ismailova, Saida

    2016-04-01

    The main purpose of the research was to build a reliable 3D model of the structure of seismic velocities in the earth crust on the territory of Siyazan-Shabran region of Azerbaijan, using the data of seismic telemetry stations spanning Siyazan-Shabran region (Siyazan, Altiagaj, Pirgulu, Guba, Khinalig, Gusar), including 7 mobile telemetry seismic stations. Interest to the problem of research seismic tomography caused by applied environmental objectives, such as the assessment of geological risks, engineering evaluation (stability and safety of wells), the task of exploration and mining operations. In the study region are being actively developed oil fields, and therefore, there is a risk of technogenic earthquakes. It was performed the calculation of first arrival travel times of P and S waves and the corresponding ray paths. Calculate 1D velocity model which is the initial model as a set of horizontal layers (velocity may be constant or changed linearly with depth on each layer, gaps are possible only at the boundaries between the layers). Have been constructed and analyzed the horizontal sections of the three-dimensional velocity model at different depths of the investigated region. By the empirical method was proposed density model of the sedimentary rocks at depths of 0-8 km.

  16. Comparisons of Cn2 measurements and power-in-fiber data from two long-path free-space optical communication experiments

    NASA Astrophysics Data System (ADS)

    Parenti, Ronald R.; Michael, Steven; Roth, Jeffrey M.; Yarnall, Timothy M.

    2010-08-01

    Over a two-year period beginning in early 2008, MIT Lincoln Laboratory conducted two free-space optical communication experiments designed to test the ability of spatial beam diversity, symbol encoding, and interleaving to reduce the effects of turbulence-induced scintillation. The first of these exercises demonstrated a 2.7 Gb/s link over a ground-level 5.4 km horizontal path. Signal detection was accomplished through the use of four spatially-separated 12 mm apertures that coupled the received light into pre-amplified single-mode fiber detectors. Similar equipment was used in a second experiment performed in the fall of 2009, which demonstrated an error-free air-to-ground link at propagation ranges up to 60 km. In both of these tests power levels at all fiber outputs were sampled at 1 msec intervals, which enabled a high-rate characterization of the received signal fluctuations. The database developed from these experiments encompasses a wide range of propagation geometries and turbulence conditions. This information has subsequently been analyzed in an attempt to correlate estimates of the turbulence profile with measurements of the scintillation index, characteristic fading time constant, scintillation patch size, and the shape parameters of the statistical distributions of the received signals. Significant findings include observations of rapid changes in the scintillation index driven by solar flux variations, consistent similarities in the values of the alpha and beta shape parameters of the gamma-gamma distribution function, and strong evidence of channel reciprocity. This work was sponsored by the Department of Defense, RRCO DDR&E, under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

  17. A Climatological Study of Short-Period Gravity Waves and Ripples at Davis Station, Antarctica (68°S, 78°E), During the (Austral Winter February-October) Period 1999-2013

    NASA Astrophysics Data System (ADS)

    Rourke, S.; Mulligan, F. J.; French, W. J. R.; Murphy, D. J.

    2017-11-01

    A scanning radiometer deployed at Davis Station, Antarctica (68°S, 78°E), has been recording infrared (1.10-1.65 μm) images of a small region (24 km × 24 km) of the zenith night sky once per minute each austral winter night since February 1999. These images have been processed to extract information on the passage of gravity waves (GWs) (horizontal wavelength, λh > 15 km) and ripples (λh ≤ 15 km) over the observing station. Phase speeds, periods, horizontal wavelengths, and predominant propagation directions have been deduced. Observed speeds were found to be highly correlated with horizontal wavelengths as has been reported in previous studies. Reverse ray tracing of the detected GWs only enabled us to identify four distinct groups. On average, only 15% of waves detected can be traced back to the troposphere, and a large proportion ( 45%) were not successfully reverse traced substantially below the airglow layer. Two smaller groups were found to reach a termination condition for reverse ray tracing at altitudes near 50 km and 75 km. Of those that reached the termination altitude in the troposphere (10 km), most of the end points fell within a radius of 300 km of the station, with a very pronounced concentration of wave initiation to the northwest of the observing point. The predominant direction of propagation was southward, and they were observed throughout the year. Recent reports suggest the interaction of planetary waves with the background wind field as a potential source for these waves.

  18. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  19. The flight planning - flight management connection

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.

    1984-01-01

    Airborne flight management systems are currently being implemented to minimize direct operating costs when flying over a fixed route between a given city pair. Inherent in the design of these systems is that the horizontal flight path and wind and temperature models be defined and input into the airborne computer before flight. The wind/temperature model and horizontal path are products of the flight planning process. Flight planning consists of generating 3-D reference trajectories through a forecast wind field subject to certain ATC and transport operator constraints. The interrelationships between flight management and flight planning are reviewed, and the steps taken during the flight planning process are summarized.

  20. Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation

    NASA Astrophysics Data System (ADS)

    Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb

    2011-07-01

    We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ˜550m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection.

  1. 14 CFR 171.253 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... height of 200 feet or less above the horizontal plane containing the threshold. Glide path means that locus of points in the vertical plane containing the runway center line at which the DDM is zero, which... sector (full) means the sector in the vertical plane containing the ISMLS glide path and limited by the...

  2. Open-path atmospheric transmission for a diode-pumped cesium laser.

    PubMed

    Rice, Christopher A; Lott, Gordon E; Perram, Glen P

    2012-12-01

    A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of ∼0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration.

  3. Ionospheric tomography using Faraday rotation of Automatic Dependent Surveillance Broadcast (UHF) signals Ionospheric Measurement From ADS-B Signals

    NASA Astrophysics Data System (ADS)

    Cushley, Alex Clay

    The proposed launch of a CubeSat carrying the first space-borne ADS-B receiver by RMCC will create a unique opportunity to study the modification of radio waves following propagation through the ionosphere as the signals propagate from the transmitting aircraft to the passive satellite receiver(s). Experimental work is described which successfully demonstrated that ADS-B data can be used to reconstruct two-dimensional electron density maps of the ionosphere using techniques from computerized tomography. Ray-tracing techniques are used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation is determined and converted to TEC along the ray-paths. The resulting TEC is used as input for CIT using ART. This study concentrated on meso-scale structures 100--1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Keywords: Automatic Dependent Surveillance-Broadcast (ADS-B), Faraday rotation, electromagnetic (EM) waves, radio frequency (RF) propagation, ionosphere (auroral, irregularities, instruments and techniques), electron density profile, total electron content (TEC), computer ionospheric tomography (CIT), algebraic reconstruction technique (ART).

  4. Hydrostatic and non-hydrostatic simulations of dense waters cascading off a shelf: The East Greenland case

    NASA Astrophysics Data System (ADS)

    Magaldi, Marcello G.; Haine, Thomas W. N.

    2015-02-01

    The cascade of dense waters of the Southeast Greenland shelf during summer 2003 is investigated with two very high-resolution (0.5-km) simulations. The first simulation is non-hydrostatic. The second simulation is hydrostatic and about 3.75 times less expensive. Both simulations are compared to a 2-km hydrostatic run, about 31 times less expensive than the 0.5 km non-hydrostatic case. Time-averaged volume transport values for deep waters are insensitive to the changes in horizontal resolution and vertical momentum dynamics. By this metric, both lateral stirring and vertical shear instabilities associated with the cascading process are accurately parameterized by the turbulent schemes used at 2-km horizontal resolution. All runs compare well with observations and confirm that the cascade is mainly driven by cyclones which are linked to dense overflow boluses at depth. The passage of the cyclones is also associated with the generation of internal gravity waves (IGWs) near the shelf. Surface fields and kinetic energy spectra do not differ significantly between the runs for horizontal scales L > 30 km. Complex structures emerge and the spectra flatten at scales L < 30 km in the 0.5-km runs. In the non-hydrostatic case, additional energy is found in the vertical kinetic energy spectra at depth in the 2 km < L < 10 km range and with frequencies around 7 times the inertial frequency. This enhancement is missing in both hydrostatic runs and is here argued to be due to the different IGW evolution and propagation offshore. The different IGW behavior in the non-hydrostatic case has strong implications for the energetics: compared to the 2-km case, the baroclinic conversion term and vertical kinetic energy are about 1.4 and at least 34 times larger, respectively. This indicates that the energy transfer from the geostrophic eddy field to IGWs and their propagation away from the continental slope is not properly represented in the hydrostatic runs.

  5. Out-of-Plane Seismic Reflections Beneath the Pacific and Their Geophysical Implications

    NASA Astrophysics Data System (ADS)

    Schumacher, Lina; Thomas, Christine; Abreu, Rafael

    2018-03-01

    We detect seismic P wave arrivals that reach the surface from a different horizontal direction than the theoretical back azimuth of the earthquake. Slowness, back azimuth, and traveltime of observed out-of-plane signals are measured with array methods in relation to the main phases that travel along the great circle path. This directivity information is used to back trace the wave through a 1-D velocity model to its scattering or reflection location. The focus of this study lies on out-of-plane signals reflected once beneath the Pacific at a depth greater than 800 km. Data analysis is carried out for a broad frequency range (band-pass filter with corner periods of 0.5-5 s up to 5-50 s) to enable the detection of different structures and heterogeneities. In addition to mapping seismic heterogeneities in the lower mantle, we also qualitatively analyze waveforms and polarities of these signals to understand the nature of the structure. The observed 21 reflections with a reflection depth between 800 and 2,200 km illuminate heterogeneities in the mid- and lower mantle. Back-traced locations show shallowest depths around Hawaii and increase in depth to the north and southwest. Analysis of the polarities indicates low velocities for the imaged structure, and complexity of waveforms argues for a likely thermochemical origin. Additional 11 deep reflections/scatterers with depth larger than 2,200 km suggest internal heterogeneities or a presence of the D'' reflector.

  6. 13. DETAIL OF BEVEL GEAR TRANSFERRING HORIZONTAL DRIVE FROM MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF BEVEL GEAR TRANSFERRING HORIZONTAL DRIVE FROM MAIN WATERWHEEL SHAFT TO VERTICAL SHAFT DRIVING COFFEE HUSKING MILL ON SECOND FLOOR - Hacienda Cafetalera Santa Clara, Coffee Mill, KM 19, PR Route 372, Hacienda La Juanita, Yauco Municipio, PR

  7. HIGH-RESOLUTION DATASET OF URBAN CANOPY PARAMETERS FOR HOUSTON, TEXAS

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  8. Investigation of Overlap Correction Techniques for Application in the Micro-Pulse Lidar Network (MPLNET)

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Welton, Ellsworth J.; Campbell, James R.; Scott, Vibart S.; Spinhirne, James D.

    2003-01-01

    The Micro-Pulse Lidar NETwork (MPLNET) is comprised of micro-pulse lidars (MPL) stationed around the globe to provide measurements of aerosol and cloud vertical distribution on a continuous basis. MPLNET sites are co-located with sunphotometers in the AErosol Robotic NETwork (AERONET) to provide joint measurements of aerosol optical depth, size, and other inherent optical properties. The IPCC 2001 report discusses . the importance of obtaining routine measurements of aerosol vertical structure, especially for absorbing aerosols. MPLNET provides exactly this sort of measurement, including calculation of aerosol extinction profiles, in a near real-time basis for all sites in the network. In order to obtain aerosol profiles, near range signal returns (0-6 km) must be accurately measured by the MPL. This measurement is complicated by the instrument s overlap range: Le., the minimum distance at which returning signals are completely in the instrument s field-of-view (FOV). Typical MPL overlap distances are large, between 5 - 6 km, due to the narrow FOV of the MPL receiver. A function describing the MPL overlap must be determined and used to correct signals in this range. Currently, overlap functions for MPLNET are determined using horizontal MPL measurements along a path with 10-1 5 km clear line-of-sight and a homogenous atmosphere. These conditions limit the location and ease in which successful overlaps can be obtained. Furthermore, the current MPLNET process of correcting for overlap increases the uncertainty and bias error for the near range signals and the resulting aerosol extinction profiles. To address these issues, an alternative overlap correction method using a small-diameter, wide FOV receiver is being considered for potential use in MPLNET. The wide FOV receiver has a much shorter overlap distance and will be used to calculate the overlap function of the MPL receiver. This approach has a significant benefit in that overlap corrections could be obtained without the need for horizontal measurements. A review of both overlap methods is presented, including a discussion of the impact on reducing the uncertainty and bias error in MPLNET aerosol profiles.

  9. Effects of Inboard Horizontal Field of View Display Limitations on Pilot Path Control During Total In-Flight Simulator (TIFS) Flight Test

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Parrish, Russell V.; Williams, Steven P.; Lavell, Jeffrey S.

    1999-01-01

    A flight test was conducted aboard Calspan's Total In-Flight Simulator (TIFS) aircraft by researchers within the External Visibility System (XVS) element of the High-Speed Research program. The purpose was to investigate the effects of inboard horizontal field of view (FOV) display limitations on pilot path control and to learn about the TIFS capabilities and limitations for possible use in future XVS flight tests. The TIFS cockpit windows were masked to represent the front XVS display area and the High-Speed Civil Transport side windows, as viewed by the pilot. Masking limited the forward FOV to 40 deg. horizontal and 50 deg. vertical for the basic flight condition, With an increase of 10 deg. horizontal in the inboard direction for the increased FOV flight condition. Two right-hand approach tasks (base-downwind-final) with a left crosswind on final were performed by three pilots using visual flight rules at Niagara Falls Airport. Each of the two tasks had three replicates for both horizontal FOV conditions, resulting in twelve approaches per test subject. Limited objective data showed that an increase of inboard FOV had no effect (deficiences in objective data measurement capabilities were noted). However, subjective results showed that a 50 deg. FOV was preferred over the 40 deg. FOV.

  10. URBAN MORPHOLOGY FOR HOUSTON TO DRIVE MODELS-3/CMAQ AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    Air quality simulation models applied at various horizontal scales require different degrees of treatment in the specifications of the underlying surfaces. As we model neighborhood scales ( 1 km horizontal grid spacing), the representation of urban morphological structures (e....

  11. Ash loading and insolation at Hanford, Washington during and after the eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Laulainen, N. S.

    1982-01-01

    The effects of volcanic ash suspended in the atmosphere on the incident solar radiation was monitored at the Hanford Meteorological Station (HMS) subsequent to the major eruption of Mount St. Helens on May 18, 1980. Passage of the ash plume over Hanford resulted in a very dramatic decrease of solar radiation intensity to zero. A reduction in visibility to less than 1 km was observed, as great quantities of ash fell out of the plume onto the ground. Ash loading in the atmosphere remained very high for several days following the eruption, primarily as a result of resuspension from the surface. Visibilities remained low (2 to 8 km) during this period. Estimates of atmospheric turbidity were made from the ratio of diffuse-to-direct solar radiation; these turbidities were used to estimate extinction along a horizontal path, a quantity which can be related to visibility. Comparisons of observed and estimated visibilities were very good, in spite of the rather coarse approximations used in the estimates. Atmospheric clarity and visibility improved to near pre-eruption conditions following a period of rain showers. The diffuse-to-direct ratio of solar radiation provided a useful index for estimating volcanic ash loading of the atmosphere.

  12. Tele-infrasonic studies of hard-rock mining explosions.

    PubMed

    McKenna, Mihan H; Stump, Brian W; Hayek, Sylvia; McKenna, Jason R; Stanton, Terry R

    2007-07-01

    The Lac-du-Bonnet infrasound station, IS-10, and the Minnesota iron mines 390 km to the southeast are ideally located to assess the accuracy of atmospheric profiles needed for infrasound modeling. Infrasonic data from 2003 associated with explosions at the iron mine were analyzed for effects of explosion size and atmospheric conditions on observations with well-constrained ground truth. Noise was the determining factor for observation; high noise conditions sometimes prevented unequivocal identification of infrasound arrivals. Observed arrivals had frequencies of 0.5 to 5 Hz, with a dominant frequency of 2 Hz, and generally had durations on the order of 10 s or less. There was no correlation between explosive amount and observability. Tele-infrasonic propagation distances (greater than 250 km) produce thermospheric ray paths. Modeling is based upon MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and NRL-G2S (Naval Research Laboratory Ground to Space) datasets. The NRL-G2S dataset provided more accurate travel time predictions that the MSIS/HWM dataset. PE modeling for the NRL-G2S dataset indicates energy loss at higher frequencies (around 4 Hz). Additionally, applying the Sutherland/Bass model through the NRL-G2S realization of the atmosphere in InfraMAP results in predicted amplitudes too small to be observed.

  13. Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique.

    PubMed

    Mei, Liang; Guan, Peng; Kong, Zheng

    2017-10-02

    Differential absorption lidar (DIAL) technique employed for remote sensing has been so far based on the sophisticated narrow-band pulsed laser sources, which require intensive maintenance during operation. In this work, a continuous-wave (CW) NO 2 DIAL system based on the Scheimpflug principle has been developed by employing a compact high-power CW multimode 450 nm laser diode as the light source. Laser emissions at the on-line and off-line wavelengths of the NO 2 absorption spectrum are implemented by tuning the injection current of the laser diode. Lidar signals are detected by a 45° tilted area CCD image sensor satisfying the Scheimpflug principle. Range-resolved NO 2 concentrations on a near-horizontal path are obtained by the NO 2 DIAL system in the range of 0.3-3 km and show good agreement with those measured by a conventional air pollution monitoring station. A detection sensitivity of ± 0.9 ppbv at 95% confidence level in the region of 0.3-1 km is achieved with 15-minute averaging and 700 m range resolution during hours of darkness, which allows accurate concentration measurement of ambient NO 2 . The low-cost and robust DIAL system demonstrated in this work opens up many possibilities for field NO 2 remote sensing applications.

  14. Orientation Guidance and Control for Marine Vehicles in the Horizontal Plane

    DTIC Science & Technology

    1991-06-01

    FIELD GROUP SUB-GROUP Autonomous vehicles , Guidance and control, Stability, Path keeping 19 ABSIRACT (Continue on reverse if necessary and identify by...following in 3-D space. 33 LIST OF REFERENCES 1. Kanayama, Y. and Hartman, B.I. (1989) " Smooth local path planning for autonomous vehicles , " Proceeding

  15. Video surveillance with speckle imaging

    DOEpatents

    Carrano, Carmen J [Livermore, CA; Brase, James M [Pleasanton, CA

    2007-07-17

    A surveillance system looks through the atmosphere along a horizontal or slant path. Turbulence along the path causes blurring. The blurring is corrected by speckle processing short exposure images recorded with a camera. The exposures are short enough to effectively freeze the atmospheric turbulence. Speckle processing is used to recover a better quality image of the scene.

  16. Effects of Subbasin Size on Topographic Characteristics and Simulated Flow Paths in Sleepers River Watershed, Vermont

    NASA Astrophysics Data System (ADS)

    Wolock, David M.

    1995-08-01

    The effects of subbasin size on topographic characteristics and simulated flow paths were determined for the 111.5-km2 Sleepers River Research Watershed in Vermont using the watershed model TOPMODEL. Topography is parameterized in TOPMODEL as the spatial and statistical distribution of the index ln (a/tan B), where In is the Napierian logarithm, a is the upslope area per unit contour length, and tan B is the slope gradient. The mean, variance, and skew of the ln (a/tan B) distribution were computed for several sets of nested subbasins (0.05 to 111.5 km2)) along streams in the watershed and used as input to TOPMODEL. In general, the statistics of the ln (a/tan B) distribution and the simulated percentage of overland flow in total streamflow increased rapidly for some nested subbasins and decreased rapidly for others as subbasin size increased from 0.05 to 1 km2, generally increased up to a subbasin size of 5 km2, and remained relatively constant at a subbasin size greater than 5 km2. Differences in simulated flow paths among subbasins of all sizes (0.05 to 111.5 km2) were caused by differences in the statistics of the ln (a/tan B) distribution, not by differences in the explicit spatial arrangement of ln (a/tan B) values within the subbasins. Analysis of streamflow chemistry data from the Neversink River watershed in southeastern New York supports the hypothesis that subbasin size affects flow-path characteristics.

  17. Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kohen, Hamid

    1997-01-01

    This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.

  18. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  19. A New Concept in Helicopter Communications Antennas

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R. J.

    1995-01-01

    We consider a five blade rotor and envision an array with one element mounted on each rotor blade. These elements may be dipoles or horizontal slots depending upon the desired polarization characteristics. For example, slots would provide vertical polarization on horizontal paths. The array is excited through a novel type of rotary joint located on the rotor shaft.

  20. Satellite observed thermodynamics during FGGE

    NASA Technical Reports Server (NTRS)

    Smith, W. L.

    1985-01-01

    During the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE), determinations of temperature and moisture were made from TIROS-N and NOAA-6 satellite infrared and microwave sounding radiance measurements. The data were processed by two methods differing principally in their horizontal resolution. At the National Earth Satellite Service (NESS) in Washington, D.C., the data were produced operationally with a horizontal resolution of 250 km for inclusion in the FGGE Level IIb data sets for application to large-scale numerical analysis and prediction models. High horizontal resolution (75 km) sounding data sets were produced using man-machine interactive methods for the special observing periods of FGGE at the NASA/Goddard Space Flight Center and archived as supplementary Level IIb. The procedures used for sounding retrieval and the characteristics and quality of these thermodynamic observations are given.

  1. Eros: Shape, topography, and slope processes

    USGS Publications Warehouse

    Thomas, P.C.; Joseph, J.; Carcich, B.; Veverka, J.; Clark, B.E.; Bell, J.F.; Byrd, A.W.; Chomko, R.; Robinson, M.; Murchie, S.; Prockter, L.; Cheng, A.; Izenberg, N.; Malin, M.; Chapman, C.; McFadden, L.A.; Kirk, R.; Gaffey, M.; Lucey, P.G.

    2002-01-01

    Stereogrammetric measurement of the shape of Eros using images obtained by NEAR's Multispectral Imager provides a survey of the major topographic features and slope processes on this asteroid. This curved asteroid has radii ranging from 3.1 to 17.7 km and a volume of 2535 ?? 20 km3. The center of figure is within 52 m of the center of mass provided by the Navigation team; this minimal difference suggests that there are only modest variations in density or porosity within the asteroid. Three large depressions 10, 8, and 5.3 km across represent different stages of degradation of large impact craters. Slopes on horizontal scales of ???300 m are nearly all less than 35??, although locally scarps are much steeper. The area distribution of slopes is similar to those on Ida, Phobos, and Deimos. Regions that have slopes greater than 25?? have distinct brighter markings and have fewer large ejecta blocks than do flatter areas. The albedo patterns that suggest downslope transport of regolith have sharper boundaries than those on Phobos, Deimos, and Gaspra. The morphology of the albedo patterns, their lack of discrete sources, and their concentration on steeper slopes suggest transport mechanisms different from those on the previously well-observed small bodies, perhaps due to a reduced relative effectiveness of impact gardening on Eros. Regolith is also transported in talus cones and in connected, sinuous paths extending as much as 2 km, with some evident as relatively darker material. Talus material in at least one area is a discrete superposed unit, a feature not resolved on other small bodies. Flat-floored craters that apparently contain ponded material also suggest discrete units that are not well mixed by impacts. ?? 2002 Elsevier Science (USA).

  2. Size Effect of the 2-D Bodies on the Geothermal Gradient and Q-A Plot

    NASA Astrophysics Data System (ADS)

    Thakur, M.; Blackwell, D. D.

    2009-12-01

    Using numerical models we have investigated some of the criticisms on the Q-A plot of related to the effect of size of the body on the slope and reduced heat flow. The effects of horizontal conduction depend on the relative difference of radioactivity between the body and the country rock (assuming constant thermal conductivity). Horizontal heat transfer due to different 2-D bodies was numerically studied in order to quantify resulting temperature differences at the Moho and errors on the predication of Qr (reduced heat flow). Using the two end member distributions of radioactivity, the step model (thickness 10km) and exponential model, different 2-D models of horizontal scale (width) ranging from 10 -500 km were investigated. Increasing the horizontal size of the body tends to move observations closer towards the 1-D solution. A temperature difference of 50 oC is produced (for the step model) at Moho between models of width 10 km versus 500 km. In other words the 1-D solution effectively provides large scale averaging in terms of heat flow and temperature field in the lithosphere. For bodies’ ≤ 100 km wide the geotherms at shallower levels are affected, but at depth they converge and are 50 oC lower than that of the infinite plate model temperature. In case of 2-D bodies surface heat flow is decreased due to horizontal transfer of heat, which will shift the Q-A point vertically downward on the Q-A plot. The smaller the size of the body, the more will be the deviation from the 1-D solution and the more will be the movement of Q-A point downwards on a Q-A plot. On the Q-A plot, a limited points of bodies of different sizes with different radioactivity contrast (for the step and exponential model), exactly reproduce the reduced heat flow Qr. Thus the size of the body can affect the slope on a Q-A plot but Qr is not changed. Therefore, Qr ~ 32 mWm-2 obtained from the global terrain average Q-A plot represents the best estimate of stable continental mantle heat flow.

  3. Equatorial cloud level convection on Venus

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Sugiyama, Koichiro; Sato, Takao M.; Maejima, Yasumitsu

    2016-10-01

    In the equatorial region on Venus, a clear cloud top morphology difference depending on solar local time has been observed through UV images. Laminar flow shaped clouds are shown on the morning side, and convective-like cells on the afternoon side (Titov et al. 2012). Baker et al. (1998) suggested that deep convective motions in the low-to-middle cloud layers at the 40-60 km range can explain cellular shapes. Imamura et al. (2014), however argued that this cannot be a reason, as convection in the low-to-middle cloud layers can be suppressed near sub solar regions due to a stabilizing effect by strong solar heating. We suggest that the observed feature may be related to strong solar heating at local noon time (Lee et al. 2015). Horizontal uneven distribution of an unknown UV absorber and/or cloud top structure may trigger horizontal convection (Toigo et al. 1994). In order to examine these possibilities, we processed 1-D radiative transfer model calculations from surface to 100 km altitude (SHDOM, Evans 1998), which includes clouds at 48-71 km altitudes (Crisp et al. 1986). The results on the equatorial thermal cooling and solar heating profiles were employed in a 2D fluid dynamic model calculation (CReSS, Tsuboki and Sakakibara 2007). The calculation covered an altitude range of 40-80 km and a 100-km horizontal distance. We compared three conditions; an 'effective' global circulation condition that cancels out unbalanced net radiative energy at equator, a condition without such global circulation effect, and the last condition assumed horizontally inhomogeneous unknown UV absorber distribution. Our results show that the local time dependence of lower level cloud convection is consistent with Imamura et al.'s result, and suggest a possible cloud top level convection caused by locally unbalanced net energy and/or horizontally uneven solar heating. This may be related to the observed cloud morphology in UV images. The effective global circulation condition, however, can "remove" such cloud top level convection. The later one consists with measured high static stability at the cloud top level from radio occultation measurement.

  4. Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths

    NASA Astrophysics Data System (ADS)

    Green, David N.; Vergoz, Julien; Gibson, Robert; Le Pichon, Alexis; Ceranna, Lars

    2011-05-01

    Infrasound propagation paths through the atmosphere are controlled by the temporally and spatially varying sound speed and wind speed amplitudes. Because of the complexity of atmospheric acoustic propagation it is often difficult to reconcile observed infrasonic arrivals with the sound speed profiles predicted by meteorological specifications. This paper provides analyses of unexpected arrivals recorded in Europe and north Africa from two series of accidental munitions dump explosions, recorded at ranges greater than 1000 km: two explosions at Gerdec, Albania, on 2008 March 15 and four explosions at Chelopechene, Bulgaria, on 2008 July 3. The recorded signal characteristics include multiple pulsed arrivals, celerities between 0.24 and 0.34 km s-1 and some signal frequency content above 1 Hz. Often such characteristics are associated with waves that have propagated within a ground-to-stratosphere waveguide, although the observed celerities extend both above and below the conventional range for stratospheric arrivals. However, state-of-the-art meteorological specifications indicate that either weak, or no, ground-to-stratosphere waveguides are present along the source-to-receiver paths. By incorporating realistic gravity-wave induced horizontal velocity fluctuations into time-domain Parabolic Equation models the pulsed nature of the signals is simulated, and arrival times are predicted to within 30 s of the observed values (<1 per cent of the source-to-receiver transit time). Modelling amplitudes is highly dependent upon estimates of the unknown acoustic source strength (or equivalent chemical explosive yield). Current empirical explosive yield relationships, derived from infrasonic amplitude measurements from point-source chemical explosions, suggest that the equivalent chemical yield of the largest Gerdec explosion was of the order of 1 kt and the largest Chelopechene explosion was of the order of 100 t. When incorporating these assumed yields, the Parabolic Equation simulations predict peak signal amplitudes to within an order of magnitude of the observed values. As gravity wave velocity perturbations can significantly influence both infrasonic arrival times and signal amplitudes they need to be accounted for in source location and yield estimation routines, both of which are important for explosion monitoring, especially in the context of the Comprehensive Nuclear-Test-Ban Treaty.

  5. Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation.

    PubMed

    Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb

    2011-07-15

    We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ∼550 m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection. © 2011 Optical Society of America

  6. Wavelength dependence of eddy dissipation and Coriolis force in the dynamics of gravity wave driven fluctuations in the OH nightglow

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.

    1988-01-01

    This paper examines the effect of inclusion of Coriolis force and eddy dissipation in the gravity wave dynamics theory of Walterscheid et al. (1987). It was found that the values of the ratio 'eta' (where eta is a complex quantity describing the ralationship between the intensity oscillation about the time-averaged intensity, and the temperature oscillation about the time-averaged temperature) strongly depend on the wave period and the horizontal wavelength; thus, if comparisons are to be made between observations and theory, horizontal wavelengths will need to be measured in conjunction with the OH nightglow measurements. For the waves with horizontal wavelengths up to 1000 km, the eddy dissipation was found to dominate over the Coriolis force in the gravity wave dynamics and also in the associated values of eta. However, for waves with horizontal wavelengths of 10,000 km or more, the Coriolis force cannot be neglected; it has to be taken into account along with the eddy dissipation.

  7. Path homogeneity along a horizontal line-of-sight path during the FESTER experiment: first results

    NASA Astrophysics Data System (ADS)

    Gunter, W. H.; Maritz, B.; Koago, M.; Wainman, C. K.; Gardener, M. E.; February, F.; van Eijk, A. M. J.

    2016-10-01

    The First European South African Experiment (FESTER) was conducted over about a 10 month period at the Institute of Maritime Technology (IMT) in False Bay, South Africa. One of the important goals was the establishment of the air-sea temperature difference (ASTD) homogeneity along the main propagation link atmospheric path since it is a basic assumption for most of the atmospheric turbulence models (caused by refractive index variations). The ASTD was measured from a small scientific work boat (called Sea Lab) moving along a straight in- and outbound track along the main propagation link path. The air temperature on-board was measured using standard weather sensors, while the sea surface temperature was measured using a long wavelength infrared radiometer, which was compared to the bulk sea temperature half a meter below the sea surface. This was obtained by an under water temperature sensor mounted on a `surfboard' that was towed alongside Sea Lab. Vertical water temperature profiles were also measured along the main propagation path in order to determine the depth of the surface mixed layer and thermocline using a Conductivity Temperature Depth profiler (CTD). First results investigated the ASTD variation along the horizontal line-of-sight path used by the principal electro-optic transmission link monitoring equipment (i.e. scintillometer and multi-spectral radiometer-transmissometer system).

  8. 45 Km Horizontal Path Optical Link Experiment

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Ceniceros, J.; Novak, M.; Jeganathan, M.; Portillo, A.; Erickson, D.; Depew, J.; Sanii, B.; Lesh, J. R.

    2000-01-01

    Mountain-top to mountain-top optical link experiments have been initiated at JPL, in order to perform a systems level evaluation of optical communications. Progress made so far is reported. ne NASA, JPL developed optical communications demonstrator (OCD) is used to transmit a laser signal from Strawberry Peak (SP), located in the San Bernadino mountains of California. This laser beam is received by a 0.6 m aperture telescope at JPL's Table Mountain Facility (TMF), located in Wrightwood, California. The optical link is bi-directional with the TMF telescope transmitting a continuous 4-wave (cw) 780 run beacon and the OCD sending back a 840 nm, 100 - 500 Mbps pseudo noise (PN) modulated, laser beam. The optical link path is at an average altitude of 2 km above sea level, covers a range of 46.8 km and provides an atmospheric channel equivalent to approx. 4 air masses. Average received power measured at either end fall well within the uncertainties predicted by link analysis. The reduction in normalized intensity variance (sigma(sup 2, sub I)) for the 4-beam beacon, compared to each individual beam, at SP, was from approx. 0.68 to 0.22. With some allowance for intra-beam mis-alignment, this is consistent with incoherent averaging. The sigma(sup2, sub I) measured at TMF approx. 0.43 +/- 0.22 exceeded the expected aperture averaged value of less than 0.1, probably because of beam wander. The focused spot sizes of approx. 162 +/- 6 microns at the TMF Coude and approx. 64 +/- 3 microns on the OCD compare to the predicted size range of 52 - 172 microns and 57 - 93 microns, respectively. This is consistent with 4 - 5 arcsec of atmospheric "seeing". The preliminary evaluation of OCD's fine tracking indicates that the uncompensated tracking error is approx. 3.3 micro rad compared to approx. 1.7 micro rad observed in the laboratory. Fine tracking performance was intermittent, primarily due to beacon fades on the OCD tracking sensor. The best bit error rates observed while tracking worked were 1E-5 to 1E-6.

  9. Development of Gridded Fields of Urban Canopy Parameters for Advanced Urban Meteorological and Air Quality Models

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  10. The effect of heterogeneous crust on the earthquake -- The case study of the 2004 Chuetsu, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Miyatake, T.; Kato, N.; Yin, J.; Kato, A.

    2010-12-01

    The 2004, Chuetsu, Japan, earthquake of Mw 6.6 occurred as shallow thrust event and the detailed kinematic source model was obtained by Hikima and Koketsu (2005). Just after the event, a dense temporal seismic network was deployed, and the detailed structure was elucidated (A. Kato et al. 2006). The seismic velocities in the hanging wall above the main shock fault are lower than those in the footwall, with the velocity contrast extending to a depth of approximately 10 km (A. Kato et al. 2006). Their results also show the high velocity on the asperity. We investigate that effect of the structure heterogeneity on fault rupture. First, we model the structure of the source region of 100km x 100km x 40km as simple as possible, and then solve the static elastic equation of motion with gravity effect by using finite difference method and GeoFEM. Our structure model consists of two layers, in which the boundary is a dipping surface from ground surface to 10km depth and bend to horizontal plane. The slope of the boundary corresponds to the earthquake fault and a bump located on the asperity between the depths of 4km and 10km. Finite difference grid size is 0.25km horizontally and 0.4km vertically. Ratio of the horizontal to vertical grids corresponds to the dip angle of the main shock. We simply assume the rigidity of 30GPa for lower sediment part and 40GPa for hard rock part. The boundary conditions imposed are, 1) stress free on the ground surface, 2) depth dependent or uniform normal stress are added on the sides that cause horizontal maximum stress, 3) Lithostatic vertical stress on the bottom. The calculated stress field on the main shock fault has the following features, 1) The high shear stress peaks appear around the depth of hypocenter and the top edge of the asperity, corresponding to the depths of the velocity contrast. These high stress zones are caused by stress concentration of the low rigidity wedge shaped sediment. 2) Expected stress drop distribution is around the top edge of the asperity. 3) Strength excess increases with depth. Combining with 2), the rupture expect to propagate toward shallower asperity than deeper part. 4) Uniform normal stress boundary condition seems to be unreasonable because of high stress drop in shallower part. These are important clues to investigate the physical process of the earthquake.

  11. An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers

    NASA Astrophysics Data System (ADS)

    Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi

    As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.

  12. Atmospheric turbulence effects measured along horizontal-path optical retro-reflector links.

    PubMed

    Mahon, Rita; Moore, Christopher I; Ferraro, Mike; Rabinovich, William S; Suite, Michele R

    2012-09-01

    The scintillation measured over close-to-ground retro-reflector links can be substantially enhanced due to the correlations experienced by both the direct and reflected echo beams. Experiments were carried out at China Lake, California, over a variety of ranges. The emphasis in this paper is on presenting the data from the 1.1 km retro-reflecting link that was operated for four consecutive days. The dependence of the measured irradiance flux variance on the solar fluence and on the temperature gradient above the ground is presented. The data are consistent with scintillation minima near sunrise and sunset, rising rapidly during the day and saturating at irradiance flux variances of ~10. Measured irradiance probability distributions of the retro-reflected beam are compared with standard probability density functions. The ratio of the irradiance flux variances on the retro-reflected to the direct, single-pass case is investigated with two data sets, one from a monostatic system and the other using an off-axis receiver system.

  13. Evaluating Mesoscale Simulations of the Coastal Flow Using Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Floors, R.; Hahmann, A. N.; Peña, A.

    2018-03-01

    The atmospheric flow in the coastal zone is investigated using lidar and mast measurements and model simulations. Novel dual-Doppler scanning lidars were used to investigate the flow over a 7 km transect across the coast, and vertically profiling lidars were used to study the vertical wind profile at offshore and onshore positions. The Weather, Research and Forecasting model is set up in 12 different configurations using 2 planetary boundary layer schemes, 3 horizontal grid spacings and varied sources of land use, and initial and lower boundary conditions. All model simulations describe the observed mean wind profile well at different onshore and offshore locations from the surface up to 500 m. The simulated mean horizontal wind speed gradient across the shoreline is close to that observed, although all simulations show wind speeds that are slightly higher than those observed. Inland at the lowest observed height, the model has the largest deviations compared to the observations. Taylor diagrams show that using ERA-Interim data as boundary conditions improves the model skill scores. Simulations with 0.5 and 1 km horizontal grid spacing show poorer model performance compared to those with a 2 km spacing, partially because smaller resolved wave lengths degrade standard error metrics. Modeled and observed velocity spectra were compared and showed that simulations with the finest horizontal grid spacing resolved more high-frequency atmospheric motion.

  14. Statistical analysis of measured free-space laser signal intensity over a 2.33 km optical path.

    PubMed

    Tunick, Arnold

    2007-10-17

    Experimental research is conducted to determine the characteristic behavior of high frequency laser signal intensity data collected over a 2.33 km optical path. Results focus mainly on calculated power spectra and frequency distributions. In addition, a model is developed to calculate optical turbulence intensity (C(n)/2) as a function of receiving and transmitting aperture diameter, log-amplitude variance, and path length. Initial comparisons of calculated to measured C(n)/2 data are favorable. It is anticipated that this kind of signal data analysis will benefit laser communication systems development and testing at the U.S. Army Research Laboratory (ARL) and elsewhere.

  15. Partial-reflection studies of D-region winter variability. [electron density measurements

    NASA Technical Reports Server (NTRS)

    Denny, B. W.; Bowhill, S. A.

    1973-01-01

    D-region electron densities were measured from December, 1972, to July, 1973, at Urbana, Illinois (latitude 40.2N) using the partial-reflection technique. During the winter, electron densities at altitudes of 72, 76.5, and 81 km show cyclical changes with a period of about 5 days that are highly correlated between these altitudes, suggesting that the mechanism responsible for the winter anomaly in D-region ionization applies throughout this height region. From January 13 to February 3, a pronounced wave-like variation occurred in the partial-reflection measurements, apparently associated with a major stratospheric warming that developed in that period. During the same time period, a traveling periodic variation is observed in the 10-mb height; it is highly correlated with the partial-reflection measurements. Electron density enhancements occur approximately at the same time as increases in the 10-mb height. Comparison of AL and A3 absorption measurements with electron density measurements below 82 km indicates that the winter anomaly in D-region ionization is divided into two types. Type 1, above about 82 km, extends horizontally for about 200 km while type 2, below about 82 km, extends for a horizontal scale of at least 1000 km.

  16. Number concentration, size distribution and horizontal mass flux of Asian dust particles collected over free troposphere of Chinese desert region in calm weather condition using balloon borne measurements.

    NASA Astrophysics Data System (ADS)

    Habib, A.; Chen, B.

    2017-12-01

    Balloon borne measurements were carried out during calm weather conditions in Taklamakan Desert, which is considered as one of the major source areas of Asian dust (KOSA) particles. Vertical distribution of aerosols number concentration, size distribution, mass concentration and horizontal mass flux due to westerly wind was investigated .Vertical distribution of aerosol number concentration and size distribution at Dunhuang (40 °00'N, 94°30'E) China were observed by optical particle counter (OPC) on August 17, 2001, October 17, 2011, January 11, 2002, April 30, 2002. Five channels (0.3, 0.5, 0.8, 1.2 and 3.6 µm) were used in OPC for particle sizing measurements. Aerosol number concentration in winter season (January 11, 2002) at 3-5 km was very high. Variation of free tropospheric aerosols in April 30, 2002 was noticeable. Many inversions of temperature and aerosol concentration change are found at these inversion points. Super micron range was noticeable in size distribution of all balloon borne measurements. High values of estimated mass concentration of aerosols were observed at the ground atmosphere (1-2 km), and interestingly relatively high concentrations were frequently detected above about 2 km. Wind pattern observed by ERA-interim data sets at 500 and 850 hPa, shows that westerly winds were dominated in Taklamakan Desert during balloon borne observation period. Average horizontal mass flux of background Asian dust due to westerly wind was about in the range of 1219-58.5 μg/m³ tons/km2/day. Most of the profiles showed active transport of aerosols in the westerly dominated region, while, fluxes were found to be very low on January 11, 2002, compared with the other seasons. Vertical profiles of aerosols number concentration showed that significant transport of aerosols was dominated in westerly region (4-7 km). Low horizontal mass flux of aerosols was found in winter season

  17. The study on spatial distribution features of radiological plume discharged from Nuclear Power Plant based on C4ISRE

    NASA Astrophysics Data System (ADS)

    Ma, Yunfeng; Shen, Yue; Feng, Bairun; Yang, Fan; Li, Qiangqiang; Du, Boying; Bian, Yushan; Hu, Qiongqong; Wang, Qi; Hu, Xiaomin; Yin, Hang

    2018-02-01

    When the nuclear emergency accident occurs, it is very important to estimate three-dimensional space feature of the radioactive plume discharged from the source term for the emergency organization, as well as for better understanding of atmospheric dispersion processes. So, taking the Hongyanhe Nuclear Power Plant for example, the study for three-dimensional space feature of the radioactive plume is accomplished by applying atmospheric transport model (coupling of WRF-HYSPLIT) driven by FNL meteorological data of NCEP (04/01/2014-04/02/2014) based on the C4ISRE (Command, Control, Communications, Computer, Intelligence, Surveillance, Reconnaissance, Environmental Impact Assessment).The results show that the whole shape of three-dimensional plume was about irregular cloth influenced by wind; In the spatial domain (height > 16000m),the distribution of radiological plume, which looked more like horseshoe-shaped, presented irregular polygons of which the total length was 2258.7km, where covered the area of 39151km2; In the airspace from 4000m to 16000m, the plume, covered the area of 116269 km2, showed a triangle and the perimeter of that was 2280.4km; The shape of the plume was more like irregular quadrilateral, its perimeter was 2941.8km and coverage area of the plume was 131534km2;The overall distribution of the wind field showed a rectangular shape; Within the area along the horizontal direction 400m from origin to east and under height (lower than 2000m),the closer the distance coordinate (0,0), the denser the plume particles; Within the area of horizontal distance(500m-1000m) and height (4000m- 16000m), the particle density were relatively sparse and the spread extent of the plume particles from west to East was relatively large and the plume particles were mainly in the suspended state without obvious dry sedimentation; Within the area of horizontal distance (800m-1100m) and height (>16000m), there were relatively gentle horizontal diffusion of plume particles with upward drift of particles In local area.

  18. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    DOEpatents

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  19. Quiescent Prominence Structure and Dynamics: a new View From the Hinode/SOT

    NASA Astrophysics Data System (ADS)

    Berger, T.; Okamoto, J.; Slater, G.; Magara, T.; Tarbell, T.; Tsuneta, S.; Hurlburt, N.

    2008-05-01

    To date the Hinode/Solar Optical Telescope (SOT) has produced over a dozen sub-arcsecond, multi-hour movies of quiescent solar prominences in both the Ca II 396.8~nm H-line and the H-alpha 656.3~nm line. These datasets have revealed new details of the structure and dynamics of quiescent prominences including a new form of mass transport in the form of buoyant plume upflows from the chromosphere. We review the SOT prominence datasets to show that quiescent prominences appear in two major morphological categories: "vertically" and "horizontally" structured. The vertically structured prominences all show ubiquitous downflows in 400--700~km wide "streams" with velocities of approximately 10~km~s-1. Most of the vertically structured prominences also show episodic upflows in the form of dark turbulent plumes with typical velocities of 20~km~s-1. Large-scale oscillations are frequently seen in vertical prominences with periods on the order of 10 min and upward propagation speeds of approximately 10~km~s-1. In addition, "bubble" events in which large voids 10--30~Mm across inflate and then burst are seen in some of the vertical prominences. In contrast, the horizontally structured quiescent prominences exhibit only limited flows along the horizontal filaments. We speculate on the origin of the distinction between the vertically and horizontally structured prominences, taking into account viewing angle and the underlying photospheric magnetic flux density. We also discuss the nature of the mysterious dark plumes and bubble expansions and their implications for prominence mass balance in light of recent models of prominence magnetic structure that find vertical flows along some field lines.

  20. Design of a sensor network for structural health monitoring of a full-scale composite horizontal tail

    NASA Astrophysics Data System (ADS)

    Gao, Dongyue; Wang, Yishou; Wu, Zhanjun; Rahim, Gorgin; Bai, Shengbao

    2014-05-01

    The detection capability of a given structural health monitoring (SHM) system strongly depends on its sensor network placement. In order to minimize the number of sensors while maximizing the detection capability, optimal design of the PZT sensor network placement is necessary for structural health monitoring (SHM) of a full-scale composite horizontal tail. In this study, the sensor network optimization was simplified as a problem of determining the sensor array placement between stiffeners to achieve the desired the coverage rate. First, an analysis of the structural layout and load distribution of a composite horizontal tail was performed. The constraint conditions of the optimal design were presented. Then, the SHM algorithm of the composite horizontal tail under static load was proposed. Based on the given SHM algorithm, a sensor network was designed for the full-scale composite horizontal tail structure. Effective profiles of cross-stiffener paths (CRPs) and uncross-stiffener paths (URPs) were estimated by a Lamb wave propagation experiment in a multi-stiffener composite specimen. Based on the coverage rate and the redundancy requirements, a seven-sensor array-network was chosen as the optimal sensor network for each airfoil. Finally, a preliminary SHM experiment was performed on a typical composite aircraft structure component. The reliability of the SHM result for a composite horizontal tail structure under static load was validated. In the result, the red zone represented the delamination damage. The detection capability of the optimized sensor network was verified by SHM of a full-scale composite horizontal tail; all the diagnosis results were obtained in two minutes. The result showed that all the damage in the monitoring region was covered by the sensor network.

  1. 3-dimensional structure of the Indian Ocean inferred from long period surface waves

    NASA Astrophysics Data System (ADS)

    Montagner, Jean-Paul

    1986-04-01

    To improve the lateral resolution of the first global 3 - dimensional models of seismic wave velocities, regional studies have to be undertaken. The dispersion of Rayleigh waves along 86 paths across the Indian Ocean and surrounding regions is investigated in the period range 40 - 300 s. The regionalization of group velocity according to the age of the sea floor shows an increase of velocity with age up to 150 s only, similar to the results in the Pacific Ocean. But here, this relationship vanishes more quickly at long period. Therefore the correlation of the deep structure with surface tectonics seems to be shallower in the Indian Ocean than in the Pacific Ocean. A tomographic method is applied to compute the geographical distributions of group velocity and azimuthal anisotropy and then the 3-D structure of S-wave velocity. Horizontal wavelengths of 2000 km for velocity and 3000 km for azimuthal anisotropy distribution can be resolved. Except for the central part of the South East Indian ridge which displays high velocities at all depths, the inversion corroborates a good correlation between lithospheric structure down to 120 km and surface tectonics: low velocities along the central and southeast Indian ridges, velocity increasing with the age of the sea floor, high velocities under African, Indian and Australian shields. At greater depths, the low velocity zones under the Gulf of Aden and the western part of the Southeast Indian ridges hold but the low velocity anomaly of the Central Indian ridge is offset eastward. The low velocity anomalies suggest uprising material and complex plate boundary.

  2. Relocation of Groningen seismicity using refracted waves

    NASA Astrophysics Data System (ADS)

    Ruigrok, E.; Trampert, J.; Paulssen, H.; Dost, B.

    2015-12-01

    The Groningen gas field is a giant natural gas accumulation in the Northeast of the Netherlands. The gas is in a reservoir at a depth of about 3 km. The naturally-fractured gas-filled sandstone extends roughly 45 by 25 km laterally and 140 m vertically. Decades of production have led to significant compaction of the sandstone. The (differential) compaction is thought to have reactivated existing faults and being the main driver of induced seismicity. Precise earthquake location is difficult due to a complicated subsurface, and that is the likely reason, the current hypocentre estimates do not clearly correlate with the well-known fault network. The seismic velocity model down to reservoir depth is quite well known from extensive seismic surveys and borehole data. Most to date earthquake detections, however, were made with a sparse pre-2015 seismic network. For shallow seismicity (<5 km depth) horizontal source-receiver distances tend to be much larger than vertical distances. Consequently, preferred source-receiver travel paths are refractions over high-velocity layers below the reservoir. However, the seismic velocities of layers below the reservoir are poorly known. We estimated an effective velocity model of the main refracting layer below the reservoir and use this for relocating past seismicity. We took advantage of vertical-borehole recordings for estimating precise P-wave (refraction) onset times and used a tomographic approach to find the laterally varying velocity field of the refracting layer. This refracting layer is then added to the known velocity model, and the combined model is used to relocate the past seismicity. From the resulting relocations we assess which of the faults are being reactivated.

  3. The transition zone below the Chile-Argentina flat subduction region

    NASA Astrophysics Data System (ADS)

    Bonatto, Luciana; Piromallo, Claudia; Badi, Gabriela

    2017-04-01

    We study the fine structure of the upper mantle (below 200 km depth) beneath the western margin of South America, within an area known as the Chile-Argentina flat subduction zone (between 26°S and 36°S). Unlike what happens in most subduction zones, in this region the Nazca Plate subducts with an angle close to the horizontal -initially dips underneath the continent and flattens at a depth of approximately 100 km, remaining almost horizontal for about 300 km before descending more steeply into the mantle. Moreover, the flat slab follows the path of the subducting Juan Fernández Ridge, a hot spot seamount chain on the Nazca Plate. The complex tectonic setting makes this region an excellent laboratory to explore and quantify the relative contributions of thermal and compositional heterogeneities to the mantle discontinuity structure. In this study we combine data available from four past temporary experiments: 18 seismic stations from CHARGE; 43 from SIEMBRA, 12 from ESP and 30 from PUDEL. The research tools are the Pds phases (the direct P wave converted to an S wave while passing through a seismic discontinuity at depth d). These signals arrive in the coda of the P-phase in the radial component and are expected to be coherent with the waveform of the first arrival for conversion at discontinuities thinner than one half of the P-wavelength. In order to extract these converted phases by means of waveform similarity, we use the receiver function (RF) technique, i.e. the deconvolution of the vertical from the radial component in the frequency domain. The Pds phases are then detected on stacked RF (globally and by common conversion point) in the relative time-slowness domain. Since the incidence angle of converted phases is larger than the incidence angle of the P phase, they are expected with negative slowness. This permits to separate them from the multiples, which are instead expected with positive slowness. We measure amplitudes and arrival times for the converted phases at the well-known 410 and 660 discontinuities and at a discontinuity at a depth of about 210 km, which we interpret as the Lehmann discontinuity. The abrupt amplitude decrease for the P660s phase at frequencies larger than 0.12 Hz indicates that the velocity jump at 660 km occurs in a depth interval as wide as 40 km. Besides, the amplitudes of P410s and P660s are similar at the lowest frequency (0.08 Hz). This analysis suggests that the velocity jump at both discontinuities is similar or, alternatively that the 660 may not occur as a discontinuity but as a gradual transition across a layer of about 40 km. We also identify a negative amplitude signal between P410s and P660s arrival times, with negative slowness, which we interpret as a converted phase at a negative discontinuity (a decrease in velocity with depth) at a depth of about 590 km. We also present a map of the Transition Zone Thickness (TZT) showing lateral variations in the study area.

  4. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  5. CO2 Ice Formation and CO2 Gas Depletion in the Polar Winter Atmosphere of Mars from Mars Climate Sounder Measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Patel, P. K.; Schofield, J. T.; Kass, D. M.; Hayne, P. O.; McCleese, D. J.

    2016-12-01

    Temperatures in the martian lower atmosphere commonly reach the frost point of CO2 in the polar winter vortices over an extended vertical range. New retrievals from the Mars Climate Sounder (MCS) instrument on Mars Reconnaissance Orbiter allow the characterization of the winter polar regions with improved accuracy. MCS is a passive infrared sounder with 5 mid-infrared, 3 far infrared, and one broadband visible/near-infrared channels. Each spectral channel uses a linear detector array consisting of 21 elements, which provides -10 to 90 km altitude coverage when pointed at the Mars limb. From the infrared measurements, vertical profiles of temperature and aerosols are retrieved with an altitude resolution of about 5 km. Due to their long optical path through the atmosphere, limb measurements are susceptible to horizontal gradients in temperature or absorber amount in their line-of-sight, an effect that is particularly important in polar winter regions due to strong latitudinal temperature gradients in the atmosphere. The new retrievals take horizontal gradients in temperature and aerosols into account by means of a two-dimensional radiative transfer scheme. The resulting temperature profiles reveal that temperatures in the south winter polar region repeatedly drop several degrees below the frost point of CO2. This behavior is consistent with the removal of CO2 from the atmosphere through condensation, resulting in an atmosphere that is depleted in gaseous CO2 and enhanced in non-condensable gases like N2 and Ar. In these regions emission features at 22 μm are often found in MCS limb measurements, consistent with the presence of CO2 ice in the polar vortex. We will map these depletions of CO2 gas and show correlations with the occurrence of CO2 ice. We will provide comparisons of these effects between the southern and the northern polar winter vortices.

  6. [Reconstruction of urban land space based on minimum cumulative resistance model: a case study of Xintang Town, Guangzhou City].

    PubMed

    Zhong, Shi-Yu; Wu, Qing; Li, Yu; Cheng, Jin-Ping

    2012-11-01

    Based on the source-sink landscape theory and the principles of ecosystem services, the minimum cumulative resistance (MCR) model was modified, where the urban center construction land was taken as the expansion source, and the contribution rate of ecological land ecosystem services value was considered as the resistance coefficient. With the modified MCR, the urban spatial expansion process of Xintang Town, Guangzhou City was successfully simulated, and, based on the protection of ecological security pattern, the optimum path for reconstructing urban land space was put forward. The simulated urban spatial expansion short path in 1988-2008 was in accordance with the real situation. By the modified MCR, the urban space was divided into four zones of high, higher, medium, and low resistance, with the area of 80.84, 78.90, 24.26, and 61.88 km2, respectively. The expansion path of the urban space was along the route from low to medium and then to high resistance zones successively. The land suitable for eco-protection and construction had an area of 159.74 km2 and 86.14 km2, while the ecological conflict area (17.37 km2) was mainly located in higher and high resistance zones, being 10.38 and 6.99 km2, respectively. The modified MCR could not only effectively reflect the distribution area of urban land use and the conflict relationship between urban construction and ecological protection, but also reasonably judge the best developmental short path for urban spatial expansion.

  7. Balance and gait performance after maximal and submaximal endurance exercise in seniors: is there a higher fall-risk?

    PubMed

    Donath, Lars; Zahner, Lukas; Roth, Ralf; Fricker, Livia; Cordes, Mareike; Hanssen, Henner; Schmidt-Trucksäss, Arno; Faude, Oliver

    2013-03-01

    Impaired balance and gait performance increase fall-risk in seniors. Acute effects of different exercise bouts on gait and balance were not yet addressed. Therefore, 19 healthy seniors (10 women, 9 men, age: 64.6 ± 3.2 years) were examined on 3 days. After exhaustive treadmill testing, participants randomly completed a 2-km treadmill walking test (76 ± 8 % VO(2max)) and a resting control condition. Standing balance performance (SBALP) was assessed by single limb-eyes opened (SLEO) and double limb-eyes closed (DLEC) stance. Gait parameters were collected at comfortable walking velocity. A condition × time interaction of center of pressure path length (COP(path)) was observed for both balance tasks (p < 0.001). Small (Cohen's d = 0.42, p = 0.05) and large (d = 1.04, p < 0.001) COP(path) increases were found after 2-km and maximal exercise during DLEC. Regarding SLEO, slightly increased COP(path) occurred after 2-km walking (d = 0.29, p = 0.65) and large increases after exhaustive exercise (d = 1.24, p < 0.001). No significant differences were found for gait parameters. Alterations of SBALP after exhaustive exercise might lead to higher fall-risk in seniors. Balance changes upon 2-km testing might be of minor relevance. Gait is not affected during single task walking at given velocities.

  8. Internal inertia-gravity waves in the tropical lower stratosphere observed by the Arecibo radar

    NASA Technical Reports Server (NTRS)

    Maekawa, Y.; Kato, S.; Fukao, S.; Sato, T.; Woodman, R. F.

    1984-01-01

    A quasi-periodic wind oscillation with an apparent 20-50 hour period was observed at between 16 and 20 km in every experiment conducted during three periods from 1979 to 1981 with the Arecibo UHF radar. The wave disappeared near 20 km, where the mean zonal flow had easterly shear with height. This phenomenon is discussed in terms of wave absorption at a critical level, and it is suggested that the wave had a westward horizontal phase speed of 10-20 m/sec. On the basis of a relationship from f-plane theory in which the Doppler-shifted wave frequency approaches the Coriolis frequency at the critical level, an intrinsic period and horizontal wavelength at the wave-generated height of 20-30 hours and about 2000 km, respectively, are inferred.

  9. Analyzing the Effects of Horizontal Resolution on Long-Term Coupled WRF-CMAQ Simulations

    EPA Science Inventory

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. To this end, WRF-CMAQ simulations over the co...

  10. Measurement of horizontal air showers with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  11. Mesospheric momentum fluxes observed by the MST radar at Poker Flat, Alaska

    NASA Technical Reports Server (NTRS)

    Wang, Ding-Yi; Fritts, David C.

    1990-01-01

    An analysis of the wave motions observed with the Poker Flat MST radar during the winter, summer, and fall of 1986 is presented. Monthly and daily mean winds, momentum fluxes, and velocity variances are investigated in detail. While several features are in agreement with previous measurements, some significant differences also are found to exist in the observations. Monthly mean horizontal winds between 82 and 89 km have amplitudes of 20-40 m/s westward and 10-25 m/s southward in July and August. In fall and winter, the horizontal winds between 58 and 75 km are weaker and essentially eastward.

  12. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s

    USGS Publications Warehouse

    Boore, D.M.; Atkinson, G.M.

    2008-01-01

    This paper contains ground-motion prediction equations (GMPEs) for average horizontal-component ground motions as a function of earthquake magnitude, distance from source to site, local average shear-wave velocity, and fault type. Our equations are for peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped pseudo-absolute-acceleration spectra (PSA) at periods between 0.01 s and 10 s. They were derived by empirical regression of an extensive strong-motion database compiled by the 'PEER NGA' (Pacific Earthquake Engineering Research Center's Next Generation Attenuation) project. For periods less than 1 s, the analysis used 1,574 records from 58 mainshocks in the distance range from 0 km to 400 km (the number of available data decreased as period increased). The primary predictor variables are moment magnitude (M), closest horizontal distance to the surface projection of the fault plane (RJB), and the time-averaged shear-wave velocity from the surface to 30 m (VS30). The equations are applicable for M=5-8, RJB<200 km, and VS30= 180-1300 m/s. ?? 2008, Earthquake Engineering Research Institute.

  13. Vertical structure of the lower troposphere derived from MU radar, unmanned aerial vehicle, and balloon measurements during ShUREX 2015

    NASA Astrophysics Data System (ADS)

    Luce, Hubert; Kantha, Lakshmi; Hashiguchi, Hiroyuki; Lawrence, Dale; Mixa, Tyler; Yabuki, Masanori; Tsuda, Toshitaka

    2018-12-01

    The ShUREX (Shigaraki UAV Radar Experiment) 2015 campaign carried out at the Shigaraki Middle and Upper atmosphere (MU) observatory (Japan) in June 2015 provided a unique opportunity to compare vertical profiles of atmospheric parameters estimated from unmanned aerial vehicle (UAV), balloon, and radar data in the lower troposphere. The present work is intended primarily as a demonstration of the potential offered by combination of these three instruments for studying the small-scale structure and dynamics in the lower troposphere. Here, we focus on data collected almost simultaneously by two instrumented UAVs and two meteorological balloons, near the MU radar operated continuously during the campaign. The UAVs flew along helical ascending and descending paths at a nearly constant horizontal distance from the radar ( 1.0 km), while the balloons launched from the MU radar site drifted up to 3-5 km in the altitude range of comparisons ( 0.5 to 4.0 km) due to wind advection. Vertical profiles of squared Brünt-Väisälä frequency N 2 and squared vertical gradient of generalized potential refractive index M 2 were estimated at a vertical resolution of 20 m from pressure, temperature, and humidity data collected by UAVs and radiosondes. Profiles of M 2 were also estimated from MU radar echo power at vertical incidence at a vertical sampling of 20 m and various time resolutions (1-4 min). The balloons and the MU radar provided vertical profiles of wind and wind shear S so that two independent estimates of the gradient Richardson number ( Ri = N 2/ S 2) could be obtained at a range resolution of 150 m. The two estimates of Ri profiles also showed remarkable agreement at all altitudes. We show that all three instruments detected the same prominent temperature and humidity gradients, down to decameter scales in stratified conditions. These gradients extended horizontally over a few kilometers at least and persisted for hours without significant changes, indicating that the turbulent diffusion was weak . Large discrepancies between N 2and M 2 profiles derived from the balloon, UAV, and radar data were found in a turbulent layer generated by a Kelvin-Helmholtz (KH) shear flow instability in the height range from 1.80 to 2.15 km. The cause of these discrepancies appears to depend on the stage of the KH billows.

  14. Near-Millimeter Wave Technology Base Study: Volume I. Propagation and Target/Background Characteristics

    DTIC Science & Technology

    1979-11-01

    diameter test cell used for laser propagation measurements is Path length-84 m to 2.0 km available and has been designed for circulating aerosols or...36- and 110-GHz and found an attenuation ratio of comparison measurements along a 4-km path with rain rate measured near the receiver end. a *02 They...time. Tipping-bucket systems . gauges are reliable, but become increasingly in- accurate at high rates . Flow gauges which The direct field measurement

  15. Impact of Biomass Burning Aerosols on Cloud Formation in Coastal Regions

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Reid, J. S.

    2017-12-01

    In the tropics, shallow and deep convective cloud structures organize in hierarchy of spatial scales ranging from meso-gamma (2-20 km) to planetary scales (40,000km). At the lower end of the spectrum is shallow convection over the open ocean, whose upscale growth is dependent upon mesoscale convergence triggers. In this context, cloud systems associated with land breezes that propagate long distances into open ocean areas are important. We utilized numerical model simulations to examine the impact of biomass burning on such cloud systems in the maritime continent, specifically along the coastal regions of Sarawak. Numerical model simulations conducted using the Weather Research and Forecasting Chemistry (WRF-Chem) model show spatial patterns of smoke that show good agreement to satellite observations. Analysis of model simulations show that, during daytime the horizontal convective rolls (HCRs) that form over land play an important role in organizing transport of smoke in the coastal regions. Alternating patterns of low and high smoke concentrations that are well correlated to the wavelengths of HCRs are found in both the simulations and satellite observations. During night time, smoke transport is modulated by the land breeze circulation and a band of enhanced smoke concentration is found along the land breeze front. Biomass burning aerosols are ingested by the convective clouds that form along the land breeze and leads to changes in total water path, cloud structure and precipitation formation.

  16. Effects of Corrugated Temperature Sheets on Optical Propagation along Quasi-Horizontal Paths in the Stably Stratified Atmosphere

    DTIC Science & Technology

    2015-12-11

    diameter) are consistent with theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short...theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short-term (less than a few seconds... turbulent , quasi-horizontal interfaces, or “sheets”. Collocated in- situ and optical field measurements conducted in the atmospheric surface layer

  17. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted ofmore » the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.« less

  18. The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations

    NASA Astrophysics Data System (ADS)

    Seitz, K.; Buxmann, J.; Pöhler, D.; Sommer, T.; Tschritter, J.; Neary, T.; O'Dowd, C.; Platt, U.

    2010-03-01

    We present investigations of the reactive iodine species (RIS) IO, OIO and I2 in a coastal region from a field campaign simultaneously employing active long path differential optical absorption spectroscopy (LP-DOAS) as well as passive multi-axis differential optical absorption spectroscopy (MAX-DOAS). The campaign took place at the Martin Ryan Institute (MRI) in Carna, County Galway at the Irish West Coast about 6 km south-east of the atmospheric research station Mace Head in summer 2007. In order to study the horizontal distribution of the trace gases of interest, we established two almost parallel active LP-DOAS light paths, the shorter of 1034 m length just crossing the intertidal area, whereas the longer one of 3946 m length also crossed open water during periods of low tide. In addition we operated two passive Mini-MAX-DOAS instruments with the same viewing direction. While neither OIO nor I2 could be unambiguously identified with any of the instruments, IO could be detected with active as well as passive DOAS. The IO column densities seen at both active LP-DOAS light paths are almost the same. Thus it can be concluded that coastal IO is almost exclusively located in the intertidal area, where we detected mixing ratios of up to 29±8.8 ppt (equivalent to pmol/mol). Nucleation events with particle concentrations of 106 cm-3 particles were observed each day correlating with high IO mixing ratios. Therefore we feel that our detected IO concentrations confirm the results of model studies, which state that in order to explain such particle bursts, IO mixing ratios of 50 to 100 ppt in so called "hot-spots" are required.

  19. The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations

    NASA Astrophysics Data System (ADS)

    Seitz, K.; Buxmann, J.; Pöhler, D.; Sommer, T.; Tschritter, J.; O'Dowd, C.; Platt, U.

    2009-10-01

    We present investigations of the reactive iodine species (RIS) IO, OIO and I2 in a coastal region from a field campaign simultaneously employing active long path differential optical absorption spectroscopy (LP-DOAS) as well as passive multi-axis differential optical absorption spectroscopy (MAX-DOAS). The campaign took place at the Martin Ryan Institute (MRI) in Carna, County Galway at the Irish West Coast about 6 km south-east of the atmospheric research station Mace Head in summer 2007. In order to study the horizontal distribution of the trace gases of interest, we established two almost parallel active LP-DOAS light paths, the shorter of 1034 m length just crossing the intertidal area, whereas the longer one of 3946 m length also crossed open water during periods of low tide. In addition we operated two passive Mini-MAX-DOAS instruments with the same viewing direction. While neither OIO nor I2 could be unambiguously identified with any of the instruments, IO could be detected with active as well as passive DOAS. The IO column densities seen at both active LP-DOAS light paths are almost the same. Thus it can be concluded that coastal IO is almost exclusively located in the intertidal area, where we detected mixing ratios of up to 35±7.7 ppt (equivalent to pmol/mol). Nucleation events with particle concentrations of 106 cm-3 particles were observed each day correlating with high IO mixing ratios. Therefore we feel that our detected IO concentrations confirm the results of model studies, which state that in order to explain such particle bursts, IO mixing ratios of 50 to 100 ppt in so called "hot-spots" are required.

  20. An Observation-base investigation of nudging in WRF for downscaling surface climate information to 12-km Grid Spacing

    EPA Science Inventory

    Previous research has demonstrated the ability to use the Weather Research and Forecast (WRF) model and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal resolution of 36 km. Environmental managers and urban planners have expre...

  1. Distribution of free gas and 3D mirror image structures beneath Sevastopol mud volcano, Black sea, from 3D high resolution wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; Papenberg, C. A.; Klaeschen, D.; Bialas, J.

    2016-12-01

    The goal of this study is to image the sub-seafloor structure beneath the Sevastopol mud volcano (SMV), Sorokin Trough, SE of the Crimean peninsula, Black Sea. The focus lies on structures of/within the feeder channel, the distribution of gas and gas hydrates, and their relation to fluid migration zones in sediments. This study concentrates on a 3D high resolution seismic grid (7 km x 2.5 km) recorded with 13 ocean bottom stations (OBS). The 3D nature of the experiment results from the geometry of 68 densely spaced (25/50 m) profiles, as well as the cubical configuration of the densely spaced receivers on the seafloor ( 300 m station spacing). The seismic profiles are typically longer than 6 km which results in large offsets for the reflections of the OBS. This enables the study of the seismic velocities of the sub-seafloor sediments and additionally large offset incident analysis.The 3D Kirchhoff mirror image time migration, applied to all OBS sections including all shots from all profiles, leads to a spatial image of the sub-seafloor. Here, the migration was applied with the velocity distribution of 1.49 km/s in the water column, 1.5 km/s below the seafloor (bsf) increasing to 2 km/s for the deeper sediments at 2 s bsf. Acoustic blanking occurs beneath the south-easterly located OBS and is associated with the feeder channel of the mud volcano. There, gas from depth can vertically migrate to the seafloor and on its way to the surface horizontally distribute patchily within sediment layers. High amplitude reflections are not observed as continuous reflections, but in a patchy distribution. They are associated with accumulations of gas. Also structures exist within the feeder channel of the SMV.3D mirror imaging proves to be a good tool to seismically image structures compared with 2D streamer seismics, especially steep dipping reflectors and structures which are otherwise obscured by signal scattering, i.e structures associated with fluid migration paths.

  2. Geometric Hitting Set for Segments of Few Orientations

    DOE PAGES

    Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S. B.; ...

    2016-01-13

    Here we study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the \\hitting points"). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. Lastly, we give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.

  3. Use of LANDSAT data for automatic classification and area estimation of sugarcane plantation in Sao Paulo state, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Mendonca, F. J.

    1980-01-01

    Ten segments of the size 20 x 10 km were aerially photographed and used as training areas for automatic classifications. The study areas was covered by four LANDSAT paths: 235, 236, 237, and 238. The percentages of overall correct classification for these paths range from 79.56 percent for path 238 to 95.59 percent for path 237.

  4. Rayleigh lidar observations of gravity wave activity in the upper stratosphere at Urbana, Ill.

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Miller, M. S.; Liu, C. H.

    1988-01-01

    During 13 nights of Rayleigh lidar measurements at Urbana, Ill. in 1984 to 1986, thirty-six quasi-monochromatic gravity waves were observed in the 35 to 50 km altitude region of the stratosphere. The characteristics of the waves are compared with other lidar and radar measurements of gravity waves and the theoretical models of wave saturation and dissipation phenomena. The measured vertical wavelengths ranged from 2 to 11.5 km and the measured vertical phase velocities ranged from 10 to 85 cm/s. The vertical wavelengths and vertical phase velocities were used to infer observed wave periods which ranged from 100 to 1000 min and horizontal wavelengths which ranged from 70 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No significant seasonal variations were evident in the observed parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with wave periods, which is consistent with recent sodium lidar studies of quasi-monochromatic waves near the mesopause. An average amplitude growth length of 20.9 km for the rms wind perturbations was estimated from the data. Kinetic energy density associated with the waves decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.

  5. Running with horizontal pulling forces: the benefits of towing.

    PubMed

    Grabowski, Alena M; Kram, Rodger

    2008-10-01

    Towing, or running with a horizontal pulling force, is a common technique used by adventure racing teams. During an adventure race, the slowest person on a team determines the team's overall performance. To improve overall performance, a faster runner tows a slower runner with an elastic cord attached to their waists. Our purpose was to create and validate a model that predicts the optimal towing force needed by two runners to achieve their best overall performance. We modeled the effects of towing forces between two runners that differ in solo 10-km performance time and/or body mass. We calculated the overall time that could be saved with towing for running distances of 10, 20, and 42.2-km based on equations from previous research. Then, we empirically tested our 10-km model on 15 runners. Towing improved overall running performance considerably and our model accurately predicted this performance improvement. For example, if two runners (a 70 kg runner with a 35 min solo 10-km time and a 70-kg runner with a 50-min solo 10-km time) maintain an optimal towing force throughout a 10-km race, they can improve overall performance by 15%, saving almost 8 min. Ultimately, the race performance time and body mass of each runner determine the optimal towing force.

  6. Gravity Wave Seeding of Equatorial Plasma Bubbles

    NASA Technical Reports Server (NTRS)

    Singh, Sardul; Johnson, F. S.; Power, R. A.

    1997-01-01

    Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.

  7. VLF modal interference distance and nighttime D region VLF reflection height for west-east and east-west propagation paths to Fiji

    NASA Astrophysics Data System (ADS)

    Chand, Atishnal Elvin; Kumar, Sushil

    2017-08-01

    Very low frequency (VLF) signals from navigational transmitters propagate through the Earth-ionosphere waveguide formed by the Earth and the lower conducting ionosphere and show the pronounced minima during solar terminator transition between transmitter and receiver. Pronounced amplitude minima observed on 19.8 kHz (NWC transmitter) and 24.8 kHz (NLK transmitter) signals recorded at Suva (18.149°S, 178.446°E), Fiji, during 2013-2014, have been used to estimate the VLF modal interference distance (DMS) and nighttime D region VLF reflection height (hN). The NWC transmitter signal propagates mostly in west-east direction, and the NLK transmitter follows a transequatorial path propagating significantly in the east-west direction. The values of DMS calculated using midpath terminator speed are 2103 ± 172 km and 2507 ± 373 km for these paths having west-east and east-west components of VLF subionospheric propagation, respectively, which agree with previously published results and within 10% with theoretical values. We have also compared the DMS estimated using a terminator time method with that calculated using terminator speed for a particular day and found both the values to be consistent. The hN values were found to be maximum during winter of Southern Hemisphere for NWC signal and winter of Northern Hemisphere for NLK signal VLF propagation paths to Suva. The hN also shows significant day-to-day and seasonal variabilities with a maximum of about 10 km and 23 km for NWC and NLK signal propagation paths, respectively, which could be due to the atmospheric gravity waves associated with solar terminator transition, as well as meteorological factors such as strong lightnings.

  8. Assessment of the effects of horizontal grid resolution on long-term air quality trends using coupled WRF-CMAQ simulations

    EPA Science Inventory

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental Uni...

  9. Deformation from the 1989 Loma Prieta earthquake near the southwest margin of the Santa Clara Valley, California

    USGS Publications Warehouse

    Schmidt, Kevin M.; Ellen, Stephen D.; Peterson, David M.

    2014-01-01

    To gain additional measurement of any permanent ground deformation that accompanied this damage, we compiled and conducted post-earthquake surveys along two 5-km lines of horizontal control and a 15-km level line. Measurements of horizontal distortion indicate approximately 0.1 m shortening in a NE-SW direction across the valley margin, similar to the amount measured in the channel lining. Evaluation of precise leveling by the National Geodetic Survey showed a downwarp, with an amplitude of >0.1 m over a span of >12 km, that resembled regional geodetic models of coseismic deformation. Although the leveling indicates broad, regional warping, abrupt discontinuities characteristic of faulting characterize both the broad-scale distribution of damage and the local deformation of the channel lining. Reverse movement largely along preexisting faults and probably enhanced significantly by warping combined with enhanced ground shaking, produced the documented coseismic ground deformation.

  10. Magnetic susceptibility and AMS of the Bushveld alkaline granites, South Africa

    NASA Astrophysics Data System (ADS)

    Ferré, Eric C.; Wilson, Jeff; Gleizes, Gérard

    1999-06-01

    The Bushveld Complex in South Africa includes one of the world's largest anorogenic alkaline granite intrusions (66,000 km 2). The granite forms a composite laccolith, of 350 × 250 km in area and about 2 km in thickness, which was emplaced at about 5 km depth into sediments overlying the Kaapvaal craton, at 2054 Ma. The Bushveld granite and its roof-rocks have long been mined for Sn, W and F. The Bushveld granites have high magnetic susceptibilities ( Km from 1000 to 4000 μSI), and a quantitative model is presented, suggesting that susceptibility fabrics are primarily carried by ferromagnetic minerals. The measured AMS foliations coincide with observed subhorizontal mineral lineations and compositional layering. Magnetic lineation trends vary considerably within the horizontal plane. The existence of a weak planar fabric and, an almost absent linear component may reflect (a) laccolithic emplacement by roof uplift, causing flattening magmatic fabrics, or (b) emplacement of largely crystal-free magma crystallizing in-situ and developing horizontal compositional layering from thermal chemical diffusion fronts and gravity-driven mechanisms. Weak magnétic fabrics, like those identified in the Bushveld granites require specific sampling schemes and procedures, in addition to rigorous constraint of magnetic mineralogy and crystallization sequence.

  11. Mature thunderstorm cloud top structure - Three-dimensional numerical simulation versus satellite observations

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.

    1982-01-01

    Preliminary results of four runs with a three-dimensional model of the effects of vertical wind shear on cloud top height/temperature structure and the internal properties of isolate midlatitude thunderstorms are reported. The model is being developed as an aid to analyses of GEO remote sensing satellite data. The grid is a 27 x 27 x 20 mesh with 2 km horizontal resolution and 0.9 vertical resolution. The total grid is 54 km on a side and 18 km deep. A second-order Crowley scheme for advecting momentum is extended with a third-order correction for spatial truncation error, and the earth-relative horizontal surface wind components are decreased to 50 percent of their values at 0.45 km. A temperature increase with height is included, together with an initial impulse consisting of a nonrotating cylindrical weak buoyant updraft 10 km in radius. The results of the runs are discussed in terms of the time variation of the vertical velocity extrema, the effects of strong and weak shear on a storm, the cloud top height, the Lagrangian dynamics of a thermal couplet, and data from a real storm.

  12. Gravity Waves in the Presence of Shear during DEEPWAVE

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.

    2016-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere. This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new Rayleigh and sodium resonance lidars and an advanced mesospheric temperature mapper (AMTM), a microwave temperature profiler (MTP), as well as dropwindsondes and flight level instruments providing measurements spanning altitudes from immediately above the NGV flight altitude ( 13 km) to 100 km. In this study, we utilize the DEEPWAVE observations and the nonhydrostatic COAMPS configured at high resolution (2 km) with a deep domain (60-80 km) to explore the effects of horizontal wind shear on gravity wave propagation and wave characteristics. Real-data simulations have been conducted for several DEEPWAVE cases. The results suggest that horizontal shear associated with the stratospheric polar night jet refracts the gravity waves and leads to propagation of waves significantly downwind of the South Island. These waves have been referred to as "trailing gravity waves", since they are found predominantly downwind of the orography of the South Island and the wave crests rotate nearly normal to the mountain crest. Observations from the G-V, remote sensing instruments, and the AIRS satellite confirm the presence of gravity waves downwind of the orography in numerous events. The horizontal propagation in the stratosphere can be explained by group velocity arguments for gravity waves in which the wave energy is advected downwind by the component of the flow normal to the horizontal wavevector. We explore the impact of the shear on gravity wave propagation in COAMPS configured in an idealized mode initialized with a zonally balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the waves. The zonal momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.

  13. Assessment of upper-ocean variability and the Madden-Julian Oscillation in extended-range air-ocean coupled mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Hong, Xiaodong; Reynolds, Carolyn A.; Doyle, James D.; May, Paul; O'Neill, Larry

    2017-06-01

    Atmosphere-ocean interaction, particular the ocean response to strong atmospheric forcing, is a fundamental component of the Madden-Julian Oscillation (MJO). In this paper, we examine how model errors in previous Madden-Julian Oscillation (MJO) events can affect the simulation of subsequent MJO events due to increased errors that develop in the upper-ocean before the MJO initiation stage. Two fully coupled numerical simulations with 45-km and 27-km horizontal resolutions were integrated for a two-month period from November to December 2011 using the Navy's limited area Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). There are three MJO events that occurred subsequently in early November, mid-November, and mid-December during the simulations. The 45-km simulation shows an excessive warming of the SSTs during the suppressed phase that occurs before the initiation of the second MJO event due to erroneously strong surface net heat fluxes. The simulated second MJO event stalls over the Maritime Continent which prevents the recovery of the deep mixed layer and associated barrier layer. Cross-wavelet analysis of solar radiation and SSTs reveals that the diurnal warming is absent during the second suppressed phase after the second MJO event. The mixed layer heat budget indicates that the cooling is primarily caused by horizontal advection associated with the stalling of the second MJO event and the cool SSTs fail to initiate the third MJO event. When the horizontal resolution is increased to 27-km, three MJOs are simulated and compare well with observations on multi-month timescales. The higher-resolution simulation of the second MJO event and more-realistic upper-ocean response promote the onset of the third MJO event. Simulations performed with analyzed SSTs indicate that the stalling of the second MJO in the 45-km run is a robust feature, regardless of ocean forcing, while the diurnal cycle analysis indicates that both 45-km and 27-km ocean resolutions respond realistically when provided with realistic atmospheric forcing. Thus, the problem in the 45-km simulation appears to originate in the atmosphere. Additional simulations show that while the details of the simulations are sensitive to small changes in the initial integration time, the large differences between the 45-km and 27-km runs during the suppressed phase in early December are robust.

  14. What model resolution is required in climatological downscaling over complex terrain?

    NASA Astrophysics Data System (ADS)

    El-Samra, Renalda; Bou-Zeid, Elie; El-Fadel, Mutasem

    2018-05-01

    This study presents results from the Weather Research and Forecasting (WRF) model applied for climatological downscaling simulations over highly complex terrain along the Eastern Mediterranean. We sequentially downscale general circulation model results, for a mild and wet year (2003) and a hot and dry year (2010), to three local horizontal resolutions of 9, 3 and 1 km. Simulated near-surface hydrometeorological variables are compared at different time scales against data from an observational network over the study area comprising rain gauges, anemometers, and thermometers. The overall performance of WRF at 1 and 3 km horizontal resolution was satisfactory, with significant improvement over the 9 km downscaling simulation. The total yearly precipitation from WRF's 1 km and 3 km domains exhibited < 10% bias with respect to observational data. The errors in minimum and maximum temperatures were reduced by the downscaling, along with a high-quality delineation of temperature variability and extremes for both the 1 and 3 km resolution runs. Wind speeds, on the other hand, are generally overestimated for all model resolutions, in comparison with observational data, particularly on the coast (up to 50%) compared to inland stations (up to 40%). The findings therefore indicate that a 3 km resolution is sufficient for the downscaling, especially that it would allow more years and scenarios to be investigated compared to the higher 1 km resolution at the same computational effort. In addition, the results provide a quantitative measure of the potential errors for various hydrometeorological variables.

  15. Non-mechanical optical path switching and its application to dual beam spectroscopy including gas filter correlation radiometry

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)

    1992-01-01

    A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.

  16. Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results

    NASA Astrophysics Data System (ADS)

    Gans, Christine R.; Beck, Susan L.; Zandt, George; Gilbert, Hersh; Alvarado, Patricia; Anderson, Megan; Linkimer, Lepolt

    2011-07-01

    The Pampean flat slab of central Chile and Argentina (30°-32°S) has strongly influenced Cenozoic tectonics in western Argentina, which contains both the thick-skinned, basement-cored uplifts of the Sierras Pampeanas and the thin-skinned Andean Precordillera fold and thrust belt. In this region of South America, the Nazca Plate is subducting nearly horizontally beneath the South American Plate at ˜100 km depth. To gain a better understanding of the deeper structure of this region, including the transition from flat to 'normal' subduction to the south, three IRIS-PASSCAL arrays of broad-band seismic stations have been deployed in central Argentina. Using the dense SIEMBRA array, combined with the broader CHARGE and ESP arrays, the flat slab is imaged for the first time in 3-D detail using receiver function (RF) analysis. A distinct pair of RF arrivals consisting of a negative pulse that marks the top of the oceanic crust, followed by a positive pulse, which indicates the base of the oceanic crust, can be used to map the slab's structure. Depths to Moho and oceanic crustal thicknesses estimated from RF results provide new, more detailed regional maps. An improved depth to continental Moho map shows depths of more than 70 km in the main Cordillera and ˜50 km in the western Sierras Pampeanas, that shallow to ˜35 km in the eastern Sierras Pampeanas. Depth to Moho contours roughly follow terrane boundaries. Offshore, the hotspot seamount chain of the Juan Fernández Ridge (JFR) is thought to create overthickened oceanic crust, providing a mechanism for flat slab subduction. By comparing synthetic RFs, based on various structures, to the observed RF signal we determine that the thickness of the oceanic crust at the top of the slab averages at least ˜13-19 km, supporting the idea of a moderately overthickened crust to provide the additional buoyancy for the slab to remain flat. The overthickened region is broader than the area directly aligned with the path of the JFR, however, and indicates, along with the slab earthquake locations, that the flat slab area is wider than the JFR volcanic chain observed in the offshore bathymetry. Further, RFs indicate that the subducted oceanic crust in the region directly along the path of the subducted ridge is broken by trench-parallel faults. One explanation for these faults is that they are older structures within the oceanic crust that were created when the slab subducted. Alternatively, it is possible that faults formed recently from tectonic underplating caused by increased interplate coupling in the flat slab region.

  17. Bárðarbunga volcano - post-eruption trends following the Holuhraun eruption in 2014-2015

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Kristín; Hooper, Andrew; Jónasson, Kristján; Vogfjörð, Kristín; Tumi Gudmundsson, Magnús; Hjorleifsdóttir, Vala; Rodríguez-Cardozo, Felix R.; Sigmundsson, Freysteinn; Ófeigsson, Benedikt G.; Parks, Michelle M.; Roberts, Matthew; Gudmundsson, Gunnar B.; Hognadóttir, Thordis; Pfeffer, Melissa A.; Geirsson, Halldór; Barsotti, Sara; Oddsson, Bjorn

    2017-04-01

    The Bárdarbunga volcano in central Iceland experienced a major unrest, lateral dyking, and eruption in August 2014-February 2015. The eruption was accompanied by caldera collapse, a truly rare event that has not been monitored in such detail before, providing a unique opportunity for better understanding the volcanic structure and processes. The collapse was extensive as the 8x11 km caldera gradually subsided and a subsidence bowl up to 65 m deep was formed, while about 1.8 km3 of magma drained laterally along a subterranean path, forming a flood basalt 47 km northeast of the volcano. The collapse was accompanied by high rates of seismicity and 80 earthquakes between M5-M5.8 were recorded. Using various geophysical and geochemical data, together with modelling, the magma reservoir has been estimated to reside at about 8-12 km depth beneath the caldera and recent findings show that the subsidence was driven by a feedback between the pressure of the piston-like block overlying the reservoir, and the 47 km long magma outflow path. The collapse and magma outflow gradually declined until the eruption ended on the 27th February 2015. After the end of the eruption, GPS deformation data show horizontal movements that seem to be in line with an inflation signal centered at the caldera, but the pattern is more complicated than during the co-eruptive period. The seismicity continued to decline, both in the far end of the dyke as well as within the caldera. However, in September 2015 seismicity within the caldera started to increase again. Interestingly, this increase was identified in terms of increased earthquake magnitudes while earthquake rate remained relatively constant. This resulted in a volcanic earthquake catalog with the highest seismic moment release rate ever recorded in Iceland during times of volcanic quiescence. Here we present a seismic waveform correlation analysis which reveals a dramatic change occurring between February and May 2015, where the earthquakes' first motion polarity reverses sign. This time coincides with the ending of the caldera collapse and the eruption. We investigate relative locations of the earthquakes as well as moment tensor solutions and compare results of the post-eruption period to the period during caldera subsidence and eruptive activity. In addition, we present analysis of post-eruption trends of the deformation data as well as seismicity trends. Preliminary results suggest that caldera fault movements where reversed soon after the eruption ended in spring 2015 when we also observe outwards movement of GPS stations around the caldera, indicating re-inflation long before any seismicity increase was detected. These data and their interpretation are vital to understanding the current status of the volcano and, eventually, to perform a more accurate and reliable hazard assessment.

  18. Integrated hydrologic modeling: Effects of spatial scale, discretization and initialization

    NASA Astrophysics Data System (ADS)

    Seck, A.; Welty, C.; Maxwell, R. M.

    2011-12-01

    Groundwater discharge contributes significantly to the annual flows of Chesapeake Bay tributaries and is presumed to contribute to the observed lag time between the implementation of management actions and the environmental response in the Chesapeake Bay. To investigate groundwater fluxes and flow paths and interaction with surface flow, we have developed a fully distributed integrated hydrologic model of the Chesapeake Bay Watershed using ParFlow. Here we present a comparison of model spatial resolution and initialization methods. We have studied the effect of horizontal discretization on overland flow processes at a range of scales. Three nested model domains have been considered: the Monocacy watershed (5600 sq. km), the Potomac watershed (92000 sq. km) and the Chesapeake Bay watershed (400,000 sq. km). Models with homogeneous subsurface and topographically-derived slopes were evaluated at 500-m, 1000-m, 2000-m, and 4000-m grid resolutions. Land surface slopes were derived from resampled DEMs and corrected using stream networks. Simulation results show that the overland flow processes are reasonably well represented with a resolution up to 2000 m. We observe that the effects of horizontal resolution dissipate with larger scale models. Using a homogeneous model that includes subsurface and surface terrain characteristics, we have evaluated various initialization methods for the integrated Monocacy watershed model. This model used several options for water table depths and two rainfall forcing methods including (1) a synthetic rainfall-recession cycle corresponding to the region's average annual rainfall rate, and (2) an initial shut-off of rainfall forcing followed by a rainfall-recession cycling. Results show the dominance of groundwater generated runoff during a first phase of the simulation followed by a convergence towards more balanced runoff generation mechanisms. We observe that the influence of groundwater runoff increases in dissected relief areas characterized by high slope magnitudes. This is due to the increase in initial water table gradients in these regions. As a result, in the domain conditions for this study, an initial shut-off of rainfall forcing proved to be the more efficient initialization method. The initialized model is then coupled with a Land Surface Model (CLM). Ongoing work includes coupling a heterogeneous subsurface field with spatially variable meteorological forcing using the National Land Data Assimilation System (NLDAS) data products. Seasonal trends of groundwater levels for current and pre-development conditions of the basin will be compared.

  19. High Velocity Horizontal Motions at the Edge of Sunspot Penumbrae

    NASA Astrophysics Data System (ADS)

    Hagenaar-Daggett, Hermance J.; Shine, R.

    2010-05-01

    The outer edges of sunspot penumbrae have long been noted as a region of interesting dynamics including formation of MMFs, extensions and retractions of the penumbral tips, fast moving (2-3 km/s) bright features dubbed"streakers", and localized regions of high speed downflows interpreted as Evershed "sinks". Using 30s cadence movies of high spatial resolution G band and Ca II H images taken by the Hinode SOT/FPP instrument from 5-7 Jan 2007, we have been investigating the penumbra around a sunspot in AR 10933. In addition to the expected phenomena, we also see occasional small dark crescent-shaped features with high horizontal velocities (6.5 km/s) in G band movies. These appear to be emitted from penumbral tips. They travel about 1.5 Mm developing a bright wake that evolves into a slower moving (1-2 km/s) bright feature. In some cases, there may be an earlier outward propagating disturbance within the penumbra. We have also analyzed available Fe 6302 Stokes V images to obtain information on the magnetic field. Although only lower resolution 6302 images made with a slower cadence are available for these particular data sets, we can establish that the features have the opposite magnetic polarity of the sunspot. This observation may be in agreement with simulations showing that a horizontal flux tube develops crests that move outward with a velocity as large as 10 km/s. This work was supported by NASA contract NNM07AA01C.

  20. A dynamic model for slab development associated with the 2015 Mw 7.9 Bonin Islands deep earthquak

    NASA Astrophysics Data System (ADS)

    Zhan, Z.; Yang, T.; Gurnis, M.

    2016-12-01

    The 680 km deep May 30, 2015 Mw 7.9 Bonin Islands earthquake is isolated from the nearest earthquakes by more than 150 km. The geodynamic context leading to this isolated deep event is unclear. Tomographic models and seismicity indicate that the morphology of the west-dipping Pacific slab changes rapidly along the strike of the Izu-Bonin-Mariana trench. To the north, the Izu-Bonin section of the Pacific slab lies horizontally above the 660 km discontinuity and extends more than 500 km westward. Several degrees south, the Mariana section dips vertically and penetrates directly into the lower mantle. The observed slab morphology is consistent with plate reconstructions suggesting that the northern section of the IBM trench retreated rapidly since the late Eocene while the southern section of the IBM trench was relatively stable during the same period. We suggest that the location of the isolated 2015 Bonin Islands deep earthquake can be explained by the buckling of the Pacific slab beneath the Bonin Islands. We use geodynamic models to investigate the slab morphology, temperature and stress regimes under different trench motion histories. Models confirm previous results that the slab often lies horizontally within the transition zone when the trench retreats, but buckles when the trench position becomes fixed with respect to the lower mantle. We show that a slab-buckling model is consistent with the observed deep earthquake P-axis directions (assumed to be the axis of principal compressional stress) regionally. The influences of various physical parameters on slab morphology, temperature and stress regime are investigated. In the models investigated, the horizontal width of the buckled slab is no more than 400 km.

  1. Remote Sensing of the Optical and Physical Densities of Smoke, Dust, and Water Clouds.

    DTIC Science & Technology

    1982-12-01

    systems to measure variability of aerosol concentration distributions along horizontal optical paths . Analysis of backscatter... extinction measurements using a single- laser lidar system operating at 1.06- and 0.53-pm wavelengths. For larger mean particle sizes the extinction ratio...clear air paths and The transmissometers were mounted across a 10-m complete blockage of the source energy. Transmisso- long aerosol tunnel that

  2. Two-dimensional, average velocity field across the Asal Rift, Djibouti from 1997-2008 RADARSAT data

    NASA Astrophysics Data System (ADS)

    Tomic, J.; Doubre, C.; Peltzer, G.

    2009-12-01

    Located at the western end of the Aden ridge, the Asal Rift is the first emerged section of the ridge propagating into Afar, a region of intense volcanic and tectonic activity. We construct a two-dimensional surface velocity map of the 200x400 km2 region covering the rift using the 1997-2008 archive of InSAR data acquired from ascending and descending passes of the RADARSAT satellite. The large phase signal due to turbulent troposphere conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. We combine the ascending and descending pass LOS velocity fields with the Arabia-Somalia pole of rotation adjusted to regional GPS velocities (Vigny et al., 2007) to compute the fields of the vertical and horizontal, GPS-parallel components of the velocity over the rift. The vertical velocity field shows a ~40 km wide zone of doming centered over the Fieale caldera associated with shoulder uplift and subsidence of the rift inner floor. Differential movement between shoulders and floor is accommodated by creep at 6 mm/yr on Fault γ and 2.7 mm/yr on Fault E. The horizontal field shows that the two shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift to the plate motion rate of ~11 mm/yr. Part of the opening is concentrated on faults γ (5 mm/yr) and E (4 mm/yr) and about 4 mm/yr is distributed between Fault E and Fault H in the southern part of the rift. The observed velocity field along a 60 km-long profile across the eastern part of the rift can be explained with a 2D mechanical model involving a 5-9 km-deep, vertical dyke expanding horizontally at a rate of 5 cm/yr, a 2 km-wide, 7 km-deep sill expanding vertically at 1cm/yr, and down-dip and opening of faults γ and E. Results from 3D rift models describing along-strike velocity decrease away from the Goubbet Gulf and the effects of a pressurized magma chamber will be presented.

  3. Refinement of horizontal resolution in dynamical downscaling of climate information using WRF: Costs, benefits, and lessons learned

    EPA Science Inventory

    Dynamical downscaling techniques have previously been developed by the U.S. Environmental Protection Agency (EPA) using a nested WRF at 108- and 36-km. Subsequent work extended one-way nesting down to 12-km resolution. Recently, the EPA Office of Research and Development used com...

  4. A Prototype Windflow Modeling System for Tactical Weather Support Operations.

    DTIC Science & Technology

    1987-05-07

    a system of numerical models that covers the mesoscale from horizontal scales of 200 km down to 5 km. Veazey and Tabor 2 1 used the windflow model to...821785 West Conference, Long Beach, Calif. 21. Veazey , D.R., and Tabor, P.A. (1985) Meteorological sensor density on the battlefield, Workshop on

  5. Air quality modelling in the Berlin-Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data

    NASA Astrophysics Data System (ADS)

    Kuik, Friderike; Lauer, Axel; Churkina, Galina; Denier van der Gon, Hugo A. C.; Fenner, Daniel; Mar, Kathleen A.; Butler, Tim M.

    2016-12-01

    Air pollution is the number one environmental cause of premature deaths in Europe. Despite extensive regulations, air pollution remains a challenge, especially in urban areas. For studying summertime air quality in the Berlin-Brandenburg region of Germany, the Weather Research and Forecasting Model with Chemistry (WRF-Chem) is set up and evaluated against meteorological and air quality observations from monitoring stations as well as from a field campaign conducted in 2014. The objective is to assess which resolution and level of detail in the input data is needed for simulating urban background air pollutant concentrations and their spatial distribution in the Berlin-Brandenburg area. The model setup includes three nested domains with horizontal resolutions of 15, 3 and 1 km and anthropogenic emissions from the TNO-MACC III inventory. We use RADM2 chemistry and the MADE/SORGAM aerosol scheme. Three sensitivity simulations are conducted updating input parameters to the single-layer urban canopy model based on structural data for Berlin, specifying land use classes on a sub-grid scale (mosaic option) and downscaling the original emissions to a resolution of ca. 1 km × 1 km for Berlin based on proxy data including traffic density and population density. The results show that the model simulates meteorology well, though urban 2 m temperature and urban wind speeds are biased high and nighttime mixing layer height is biased low in the base run with the settings described above. We show that the simulation of urban meteorology can be improved when specifying the input parameters to the urban model, and to a lesser extent when using the mosaic option. On average, ozone is simulated reasonably well, but maximum daily 8 h mean concentrations are underestimated, which is consistent with the results from previous modelling studies using the RADM2 chemical mechanism. Particulate matter is underestimated, which is partly due to an underestimation of secondary organic aerosols. NOx (NO + NO2) concentrations are simulated reasonably well on average, but nighttime concentrations are overestimated due to the model's underestimation of the mixing layer height, and urban daytime concentrations are underestimated. The daytime underestimation is improved when using downscaled, and thus locally higher emissions, suggesting that part of this bias is due to deficiencies in the emission input data and their resolution. The results further demonstrate that a horizontal resolution of 3 km improves the results and spatial representativeness of the model compared to a horizontal resolution of 15 km. With the input data (land use classes, emissions) at the level of detail of the base run of this study, we find that a horizontal resolution of 1 km does not improve the results compared to a resolution of 3 km. However, our results suggest that a 1 km horizontal model resolution could enable a detailed simulation of local pollution patterns in the Berlin-Brandenburg region if the urban land use classes, together with the respective input parameters to the urban canopy model, are specified with a higher level of detail and if urban emissions of higher spatial resolution are used.

  6. Computer Simulation of Global Profiles of Carbon Dioxide Using a Pulsed, 2-Micron, Coherent-Detection, Column-Content DIAL System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.

    2009-01-01

    We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.

  7. Maneuver sequence design for the post-Jupiter leg of Pioneer Saturn

    NASA Technical Reports Server (NTRS)

    Frauenholz, R. B.; Brady, W. F.

    1976-01-01

    After passing the planet Jupiter in December 1974, Pioneer 11 is on a flight path on which it will encounter Saturn in late 1979. Following an uncorrected trajectory, the spacecraft would pass 2 million km behind Saturn. A sequence of midcourse maneuvers for modifying the Pioneer trajectory is discussed. The corrected flight path is to bring the spacecraft within 500,000 km of Saturn's satellite Titan. Attention is given to maneuver capabilities and constraints, the maneuver design concept, questions related to the selection of an interim aimpoint, and aspects of maneuver implementation.

  8. Microseismicity in Southern South Island, New Zealand: Implications for the Mechanism of Crustal Deformation Adjacent to a Major Continental Transform

    NASA Astrophysics Data System (ADS)

    Warren-Smith, Emily; Lamb, Simon; Stern, Tim A.; Smith, Euan

    2017-11-01

    Shallow (<25 km), diffuse crustal seismicity occurs in a zone up to 150 km wide adjacent to the southern Alpine Fault, New Zealand, as a consequence of distributed shear and thickening in the obliquely convergent Australian-Pacific plate boundary zone. It has recently been proposed that continental convergence here is accommodated by oblique slip on a low-angle detachment that underlies the region, and as such, forms a previously unrecognized mode of oblique continental convergence. We test this model using microseismicity, presenting a new, 15 month high-resolution microearthquake catalog for the Southern Lakes and northern Fiordland regions adjacent to the Alpine Fault. We determine the spatial distribution, moment release, and style of microearthquakes and show that seismicity in the continental lithosphere is predominantly shallower than 20 km, in a zone up to 150 km wide, but less frequent deeper microseismicity extending into the mantle, at depths of up to 100 km is also observed. The geometry of the subducted oceanic Australian plate is well imaged, with a well-defined Benioff zone to depths of 150 km. In detail, the depth of continental microseismicity shows considerable variation, with no clear link with major active surface faults, but rather represents diffuse cracking in response to the ambient stress release. The moment release rate is 0.1% of that required to accommodate relative plate convergence, and the azimuth of the principal horizontal axis of contraction accommodated by microseismicity is 120°, 15-20° clockwise of the horizontal axis of contractional strain rate observed geodetically. Thus, short-term microseismicity, independent of knowledge of intermittent large-magnitude earthquakes, may not be a good guide to the rate and orientation of long-term deformation but is an indicator of the instantaneous state of stress and potential distribution of finite deformation. We show that both the horizontal and vertical spatial distribution of microseismicity can be explained in terms of a low-angle detachment model.

  9. Prediction of heavy rainfall over Chennai Metropolitan City, Tamil Nadu, India: Impact of microphysical parameterization schemes

    NASA Astrophysics Data System (ADS)

    Singh, K. S.; Bonthu, Subbareddy; Purvaja, R.; Robin, R. S.; Kannan, B. A. M.; Ramesh, R.

    2018-04-01

    This study attempts to investigate the real-time prediction of a heavy rainfall event over the Chennai Metropolitan City, Tamil Nadu, India that occurred on 01 December 2015 using Advanced Research Weather Research and Forecasting (WRF-ARW) model. The study evaluates the impact of six microphysical (Lin, WSM6, Goddard, Thompson, Morrison and WDM6) parameterization schemes of the model on prediction of heavy rainfall event. In addition, model sensitivity has also been evaluated with six Planetary Boundary Layer (PBL) and two Land Surface Model (LSM) schemes. Model forecast was carried out using nested domain and the impact of model horizontal grid resolutions were assessed at 9 km, 6 km and 3 km. Analysis of the synoptic features using National Center for Environmental Prediction Global Forecast System (NCEP-GFS) analysis data revealed strong upper-level divergence and high moisture content at lower level were favorable for the occurrence of heavy rainfall event over the northeast coast of Tamil Nadu. The study signified that forecasted rainfall was more sensitive to the microphysics and PBL schemes compared to the LSM schemes. The model provided better forecast of the heavy rainfall event using the logical combination of Goddard microphysics, YSU PBL and Noah LSM schemes, and it was mostly attributed to timely initiation and development of the convective system. The forecast with different horizontal resolutions using cumulus parameterization indicated that the rainfall prediction was not well represented at 9 km and 6 km. The forecast with 3 km horizontal resolution provided better prediction in terms of timely initiation and development of the event. The study highlights that forecast of heavy rainfall events using a high-resolution mesoscale model with suitable representations of physical parameterization schemes are useful for disaster management and planning to minimize the potential loss of life and property.

  10. P and S velocity structure of the crust and the upper mantle beneath central Java from local tomography inversion

    NASA Astrophysics Data System (ADS)

    Koulakov, I.; Bohm, M.; Asch, G.; Lühr, B.-G.; Manzanares, A.; Brotopuspito, K. S.; Fauzi, Pak; Purbawinata, M. A.; Puspito, N. T.; Ratdomopurbo, A.; Kopp, H.; Rabbel, W.; Shevkunova, E.

    2007-08-01

    Here we present the results of local source tomographic inversion beneath central Java. The data set was collected by a temporary seismic network. More than 100 stations were operated for almost half a year. About 13,000 P and S arrival times from 292 events were used to obtain three-dimensional (3-D) Vp, Vs, and Vp/Vs models of the crust and the mantle wedge beneath central Java. Source location and determination of the 3-D velocity models were performed simultaneously based on a new iterative tomographic algorithm, LOTOS-06. Final event locations clearly image the shape of the subduction zone beneath central Java. The dipping angle of the slab increases gradually from almost horizontal to about 70°. A double seismic zone is observed in the slab between 80 and 150 km depth. The most striking feature of the resulting P and S models is a pronounced low-velocity anomaly in the crust, just north of the volcanic arc (Merapi-Lawu anomaly (MLA)). An algorithm for estimation of the amplitude value, which is presented in the paper, shows that the difference between the fore arc and MLA velocities at a depth of 10 km reaches 30% and 36% in P and S models, respectively. The value of the Vp/Vs ratio inside the MLA is more than 1.9. This shows a probable high content of fluids and partial melts within the crust. In the upper mantle we observe an inclined low-velocity anomaly which links the cluster of seismicity at 100 km depth with MLA. This anomaly might reflect ascending paths of fluids released from the slab. The reliability of all these patterns was tested thoroughly.

  11. BXS Re-calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, J; /SLAC

    2010-11-24

    Early in the commissioning it was noticed by Cecile Limborg that the calibration of the BXS spectrometer magnet seemed to be different from the strength of the BX01/BX02 magnets. First the BX01/BX02 currents were adjusted to 135 MeV and the beam energy was adjusted to make the horizontal orbit flat. Then BX01/BX02 magnets were switched off and BXS was adjusted to make the horizontal orbit in the spectrometer line flat, without changing the energy of the beam. The result was that about 140-141 MeV were required on the BXS magnet. This measurement was repeated several times by others with themore » same results. It was not clear what was causing the error: magnet strength or layout. A position error of about 19 mm of the BXS magnet could explain the difference. Because there was a significant misalignment of the vacuum chamber in the BXS line, the alignment of the whole spectrometer line was checked. The vacuum chamber was corrected, but the magnets were found to be in the proper alignment. So we were left with one (or conceivably two) magnet calibration errors. Because BXS is a wedged shaped magnet, the bend angle depends on the horizontal position of the incoming beam. As mentioned, an offset of the beam position of 19 mm would increase or decrease the bend angle roughly by the ratio of 135/141. The figure of 19 mm is special and caused a considerable confusion during the design and measurement of the BXS magnet. This is best illustrated in Figure 1 which was taken out of the BXS Traveler document. The distance between the horizontal midplanes of the poles and the apex of the beam path was chosen to be 19 mm so the beam is close to the good field region throughout its entire path. Thus it seemed possible that there was an error that resulted in the beam not being on this trajectory, or conversely, that the magnetic measurements were done on the wrong trajectory and the magnet was then mis-calibrated. Mechanical measurements of the vacuum chamber made in the tunnel indicated that the vacuum chamber was in fact in the proper position with respect to the magnet - not 19 mm off to one side - so the former possibility was discounted. Review of the Fiducial Report and an interview with Keith Caban convinced me that there was no error in the coordinate system used for magnet measurements. I went and interviewed Andrew Fischer who did the magnetic measurements of BXS. He had extensive records, including photographs of the setups and could quickly answer quite detailed questions about how the measurement was done. Before the interview, I had a suspicion there might have been a sign flip in the x coordinate which because of the wedge would result in the wrong path length and a miscalibration. Andrew was able to pin-point how this could have happened and later confirmed it by looking an measurement data from the BXG magnet done just after BXS and comparing photographs. It turned out that the sign of the horizontal stage travel that drives the measurement wire was opposite that of the x coordinate in the Traveler, and the sign difference wasn't applied to the data. The origin x = 0 was set up correctly, but the wire moved in the opposite direction to what was expected, just as if the arc had been flipped over about the origin. To quantitatively confirm that this was the cause of the observed difference in calibration I used the 'grid data', which was taken with a Hall probe on the BXS magnet originally to measure the FINT (focusing effect) term, and combined it with the Hall probe data taken on the flipped trajectory, and performed the field integral on a path that should give the same result as the design path. This is best illustrated in Figure 2. The integration path is coincident with the desired path from the pivot points (x = 0) outward. Between the pivot points the integration path is a mirror image of the design path, but because the magnet is fairly uniform, for this portion it gives the same result. Most of the calibration error resulted simply from the different path length between the design path and the measured path. The results of the integration on the equivalent path are given in Table 1. The corrected calibration has been used to generate a new polynomial for BXS which was implemented in the control system.« less

  12. Statistical characteristics of austral summer cyclones in Southern Ocean

    NASA Astrophysics Data System (ADS)

    Liu, Na; Fu, Gang; Kuo, Ying-Hwa

    2012-06-01

    Characteristics of cyclones and explosively developing cyclones (or `bombs') over the Southern Ocean in austral summer (December, January and February) from 2004 to 2008 are analyzed by using the Final Analysis (FNL) data produced by the National Centers for Environmental Prediction (NCEP) of the United States. Statistical results show that both cyclones and explosively developing cyclones frequently develop in January, and most of them occur within the latitudinal zone between 55°S and 70°S. These cyclones gradually approach the Antarctic Continent from December to February. Generally cyclones and bombs move east-southeastward with some exceptions of northeastward movement. The lifetime of cyclones is around 2-6 d, and the horizontal scale is about 1000 km. Explosive cyclones have the lifetime of about 1 week with the horizontal scale reaching up to 3000 km. Compared with cyclones developed in the Northern Hemisphere, cyclones over the southern ocean have much higher occurrence frequency, lower central pressure and larger horizontal scale, which may be caused by the unique geographical features of the Southern Hemisphere.

  13. Challenge toward the prediction of typhoon behaviour and down pour

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Onishi, R.; Baba, Y.; Kida, S.; Matsuda, K.; Goto, K.; Fuchigami, H.

    2013-08-01

    Mechanisms of interactions among different scale phenomena play important roles for forecasting of weather and climate. Multi-scale Simulator for the Geoenvironment (MSSG), which deals with multi-scale multi-physics phenomena, is a coupled non-hydrostatic atmosphere-ocean model designed to be run efficiently on the Earth Simulator. We present simulation results with the world-highest 1.9km horizontal resolution for the entire globe and regional heavy rain with 1km horizontal resolution and 5m horizontal/vertical resolution for urban area simulation. To gain high performance by exploiting the system capabilities, we propose novel performance evaluation metrics introduced in previous studies that incorporate the effects of the data caching mechanism between CPU and memory. With a useful code optimization guideline based on such metrics, we demonstrate that MSSG can achieve an excellent peak performance ratio of 32.2% on the Earth Simulator with the single-core performance found to be a key to a reduced time-to-solution.

  14. Formation of fold and thrust belts on Venus due to horizontal shortening of a laterally heterogeneous lithosphere

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Parmentier, E. M.; Neumann, G. A.

    1994-01-01

    An outstanding question relevant to understanding the tectonics of Venus is the mechanism of formation of fold and thrust belts, such as the mountain belts that surround Lakshmi Planum in western Ishtar Terra. These structures are typically long (hundreds of km) and narrow (many tens of km), and are often located at the margins of relatively high (km-scale) topographic rises. Previous studies have attempted to explain fold and thrust belts in various areas of Venus in the context of viscous and brittle wedge theory. However, while wedge theory can explain the change in elevation from the rise to the adjacent lowland, it fails to account for a fundamental aspect of the deformation, i.e., the topographic high at the edge of the rise. In this study we quantitatively explore the hypothesis that fold and thrust belt morphology on Venus can alternatively be explained by horizontal shortening of a lithosphere that is laterally heterogeneous, due either to a change in thickness of the lithosphere or the crust. Lateral heterogeneities in lithosphere structure may arise in response to thermal thinning or extensive faulting, while variations in crustal thickness may arise due to either spatially variable melting of mantle material or by horizontal shortening of the crust. In a variable thickness lithosphere or crust that is horizontally shortened, deformation will tend to localize in the vicinity of thickness heterogeneity, resulting in a higher component of dynamic topography there as compared to elsewhere in the shortening lithosphere. This mechanism may thus provide a simple explanation for the topographic high at the edge of the rise.

  15. Formation of fold and thrust belts on Venus due to horizontal shortening of a laterally heterogeneous lithosphere

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Parmentier, E. M.; Neumann, G. A.

    1994-03-01

    An outstanding question relevant to understanding the tectonics of Venus is the mechanism of formation of fold and thrust belts, such as the mountain belts that surround Lakshmi Planum in western Ishtar Terra. These structures are typically long (hundreds of km) and narrow (many tens of km), and are often located at the margins of relatively high (km-scale) topographic rises. Previous studies have attempted to explain fold and thrust belts in various areas of Venus in the context of viscous and brittle wedge theory. However, while wedge theory can explain the change in elevation from the rise to the adjacent lowland, it fails to account for a fundamental aspect of the deformation, i.e., the topographic high at the edge of the rise. In this study we quantitatively explore the hypothesis that fold and thrust belt morphology on Venus can alternatively be explained by horizontal shortening of a lithosphere that is laterally heterogeneous, due either to a change in thickness of the lithosphere or the crust. Lateral heterogeneities in lithosphere structure may arise in response to thermal thinning or extensive faulting, while variations in crustal thickness may arise due to either spatially variable melting of mantle material or by horizontal shortening of the crust. In a variable thickness lithosphere or crust that is horizontally shortened, deformation will tend to localize in the vicinity of thickness heterogeneity, resulting in a higher component of dynamic topography there as compared to elsewhere in the shortening lithosphere. This mechanism may thus provide a simple explanation for the topographic high at the edge of the rise.

  16. Horizontal surface-slip distribution through several seismic cycles: The Eastern Bogd fault, Gobi-Altai, Mongolia

    NASA Astrophysics Data System (ADS)

    Kurtz, R.; Klinger, Y.; Ferry, M.; Ritz, J.-F.

    2018-06-01

    The 1957, MW 8.1, Gobi-Altai earthquake, Southern Mongolia, produced a 360-km-long surface rupture along the Eastern Bogd fault. Cumulative offsets of geomorphic features suggest that the Eastern Bogd fault might produce characteristic slip over the last seismic cycles. Using orthophotographs derived from a dataset of historical aerial photographs acquired in 1958, we measured horizontal offsets along two thirds ( 170 km) of the 1957 left-lateral strike-slip surface rupture. We propose a new empirical methodology to extract the average slip for each past earthquake that could be recognized along successive fault segments, to determine the slip distribution associated with successive past earthquakes. Our results suggest that the horizontal slip distribution of the 1957 Gobi-Altai earthquake is fairly flat, with an average offset of 3.5 m ± 1.3 m. A combination of our lateral measurements with vertical displacements derived from the literature, allows us to re-assess the magnitude of the Gobi-Altai earthquake to be between MW 7.8 and MW 8.2, depending on the depth of the rupture, and related value of the shear modulus. When comparing this magnitude to magnitudes derived from seismic data, it suggests that the rupture may have extended deeper than the 15 km to 20 km usually considered for the seismogenic crust. We observe that some fault segments are more likely than others to record seismic deformation through several seismic cycles, depending on the local rupture complexity and geomorphology. Additionally, our results allow us to model the horizontal slip function for the 1957 Gobi-Altai earthquake and for three previous paleoseismic events along 70% of the studied area. Along about 50% of the fault sections where we could recognize three past earthquakes, our results suggest that the slip per event was similar for each earthquake.

  17. Modeling of sub-ionospheric VLF signal perturbations associated with total solar eclipse, 2009 in Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Pal, Sujay; Chakrabarti, Sandip K.; Mondal, Sushanta K.

    2012-07-01

    During the total solar eclipse of 2009, a week-long campaign was conducted in the Indian sub-continent to study the low-latitude D-region ionosphere using the very low frequency (VLF) signal from the Indian Navy transmitter (call sign: VTX3) operating at 18.2 kHz. It was observed that in several places, the signal amplitude is enhanced while in other places the amplitude is reduced. We simulated the observational results using the well known Long Wavelength Propagation Capability (LWPC) code. As a first order approximation, the ionospheric parameters were assumed to vary according to the degree of solar obscuration on the way to the receivers. This automatically brought in non-uniformity of the ionospheric parameters along the propagation paths. We find that an assumption of 4 km increase of lower ionospheric height for places going through totality in the propagation path simulate the observations very well at Kathmandu and Raiganj. We find an increase of the height parameter by h'=+3.0 km for the VTX-Malda path and h'=+1.8 km for the VTX-Kolkata path. We also present, as an example, the altitude variation of electron number density throughout the eclipse time at Raiganj.

  18. Elevation effects in volcano applications of the COSPEC

    USGS Publications Warehouse

    Gerlach, T.M.

    2003-01-01

    Volcano applications commonly involve sizeable departures from the reference pressure and temperature of COSPEC calibration cells. Analysis shows that COSPEC SO2 column abundances and derived mass emission rates are independent of pressure and temperature, and thus unaffected by elevation effects related to deviations from calibration cell reference state. However, path-length concentrations are pressure and temperature dependent. Since COSPEC path-length concentration data assume the reference pressure and temperature of calibration cells, they can lead to large errors when used to calculate SO2 mixing ratios of volcanic plumes. Correction factors for COSPEC path-length concentrations become significant (c.10%) at elevations of about 1 km (e.g. Kilauea volcano) and rise rapidly to c.80% at 6 km (e.g. Cotopaxi volcano). Calculating SO2 mixing ratios for volcanic plumes directly from COSPEC path-length concentrations always gives low results. Corrections can substantially increase mixing ratios; for example, corrections increase SO2 ppm concentrations reported for the Mount St Helens, Colima, and Erebus plumes by 25-50%. Several arguments suggest it would be advantageous to calibrate COSPEC measurements in column abundance units rather than path-length concentration units.

  19. Long-term variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric gravity waves by using airglow images obtained at Shigarkai, Japan

    NASA Astrophysics Data System (ADS)

    Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.

    2016-12-01

    Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.

  20. Optimal landing of a helicopter in autorotation

    NASA Technical Reports Server (NTRS)

    Lee, A. Y. N.

    1985-01-01

    Gliding descent in autorotation is a maneuver used by helicopter pilots in case of engine failure. The landing of a helicopter in autorotation is formulated as a nonlinear optimal control problem. The OH-58A helicopter was used. Helicopter vertical and horizontal velocities, vertical and horizontal displacement, and the rotor angle speed were modeled. An empirical approximation for the induced veloctiy in the vortex-ring state were provided. The cost function of the optimal control problem is a weighted sum of the squared horizontal and vertical components of the helicopter velocity at touchdown. Optimal trajectories are calculated for entry conditions well within the horizontal-vertical restriction curve, with the helicopter initially in hover or forwared flight. The resultant two-point boundary value problem with path equality constraints was successfully solved using the Sequential Gradient Restoration Technique.

  1. Application of Vorob'ev's asymptotic solution to retrieval of the structural characteristics Cn2 from BSA-lidar data

    NASA Astrophysics Data System (ADS)

    Razenkov, I. A.

    2017-11-01

    Micro pulse lasers have allowed solution of some technical problems and design of a specialized aerosol lidar capable of recording backscattering amplification (BSA) in a turbulent atmosphere (2014) by now. The BSA-lidar has two receiving channels, one of which is affected by a turbulence. The measurement result is the ratio of echo signals, i.e., the coefficient of backscattering amplification. The problem of lidar data inversion and retrieval of "optical" turbulence parameters was recently solved by V.V. Vorob'ev theoretically (2016). A lidar experiment was organized for testing the solution, and the asymptotic solution was applied to echo signals, which allowed estimating the daily behavior of the structural characteristics Cn 2 along a horizontal 2-km path. The experiment was accompanied by parallel independent measurements of Cn 2 by an image jitter sensor along the same path. It was shown experimentally that the Vorob'ev solution is applicable to Cn 2 retrieval from BSA-lidar data if β0 2<=3 for β0 2>3, the saturation of the amplification effect and a decrease in the experimental data with respect to calculation results are observed. The coefficient of correlation between the retrieved structural characteristics Cn 2 of the lidar and jitter sensor is 0.8-0.9. The Cn 2 values retrieved from lidar signals turned out to be 20-40% lower than the Cn 2 values of the image jitter sensor.

  2. A Multi-Resolution Assessment of the Community Multiscale Air Quality (CMAQ) Model v4.7 Wet Deposition Estimates for 2002 - 2006

    EPA Science Inventory

    This paper examines the operational performance of the Community Multiscale Air Quality (CMAQ) model simulations for 2002 - 2006 using both 36-km and 12-km horizontal grid spacing, with a primary focus on the performance of the CMAQ model in predicting wet deposition of sulfate (...

  3. Brady's Geothermal Field DAS Earthquake Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    The submitted data correspond to the vibration caused by a 3.4 M earthquake and captured by the DAS horizontal and vertical arrays during the PoroTomo Experiment. Earthquake information : M 4.3 - 23km ESE of Hawthorne, Nevada Time: 2016-03-21 07:37:10 (UTC) Location: 38.479 N 118.366 W Depth: 9.9 km

  4. Near-term Horizontal Launch for Flexible Operations: Results of the DARPA/NASA Horizontal Launch Study

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.; Wilhite, Alan W.; Schaffer, Mark G.; Huebner, Lawrence D.; Voland, Randall T.; Voracek, David F.

    2012-01-01

    Horizontal launch has been investigated for 60 years by over 130 different studies. During this time only one concept, Pegasus, has ever been in operation. The attractiveness of horizontal launch is the capability to provide a "mobile launch pad" that can use existing aircraft runways, cruise above weather, loiter for mission instructions, and provide precise placement for orbital intercept, rendezvous, or reconnaissance. A jointly sponsored study by DARPA and NASA, completed in 2011, explored the trade space of horizontal launch system concepts which included an exhaustive literature review of the past 70 years. The Horizontal Launch Study identified potential near- and mid-term concepts capable of delivering 15,000 lb payloads to a 28.5 due East inclination, 100 nautical-mile low-Earth orbit. Results are presented for a range of near-term system concepts selected for their availability and relatively low design, development, test, and evaluation (DDT&E) costs. This study identified a viable low-cost development path forward to make a robust and resilient horizontal launch capability a reality.

  5. Remote measurements of ozone, water vapor and liquid water content, and vertical profiles of temperature in the lower troposphere

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Gary, B. L.; Shumate, M. S.

    1983-01-01

    Several advanced atmospheric remote sensing systems developed at the Jet Propulsion Laboratory were demonstrated under various field conditions to determine how useful they would be for general use by the California Air Resources Board and local air quality districts. One of the instruments reported on is the Laser Absorption Spectrometer (LAS). It has a pair of carbon dioxide lasers with a transmitter and receiver and can be flown in an aircraft to measure the column abundance of such gases as ozone. From an aircraft, it can be used to rapidly survey a large region. The LAS is usually operated from an aircraft, although it can also be used at a fixed location on the ground. Some tests were performed with the LAS to measure ozone over a 2-km horizontal path. Another system reported on is the Microwave Atmospheric Remote Sensing System (MARS). It is tuned to microwave emissions from water vapor, liquid water, and oxygen molecules (for atmospheric temperature). It can measure water vapor and liquid water in the line-of-sight, and can measure the vertical temperature profile.

  6. Midlatitude ionospheric D region: Height, sharpness, and solar zenith angle

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; Clilverd, Mark A.; Rodger, Craig J.

    2017-08-01

    VLF radio amplitude and phase measurements are used to find the height and sharpness of the D region of the ionosphere at a mid to high geomagnetic dip latitude of 52.5°. The two paths used are both from the 23.4 kHz transmitter, DHO, in north Germany with the first path being northward and mainly over the sea along the west coast of Denmark over a range of 320-425 km, and the second, also mainly all-sea, to a single fixed recording receiver at Eskdalemuir in Scotland ( 750 km). From plots of the measured amplitudes and phases versus distance for the first of these paths compared with calculations using the U.S. Navy code, ModeFinder, the Wait height and sharpness parameters of the D region at midday in summer 2015 are found to be H' = 72.8 ± 0.2 km and β = 0.345 ± 0.015 km-1 at a solar zenith angle 33°. From phase and amplitude measurements at other times of day on the second path, the daytime changes in H' and β as functions of solar zenith angle are determined from shortly after dawn to shortly before dusk. Comparisons are also made between the modal ModeFinder calculations and wave hop calculations, with both giving similar results. The parameters found here should be useful in understanding energy inputs to the D region from the radiation belts, solar flares, or transient luminous events. The midday values may be sufficiently precise to be useful for monitoring climate change.

  7. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; hide

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  8. Effects of a Major Tsunami on the Energetics and Dynamics of the Thermosphere

    NASA Astrophysics Data System (ADS)

    Hickey, M. P.; Walterscheid, R. L.; Schubert, G.

    2009-12-01

    Using a spectral full-wave model we investigate how the energetics and dynamics of the thermosphere are influenced by the dissipation of a tsunami-driven gravity wave disturbance. Gravity waves are generated in the model by a surface displacement that mimics a tsunami having a characteristic horizontal wavelength of 400 km and a horizontal phase speed of 200 m/s. The gravity wave disturbance is fast with a large vertical wavelength and is able to reach F-region altitudes before significant viscous dissipation occurs. The gravity wave transports significant amounts of energy and momentum to this region of the atmosphere. The energy reaching the lower thermosphere could be ~ 1012 J for large tsunami events. The change in velocity associated with the wave momentum deposition in a region ~ 100 km deep centered on 250 km altitude could be 150 - 200 m/s. Thermal effects associated with the divergence of the sensible heat flux are modest (~ 20 K over the same region). The affected region could have a lateral extent of 1000 km or more, and an along-track extent of as much as 8000 km. The induced winds should be observable through a variety of methods but the thermal effects might be difficult to observe.

  9. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE PAGES

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...

    2016-01-01

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  10. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  11. Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.

    2006-01-01

    Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.

  12. WESCOM. A Fortran Code for Evaluation of Nuclear Weapon Effects on Satellite Communications. Volume 2. Code Structure

    DTIC Science & Technology

    1981-01-31

    quantities for h i ;.;h-:t It i 1 ndc hurst s 1BMI.I Determines t ime-independent fireball quantities for low-altitude bursts 10 Table 1...of reference Oval of Cassini (km) LAFBP - vortex longitudinal radius (km) LAFBP - vortex transverse radius (km) Power law exponent Inner scale...Maximum slant range of ionization from transmitter (km) Power law exponent Frequency (Hz) Striation velocity flag Propagation path index Radius

  13. GODAE Systems in Operation

    DTIC Science & Technology

    2009-10-09

    Ocean Data Assimilation Scientist, Met Office, Exeter, UK. Shan Mei is Research Scientist, National Marine Environment Forecast Center, Beijing ...An MFS-MEDSLICK coupled system is operationally used for oil spill fore- casting in support of Regional Marine Pollution Emergency Response Centre...configura- tion with 11-km to 16-km horizontal resolution and 22 hybrid vertical layers. HYCOM is coupled to an Elastic Viscous Plastic dynamic and

  14. Performance Summary of the 2006 Community Multiscale Air Quality (CMAQ) Simulation for the AQMEII Project: North American Application

    EPA Science Inventory

    The CMAQ modeling system has been used to simulate the CONUS using 12-km by 12-km horizontal grid spacing for the entire year of 2006 as part of the Air Quality Model Evaluation International initiative (AQMEII). The operational model performance for O3 and PM2.5<...

  15. Tectonic deformation of the Andes and the configuration of the subducted slab in central Peru: Results from a micro-seismic experiment

    NASA Technical Reports Server (NTRS)

    Suarez, G.; Gagnepain, J. J.; Cisternas, A.; Hatzfeld, D.; Molnar, P.; Ocola, L.; Roecker, S. W.; Viode, J. P.

    1983-01-01

    The vast majority of the microearthquakes recorded occurred to the east: on the Huaytapallana fault in the Eastern Cordillera or in the western margin of the sub-Andes. The sub-Andes appear to be the physiographic province subjected to the most intense seismic deformation. Focal depths for the crustal events here are as deep as 50 km, and the fault plane solutions, show thrust faulting on steep planes oriented roughly north-south. The Huaytapallana fault in the Cordillera Oriental also shows relatively high seismicity along a northeast-southwest trend that agrees with the fault scarp and the east dipping nodal plane of two large earthquakes that occurred on this fault in 1969. The recorded microearthquakes of intermediate depth show a flat seismic zone about 25 km thick at a depth of about 100 km. This agrees with the suggestion that beneath Peru the slab first dips at an angle of 30 deg to a depth of 100 km and then flattens following a quasi-horizontal trajectory. Fault plane solutions of intermediate depth microearthquakes have horizontal T axes oriented east-west.

  16. Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.

    1993-01-01

    Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.

  17. Simultaneous electric-field measurements on nearby balloons.

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1972-01-01

    Electric-field payloads were flown simultaneously on two balloons from Great Whale River, Canada, on September 21, 1971, to provide data at two points in the upper atmosphere that differed in altitude by more than one atmospheric density scale height and in horizontal position by 30-140 km. The altitude dependences in the two sets of data prove conclusively that the vertical electric field at balloon altitudes stems from fair-weather atmospheric electricity sources and that the horizontal fields are mapped down ionospheric fields, since the weather-associated horizontal fields were smaller than 2 mV/m.

  18. MISR Level 2 TOA/Cloud Classifier parameters (MIL2TCCL_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The TOA/Cloud Classifiers contain the Angular Signature Cloud Mask (ASCM), a scene classifier calculated using support vector machine technology (SVM) both of which are on a 1.1 km grid, and cloud fractions at 17.6 km resolution that are available in different height bins (low, middle, high) and are also calculated on an angle-by-angle basis. [Location=GLOBAL] [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=17.6 km; Longitude_Resolution=17.6 km; Horizontal_Resolution_Range=10 km - < 50 km or approximately .09 degree - < .5 degree; Temporal_Resolution=about 15 orbits/day; Temporal_Resolution_Range=Daily - < Weekly, Daily - < Weekly].

  19. Systems and methods for producing hydrocarbons from tar sands formations

    DOEpatents

    Li, Ruijian [Katy, TX; Karanikas, John Michael [Houston, TX

    2009-07-21

    A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.

  20. Atmosphere-ionosphere coupling from convectively generated gravity waves

    NASA Astrophysics Data System (ADS)

    Azeem, Irfan; Barlage, Michael

    2018-04-01

    Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.

  1. Validation of the Regional Climate Model ALARO with different dynamical downscaling approaches and different horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier

    2015-04-01

    At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.

  2. Space-time variability of raindrop size distributions along a 2.2 km microwave link path

    NASA Astrophysics Data System (ADS)

    van Leth, Tommy; Uijlenhoet, Remko; Overeem, Aart; Leijnse, Hidde; Berne, Alexis

    2017-04-01

    The Wageningen Urban Rainfall Experiment (WURex14-15) was dedicated to address several errors and uncertainties associated with quantitative precipitation estimates from microwave links. The core of the experiment consisted of three co-located microwave links installed between two major buildings on the Wageningen University campus, approximately 2.2 km apart: a 38 GHz commercial microwave link, provided by T-Mobile NL, and 26 GHz and 38 GHz (dual-polarization) research microwave links from RAL. Transmitting and receiving antennas were attached to masts installed on the roofs of the two buildings, about 30 m above the ground. This setup was complemented with a Scintec infrared Large-Aperture Scintillometer, installed over the same path, an automatic rain gauge, as well as 5 Parsivel optical disdrometers positioned at several locations along the path. Temporal sampling of the received signals was performed at a rate of 20 Hz. The setup was being monitored by time-lapse cameras to assess the state of the antennas as well as the atmosphere. Finally, data were available from the KNMI weather radars and an automated weather station situated just outside Wageningen. The experiment has been active between August 2014 and December 2015. We present preliminary results regarding the space-time variability of raindrop size distributions from the Parsivel disdrometers along the 2.2 km microwave link path.

  3. Laser long-range remote-sensing program experimental results

    NASA Astrophysics Data System (ADS)

    Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe

    1995-12-01

    A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.

  4. A ground-base Radar network to access the 3D structure of MLT winds

    NASA Astrophysics Data System (ADS)

    Stober, G.; Chau, J. L.; Wilhelm, S.; Jacobi, C.

    2016-12-01

    The mesosphere/lower thermosphere (MLT) is a highly variable atmospheric region driven by wave dynamics at various scales including planetary waves, tides and gravity waves. Some of these propagate through the MLT into the thermosphere/ionosphere carrying energy and momentum from the middle atmosphere into the upper atmosphere. To improve our understanding of the wave energetics and momentum transfer during their dissipation it is essential to characterize their space time properties. During the last two years we developed a new experimental approach to access the horizontal structure of wind fields at the MLT using a meteor radar network in Germany, which we called MMARIA - Multi-static Multi-frequency Agile Radar for Investigation of the Atmosphere. The network combines classical backscatter meteor radars and passive forward scatter radio links. We present our preliminary results using up to 7 different active and passive radio links to obtain horizontally resolved wind fields applying a statistical inverse method. The wind fields are retrieved with 15-30 minutes temporal resolution on a grid with 30x30 km horizontal spacing. Depending on the number of observed meteors, we are able to apply the wind field inversion at heights between 84-94 km. The horizontally resolved wind fields provide insights of the typical horizontal gravity wave length and the energy cascade from large scales to small scales. We present first power spectra indicating the transition from the synoptic wave scale to the gravity wave scale.

  5. Light-duty vehicle CO2 targets consistent with 450 ppm CO2 stabilization.

    PubMed

    Winkler, Sandra L; Wallington, Timothy J; Maas, Heiko; Hass, Heinz

    2014-06-03

    We present a global analysis of CO2 emission reductions from the light-duty vehicle (LDV) fleet consistent with stabilization of atmospheric CO2 concentration at 450 ppm. The CO2 emission reductions are described by g CO2/km emission targets for average new light-duty vehicles on a tank-to-wheel basis between 2010 and 2050 that we call CO2 glide paths. The analysis accounts for growth of the vehicle fleet, changing patterns in driving distance, regional availability of biofuels, and the changing composition of fossil fuels. New light-duty vehicle fuel economy and CO2 regulations in the U.S. through 2025 and in the EU through 2020 are broadly consistent with the CO2 glide paths. The glide path is at the upper end of the discussed 2025 EU range of 68-78 g CO2/km. The proposed China regulation for 2020 is more stringent than the glide path, while the 2017 Brazil regulation is less stringent. Existing regulations through 2025 are broadly consistent with the light-duty vehicle sector contributing to stabilizing CO2 at approximately 450 ppm. The glide paths provide long-term guidance for LDV powertrain/fuel development.

  6. Rayleigh lidar observations of gravity wave activity in the stratosphere and lower mesosphere

    NASA Technical Reports Server (NTRS)

    Miller, M. S.; Gardner, C. S.; Liu, C. H.

    1987-01-01

    Forty-two monochromatic gravity wave events were observed in the 25 to 55 km altitude region during 16 nights of Rayleigh lidar measurements at Poker Flat, Alaska and Urbana, Illinois. The measured wave parameters were compared to previous radar and lidar measurements of gravity wave activity. Vertical wavelengths, lambda(z), between 2 and 11.5 km with vertical phase velocities, c(z), between 0.1 and 1 m/s were observed. Measured values of lambda(z) and c(z) were used to infer observed wave periods, T(ob), between 50 and 1000 minutes and horizontal wavelengths, lambda(x), from 25 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No seasonal variations were evident in the observed wave parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with T(ob), which is consistent with recent sodium lidar studies of monochromatic wave events near the mesopause. Measured power law relationships between the wave parameters were lambda(z) varies as T(ob) sup 0.96, lambda(x) varies as T(ob) sup 1.8, and c(z) varies as T(ob) sup -0.85. The kinetic energy calculated for the monochromatic wave events varied as k(z) sup -2, k(x) sup -1, and f(ob) sup -1.7. The atmospheric scale heights calculated for each observation date range from 6.5 to 7.6 km with a mean value of 7 km. The increase of rms wind perturbations with altitude indicated an amplitude growth length of 20.9 km. The altitude profile of kinetic energy density decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.

  7. Horizontal and vertical structure of reactive bromine events probed by bromine monoxide MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Simpson, William R.; Peterson, Peter K.; Frieß, Udo; Sihler, Holger; Lampel, Johannes; Platt, Ulrich; Moore, Chris; Pratt, Kerri; Shepson, Paul; Halfacre, John; Nghiem, Son V.

    2017-08-01

    Heterogeneous photochemistry converts bromide (Br-) to reactive bromine species (Br atoms and bromine monoxide, BrO) that dominate Arctic springtime chemistry. This phenomenon has many impacts such as boundary-layer ozone depletion, mercury oxidation and deposition, and modification of the fate of hydrocarbon species. To study environmental controls on reactive bromine events, the BRomine, Ozone, and Mercury EXperiment (BROMEX) was carried out from early March to mid-April 2012 near Barrow (Utqiaġvik), Alaska. We measured horizontal and vertical gradients in BrO with multiple-axis differential optical absorption spectroscopy (MAX-DOAS) instrumentation at three sites, two mobile and one fixed. During the campaign, a large crack in the sea ice (an open lead) formed pushing one instrument package ˜ 250 km downwind from Barrow (Utqiaġvik). Convection associated with the open lead converted the BrO vertical structure from a surface-based event to a lofted event downwind of the lead influence. The column abundance of BrO downwind of the re-freezing lead was comparable to upwind amounts, indicating direct reactions on frost flowers or open seawater was not a major reactive bromine source. When these three sites were separated by ˜ 30 km length scales of unbroken sea ice, the BrO amount and vertical distributions were highly correlated for most of the time, indicating the horizontal length scales of BrO events were typically larger than ˜ 30 km in the absence of sea ice features. Although BrO amount and vertical distribution were similar between sites most of the time, rapid changes in BrO with edges significantly smaller than this ˜ 30 km length scale episodically transported between the sites, indicating BrO events were large but with sharp edge contrasts. BrO was often found in shallow layers that recycled reactive bromine via heterogeneous reactions on snowpack. Episodically, these surface-based events propagated aloft when aerosol extinction was higher (> 0.1 km-1); however, the presence of aerosol particles aloft was not sufficient to produce BrO aloft. Highly depleted ozone (< 1 nmol mol-1) repartitioned reactive bromine away from BrO and drove BrO events aloft in cases. This work demonstrates the interplay between atmospheric mixing and heterogeneous chemistry that affects the vertical structure and horizontal extent of reactive bromine events.

  8. Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations

    NASA Astrophysics Data System (ADS)

    McRae, Wayne M.; Thomson, Neil R.

    2004-01-01

    Ionospheric perturbations due to solar flares, measured at VLF in both phase and amplitude on long subionospheric paths, are used to determine the accompanying D-region electron density enhancements as a function of the flare X-ray fluxes measured by the GOES satellites. The electron densities are characterised by the two traditional parameters, H' and β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively), found by computational modelling of the observed phases and amplitudes using the NOSC Earth-ionosphere waveguide programs (LWPC and ModeFinder) over a wide range of VLF frequencies, 10.2-24.8kHz, along a number of transequatorial paths across the Pacific Ocean to Dunedin, New Zealand. The transmitters monitored include Omega Japan, Omega Hawaii, NPM in Hawaii, and NLK near Seattle, USA, for which the paths range in length from 8.1 to 12.3Mm. The observations include flares up to a magnitude of about X5(5×10-4Wm-2 at 0.1-0.8nm). These gave VLF phase delay reductions of up to about 52μs and amplitude enhancements up to nearly 10dB for the 12.3Mm NLK to Dunedin path on 24.8kHz which corresponded, under low to medium solar cycle conditions (1994-1998), to a reduction in H' from about 71km down to about 58km and an increase in β from about 0.39km-1 up to a definite `saturation' level of about 0.52km-1. These experimentally determined values of H' and β were then used in LWPC to predict flare-induced VLF phase and amplitude perturbations over a wider range of frequencies than were actually available for observation.

  9. Tethered constellations

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1986-01-01

    The studies that have been carried out on Tethered Constellations are briefly addressed. A definition of a tethered constellation is any number of masses/platforms greater that two connected by tethers in a stable configuration. Configurations and stability constraints are reviewed. Conclusions reached are: (1) The 1-D, horizontal, passively stabilized constellations have been ruled out; (2) Fishbone constellations have been also ruled out; (3) Alternative stable 2-D configurations have been devised such as the quadrangular configuration stabilized by electrodynamic forces (ESC), the quadrangular configuration stabilized by differential air drag (DSC), and the pseudo elliptical configuration stabilized by electrodynamic forces (PEC). Typical dimensions for these constellations are 10 km (horizontal) by 20 km (vertical) with balloon diameters around 100 m in the case of a DSC and a power consumption around 7 KW for an ESC or PEC.

  10. A simple model for the estimation of rain-induced attenuation along earth-space paths at millimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Dishman, W. K.

    1982-01-01

    A simple attenuation model (SAM) is presented for estimating rain-induced attenuation along an earth-space path. The rain model uses an effective spatial rain distribution which is uniform for low rain rates and which has an exponentially shaped horizontal rain profile for high rain rates. When compared to other models, the SAM performed well in the important region of low percentages of time, and had the lowest percent standard deviation of all percent time values tested.

  11. Non-Normal Projectile Penetration in Soil and Rock: User’s Guide for Computer Code PENC02D.

    DTIC Science & Technology

    1982-09-01

    the path traveled , with projec- tile orientation shown every FREQI projectile lengths. In this run, FREQI was input as 2.5. The horizontal lines...must be a closed surface in the direction of travel ; the bluntness of the nose requires a near 90-deg element for closure. Sheet 3 shows the beginning...plots for this problem. Sheets 1 and 2 automatically verify the projectile shape and path traveled . Sheets 3, 4, and 5 show the axial deceleration

  12. Petrological Constraints on Melt Generation Beneath the Asal Rift (Djibouti)

    NASA Astrophysics Data System (ADS)

    Pinzuti, P.; Humler, E.; Manighetti, I.; Gaudemer, Y.; Bézos, A.

    2010-12-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 95 lava flows sampled along 10 km of the rift axis and 8 km off-axis (that is for the last 650 ky). The major element composition and the trace element ratios of aphyric basalts across the Asal Rift show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. FeO, Fe8.0, Sm/YbN and Zr/Y increase, whereas SiO2 and Lu/HfN decrease from the rift axis to the rift shoulders. These variations are qualitatively consistent with a shallower melting beneath the rift axis than off-axis and the data show that the melting regime is inconsistent with a passive upwelling model. In order to quantify the depth range and extent of melting, we invert Na8.0 and Fe8.0 contents of basalts based on a pure active upwelling model. Beneath the rift axis, melting paths are shallow, from 60 to 30 km. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned mantle lithosphere. In contrast, melting on the rift shoulders occurred beneath a thick mantle lithosphere and required mantle solidus temperature 180°C hotter than normal (melting paths from 110 to 75 km). The calculated rate of lithospheric thinning is high (6.0 cm yr-1) and could explain the survival of a metastable garnet within the mantle at depth shallower than 90 km beneath the modern Asal Rift.

  13. Inferring Upper Ocean Dynamics from Horizontal Wavenumber Spectra in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Chereskin, T. K.; Gille, S. T.; Rocha, C. B.; Menemenlis, D.

    2016-02-01

    At the largest horizontal scales (> 100 km), the surface kinetic energy of the ocean appears dominated by a regime of balanced geostrophic motions. At the smallest scales, it transitions to a regime where unbalanced motions (such as internal waves, mixed-layer instabilities, etc.) dominate the surface kinetic energy. The length scale at which the transition occurs depends on the relative energies of balanced and unbalanced motions, which in turn display significant geographic variability. Wavenumber spectra in the upper ocean have been hypothesized to have slopes consistent with either quasi-geostrophic (QG) or surface quasi-geostrophic (SQG) theory. In previous analyses of repeat-track shipboard acoustic Doppler Current profiler (ADCP) velocity observations in the Gulf Stream and the Antarctic Circumpolar Current, spectral slopes were more consistent with QG than SQG theory for length scales between 40 km and 200 km. For scales less than 40 km, the spectra deviated from both QG and SQG theory, and this was attributed in part to internal wave effects. A spectral Helmholtz decomposition was used to split the kinetic energy spectra into rotational and divergent components, identified with balanced and ageostrophic motions, respectively. The California Current System (CCS) provides a contrasting environment characterized by a weak mean flow and an energetic meso- and submeso- scale. It is a nonlinear regime where the amplitude of eddies can be as large as the total steric height increase across the California Current, and hence southward flow in the CCS can, and often is, disrupted by its eddies. This study uses 10 years of shipboard ADCP observations collected on the quarterly cruises of the California Cooperative Oceanic Fisheries Investigations. Horizontal wavenumber spectra from 36 cruises along 6 repeated tracks in the southern CCS that extend from the coast to the subtropical gyre are used to diagnose the dominant governing dynamics at meso- to submeso- scales (10-200 km), with particular attention to the partition into balanced and ageostrophic flows.

  14. SST Variation Due to Interactive Convective-Radiative Processes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shie, C.-L.; Johnson, D.; Simpson, J.; Li, X.; Sui, C.-H.

    2000-01-01

    The recent linking of Cloud-Resolving Models (CRMs) to Ocean-Mixed Layer (OML) models has provided a powerful new means of quantifying the role of cloud systems in ocean-atmosphere coupling. This is due to the fact that the CRM can better resolve clouds and cloud systems and allow for explicit cloud-radiation interaction. For example, Anderson (1997) applied an atmospheric forcing associated with a CRM simulated squall line to a 3-D OML model (one way or passive interaction). His results suggested that the spatial variability resulting from the squall forcing can last at least 24 hours when forced with otherwise spatially uniform fluxes. In addition, the sea surface salinity (SSS) variability continuously decreased following the forcing, while some of the SST variability remained when a diurnal mixed layer capped off the surface structure. The forcing used in the OML model, however, focused on shorter time (8 h) and smaller spatial scales (100-120 km). In this study, the 3-D Goddard Cumulus Ensemble Model (GCE; 512 x 512 x 23 cu km, 2-km horizontal resolution) is used to simulate convective active episodes occurring in the Western Pacific warm pool and Eastern Atlantic regions. The model is integrated for seven days, and the simulated results are coupled to an OML model to better understand the impact of precipitation and changes in the planetary boundary layer upon SST variation. We will specifically examine and compare the results of linking the OML model with various spatially-averaged outputs from GCE simulations (i.e., 2 km vs. 10-50 km horizontal resolutions), in order to help understand the SST sensitivity to multi-scale influences. This will allow us to assess the importance of explicitly simulated deep and shallow clouds, as well as the subgrid-scale effects (in coarse-model runs) upon SST variation. Results using both 1-D and 2-D OML models will be evaluated to assess the effects of horizontal advection.

  15. Determination of gravity wave parameters in the airglow combining photometer and imager data

    NASA Astrophysics Data System (ADS)

    Nyassor, Prosper K.; Arlen Buriti, Ricardo; Paulino, Igo; Medeiros, Amauri F.; Takahashi, Hisao; Wrasse, Cristiano M.; Gobbi, Delano

    2018-05-01

    Mesospheric airglow measurements of two or three layers were used to characterize both vertical and horizontal parameters of gravity waves. The data set was acquired coincidentally from a multi-channel filter (Multi-3) photometer and an all-sky imager located at São João do Cariri (7.4° S, 36.5° W) in the equatorial region from 2001 to 2007. Using a least-square fitting and wavelet analysis technique, the phase and amplitude of each observed wave were determined, as well as the amplitude growth. Using the dispersion relation of gravity waves, the vertical and horizontal wavelengths were estimated and compared to the horizontal wavelength obtained from the keogram analysis of the images observed by an all-sky imager. The results show that both horizontal and vertical wavelengths, obtained from the dispersion relation and keogram analysis, agree very well for the waves observed on the nights of 14 October and 18 December 2006. The determined parameters showed that the observed wave on the night of 18 December 2006 had a period of ˜ 43.8 ± 2.19 min, with the horizontal wavelength of 235.66 ± 11.78 km having a downward phase propagation, whereas that of 14 October 2006 propagated with a period of ˜ 36.00 ± 1.80 min with a horizontal wavelength of ˜ 195 ± 9.80 km, and with an upward phase propagation. The observation of a wave taken by a photometer and an all-sky imager allowed us to conclude that the same wave could be observed by both instruments, permitting the investigation of the two-dimensional wave parameter.

  16. An Overview of Numerical Weather Prediction on Various Scales

    NASA Astrophysics Data System (ADS)

    Bao, J.-W.

    2009-04-01

    The increasing public need for detailed weather forecasts, along with the advances in computer technology, has motivated many research institutes and national weather forecasting centers to develop and run global as well as regional numerical weather prediction (NWP) models at high resolutions (i.e., with horizontal resolutions of ~10 km or higher for global models and 1 km or higher for regional models, and with ~60 vertical levels or higher). The need for running NWP models at high horizontal and vertical resolutions requires the implementation of non-hydrostatic dynamic core with a choice of horizontal grid configurations and vertical coordinates that are appropriate for high resolutions. Development of advanced numerics will also be needed for high resolution global and regional models, in particular, when the models are applied to transport problems and air quality applications. In addition to the challenges in numerics, the NWP community is also facing the challenges of developing physics parameterizations that are well suited for high-resolution NWP models. For example, when NWP models are run at resolutions of ~5 km or higher, the use of much more detailed microphysics parameterizations than those currently used in NWP model will become important. Another example is that regional NWP models at ~1 km or higher only partially resolve convective energy containing eddies in the lower troposphere. Parameterizations to account for the subgrid diffusion associated with unresolved turbulence still need to be developed. Further, physically sound parameterizations for air-sea interaction will be a critical component for tropical NWP models, particularly for hurricane predictions models. In this review presentation, the above issues will be elaborated on and the approaches to address them will be discussed.

  17. A better understanding of POLDER's cloud droplet size retrieval: impact of cloud horizontal inhomogeneity and directional sampling

    NASA Astrophysics Data System (ADS)

    Shang, H.; Chen, L.; Bréon, F.-M.; Letu, H.; Li, S.; Wang, Z.; Su, L.

    2015-07-01

    The principles of the Polarization and Directionality of the Earth's Reflectance (POLDER) cloud droplet size retrieval requires that clouds are horizontally homogeneous. Nevertheless, the retrieval is applied by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using the POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval, and then analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-scale variability in droplet effective radius (CDR) can mislead both the CDR and effective variance (EV) retrievals. Nevertheless, the sub-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval is accurate using limited observations and is largely independent of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, the measurements in the primary rainbow region (137-145°) are used to ensure accurate large droplet (> 15 μm) retrievals and reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data for June 2008, the new CDR results are compared with the operational CDRs. The comparison show that the operational CDRs tend to be underestimated for large droplets. The reason is that the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Lastly, a sub-scale retrieval case is analyzed, illustrating that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size parameters from POLDER measurements.

  18. ASTER Sees Path of Destruction from Joplin, Mo. Tornado

    NASA Image and Video Library

    2011-05-31

    On May 30, 2011, a week after an EF-5 tornado swept through the city of Joplin, Mo, NASA Terra spacecraft captured this image showing the track of the deadly tornado through the city shown horizontally in green-blue.

  19. Laser Sounder Approach for Measuring Atmospheric CO2 from Orbit

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Andrews, Arlyn E.; Allan, Graham R.; Burris, John F.; Collatz, G. James; Riris, Harris; Stephen, Mark A.; Sun, Xiao-Li; Abshire, James B.

    2004-01-01

    We report on an active remote sensing approach using an erbium fiber amplifier based transmitter for atmospheric CO2 measurements in an overtone band near 1.57 microns and initial horizontal path measurements to less than 1% precision.

  20. Investigating the Role of Gravity Wave on Equatorial Ionospheric Irregularities using SABER and C/NOFS Satellites Observations

    NASA Astrophysics Data System (ADS)

    Nigussie, M.; Damtie, B.; Moldwin, M.; Yizengaw, E.; Tesema, F.; Tebabal, A.

    2017-12-01

    Theoretical simulations have shown that gravity wave (GW) seeded perturbations amplified by Rayleigh-Taylor Instability (RTI) results in ESF (equatorial spread F); however, there have been limited observational studies using simultaneous observations of GW and ionospheric parameters. In this paper, for the fist time, simultaneous atmospheric temperature perturbation profiles that are due to GWs obtained from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board the TIMED satellite and equatorial in -situ ion density and vertical plasma drift velocity observations with and without ESF activity obtained from C/NOFS satellites are used to investigate the effect of GW on the generation of ESF. The horizontal and vertical wavelengths of ionospheric oscillations and GWs respectively have been estimated applying wavelet transforms. Cross wavelet analysis has also been applied between two closely observed profiles of temperature perturbations to estimate the horizontal wavelength of the GWs. Moreover, vertically propagating GWs that dissipate energy at the upper atmosphere have been investigated using spectral analysis compared with theoretical results. The analysis show that when the ion density shows strong post sunset irregularity between 20 and 24 LT, vertically upward drift velocities increase between 17 and 19 LT, but it becomes vertically downward when the ion density shows smooth variation. The horizontal wavelengths estimated from C/NOFS and SABER observations show excellent agreement when ion density observations show strong fluctuations; otherwise, they have poor agreement. It is also found that altitude profiles of potential energy of GW increases up to 90 km and then decreases significantly. It is found that the vertical wavelength of GW, corresponding to the dominant spectral power, ranges from about 7 km to 20 km regardless of the situation of the ionosphere; however, GWs with vertical wavelengths between 100 m to 1 km are found to be saturated between 90 and 110 km whether the ionosphere exhibits irregularity or not. The above results imply that ESF is due to the amplification of perturbations as a result of energy dissipation from GW with vertical wavelength 100 m to 1 km by the RTI that is mainly controlled by Pre-Reversal Enhancement of the zonal electric field.

  1. Measurement of middle and upper atmospheric horizontal winds with a submillimeter/THz limb sounder: results from JEM/SMILES and simulation study for SMILES-2

    NASA Astrophysics Data System (ADS)

    Baron, Philippe; Manago, Naohiro; Ozeki, Hiroyuki; Yoshihisa, Irimajiri; Donal, Murtagh; Yoshinori, Uzawa; Satoshi, Ochiai; Masato, Shiotani; Makoto, Suzuki

    2016-04-01

    In a near future, ESA will launch the Atmospheric Dynamics Mission (ADM) equipped with a lidar for measuring tropospheric and lower stratospheric winds. NASA will continue a long-term series of upper atmospheric wind measurements (altitudes >80 km) with the new Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the Ionospheric Connection Explorer (ICON) satellite. No mission is planned to observe winds in the middle atmosphere (30-80 km), though they are recognized as essential parameters for understanding atmospheric dynamics and the vertical coupling between atmospheric regions. They are also promising data for improving long-term weather forecast and climate modelling. It has been demonstrated with the Superconducting Submillimeter Wave Limb Emission Sounder (SMILES, Oct 2009 - Apr 2010) that a 4-K cooled microwave radiometer can provide data to fill the altitude gap in the wind measurements. Its possible successor named SMILES-2, is being designed in Japan for the study of the middle and upper atmospheric chemistry and dynamics (O3, H2O, T, atomic O, OH, HO2, ClO, BrO, ...). If realized, the instrument will measure sub-millimeter and THz molecular spectral lines (616-150 μm) with high sensitivity and frequency resolution. The SMILES-2 characteristics are very well suited for horizontal wind observations between 20 km to more than 160 km. The best performances are found between 35-90 km where the retrieval precision is better than 3 m/s for a vertical resolution of 2-3 km [1]. In this presentation, we summarize the results obtained from SMILES and assess the measurement performances of SMILES-2 to measure horizontal winds. [1] P. Baron, N. Manago, H. Ozeki, Y. Irimajiri, D. Murtagh, Y. Uzawa, S. Ochiai, M. Shiotani, M. Suzuki: "Measurement of stratospheric and mesospheric winds with a SubMillimeter wave limb sounder: Results from JEM/SMILES and simulation study for SMILES-2"; Proc. of SPIE Remote sensing, 96390N-96390N-20, 2015

  2. A 15.3 GHz satellite-to-ground diversity propagation experiment using a terminal separation of 4 kilometers

    NASA Technical Reports Server (NTRS)

    Grimm, K. R.; Hodge, D. B.

    1971-01-01

    The performance of a path diversity satellite-to-ground millimeter wave link with two ground terminals separated by 4 km is discussed. At this separation distance the duration of fades below 6 dB was decreased by at least a factor of 10 when using path diversity and the cumulative crosscorrelation between the attenuations observed at the two terminals during rain events was approximately 0.45. Narrow beam radiometers directed along the propagation paths were also utilized to relate the path radiometric temperature to the path attenuation. An analysis of downlink propagation data for generating diversity link performance statistics is included.

  3. Nonlinear electromagnetic propagation in ionosphere: Inclusion of electron temperature dependence of the collision parameter (δ)

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Verma, R. K.

    2018-02-01

    In this paper, the authors have taken into account the electron temperature dependence of δ, the fraction of excess energy of an electron over that of a neutral particle which is exchanged in an elastic collision. The dependence of electron temperature, electron collision frequency, and refractive index/absorption coefficient, corresponding to different frequencies, on the intensity of the wave (specifically square of the amplitude of electric vector) at heights of 90 km, 100 km, and 110 km in the ionosphere, has been evaluated. The results have been discussed and graphically illustrated. The derived dependence of n and k on Eo 2 has been used to study the nonlinear horizontal propagation of electromagnetic waves at the heights of 90 km, 100 km, and 110 km in the ionosphere.

  4. Spectroscopic method for Earth-satellite-Earth laser long-path absorption measurements using Retroreflector In Space (RIS)

    NASA Technical Reports Server (NTRS)

    Sugimoto, Nobuo; Minato, Atsushi; Sasano, Yasuhiro

    1992-01-01

    The Retroreflector in Space (RIS) is a single element cube-corner retroreflector with a diameter of 0.5 m designed for earth-satellite-earth laser long-path absorption experiments. The RIS is to be loaded on the Advanced Earth Observing System (ADEOS) satellite which is scheduled for launch in Feb. 1996. The orbit for ADEOS is a sun synchronous subrecurrent polar-orbit with an inclination of 98.6 deg. It has a period of 101 minutes and an altitude of approximately 800 km. The local time at descending node is 10:15-10:45, and the recurrent period is 41 days. The velocity relative to the ground is approximately 7 km/s. In the RIS experiment, a laser beam transmitted from a ground station is reflected by RIS and received at the ground station. The absorption of the intervening atmosphere is measured in the round-trip optical path.

  5. Mesoscale Air-Sea Interactions along the Gulf Stream: An Eddy-Resolving and Convection-Permitting Coupled Regional Climate Model Study

    NASA Astrophysics Data System (ADS)

    Hsieh, J. S.; Chang, P.; Saravanan, R.

    2017-12-01

    Frontal and mesoscale air-sea interactions along the Gulf Stream (GS) during boreal winter are investigated using an eddy-resolving and convection-permitting coupled regional climate model with atmospheric grid resolutions varying from meso-β (27-km) to -r (9-km and 3-km nest) scales in WRF and a 9-km ocean model (ROMS) that explicitly resolves the ocean mesoscale eddies across the North Atlantic basin. The mesoscale wavenumber energy spectra for the simulated surface wind stress and SST demonstrate good agreement with the observed spectra calculated from the observational QuikSCAT and AMSR-E datasets, suggesting that the model well captures the energy cascade of the mesoscale eddies in both the atmosphere and the ocean. Intercomparison among different resolution simulations indicates that after three months of integration the simulated GS path tends to overshoot beyond the separation point in the 27-km WRF coupled experiments than the observed climatological path of the GS, whereas the 3-km nested and 9-km WRF coupled simulations realistically simulate GS separation. The GS overshoot in 27-km WRF coupled simulations is accompanied with a significant SST warming bias to the north of the GS extension. Such biases are associated with the deficiency of wind stress-SST coupling strengths simulated by the coupled model with a coarser resolution in WRF. It is found that the model at 27-km grid spacing can approximately simulate 72% (62%) of the observed mean coupling strength between surface wind stress curl (divergence) and crosswind (downwind) SST gradient while by increasing the WRF resolutions to 9 km or 3 km the coupled model can much better capture the observed coupling strengths.

  6. Electro-optical propagation measurements during the MINOTAUROS experiment in the Cretan Sea

    NASA Astrophysics Data System (ADS)

    Eisele, Christian; Sucher, Erik; Wendelstein, Norbert; Stein, Karin

    2017-09-01

    We report on propagation measurements performed during the MINOTAUROS (Maritime INvestigations On Targets and Atmosphere Under Reduction of Optical Signatures) experiment on Crete, Greece, in late summer of 2016. The field trial has been organized by NATO STO Task Group SET-211 on Naval Platform Protection in the EO/IR Domain with strong support of the Hellenic Navy. Besides meteorological measurements, the experiment included measurements of turbulence using a boundary layer scintillometer on a slant path (d = 8 km) across the entry of Souda Bay (Crete). These are compared to values obtained by a 3D sonic anemometer, which was deployed at one end of the propagation path. Refraction effects have been measured using a 17.5 km path from Drapanos to Gerani. Two meteorological buoys along the path were used to gather information about the atmospheric conditions. An overview and a first analysis of the results are presented. The refraction measurements are compared to simulations using MORTICIA (Model of Range and Transmission in Coastal Inland Atmospheres), a new software tool currently under development in a collaboration of Fraunhofer IOSB and TNO.

  7. 3-D S-velocity structure in the lowermost mantle beneath the Northern Pacific

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kawai, K.; Geller, R. J.; Borgeaud, A. F. E.; Konishi, K.

    2017-12-01

    We previously (Suzuki et al., EPS, 2016) reported the results of waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the Dʺ region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations (mainly USArray) for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. Synthetic resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in that study shows three prominent features: (i) horizontal high-velocity anomalies up to about 3 per cent faster than the Preliminary Reference Earth Model (PREM) with a thickness of a few hundred km and a lower boundary which is at most about 150 km above the core-mantle boundary (CMB), (ii) low-velocity anomalies about 2.5 per cent slower than PREM beneath the high-velocity anomalies at the base of the lower mantle, (iii) a thin (about 150 km) low-velocity structure continuous from the base of the low-velocity zone to at least 400 km above the CMB. We interpret these features respectively as: (i) remnants of slab material where the Mg-perovskite to Mg-post-perovskite phase transition could have occurred within the slab, (ii, iii) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants immediately above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants. Since our initial work we subsequently conducted waveform inversion using both the transverse- and radial-component horizontal waveform data to infer the isotropic shear velocity structure in the lowermost mantle beneath the Northern Pacific in more detail. We also compute partial derivatives with respect to the 5 independent elastic constants (A, C, F, L, N) of a transversely isotropy (TI) medium, and conduct a synthetic resolution test to examine the ability of our methods and dataset to resolve the anisotropic structure in this region using two-component waveform data.

  8. A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Wu, D.; Shinagawa, H.

    1990-01-01

    The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.

  9. A comparison of communication modes for delivery of air traffic control clearance amendments in transport category aircraft

    NASA Technical Reports Server (NTRS)

    Chandra, D.; Bussolari, S. R.; Hansman, R. J.

    1989-01-01

    A user centered evaluation is performed on the use of flight deck automation for display and control of aircraft horizontal flight path. A survey was distributed to pilots with a wide range of experience with the use of flight management computers in transport category aircraft to determine the acceptability and use patterns as reflected by the need for information displayed on the electronic horizontal situation indicator. A summary of survey results and planned part-task simulation to compare three communication modes (verbal, alphanumeric, graphic) are presented.

  10. Variation of Fundamental Mode Surface Wave Group Velocity Dispersion in Iran and the Surrounding Region

    NASA Astrophysics Data System (ADS)

    Rham, D. J.; Preistley, K.; Tatar, M.; Paul, A.

    2006-12-01

    We present group velocity dispersion results from a study of regional fundamental mode Rayleigh and Love waves propagating across Iran and the surrounding region. Data for these measurements comes from field deployments within Iran by the University of Cambridge (GBR) and the Universite Joseph-Fourier (FRA) in conjunction with International Institute of Earthquake Engineering and Seismology (Iran), in addition to data from IRIS and Geofone. 1D path- averaged dispersion measurements have been made for ~5500 source-receiver paths using multiple filter analysis. We combine these observations in a tomographic inversion to produce group velocity images between 10 and 60 s period. Because of the dense path coverage, these images have substantially higher lateral resolution for this region than is currently available from global and regional group velocity studies. We observe variations in short-period wave group velocity which is consistent with the surface geology. Low group velocities (2.00-2.55 km/s) at short periods (10-20 s), for both Rayleigh and Love waves are observed beneath thick sedimentary deposits; The south Caspian Basin, Black Sea, the eastern Mediterranean, the Persian Gulf, the Makran, the southern Turan shield, and the Indus and Gangetic basins. Somewhat higher group velocity (2.80-3.15 km/s for Rayleigh, and 3.00-3.40 km/s for Love) at these periods occur in sediment poor regions, such as; the Turkish-Iranian plateau, the Arabian shield, and Kazakhstan. At intermediate periods (30-40 s) group velocities over most of the region are low (2.65-3.20 km/s for Rayleigh, and 2.80-3.45 km/s for love) compared to Arabia (3.40-3.70 km/s Rayleigh, 3.50-4.0 km/s Love). At longer periods (50-60 s) Love wave group velocities remain low (3.25-3.70 km/s) over most of Iran, but there are even lower velocities (2.80-3.00 km/s) still associated with the thick sediments of the south Caspian basin, the surrounding shield areas have much higher group velocities (3.90-4.45 km/s) at these periods. A similar pattern is seen for longer period Rayleigh waves, with low velocities (2.85-3.60 km/s) beneath the Alpine-Himalaya belt, compared to the velocities (3.80-4.10 km/s) of the Turan and Arabian shields, to the north and south respectively, no large anomaly beneath the south Caspian is observed for these longer period Rayleigh waves.

  11. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    EPA Science Inventory

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  12. A singularity free approach to post glacial rebound calculations

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Hager, Bradford H.

    1994-01-01

    Calculating the post glacial response of a viscoelastic Earth model using the exponential decay normal mode technique leads to intrinsic singularities if viscosity varies continuously as a function of radius. We develop a numerical implementation of the Complex Real Fourier transform (CRFT) method as an accurate and stable procedure to avoid these singularities. Using CRFT, we investigate the response of a set of Maxwell Earth models to surface loading. We find that the effect of expanding a layered viscosity structure into a continuously varying structure is to destroy the modes associated with the boundary between layers. Horizontal motion is more sensitive than vertical motion to the viscosity structure just below the lithosphere. Horizontal motion is less sensitive to the viscosity of the lower mantle than the vertical motion is. When the viscosity increases at 670 km depth by a factor of about 60, the response of the lower mantle is close to its elastic limit. Any further increase of the viscosity contrast at 670 km depth or further increase of viscosity as a continuous function of depth starting from 670 km depth is unlikely to be resolved.

  13. Scale dependency of regional climate modeling of current and future climate extremes in Germany

    NASA Astrophysics Data System (ADS)

    Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver

    2017-11-01

    A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.

  14. Bleustein-Gulyaev wave propagation characteristics in KNbO3 and PKN crystals

    NASA Astrophysics Data System (ADS)

    Dvoesherstov, M. Y.; Cherednick, V. I.; Chirimanov, A. P.; Petrov, S. G.

    1999-09-01

    In this paper, theoretical investigation is shown for cuts and propagation directions on KNbO3, PKN substrates where the Bleustein-Gulyaev waves exist. The KNbO3 and PKN crystals Y-cut X-propagating relate to the condition in which the stiffened shear horizontal wave and pure mechanical Rayleigh wave are present. In this symmetry orientation the sagittal and transverse particle displacements also uncouple. In this situation, the potential is coupled to the shear horizontal displacements only. Electromechanical coupling coefficients K2 has a sufficiently large value of above 53 percent with a phase velocity of V equals 3.918 km/s for KNbO3 crystals and factor K2 has a large value of above 23.6 percent and phase velocity V equals 3.054 km/s for PKN crystals.

  15. The slant path atmospheric refraction calibrator - An instrument to measure the microwave propagation delays induced by atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Bender, Peter L.

    1992-01-01

    The water vapor-induced propagation delay experienced by a radio signal traversing the atmosphere is characterized by the Slant Path Atmospheric Refraction Calibrator (SPARC), which measures the difference in the travel times between an optical and a microwave signal propagating along the same atmospheric path with an accuracy of 15 picosec or better. Attention is given to the theoretical and experimental issues involved in measuring the delay induced by water vapor; SPARC measurements conducted along a 13.35-km ground-based path are presented, illustrating the instrument's stability, precision, and accuracy.

  16. Spatial statistics of hydrography and water chemistry in a eutrophic boreal lake based on sounding and water samples.

    PubMed

    Leppäranta, Matti; Lewis, John E; Heini, Anniina; Arvola, Lauri

    2018-06-04

    Spatial variability, an essential characteristic of lake ecosystems, has often been neglected in field research and monitoring. In this study, we apply spatial statistical methods for the key physics and chemistry variables and chlorophyll a over eight sampling dates in two consecutive years in a large (area 103 km 2 ) eutrophic boreal lake in southern Finland. In the four summer sampling dates, the water body was vertically and horizontally heterogenic except with color and DOC, in the two winter ice-covered dates DO was vertically stratified, while in the two autumn dates, no significant spatial differences in any of the measured variables were found. Chlorophyll a concentration was one order of magnitude lower under the ice cover than in open water. The Moran statistic for spatial correlation was significant for chlorophyll a and NO 2 +NO 3 -N in all summer situations and for dissolved oxygen and pH in three cases. In summer, the mass centers of the chemicals were within 1.5 km from the geometric center of the lake, and the 2nd moment radius ranged in 3.7-4.1 km respective to 3.9 km for the homogeneous situation. The lateral length scales of the studied variables were 1.5-2.5 km, about 1 km longer in the surface layer. The detected spatial "noise" strongly suggests that besides vertical variation also the horizontal variation in eutrophic lakes, in particular, should be considered when the ecosystems are monitored.

  17. Regional model simulations of New Zealand climate

    NASA Astrophysics Data System (ADS)

    Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.

    1998-03-01

    Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.

  18. Ground- and Space-based Observations of Horizontally-extensive Lightning Flashes

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Cummins, K. L.; Bitzer, P. M.

    2017-12-01

    Horizontally-extensive lightning flashes occur frequently in association with mature and late phases of multicellular thunderstorms, both in trailing stratiform regions and horizontally-extensive anvils. The spatial relationship between these flashes and the parent cloud volume is of importance for space launch operational decision making, and is of broader scientific interest. Before this question can be accurately addressed, there is a need to understand the degree to which current lightning observation systems can depict the spatial extent of these long flashes. In this ongoing work, we will intercompare the depiction of horizontally-extensive flashes using several ground-based lightning locating systems (LLSs) located at Kennedy Space Center (KSC) with space-based observations observed by the recently-launched Geostationary Lightning Mapper (GLM) onboard the GOES-16 satellite. Ground-based datasets include the KSC Lightning Mapping Array (KSCLMA), the operational narrowband digital interferometer network MERLIN, and the combined cloud-to-ground and cloud lightning dataset produced by the U.S. National Lightning Detection Network (NLDN). The KSCLMA system is a network of VHF time-of-arrival sensors that preferentially report breakdown processes, and MERLIN is a network of VHF interferometers that point to the discharges in the horizontal plane. Observations to date indicate that MERLIN and the KSCSLMA provide similar overall descriptions of the spatial and temporal extent of these flashes, while the NLDN does not provide adequate spatial mapping of these flashes. The KSC LMA system has much better location accuracy, and provides excellent 3-dimensional representation within 100 km of KSC. It also has sufficient sensitivity to provide 2-dimensional flash mapping within 250 km of KSC. The MERLIN system provides a more-detailed representation of fast leader propagation (in 2 dimensions) with 100 km of KSC. Earlier work during the CHUVA campaign in Brazil with similar systems and the (orbital) Lightning Imaging System (LIS) has shown that the interferometric data correlated much better in space and time with the LIS optical observations. We are currently investigating this relationship at KSC, where both the LMA and interferometer perform much better than the systems used during CHUVA.

  19. Some lessons and thoughts from development of an old-fashioned high-resolution atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Ohfuchi, Wataru; Enomoto, Takeshi; Yoshioka, Mayumi K.; Takaya, Koutarou

    2014-05-01

    Some high-resolution simulations with a conventional atmospheric general circulation model (AGCM) were conducted right after the first Earth Simulator started operating in the spring of 2002. More simulations with various resolutions followed. The AGCM in this study, AFES (Agcm For the Earth Simulator), is a primitive equation spectral transform method model with a cumulus convection parameterization. In this presentation, some findings from comparisons between high and low-resolution simulations, and some future perspectives of old-fashioned AGCMs will be discussed. One obvious advantage of increasing resolution is capability of resolving the fine structures of topography and atmospheric flow. By increasing resolution from T39 (about 320 km horizontal grid interval) to T79 (160 km), to T159 (80 km) to T319 (40 km), topographic precipitation over Japan becomes increasingly realistic. This feature is necessary for climate and weather studies involving both global and local aspects. In order to resolve submesoscale (about 100 km horizontal scale) atmospheric circulation, about 10-km grid interval is necessary. Comparing T1279 (10 km) simulations with T319 ones, it is found that, for example, the intensity of heavy rain associated with Baiu front and the central pressure of typhoon become more realistic. These realistic submesoscale phenomena should have impact on larger-sale flow through dynamics and thermodynamics. An interesting finding by increasing horizontal resolution of a conventional AGCM is that some cumulus convection parameterizations, such as Arakawa-Schubert type scheme, gradually stop producing precipitation, while some others, such as Emanuel type, do not. With the former, the grid condensation increases with the model resolution to compensate. Which characteristics are more desirable is arguable but it is an important feature one has to consider when developing a high-resolution conventional AGCM. Many may think that conventional primitive equation spectral transform AGCMs, such as AFES, have no future. Developing globally homogeneous nonhydrostatic cloud resolving grid AGCMs is obviously a straightforward direction for the future. However these models will be very expensive for many users for a while, perhaps for the next some decades. On the other hand, old-fashioned AGCMs with a grid interval of 20-100 km will remain to be accurate and efficient tools for many users for many years to come. Also by coupling with a fine-resolution regional nonhydrostatic model, a conventional AGCM may overcome its limitation for use in climate and weather studies in the future.

  20. Model space exploration for determining landslide source history from long period seismic data

    NASA Astrophysics Data System (ADS)

    Zhao, Juan; Mangeney, Anne; Stutzmann, Eléonore; Capdeville, Yann; Moretti, Laurent; Calder, Eliza S.; Smith, Patrick J.; Cole, Paul; Le Friant, Anne

    2013-04-01

    The seismic signals generated by high magnitude landslide events can be recorded at remote stations, which provides access to the landslide process. During the "Boxing Day" eruption at Montserrat in 1997, the long period seismic signals generated by the debris avalanche are recorded by two stations at distances of 450 km and 1261 km. We investigate the landslide process considering that the landslide source can be described by single forces. The period band 25-50 sec is selected for which the landslide signal is clearly visible at the two stations. We first use the transverse component of the closest station to determine the horizontal forces. We model the seismogram by normal mode summation and investigate the model space. Two horizontal forces are found that best fit the data. These two horizontal forces have similar amplitude, but opposite direction and they are separated in time by 70 sec. The radiation pattern of the transverse component does not enable to determine the exact azimuth of these forces. We then model the vertical component of the seismograms which enable to retrieve both the vertical and horizontal forces. Using the parameter previously determined (amplitude ratio and time shift of the 2 horizontal forces), we further investigate the model space and show that a single vertical force together with the 2 horizontal forces enable to fit the data. The complete source time function can be described as follows: a horizontal force toward the opposite direction of the landslide flow is followed 40 sec later by a vertical downward force and 30 more seconds later by a horizontal force toward the direction of the flow. Inverting directly the seismograms in the period band 25-50sec enable to retrieve a source time function that is consistent with the 3 forces determined previously. The source time function in this narrow period band alone does not enable easily to recover the corresponding single forces. This method can be used to determine the source parameters using only 2 distant stations. It is successfully tested also on Mount St. Helens (1980) event which are recorded by more broadband stations.

  1. Motor transfer from map ocular exploration to locomotion during spatial navigation from memory.

    PubMed

    Demichelis, Alixia; Olivier, Gérard; Berthoz, Alain

    2013-02-01

    Spatial navigation from memory can rely on two different strategies: a mental simulation of a kinesthetic spatial navigation (egocentric route strategy) or visual-spatial memory using a mental map (allocentric survey strategy). We hypothesized that a previously performed "oculomotor navigation" on a map could be used by the brain to perform a locomotor memory task. Participants were instructed to (1) learn a path on a map through a sequence of vertical and horizontal eyes movements and (2) walk on the slabs of a "magic carpet" to recall this path. The main results showed that the anisotropy of ocular movements (horizontal ones being more efficient than vertical ones) influenced performances of participants when they change direction on the central slab of the magic carpet. These data suggest that, to find their way through locomotor space, subjects mentally repeated their past ocular exploration of the map, and this visuo-motor memory was used as a template for the locomotor performance.

  2. Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).

    PubMed

    Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko

    2010-10-11

    We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.

  3. Summertime Coincident Observations of Ice Water Path in the Visible/Near-IR, Radar, and Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Robertson, Franklin R.; Atkinson, Robert J.

    2008-01-01

    Accurate representation of the physical and radiative properties of clouds in climate models continues to be a challenge. At present, both remote sensing observations and modeling of microphysical properties of clouds rely heavily on parameterizations or assumptions on particle size distribution (PSD) and cloud phase. In this study, we compare Ice Water Path (IWP), an important physical and radiative property that provides the amount of ice present in a cloud column, using measurements obtained via three different retrieval strategies. The datasets we use in this study include Visible/Near-IR IWP from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flying aboard the Aqua satellite, Radar-only IWP from the CloudSat instrument operating at 94 GHz, and NOAA/NESDIS operational IWP from the 89 and 157 GHz channels of the Microwave Humidity Sounder (MHS) instrument flying aboard the NOAA-18 satellite. In the Visible/Near-IR, IWP is derived from observations of optical thickness and effective radius. CloudSat IWP is determined from measurements of cloud backscatter and assumed PSD. MHS IWP retrievals depend on scattering measurements at two different, non-water absorbing channels, 89 and 157 GHz. In order to compare IWP obtained from these different techniques and collected at different vertical and horizontal resolutions, we examine summertime cases in the tropics (30S - 30N) when all 3 satellites are within 4 minutes of each other (approximately 1500 km). All measurements are then gridded to a common 15 km x 15 km box determined by MHS. In a grid box comparison, we find CloudSat to report the highest IWP followed by MODIS, followed by MHS. In a statistical comparison, probability density distributions show MHS with the highest frequencies at IWP of 100-1000 g/m(exp 2) and CloudSat with the longest tail reporting IWP of several thousands g/m(exp 2). For IWP greater than 30 g/m(exp 2), MODIS is consistently higher than CloudSat, and it is higher at the lower IWPs but lower at the higher IWPs that overlap with MHS. Some of these differences can be attributed to the limitations of the measuring techniques themselves, but some can result from the assumptions made in the algorithms that generate the IWP product. We investigate this issue by creating categories based on various conditions such as cloud type, precipitation presence, underlying liquid water content, and surface type (land vs. ocean) and by comparing the performance of the IWP products under each condition.

  4. The Effects of Rainfall Inhomogeneity on Climate Variability of Rainfall Estimated from Passive Microwave Sensors

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Poyner, Philip; Berg, Wesley; Thomas-Stahle, Jody

    2007-01-01

    Passive microwave rainfall estimates that exploit the emission signal of raindrops in the atmosphere are sensitive to the inhomogeneity of rainfall within the satellite field of view (FOV). In particular, the concave nature of the brightness temperature (T(sub b)) versus rainfall relations at frequencies capable of detecting the blackbody emission of raindrops cause retrieval algorithms to systematically underestimate precipitation unless the rainfall is homogeneous within a radiometer FOV, or the inhomogeneity is accounted for explicitly. This problem has a long history in the passive microwave community and has been termed the beam-filling error. While not a true error, correcting for it requires a priori knowledge about the actual distribution of the rainfall within the satellite FOV, or at least a statistical representation of this inhomogeneity. This study first examines the magnitude of this beam-filling correction when slant-path radiative transfer calculations are used to account for the oblique incidence of current radiometers. Because of the horizontal averaging that occurs away from the nadir direction, the beam-filling error is found to be only a fraction of what has been reported previously in the literature based upon plane-parallel calculations. For a FOV representative of the 19-GHz radiometer channel (18 km X 28 km) aboard the Tropical Rainfall Measuring Mission (TRMM), the mean beam-filling correction computed in this study for tropical atmospheres is 1.26 instead of 1.52 computed from plane-parallel techniques. The slant-path solution is also less sensitive to finescale rainfall inhomogeneity and is, thus, able to make use of 4-km radar data from the TRMM Precipitation Radar (PR) in order to map regional and seasonal distributions of observed rainfall inhomogeneity in the Tropics. The data are examined to assess the expected errors introduced into climate rainfall records by unresolved changes in rainfall inhomogeneity. Results show that global mean monthly errors introduced by not explicitly accounting for rainfall inhomogeneity do not exceed 0.5% if the beam-filling error is allowed to be a function of rainfall rate and freezing level and does not exceed 2% if a universal beam-filling correction is applied that depends only upon the freezing level. Monthly regional errors can be significantly larger. Over the Indian Ocean, errors as large as 8% were found if the beam-filling correction is allowed to vary with rainfall rate and freezing level while errors of 15% were found if a universal correction is used.

  5. High Resolution Hypocenter Relocation for Events in Central Java, Indonesia using Double-Difference Technique

    NASA Astrophysics Data System (ADS)

    Sahara, D. P.; Widiyantoro, S.; Nugraha, A. D.; Sule, R.; Luehr, B. G.

    2010-12-01

    Seismic and volcanic activities in Central Java are highly related to the subduction of the Indo-Australian plate. In the MERapi AMphibious Experiments (MERAMEX), a network consisting of 169 seismographic stations was installed onshore and offshore in central Java and recorded 282 events during the operation. In this study, we present the results of relative hypocenters relocation by using Double Difference (DD) method to image the subduction beneath the volcanic chain in central Java. The DD method is an iterative procedure using Least Square optimization to determine high-resolution hypocenter locations over large distances. This relocation method uses absolute travel-time measurements and/or cross-correlation of P- and S-wave differential travel-time measurements. The preliminary results of our study showed that the algorithm could collapse the diffused event locations obtained from previous study into a sharp image of seismicity structure and reduce the residual travel time errors significantly (7 - 60%). As a result, narrow regions of a double seismic zone which correlated with the subducting slab can be determined more accurately. The dip angle of the slab increases gradually from almost horizontal beneath offshore to very steep (65-80 degrees) beneath the northern part of central Java. The aseismic gap at depths of 140 km - 185 km is also depicted clearly. The next step of the ongoing research is to provide detailed quantitative constraints on the structures of the mantle wedge and crust beneath central Java and to show the ascending paths of fluids and partially molten materials below the volcanic arc by applying Double-Difference Tomography method (TomoDD).

  6. Anisotropic tomography of the European lithospheric structure from surface wave studies

    NASA Astrophysics Data System (ADS)

    Nita, Blanka; Maurya, Satish; Montagner, Jean-Paul

    2016-06-01

    We present continental-scale seismic isotropic and anisotropic imaging of shear wave upper-mantle structure of tectonically diversified terranes creating the European continent. Taking into account the 36-200 s period range of surface waves enables us to model the deep subcontinental structure at different vertical scale-lengths down to 300 km. After very strict quality selection criteria, we have obtained phase wave speeds at different periods for fundamental Rayleigh and Love modes from about 9000 three-component seismograms. Dispersion measurements are performed by using Fourier-domain waveform inversion technique named "roller-coaster-type" algorithm. We used the reference model with a varying average crustal structure for each source-station path. That procedure led to significant improvement of the quality and number of phase wave speed dispersion measurements compared to the common approach of using a reference model with one average crustal structure. Surface wave dispersion data are inverted at depth for retrieving isotropy and anisotropy parameters. The fast axis directions related to azimuthal anisotropy at different depths constitute a rich database for geodynamical interpretations. Shear wave anomalies of the horizontal dimension larger than 200 km are imaged in our models. They correlate with tectonic provinces of varying age-provenance. Different anisotropy patterns are observed along the most distinctive feature on our maps-the bordering zone between the Palaeozoic and Precambrian Europe. We discuss the depth changes of the lithosphere-asthenosphere boundary along the profiles crossing the chosen tectonic units of different origin and age: Fennoscandia, East European Craton, Anatolia, Mediterranean subduction zones. Within the flat and stable cratonic lithosphere, we find traces of the midlithospheric discontinuity.

  7. Mechanical response of the south flank of kilauea volcano, hawaii, to intrusive events along the rift systems

    USGS Publications Warehouse

    Dvorak, J.J.; Okamura, A.T.; English, T.T.; Koyanagi, R.Y.; Nakata, J.S.; Sako, M.K.; Tanigawa, W.T.; Yamashita, K.M.

    1986-01-01

    Increased earthquake activity and compression of the south flank of Kilauea volcano, Hawaii, have been recognized by previous investigators to accompany rift intrusions. We further detail the temporal and spatial changes in earthquake rates and ground strain along the south flank induced by six major rift intrusions which occurred between December 1971 and January 1981. The seismic response of the south flank to individual rift intrusions is immediate; the increased rate of earthquake activity lasts from 1 to 4 weeks. Horizontal strain measurements indicate that compression of the south flank usually accompanies rift intrusions and eruptions. Emplacement of an intrusion at a depth greater than about 4 km, such as the June 1982 southwest rift intrusion, however, results in a slight extension of the subaerial portion of the south flank. Horizontal strain measurements along the south flank are used to locate the January 1983 east-rift intrusion, which resulted in eruptive activity. The intrusion is modeled as a vertical rectangular sheet with constant displacement perpendicular to the plane of the sheet. This model suggests that the intrusive body that compressed the south flank in January 1983 extended from the surface to about 2.4 km depth, and was aligned along a strike of N66??E. The intrusion is approximately 11 km in length, extended beyond the January 1983 eruptive fissures, which are 8 km in length and is contained within the 14-km-long region of shallow rift earthquakes. ?? 1986.

  8. Martian Electron Temperatures in the Sub Solar Region.

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Peterson, W. K.; Andersson, L.; Thiemann, E.; Mayyasi, M.; Yelle, R. V.; Benna, M.; Espley, J. R.

    2017-12-01

    Observations from Viking, and MAVEN have shown that the observed ionospheric electron temperatures are systematically higher than those predicted by many models. Because electron temperature is a balance between heating, cooling, and heat transport, we systematically compare the magnitude of electron heating from photoelectrons, electron cooling and heat transport, as a function of altitude within 30 degrees of the sub solar point. MAVEN observations of electron temperature and density, EUV irradiance, neutral and ion composition are used to evaluate terms in the heat equation following the framework of Matta et al. (Icarus, 2014, doi:10.1016/j.icarus.2013.09.006). Our analysis is restricted to inbound orbits where the magnetic field is within 30 degrees of horizontal. MAVEN sampled the sub solar region in May 2015 and again in May 2017, in near northern spring equinoctial conditions. Solar activity was higher and the spacecraft sampled altitudes down to 120 km in 2015, compared to 160 km in 2017. We find that between 160 and 200 km the Maven electron temperatures are in thermal equilibrium, in the sub solar region, on field lines inclined less than 30 degrees to the horizontal. Above 200km the data suggest that heating from other sources, such as wave heating are significant. Below 160 km some of the discrepancy comes from measurement limitations. This is because the MAVEN instrument cannot resolve the lowest electron temperatures, and because some cooling rates scale as the difference between the electron and neutral temperatures.

  9. Tornado Intensity Estimated from Damage Path Dimensions

    PubMed Central

    Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  10. Tornado intensity estimated from damage path dimensions.

    PubMed

    Elsner, James B; Jagger, Thomas H; Elsner, Ian J

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.

  11. Daytime midlatitude D region parameters at solar minimum from short-path VLF phase and amplitude

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; Clilverd, Mark A.; Rodger, Craig J.

    2011-03-01

    Observed phases and amplitudes of VLF radio signals propagating on a short (˜360 km) path are used to find improved parameters for the lowest edge of the (D region of the) Earth's ionosphere at a geomagnetic latitude of ˜53.5° in midsummer near solar minimum. The phases, relative to GPS 1 s pulses, and the amplitudes were measured both near (˜110 km from) the transmitter, where the direct ground wave is very dominant, and at distances of ˜360 km near where the ionospherically reflected waves form a (modal) minimum with the (direct) ground wave. The signals came from the 24.0 kHz transmitter, NAA, on the coast of Maine near the U.S.-Canada border, propagating ˜360 km E-NE, mainly over the sea, to Saint John and Prince Edward Island. The bottom edge of the midday, midsummer, ionosphere at ˜53.5° geomagnetic latitude was thus found to be well modeled by H' = 71.8 ± 0.6 km and β = 0.335 ± 0.025 km-1 where H' and β are Wait's traditional height and sharpness parameters used by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. The variation of β with latitude is also estimated with the aid of interpolation using measured galactic cosmic ray fluxes.

  12. Joint inversion of teleseismic body-waves and geodetic data for the Mw6.8 aftershock of the Balochistan earthquake with refined epicenter location

    NASA Astrophysics Data System (ADS)

    Wei, S.; Wang, T.; Jonsson, S.; Avouac, J. P.; Helmberger, D. V.

    2014-12-01

    Aftershocks of the 2013 Balochistan earthquake are mainly concentrated along the northeastern end of the mainshock rupture despite of much larger coseismic slip to the southwest. The largest event among them is an Mw6.8 earthquake which occurred three days after the mainshock. A kinematic slip model of the mainshock was obtained by joint inversion of the teleseismic body-waves and horizontal static deformation field derived from remote sensing optical and SAR data, which is composed of seven fault segments with gradually changing strikes and dips [Avouac et al., 2014]. The remote sensing data provide well constraints on the fault geometry and spatial distribution of slip but no timing information. Meanwhile, the initiation of the teleseismic waveform is very sensitive to fault geometry of the epicenter segment (strike and dip) and spatial slip distribution but much less sensitive to the absolute location of the epicenter. The combination of the two data sets allows a much better determination of the absolute epicenter location, which is about 25km to the southwest of the NEIC epicenter location. The well located mainshock epicenter is used to establish path calibrations for teleseismic P-waves, which are essential for relocating the Mw6.8 aftershock. Our grid search shows that the refined epicenter is located right at the northeastern end of the mainshock rupture. This is confirmed by the SAR offsets calculated from images acquired after the mainshock. The azimuth and range offsets display a discontinuity across the rupture trace of the mainshock. Teleseismic only and static only, as well as joint inversions all indicate that the aftershock ruptured an asperity with 25km along strike and range from 8km to 20km in depth. The earthquake was originated in a positive Coulomb stress change regime due to the mainshock and has complementary slip distribution to the mainshock rupture at the northeastern end, suggesting that the entire seismic generic zone in the crust was ruptured during the earthquake sequence.

  13. Low-loss reciprocal optical terminals for two-way time-frequency transfer.

    PubMed

    Swann, W C; Sinclair, L C; Khader, I; Bergeron, H; Deschênes, J-D; Newbury, N R

    2017-12-01

    We present the design and performance of a low-cost, reciprocal, compact free-space terminal employing tip/tilt pointing compensation that enables optical two-way time-frequency transfer over free-space links across the turbulent atmosphere. The insertion loss of the terminals is ∼1.5  dB with total link losses of 15 dB, 24 dB, and 50 dB across horizontal, turbulent 2-km, 4-km, and 12-km links, respectively. The effects of turbulence on pointing control and aperture size, and their influence on the terminal design, are discussed.

  14. Review of Nimbus-5 Microwave Spectrometer results. [atmospheric temperature profile measurement

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.

    1974-01-01

    Nimbus-E Microwave Spectrometer (NEMS) data are analyzed, especially those obtained from the 53.65, 54.9, and 58.8 GHz channels, corresponding to sensing at 4, 11, and 18 km respectively. The observations permit highly precise horizontal temperature profiles to be established and are hardly affected by clouds. The sensings of the 54.9 GHz channel unambiguously delineate wave structure on the equator. Horizontal water vapor profiles are derived from the 22.235 and 31.4 GHz channel data.

  15. Results of a zonally truncated three-dimensional model of the Venus middle atmosphere

    NASA Technical Reports Server (NTRS)

    Newman, M.

    1992-01-01

    Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to 110 km. Horizontal resolution is 1.5 deg latitude, and vertical resolution is 1.5 km. Solar and thermal infrared heating, based on Venus observations and calculations drive the model flow. Dissipation is accomplished mainly by Rayleigh friction, chosen to produce strong dissipation above 85 km in order to absorb upward propagating waves and limit extreme flow velocities there, yet to give very weak Rayleigh friction below 70 km; results in the cloud layer do not appear to be sensitive to the Rayleigh friction. The model also has weak vertical diffusion, and very weak horizontal diffusion, which has a smoothing effect on the flow only at the two grid points nearest the pole.

  16. Combining Direct Broadcast Polar Hyper-spectral Soundings with Geostationary Multi-spectral Imagery for Producing Low Latency Sounding Products

    NASA Astrophysics Data System (ADS)

    Smith, W.; Weisz, E.; McNabb, J. M. C.

    2017-12-01

    A technique is described which enables the combination of high vertical resolution (1 to 2-km) JPSS hyper-spectral soundings (i.e., from AIRS, CrIS, and IASI) with high horizontal (2-km) and temporal (15-min) resolution GOES multi-spectral imagery (i.e., provided by ABI) to produce low latency sounding products with the highest possible spatial and temporal resolution afforded by the instruments.

  17. Apparatus for Teaching Physics: A Versatile Projectile Motion Board.

    ERIC Educational Resources Information Center

    Prigo, Robert B.; Korda, Anthony

    1984-01-01

    Describes the design and use of a projectile motion apparatus to illustrate a variety of projective motion results typically discussed in an introductory course. They include independence of horizontal (constant speed) and vertical (constant acceleration) motions, parabolic path shape, and other types of motion. (JN)

  18. Gender Stereotypes and Gendered Vocational Aspirations among Swiss Secondary School Students

    ERIC Educational Resources Information Center

    Hadjar, Andreas; Aeschlimann, Belinda

    2015-01-01

    Background: Horizontal gender inequalities appear to be rather stable, with girls more often choosing "female" service professions, and boys choosing career paths related to science, technology, engineering or Mathematics. Purpose: Non-egalitarian patriarchal gender-role orientations and gender associations (perceived femininity) of the…

  19. Observation of Kelvin-Helmholtz instabilities and gravity waves in the summer mesopause above Andenes in Northern Norway

    NASA Astrophysics Data System (ADS)

    Stober, Gunter; Sommer, Svenja; Schult, Carsten; Latteck, Ralph; Chau, Jorge L.

    2018-05-01

    We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin-Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri < 0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40 km, vertical wavelengths between 5 and 10 km, and rather high intrinsic phase speeds between 45 and 85 m s-1 with intrinsic periods of 5-10 min.

  20. Breaking Gravity Waves Over Large-Scale Topography

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Shapiro, M. A.

    2002-12-01

    The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.

  1. Solar energy incident at the receiver of a solar tower plant, derived from remote sensing: Computation of both DNI and slant path transmittance

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Garnero, Marie-Agnès; Dubus, Laurent; Bourdil, Charles

    2017-06-01

    By scattering and absorbing solar radiation, aerosols generate production losses in solar plants. Due to the specific design of solar tower plants, solar radiation is attenuated not only in the atmospheric column but also in the slant path between the heliostats and the receiver. Broadband attenuation by aerosols is estimated in both the column and the slant path for Ouarzazate, Morocco, using spectral measurements of aerosol optical thickness (AOT) collected by AERONET. The proportion of AOT below the tower's height is computed assuming a single uniform aerosol layer of height equal to the boundary layer height computed by ECMWF for the Operational Analysis. The monthly average of the broadband attenuation by aerosols in the slant path was 6.9±3.0% in August 2012 at Ouarzazate, for 1-km distance between the heliostat and the receiver. The slant path attenuation should be added to almost 40% attenuation along the atmospheric column, with aerosols in an approximate 4.7-km aerosol layer. Also, around 1.5% attenuation is caused by Rayleigh and water vapour in the slant path. The monochromatic-broadband extrapolation is validated by comparing computed and observed direct normal irradiance (DNI). DNI observed around noon varied from more than 1000 W/m2 to around 400 W/m2 at Ouarzazate in 2012 because of desert dust plumes transported from North African desert areas.

  2. Space Radar Image of Pishan, China

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image is centered near the small town of Pishan in northwest China, about 280 km (174 miles) southeast of the city of Kashgar along the ancient Silk Route in the Taklamakan desert of the Xinjiang Province. Geologists are using this radar image as a map to study past climate changes and tectonics of the area. The irregular lavender branching patterns in the center of the image are the remains of ancient alluvial fans, gravel deposits that have accumulated at the base of the mountains during times of wetter climate. The subtle striped pattern cutting across the ancient fans are caused by thrusting of the Kun Lun Mountains north. This motion is caused by the continuing plate-tectonic collision of India with Asia. Modern fans show up as large lavender triangles above the ancient fan deposits. Yellow areas on the modern fans are vegetated oases. The gridded pattern results from the alignment of poplar trees that have been planted as wind breaks. The reservoir at the top of the image is part of a sophisticated irrigation system that supplies water to the oases. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in April 1994. This image is centered at 37.4 degrees north latitude, 78.3 degrees east longitude and shows an area approximately 50 km by 100 km (31 miles by 62 miles). The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; and blue is C-band horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.

  3. Dust transport over Iraq and northwest Iran associated with winter Shamal: A case study

    NASA Astrophysics Data System (ADS)

    Abdi Vishkaee, Farhad; Flamant, Cyrille; Cuesta, Juan; Oolman, Larry; Flamant, Pierre; Khalesifard, Hamid R.

    2012-02-01

    Dynamical processes leading to dust emission over Syria and Iraq, in response to a strong winter Shamal event as well as the subsequent transport of dust over Iraq and northwest Iran, are analyzed on the basis of a case study (22-23 February 2010) using a suite of ground-based and spaceborne remote sensing platforms together with modeling tools. Surface measurements on 22 February show a sharp reduction in horizontal visibility over Iraq occurring shortly after the passage of a cold front (behind which the northwesterly Shamal winds were blowing) and that visibilities could be as low as 1 km on average for 1-2 days in the wake of the front. The impact of the southwesterly Kaus winds blowing ahead (east) of the Shamal winds on dust emission over Iraq is also highlighted. Unlike what is observed over Iraq, low near-surface horizontal visibilities (<1 km) over northwest Iran are observed well after the passage of the cold front on 23 February, generally in the hours following sunrise. Ground-based lidar measurements acquired in Zanjan show that, in the wake of the front, dust from Syria/Iraq was transported in an elevated 1 to 1.5 km thick plume separated from the surface during the night/morning of 23 February. After sunrise, strong turbulence in the developing convective boundary layer led to mixing of the dust into the boundary layer and in turn to a sharp reduction of the horizontal visibility in Zanjan. The timing of the reduction of surface horizontal visibility in other stations over northwest Iran (Tabriz, Qom, and Tehran) is consistent with the downward mixing of dust in the planetary boundary layer just after sunset, as evidenced in Zanjan. This study sheds new light on the processes responsible for dust emission and transport over Iraq and northwest Iran in connection with winter Shamal events. Enhanced knowledge of these processes is key for improving dust forecasts in this region.

  4. Observation of dust emission and transport over Iraq and northwest Iran associated with winter Shamal

    NASA Astrophysics Data System (ADS)

    Flamant, C.; Abdi Vishkaee, F.; Cuesta, J.; Khalesifard, H.; Oolman, L.; Flamant, P.

    2012-04-01

    Dynamical processes leading to dust emission over Syria and Iraq, in response to a strong winter Shamal event as well as the subsequent transport of dust over Iraq and northwest Iran, are analyzed on the basis of a case study (22-23 February 2010) using a suite of ground-based and space-borne remote sensing platforms together with modeling tools. Surface measurements on 22 February show a sharp reduction in horizontal visibility over Iraq occurring shortly after the passage of a cold front (behind which the northwesterly Shamal winds were blowing) and that visibilities could be as low as 1 km on average for one to two days in the wake of the front. The impact of the southwesterly Kaus winds blowing ahead (east) of the Shamal winds on dust emission over Iraq is also highlighted. Unlike what is observed over Iraq, low near-surface horizontal visibilities (less than 1 km) over northwest Iran are observed well after the passage of the cold front on 23 February, generally in the hours following sunrise. Ground-based lidar measurements acquired in Zanjan show that, in the wake of the front, dust from Syria/Iraq was transported in an elevated 1 to 1.5 km thick plume separated from the surface during the night/morning of February. After sunrise, strong turbulence in the developing convective boundary layer led to mixing of the dust into the boundary layer and in turn to a sharp reduction of the horizontal visibility in Zanjan. The timing of the reduction of surface horizontal visibility in other stations over northwest Iran (Tabriz, Qom and Tehran) is consistent with the downward mixing of dust in the PBL just after sunset, as evidenced in Zanjan. This study shades new light on the processes responsible for dust emission and transport over Iraq and northwest Iran in connection with winter Shamal events. Enhanced knowledge of these processes is key for improving dust forecasts in this region.

  5. Space Radar Image of Pishan, China

    NASA Image and Video Library

    1999-04-15

    This radar image is centered near the small town of Pishan in northwest China, about 280 km (174 miles) southeast of the city of Kashgar along the ancient Silk Route in the Taklamakan desert of the Xinjiang Province. Geologists are using this radar image as a map to study past climate changes and tectonics of the area. The irregular lavender branching patterns in the center of the image are the remains of ancient alluvial fans, gravel deposits that have accumulated at the base of the mountains during times of wetter climate. The subtle striped pattern cutting across the ancient fans are caused by thrusting of the Kun Lun Mountains north. This motion is caused by the continuing plate-tectonic collision of India with Asia. Modern fans show up as large lavender triangles above the ancient fan deposits. Yellow areas on the modern fans are vegetated oases. The gridded pattern results from the alignment of poplar trees that have been planted as wind breaks. The reservoir at the top of the image is part of a sophisticated irrigation system that supplies water to the oases. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in April 1994. This image is centered at 37.4 degrees north latitude, 78.3 degrees east longitude and shows an area approximately 50 km by 100 km (31 miles by 62 miles). The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; and blue is C-band horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth. http://photojournal.jpl.nasa.gov/catalog/PIA01796

  6. Seafloor Geodetic Monitoring of the Central Andean Subduction Zone: The Geosea Array

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Lange, D.; Contreras Reyes, E.; Behrmann, J. H.; McGuire, J. J.; Flueh, E. R.

    2014-12-01

    Seafloor geodesy has been identified as one of the central tools in marine geosciences to monitor seafloor deformation at high resolution. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising a total of 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distance. Vertical motion is obtained from pressure gauges. Integrated inclinometers monitor station settlement in two horizontal directions. Travel time between instruments and the local water sound velocity will be recorded autonomously subsea without system or human intervention for up to 3.5 years. Data from the autonomous network on the seafloor can be retrieved via the integrated high-speed acoustic telemetry link without recovering the seafloor units. In late 2015 GeoSEA will be installed on the Iquique segment of the South America - Nazca convergent plate boundary to monitor crustal deformation. The Iquique seismic gap experienced the 2014 Mw 8.1 Pisagua earthquake, which apparently occurred within a local locking minimum. It is thus crucial to better resolve resolve strain in the forearc between the mainland and the trench in order to improve our understanding of forearc deformation required for hazard assessment. Mobile autonomous seafloor arrays for continuous measurement of active seafloor deformation in hazard zones have the potential to lead to transformative discoveries of plate boundary/fault zone tectonic processes and address a novel element of marine geophysical research.

  7. Asteroid Apophis: Evaluating the impact hazards of such bodies

    NASA Astrophysics Data System (ADS)

    Shuvalov, V. V.; Svettsov, V. V.; Artem'eva, N. A.; Trubetskaya, I. A.; Popova, O. P.; Glazachev, D. O.

    2017-01-01

    Soon after the discovery of asteroid 99942 Apophis, it was classified as a potentially hazardous object with a high probability of an impact on the Earth in 2029. Although subsequent observations have substantially reduced the probability of a collision, it has not been ruled out; moreover, similar-sized asteroids in orbits intersecting the Earth's orbit may well be discovered in the near future. We conduct a numerical simulation of an atmospheric passage and an impact on the Earth's surface of a stony cosmic body with a diameter of 300 m and kinetic energy of about 1000 Mt, which roughly corresponds to the parameters of the asteroid Apophis, at atmospheric entry angles of 90° (vertical stroke), 45°, and 30°. The simulation is performed by solving three-dimensional equations of hydrodynamics and radiative transfer equations in the approximations of radiative heat conduction and volume emission. The following hazards are considered: an air shock wave, ejecta from the crater, thermal radiation, and ionospheric disturbances. Our calculations of the overpressure and wind speed on the Earth's surface show that the zone of destruction of the weakest structures can be as large as 700-1000 km in diameter; a decrease in the flight path angle to the surface leads to a marked increase in the area affected by the shock wave. The ionospheric disturbances are global in nature and continue for hours: at distances of several thousand kilometers at altitudes of more than 100 km, air density disturbances are tens of percent and the vertical and horizontal velocity components reach hundreds of meters per second. The impact of radiation on objects on the Earth's surface is estimated by solving the equation of radiative transfer along rays passing through a luminous area. In clear weather, the size of the zone where thermal heating may ignite wood can be as large as 200 km, and the zone of individual fire outbreaks associated with the ignition of flammable materials can be twice as large. In the 100-km central area, which is characterized by very strong thermal damage, there is ignition of structures, roofs, clothes, etc. The human hazardous area increases with the decrease in the trajectory angle, and people may experience thermal effects at distances of up to 250-400 km from the crater.

  8. Landscape evolution models using the stream power incision model show unrealistic behavior when m / n equals 0.5

    NASA Astrophysics Data System (ADS)

    Kwang, Jeffrey S.; Parker, Gary

    2017-12-01

    Landscape evolution models often utilize the stream power incision model to simulate river incision: E = KAmSn, where E is the vertical incision rate, K is the erodibility constant, A is the upstream drainage area, S is the channel gradient, and m and n are exponents. This simple but useful law has been employed with an imposed rock uplift rate to gain insight into steady-state landscapes. The most common choice of exponents satisfies m / n = 0.5. Yet all models have limitations. Here, we show that when hillslope diffusion (which operates only on small scales) is neglected, the choice m / n = 0.5 yields a curiously unrealistic result: the predicted landscape is invariant to horizontal stretching. That is, the steady-state landscape for a 10 km2 horizontal domain can be stretched so that it is identical to the corresponding landscape for a 1000 km2 domain.

  9. Regional measurements of infrasound signals from ARIANE-5 engine tests in Southern Germany

    NASA Astrophysics Data System (ADS)

    Koch, K.

    2012-04-01

    A well-controlled source of repetitive infrasound emissions was previously identified and has been related to development and acceptance tests of the European Space Agencies ARIANE-5 main engine. The propulsion testing facility of the German Aerospace Agency (DLR) near Heilbronn, Southern Germany, is a distance of about 320 km away from the International Monitoring System (IMS) station IS26 in east-southeasterly direction. In the past, signals associated with these propulsion tests could normally be detected at IS26 during winter months, but not during summer months, reflecting the changes in atmospheric conditions between winter and summer. Over the last year, DLR has prepared to conduct a series of seven propulsion tests which started in November 2011; with interim times between tests of 3-4 weeks it will last until late March or early April 2012. With mobile infrasound recording equipment available at BGR we planned to record the infrasonic wavefield along the path to IS26 at regular distances starting as close as 20 km from the source. Our aim is to study sound propagation from direct paths mainly involving the tropospheric layer through the "zone of silence" to distances close to IS26, where paths through stratospheric layers are followed. Preliminary results show that during the relevant winter season direct path propagation can be observed to some 40 km from the propulsion test source, even at seismographic stations where the acoustic wave couples into the ground. The tests are also observed at IS26, and waveform duration and f-k-analysis confirm the signals to be associated with the GT-type propulsion tests.

  10. The free-flight response of Drosophila to motion of the visual environment.

    PubMed

    Mronz, Markus; Lehmann, Fritz-Olaf

    2008-07-01

    In the present study we investigated the behavioural strategies with which freely flying fruit flies (Drosophila) control their flight trajectories during active optomotor stimulation in a free-flight arena. We measured forward, turning and climbing velocities of single flies using high-speed video analysis and estimated the output of a 'Hassenstein-Reichardt' elementary motion detector (EMD) array and the fly's gaze to evaluate flight behaviour in response to a rotating visual panorama. In a stationary visual environment, flight is characterized by flight saccades during which the animals turn on average 120 degrees within 130 ms. In a rotating environment, the fly's behaviour typically changes towards distinct, concentric circular flight paths where the radius of the paths increases with increasing arena velocity. The EMD simulation suggests that this behaviour is driven by a rotation-sensitive EMD detector system that minimizes retinal slip on each compound eye, whereas an expansion-sensitive EMD system with a laterally centred visual focus potentially helps to achieve centring response on the circular flight path. We developed a numerical model based on force balance between horizontal, vertical and lateral forces that allows predictions of flight path curvature at a given locomotor capacity of the fly. The model suggests that turning flight in Drosophila is constrained by the production of centripetal forces needed to avoid side-slip movements. At maximum horizontal velocity this force may account for up to 70% of the fly's body weight during yaw turning. Altogether, our analyses are widely consistent with previous studies on Drosophila free flight and those on the optomotor response under tethered flight conditions.

  11. Spatiotemporal Variability of Turbulence Kinetic Energy Budgets in the Convective Boundary Layer over Both Simple and Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Raj K.; Berg, Larry K.; Pekour, Mikhail

    The assumption of sub-grid scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) budget equation to study the spatio-temporal variability in two types of terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, north-eastern Oregon) and flat (ScaledWind Farm Technologies [SWiFT] site, west Texas) using the Weather Research and Forecasting (WRF) model. In each case six-nested domains (three domains eachmore » for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing from 10 km to 10 m using the WRF model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total production shear was found to be 45% and 15% of the total shear, at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10 km scale.« less

  12. Comparisons of Anvil Cirrus Spatial Characteristics between Airborne Observations in DC3 Campaign and WRF Simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, J.; Diao, M.; Chen, M.

    2015-12-01

    John D'Alessandro1, Minghui Diao1, Ming Chen2, George Bryan2, Hugh Morrison21. Department of Meteorology and Climate Science, San Jose State University2. Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO, 80301 Ice crystal formation requires the prerequisite condition of ice supersaturation, i.e., relative humidity with respect to ice (RHi) greater than 100%. The formation and evolution of ice supersaturated regions (ISSRs) has large impact on the subsequent formation of ice clouds. To examine the characteristics of simulated ice supersaturated regions at various model spatial resolutions, case studies between airborne in-situ measurements in the NSF Deep Convective, Clouds and Chemistry (DC3) campaign (May - June 2012) and WRF simulations are conducted in this work. Recent studies using ~200 m in-situ observations showed that ice supersaturated regions are mostly around 1 km in horizontal scale (Diao et al. 2014). Yet it is still unclear if such observed characteristics can be represented by WRF simulations at various spatial resolutions. In this work, we compare the WRF simulated anvil cirrus spatial characteristics with those observed in the DC3 campaign over the southern great plains in US. The WRF model is run at 1 km and 3 km horizontal grid spacing with a recent update of Thompson microphysics scheme. Our comparisons focus on the spatial characteristics of ISSRs and cirrus clouds, including the distributions of their horizontal scales, the maximum relative humidity with respect to ice (RHi) and the relationship between RHi and temperature. Our previous work on the NCAR CM1 cloud-resolving model shows that the higher resolution runs (i.e., 250m and 1km) generally have better agreement with observations than the coarser resolution (4km) runs. We will examine if similar trend exists for WRF simulations in deep convection cases. In addition, we will compare the simulation results between WRF and CM1, particularly for spatial correlations between ISSRs and cirrus and their evolution (based on the method of Diao et al. 2013). Overall, our work will help to assess the representation of ISSRs and cirrus in WRF simulation based on comparisons with in-situ observations.

  13. Verification of the NWP models operated at ICM, Poland

    NASA Astrophysics Data System (ADS)

    Melonek, Malgorzata

    2010-05-01

    Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw (ICM) started its activity in the field of NWP in May 1997. Since this time the numerical weather forecasts covering Central Europe have been routinely published on our publicly available website. First NWP model used in ICM was hydrostatic Unified Model developed by the UK Meteorological Office. It was a mesoscale version with horizontal resolution of 17 km and 31 levels in vertical. At present two NWP non-hydrostatic models are running in quasi-operational regime. The main new UM model with 4 km horizontal resolution, 38 levels in vertical and forecats range of 48 hours is running four times a day. Second, the COAMPS model (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by the US Naval Research Laboratory, configured with the three nested grids (with coresponding resolutions of 39km, 13km and 4.3km, 30 vertical levels) are running twice a day (for 00 and 12 UTC). The second grid covers Central Europe and has forecast range of 84 hours. Results of the both NWP models, ie. COAMPS computed on 13km mesh resolution and UM, are verified against observations from the Polish synoptic stations. Verification uses surface observations and nearest grid point forcasts. Following meteorological elements are verified: air temperature at 2m, mean sea level pressure, wind speed and wind direction at 10 m and 12 hours accumulated precipitation. There are presented different statistical indices. For continous variables Mean Error(ME), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) in 6 hours intervals are computed. In case of precipitation the contingency tables for different thresholds are computed and some of the verification scores such as FBI, ETS, POD, FAR are graphically presented. The verification sample covers nearly one year.

  14. Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASA-Unified WRF

    NASA Astrophysics Data System (ADS)

    Lee, Huikyo; Waliser, Duane E.; Ferraro, Robert; Iguchi, Takamichi; Peters-Lidard, Christa D.; Tian, Baijun; Loikith, Paul C.; Wright, Daniel B.

    2017-07-01

    Accurate simulation of extreme precipitation events remains a challenge in climate models. This study utilizes hourly precipitation data from ground stations and satellite instruments to evaluate rainfall characteristics simulated by the NASA-Unified Weather Research and Forecasting (NU-WRF) regional climate model at horizontal resolutions of 4, 12, and 24 km over the Great Plains of the United States. We also examined the sensitivity of the simulated precipitation to different spectral nudging approaches and the cumulus parameterizations. The rainfall characteristics in the observations and simulations were defined as an hourly diurnal cycle of precipitation and a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. We calculated a JPDF for each data set and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. Comparison of the diurnal precipitation cycles between observations and simulations does not reveal the added value of high-resolution simulations. However, the performance of NU-WRF simulations measured by the JPDF metric strongly depends on horizontal resolution. The simulation with the highest resolution of 4 km shows the best agreement with the observations in simulating duration and intensity of wet spells. Spectral nudging does not affect the JPDF significantly. The effect of cumulus parameterizations on the JPDFs is considerable but smaller than that of horizontal resolution. The simulations with lower resolutions of 12 and 24 km show reasonable agreement but only with the high-resolution observational data that are aggregated into coarse resolution and spatially averaged.

  15. Crustal Deformation and the Seismic Cycle across the Kodiak Islands, Alaska

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Carver, Gary; Cohen, Steven; King, Robert

    2006-01-01

    The Kodiak Islands are located approx.120 to 250 km from the Alaska-Aleutian Trench and are within the southern extent of the 1964 Prince William Sound (M(sub W) = 9.2) earthquake rupture and aftershock zone. Here we report new campaign GPS results (1993-2001) from northeastern Kodiak and reprocessed GPS results (1993-1997) from southwestern Kodiak. The rate and orientation of the horizontal velocities, relative to a fixed North America, range from 29.7 +/- 1.7 mm/yr at N30.3degW +/- 3.3deg, located approx.120 km from the deepest point of the trench, to 8.0 +/- 1.3 mm/yr at N62.4degW +/- 9.3deg, located approx.230 km from the trench. We evaluated alternate models of coseismic and interseismic slip to test the importance of the mechanisms that account for surface deformation rates. Near the Gulf of Alaska coastal region of Kodiak the horizontal velocity can be accounted for primarily by the viscoelastic response to plate motion and a locked main thrust zone (MTZ), down-dip creep, and to a lesser extent, slip in the 1964 earthquake. Further inland the dominant mechanisms that account for post-1964 uplift rates are time-dependent, down-dip creep and a locked MTZ; for the horizontal velocity component southwest translation of western Kodiak may be important as well. Based on the pre-1964 and post-1964 earthquake pattern of interseismic earthquakes, we suggest that between the occurrences of great earthquakes like the 1964 event, more moderate to large earthquakes occur in the southwestern Kodiak region than near northeastern Kodiak .

  16. Running stride peak forces inversely determine running economy in elite runners.

    PubMed

    Støren, Øyvind; Helgerud, Jan; Hoff, Jan

    2011-01-01

    The present study investigated the relationship between running economy (RE) at 15 km/h(-1) , 3.000-m race time, maximal strength, and a number of physiological, anthropometrical, and mechanical variables. The variables measured included RE, maximal oxygen consumption, heart rate, step length and frequency, contact time, and the peak horizontal and vertical forces of each step. Maximal strength was measured as the 1 repetition maximum (1RM) half-squat using a leg press machine. Eleven male elite endurance athletes with a V(O2)max of 75.8 ± 6.2 mL/kg(-1)/min(-1) participated in this study. After the anthropometric data were collected, they were tested for RE, running characteristics, and force measures on a level treadmill at 15 km/h(-1). The athletes wore contact soles, and the treadmill was placed on a force platform. Maximal oxygen consumption and 1RM were tested after the RE measurements. The sum of horizontal and vertical peak forces revealed a significant inverse correlation (p < 0.05) both with 3,000-m performance (R = 0.71) and RE (R = 0.66). Inverse correlations were also found (p < 0.05) between RE and body height (R = 0.61) and between RE and body fat percentage (R = 0.62). In conclusion, the sum of horizontal and vertical peak forces was found to be negatively correlated to running economy and 3,000-m running performance, indicating that avoiding vertical movements and high horizontal braking force is crucial for a positive development of RE.

  17. An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. II - Vertical structure

    NASA Technical Reports Server (NTRS)

    Mapes, Brian; Houze, Robert A., Jr.

    1993-01-01

    The vertical structure of monsoon thermal forcing by precipitating convection is diagnosed in terms of horizontal divergence. Airborne Doppler-radar divergence profiles from nine diverse mesoscale convective systems (MCSs) are presented. The MCSs consisted of multicellular convective elements which in time gave rise to areas of stratiform precipitation. Each of the three basic building blocks of the MCSs - convective, intermediary, and stratiform precipitation areas - has a consistent, characteristic divergence profile. Convective areas have low-level convergence, with its peak at 2-4 km altitude, and divergence above 6 km. Intermediary areas have convergence aloft, peaked near 10 km, feeding into mean ascent high in the upper troposphere. Stratiform areas have mid-level convergence, indicating a mesoscale downdraught below the melting level, and a mesoscale updraught aloft. Rawinsonde composite divergence profiles agree with the Doppler data in at least one important respect: the lower-tropospheric convergence into the MCSs peaks 2-4-km above the surface. Rawinsonde vorticity profiles show that monsoonal tropical cyclones spin-up at these elevated levels first, then later descend to the surface. Rawinsonde observations on a larger, continental scale demonstrate that at large horizontal scales only the 'gravest vertical mode' of MCS heating is felt, while the effects of shallower components of the heating (or divergence) profiles are trapped near the heating, as predicted by geostrophic adjustment theory.

  18. Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.

    2018-01-01

    This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.

  19. Optical Communications Experiments at 6328 A and 10.6 micro.

    PubMed

    Lucy, R F; Lang, K

    1968-10-01

    Diagnostic optical communication experiments were performed comparing noncoherent and coherent detection techniques. Three different receiver-transmitter configurations with variable apertures were used during the experiments that were performed over a 1-km real atmospheric path. In every case, it was found that the coherent system fading, due to atmospheric turbulence, was considerably greater than the noncoherent system fading. This result shows the greater sensitivity of the coherent system to the time-varying wavefront breakup produced by atmospheric turbulence. A coherent homodyne experiment at 10.6 micro over a 2-km round-trip path was also performed. Its results indicated that a coherent system at 10.6 micro is less susceptible to atmospheric turbulence than a coherent system at 6328 A.

  20. The Statitical and Case studies of the Thermospheric Enhanced Sodium Layers (TeSLs)

    NASA Astrophysics Data System (ADS)

    Xue, X.; Li, G.; She, C. Y.; Dou, X.

    2015-12-01

    We report the thermospheric enhanced sodium layers (TeSLs) observed at low and middle latitude region. Based on the statistical results of the TeSLs observed at Hainan, China (20.0N), a low latitude region, during the year 2011 - 2012, we found a good correlation between the TeSLs and the ionospheric counterparts in E region. For nine of the total 10 TeSLs, which were observed by a sodium lidar, the adjacent ionospheric observations from the COSMIC radio occultation and ionosondes exhibited abrupt perturbations in the RO SNR profiles and spread Es in the ionograms, respectively, indicating the existence of large-scale complex Es. Further, all the TeSLs, which had the co-observations by a VHF radar located nearby, were accompanied by the E region field-aligned irregularity (FAI) echoes. And seven FAIs (7/10) showed evident upwelling structure covering altitudes of 100 -- 140 km, well correlated with the development of the TeSLs. The occurrence of the large-scale complex Es possibly implies the direct altitude modulation of the horizontal Es layers by the atmospheric waves or the strong eastward polarization electric fields, which contribute the formation the FAI structures. In the course of the altitude modulation of the Es layers, sufficient ions (including sodium ions) and electrons could be accumulated in the upper altitude during the upward motion of the FAI plasma and benefits the formation of TeSLs through the chemical reaction. Two TeSL cases observed at Fort Collins, CO (20.0N), a middle latitude region, during day of year (DOY) 177 - 179 and DOY 191 during the year 2003. The enhanced sodium density in the lower thermospheric region provided the simultaneous observations for the horizontal wind and temperature. The TeSLs observed at Fort Collins had the similar feathers, i.e., they appeared at approximately 110 km and propagated with a downward speed of 1.5 - 2.5 km/hr, meanwhile, the higher temperature with approximately 50K increase and strong horizontal wind shear were accompanied with the TeSLs. Further investigation indicated that the TeSLs might be caused mainly by the ions vertical convergence due to horizontal wind-shear induced by the semi-diurnal tides, and the temperature enhancement at the altitude of 110 km had little contributions to the formation of TeSLs.

  1. Numerical and Observational Investigations of Long-Lived Mcs-Induced Severe Surface Wind Events: the Derecho

    NASA Astrophysics Data System (ADS)

    Schmidt, Jerome Michael

    This study addresses the production of sustained, straight-line, severe surface winds associated with mesoscale convective systems (MCSs) of extratropical origin otherwise known as derechos. The physical processes which govern the observed derecho characteristics are identified and their possible forcing mechanisms are determined. Detailed observations of two derechos are presented along with simulations using the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS). The observations revealed a derecho environment characterized by strong vertical wind shear through the depth of the troposphere and large values of convective available potential energy (CAPE). The thermodynamic environment of the troposphere in each case had a distinct three-layer structure consisting of: (i) a surface-based stable layer of 1-to-2 km in depth, (ii) an elevated well -mixed layer of 2-4 km in depth, and (iii) an upper tropospheric layer of intermediate stability that extended to the tropopause. Two primary sets of simulations were performed to assess the impact of the observed environmental profiles on the derecho structure, propagation, and longevity. The first set consisted of nested-grid regional-scale simulations initialized from the standard NMC analyses on a domain having relatively coarse horizontal resolution (75 km). The second set of simulations consisted of two and three-dimensional experiments initialized in a horizontally homogeneous environment having a relatively fine horizontal resolution (2 km) and explicit microphysics. The results from these experiments indicate the importance of convectively -induced gravity waves on the MCS structure, propagation, longevity, and severe surface wind development. The sensitivity of the simulated convection and gravity waves to variations in the vertical wind shear and moisture profiles are described. Detailed Doppler radar analyses and 3-D simulations of a severe, bow echo squall line are presented which reveal the unique 3-D circulation features which accompany these mesoscale convective systems. We illustrate how the mesoscale and convective-scale flow fields within the bow echo establish the severe surface wind maximum. (Abstract shortened with permission of author.).

  2. Impact of cloud horizontal inhomogeneity and directional sampling on the retrieval of cloud droplet size by the POLDER instrument

    NASA Astrophysics Data System (ADS)

    Shang, H.; Chen, L.; Bréon, F. M.; Letu, H.; Li, S.; Wang, Z.; Su, L.

    2015-11-01

    The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR (~ 1.5 μm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (> 15 μm) and to reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data from June 2008, and the new CDR results are compared with the operational CDRs. The comparison shows that the operational CDRs tend to be underestimated for large droplets because the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Finally, a sub-grid-scale retrieval case demonstrates that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size distribution parameters from POLDER measurements.

  3. Structure of the North Anatolian Fault Zone from the Auto-Correlation of Ambient Seismic Noise Recorded at a Dense Seismometer Array

    NASA Astrophysics Data System (ADS)

    Taylor, D. G.; Rost, S.; Houseman, G.

    2015-12-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.

  4. Use of the 1991 ASCOT field study data in a mesoscale model employing a four-dimensional data assimilation technique

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Osteen, B. Lance

    In this study, a four-dimensional data assimilation technique based on Newtonian relaxation is incorporated into the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) and evaluated using data taken from one experiment of the US Department of Energy's (DOE) 1991 Atmospheric Studies in COmplex Terrain (ASCOT) field study along the front range of the Rockies in Colorado. The main objective of this study is to determine the ability of the model to predict small-scale circulations influenced by terrain, such as drainage flows, and assess the impact of data assimilation on the numerical results. In contrast to previous studies in which the smallest horizontal grid spacing was 10 km and 8 km, data assimilation is applied in this study to domains with a horizontal grid spacing as small as 1 km. The prognostic forecasts made by RAMS are evaluated by comparing simulations that employ static initial conditions, with simulations that incorporate continuous data assimilation, and data assimilation for a fixed period of time (dynamic initialization). This paper will also elaborate on the application and limitation of the Newtonian relaxation technique in limited-area mesoscale models with a relatively small grid spacing.

  5. Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters

    NASA Astrophysics Data System (ADS)

    Lehahn, Yoav; Koren, Ilan; Sharoni, Shlomit; D'Ovidio, Francesco; Vardi, Assaf; Boss, Emmanuel

    2017-03-01

    Spatial characteristics of phytoplankton blooms often reflect the horizontal transport properties of the oceanic turbulent flow in which they are embedded. Classically, bloom response to horizontal stirring is regarded in terms of generation of patchiness following large-scale bloom initiation. Here, using satellite observations from the North Pacific Subtropical Gyre and a simple ecosystem model, we show that the opposite scenario of turbulence dispersing and diluting fine-scale (~1-100 km) nutrient-enriched water patches has the critical effect of regulating the dynamics of nutrients-phytoplankton-zooplankton ecosystems and enhancing accumulation of photosynthetic biomass in low-nutrient oceanic environments. A key factor in determining ecological and biogeochemical consequences of turbulent stirring is the horizontal dilution rate, which depends on the effective eddy diffusivity and surface area of the enriched patches. Implementation of the notion of horizontal dilution rate explains quantitatively plankton response to turbulence and improves our ability to represent ecological and biogeochemical processes in oligotrophic oceans.

  6. A real-time moment-tensor inversion system (GRiD-MT-3D) using 3-D Green's functions

    NASA Astrophysics Data System (ADS)

    Nagao, A.; Furumura, T.; Tsuruoka, H.

    2016-12-01

    We developed a real-time moment-tensor inversion system using 3-D Green's functions (GRiD-MT-3D) by improving the current system (GRiD-MT; Tsuruoka et al., 2009), which uses 1-D Green's functions for longer periods than 20 s. Our moment-tensor inversion is applied to the real-time monitoring of earthquakes occurring beneath Kanto basin area. The basin, which is constituted of thick sediment layers, lies on the complex subduction of the Philippine-Sea Plate and the Pacific Plate that can significantly affect the seismic wave propagation. We compute 3-D Green's functions using finite-difference-method (FDM) simulations considering a 3-D velocity model, which is based on the Japan Integrated Velocity Structure Model (Koketsu et al., 2012), that includes crust, mantle, and subducting plates. The 3-D FDM simulations are computed over a volume of 468 km by 432 km by 120 km in the EW, NS, and depth directions, respectively, that is discretized into 0.25 km grids. Considering that the minimum S wave velocity of the sedimentary layer is 0.5 km/s, simulations can compute seismograms up to 0.5 Hz. We calculate Green's functions between 24,700 sources, which are distributed every 0.1° in the horizontal direction and every 9 km in depth direction, and 13 F-net stations. To compute this large number of Green's functions, we used the EIC parallel computer of ERI. The reciprocity theory, which switches the source and station positions, is used to reduce total computation costs. It took 156 hours to compute all the Green's functions. Results show that at long-periods (T>15 s), only small differences are observed between the 3-D and 1-D Green's functions as indicated by high correlation coefficients of 0.9 between the waveforms. However, at shorter periods (T<10 s), the differences become larger and the correlation coefficients drop to 0.5. The effect of the 3-D heterogeneous structure especially affects the Green's functions for the ray paths that across complex geological structures, such as the sedimentary basin or the subducting plates. After incorporation of the 3-D Green's functions in the GRiD-MT-3D system, we compare the results to the former GRiD-MT system to demonstrate the effectiveness of the new system in terms of variance reduction and accuracy of the moment-tensor estimation for much smaller events than the current one.

  7. FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07

    NASA Astrophysics Data System (ADS)

    Yuan, Wei

    2015-04-01

    We analyzed the nighttime horizontal neutral winds in the middle atmosphere (˜87 and ˜98 km) and thermosphere (˜250 km) derived from a Fabry-Perot interferometer (FPI), which was installed at Xinglong station (40.2◦ N, 117.4◦ E) in central China. The wind data covered the period from April 2010 to July 2012. We studied the annual, semiannual and terannual variations of the midnight winds at ˜87 km, ˜98 km and ˜250 km for the first time and compared them with Horizontal Wind Model 2007 (HWM07). Our results show the following: (1) at ˜ 87 km, both the observed and model zonal winds have similar phases in the annual and semiannual variations. However, the HWM07 amplitudes are much larger. (2) At ˜98 km, the model shows strong eastward wind in the summer solstice, resulting in a large annual variation, while the observed strongest component is semiannual. The observation and model midnight meridional winds agree well. Both are equatorward throughout the year and have small amplitudes in the annual and semiannual variations. (3) There are large discrepancies between the observed and HWM07 winds at ˜250 km. This discrepancy is largely due to the strong semiannual zonal wind in the model and the phase difference in the annual variation of the meridional wind. The FPI annual variation coincides with the results from Arecibo, which has similar geomagnetic latitude as Xinglong station. In General, the consistency of FPI winds with model winds is better at ˜87 and ˜98 km than that at ˜250 km. We also studied the seasonally and monthly averaged nighttime winds. The most salient features include the following: (1) the seasonally averaged zonal winds at ˜87 and ˜98 km typically have small variations throughout the night. (2) The model zonal and meridional nighttime wind variations are typically much larger than those of observations at ˜87 km and ˜98 km. (3) At ˜250 km, model zonal wind compares well with the observation in the winter. For spring and autumn, the model wind is more eastward before ˜ 03:00 LT but more westward after. The observed nighttime zonal and meridional winds on average are close to zero in the summer and autumn, which indicates a lack of strong stable tides. The consistency of FPI zonal wind with model wind at ˜250 km is better than the meridional wind.

  8. Assessing climate change over the Marche Region (central Italy) from 1961 to 2100: projected changes in mean and severe precipitation (with a statistical evaluation of RCMs local performance).

    NASA Astrophysics Data System (ADS)

    Sangelantoni, Lorenzo; Coluccelli, Alessandro; Russo, Aniello

    2014-05-01

    Considering the 21st century projected precipitation over the Mediterranean basin, Marche region (central Italy, facing the Adriatic Sea) climate represents an interesting case of study, being located on a transition area between positive and negative change sign. Multi-model projections of daily mean precipitation over Marche region, have been extracted from the outputs of a set of 7 Regional Climate Models (RCMs) over Europe run by several research Institutes participating to the EU ENSEMBLE project. These climate simulations from 1961 to 2100 refer to the boundary conditions of the IPCC A1B emission scenario, with a horizontal resolution of 25km × 25km. Furthermore, two RCMs outputs from Med-CORDEX project, with a higher horizontal resolution (12km x 12km) and boundary conditions provided by the new Representative Concentration Pathway (RCP) 4.5 and 8.5, are analyzed. Observed daily mean precipitation over Marche region domain have been extracted from E-OBS gridded data set (Version 9.0) covering the period 1970-2004. Concise statistical summary of how well employed RCMs reproduce past observed Marche region precipitation (1970-2004) in term of correlation, root-mean-square difference, and the ratio of variances are graphically displayed on 2D-Taylor diagram. This multi-statistical model performance evaluation easily allows: - to compare the agreement with observation of the 9 individual RCMs - to compare RCMs with different horizontal resolution (12 km and 25 km) - to evaluate the improvement provided by the RCMs ensemble. Results indicate that the best performance is obtained by the 9 RCMs ensemble. Differently than temperature (not shown), RCMs showed a lower capability in reproducing observed mean interannual precipitation distribution, and the increase in RCMs horizontal resolution (from 25 km to 12 km) did not provide evident performance improvements. Considering that alteration in hydrologic cycle is one of the most worrying climate change outcomes at regional/local level, we brought out the hydro-climatic intensity index (HY-INT; Giorgi et al. 2011) for the Marche region. HY-INT integrates metrics of mean annual precipitation intensity and dry spell length, viewing the response of this two metrics to global warming as deeply interconnected. HY-INT shows an overall statistically significant increase (especially of dry spell length), more relevant after 2050. Taking cue from HY-INT index results, we investigated not only projected changes of mean precipitation, but also the key aspect of modification of extreme tails of the precipitation distribution. Projected percentage changes in mean and 90th percentile precipitation by comparison between 2071-2100 and 1961-1990 time slice values over Marche region were obtained. Results show two remarkable aspects linked with large scale circulation (northward shift of storm track) and thermodynamic processes (Clausius-Clapeyron relation): • summer with heavily negative anomaly in mean precipitation amount followed by spring, respectively -30% and -25%. Cold semester shows trivial decrease (about -5%, mainly on western mountainous area); • contrasting with the mean precipitation anomaly, an increase in severe precipitation events (90th percentile) is projected, especially in autumn (+25%). Future research step will be devoted to investigate regional hydrological climate change impacts, involving multi climate bias corrected variables from RCMs in combination with hydrological models.

  9. Ground Displacement Measurement of the 2013 Balochistan Earthquake with interferometric TerraSAR-X ScanSAR data

    NASA Astrophysics Data System (ADS)

    Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.

    2014-12-01

    This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A quicklook of the wrapped differential TerraSAR-X ScanSAR co-seismic interferogram is provided in the attachment (range coverage is 100 km by using 4 subswaths).

  10. Mesoscale atmospheric modelling technology as a tool for the long-term meteorological dataset development

    NASA Astrophysics Data System (ADS)

    Platonov, Vladimir; Kislov, Alexander; Rivin, Gdaly; Varentsov, Mikhail; Rozinkina, Inna; Nikitin, Mikhail; Chumakov, Mikhail

    2017-04-01

    The detailed hydrodynamic modelling of meteorological parameters during the last 30 years (1985 - 2014) was performed for the Okhotsk Sea and the Sakhalin island regions. The regional non-hydrostatic atmospheric model COSMO-CLM used for this long-term simulation with 13.2, 6.6 and 2.2 km horizontal resolutions. The main objective of creation this dataset was the outlook of the investigation of statistical characteristics and the physical mechanisms of extreme weather events (primarily, wind speed extremes) on the small spatio-temporal scales. COSMO-CLM is the climate version of the well-known mesoscale COSMO model, including some modifications and extensions adapting to the long-term numerical experiments. The downscaling technique was realized and developed for the long-term simulations with three consequent nesting domains. ERA-Interim reanalysis ( 0.75 degrees resolution) used as global forcing data for the starting domain ( 13.2 km horizontal resolution), then these simulation data used as initial and boundary conditions for the next model runs over the domain with 6.6 km resolution, and similarly, for the next step to 2.2 km domain. Besides, the COSMO-CLM model configuration for 13.2 km run included the spectral nudging technique, i.e. an additional assimilation of reanalysis data not only at boundaries, but also inside the whole domain. Practically, this computational scheme realized on the SGI Altix 4700 supercomputer system in the Main Computer Center of Roshydromet and used 2,400 hours of CPU time total. According to modelling results, the verification of the obtained dataset was performed on the observation data. Estimations showed the mean error -0.5 0C, up to 2 - 3 0C RMSE in temperature, and overestimation in wind speed (RMSE is up to 2 m/s). Overall, analysis showed that the used downscaling technique with applying the COSMO-CLM model reproduced the meteorological conditions, spatial distribution, seasonal and synoptic variability of temperature and wind speed for the study area adequately. The dependences between reproduction quality of mesoscale atmospheric circulation features and the horizontal resolution of the model were revealed. In particular, it is shown that the use of 6 km resolution does not give any significant improvement comparing to 13 km resolution, whereas 2.2 km resolution provides an appreciable quality enhancement. Detailed synoptic analysis of extreme wind speed situations identified the main types of favorable to their genesis, associated with developing of cyclones over the Japan Islands or the Primorsky Kray of Russia, and penetration of intensified cyclones from Pacific Ocean through the Kamchatka peninsula, Kuril or Japan Islands. The obtained dataset will continue to be used for a full and comprehensive analysis of the reproduction quality of hydrometeorological fields, their statistical estimates, climatological trends and many other objectives.

  11. Design of a fuel-efficient guidance system for a STOL aircraft

    NASA Technical Reports Server (NTRS)

    Mclean, J. D.; Erzberger, H.

    1981-01-01

    In the predictive mode, the system synthesizes a horizontal path from an initial aircraft position and heading to a desired final position and heading and then synthesizes a fuel-efficient speed-altitude profile along the path. In the track mode, the synthesized trajectory is reconstructed and tracked automatically. An analytical basis for the design of the system is presented and a description of the airborne computer implementation is given. A detailed discussion of the software, which should be helpful to those who use the actual software developed for these tests, is also provided.

  12. What Makes the Foucault Pendulum Move among the Stars?

    NASA Astrophysics Data System (ADS)

    Phillips, Norman

    2004-11-01

    Foucault's pendulum exhibition in 1851 occurred in an era now known by development of the theorems of Coriolis and the formulation of dynamical meteorology by Ferrel. Yet today the behavior of the pendulum is often misunderstood. The existence of a horizontal component of Newtonian gravitation is essential for understanding the behavior with respect to the stars. Two simple mechanical principles describe why the path of oscillation is fixed only at the poles; the principle of centripetal acceleration and the principle of conservation of angular momentum. A sky map is used to describe the elegant path among the stars produced by these principles.

  13. Landing Energy Dissipation for Manned Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Fisher, Loyd. L.

    1960-01-01

    The film shows experimental investigations to determine the landing-energy-dissipation characteristics for several types of landing gear for manned reentry vehicles. The landing vehicles are considered in two categories: those having essentially vertical-descent paths, the parachute-supported vehicles, and those having essentially horizontal paths, the lifting vehicles. The energy-dissipation devices include crushable materials such as foamed plastics and honeycomb for internal application in couch-support systems, yielding metal elements as part of the structure of capsules or as alternates for oleos in landing-gear struts, inflatable bags, braking rockets, and shaped surfaces for water impact.

  14. Site selection and traverse planning to support a lunar polar rover mission: A case study at Haworth Crater

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Bussey, Ben; McGovern, Andrew; Beyer, Ross; Lees, David; Deans, Matt

    2016-10-01

    Studies of lunar polar volatile deposits are of interest for scientific purposes to understand the nature and evolution of the volatiles, and also for exploration reasons as a possible in situ resource to enable long term human exploration and settlement of the Moon. Both theoretical and observational studies have suggested that significant quantities of volatiles exist in the polar regions, although the lateral and horizontal distribution remains unknown at the km scale and finer resolution. A lunar polar rover mission is required to further characterize the distribution, quantity, and character of lunar polar volatile deposits at these higher spatial resolutions. Here we present a case study for NASA's Resource Prospector (RP) mission concept for a lunar polar rover and utilize this mission architecture and associated constraints to evaluate whether a suitable landing site exists to support an RP flight mission. We evaluate the landing site criteria to characterize the Haworth Crater region in terms of expected hydrogen abundance, surface topography, and prevalence of shadowed regions, as well as solar illumination and direct to Earth communications as a function of time to develop a notional rover traverse plan that addresses both science and engineering requirements. We also present lessons-learned regarding lunar traverse path planning focusing on the critical nature of landing site selection, the influence of illumination patterns on traverse planning, the effects of performing shadowed rover operations, the influence of communications coverage on traverse plan development, and strategic planning to maximize rover lifetime and science at end of mission. Here we present a detailed traverse path scenario for a lunar polar volatiles rover mission and find that the particular site north of Haworth Crater studied here is suitable for further characterization of polar volatile deposits.

  15. Vertical Structure and Optical Properties of Titans Aerosols from Radiance Measurements Made Inside and Outside the Atmosphere

    NASA Technical Reports Server (NTRS)

    Doose, Lyn R.; Karkoschka, Erich; Tomasko, Martin G.; Anderson, Carrie M.

    2017-01-01

    Prompted by the detection of stratospheric cloud layers by Cassini's Composite Infrared Spectrometer (CIRS; see Anderson, C.M., Samuelson, R.E. [2011]. Icarus 212, 762-778), we have re-examined the observations made by the Descent Imager/Spectral Radiometer (DISR) in the atmosphere of Titan together with two constraints from measurements made outside the atmosphere. No evidence of thin layers (<1 km) in the DISR image data sets is seen beyond the three previously reported layers at 21 km, 11 km, and 7 km by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M.G. [2009]. Icarus 199, 442-448). On the other hand, there is evidence of a thicker layer centered at about 55 km. A rise in radiance gradients in the Downward-Looking Visible Spectrometer (DLVS) data below 55 km indicates an increase in the volume extinction coefficient near this altitude. To fit the geometric albedo measured from outside the atmosphere the decrease in the single scattering albedo of Titan's aerosols at high altitudes, noted in earlier studies of DISR data, must continue to much higher altitudes. The altitude of Titan's limb as a function of wavelength requires that the scale height of the aerosols decrease with altitude from the 65 km value seen in the DISR observations below 140 km to the 45 km value at higher altitudes. We compared the variation of radiance with nadir angle observed in the DISR images to improve our aerosol model. Our new aerosol model fits the altitude and wavelength variations of the observations at small and intermediate nadir angles but not for large nadir angles, indicating an effect that is not reproduced by our radiative transfer model. The volume extinction profiles are modeled by continuous functions except near the enhancement level near 55 km altitude. The wavelength dependence of the extinction optical depth is similar to earlier results at wavelengths from 500 to 700 nm, but is smaller at shorter wavelengths and larger toward longer wavelengths. A Hapke-like model is used for the ground reflectivity, and the variation of the Hapke single scattering albedo with wavelength is given. Fits to the visible spectrometers looking upward and downward are achieved except in the methane bands longward of 720 nm. This is possibly due to uncertainties in extrapolation of laboratory measurements from 1 km-am paths to much longer paths at lower pressures. It could also be due to changes in the single scattering phase functions at low altitudes, which strongly affect the path length through methane that the photons travel. We demonstrate the effects on the model fits by varying each model parameter individually in order to illustrate the sensitivity of our determination of each model parameter.

  16. Modeling the three-dimensional structure of macroscopic magma transport systems: Application to Kilauea volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, M.P.; Koyanagi, R.Y.; Fiske, R.S.

    1981-08-10

    We report the results of modeling the three-dimensional internal structure of Kilauea's magmatic passageways. The approach uses a clear plexiglass model containing equally-spaced levels upon which well-located seismic hypocenters are plotted. Application of constraining geologic and geophysical criteria to this distributed volume of earthquakes permits the interpretation of seismic structures produced by fracturing in response to locally high fluid pressures. Four magma transport and storage structures produce have been identified within and beneath Kilauea: (1) Primary conduit. The conduit transporting magma into Kilauea's summit storage reservoir rises from the model base (14.6 km) to 6.5 km depth level. It ismore » a zone of intense fracturing and inferred intrusion, whose horizontal sections are elliptical in planform. Over its height, the average major axis of component horizontal section is 3.3 km, with an average minor axis of 1.7 km. This yields an aspect ratio of xi = 0.52. At the 14.6 km level, the strike of the major axis is N67 /sup 0/E. During passage from the upper mantle through the oceanic crust, this axis rotates in a right-handed sense, until the strike is N41 /sup 0/W at the 6.5 km level. (2) Magma chamber complex floor. The interval from 6.5 to 5.7 km, immediately over the primary conduit, is aseismic. This suggests differentially high fluid-to-rock ratios, and relatively weak pathways for further vertical transport into higher levels of the storage complex, as well as lateral leakage eastward into the Mauna Ulu staging area: for later vertical ascent beneath the upper east rift zone. Seismicity within the immediately subjacent rocks that form the top of the primary conduit (at 6.5 km) suggests that this inferred magma-rich horizon forms the effective floor of the summit storage complex. (3) Magma chamber crown. Intense seismicity over the 1.1--1.9 km depth interval defines an elliptical region in plan view.« less

  17. Model space exploration for determining landslide source history from long period seismic data

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Mangeney, A.; Stutzmann, E.; Capdeville, Y.; Moretti, L.; Calder, E. S.; Smith, P. J.; Cole, P.; Le Friant, A.

    2012-12-01

    The seismic signals generated by high magnitude landslide events can be recorded at remote stations, which provides access to the landslide process. During the "Boxing Day" eruption at Montserrat in 1997, the long-period seismic signals generated by the debris avalanche are recorded by two stations at distances of 450km and 1261km. We investigate the landslide process considering that the landslide source can be described by single forces. The period band 25-50 sec is selected for which the landslide signal is clearly visible at the two stations. We first use the transverse component of the closest station to determine the horizontal forces. We model the seismogram by normal mode summation and investigate the model space. Two horizontal forces are found that best fit the data. These two horizontal forces have similar amplitude, but opposite direction and they are separated in time by 70 sec. The radiation pattern of the transverse component does not enable to determine the exact azimuth of these forces. We then model the vertical component of the seismograms which enable to retrieve both the vertical and horizontal forces. Using the parameter previously determined (amplitude ratio and time shift of the 2 horizontal forces), we further investigate the model space and show that a single vertical force together with the 2 horizontal forces enable to fit the data. The complete source time function can be described as follows: a horizontal force toward the opposite direction of the landslide flow is followed 40 sec later by a vertical downward force and 30 more seconds later by a horizontal force toward the direction of the flow. The volume of the landslide estimated from the force magnitude is compatible with the volume determined by field survey. Inverting directly the seismograms in the period band 25-50sec enable to retrieve a source time function that is consistent with the 3 forces determined previously. The source time function in this narrow period band alone does not enable easily to recover the corresponding single forces. This method can be used to determine the source parameters using only 2 distant stations. It is successfully tested also on other landslides such as Mount St. Helens (1980) event and Mount Steller event (2005) which are recorded by more broadband stations.

  18. Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    López, Jesús A.; Pineda, Nicolau; Montanyà, Joan; Velde, Oscar van der; Fabró, Ferran; Romero, David

    2017-11-01

    3D mapping system like the LMA - Lightning Mapping Array - are a leap forward in lightning observation. LMA measurements has lead to an improvement on the analysis of the fine structure of lightning, allowing to characterize the duration and maximum extension of the cloud fraction of a lightning flash. During several years of operation, the first LMA deployed in Europe has been providing a large amount of data which now allows a statistical approach to compute the full duration and horizontal extension of the in-cloud phase of a lightning flash. The "Ebro Lightning Mapping Array" (ELMA) is used in the present study. Summer and winter lighting were analyzed for seasonal periods (Dec-Feb and Jun-Aug). A simple method based on an ellipse fitting technique (EFT) has been used to characterize the spatio-temporal dimensions from a set of about 29,000 lightning flashes including both summer and winter events. Results show an average lightning flash duration of 440 ms (450 ms in winter) and a horizontal maximum length of 15.0 km (18.4 km in winter). The uncertainties for summer lightning lengths were about ± 1.2 km and ± 0.7 km for the mean and median values respectively. In case of winter lightning, the level of uncertainty reaches up to 1 km and 0.7 km of mean and median value. The results of the successful correlation of CG discharges with the EFT method, represent 6.9% and 35.5% of the total LMA flashes detected in summer and winter respectively. Additionally, the median value of lightning lengths calculated through this correlative method was approximately 17 km for both seasons. On the other hand, the highest median ratios of lightning length to CG discharges in both summer and winter were reported for positive CG discharges.

  19. Rupture Processes of the Mw8.3 Sea of Okhotsk Earthquake and Aftershock Sequences from 3-D Back Projection Imaging

    NASA Astrophysics Data System (ADS)

    Jian, P. R.; Hung, S. H.; Meng, L.

    2014-12-01

    On May 24, 2013, the largest deep earthquake ever recorded in history occurred on the southern tip of the Kamchatka Island, where the Pacific Plate subducts underneath the Okhotsk Plate. Previous 2D beamforming back projection (BP) of P- coda waves suggests the mainshock ruptured bilaterally along a horizontal fault plane determined by the global centroid moment tensor solution. On the other hand, the multiple point source inversion of P and SH waveforms argued that the earthquake comprises a sequence of 6 subevents not located on a single plane but actually distributed in a zone that extends 64 km horizontally and 35 km in depth. We then apply a three-dimensional MUSIC BP approach to resolve the rupture processes of the manishock and two large aftershocks (M6.7) with no a priori setup of preferential orientations of the planar rupture. The maximum pseudo-spectrum of high-frequency P wave in a sequence of time windows recorded by the densely-distributed stations from US and EU Array are used to image 3-D temporal and spatial rupture distribution. The resulting image confirms that the nearly N-S striking but two antiparallel rupture stages. The first subhorizontal rupture initially propagates toward the NNE direction, while at 18 s later it directs reversely to the SSW and concurrently shifts downward to 35 km deeper lasting for about 20 s. The rupture lengths in the first NNE-ward and second SSW-ward stage are about 30 km and 85 km; the estimated rupture velocities are 3 km/s and 4.25 km/s, respectively. Synthetic experiments are undertaken to assess the capability of the 3D MUSIC BP for the recovery of spatio-temporal rupture processes. Besides, high frequency BP images based on the EU-Array data show two M6.7 aftershocks are more likely to rupture on the vertical fault planes.

  20. Application of the LEPS technique for Quantitative Precipitation Forecasting (QPF) in Southern Italy: a preliminary study

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Bellecci, C.; Colacino, M.; Walko, R. L.

    2006-03-01

    This paper reports preliminary results for a Limited area model Ensemble Prediction System (LEPS), based on RAMS (Regional Atmospheric Modelling System), for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time in an operational implementation of LEPS, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that form the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12-km horizontal resolution. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecasts, LEPS forecasts are compared to a full Brute Force (BF) ensemble. This ensemble is based on RAMS, has 36 km horizontal resolution and is generated by 51 members, nested in each ECMWF-EPS member. LEPS and BF results are compared subjectively and by objective scores. Subjective analysis is based on precipitation and probability maps of case studies whereas objective analysis is made by deterministic and probabilistic scores. Scores and maps are calculated by comparing ensemble precipitation forecasts against reports from the Calabria regional raingauge network. Results show that LEPS provided better rainfall predictions than BF for all case studies selected. This strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria for these cases. To further explore the impact of local physiographic features on QPF (Quantitative Precipitation Forecasting), LEPS results are also compared with a 6-km horizontal resolution deterministic forecast. Due to local and mesoscale forcing, the high resolution forecast (Hi-Res) has better performance compared to the ensemble mean for rainfall thresholds larger than 10mm but it tends to overestimate precipitation for lower amounts. This yields larger false alarms that have a detrimental effect on objective scores for lower thresholds. To exploit the advantages of a probabilistic forecast compared to a deterministic one, the relation between the ECMWF-EPS 700 hPa geopotential height spread and LEPS performance is analyzed. Results are promising even if additional studies are required.

  1. Effect of scintillometer height on structure parameter of the refractive index of air measurements

    USDA-ARS?s Scientific Manuscript database

    Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn**2). Cn**2 represents the turbulent strength of the atmosphere and describes the ability of the atmos...

  2. Family Background and Educational Path of Italian Graduates

    ERIC Educational Resources Information Center

    Vergolini, Loris; Vlach, Eleonora

    2017-01-01

    In this paper, we analyse social inequalities along the horizontal dimension of education in Italy. More precisely, we focus on the role of family background in completing specific fields of study at both secondary and tertiary levels of education. To mitigate the limitations of the traditional sequential model, we construct a typology of…

  3. Design and analysis of advanced flight planning concepts

    NASA Technical Reports Server (NTRS)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  4. Contrasts in lithospheric structure within the Australian craton—insights from surface wave tomography

    NASA Astrophysics Data System (ADS)

    Fishwick, S.; Kennett, B. L. N.; Reading, A. M.

    2005-03-01

    Contrasts in the seismic structure of the lithosphere within and between elements of the Australian Craton are imaged using surface wave tomography. New data from the WACRATON and TIGGER experiments are integrated with re-processed data from previous temporary deployments of broad-band seismometers and permanent seismic stations. The much improved path coverage in critical regions allows an interpretation of structures in the west of Australia, and a detailed comparison between different cratonic regions. Improvements to the waveform inversion procedure and a new multi-scale tomographic method increase the reliability of the tomographic images. In the shallowest part of the model (75 km) a region of lowered velocity is imaged beneath central Australia, and confirmed by the delayed arrival times of body waves for short paths. Within the cratonic lithosphere there is clearly structure at scale lengths of a few hundred kilometres; resolution tests indicate that path coverage within the continent is sufficient to reveal features of this size in the upper part of our model. In Western Australia, differences are seen beneath and within the Archaean cratons: at depths greater than 150 km faster velocities are imaged beneath the Yilgarn Craton than beneath the Pilbara Craton. In the complex North Australian Craton a fast wavespeed anomaly continuing to at least 250 km is observed below parts of the craton, suggesting the possibility of Archaean lithosphere underlying areas of dominantly Proterozoic surface geology.

  5. Overflow Simulations using MPAS-Ocean in Idealized and Realistic Domains

    NASA Astrophysics Data System (ADS)

    Reckinger, S.; Petersen, M. R.; Reckinger, S. J.

    2016-02-01

    MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Also, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates. Additionally, preliminary measurements of overflow diagnostics on global simulations using a realistic oceanic domain are presented.

  6. Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion

    NASA Astrophysics Data System (ADS)

    Debayle, Eric; Kennett, B. L. N.

    2000-12-01

    Records of both Rayleigh and Love waves have been analyzed to determine the pattern of anisotropy in the Australasian region. The approach is based on a two-stage inversion. Starting from a smooth PREM model with transverse isotropy about a vertical symmetry axis, the first step is an inversion of the waveforms of surface waves to produce path specific one-dimensional (1-D) upper mantle models. Under the assumption that the 1-D models represent averages along the paths, the results from 1584 Love and Rayleigh wave seismograms are combined in a tomographic inversion to provide a representation of three-dimensional structure for wavespeed heterogeneities and anisotropy. Polarization anisotropy with SH faster than SV is retrieved in the upper 200-250 km of the mantle for most of Precambrian Australia. In this depth interval, significant lateral variations in the level of polarization anisotropy are present. Locally, the anisotropy can be large, reaching an extreme value of 9% that is difficult to reconcile with current mineralogical models. However, the discrepancy may be explained in part by the presence of strong lateral heterogeneities along the path, or by effects introduced by the simplifying assumption of transverse isotropy for each path. The consistency between the location of polarization and azimuthal anisotropy in depth suggests that both observations share a common origin. The observation of polarization anisotropy down to at least 200 km supports a two-layered anisotropic model as constrained by the azimuthal anisotropy of SV waves. In the upper layer, 150 km thick, anisotropy would be related to past deformation frozen in the lithosphere while in the lower layer, anisotropy would reflect present day deformation due to plate motion.

  7. Mg Isotope Evolution During Water-Rock Interaction in a Carbonate Aquifer

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Jacobson, A. D.; Lundstrom, C. C.; Huang, F.

    2008-12-01

    To better understand how Mg isotopes behave during weathering and aqueous transport, we used a Nu Plasma MC-ICP-MS to measure δ26Mg values (relative to DSM-3) in water samples along a 236 km flow path in the Madison aquifer of South Dakota, a confined carbonate aquifer recharging in the igneous Black Hills. We also analyzed local granite and dolomite samples to characterize the Mg isotope composition of source rocks constituting the recharge zone and aquifer, respectively. Repeated analyses of Mg standard solutions yielded external precisions (2σ) better than 0.1 permil for δ26Mg(CAM-1, - 2.584±0.071, n=13; UIMg-1, -2.217±0.087, n=9.). The Madison aquifer provides a unique opportunity to quantify Mg isotope effects during water-rock interaction because (1) fluids and rock have chemically equilibrated over a much longer timescale (up to ~15 kyr) than can be simulated in laboratory experiments and (2) previous studies have determined the rates and mass-balances of de- dolomitization and other geochemical reactions controlling solute evolution along the flow path. Reactions important for changing the concentration and isotope composition of Mg include dolomite dissolution, Mg-for- Na ion exchange, calcite precipitation, and isotope exchange. δ26Mg values within the recharge region (0-17 km along flow path) vary between -1.08 and -1.63 permil, and then remain essentially constant at -1.408±0.010 permil(1σ, 5 samples) from 17 to 189 km. A final sample at 236 km shows an increase to -1.09 permil. Either mixing between different recharge waters or rapid isotope exchange between infiltrating waters and dolomite could control δ26Mg variability between 0 and 17 km. Likewise, reactive transport modeling suggests that preferential uptake of 24Mg during Mg-for-Na ion exchange might cause an increase in δ26Mg between 189 and 236 km. However, unchanging δ26Mg values observed throughout most of the aquifer clearly demonstrate that Mg isotopes are not fractionated during reactive transport. This suggests that Mg isotopes can conservatively trace weathering inputs and groundwater flow in dolomite-rich aquifers.

  8. Motion of the head and neck of female and male volunteers in rear impact car-to-car impacts.

    PubMed

    Carlsson, Anna; Siegmund, Gunter P; Linder, Astrid; Svensson, Mats Y

    2012-01-01

    The objectives of this study were to quantify and compare dynamic motion responses between 50th percentile female and male volunteers in rear impact tests. These data are fundamental for developing future occupant models for crash safety development and assessment. High-speed video data from a rear impact test series with 21 male and 21 female volunteers at 4 and 8 km/h, originally presented in Siegmund et al. (1997), were used for further analysis. Data from a subset of female volunteers, 12 at 4 km/h and 9 at 8 km/h, were extracted from the original data set to represent the 50th percentile female. Their average height was 163 cm and their average weight was 62 kg. Among the male volunteers, 11 were selected, with an average height of 175 cm and an average weight of 73 kg, to represent the 50th percentile male. Response corridors were generated for the horizontal and angular displacements of the head, T1 (first thoracic vertebra), and the head relative to T1. T-tests were performed with the statistical significance level of .05 to quantify the significance of the differences in parameter values for the males and females. Several differences were found in the average motion response of the male and female volunteers at 4 and 8 km/h. Generally, females had smaller rearward horizontal and angular motions of the head and T1 compared to the males. This was mainly due to shorter initial head-to-head restraint distance and earlier head-to-head restraint contact for the females. At 8 km/h, the female volunteers showed 12 percent lower horizontal peak rearward head displacement (P = .018); 22 percent lower horizontal peak rearward head relative to T1 displacement (P = .018); and 30 percent lower peak head extension angle (P = .001). The females also had more pronounced rebound motion. This study indicates that there may be characteristic differences in the head-neck motion response between 50th percentile males and females in rear impacts. The exclusive use of 50th percentile male rear impact dummies may thus limit the assessment and development of whiplash prevention systems that adequately protect both male and female occupants. The results of this study could be used in the development and evaluation of a mechanical and/or computational average-sized female dummy model for rear impact safety assessment. These models are used in the development and evaluation of protective systems. It would be of interest to make further studies into seat configurations featuring a greater head-to-head restraint distance.

  9. IMPLEMENTATION OF AN URBAN CANOPY PARAMETERIZATION IN MM5

    EPA Science Inventory

    The Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5) (Grell et al. 1994) has been modified to include an urban canopy parameterization (UCP) for fine-scale urban simulations (~1-km horizontal grid spacing). The UCP accounts for drag ...

  10. Ground-to-Ground Optical Communications Demonstration

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Lee, S.

    2000-01-01

    A bidirectional horizontal-path optical link was demonstrated between Strawberry Peak (SP), Lake Arrowhead, California, and the JPL Table Mountain Facility (TMF), Wrightwood, California, during June and November of 1998. The 0.6-m telescope at TMF was used to broadcast a 4-beam 780-nm beacon to SP. The JPL-patented Optical Communications Demonstrator (OCD) at SP received the beacon, performed ne tracking to compensate for the atmosphere-induced beacon motion and retransmitted a 844-nm communications laser beam modulated at 40 to 500 Mb/s back to TMF. Characteristics of the horizontal-path atmospheric channel as well as performance of the optical communications link were evaluated. The normalized variance of the irradiance fluctuations or scintillation index delta2/I at either end was determined. At TMF where a single 844-nm beam was received by a 0.6-m aperture, the measured delta2/I covered a wide range from 0.07 to 1.08. A single 780-nm beam delta2/I measured at SP using a 0.09-m aperture yielded values ranging from 0.66 to 1.03, while a combination of four beams reduced the scintillation index due to incoherent averaging to 0.22 to 0.40. This reduction reduced the dynamic range of the fluctuations from 17 to 21 dB to 13 to 14 dB as compared with the OCD tracking sensor dynamic range of 10 dB. Predictions of these values also were made based on existing theories and are compared. Generally speaking, the theoretical bounds were reasonable. Discussions on the probability density function (PDF) of the intensity fluctuations are presented and compared with the measurements made. The lognormal PDF was found to agree for the weak scintillation regime as expected. The present measurements support evidence presented by earlier measurements made using the same horizontal path, which suggests that the aperture averaging effect is better than theoretically predicted.

  11. Temporomandibular Disorders: The Habitual Chewing Side Syndrome

    PubMed Central

    Santana-Mora, Urbano; López-Cedrún, José; Mora, María J.; Otero, Xosé L.; Santana-Penín, Urbano

    2013-01-01

    Background Temporomandibular disorders are the most common cause of chronic orofacial pain, but, except where they occur subsequent to trauma, their cause remains unknown. This cross-sectional study assessed chewing function (habitual chewing side) and the differences of the chewing side and condylar path and lateral anterior guidance angles in participants with chronic unilateral temporomandibular disorder. This is the preliminary report of a randomized trial that aimed to test the effect of a new occlusal adjustment therapy. Methods The masticatory function of 21 randomly selected completely dentate participants with chronic temporomandibular disorders (all but one with unilateral symptoms) was assessed by observing them eat almonds, inspecting the lateral horizontal movement of the jaw, with kinesiography, and by means of interview. The condylar path in the sagittal plane and the lateral anterior guidance angles with respect to the Frankfort horizontal plane in the frontal plane were measured on both sides in each individual. Results Sixteen of 20 participants with unilateral symptoms chewed on the affected side; the concordance (Fisher’s exact test, P = .003) and the concordance-symmetry level (Kappa coefficient κ = 0.689; 95% confidence interval [CI], 0.38 to 0.99; P = .002) were significant. The mean condylar path angle was steeper (53.47(10.88) degrees versus 46.16(7.25) degrees; P = .001), and the mean lateral anterior guidance angle was flatter (41.63(13.35) degrees versus 48.32(9.53) degrees P = .036) on the symptomatic side. Discussion The results of this study support the use of a new term based on etiology, “habitual chewing side syndrome”, instead of the nonspecific symptom-based “temporomandibular joint disorders”; this denomination is characterized in adults by a steeper condylar path, flatter lateral anterior guidance, and habitual chewing on the symptomatic side. PMID:23593156

  12. Vertical and horizontal surface displacements near Jakobshavn Isbræ driven by melt-induced and dynamic ice loss

    NASA Astrophysics Data System (ADS)

    Nielsen, Karina; Khan, Shfaqat A.; Spada, Giorgio; Wahr, John; Bevis, Michael; Liu, Lin; van Dam, Tonie

    2013-04-01

    We analyze Global Positioning System (GPS) time series of relative vertical and horizontal surface displacements from 2006 to 2012 at four GPS sites located between ˜5 and ˜150 km from the front of Jakobshavn Isbræ (JI) in west Greenland. Horizontal displacements during 2006-2010 at KAGA, ILUL, and QEQE, relative to the site AASI, are directed toward north-west, suggesting that the main mass loss signal is located near the frontal portion of JI. The directions of the observed displacements are supported by modeled displacements, derived from NASA's Airborne Topographic Mapper (ATM) surveys of surface elevations from 2006, 2009, and 2010. However, horizontal displacements during 2010-2012 at KAGA and ILUL are directed more towards the west suggesting a change in the spatial distribution of the ice mass loss. In addition, we observe an increase in the uplift rate during 2010-2012 as compared to 2006-2010. The sudden change in vertical and horizontal displacements is due to enhanced melt-induced ice loss in 2010 and 2012.

  13. Analysis of the tsunami generated by the MW 7.8 1906 San Francisco earthquake

    USGS Publications Warehouse

    Geist, E.L.; Zoback, M.L.

    1999-01-01

    We examine possible sources of a small tsunami produced by the 1906 San Francisco earthquake, recorded at a single tide gauge station situated at the opening to San Francisco Bay. Coseismic vertical displacement fields were calculated using elastic dislocation theory for geodetically constrained horizontal slip along a variety of offshore fault geometries. Propagation of the ensuing tsunami was calculated using a shallow-water hydrodynamic model that takes into account the effects of bottom friction. The observed amplitude and negative pulse of the first arrival are shown to be inconsistent with small vertical displacements (~4-6 cm) arising from pure horizontal slip along a continuous right bend in the San Andreas fault offshore. The primary source region of the tsunami was most likely a recently recognized 3 km right step in the San Andreas fault that is also the probable epicentral region for the 1906 earthquake. Tsunami models that include the 3 km right step with pure horizontal slip match the arrival time of the tsunami, but underestimate the amplitude of the negative first-arrival pulse. Both the amplitude and time of the first arrival are adequately matched by using a rupture geometry similar to that defined for the 1995 MW (moment magnitude) 6.9 Kobe earthquake: i.e., fault segments dipping toward each other within the stepover region (83??dip, intersecting at 10 km depth) and a small component of slip in the dip direction (rake=-172??). Analysis of the tsunami provides confirming evidence that the 1906 San Francisco earthquake initiated at a right step in a right-lateral fault and propagated bilaterally, suggesting a rupture initiation mechanism similar to that for the 1995 Kobe earthquake.

  14. Vertical and horizontal surface displacements near Jakobshavn Isbræ driven by melt-induced and dynamic ice loss

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Nielsen, K.; Wahr, J. M.; Bevis, M. G.; Liu, L.; Spada, G.; van Dam, T. M.

    2012-12-01

    We analyze Global Positioning System (GPS) time series of relative vertical and horizontal displacements from 2009-2011, at four GPS sites located between 5 and 150 km from the front of Jakobshavn Isbræ (JI). The horizontal displacements at KAGA, ILUL, and QEQE, relative to the site AASI, are directed towards east-north-east, suggesting that the main mass loss signal is south-east of these sites. The directions of the observed displacements are supported by modelled displacements, derived from NASA's Airborne Topographic Mapper (ATM) surveys of surface elevations from 2006 to 2011. The agreement between the observed and modelled relative displacements is 0.8 mm or better, which suggests that the mass loss estimate of JI is well captured. In 2010, we observe a rapid increase in the uplift at all four sites. This uplift anomaly, defined as the deviation at 2010.75 from the 2006-2009.75 trend is estimated to 8.8 +/- 2.4 mm (KAGA), 9.3 +/- 2.2 mm (ILUL), 5.1 +/- 2.0 mm (QEQE), and 6.1 +/- 2.3 mm (AASI). The relative large anomalies at the sites QEQE and AASI, located ~150 km from the front of JI, suggests that the uplift anomalies are caused by a large wide-spread melt-induced ice loss. The relatively low uplift anomaly at KAGA, located only 5 km from the front, indicates that there has been a dramatic decrease in dynamic-induced ice loss near the front of JI. This is supported by elevation changes derived from ATM measurements between 2010 and 2011, where we observe an elevation increase in the flow direction of up to 10 m at the frontal part of JI.

  15. Stress aligned cracks in the upper crust of the Val d'Agri region as revealed by shear wave splitting

    NASA Astrophysics Data System (ADS)

    Pastori, M.; Piccinini, D.; Margheriti, L.; Improta, L.; Valoroso, L.; Chiaraluce, L.; Chiarabba, C.

    2009-10-01

    Shear wave splitting is measured at 19 seismic stations of a temporary network deployed in the Val d'Agri area to record low-magnitude seismic activity. The splitting results suggest the presence of an anisotropic layer between the surface and 15 km depth (i.e. above the hypocentres). The dominant fast polarization direction strikes NW-SE parallel to the Apennines orogen and is approximately parallel to the maximum horizontal stress in the region, as well as to major normal faults bordering the Val d'Agri basin. The size of the normalized delay times in the study region is about 0.01 s km-1, suggesting 4.5 percent shear wave velocity anisotropy (SWVA). On the south-western flank of the basin, where most of the seismicity occurs, we found larger values of normalized delay times, between 0.017 and 0.02 s km-1. These high values suggest a 10 percent of SWVA. These parameters agree with an interpretation of seismic anisotropy in terms of the Extensive-Dilatancy Anisotropy (EDA) model that considers the rock volume pervaded by fluid-saturated microcracks aligned by the active stress field. Anisotropic parameters are consistent with borehole image logs from deep exploration wells in the Val d'Agri oil field that detect pervasive fluid saturated microcracks striking NW-SE parallel to the maximum horizontal stress in the carbonatic reservoir. However, we cannot rule out the contribution of aligned macroscopic fractures because the main Quaternary normal faults are parallel to the maximum horizontal stress. The strong anisotropy and the seismicity concentration testify for active deformation along the SW flank of the basin.

  16. Variability in the Speed of the Brewer-Dobson Circulation as Observed by Aura/MLS

    NASA Technical Reports Server (NTRS)

    Flury, Thomas; Wu, Dong L.; Read, W. G.

    2013-01-01

    We use Aura/MLS stratospheric water vapour (H2O) measurements as tracer for dynamics and infer interannual variations in the speed of the Brewer-Dobson circulation (BDC) from 2004 to 2011. We correlate one-year time series of H2O in the lower stratosphere at two subsequent pressure levels (68 hPa, approx.18.8 km and 56 hPa, approx 19.9 km at the Equator) and determine the time lag for best correlation. The same calculation is made on the horizontal on the 100 hPa (approx 16.6 km) level by correlating the H2O time series at the Equator with the ones at 40 N and 40 S. From these lag coefficients we derive the vertical and horizontal speeds of the BDC in the tropics and extra-tropics, respectively. We observe a clear interannual variability of the vertical and horizontal branch. The variability reflects signatures of the Quasi Biennial Oscillation (QBO). Our measurements confirm the QBO meridional circulation anomalies and show that the speed variations in the two branches of the BDC are out of phase and fairly well anti-correlated. Maximum ascent rates are found during the QBO easterly phase. We also find that transport of H2O towards the Northern Hemisphere (NH) is on the average two times faster than to the Southern Hemisphere (SH) with a mean speed of 1.15m/s at 100 hPa. Furthermore, the speed towards the NH shows much more interannual variability with an amplitude of about 21% whilst the speed towards the SH varies by only 10 %. An amplitude of 21% is also observed in the variability of the ascent rate at the Equator which is on the average 0.2mm/s.

  17. Sodium Lidar-observed Strong Inertia-gravity Wave Activities in the Mesopause Region over Fort Collins, Colorado (41 deg N, 105 deg W)

    NASA Technical Reports Server (NTRS)

    Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart

    2007-01-01

    In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.

  18. Statistical comparisons of gravity wave features derived from OH airglow and SABER data

    NASA Astrophysics Data System (ADS)

    Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.

    2017-12-01

    The Aerospace Corporation's near-IR camera (ANI), deployed at Andes Lidar Observatory (ALO), Cerro Pachon Chile (30S,70W) since 2010, images the bright OH Meinel (4,2) airglow band. The imager provides detailed observations of gravity waves and instability dynamics, as described by Hecht et al. (2014). The camera employs a wide-angle lens that views a 73 by 73 degree region of the sky, approximately 120 km x 120 km at 85 km altitude. Image cadence of 30s allows for detailed spectral analysis of the horizontal components of wave features, including the evolution and decay of instability features. The SABER instrument on NASA's TIMED spacecraft provides remote soundings of kinetic temperature profiles from the lower stratosphere to the lower thermosphere. Horizontal and vertical filtering techniques allow SABER temperatures to be analyzed for gravity wave variances [Walterscheid and Christensen, 2016]. Here we compare the statistical characteristics of horizontal wave spectra, derived from airglow imagery, with vertical wave variances derived from SABER temperature profiles. The analysis is performed for a period of strong mountain wave activity over the Andes spanning the period between June and September 2012. Hecht, J. H., et al. (2014), The life cycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on March 24, 2012, J. Geophys. Res. Atmos., 119, 8872-8898, doi:10.1002/2014JD021726. Walterscheid, R. L., and A. B. Christensen (2016), Low-latitude gravity wave variances in the mesosphere and lower thermosphere derived from SABER temperature observation and compared with model simulation of waves generated by deep tropical convection, J. Geophys. Res. Atmos., 121, 11,900-11,912, doi:10.1002/2016JD024843.

  19. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations

    NASA Astrophysics Data System (ADS)

    Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.

    2017-01-01

    To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.

  20. Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

    NASA Astrophysics Data System (ADS)

    Kucera, Therese A.; Knizhnik, K.; Lopez Ariste, A.; Luna Bennasar, M.; Schmieder, B.; Toot, D.

    2013-07-01

    We have observed a quiescent prominence with the Hinode Solar Optical Telescope (SOT, in Ca II and H-alpha lines), Sacramento Peak Observatory (in H-alpha, H-beta and Sodium-D lines), and THEMIS/MTR (Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires/MulTi Raies, providing vector magnetograms), and SDO/AIA (Solar Dynamics Observatory Atmospheric Imaging Assembly, in EUV) over a 4 hour period on 2012 October 10. The small fields of view of SOT, Sac Peak and THEMIS are centered on a large pillar-like prominence footpoint extending towards the surface. This feature appears in the larger field of view of the 304 Å band, as a large, quasi-vertical column with material flowing horizontally on each side. The THEMIS/MTR data indicate that the magnetic field in the pillar is essentially horizontal and the observations in the optical wavelengths show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data show what appear to be moving wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along quasi-vertical columns. The pulses have a velocity of propagation of about 10 km/s, a period about 260 sec, and a wavelength around 2000 km. We interpret these waves in terms of fast magneto-sonic waves and discuss possible wave drivers.

  1. Space Radar Image of Boston, Massachusetts

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of the area surrounding Boston, Mass., shows how a spaceborne radar system distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. The bright white area at the right center of the image is downtown Boston. The wide river below and to the left of the city is the Charles River in Boston's Back Bay neighborhood. The dark green patch to the right of the Back Bay is Boston Common. A bridge across the north end of Back Bay connects the cities of Boston and Cambridge. The light green areas that dominate most of the image are the suburban communities surrounding Boston. The many ponds that dot the region appear as dark irregular spots. Many densely populated urban areas show up as red in the image due to the alignment of streets and buildings to the incoming radar beam. North is toward the upper left. The image was acquired on October 9, 1994, by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) as it flew aboard the space shuttle Endeavour. This area is centered at 42.4 degrees north latitude, 71.2 degrees west longitude. The area shown is approximately 37 km by 18 km (23 miles by 11 miles). Colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. SIR-C/X-SAR, a cooperative mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  2. 1984 Ivanovo tornado outbreak: Determination of actual tornado tracks with satellite data

    NASA Astrophysics Data System (ADS)

    Chernokulsky, Alexander; Shikhov, Andrey

    2018-07-01

    The 1984 Ivanovo tornado outbreak is one of the most fatal tornado events in Europe with previously unspecified tornado track characteristics. In this paper, we used Landsat images to discover tornado-induced forest disturbances and restore actual characteristics of tornadoes during the outbreak. We defined boundaries of tornado-induced windthrows by visual comparison of satellite images and specified them with Normalized Difference Infrared Index. We confirmed the occurrence of eight tornadoes during the outbreak and determined their location, path width and length. Other tornadoes occurrence during the outbreak was discussed. Fujita-scale intensity of confirmed tornadoes was estimated based on the related literature corpus including previously omitted sources. In addition, information on tornado path lengths and widths was used to estimate minimal tornado intensity for those tornadoes that passed no settlements. In total, the Ivanovo outbreak includes 8-13 tornadoes with F-scale rating mean ranges from 1.8-2.5 and has adjusted Fujita length around 540 km, which makes the outbreak one the strongest in Europe and places it within the upper quartile of U.S. outbreaks. Characteristics of certain tornadoes within the Ivanovo outbreak are exceptional for Russia. The widest tornado path during the Ivanovo outbreak is 1740 m; the longest is from 81.5-85.9 km. With the example of the Ivanovo outbreak, we showed that existing databases on historical Russian tornadoes tend to overestimate tornado path length (for very long tornadoes) and underestimate maximum tornado path width.

  3. Anisotropic encoding of three-dimensional space by place cells and grid cells

    PubMed Central

    Hayman, R.; Verriotis, M.; Jovalekic, A.; Fenton, A.A.; Jeffery, K.J.

    2011-01-01

    The subjective sense of space may result in part from the combined activity of place cells, in the hippocampus, and grid cells in posterior cortical regions such as entorhinal cortex and pre/parasubiculum. In horizontal planar environments, place cells provide focal positional information while grid cells supply odometric (distance-measuring) information. How these cells operate in three dimensions is unknown, even though the real world is three–dimensional. The present study explored this issue in rats exploring two different kinds of apparatus, a climbing wall (the “pegboard”) and a helix. Place and grid cell firing fields had normal horizontal characteristics but were elongated vertically, with grid fields forming stripes. It appears that grid cell odometry (and by implication path integration) is impaired/absent in the vertical domain, at least when the animal itself remains horizontal. These findings suggest that the mammalian encoding of three-dimensional space is anisotropic. PMID:21822271

  4. On-site ocean horizontal aerosol extinction coefficient inversion under different weather conditions on the Bo-hai and Huang-hai Seas

    NASA Astrophysics Data System (ADS)

    Zeng, Xianjiang; Xia, Min; Ge, Yinghui; Guo, Wenping; Yang, Kecheng

    2018-03-01

    In this paper, we explore the horizontal extinction characteristics under different weather conditions on the ocean surface with on-site experiments on the Bo-hai and Huang-hai Seas in the summer of 2016. An experimental lidar system is designed to collect the on-site experimental data. By aiming at the inhomogeneity and uncertainty of the horizontal aerosol in practice, a joint retrieval method is proposed to retrieve the aerosol extinction coefficients (AEC) from the raw data along the optical path. The retrieval results of both the simulated and the real signals demonstrate that the joint retrieval method is practical. Finally, the sequence observation results of the on-site experiments under different weather conditions are reported and analyzed. These results can provide the attenuation information to analyze the atmospheric aerosol characteristics on the ocean surface.

  5. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space: Progress

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Krainak, M.; Riris, H. J.; Sun, X.; Riris, H.; Andrews, A. E.; Collatz, J.

    2004-01-01

    We describe progress toward developing a laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate measurements of the tropospheric CO2 mixing ratio from space are challenging due to the many potential error sources. These include possible interference from other trace gas species, the effects of temperature, clouds, aerosols & turbulence in the path, changes in surface reflectivity, and variability in dry air density caused by changes in atmospheric pressure, water vapor and topographic height. Some potential instrumental errors include frequency drifts in the transmitter, small transmission and sensitivity drifts in the instrument. High signal-to-noise ratios and measurement stability are needed for mixing ratio estimates at the few ppm level. We have been developing a laser sounder approach as a candidate for a future space mission. It utilizes multiple different laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter in the same measurement path. It directs the narrow co-aligned laser beams from the instrument's fiber lasers toward nadir, and measures the energy of the strong laser echoes reflected from the Earth's land and water surfaces. During the measurement its narrow linewidth lasers are rapidly tuned on- and off- selected CO2 line near 1572 nm and an O2 absorption line near 770 nm. The receiver measures the energies of the laser echoes from the surface and any clouds and aerosols in the path with photon counting detectors. Ratioing the on- to off-line echo pulse energies for each gas permits the column extinction and column densities of CO2 and O2 to be estimated simultaneously via the differential absorption lidar technique. For the on-line wavelengths, the side of the selected absorption lines are used, which due to pressure broadening, weights the measurements to the lower troposphere, where CO2 variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line. The laser backscatter profiles from clouds and aerosols are measured with other lidar channels, which permits identifying measurements influenced by clouds and/or aerosol scattering in the path. For space use, our lidar would continuously measure at nadir in near polar circular orbit. Using dawn and dusk measurements made over the same region will make it possible to sample the diurnal variations in CO2 mixing ratios. A 1-m diameter telescope is used for the receiver for all wavelengths. When averaging over 50 seconds, our calculations show a SNR of approximately 1500 is achievable for each gas at each on- and off-line measurement. Measurements from such a mission can be used to generate monthly global maps of the lower tropospheric CO2 column abundance. Our calculations show global coverage with an accuracy of a few ppm with a spatial resolution of approximately 50,000 sq. km are achievable each month. We have demonstrated some key elements of the laser, detector and receiver approaches in the laboratory and with measurements over a 206 m horizontal path. These include stable measurements of CO2 line shapes in an absorption cell using a fiber laser amplifier seeded by a tunable diode laser, measurement of small amplitude changes at low optical signal levels with the PMT receiver, and comparison of the horizontal path measurements of CO2 against those from an in-situ instrument.

  6. Crustal structure in the western United States; study of seismic propagation paths and regional traveltimes in the California-Nevada region

    USGS Publications Warehouse

    Roller, J.C.; Jackson, W.H.; Cooper, J.F.; Martina, B.A.

    1963-01-01

    The U.S. Geological Survey, with the assistance of United ElectroDynamics, Inc., completed ten weeks of seismic-refraction field work during the summer of 1962 in the southwestern part of the United States. This work was a continuation of a program initiated in 1961 to study traveltimes and seismic propagation paths in the earth?s crust and upper mantle in the western United States. A total of 761 seismograms were recorded along 10 profiles from 86 explosions at 18 shotpoints. Analysis of the data is continuing, but a few conclusions can be made from a preliminary study: (1) Variations in traveltimes in the Basin and Range province are large but measurable, and perhaps predictable. (2) Traveltimes of seismic waves in adjacent geologic provinces are usually significantly different. (3) The velocity of Pg along all of the profiles recorded in 1962 ranges from 5.0 to 6.5 km/sec, and averages 6.0 km/sec. (4) The average velocity of Pg in extreme northern Nevada and southern Idaho is 5.6 km/sec, and it is 6.1 km/sec in most of Nevada and California. (5) The average velocity of Pn is 7–9 km/ sec and ranges from 7.85 to 7.95 km/sec on reversed profiles where the true Pn velocity could be computed. (6) A shallow "intermediate" layer with a velocity of approximately 6.8 km/sec was found in the Snake River Plain. (7) Refraction arrivals from the mantle (Pn) were recorded in the Sierra Nevada. They indicate that the thickness of the crust in the Sierra Nevada is much greater than that in the Basin and Range province. (8) Many refinements in field techniques were made during the 1962 field season.

  7. Seismic anisotropy and its relation with crust structure and stress field in the Reggio Emilia Region (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Margheriti, L.; Ferulano, M. F.; Di Bona, M.

    2006-11-01

    Shear wave splitting is measured at 14 seismic stations in the Reggio Emilia region above local background seismicity and two sequences of seismic events. The good quality of the waveforms together with the favourable distribution of earthquake foci allows us to place strong constraints on the geometry and the depth of the anisotropic volume. It is about 60 km2 wide and located between 6 and 11 km depth, inside Mesozoic age carbonate rocks. The splitting results suggest also the presence of a shallower anisotropic layer about 1 km thick and few km wide in the Pliocene-Quaternary alluvium above the Mesozoic layer. The fast polarization directions (N30°E) are approximately parallel to the maximum horizontal stress (σ1 is SSW-NNE) in the region and also parallel to the strike of the main structural features in the Reggio Emilia area. The size of the delay times suggests about 4.5 per cent shear wave velocity anisotropy. These parameters agree with an interpretation of seismic anisotropy in terms of the extensive-dilatancy anisotropy model which considers the rock volume to be pervaded by fluid-saturated microcracks aligned by the active stress field. We cannot completely rule out the contribution of aligned macroscopic fractures as the cause of the shear wave anisotropy even if the parallel shear wave polarizations we found are diagnostic of transverse isotropy with a horizontal axis of symmetry. This symmetry is commonly explained by parallel stress-aligned microcracks.

  8. Subduction Thermal Regime, Slab Dehydration, and Seismicity Distribution Beneath Hikurangi Based on 3-D Simulations

    NASA Astrophysics Data System (ADS)

    Suenaga, Nobuaki; Ji, Yingfeng; Yoshioka, Shoichi; Feng, Deshan

    2018-04-01

    The downdip limit of seismogenic interfaces inferred from the subduction thermal regime by thermal models has been suggested to relate to the faulting instability caused by the brittle failure regime in various plate convergent systems. However, the featured three-dimensional thermal state, especially along the horizontal (trench-parallel) direction of a subducted oceanic plate, remains poorly constrained. To robustly investigate and further map the horizontal (trench-parallel) distribution of the subduction regime and subsequently induced slab dewatering in a descending plate beneath a convergent margin, we construct a regional thermal model that incorporates an up-to-date three-dimensional slab geometry and the MORVEL plate velocity to simulate the plate subduction history in Hikurangi. Our calculations suggest an identified thrust zone featuring remarkable slab dehydration near the Taupo volcanic arc in the North Island distributed in the Kapiti, Manawatu, and Raukumara region. The calculated average subduction-associated slab dehydration of 0.09 to 0.12 wt%/km is greater than the dehydration in other portions of the descending slab and possibly contributes to an along-arc variation in the interplate pore fluid pressure. A large-scale slab dehydration (>0.05 wt%/km) and a high thermal gradient (>4 °C/km) are also identified in the Kapiti, Manawatu, and Raukumara region and are associated with frequent deep slow slip events. An intraslab dehydration that exceeds 0.2 wt%/km beneath Manawatu near the source region of tectonic tremors suggests an unknown relationship in the genesis of slow earthquakes.

  9. ManUniCast: A Community Weather and Air-Quality Forecasting Teaching Portal

    NASA Astrophysics Data System (ADS)

    Schultz, David M.; Anderson, Stuart; Fairman, Jonathan G.; Lowe, Douglas; McFiggans, Gordon; Lee, Elsa; Seo-Zindy, Ryo

    2014-05-01

    Manunicast was borne out of the needs of our teaching program: students were entering a world where environmental prediction via numerical model was an essential skill, but were not exposed to the production or output of such models. Our site is an educational testbed to explain to students and the public how weather, air-quality, and air-chemistry forecasts are made using real-time predictions as examples. As far as we know, this site provides the first freely available real-time predictions for the UK. We perform two simulations a day over three domains using the most popular, freely available, community atmospheric mesoscale and chemistry models WRF-ARW and WRF-Chem: 1. a WRF-ARW domain over the North Atlantic and western Europe (20-km horizontal grid spacing) 2. a WRF-ARW domain over the UK and Ireland (4-km grid spacing, nested within the 20-km domain) 3. a WRF-Chem domain over the UK and Ireland (12-km grid spacing) Called ManUniCast (Manchester University Forecast), we offer a suite of products from horizontal maps, time series at stations (meteograms), skew-T-logp charts, and cross sections to help students better visualize the weather and the relationships between the various fields more effectively, specifically through the ability to overlay and fade between different plotted products. This presentation discusses how we funded and built ManUniCast, the struggles we faced, and its use in our classes.

  10. Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation

    NASA Technical Reports Server (NTRS)

    Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven

    2016-01-01

    This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.

  11. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite

    NASA Astrophysics Data System (ADS)

    Chou, Min-Yang; Shen, Ming-Hsueh; Lin, Charles C. H.; Yue, Jia; Chen, Chia-Hung; Liu, Jann-Yenq; Lin, Jia-Ting

    2018-02-01

    The launch of SpaceX Falcon 9 rocket delivered Taiwan's FORMOSAT-5 satellite to orbit from Vandenberg Air Force Base in California at 18:51:00 UT on 24 August 2017. To facilitate the delivery of FORMOSAT-5 to its mission orbit altitude of 720 km, the Falcon 9 made a steep initial ascent. During the launch, the supersonic rocket induced gigantic circular shock acoustic waves (SAWs) in total electron content (TEC) over the western United States beginning approximately 5 min after the liftoff. The circular SAWs emanated outward with 20 min duration, horizontal phase velocities of 629-726 m/s, horizontal wavelengths of 390-450 km, and period of 10.28 ± 1 min. This is the largest rocket-induced circular SAWs on record, extending approximately 114-128°W in longitude and 26-39°N in latitude ( 1,500 km in diameter), and was due to the unique, nearly vertical attitude of the rocket during orbit insertion. The rocket-exhaust plume subsequently created a large-scale ionospheric plasma hole ( 900 km in diameter) with 10-70% TEC depletions in comparison with the reference days. While the circular SAWs, with a relatively small amplitude of TEC fluctuations, likely did not introduce range errors into the Global Navigation Satellite Systems navigation and positioning system, the subsequent ionospheric plasma hole, on the other hand, could have caused spatial gradients in the ionospheric plasma potentially leading to a range error of 1 m.

  12. Variations of the VLF/LF signals during seismic activity in Japan in November 2016

    NASA Astrophysics Data System (ADS)

    Rozhnoi, Alexander; Solovieva, Maria; Levin, Boris; Chebrov, Danila; Hayakawa, Masashi; Fedun, Viktor

    2017-04-01

    The measurements of the very low and low frequency (VLF/LF) signals at the Petropavlovsk-Kamchatsky and Yuzhno-Sakhalinsk stations were used for the analysis in connection with two underwater earthquakes which occurred near Japan in November 2016. The first earthquake with M=6.1 (depth 42 km) happened on 11 November. The second earthquake was recorded on 21 November with M=6.9 (depth 11 km) and had series of aftershocks with M up to 5.6 (USGS/NEIC). The significant negative nighttime amplitude anomalies were found for two sub-ionospheric paths: NWC-Petropavlovsk-Kamchatsky and JJY-Yuzhno-Sakhalinsk during about a week in case of the first earthquake. The anomalies of signal in the path JJY-Petropavlovsk-Kamchatsky were observed during 4-5 days before the second earthquake and during 3 days after it. Taking into account the possible influence of other factors which can produce perturbations in VLF/LF signals (geomagnetic storm, proton burst and the relativistic electron fluxes, as well as atmospheric parameters), also using control paths, we may conclude that observed anomalies very likely were caused by impending earthquakes.

  13. Fault segmentation and fluid flow in the Geneva Basin (France & Switzerland)

    NASA Astrophysics Data System (ADS)

    Cardello, Giovanni Luca; Lupi, Matteo; Makhloufi, Yasin; Do Couto, Damien; Clerc, Nicolas; Sartori, Mario; Samankassou, Elias; Moscariello, Andrea; Gorin, Georges; Meyer, Michel

    2017-04-01

    The Geneva Basin (GB) is an Oligo-Miocene siliciclastic basin tightened between the Alps and the southern Jura fold-and-thrust belt, whose carbonate reservoir is crossed by faults of uncertain continuity. In the frame of the geothermal exploration of the GB, the associated side risks, i.e., maximum expected earthquake magnitude, and the best suitable geothermal structures need to be determined. The outcropping relieves represent good field analogues of buried structures identified after seismo-stratigraphic analysis. In this frame, we review the regional tectonics to define the i) present-day setting, ii) fault properties and; iii) preferential paths for fluid flow. Field and geophysical data confirmed that during the late Oligocene-early Miocene the Molasse siliciclastic deposits progressively sealed the growing anticlines consisting of Mesozoic carbonates. Those are shaped by a series of fore- and back-thrusts, which we have identified also within the Molasse. As shortening is accommodated by bed-to-bed flexural-slip within shale-rich interlayers, usually having scarce hydraulic inter-connectivity, syn-kinematic mineralization massively concentrates instead within two strike-slip sets. The "wet" faults can be distinguished on the base of: orientation, amount of displacement and fabric. The first set (1) is constituted by left-lateral NNW-striking faults. The most remarkable of those, the Vuache Fault, is about 20 km long, determining a pop-up structure plunging to the SE. Minor structures, up to 5 km long, are the tear-faults dissecting the Salève antiform. In places, those are associated with brittle-ductile transition textures and crack-and-seal mineralization. Set (1) later evolved into discrete and still segmented faulting as it is traced by earthquakes nucleated at less than 5 km of depth (ML 5.3, Epagny 1996). The second set (2) is constituted by W/NW-striking right-lateral faults, up to 10 km long, associated in places with thick polyphase breccia. Cathodoluminescence analysis show that cataclasite mineralization from both the "wet" sets (1) and (2) show fluid evolution through time, possibly from more calcitic to dolomitic composition, testifying for fluids crossing the entire Meso-Cenozoic sequence. Two "dry" fault sets characterized by fault length up to 4 km and N- and NE-strike occur, as they are associated with tightly spaced (5-10 cm) open joints and karstic forms. Locally, a consistent transition from less to well-developed en échelon fracture sets can be recognized both at vertical (plan) and horizontal view. While the study of their arrangement at the plan view leads to a regional fault-evolution model, the horizontal view brings to a more general fault-evolution model in carbonates, where the coalescence of Mode-I veins is associated with larger amount of accumulated displacement. In both views, faulting is the result of strain localization and changing fluid circulation, accompanying the activity of progressively longer and mature faults. In conclusion, our observations show that: 1) faults are segmented in the basin as on the relieves, thus not providing structure capable of giving any earthquake significantly larger than the already measured ones; 2) NNW- and W/NW- striking systems are vein-rich and therefore "wet" whereas N- and NE-striking systems are "dry" although they may work with opposite fluid-flow vertical directivity.

  14. Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea?

    PubMed

    Wedi, Nils P

    2014-06-28

    The steady path of doubling the global horizontal resolution approximately every 8 years in numerical weather prediction (NWP) at the European Centre for Medium Range Weather Forecasts may be substantially altered with emerging novel computing architectures. It coincides with the need to appropriately address and determine forecast uncertainty with increasing resolution, in particular, when convective-scale motions start to be resolved. Blunt increases in the model resolution will quickly become unaffordable and may not lead to improved NWP forecasts. Consequently, there is a need to accordingly adjust proven numerical techniques. An informed decision on the modelling strategy for harnessing exascale, massively parallel computing power thus also requires a deeper understanding of the sensitivity to uncertainty--for each part of the model--and ultimately a deeper understanding of multi-scale interactions in the atmosphere and their numerical realization in ultra-high-resolution NWP and climate simulations. This paper explores opportunities for substantial increases in the forecast efficiency by judicious adjustment of the formal accuracy or relative resolution in the spectral and physical space. One path is to reduce the formal accuracy by which the spectral transforms are computed. The other pathway explores the importance of the ratio used for the horizontal resolution in gridpoint space versus wavenumbers in spectral space. This is relevant for both high-resolution simulations as well as ensemble-based uncertainty estimation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Vertical exploration and dimensional modularity in mice

    PubMed Central

    Benjamini, Yoav; Golani, Ilan

    2018-01-01

    Exploration is a central component of animal behaviour studied extensively in rodents. Previous tests of free exploration limited vertical movement to rearing and jumping. Here, we attach a wire mesh to the arena wall, allowing vertical exploration. This provides an opportunity to study the morphogenesis of behaviour along the vertical dimension, and examine the context in which it is performed. In the current set-up, the mice first use the doorway as a point reference for establishing a borderline linear path along the circumference of the arena floor, and then use this path as a linear reference for performing horizontal forays towards the centre (incursions) and vertical forays on the wire mesh (ascents). Vertical movement starts with rearing on the wall, and commences with straight vertical ascents that increase in extent and complexity. The mice first reach the top of the wall, then mill about within circumscribed horizontal sections, and then progress horizontally for increasingly longer distances on the upper edge of the wire mesh. Examination of the sequence of borderline segments, incursions and ascents reveals dimensional modularity: an initial series (bout) of borderline segments precedes alternating bouts of incursions and bouts of ascents, thus exhibiting sustained attention to each dimension separately. The exhibited separate growth in extent and in complexity of movement and the sustained attention to each of the three dimensions disclose the mice's modular perception of this environment and validate all three as natural kinds. PMID:29657827

  16. Ocean Research Enabled by Underwater Gliders.

    PubMed

    Rudnick, Daniel L

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.

  17. Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.

    2017-12-01

    Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.

  18. Planning minimum-energy paths in an off-road environment with anisotropic traversal costs and motion constraints. Doctoral thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, R.S.

    1989-06-01

    For a vehicle operating across arbitrarily-contoured terrain, finding the most fuel-efficient route between two points can be viewed as a high-level global path-planning problem with traversal costs and stability dependent on the direction of travel (anisotropic). The problem assumes a two-dimensional polygonal map of homogeneous cost regions for terrain representation constructed from elevation information. The anisotropic energy cost of vehicle motion has a non-braking component dependent on horizontal distance, a braking component dependent on vertical distance, and a constant path-independent component. The behavior of minimum-energy paths is then proved to be restricted to a small, but optimal set of traversalmore » types. An optimal-path-planning algorithm, using a heuristic search technique, reduces the infinite number of paths between the start and goal points to a finite number by generating sequences of goal-feasible window lists from analyzing the polygonal map and applying pruning criteria. The pruning criteria consist of visibility analysis, heading analysis, and region-boundary constraints. Each goal-feasible window lists specifies an associated convex optimization problem, and the best of all locally-optimal paths through the goal-feasible window lists is the globally-optimal path. These ideas have been implemented in a computer program, with results showing considerably better performance than the exponential average-case behavior predicted.« less

  19. Geometric features of workspace and joint-space paths of 3D reaching movements.

    PubMed

    Klein Breteler, M D; Meulenbroek, R G; Gielen, S C

    1998-11-01

    The present study focuses on geometric features of workspace and joint-space paths of three-dimensional reaching movements. Twelve subjects repeatedly performed a three-segment, triangular-shaped movement pattern in an approximately 60 degrees tilted horizontal plane. Task variables elicited movement patterns that varied in position, rotational direction and speed. Trunk, arm, hand and finger-tip movements were recorded by means of a 3D motion-tracking system. Angular excursions of the shoulder and elbow joints were extracted from position data. Analyses of the shape of 3D workspace and joint-space paths focused on the extent to which the submovements were produced in a plane, and on the curvature of the central parts of the submovements. A systematic tendency to produce movements in a plane was found in addition to an increase of finger-tip path curvature with increasing speed. The findings are discussed in relation to the role of optimization principles in trajectory-formation models.

  20. IMPLEMENTATION OF AN URBAN CANOPY PARAMETERIZATION FOR FINE-SCALE SIMULATIONS

    EPA Science Inventory

    The Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5) (Grell et al. 1994) has been modified to include an urban canopy parameterization (UCP) for fine-scale urban simulations ( 1 - km horizontal grid spacing ). The UCP accounts for dr...

  1. The impact of horizontal resolution on the representation of air-sea interaction over North Atlantic open ocean convection sites

    NASA Astrophysics Data System (ADS)

    Moore, Kent; Renfrew, Ian; Bromwich, David; Wilson, Aaron; Vage, Kjetil; Bai, Lesheng

    2017-04-01

    Open ocean convection, where a loss of surface buoyancy leads to an overturning of the water column, occurs in four distinct regions of the North Atlantic and is an integral component of the Atlantic Meridional Overturning Circulation (AMOC). The overturning typically occurs during cold air outbreaks characterized by large surface turbulent heat fluxes and convective roll cloud development. Here we compare the statistics of the air-sea interaction over these convection sites as represented in three reanalyses with horizontal grid sizes ranging from 80km to 15km. We show that increasing the resolution increases the magnitude and frequency of the most extreme total turbulent heat fluxes, as well as displacing the maxima downstream away from the ice edges. We argue that these changes are a result of the higher resolution reanalysis being better able to represent mesoscale processes that occur within the atmospheric boundary layer during cold air outbreaks.

  2. The influence of horizontally non-uniform heating upon the development of strong convective mesoscale disturbances

    NASA Astrophysics Data System (ADS)

    Yu, Zhihao; Chen, Liangdong

    1985-08-01

    It is shown by observational data and synoptic analysis that the development of strong convective echo is influenced by the horizontally non-uniform heating, such as the one caused by lake-land distribution. In this paper, a simple linear cell-convection model is established using an appropriate heating field, and the instability of heating convection is theoretically studied. It is found that the heating convection development will be unstable if the heating-caused temperature gradient dT 0/ dy is greater than the critical value ( dT 0/ dy) c which is approximately 0.64°C/10 km, and that the development of convective band has a preferred width of 12.5 km. It will take 25 min for the initial disturbance to increase intensity by 10 times. All these results are in rather good agreement with the squall line process in the lake-land region of Jiangsu Province on June 8, 1979.

  3. Determining the sensitivity of the amplitude source location (ASL) method through active seismic sources: An example from Te Maari Volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Walsh, Braden; Jolly, Arthur; Procter, Jonathan

    2017-04-01

    Using active seismic sources on Tongariro Volcano, New Zealand, the amplitude source location (ASL) method is calibrated and optimized through a series of sensitivity tests. By applying a geologic medium velocity of 1500 m/s and an attenuation value of Q=60 for surface waves along with amplification factors computed from regional earthquakes, the ASL produced location discrepancies larger than 1.0 km horizontally and up to 0.5 km in depth. Through the use of sensitivity tests on input parameters, we show that velocity and attenuation models have moderate to strong influences on the location results, but can be easily constrained. Changes in locations are accommodated through either lateral or depth movements. Station corrections (amplification factors) and station geometry strongly affect the ASL locations laterally, horizontally and in depth. Calibrating the amplification factors through the exploitation of the active seismic source events reduced location errors for the sources by up to 50%.

  4. The 2010 Eyjafjallajokull Eruptions: The NASA Applied Sciences Perspective for Aviation

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Haynes, J. A.; Trepte, C. R.; Krotkov, N. A.; Krueger, A. J.

    2010-12-01

    The volcanic ash from the eruption of the Eyjafjallajokull volcano in Iceland which began on March 17, 2010 was closely monitored by NASA Earth Observing System satellites. A wide variety of applications and techniques developed by the NASA Science Mission Directorate’s Applied Science Program were employed. These included information from imager data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua and Terra spacecraft. Horizontal distribution of the ash cloud and column amount of volcanic sufur dioxide gas was accurately mapped by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. Highly precise retrievals of the vertical distribution of volcanic aerosols were obtained by the Caliop instrument onboard the Calipso satellite. The Multi-angle Imaging SpectroRadiometer (MISR) satellite also provided stereo-derived plume heights at 1km horizontal and ~0.5km vertical resolutions. All of this information was employed to assist in airspace management during the eruptive period. It will continue to be used to improve dispersion models and procedures for dealing with volcanic ash.

  5. Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves

    NASA Technical Reports Server (NTRS)

    Eberstein, I. J.; Theon, J. S.

    1975-01-01

    Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.

  6. Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System experiment

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.; Wolf, S. Kornreich

    1990-01-01

    Wet tropospheric path delay can be a major error source for Global Positioning System (GPS) geodetic experiments. Strategies for minimizing this error are investigted using data from CASA Uno, the first major GPS experiment in Central and South America, where wet path delays may be both high and variable. Wet path delay calibration using water vapor radiometers (WVRs) and residual delay estimation is compared with strategies where the entire wet path delay is estimated stochastically without prior calibration, using data from a 270-km test baseline in Costa Rica. Both approaches yield centimeter-level baseline repeatability and similar tropospheric estimates, suggesting that WVR calibration is not critical for obtaining high precision results with GPS in the CASA region.

  7. Characterizing the propagation path in moderate to strong optical turbulence.

    PubMed

    Vetelino, Frida Strömqvist; Clare, Bradley; Corbett, Kerry; Young, Cynthia; Grant, Kenneth; Andrews, Larry

    2006-05-20

    In February 2005 a joint atmospheric propagation experiment was conducted between the Australian Defence Science and Technology Organisation and the University of Central Florida. A Gaussian beam was propagated along a horizontal 1500 m path near the ground. Scintillation was measured simultaneously at three receivers of diameters 1, 5, and 13 mm. Scintillation theory combined with a numerical scheme was used to infer the structure constant C2n, the inner scale l0, and the outer scale L0 from the optical measurements. At the same time, C2n measurements were taken by a commercial scintillometer, set up parallel to the optical path. The C2n values from the inferred scheme and the commercial scintillometer predict the same behavior, but the inferred scheme consistently gives slightly smaller C2n values.

  8. Three-dimensional Numerical Simulation of Venus' Cloud-level Convection

    NASA Astrophysics Data System (ADS)

    Sugiyama, K. I.; Nakajima, K.; Odaka, M.; Imamura, T.; Hayashi, Y. Y.; Ishiwatari, M.; Kawabata, T.

    2015-12-01

    Although some observational evidences have suggested the occurrence of convection in the lower part of Venus' cloud layer, its structure remains to be clarified. To date, a few numerical studies have examined the structure of convective motion (Baker et al., 1998, 2000; Imamura et al., 2014), but the model they utilized is two-dimensional. Here we report on the results of our numerical calculations performed in order to investigate possible three-dimensional structure of the convection. We use a convection resolving model developed by Sugiyama et al. (2009), which is used in the simulations of the atmospheric convection of Jupiter (Sugiyama et al., 2011,2014) and Mars (Yamashita et al., submitted). We perform two experiments. The first one, which we call Ext.B, is based on Baker et al. (1998). A constant turbulent mixing coefficient is used in the whole domain, and a constant thermal flux is given at the upper and lower boundaries as a substitute for infrared heating. The second one, which we call Exp.I, is based on Imamura et al. (2014). The sub-grid turbulence process is implemented by Klemp and Wilhelmson (1989), and an infrared heating profile obtained in a radiative-convective equilibrium calculation (Ikeda, 2011) is used. In both experiments, the averaged solar heating profile is used. The spatial resolution is 200 m in the horizontal direction and 125 m in the vertical direction. The domain covers 128km x 128km horizontally and altitudes from 40 km to 60 km. Obtained structures of convection moderately differ in the two experiments. Although the depth of convection layer is almost the same, the horizontal cell size of Exp.B is larger than that of Exp.I; the cell sizes in Exp.B and Exp.I are about 40 km and 25 km, respectively. The vertical motion in Exp.B is asymmetric; updrafts are widespread and weak (~3m/s), whereas downdrafts are narrow and strong (~10m/s). On the other hand, the vertical motion in Exp.I is nearly symmetric and weaker (~2m/s) compared with those in Exp.B. The difference of convective structure results from the different vertical distributions of implemented infrared heating. Namely, the intense downdrafts in Exp.B are forced by the strong cooling concentrated near the top of convection layer. In Exp.I, the heating is distributed in a thick layer, so that relatively symmetric vertical motion occurs.

  9. Source tracing of thunderstorm generated inertia-gravity waves observed during the RADAGAST campaign in Niamey, Niger

    NASA Astrophysics Data System (ADS)

    Naren Athreyas, Kashyapa; Gunawan, Erry; Tay, Bee Kiat

    2018-07-01

    In recent years, the climate changes and weather have become a major concern which affects the daily life of a human being. Modelling and prediction of the complex atmospheric processes needs extensive theoretical studies and observational analyses to improve the accuracy of the prediction. The RADAGAST campaign was conducted by ARM climate research stationed at Niamey, Niger from January 2006 to January 2007, which was aimed to improve the west African climate studies have provided valuable data for research. In this paper, the characteristics and sources of inertia-gravity waves observed over Niamey during the campaign are investigated. The investigation focuses on highlighting the waves which are generated by thunderstorms which dominate the tropical region. The stratospheric energy densities spectrum is analysed for deriving the wave properties. The waves with Eulerian period from 20 to 50 h occupied most of the spectral power. It was found that the waves observed over Niamey had a dominant eastward propagation with horizontal wavelengths ranging from 350 to 1 400 km, and vertical wavelengths ranging from 0.9 to 3.6 km. GROGRAT model with ERA-Interim model data was used for establishing the background atmosphere to identify the source location of the waves. The waves generated by thunderstorms had propagation distances varying from 200 to 5 000 km and propagation duration from 2 to 4 days. The horizontal phase speeds varied from 2 to 20 m/s with wavelengths varying from 100 to 1 100 km, vertical phase speeds from 0.02 to 0.2 m/s and wavelengths from 2 to 15 km at the source point. The majority of sources were located in South Atlantic ocean and waves propagating towards northeast direction. This study demonstrated the complex large scale coupling in the atmosphere.

  10. Analysis of short pulse laser altimetry data obtained over horizontal path

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Tsai, B. M.; Gardner, C. S.

    1983-01-01

    Recent pulsed measurements of atmospheric delay obtained by ranging to the more realistic targets including a simulated ocean target and an extended plate target are discussed. These measurements are used to estimate the expected timing accuracy of a correlation receiver system. The experimental work was conducted using a pulsed two color laser altimeter.

  11. Spectral Ratio Biospheric Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Knox, Robert G.

    2004-01-01

    A new active vegetation index measurement technique has been developed and demonstrated using low-power laser diodes to make horizontal-path lidar measurements of nearby deciduous foliage. The two wavelength laser transmitter operates within and adjacent to the 680 nm absorption feature exhibited by all chlorophyll containing vegetation. Measurements from early October through late November 2003 are presented and the results are discussed.

  12. 49 CFR 213.113 - Defective rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... across the web, originating from a bolt hole, and progressing on a path either inclined upward toward the... horizontally along the head/web or base/web fillet, or they may progress into and through the head or base to... depression is visible on the rail head only, the sagging or drooping is also visible in the head/web fillet...

  13. The Development Of Enabling Technologies For Submillimeter-Wave Remote Sensing of Ice Clouds From Space

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Wang, James R.; Ackerman, Steven; Skofronick-Jackson, Gail; Evans, K. Frank; O'CStarr, David

    2006-01-01

    This paper presents the chronological development of technologies and techniques that have led to a satellite mission concept aimed at quantifying the temporal and spatial distributions of upper tropospheric ice clouds. The Submillimeter-wave and Infrared Ice Cloud Experiment (SIRICE) is an Earth System Science Pathfinder mission concept designed to improve our understanding of the upper tropospheric water cycle and its coupling to the Earth s radiation budget. Ice outflow from convective storm systems is known to play an important role in regional energy budgets; however, ice generation and subsequent precipitation and sublimation are poorly quantified. SIRICE will provide measurements of ice cloud distributions and microphysical properties which are needed for understanding the crucial link between the hydrologic and energy cycles. The SIRICE measurement platform is comprised of two integrated instruments, the Submillimeter/millimeter-wave radiometer (SM4) and the Infrared Cloud Ice Radiometer (IRCIR). The primary instrument is the SM4, a conical scanner that provides a 1600 km swath of the Earth's surface at 53 degree incidence. The SM4 has 6 linearly polarized receivers measuring 12 spectral bands centered at 183 GHz, 325 GHz, 448 GHz, 643 GHz and 874 GHz; two receivers at 643 GHz measure horizontal and vertical polarizations. Submillimeter-wavelengths are well suited to the remote sensing of ice clouds due to the relative size of the wavelengths to particle sizes. Upwelling emission from lower tropospheric water vapor is scattered by the ice clouds thus causing a brightness temperature depression at submillimeter wavelengths. The IRCIR is a push broom imager with approximately 1500 km swath and spectral channels at 11 and 12 micrometers. This combination of coincident infrared and submillimeter-wavelength measurements were chosen because of its ability to provide retrieval of ice water path and median particle size for a wide range of ice clouds from thin cirrus to thick anvil structures. Over the past decade there has been a parallel development of submillimeter-wave technologies, demonstration instruments, and remote sensing techniques that have led to the present SIRICE mission concept. Mapping of these developmental paths reveals the origins, rational and maturity of features of the SIRICE payload such as its channel selection, compact design, and multipoint calibration. This presentation traces the evolution of the SIRICE mission concept from the early 1990's to its present status.

  14. Preliminary study of crust-upper mantle structure of the Tibetan Plateau by using broadband teleseismic body waveforms

    NASA Astrophysics Data System (ADS)

    Zhu, Lu-Pei; Zeng, Rong-Sheng; Wu, Francis T.; Owens, Thomas J.; Randall, George E.

    1993-05-01

    As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations are estimated from inversions of the receiver function. The crustal shear wave velocities at WNDO and TUNL are vertically homogeneous, with value between 3.5 3.6 km/s down to Moho. This value in the lower crust is lower than the normal value for the lower crust of continents, which is consistent with the observed strong Sn attenuation in this region. The velocity structure at XIGA shows a velocity discontinuity at depth of 20 km and high velocity value of 4.0 km/s in the midcrust between 20 30 km depth. Similar results are obtained from a DSS profile in southern Tibet. The velocity under XIGA decreases below a depth of 30 km, reaching the lowest value of 3.2 km/s between 50 55 km. depth. This may imply that the Indian crust underthrusts the low part of Tibetan crust in the southern Plateau, forming a “double crust”. The crustal thickness at each of these sites is: WNDO, 68 km; TUNL, 70 km; XI-GA, 80 km.

  15. Source mechanics for monochromatic icequakes produced during iceberg calving at Columbia Glacier, AK

    USGS Publications Warehouse

    O'Neel, Shad; Pfeffer, W.T.

    2007-01-01

    Seismograms recorded during iceberg calving contain information pertaining to source processes during calving events. However, locally variable material properties may cause signal distortions, known as site and path effects, which must be eliminated prior to commenting on source mechanics. We applied the technique of horizontal/vertical spectral ratios to passive seismic data collected at Columbia Glacier, AK, and found no dominant site or path effects. Rather, monochromatic waveforms generated by calving appear to result from source processes. We hypothesize that a fluid-filled crack source model offers a potential mechanism for observed seismograms produced by calving, and fracture-processes preceding calving.

  16. Estimation of ground motion parameters

    USGS Publications Warehouse

    Boore, David M.; Joyner, W.B.; Oliver, A.A.; Page, R.A.

    1978-01-01

    Strong motion data from western North America for earthquakes of magnitude greater than 5 are examined to provide the basis for estimating peak acceleration, velocity, displacement, and duration as a function of distance for three magnitude classes. A subset of the data (from the San Fernando earthquake) is used to assess the effects of structural size and of geologic site conditions on peak motions recorded at the base of structures. Small but statistically significant differences are observed in peak values of horizontal acceleration, velocity and displacement recorded on soil at the base of small structures compared with values recorded at the base of large structures. The peak acceleration tends to b3e less and the peak velocity and displacement tend to be greater on the average at the base of large structures than at the base of small structures. In the distance range used in the regression analysis (15-100 km) the values of peak horizontal acceleration recorded at soil sites in the San Fernando earthquake are not significantly different from the values recorded at rock sites, but values of peak horizontal velocity and displacement are significantly greater at soil sites than at rock sites. Some consideration is given to the prediction of ground motions at close distances where there are insufficient recorded data points. As might be expected from the lack of data, published relations for predicting peak horizontal acceleration give widely divergent estimates at close distances (three well known relations predict accelerations between 0.33 g to slightly over 1 g at a distance of 5 km from a magnitude 6.5 earthquake). After considering the physics of the faulting process, the few available data close to faults, and the modifying effects of surface topography, at the present time it would be difficult to accept estimates less than about 0.8 g, 110 cm/s, and 40 cm, respectively, for the mean values of peak acceleration, velocity, and displacement at rock sites within 5 km of fault rupture in a magnitude 6.5 earthquake. These estimates can be expected to change as more data become available.

  17. Route Recapitulation and Route Loyalty in Homing Pigeons: Pilotage From 25 km?

    NASA Astrophysics Data System (ADS)

    Biro, Dora; Meade, Jessica; Guilford, Tim

    2006-01-01

    We utilised precision Global Positioning System (GPS) tracking to examine the homing paths of pigeons (Columba livia) released 20 times consecutively 25 km from the loft. By the end of the training phase, birds had developed highly stereotyped yet individually distinct routes home, with detailed recapitulation evident at each stage of the journey. Following training, birds also participated in a series of releases from novel sites at perpendicular distances of up to 3 km from their established routes. Results showed that subjects were attracted back to their established routes and recapitulated them from the point of contact. Naïve conspecifics (yoked controls) released from the same off-route sites confirmed that the experienced birds' route choices were not influenced by constraints exerted by terrain features, but that increased experience with the general area conferred a homing advantage in the form of more efficient flight tracks, even from these novel sites. Patterns in the paths taken by experienced birds to rejoin their established routes are discussed with reference to navigational mechanisms employed by homing pigeons in their familiar area.

  18. The influence of NO and ClO variations at twilight on the interpretation of solar occultation measurements

    NASA Technical Reports Server (NTRS)

    Boughner, R.; Larsen, J. C.; Natarajan, M.

    1980-01-01

    The influence of short lived photochemically produced species on solar occultation measurements of ClO and NO was examined. Time varying altitude profiles of ClO and NO were calculated with a time dependent photochemical model to simulate the distribution of these species during a solar occultation measurement. These distributions were subsequently used to calculate simulated radiances for various tangent paths from which mixing ratios were inferred with a conventional technique that assumes spherical symmetry. These results show that neglecting the variation of ClO in the retrieval process produces less than a 10 percent error between the true and inverted profile for both sunrise and sunset above 18 km. For NO, errors are less than 10 percent for tangent altitudes above about 35 km for sunrise and sunset; at lower altitudes, the error increases, approaching 100 percent at altitudes near 25 km. the results also show that average inhomogeneity factors, which measure the concentration variation along the tangent path and which can be calculated from a photochemical model, can indicate which species require more careful data analysis.

  19. Navigation Challenges of the Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Portock, Brian M.; Kruizinga, Gerhard; Bonfiglio, Eugene; Raofi, Behzad; Ryne, Mark

    2008-01-01

    The Mars Phoenix Lander mission was launched on August 4th, 2007. To land safely at the desired landing location on the Mars surface, the spacecraft trajectory had to be controlled to a set of stringent atmospheric entry and landing conditions. The landing location needed to be controlled to an elliptical area with dimensions of 100km by 20km. The two corresponding critical components of the atmospheric entry conditions are the entry flight path angle (target: -13.0 deg +/-0.21 deg) and the entry time (within +/-30 seconds). The purpose of this paper is to describe the navigation strategies used to overcome the challenges posed during spacecraft operations, which included an attitude control thruster calibration campaign, a trajectory control strategy, and a trajectory reconstruction strategy. Overcoming the navigation challenges resulted in final Mars atmospheric entry conditions just 0.007 deg off in entry flight path angle and 14.9 sec early in entry time. These entry dispersions in addition to the entry, descent, and landing trajectory dispersion through the atmosphere, lead to a final landing location just 7 km away from the desired landing target.

  20. Quasi-12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S)

    NASA Astrophysics Data System (ADS)

    Shibuya, Ryosuke; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi

    2017-05-01

    The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS Radar) installed at Syowa Station (39.6° E, 69.0° S) were successfully performed from 16 to 24 March 2015. Over this period, quasi-half-day period (12 h) disturbances in the lower mesosphere at heights of 70 to 80 km were observed. Estimated vertical wavelengths, wave periods and vertical phase velocities of the disturbances were approximately 13.7 km, 12.3 h and -0.3 m s-1, respectively. Under the working hypothesis that such disturbances are attributable to inertia-gravity waves, wave parameters are estimated using a hodograph analysis. The estimated horizontal wavelengths are longer than 1100 km, and the wavenumber vectors tend to point northeastward or southwestward. Using the nonhydrostatic numerical model with a model top of 87 km, quasi-12 h disturbances in the mesosphere were successfully simulated. We show that quasi-12 h disturbances are due to wave-like disturbances with horizontal wavelengths longer than 1400 km and are not due to semidiurnal migrating tides. Wave parameters, such as horizontal wavelengths, vertical wavelengths and wave periods, simulated by the model agree well with those estimated by the PANSY radar observations under the abovementioned assumption. The parameters of the simulated waves are consistent with the dispersion relationship of the inertia-gravity wave. These results indicate that the quasi-12 h disturbances observed by the PANSY radar are attributable to large-scale inertia-gravity waves. By examining a residual of the nonlinear balance equation, it is inferred that the inertia-gravity waves are likely generated by the spontaneous radiation mechanism of two different jet streams. One is the midlatitude tropospheric jet around the tropopause while the other is the polar night jet. Large vertical fluxes of zonal and meridional momentum associated with large-scale inertia-gravity waves are distributed across a slanted region from the midlatitude lower stratosphere to the polar mesosphere in the meridional cross section. Moreover, the vertical flux of the zonal momentum has a strong negative peak in the mesosphere, suggesting that some large-scale inertia-gravity waves originate in the upper stratosphere.

  1. Stress perturbation associated with the Amazonas and other ancient continental rifts

    USGS Publications Warehouse

    Zoback, M.L.; Richardson, R.M.

    1996-01-01

    The state of stress in the vicinity of old continental rifts is examined to investigate the possibility that crustal structure associated with ancient rifts (specifically a dense rift pillow in the lower crust) may modify substantially the regional stress field. Both shallow (2.0-2.6 km depth) breakout data and deep (20-45 km depth) crustal earthquake focal mechanisms indicate a N to NNE maximum horizontal compression in the vicinity of the Paleozoic Amazonas rift in central Brazil. This compressive stress direction is nearly perpendicular to the rift structure and represents a ???75?? rotation relative to a regional E-W compressive stress direction in the South American plate. Elastic two-dimensional finite element models of the density structure associated with the Amazonas rift (as inferred from independent gravity modeling) indicate that elastic support of this dense feature would generate horizontal rift-normal compressional stresses between 60 and 120 MPa, with values of 80-100 MPa probably most representative of the overall structure. The observed ???75?? stress rotation constrains the ratio of the regional horizontal stress difference to the rift-normal compressive stress to be between 0.25 and 1.0, suggesting that this rift-normal stress may be from 1 to 4 times larger than the regional horizontal stress difference. A general expression for the modification of the normalized local horizontal shear stress (relative to the regional horizontal shear stress) shows that the same ratio of the rift-normal compression relative to the regional horizontal stress difference, which controls the amount of stress rotation, also determines whether the superposed stress increases or decreases the local maximum horizontal shear stress. The potential for fault reactivation of ancient continental rifts in general is analyzed considering both the local stress rotation and modification of horizontal shear stress for both thrust and strike-slip stress regimes. In the Amazonas rift case, because the observed stress rotation only weakly constrains the ratio of the regional horizontal stress difference to the rift-normal compression to be between 0.25 and 1.0, our analysis is inconclusive because the resultant normalized horizontal shear stress may be reduced (for ratios >0.5) or enhanced (for ratios <0.5). Additional information is needed on all three stress magnitudes to predict how a change in horizontal shear stress directly influences the likelihood of faulting in the thrust-faulting stress regime in the vicinity of the Amazonas rift. A rift-normal stress associated with the seismically active New Madrid ancient rift may be sufficient to rotate the horizontal stress field consistent with strike-slip faults parallel to the axis of the rift, although this results in a 20-40% reduction in the local horizontal shear stress within the seismic zone. Sparse stress data in the vicinity of the seismically quiescent Midcontinent rift of the central United States suggest a stress state similar to that of New Madrid, with the local horizontal shear stress potentially reduced by as much as 60%. Thus the markedly different levels of seismic activity associated with these two subparallel ancient rifts is probably due to other factors than stress perturbations due to dense rift pillows. The modeling and analysis here demonstrate that rift-normal compressive stresses are a significant source of stress acting on the lithosphere and that in some cases may be a contributing factor to the association of intraplate seismicity with old zones of continental extension.

  2. Full nonlinear treatment of the global thermospheric wind system. Part 1: Mathematical method and analysis of forces

    NASA Technical Reports Server (NTRS)

    Blum, P. W.; Harris, I.

    1973-01-01

    The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all the nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In part 1 the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analysed.

  3. A stationary phase solution for mountain waves with application to mesospheric mountain waves generated by Auckland Island

    NASA Astrophysics Data System (ADS)

    Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun

    2017-01-01

    A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.

  4. Rg excitation by underground explosions: insights from source modelling the 1997 Kazakhstan depth-of-burial experiment

    NASA Astrophysics Data System (ADS)

    Patton, Howard J.; Bonner, Jessie L.; Gupta, Indra N.

    2005-12-01

    Near-field seismograms of chemical explosions detonated as part of the 1997 depth-of-burial (DOB) experiment at the former Semipalatinsk nuclear test site provide an excellent opportunity to study the excitation of Rg waves for source effects. Rg waves were identified with particle-motion analysis and isolated from other arrivals using group velocity filtering. Amplitude and phase spectra of Rg waves were corrected for path effects based on observed attenuation in the near-field and path-specific phase velocity models. The path-corrected spectra were inputs to a grid-search method for finding source parameters of an axisymmetric source consisting of a monopole plus a compensated linear vector dipole (CLVD) or a horizontal tensile crack. The suite of observations, including ground-zero accelerograms and geophysical data from borehole logs, are best satisfied by models involving a CLVD with static (zero-frequency) seismic moment Mo. The CLVD source is related to tensile failure occurring at depths above the shotpoint. A static Mo distinguishes this source from classical models of spall, which are usually characterized by horizontal cracks that dynamically open and close with no permanent displacement (i.e. no static Mo). The CLVD source in this study appears to be more closely related to a driven block motion model envisaged by Masse. Rg source amplitudes are consistent with mb(Lg) measurements at station MAK, as would be expected if near-field Rg-to-S scattering plays a role in generating S waves observed at regional distances.

  5. Measuring Diffusion of Liquids by Common-Path Interferometry

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser

    2003-01-01

    A method of observing the interdiffusion of a pair of miscible liquids is based on the use of a common-path interferometer (CPI) to measure the spatially varying gradient of the index refraction in the interfacial region in which the interdiffusion takes place. Assuming that the indices of refraction of the two liquids are different and that the gradient of the index of refraction of the liquid is proportional to the gradient in the relative concentrations of either liquid, the diffusivity of the pair of liquids can be calculated from the temporal variation of the spatial variation of the index of refraction. This method yields robust measurements and does not require precise knowledge of the indices of refraction of the pure liquids. Moreover, the CPI instrumentation is compact and is optomechanically robust by virtue of its common- path design. The two liquids are placed in a transparent rectangular parallelepiped test cell. Initially, the interface between the liquids is a horizontal plane, above which lies pure liquid 2 (the less-dense liquid) and below which lies pure liquid 1 (the denser liquid). The subsequent interdiffusion of the liquids gives rise to a gradient of concentration and a corresponding gradient of the index of refraction in a mixing layer. For the purpose of observing the interdiffusion, the test cell is placed in the test section of the CPI, in which a collimated, polarized beam of light from a low-power laser is projected horizontally through a region that contains the mixing layer.

  6. Orbiting lidar simulations. I - Aerosol and cloud measurements by an independent-wavelength technique

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. M.

    1982-01-01

    Aerosol and cloud measurements have been simulated for a Space Shuttle lidar. Expected errors - in signal, transmission, density, and calibration - are calculated algebraically and checked by simulating measurements and retrievals using random-number generators. By day, vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 micron) as well as strong volcanic stratospheric aerosols (at 0.53 micron). By night, all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 micron), mesospheric aerosols (at 0.53 micron), and noctilucent clouds (at 1.06 and 0.53 micron). The vertical resolution was 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in the mesospheric cloud and aerosol layers; horizontal resolution was 100-2000 km.

  7. Hydro-geomorphological characterization and classification of Chilean river networks using horizontal, vertical and climatological properties

    NASA Astrophysics Data System (ADS)

    Pereira, A. A.; Gironas, J. A.; Passalacqua, P.; Mejia, A.; Niemann, J. D.

    2017-12-01

    Previous work has shown that lithological, tectonic and climatic processes have a major influence in shaping the geomorphology of river networks. Accordingly, quantitative classification methods have been developed to identify and characterize network types (dendritic, parallel, pinnate, rectangular and trellis) based solely on the self-affinity of their planform properties, computed from available Digital Elevation Model (DEM) data. In contrast, this research aim is to include both horizontal and vertical properties to evaluate a quantitative classification method for river networks. We include vertical properties to consider the unique surficial conditions (e.g., large and steep height drops, volcanic activity, and complexity of stream networks) of the Andes Mountains. Furthermore, the goal of the research is also to explain the implications and possible relations between the hydro-geomorphological properties and climatic conditions. The classification method is applied to 42 basins in the southern Andes in Chile, ranging in size from 208 Km2 to 8,000 Km2. The planform metrics include the incremental drainage area, stream course irregularity and junction angles, while the vertical metrics include the hypsometric curve and the slope-area relationship. We introduce new network structures (Brush, Funnel and Low Sinuosity Rectangular), possibly unique to the Andes, that can be quantitatively differentiated from previous networks identified in other geographic regions. Then, this research evaluates the effect that excluding different Strahler order streams has on the horizontal properties and therefore in the classification. We found that climatic conditions are not only linked to horizontal parameters, but also to vertical ones, finding significant correlation between climatic variables (average near-surface temperature and rainfall) and vertical measures (parameters associated with the hypsometric curve and slope-area relation). The proposed classification shows differences among basins previously classified as the same type, which are not noticeable in their horizontal properties and helps reduce misclassifications within the old clusters. Additional hydro-geomorphological metrics are to be considered in the classification method to improve the effectiveness of it.

  8. Characterizing the Effects of Convection on the Afternoon to Evening Boundary Layer Transition During Pecan 2015

    DTIC Science & Technology

    2016-12-01

    roughness that is an input variable. For the FP2 site in Kansas, we searched for the climatological surface roughness height used in the Navy’s...COAMPS model for the latitude and longitude of FP2 and in the month of June/July. The climatological roughness height was found to be 0.25m. This is the...mean surface roughness for an area of 1 km on the side near FP2 as the climatological data has a horizontal grid resolution of 1 km. This roughness

  9. Horizontal heat fluxes over complex terrain computed using a simple mixed-layer model and a numerical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Fujio; Kuwagata, Tuneo

    1995-02-01

    The thermally induced local circulation over a periodic valley is simulated by a two-dimensional numerical model that does-not include condensational processes. During the daytime of a clear, calm day, heat is transported from the mountainous region to the valley area by anabatic wind and its return flow. The specific humidity is, however, transported in an inverse manner. The horizontal exchange rate of sensible heat has a horizontal scale similarity, as long as the horizontal scale is less than a critical width of about 100 km. The sensible heat accumulated in an atmospheric column over an arbitrary point can be estimatedmore » by a simple model termed the uniform mixed-layer model (UML). The model assumes that the potential temperature is both vertically and horizontally uniform in the mixed layer, even over the complex terrain. The UML model is valid only when the horizontal scale of the topography is less than the critical width and the maximum difference in the elevation of the topography is less than about 1500 m. Latent heat is accumulated over the mountainous region while the atmosphere becomes dry over the valley area. When the horizontal scale is close to the critical width, the largest amount of humidity is accumulated during the late afternoon over the mountainous region. 18 refs., 15 figs., 1 tab.« less

  10. Anomalous top layer in the inner core beneath the eastern hemisphere

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.; Niu, F.

    2003-12-01

    Recent studies reported hemispheric variations in seismic velocity and attenuation in the top of the inner core. It, however, remains unclear how the inner core hemisphericity extends deep in the inner core. Here, we analyze PKPbc-PKIKP and PKiKP-PKIKP waveforms collected from the Global Seismographic Network (GSN), regional recordings from the German Regional Seismic Network (GRSN) and Graefenberg (GRF) sampling along the equatorial path (the ray path whose ray angle is larger than 35o from the Earth's rotation axis). The observed global and regional PKPbc-PKIKP differential traveltimes and PKIKP/PKPbc amplitude ratios suggest a simple W2 model (Wen/Niu:2002) in the western hemisphere with a constant velocity gradient of 0.049(km/sec)/100km and a Q value of 600 in the top 400 km of the inner core. In the eastern hemisphere, the data require a change of velocity gradient and Q value at about 235 km below the inner core boundary (ICB). Based on forward modeling, we construct radial velocity and attenuation models in the eastern hemisphere which can explain both the PKiKP-PKIKP and PKPbc-PKIKP observations. The inner core in the eastern hemisphere has a flat velocity gradient extending to about 235 km below the ICB. We test two solutions for the velocity models in the deeper portion of the inner core, with one having a first-order discontinuity at 235 km below the ICB with a velocity jump of 0.07(km/sec) followed by the PREM gradient, and the other having a gradual velocity transition with 0.1(km/sec)/100km gradient extended from 235 km to 375 km below the ICB followed by the PREM gradient. The observed traveltimes exclude the sharp discontinuity velocity model, as it predicts a kink in differential traveltimes at distance of 151o-152o which is not observed in the global and regional datasets. The observed PKIKP/PKPbc amplitude ratios can be best explained by a step function of attenuation with a Q value of 250 at the top 300 km and a Q value of 600 at 300-400 km below the ICB. The top portion of the inner core in the eastern hemisphere is anomalous compared to the rest of the inner core, in having a flat velocity gradient, higher velocities and higher attenuation.

  11. Long-distance thermal temporal ghost imaging over optical fibers

    NASA Astrophysics Data System (ADS)

    Yao, Xin; Zhang, Wei; Li, Hao; You, Lixing; Wang, Zhen; Huang, Yidong

    2018-02-01

    A thermal ghost imaging scheme between two distant parties is proposed and experimentally demonstrated over long-distance optical fibers. In the scheme, the weak thermal light is split into two paths. Photons in one path are spatially diffused according to their frequencies by a spatial dispersion component, then illuminate the object and record its spatial transmission information. Photons in the other path are temporally diffused by a temporal dispersion component. By the coincidence measurement between photons of two paths, the object can be imaged in a way of ghost imaging, based on the frequency correlation between photons in the two paths. In the experiment, the weak thermal light source is prepared by the spontaneous four-wave mixing in a silicon waveguide. The temporal dispersion is introduced by single mode fibers of 50 km, which also could be looked as a fiber link. Experimental results show that this scheme can be realized over long-distance optical fibers.

  12. Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter

    2011-01-01

    On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where the sample return capsule was expected to become visible. An overview of the design methodologies and trade-offs used in the Hayabusa re-entry observation campaign are presented.

  13. Hydraulic Jumps, Waves and Other Flow Features Found by Modeling Stably-Stratified Flows in the Salt Lake Valley

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ludwig, F.; Street, R.

    2003-12-01

    The Advanced Regional Prediction System (ARPS) was used to simulate weak synoptic wind conditions with stable stratification and pronounced drainage flow at night in the vicinity of the Jordan Narrows at the south end of Salt Lake Valley. The simulations showed the flow to be quite complex with hydraulic jumps and internal waves that make it essential to use a complete treatment of the fluid dynamics. Six one-way nested grids were used to resolve the topography; they ranged from 20-km grid spacing, initialized by ETA 40-km operational analyses down to 250-m horizontal resolution and 200 vertically stretched levels to a height of 20 km, beginning with a 10-m cell at the surface. Most of the features of interest resulted from interactions with local terrain features, so that little was lost by using one-way nesting. Canyon, gap, and over-terrain flows have a large effect on mixing and vertical transport, especially in the regions where hydraulic jumps are likely. Our results also showed that the effect of spatial resolution on simulation performance is profound. The horizontal resolution must be such that the smallest features that are likely to have important impact on the flow are spanned by at least a few grid points. Thus, the 250 m minimum resolution of this study is appropriate for treating the effects of features of about 1 km or greater extent. To be consistent, the vertical cell dimension must resolve the same terrain features resolved by the horizontal grid. These simulations show that many of the interesting flow features produce observable wind and temperature gradients at or near the surface. Accordingly, some relatively simple field measurements might be made to confirm that the mixing phenomena that were simulated actually take place in the real atmosphere, which would be very valuable for planning large, expensive field campaigns. The work was supported by the Atmospheric Sciences Program, Office of Biological and Environmental Research, U.S. Department of Energy. The National Energy Research Scientific Computing Center (NERSC) provided computational time. We thank Professor Ming Xue and others at the University of Oklahoma for their help.

  14. Tropical Cyclone Intensity in Global Models

    NASA Astrophysics Data System (ADS)

    Davis, C. A.; Wang, W.; Ahijevych, D.

    2017-12-01

    In recent years, global prediction and climate models have begun to depict intense tropical cyclones, even up to Category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, we examine the how well these models treat tropical cyclone intensity, measured from several different perspectives. The models evaluated include the operational Global Forecast System, with a grid spacing of about 13 km, and the Model for Prediction Across Scales, with a variable resolution of 15 km over the Northwest Pacific transitioning to 60 km elsewhere. We focus on the Northwest Pacific for the period July-October, 2016. Results indicate that discrimination of tropical cyclone intensity is reasonably good up to roughly category 3 storms. The models are able to capture storms of category 4 intensity, but still exhibit a negative intensity bias of 20-30 knots at lead times beyond 5 days. This is partly indicative of the large number of super-typhoons that occurred in 2016. The question arises of how well global models should represent intensity, given that it is unreasonable for them to depict the inner core of many intense tropical cyclones with a grid increment of 13-15 km. We compute an expected "best-case" prediction of intensity based on filtering the observed wind profiles of Atlantic tropical cyclones according to different hypothetical model resolutions. The Atlantic is used because of the significant number of reconnaissance missions and more reliable estimate of wind radii. Results indicate that, even under the most optimistic assumptions, models with horizontal grid spacing of 1/4 degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, models with a grid spacing of 1/4 degree or greater are unlikely to systematically discriminate hurricanes with differing intensity. Finally, for simple wind profiles, it is shown how an accurate representation of maximum wind on a coarse grid will lead to an overestimate of horizontally integrated kinetic energy by a factor of two or more.

  15. Physics of sub-micron cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Roy, N. L.

    1974-01-01

    Laboratory tests with simulated micrometeoroids to measure the heat transfer coefficient are discussed. Equations for ablation path length for electrically accelerated micrometeoroids entering a gas target are developed which yield guidelines for the laboratory measurement of the heat transfer coefficient. Test results are presented for lanthanum hexaboride (LaB sub 6) microparticles in air, argon, and oxygen targets. The tests indicate the heat transfer coefficient has a value of approximately 0.9 at 30 km/sec, and that it increases to approximately unity at 50 km/sec and above. Test results extend to over 100 km/sec. Results are also given for two types of small particle detectors. A solid state capacitor type detector was tested from 0.61 km/sec to 50 km/sec. An impact ionization type detector was tested from 1.0 to 150 km/sec using LaB sub 6 microparticles.

  16. Propagation Effects in Space/Earth Paths.

    DTIC Science & Technology

    1980-08-01

    effects of clouds, fogs and gaseous absorption. The background loss in the various atmospheric windows occurring above 70 GHz appears to be higher...strongly positive, all the cases plotted give loss in horizon exceeding 50 km except for the thinnest region (0.1 km) and the smallers N (270). s 5...scatter signals causing respectively: a loss in signal level, a decrease in the efficiency of dual-polarize6 channels and station-to-station interference

  17. Differential absorption radar techniques: water vapor retrievals

    NASA Astrophysics Data System (ADS)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  18. Evaluation of Horizontal Seismic Hazard of Shahrekord, Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, G. Ghodrati; Dehkordi, M. Raeisi; Amrei, S. A. Razavian

    2008-07-08

    This paper presents probabilistic horizontal seismic hazard assessment of Shahrekord, Iran. It displays the probabilistic estimate of Peak Ground Horizontal Acceleration (PGHA) for the return period of 75, 225, 475 and 2475 years. The output of the probabilistic seismic hazard analysis is based on peak ground acceleration (PGA), which is the most common criterion in designing of buildings. A catalogue of seismic events that includes both historical and instrumental events was developed and covers the period from 840 to 2007. The seismic sources that affect the hazard in Shahrekord were identified within the radius of 150 km and the recurrencemore » relationships of these sources were generated. Finally four maps have been prepared to indicate the earthquake hazard of Shahrekord in the form of iso-acceleration contour lines for different hazard levels by using SEISRISK III software.« less

  19. Gravity wave momentum flux in the lower stratosphere over convection

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan; Pfister, Leonhard

    1995-01-01

    This work describes a method for estimating vertical fluxes of horizontal momentum carried by short horizontal scale gravity waves (lambda(sub x) = 10-100 km) using aircraft measured winds in the lower stratosphere. We utilize in situ wind vector and pressure altitude measurements provided by the Meteorological Measurement System (MMS) on board the ER-2 aircraft to compute the momentum flux vectors at the flight level above deep convection during the tropical experiment of the Stratosphere Troposphere Exchange Project (STEP-Tropical). Data from Flight 9 are presented here for illustration. The vertical flux of horizontal momentum these observations points in opposite directions on either side of the location of a strong convective updraft in the cloud shield. This property of internal gravity waves propagating from a central source compares favorably with previously described model results.

  20. : “Developing Regional Modeling Techniques Applicable for Simulating Future Climate Conditions in the Carolinas”

    EPA Science Inventory

    Global climate models (GCMs) are currently used to obtain information about future changes in the large-scale climate. However, such simulations are typically done at coarse spatial resolutions, with model grid boxes on the order of 100 km on a horizontal side. Therefore, techniq...

  1. Eliminating bias in rainfall estimates from microwave links due to antenna wetting

    NASA Astrophysics Data System (ADS)

    Fencl, Martin; Rieckermann, Jörg; Bareš, Vojtěch

    2014-05-01

    Commercial microwave links (MWLs) are point-to-point radio systems which are widely used in telecommunication systems. They operate at frequencies where the transmitted power is mainly disturbed by precipitation. Thus, signal attenuation from MWLs can be used to estimate path-averaged rain rates, which is conceptually very promising, since MWLs cover about 20 % of surface area. Unfortunately, MWL rainfall estimates are often positively biased due to additional attenuation caused by antenna wetting. To correct MWL observations a posteriori to reduce the wet antenna effect (WAE), both empirically and physically based models have been suggested. However, it is challenging to calibrate these models, because the wet antenna attenuation depends both on the MWL properties (frequency, type of antennas, shielding etc.) and different climatic factors (temperature, due point, wind velocity and direction, etc.). Instead, it seems straight forward to keep antennas dry by shielding them. In this investigation we compare the effectiveness of antenna shielding to model-based corrections to reduce the WAE. The experimental setup, located in Dübendorf-Switzerland, consisted of 1.85-km long commercial dual-polarization microwave link at 38 GHz and 5 optical disdrometers. The MWL was operated without shielding in the period from March to October 2011 and with shielding from October 2011 to July 2012. This unique experimental design made it possible to identify the attenuation due to antenna wetting, which can be computed as the difference between the measured and theoretical attenuation. The theoretical path-averaged attenuation was calculated from the path-averaged drop size distribution. During the unshielded periods, the total bias caused by WAE was 0.74 dB, which was reduced by shielding to 0.39 dB for the horizontal polarization (vertical: reduction from 0.96 dB to 0.44 dB). Interestingly, the model-based correction (Schleiss et al. 2013) was more effective because it reduced the bias of unshielded periods to 0.07 dB for the horizontal polarization (vertical: 0.06 dB). Applying the same model-based correction to shielded periods reduces the bias even more, to -0.03 dB and -0.01 dB, respectively. This indicates that additional attenuation could be caused also by different effects, such as reflection of sidelobes from wet surfaces and other environmental factors. Further, model-based corrections do not capture correctly the nature of WAE, but more likely provide only an empirical correction. This claim is supported by the fact that detailed analysis of particular events reveals that both antenna shielding and model-based correction performance differ substantially from event to event. Further investigation based on direct observation of antenna wetting and other environmental variables needs to be performed to identify more properly the nature of the attenuation bias. Schleiss, M., J. Rieckermann, and A. Berne, 2013: Quantification and modeling of wet-antenna attenuation for commercial microwave links. IEEE Geosci. Remote Sens. Lett., 10.1109/LGRS.2012.2236074.

  2. Effect of Advection on Evaporative Fluxes and Vapor Isotopic Ratios: The Lake Size Effect

    NASA Astrophysics Data System (ADS)

    Feng, X.; Lauder, A. M.; Kopec, B. G.; Posmentier, E. S.

    2015-12-01

    It has been reported that advection of air from land can be identified hundreds of kilometers off shore. With advection, moisture builds up downwind, and the evaporative flux decreases and isotopic flux ratios increase with distance. If a lake is small relative to the equilibration distance, the fluxes of all water isotopologues averaged over the lake are different from those calculated using models without advection. The magnitude of the discrepancy depends on the lake size; we refer to this as the "lake size effect". In Kangerlussuaq, Greenland, we observed significant horizontal gradients in concentration, δD, and δ18O of vapor up to 5 km along the wind direction. Over a 0.5 km long lake, the observed average gradients were 1380 ppm/km for vapor content, 21‰/km for δD, 2.4‰/km for δ18O, and 5‰/km for d-excess. These gradients decreased with distance from the upwind shore. Over a stretch of another, much larger lake 4-5 km from the upwind shore, we observed gradients of 354 ppm/km, 1.5‰/km, 0.22‰/km and 0.3‰/km, for vapor concentration, δD, δ18O, and d-excess, respectively. These observations were modeled successfully using a two-dimensional (2-D, horizontal and vertical) steady state advection diffusion model. This model also computes evaporative fluxes. Using the model results, we assess the magnitude of the lake size effect and its impact on water balance calculations. Under the condition of our field observations and for lakes less than 500 m along the wind direction, the mean flux δ18O and δD were at least 2‰ lower than the corresponding values from a 1-D model (vertical only). If using biased isotopic flux values for water balance calculations, the lake size effect would lead to an underestimation of the lake I/E (input to evaporation) ratio. For example, if the lake effect is 1‰, the corresponding underestimation of the I/E ratio is about 10% if using δ18O, and less than 2% if using δD for the computation. This argues for advantageous use of δD over δ18O in water balance and paleoclimate studies when the lake size is small or changes significantly over time. Still greater accuracy in water balance assessment can be achieved by using the 2-D model to correct for the lake size effect under the environmental conditions at the location of interest.

  3. The Generalized Optic Acceleration Cancellation Theory of Catching

    ERIC Educational Resources Information Center

    McLeod, Peter; Reed, Nick; Dienes, Zoltan

    2006-01-01

    The generalized optic acceleration cancellation (GOAC) theory of catching proposes that the path of a fielder running to catch a ball is determined by the attempt to satisfy 2 independent constraints. The 1st is to keep the angle of elevation of gaze to the ball increasing at a decreasing rate. The 2nd is to control the rate of horizontal rotation…

  4. Space Radar Image of Washington D.C.

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The city of Washington, D.C., is shown is this space radar image. Images like these are useful tools for urban planners and managers, who use them to map and monitor land use patterns. Downtown Washington is the bright area between the Potomac (upper center to lower left) and Anacostia (middle right) rivers. The dark cross shape that is formed by the National Mall, Tidal Basin, the White House and Ellipse is seen in the center of the image. Arlington National Cemetery is the dark blue area on the Virginia (left) side of the Potomac River near the center of the image. The Pentagon is visible in bright white and red, south of the cemetery. Due to the alignment of the radar and the streets, the avenues that form the boundary between Washington and Maryland appear as bright red lines in the top, right and bottom parts of the image, parallel to the image borders. This image is centered at 38.85 degrees north latitude, 77.05 degrees west longitude. North is toward the upper right. The area shown is approximately 29 km by 26 km (18 miles by 16 miles). Colors are assigned to different frequencies and polarizations of the radar as follows: Red is the L-band horizontally transmitted, horizontally received; green is the L-band horizontally transmitted, vertically received; blue is the C-band horizontally transmitted, vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on April 18, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  5. Pulsed Artificial Electrojet Generation

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.

    2008-12-01

    Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.

  6. Models for estimating runway landing capacity with Microwave Landing System (MLS)

    NASA Technical Reports Server (NTRS)

    Tosic, V.; Horonjeff, R.

    1975-01-01

    A model is developed which is capable of computing the ultimate landing runway capacity, under ILS and MLS conditions, when aircraft population characteristics and air traffic control separation rules are given. This model can be applied in situations when only a horizontal separation between aircraft approaching a runway is allowed, as well as when both vertical and horizontal separations are possible. It is assumed that the system is free of errors, that is that aircraft arrive at specified points along the prescribed flight path precisely when the controllers intend for them to arrive at these points. Although in the real world there is no such thing as an error-free system, the assumption is adequate for a qualitative comparison of MLS with ILS. Results suggest that an increase in runway landing capacity, caused by introducing the MLS multiple approach paths, is to be expected only when an aircraft population consists of aircraft with significantly differing approach speeds and particularly in situations when vertical separation can be applied. Vertical separation can only be applied if one of the types of aircraft in the mix has a very steep descent angle.

  7. Control Law for Automatic Landing Using Fuzzy-Logic Control

    NASA Astrophysics Data System (ADS)

    Kato, Akio; Inagaki, Yoshiki

    The effectiveness of a fuzzy-logic control law for automatically landing an aircraft that handles both the control to lead an aircraft from horizontal flight at an altitude of 500 meters to flight along the glide-path course near the runway, as well as the control to direct the aircraft to land smoothly on a runway, was investigated. The control law for the automatic landing was designed to match the design goals of directing an aircraft from horizontal flight to flight along a glide-path course quickly and smoothly, and for landing smoothly on a runway. The design of the control law and evaluation of the control performance were performed considering the ground effect at landing. As a result, it was confirmed that the design goals were achieved. Even if the characteristics of the aircraft change greatly, the proposed control law is able to maintain the control performance. Moreover, it was confirmed to be able to land an aircraft safely during air turbulence. The present paper indicates that fuzzy-logic control is an effective and flexible method when applied to the control law for automatic landing, and the design method of the control law using fuzzy-logic control was obtained.

  8. Analysis of single-hole and cross-hole tracer tests conducted at the Nye County early warning drilling program well complex, Nye County, Nevada

    USGS Publications Warehouse

    Umari, A.; Earle, J.D.; Fahy, M.F.

    2006-01-01

    As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 ?? 10-2 for an individual flow path to 2.0 ?? 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer.

  9. An evaluation of flight path formats head-up and head-down

    NASA Technical Reports Server (NTRS)

    Sexton, George A.; Moody, Laura E.; Evans, Joanne; Williams, Kenneth E.

    1988-01-01

    Flight path primary flight display formats were incorporated on head-up and head-down electronic displays and integrated into an Advanced Concepts Flight Simulator. Objective and subjective data were collected while ten airline pilots evaluated the formats by flying an approach and landing task under various ceiling, visibility and wind conditions. Deviations from referenced/commanded airspeed, horizontal track, vertical track and touchdown point were smaller using the head-up display (HUD) format than the head-down display (HDD) format, but not significantly smaller. Subjectively, the pilots overwhelmingly preferred (1) flight path formats over attitude formats used in current aircraft, and (2) the head-up presentation over the head-down, primarily because it eliminated the head-down to head-up transition during low visibility landing approaches. This report describes the simulator, the flight displays, the format evaluation, and the results of the objective and subjective data.

  10. The 1977 intertropical convergence zone experiment

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G. (Editor); Page, W. A. (Editor); Margozzi, A. P. (Editor)

    1979-01-01

    Data are presented from the 1977 Intertropical Convergence Zone (ITCZ) Experiment conducted in the Panama Canal Zone in July 1977. Measurements were made daily over a 16-day period when the ITCZ moved across the Canal Zone. Two aircraft (Learjet and U-2) flew daily and provided data from horizontal traverses at several altitudes to 21.3 km of ozone, temperature, pressure, water vapor, aerosols, fluorocarbons, methane, nitrous oxide, nitric oxide, and nitric acid. Balloonsondes flown four times per day provided data on ozone, wind fields, pressure, temperature, and humidities to altitudes near 30 km. Rocketsondes provided daily data to altitudes near 69 km. Satellite photography provided detailed cloud information. Descriptions of individual experiments and detailed compilations of all results are provided.

  11. Using High Resolution Regional Climate Models to Quantify the Snow Albedo Feedback in a Region of Complex Terrain

    NASA Astrophysics Data System (ADS)

    Letcher, T.; Minder, J. R.

    2015-12-01

    High resolution regional climate models are used to characterize and quantify the snow albedo feedback (SAF) over the complex terrain of the Colorado Headwaters region. Three pairs of 7-year control and pseudo global warming simulations (with horizontal grid spacings of 4, 12, and 36 km) are used to study how the SAF modifies the regional climate response to a large-scale thermodynamic perturbation. The SAF substantially enhances warming within the Headwaters domain, locally as much as 5 °C in regions of snow loss. The SAF also increases the inter-annual variability of the springtime warming within Headwaters domain under the perturbed climate. Linear feedback analysis is used quantify the strength of the SAF. The SAF attains a maximum value of 4 W m-2 K-1 during April when snow loss coincides with strong incoming solar radiation. On sub-seasonal timescales, simulations at 4 km and 12 km horizontal grid-spacing show good agreement in the strength and timing of the SAF, whereas a 36km simulation shows greater discrepancies that are tired to differences in snow accumulation and ablation caused by smoother terrain. An analysis of the regional energy budget shows that transport by atmospheric motion acts as a negative feedback to regional warming, damping the effects of the SAF. On the mesoscale, this transport causes non-local warming in locations with no snow. The methods presented here can be used generally to quantify the role of the SAF in other regional climate modeling experiments.

  12. On Improving 4-km Mesoscale Model Simulations

    NASA Astrophysics Data System (ADS)

    Deng, Aijun; Stauffer, David R.

    2006-03-01

    A previous study showed that use of analysis-nudging four-dimensional data assimilation (FDDA) and improved physics in the fifth-generation Pennsylvania State University National Center for Atmospheric Research Mesoscale Model (MM5) produced the best overall performance on a 12-km-domain simulation, based on the 18 19 September 1983 Cross-Appalachian Tracer Experiment (CAPTEX) case. However, reducing the simulated grid length to 4 km had detrimental effects. The primary cause was likely the explicit representation of convection accompanying a cold-frontal system. Because no convective parameterization scheme (CPS) was used, the convective updrafts were forced on coarser-than-realistic scales, and the rainfall and the atmospheric response to the convection were too strong. The evaporative cooling and downdrafts were too vigorous, causing widespread disruption of the low-level winds and spurious advection of the simulated tracer. In this study, a series of experiments was designed to address this general problem involving 4-km model precipitation and gridpoint storms and associated model sensitivities to the use of FDDA, planetary boundary layer (PBL) turbulence physics, grid-explicit microphysics, a CPS, and enhanced horizontal diffusion. Some of the conclusions include the following: 1) Enhanced parameterized vertical mixing in the turbulent kinetic energy (TKE) turbulence scheme has shown marked improvements in the simulated fields. 2) Use of a CPS on the 4-km grid improved the precipitation and low-level wind results. 3) Use of the Hong and Pan Medium-Range Forecast PBL scheme showed larger model errors within the PBL and a clear tendency to predict much deeper PBL heights than the TKE scheme. 4) Combining observation-nudging FDDA with a CPS produced the best overall simulations. 5) Finer horizontal resolution does not always produce better simulations, especially in convectively unstable environments, and a new CPS suitable for 4-km resolution is needed. 6) Although use of current CPSs may violate their underlying assumptions related to the size of the convective element relative to the grid size, the gridpoint storm problem was greatly reduced by applying a CPS to the 4-km grid.

  13. Solar flare induced ionospheric D-region enhancements from VLF amplitude observations

    NASA Astrophysics Data System (ADS)

    Thomson, N. R.; Clilverd, M. A.

    2001-11-01

    Enhancements of D-region electron densities caused by solar flares are determined from observations of VLF subionospheric amplitude changes and these enhancements are then related to the magnitudes of the X-ray fluxes measured by the GOES satellites. The electron densities are characterised by the two traditional parameters, /H' and /β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively), which are found by VLF radio modelling of the observed amplitudes using the NOSC Earth-ionosphere waveguide programs (LWPC and Modefinder) mainly on two paths, one short and one long. The short path measurements were made near Cambridge, UK, on the 18.3kHz signals from the French transmitter 617km to the south while the long path measurements were made near Dunedin, NZ, on the 24.8kHz signals from NLK in Seattle, USA, 12.3Mm across the Pacific Ocean. The observations include flares up to a magnitude of about M5 (5×10-5Wm-2 at 0.1-0.8nm) which gave VLF amplitude enhancements up to about 8dB; these corresponded, under near solar maximum conditions (1992), to a reduction in /H' from about 71km down to about 63km and an increase in /β from 0.43km-1 up to about 0.49km-1. The increased values of /β during a flare are caused by the solar X-rays dominating all sources of ionisation during the flare in contrast with the normal unperturbed daytime values of /β which are significantly lower than for a single solar UV or X-ray source due to the extra electrons from the normal galactic cosmic ray ionisation in the lowest parts of the D-region. This steady, normal (unperturbed) cosmic ray influence on /β, and hence unperturbed VLF attenuation, is more marked at times of reduced solar Lyman-/α flux in the D-region such as at solar minimum, high latitudes or early or late in the day, thus explaining the normal (unperturbed) higher VLF attenuation rates previously reported in these conditions.

  14. Comparison of workload measures on computer-generated primary flight displays

    NASA Technical Reports Server (NTRS)

    Nataupsky, Mark; Abbott, Terence S.

    1987-01-01

    Four Air Force pilots were used as subjects to assess a battery of subjective and physiological workload measures in a flight simulation environment in which two computer-generated primary flight display configurations were evaluated. A high- and low-workload task was created by manipulating flight path complexity. Both SWAT and the NASA-TLX were shown to be effective in differentiating the high and low workload path conditions. Physiological measures were inconclusive. A battery of workload measures continues to be necessary for an understanding of the data. Based on workload, opinion, and performance data, it is fruitful to pursue research with a primary flight display and a horizontal situation display integrated into a single display.

  15. Interferometric weak measurement of photon polarization

    NASA Astrophysics Data System (ADS)

    Iinuma, Masataka; Suzuki, Yutaro; Taguchi, Gen; Kadoya, Yutaka; Hofmann, Holger F.

    2011-10-01

    We realize a minimum back-action quantum non-demolition measurement of variable strength on photon polarization in the diagonal(PM) basis by two-mode path interference. This method uses the phase difference between the positive (P) and negative (M) superpositions in the interference between the horizontal (H) and vertical (V) polarized paths in the input beam. Although the interference can not occur when the H and V polarizations are distinguishable, a well-controlled amount of interference is induced by erasing the H and V information using a coherent rotation of polarization toward a common diagonal polarization. This method is particularly suitable for the realization of weak measurements, where the control of the back-action is essential.

  16. A scattering model for rain depolarization

    NASA Technical Reports Server (NTRS)

    Wiley, P. H.; Stutzman, W. L.; Bostian, C. W.

    1973-01-01

    A method is presented for calculating the amount of depolarization caused by precipitation for a propagation path. In the model the effects of each scatterer and their interactions are accounted for by using a series of simplifying steps. It is necessary only to know the forward scattering properties of a single scatterer. For the case of rain the results of this model for attenuation, differential phase shift, and cross polarization agree very well with the results of the only other model available, that of differential attenuation and differential phase shift. Calculations presented here show that horizontal polarization is more sensitive to depolarization than is vertical polarization for small rain drop canting angle changes. This effect increases with increasing path length.

  17. The Effect of Lift on Entry Corridor Depth and Guidance Requirements for the Return Lunar Flight

    NASA Technical Reports Server (NTRS)

    Wong, Thomas J.; Slye, Robert E.

    1961-01-01

    Corridors for manned vehicles are defined consistent with requirements for avoiding radiation exposure and for limiting values of peak deceleration. Use of lift increases the depth of the entry corridor. Mid-course guidance requirements appear to be critical only for the flight-path angle. Increasing the energy of the transport orbit increases the required guidance accuracy for the flight-path angle. Corrective thrust applied essentially parallel to the local horizontal produces the maximum change in perigee altitude for a given increment of velocity. Energy required to effect a given change in perigee altitude varies inversely with range measured from the center of the earth.

  18. Simulation of car movement along circular path

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Tikhov-Tinnikov, D. A.; Ovchinnikova, N. I.; Lysenko, A. V.

    2017-10-01

    Under operating conditions, suspension system performance changes which negatively affects vehicle stability and handling. The paper aims to simulate the impact of changes in suspension system performance on vehicle stability and handling. Methods. The paper describes monitoring of suspension system performance, testing of vehicle stability and handling, analyzes methods of suspension system performance monitoring under operating conditions. The mathematical model of a car movement along a circular path was developed. Mathematical tools describing a circular movement of a vehicle along a horizontal road were developed. Turning car movements were simulated. Calculation and experiment results were compared. Simulation proves the applicability of a mathematical model for assessment of the impact of suspension system performance on vehicle stability and handling.

  19. Simulator evaluation of manually flown curved instrument approaches. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sager, D.

    1973-01-01

    Pilot performance in flying horizontally curved instrument approaches was analyzed by having nine test subjects fly curved approaches in a fixed-base simulator. Approaches were flown without an autopilot and without a flight director. Evaluations were based on deviation measurements made at a number of points along the curved approach path and on subject questionnaires. Results indicate that pilots can fly curved approaches, though less accurately than straight-in approaches; that a moderate wind does not effect curve flying performance; and that there is no performance difference between 60 deg. and 90 deg. turns. A tradeoff of curve path parameters and a paper analysis of wind compensation were also made.

  20. Esr Observations of Tid In The Polar Cusp/cap Ionosphere

    NASA Astrophysics Data System (ADS)

    Yin, F.; Ma, S. Y.; Schlegel, K.

    EISCAT-Svalbard radar provides new opportunity to study TIDs in the polar cusp/cap ionosphere. Propagation characteristics of AGW-caused TIDs in quiet days are stud- ied by means of maximum entropy cross-spectral analysis of ESR CP1 and CP2 data. Apparent vertical wave-number of the TIDs as a function of height and the horizontal wave-number vector are obtained for main period of disturbances. It is observed as the first time that some of TIDs in the polar cap/cusp ionosphere can propagate vertically from the height lower than 200 km up to as high as about 700 km with little attenu- ation. In the auroral ionosphere, however, they usually fade away below 500 km. In the region from about 100 to 180 km height, downward propagating mode is seen ob- viously. The possible relations of the TIDs with cusp particle precipitation and upper E-region heating are discussed.

  1. Simulation of the atmospheric thermal circulation of a martian volcano using a mesoscale numerical model.

    PubMed

    Rafkin, Scot C R; Sta Maria, Magdalena R V; Michaels, Timothy I

    2002-10-17

    Mesoscale (<100 km) atmospheric phenomena are ubiquitous on Mars, as revealed by Mars Orbiter Camera images. Numerical models provide an important means of investigating martian atmospheric dynamics, for which data availability is limited. But the resolution of general circulation models, which are traditionally used for such research, is not sufficient to resolve mesoscale phenomena. To provide better understanding of these relatively small-scale phenomena, mesoscale models have recently been introduced. Here we simulate the mesoscale spiral dust cloud observed over the caldera of the volcano Arsia Mons by using the Mars Regional Atmospheric Modelling System. Our simulation uses a hierarchy of nested models with grid sizes ranging from 240 km to 3 km, and reveals that the dust cloud is an indicator of a greater but optically thin thermal circulation that reaches heights of up to 30 km, and transports dust horizontally over thousands of kilometres.

  2. On the Possibility of the Existence of a Surface Electromagnetic Wave in the Permafrost Area

    NASA Astrophysics Data System (ADS)

    Balkhanov, V. K.; Bashkuev, Yu. B.; Advokatov, V. R.

    2018-01-01

    The results of measurements of the vertical component of electric field at a radio path with the permafrost at a frequency of 255 kHz have been interpreted. An analysis of the results has shown that the considered radio path exhibits the properties of a two-part impedance surface, i.e., it consists of two sections. At a distance of 70 km from a radiation source and at a frequency of 255 kHz of the electromagnetic wave, the field decreases with the distance R according to the power law as R -1.5 and a power index takes an intermediate value between the power indices for decreasing the field in free space R -2 and for the decrease in the field above an ideal conducting surface R -1. With further propagation at a distance of 70-220 km, the field shows the specific behavior of a surface electromagnetic wave.

  3. Rayleigh-wave tomography of the Ontong-Java Plateau

    NASA Astrophysics Data System (ADS)

    Richardson, W. Philip; Okal, Emile A.; Van der Lee, Suzan

    2000-02-01

    The deep structure of the Ontong-Java Plateau (OJP) in the westcentral Pacific is investigated through a 2-year deployment of four PASSCAL seismic stations used in a passive tomographic experiment. Single-path inversions of 230 Rayleigh waveforms from 140 earthquakes mainly located in the Solomon Trench confirm the presence of an extremely thick crust, with an average depth to the Mohorovičić discontinuity of 33 km. The thickest crusts (38 km) are found in the southcentral part of the plateau, around 2°S, 157°E. Lesser values remaining much thicker than average oceanic crust (15-26 km) are found on either side of the main structure, suggesting that the OJP spills over into the Lyra Basin to the west. Such thick crustal structures are consistent with formation of the plateau at the Pacific-Phoenix ridge at 121 Ma, while its easternmost part may have formed later (90 Ma) on more mature lithosphere. Single-path inversions also reveal a strongly developed low-velocity zone at asthenospheric depths in the mantle. A three-dimensional tomographic inversion resolves a low-velocity root of the OJP extending as deep as 300 km, with shear velocity deficiencies of ˜5%, suggesting the presence of a keel, dragged along with the plateau as the latter moves as part of the drift of the Pacific plate over the mantle.

  4. Radiometer Testbed Development for SWOT

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Brown, Shannon; Gaier, Todd; Dawson, Douglas; Harding, Dennis; Fu, Lee-Lueng; Esteban-Fernandez, Daniel

    2010-01-01

    Conventional altimeters include nadir looking colocated 18-37 GHz microwave radiometer to measure wet tropospheric path delay. These have reduced accuracy in coastal zone (within 50 km from land) and do not provide wet path delay over land. The addition of high frequency channels to Jason-class radiometer will improve retrievals in coastal regions and enable retrievals over land. High-frequency window channels, 90, 130 and 166 GHz are optimum for improving performance in coastal region and channels on 183 GHz water vapor line are ideal for over-land retrievals.

  5. Atmospheric Effects upon Laser Beam Propagation: An Annotated Bibliography

    DTIC Science & Technology

    1979-02-14

    pp. 2711-2720, September 1978. [ Measurements in long path white cell and spietro- phone using a tunable DF laser on normal and deuterium depleted...34Backscatter in Clouds at 0.9 pm and Its Effect on Optical Fuzing Systems ," Proc. 7th Laser Conf., Vol. I1, p. 15, June 1976. [ Measured extinction and...relative transmission measurements during March at the White Sands HELSTF (High Energy Laser Standard Test 12 Facility) 6.5 km path . In May they are

  6. Variation of Rayleigh and Love Wave Fundamental Mode Group Velocity Dispersion Across India and Surrounding Regions

    NASA Astrophysics Data System (ADS)

    Acton, C. E.; Priestley, K.; Mitra, S.; Gaur, V. K.; Rai, S. S.

    2007-12-01

    We present group velocity dispersion results from a study of regional fundamental mode Rayleigh and Love waves propagating across India and surrounding regions. Data used in this study comes from broadband stations operated in India by us in addition to data from seismograms in the region whose data is archived at the IRIS Data Management Centre. The large amount of new and available data allows an improved path coverage and accordingly increased lateral resolution than in previous similar global and regional studies. 1D path- averaged dispersion measurements have been made using multiple filter analyis for source-receiver paths and are combined to produce tomographic group velocity maps for periods between 10 and 60 s. Preliminary Rayleigh wave group velocity maps have been produced using ~2500 paths and checkerboard tests indicate an average resolution of 5 degrees with substantially higher resolution achieved over the more densely sampled Himalayan regions. Short period velocity maps correlate well with surface geology resolving low velocity regions (2.0-2.4 km/s) corresponding to the Ganges and Brahmaputra river deltas, the Indo-Gangetic plains, the Katawaz Basin in Pakhistan, the Tarim Basin in China and the Turan Depression. The Tibetan Plateau is well defined as a high velocity region (2.9-3.2 km/s) at 10 s period, but for periods greater than 20 s it becomes a low velocity region which remains a distinct feature at 60 s and is consistent with the increased crustal thickness. The southern Indian shield is characterized by high crustal group velocities (3.0-3.4 km/s) and at short periods of 10 and 15 s it is possible to make some distinction between the Singhbhum, Dharwar and Aravali cratons. Initial Love wave group velocity maps from 500 dispersion measurements show similarly low velocities at short periods across regions with high sedimentation but higher velocities compared to Rayleigh waves across the Indian shield.

  7. Numerical simulations of significant orographic precipitation in Madeira island

    NASA Astrophysics Data System (ADS)

    Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João

    2016-03-01

    High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.

  8. Viscoelastic flow in the lower crust after the 1992 landers, california, earthquake

    PubMed

    Deng; Gurnis; Kanamori; Hauksson

    1998-11-27

    Space geodesy showed that broad-scale postseismic deformation occurred after the 1992 Landers earthquake. Three-dimensional modeling shows that afterslip can only explain one horizontal component of the postseismic deformation, whereas viscoelastic flow can explain the horizontal and near-vertical displacements. The viscosity of a weak, about 10-km-thick layer, in the lower crust beneath the rupture zone that controls the rebound is about 10(18) pascal seconds. The viscoelastic behavior of the lower crust may help to explain the extensional structures observed in the Basin and Range province and it may be used for the analysis of earthquake hazard.

  9. Calibration of the Regional Crustal Waveguide and the Retrieval of Source Parameters Using Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Saikia, C. K.; Woods, B. B.; Thio, H. K.

    - Regional crustal waveguide calibration is essential to the retrieval of source parameters and the location of smaller (M<4.8) seismic events. This path calibration of regional seismic phases is strongly dependent on the accuracy of hypocentral locations of calibration (or master) events. This information can be difficult to obtain, especially for smaller events. Generally, explosion or quarry blast generated travel-time data with known locations and origin times are useful for developing the path calibration parameters, but in many regions such data sets are scanty or do not exist. We present a method which is useful for regional path calibration independent of such data, i.e. with earthquakes, which is applicable for events down to Mw = 4 and which has successfully been applied in India, central Asia, western Mediterranean, North Africa, Tibet and the former Soviet Union. These studies suggest that reliably determining depth is essential to establishing accurate epicentral location and origin time for events. We find that the error in source depth does not necessarily trade-off only with the origin time for events with poor azimuthal coverage, but with the horizontal location as well, thus resulting in poor epicentral locations. For example, hypocenters for some events in central Asia were found to move from their fixed-depth locations by about 20km. Such errors in location and depth will propagate into path calibration parameters, particularly with respect to travel times. The modeling of teleseismic depth phases (pP, sP) yields accurate depths for earthquakes down to magnitude Mw = 4.7. This Mwthreshold can be lowered to four if regional seismograms are used in conjunction with a calibrated velocity structure model to determine depth, with the relative amplitude of the Pnl waves to the surface waves and the interaction of regional sPmP and pPmP phases being good indicators of event depths. We also found that for deep events a seismic phase which follows an S-wave path to the surface and becomes critical, developing a head wave by S to P conversion is also indicative of depth. The detailed characteristic of this phase is controlled by the crustal waveguide. The key to calibrating regionalized crustal velocity structure is to determine depths for a set of master events by applying the above methods and then by modeling characteristic features that are recorded on the regional waveforms. The regionalization scheme can also incorporate mixed-path crustal waveguide models for cases in which seismic waves traverse two or more distinctly different crustal structures. We also demonstrate that once depths are established, we need only two-stations travel-time data to obtain reliable epicentral locations using a new adaptive grid-search technique which yields locations similar to those determined using travel-time data from local seismic networks with better azimuthal coverage.

  10. Crustal structure of the Kaapvaal craton and its significance for early crustal evolution

    NASA Astrophysics Data System (ADS)

    James, David E.; Niu, Fenglin; Rokosky, Juliana

    2003-12-01

    High-quality seismic data obtained from a dense broadband array near Kimberley, South Africa, exhibit crustal reverberations of remarkable clarity that provide well-resolved constraints on the structure of the lowermost crust and Moho. Receiver function analysis of Moho conversions and crustal multiples beneath the Kimberley array shows that the crust is 35 km thick with an average Poisson's ratio of 0.25. The density contrast across the Moho is ˜15%, indicating a crustal density about 2.86 gm/cc just above the Moho, appropriate for felsic to intermediate rock compositions. Analysis of waveform broadening of the crustal reverberation phases suggests that the Moho transition can be no more than 0.5 km thick and the total variation in crustal thickness over the 2400 km 2 footprint of the array no more than 1 km. Waveform and travel time analysis of a large earthquake triggered by deep gold mining operations (the Welkom mine event) some 200 km away from the array yield an average crustal thickness of 35 km along the propagation path between the Kimberley array and the event. P- and S-wave velocities for the lowermost crust are modeled to be 6.75 and 3.90 km/s, respectively, with uppermost mantle velocities of 8.2 and 4.79 km/s, respectively. Seismograms from the Welkom event exhibit theoretically predicted but rarely observed crustal reverberation phases that involve reflection or conversion at the Moho. Correlation between observed and synthetic waveforms and phase amplitudes of the Moho reverberations suggests that the crust along the propagation path between source and receiver is highly uniform in both thickness and average seismic velocity and that the Moho transition zone is everywhere less than about 2 km thick. While the extremely flat Moho, sharp transition zone and low crustal densities beneath the region of study may date from the time of crustal formation, a more geologically plausible interpretation involves extensive crustal melting and ductile flow during the major craton-wide Ventersdorp tectonomagmatic event near the end of Archean time.

  11. Black Swans and the Effectiveness of Remediating Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Siegel, D. I.; Otz, M. H.; Otz, I.

    2013-12-01

    Black swans, outliers, dominate science far more than do predictable outcomes. Predictable success constitutes the Black Swan in groundwater remediation. Even the National Research Council concluded that remediating groundwater to drinking water standards has failed in typically complex hydrogeologic settings where heterogeneities and preferential flow paths deflect flow paths obliquely to hydraulic gradients. Natural systems, be they biological or physical, build upon a combination of large-scale regularity coupled to chaos at smaller scales. We show through a review of over 25 case studies that groundwater remediation efforts are best served by coupling parsimonious site characterization to natural and induced geochemical tracer tests to at least know where contamination advects with groundwater in the subsurface. In the majority of our case studies, actual flow paths diverge tens of degrees from anticipated flow paths because of unrecognized heterogeneities in the horizontal direction of transport, let alone the vertical direction. Consequently, regulatory agencies would better serve both the public and the environment by recognizing that long-term groundwater cleanup probably is futile in most hydrogeologic settings except to relaxed standards similar to brownfielding. A Black Swan

  12. Earth-Space Link Attenuation Estimation via Ground Radar Kdp

    NASA Technical Reports Server (NTRS)

    Bolen, Steven M.; Benjamin, Andrew L.; Chandrasekar, V.

    2003-01-01

    A method of predicting attenuation on microwave Earth/spacecraft communication links, over wide areas and under various atmospheric conditions, has been developed. In the area around the ground station locations, a nearly horizontally aimed polarimetric S-band ground radar measures the specific differential phase (Kdp) along the Earth-space path. The specific attenuation along a path of interest is then computed by use of a theoretical model of the relationship between the measured S-band specific differential phase and the specific attenuation at the frequency to be used on the communication link. The model includes effects of rain, wet ice, and other forms of precipitation. The attenuation on the path of interest is then computed by integrating the specific attenuation over the length of the path. This method can be used to determine statistics of signal degradation on Earth/spacecraft communication links. It can also be used to obtain real-time estimates of attenuation along multiple Earth/spacecraft links that are parts of a communication network operating within the radar coverage area, thereby enabling better management of the network through appropriate dynamic routing along the best combination of links.

  13. Characteristics of Gyeongju earthquake, moment magnitude 5.5 and relative relocations of aftershocks

    NASA Astrophysics Data System (ADS)

    Cho, ChangSoo; Son, Minkyung

    2017-04-01

    There is low seismicity in the korea peninsula. According historical record in the historic book, There were several strong earthquake in the korea peninsula. Especially in Gyeongju of capital city of the Silla dynasty, few strong earthquakes caused the fatalities of several hundreds people 1,300 years ago and damaged the houses and make the wall of castles collapsed. Moderate strong earthquake of moment magnitude 5.5 hit the city in September 12, 2016. Over 1000 aftershocks were detected. The numbers of occurrences of aftershock over time follows omori's law well. The distribution of relative locations of 561 events using clustering aftershocks by cross-correlation between P and S waveform of the events showed the strike NNE 25 30 o and dip 68 74o of fault plane to cause the earthquake matched with the fault plane solution of moment tensor inversion well. The depth of range of the events is from 11km to 16km. The width of distribution of event locations is about 5km length. The direction of maximum horizontal stress by inversion of stress for the moment solutions of main event and large aftershocks is similar to the known maximum horizontal stress direction of the korea peninsula. The relation curves between moment magnitude and local magnitude of aftershocks shows that the moment magnitude increases slightly more for events of size less than 2.0

  14. Rotations and Abundances of Blue Horizontal-Branch Stars in Globular Cluster M15.

    PubMed

    Behr; Cohen; McCarthy

    2000-03-01

    High-resolution optical spectra of 18 blue horizontal-branch stars in the globular cluster M15 indicate that their stellar rotation rates and photospheric compositions vary strongly as a function of effective temperature. Among the cooler stars in the sample, at Teff approximately 8500 K, metal abundances are in rough agreement with the canonical cluster metallicity, and the vsini rotations appear to have a bimodal distribution, with eight stars at vsini<15 km s-1 and two stars at vsini approximately 35 km s-1. Most of the stars at Teff>/=10,000 K, however, are slowly rotating, vsini<7 km s-1, and their iron and titanium are enhanced by a factor of 300 to solar abundance levels. Magnesium maintains a nearly constant abundance over the entire range of Teff, and helium is depleted by factors of 10-30 in three of the hotter stars. Diffusion effects in the stellar atmospheres are the most likely explanation for these large differences in composition. Our results are qualitatively very similar to those previously reported for M13 and NGC 6752, but with even larger enhancement amplitudes, presumably due to the increased efficiency of radiative levitation at lower intrinsic [Fe/H]. We also see evidence for faster stellar rotation explicitly preventing the onset of the diffusion mechanisms among a subset of the hotter stars.

  15. Seismic anisotropy of the Slave craton, NW Canada, from joint interpretation of SKS and Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Snyder, David; Bruneton, Marianne

    2007-04-01

    Teleseismic events recorded at a 25-element array in NW Canada between 2001 and 2006 provided sufficient distribution in back azimuth to demonstrate birefringence in SKS and SKKS waves as well as directional dependence of Rayleigh-wave phase velocities. Typical delays between orthogonally polarized SKS waves are 0.8-1.2 s, and modelling of azimuthal dependence indicates two nearly horizontal layers of anisotropy within the mantle. Anisotropy of Rayleigh waves is generally consistent with models of layered Vs anisotropies that increase with depth from 1 per cent at the Moho to 9 per cent at 200 km but vary between subarrays. Consistency between the SKS and Rayleigh wave anisotropies in one subarray suggests that the assumption of symmetry about a horizontal axis is valid there but is not fully valid in other parts of the craton. The upper layer of anisotropy occupies approximately the uppermost 120 km in which the fast polarization direction strikes generally north-south, coinciding with regional-scale fold axes mapped at the surface. The fast polarization direction of the deeper layer aligns with current North America plate motion, but its correlation with trends of coeval kimberlite eruptions within the Lac de Gras field suggests it can be at least partly attributed to structural preferred orientation of vertical dykes inferred to exist to depths of 200 km.

  16. Effects of Grid Resolution on Modeled Air Pollutant Concentrations Due to Emissions from Large Point Sources: Case Study during KORUS-AQ 2016 Campaign

    NASA Astrophysics Data System (ADS)

    Ju, H.; Bae, C.; Kim, B. U.; Kim, H. C.; Kim, S.

    2017-12-01

    Large point sources in the Chungnam area received a nation-wide attention in South Korea because the area is located southwest of the Seoul Metropolitan Area whose population is over 22 million and the summertime prevalent winds in the area is northeastward. Therefore, emissions from the large point sources in the Chungnam area were one of the major observation targets during the KORUS-AQ 2016 including aircraft measurements. In general, horizontal grid resolutions of eulerian photochemical models have profound effects on estimated air pollutant concentrations. It is due to the formulation of grid models; that is, emissions in a grid cell will be assumed to be mixed well under planetary boundary layers regardless of grid cell sizes. In this study, we performed series of simulations with the Comprehensive Air Quality Model with eXetension (CAMx). For 9-km and 3-km simulations, we used meteorological fields obtained from the Weather Research and Forecast model while utilizing the "Flexi-nesting" option in the CAMx for the 1-km simulation. In "Flexi-nesting" mode, CAMx interpolates or assigns model inputs from the immediate parent grid. We compared modeled concentrations with ground observation data as well as aircraft measurements to quantify variations of model bias and error depending on horizontal grid resolutions.

  17. Flexural-gravity Wave Attenuation in a Thick Ice Shelf

    NASA Astrophysics Data System (ADS)

    Stephen, R. A.; Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    A thirty-four station broadband seismic array was deployed on the Ross Ice Shelf, Antarctica from November 2014 to November 2017. Analyses indicate that phase speeds of infra-gravity wave and tsunami excitation in the 0.003 to 0.02 Hz band are 70 m/s, corresponding to the low frequency limit of flexural-gravity waves. Median spectral amplitudes in this band decay exponentially with distance from the shelf edge in a manner consistent with intrinsic attenuation. Seismic Q is typically 7-9, with an RMS amplitude decay of 0.04-0.05dB/km and an e-folding distance of 175-220 km. Amplitudes do not appear to drop crossing crevasse fields. Vertical and horizontal acceleration levels at stations on the floating ice shelf are 50 dB higher than those on grounded ice. Horizontal accelerations are about 15 dB higher than vertical accelerations. Median spectral levels at 0.003 Hz are within 6 dB for stations from 2 to 430 km from the shelf edge. In contrast, the levels drop by 90 dB at 0.02 Hz. Ocean gravity wave excitation has been proposed as a mechanism that can weaken ice shelves and potentially trigger disintegration events. These measurements indicate that the propensity for shelf weakening and disintegration decays exponentially with distance from the ice front for gravity waves in the 0.003 to 0.02Hz band.

  18. "Churyumov Unified Network": new tasks for astronomical observatories to protect society

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.

    2016-10-01

    As a result of observations in nearly four years the authors have identified a class of twilight bolides. Traces of Twilight bolides are observed from a few minutes to two hours. The paper considers simultaneous observation of the evening twilight fireball in the sky over the Kiev region 08.07.2016. Base distance between the photographing points was 25.8 km. Thermal explosion, flashing and decay of the body invaded into the atmosphere over Kiev region began at altitude of 55-65 km. It flared up and slowly moving along the inclined path disappeared at the height of about 30-33 km.

  19. Retrieval of Boundary Layer 3D Cloud Properties Using Scanning Cloud Radar and 3D Radiative Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchand, Roger

    Retrievals of cloud optical and microphysical properties for boundary layer clouds, including those widely used by ASR investigators, frequently assume that clouds are sufficiently horizontally homogeneous that scattering and absorption (at all wavelengths) can be treated using one dimensional (1D) radiative transfer, and that differences in the field-of-view of different sensors are unimportant. Unfortunately, most boundary layer clouds are far from horizontally homogeneous, and numerous theoretical and observational studies show that the assumption of horizontal homogeneity leads to significant errors. The introduction of scanning cloud and precipitation radars at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) programmore » sites presents opportunities to move beyond the horizontally homogeneous assumption. The primary objective of this project was to develop a 3D retrieval for warm-phase (liquid only) boundary layer cloud microphysical properties, and to assess errors in current 1D (non-scanning) approaches. Specific research activities also involved examination of the diurnal cycle of hydrometeors as viewed by ARM cloud radar, and continued assessment of precipitation impacts on retrievals of cloud liquid water path using passive microwaves.« less

  20. A characterization of horizontal visibility graphs and combinatorics on words

    NASA Astrophysics Data System (ADS)

    Gutin, Gregory; Mansour, Toufik; Severini, Simone

    2011-06-01

    A Horizontal Visibility Graph (HVG) is defined in association with an ordered set of non-negative reals. HVGs realize a methodology in the analysis of time series, their degree distribution being a good discriminator between randomness and chaos Luque et al. [B. Luque, L. Lacasa, F. Ballesteros, J. Luque, Horizontal visibility graphs: exact results for random time series, Phys. Rev. E 80 (2009), 046103]. We prove that a graph is an HVG if and only if it is outerplanar and has a Hamilton path. Therefore, an HVG is a noncrossing graph, as defined in algebraic combinatorics Flajolet and Noy [P. Flajolet, M. Noy, Analytic combinatorics of noncrossing configurations, Discrete Math., 204 (1999) 203-229]. Our characterization of HVGs implies a linear time recognition algorithm. Treating ordered sets as words, we characterize subfamilies of HVGs highlighting various connections with combinatorial statistics and introducing the notion of a visible pair. With this technique, we determine asymptotically the average number of edges of HVGs.

  1. Accuracy Assessment of the Precise Point Positioning for Different Troposphere Models

    NASA Astrophysics Data System (ADS)

    Oguz Selbesoglu, Mahmut; Gurturk, Mert; Soycan, Metin

    2016-04-01

    This study investigates the accuracy and repeatability of PPP technique at different latitudes by using different troposphere delay models. Nine IGS stations were selected between 00-800 latitudes at northern hemisphere and southern hemisphere. Coordinates were obtained for 7 days at 1 hour intervals in summer and winter. At first, the coordinates were estimated by using Niell troposphere delay model with and without including north and east gradients in order to investigate the contribution of troposphere delay gradients to the positioning . Secondly, Saastamoinen model was used to eliminate troposphere path delays by using standart atmosphere parameters were extrapolated for all station levels. Finally, coordinates were estimated by using RTCA-MOPS empirical troposphere delay model. Results demonstrate that Niell troposphere delay model with horizontal gradients has better mean values of rms errors 0.09 % and 65 % than the Niell troposphere model without horizontal gradients and RTCA-MOPS model, respectively. Saastamoinen model mean values of rms errors were obtained approximately 4 times bigger than the Niell troposphere delay model with horizontal gradients.

  2. Space shuttle simulation model

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1980-01-01

    The effects of atmospheric turbulence in both horizontal and near horizontal flight, during the return of the space shuttle, are important for determining design, control, and 'pilot-in-the-loop' effects. A nonrecursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model, the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes which are entitled shuttle simulation turbulence tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 10,000 meters. The turbulence generation procedure is described as well as the results of validating the simulated turbulence. Conclusions and recommendations are presented and references cited. The tabulated one dimensional von Karman spectra and the results of spectral and statistical analyses of the SSTT are contained in the appendix.

  3. Volcanic eruption induced WWVB transmission path interruption

    NASA Astrophysics Data System (ADS)

    Buckmaster, H. A.; Hansen, C. H.

    1985-07-01

    It is reported that the 60 kHz transmission of WWVB from Fort Collins, Colorado, was not received in Calgary, Alberta, Canada, for about 11 h from 1109 UT to 2153 UT on July 23, 1980. It is suggested that this transmission path interruption is correlated with the 15 km height ash cloud due to the July 22, 1980 volcanic eruption of Mount St. Helens as it drifted eastward interrupting both the ground- and first hop sky-wave paths and that this ash cloud is the source of the conductivity and/or ionization necessary to produce this interruption. Small phase retardations are also reported which could be correlated with other Mount St. Helens volcanic events during May-July 1980.

  4. Seismic Structure of India from Regional Waveform Matching

    NASA Astrophysics Data System (ADS)

    Gaur, V.; Maggi, A.; Priestley, K.; Rai, S.

    2003-12-01

    We use a neighborhood adaptive grid search procedure and reflectivity synthetics to model regional distance range (500-2000~km) seismograms recorded in India and to determine the variation in the crust and uppermost mantle structure across the subcontinent. The portions of the regional waveform which are most influenced by the crust and uppermost mantle structure are the 10-100~s period Pnl and fundamental mode surface waves. We use the adaptive grid search algorithm to match both portions of the seismogram simultaneously. This procedure results in a family of 1-D path average crust and upper mantle velocity and attenuation models whose propagation characteristics closely match those of the real Earth. Our data set currently consist of ˜20 seismograms whose propagation paths are primarily confined to the Ganges Basin in north India and the East Dharwar Craton of south India. The East Dharwar Craton has a simple and uniform structure consisting of a 36+/-2 km thick two layer crust, and an uppermost mantle with a sub-Moho velocity of 4.5~km/s. The structure of northern India is more complicated, with pronounced low velocities in the upper crustal layer due to the large sediment thicknesses in the Ganges basin.

  5. Nighttime ionospheric D region parameters from VLF phase and amplitude

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; Clilverd, Mark A.; McRae, Wayne M.

    2007-07-01

    Nighttime ionospheric D region heights and electron densities are determined from an extensive set of VLF radio phase and amplitude observations. The D region parameters are characterized by the traditional H' (height in kilometers) and β (sharpness in km-1) as used by Wait and by the U. S. Navy in their Earth-ionosphere waveguide programs. The VLF measurements were made with several frequencies in the range 10 kHz to 41 kHz on long, mainly all-sea paths, including Omega La Reunion and Omega Argentina to Dunedin, New Zealand, NAU (Puerto Rico) and NAA (Maine, USA) to Cambridge, UK, and NPM (Hawaii) to San Francisco. Because daytime VLF propagation on such paths is readily measured and predicted, the differences between night and day amplitudes and phases were measured and compared with calculations for a range of nighttime ionospheric parameters. This avoided the problem of uncertainties in the transmitter powers. In this way the height, H', and the sharpness, β, when averaged over periods of several days, at least for the midlatitude D region near solar minimum, were found to be 85.1 ± 0.4 km and 0.63 ± 0.04 km-1, respectively.

  6. Ionospheric Bow Wave Induced by the Moon Shadow Ship Over the Continent of United States on 21 August 2017

    NASA Astrophysics Data System (ADS)

    Sun, Yang-Yi; Liu, Jann-Yenq; Lin, Charles Chien-Hung; Lin, Chi-Yen; Shen, Ming-Hsueh; Chen, Chieh-Hung; Chen, Chia-Hung; Chou, Min-Yang

    2018-01-01

    A moon shadow of the total solar eclipse swept through the continent of United States (CONUS) from west to east on 21 August 2017. Massive total electron content (integration of electron density from 0 km to 20,200 km altitude) observations from 2,255 ground-based Global Navigation Satellite System receivers show that the moon shadow ship generates a great ionospheric bow wave front which extends 1,500 km away from the totality path covering the entire CONUS. The bow wave front consists of the acoustic shock wave due to the supersonic/near-supersonic moon shadow ship and the significant plasma recombination due to the reduction in solar irradiation within the shadow area. The deep bow wave trough (-0.02 total electron content unit (1 TECU = 1016 el m-2) area) nearly coincides with the 100% obscuration moving along the totality path over the CONUS through the entire eclipse period. The supersonic moon shadow ship induces a bow wave crest in front of the ship ( 80% obscuration). It is the first time to find the acoustic shock wave-formed bow wave trough and crest near the totality.

  7. Modeling Stepped Leaders Using a Time Dependent Multi-dipole Model and High-speed Video Data

    NASA Astrophysics Data System (ADS)

    Karunarathne, S.; Marshall, T.; Stolzenburg, M.; Warner, T. A.; Orville, R. E.

    2012-12-01

    In summer of 2011, we collected lightning data with 10 stations of electric field change meters (bandwidth of 0.16 Hz - 2.6 MHz) on and around NASA/Kennedy Space Center (KSC) covering nearly 70 km × 100 km area. We also had a high-speed video (HSV) camera recording 50,000 images per second collocated with one of the electric field change meters. In this presentation we describe our use of these data to model the electric field change caused by stepped leaders. Stepped leaders of a cloud to ground lightning flash typically create the initial path for the first return stroke (RS). Most of the time, stepped leaders have multiple complex branches, and one of these branches will create the ground connection for the RS to start. HSV data acquired with a short focal length lens at ranges of 5-25 km from the flash are useful for obtaining the 2-D location of these multiple branches developing at the same time. Using HSV data along with data from the KSC Lightning Detection and Ranging (LDAR2) system and the Cloud to Ground Lightning Surveillance System (CGLSS), the 3D path of a leader may be estimated. Once the path of a stepped leader is obtained, the time dependent multi-dipole model [ Lu, Winn,and Sonnenfeld, JGR 2011] can be used to match the electric field change at various sensor locations. Based on this model, we will present the time-dependent charge distribution along a leader channel and the total charge transfer during the stepped leader phase.

  8. Large-scale phenomena, chapter 3, part D

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Oceanic phenomena with horizontal scales from approximately 100 km up to the widths of the oceans themselves are examined. Data include: shape of geoid, quasi-stationary anomalies due to spatial variations in sea density and steady current systems, and the time dependent variations due to tidal and meteorological forces and to varying currents.

  9. Cloud Inhomogeneity from MODIS

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cahalan, Robert F.

    2004-01-01

    Two full months (July 2003 and January 2004) of MODIS Atmosphere Level-3 data from the Terra and Aqua satellites are analyzed in order to characterize the horizontal variability of cloud optical thickness and water path at global scales. Various options to derive cloud variability parameters are discussed. The climatology of cloud inhomogeneity is built by first calculating daily parameter values at spatial scales of l degree x 1 degree, and then at zonal and global scales, followed by averaging over monthly time scales. Geographical, diurnal, and seasonal changes of inhomogeneity parameters are examined separately for the two cloud phases, and separately over land and ocean. We find that cloud inhomogeneity is weaker in summer than in winter, weaker over land than ocean for liquid clouds, weaker for local morning than local afternoon, about the same for liquid and ice clouds on a global scale, but with wider probability distribution functions (PDFs) and larger latitudinal variations for ice, and relatively insensitive to whether water path or optical thickness products are used. Typical mean values at hemispheric and global scales of the inhomogeneity parameter nu (roughly the mean over the standard deviation of water path or optical thickness), range from approximately 2.5 to 3, while for the inhomogeneity parameter chi (the ratio of the logarithmic to linear mean) from approximately 0.7 to 0.8. Values of chi for zonal averages can occasionally fall below 0.6 and for individual gridpoints below 0.5. Our results demonstrate that MODIS is capable of revealing significant fluctuations in cloud horizontal inhomogenity and stress the need to model their global radiative effect in future studies.

  10. Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir

    NASA Astrophysics Data System (ADS)

    Ma, Xinfang; Zou, Yushi; Li, Ning; Chen, Ming; Zhang, Yinuo; Liu, Zizhong

    2017-04-01

    Glutenite reservoirs are frequently significantly heterogeneous because of their unique depositional environment. The presence of gravel in this type of formation complicates the growth path of hydraulic fracture (HF). In this study, laboratory fracturing experiments were conducted on six large natural glutenite specimens (300 mm × 300 mm × 300 mm) using a true triaxial hydraulic fracturing system to investigate the growth law of HF in glutenite reservoirs. Before the experiments were performed, the rock properties of the gravel particles and matrix in the glutenite specimens were determined using various apparatuses. The effects of gravel size, horizontal differential stress, fracturing fluid type (or viscosity), and flow rate on the HF growth pattern, fracture width, and injection pressure were examined in detail. Similar to previous studies, four types of HF intersections with gravel particles, namely, termination, penetration, deflection, and attraction, were observed. The HF growth path in the glutenite specimens with large gravel (40 mm-100 mm) is likely branched and tortuous even under high horizontal differential stress. The HF growth path in the glutenite specimens with small gravel (less than 20 mm) is simple, but a process zone with multiple thin fractures may be created. Breakdown pressure may increase significantly when HF initiates from high-strength gravel particles, which are mainly composed of quartz. HF propagation is likely limited within high-strength gravel particles, thereby resulting in narrow fractures and even termination. The use of low-viscosity fluids, such as slickwater, and the low injection rate can further limit HF growth, particularly its width. As a response, high extension pressure builds up during fracturing.

  11. Observations on preferential flow and horizontal transport of nitrogen fertilizer in the unsaturated zone

    USGS Publications Warehouse

    Wilkison, D.H.; Blevins, D.W.

    1999-01-01

    A study site underlain by a claypan soil was instrumented to examine the transport of fertilizer nitrogen (N) under corn (Zea mays L.) cultivation. The study was designed to examine N transport within the unsaturated zone and in interflow (the saturated flow of water on top of the claypan). A 15N- labeled fertilizer (labeled N), bromide (Br), and chloride (Cl) were used as field tracers. Rapid or prolonged infiltration events allowed water and dissolved solutes to perch on the claypan for brief periods. However, a well- developed network of preferential flow paths quickly diverted water and solutes through the claypan and into the underlying glacial till aquifer. Excess fertilizer N in the unsaturated zone supplied a continuous, but declining input of N to ground water for a period of 15 mo after a single fertilizer application. Calculated solute velocities through the claypan matrix (6.4 x 10-6 cm s-1) were similar to horizontal transport rates along the claypan (3.5 to 7.3 x 10-6 cm s-1) but much slower than infiltration rates determined for preferential flow paths (1.67 x 10-3 cm s-1). These flow paths accounted for 35% of the transport. A seasonally variable, dual mode of transport (matrix and preferential flow) prevented the claypan from being an effective barrier to vertical transport. Simulations of selected field observations, conducted using the variably saturated two- dimensional flow and transport model, VS2DT, confirmed the presence of a dual flow regime in the claypan.

  12. Preliminary results of SAR soil moisture experiment, November 1975

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Chang, A. T. C.; Schmugge, T. J.; Salomonson, V. V.; Wang, J. R.

    1979-01-01

    The experiment was performed using the Environmental Research Institute of Michigan's (ERIM) dual-frequency and dual-polarization side-looking SAR system on board a C-46 aircraft. For each frequency, horizontally polarized pulses were transmitted and both horizontally and vertically polarized return signals were recorded on the signal film simultaneously. The test sites were located in St. Charles, Missouri; Centralia, Missouri; and Lafayette, Indiana. Each test site was a 4.83 km by 8.05 km (3 mile by 5 mile) rectangular strip of terrain. Concurrent with SAR overflight, ground soil samples of 0-to-2.5 cm and 0-to-15 cm layers were collected for soil moisture estimation. The surface features were also noted. Hard-copy image films and the digital data produced via optical processing of the signal films are analyzed in this report to study the relationship of radar backscatter to the moisture content and the surface roughness. Many difficulties associated with processing and analysis of the SAR imagery are noted. In particular, major uncertainty in the quantitative analysis appeared due to the difficulty of quality reproduction of digital data from the signal films.

  13. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations

    NASA Astrophysics Data System (ADS)

    Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S.

    2008-03-01

    A new type of ultra-high resolution atmospheric global circulation model is developed. The new model is designed to perform "cloud resolving simulations" by directly calculating deep convection and meso-scale circulations, which play key roles not only in the tropical circulations but in the global circulations of the atmosphere. Since cores of deep convection have a few km in horizontal size, they have not directly been resolved by existing atmospheric general circulation models (AGCMs). In order to drastically enhance horizontal resolution, a new framework of a global atmospheric model is required; we adopted nonhydrostatic governing equations and icosahedral grids to the new model, and call it Nonhydrostatic ICosahedral Atmospheric Model (NICAM). In this article, we review governing equations and numerical techniques employed, and present the results from the unique 3.5-km mesh global experiments—with O(10 9) computational nodes—using realistic topography and land/ocean surface thermal forcing. The results show realistic behaviors of multi-scale convective systems in the tropics, which have not been captured by AGCMs. We also argue future perspective of the roles of the new model in the next generation atmospheric sciences.

  14. Spatio-temporal modelling for assessing air pollution in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Nicolis, Orietta; Camaño, Christian; Mařın, Julio C.; Sahu, Sujit K.

    2017-01-01

    In this work, we propose a space-time approach for studying the PM2.5 concentration in the city of Santiago de Chile. In particular, we apply the autoregressive hierarchical model proposed by [1] using the PM2.5 observations collected by a monitoring network as a response variable and numerical weather forecasts from the Weather Research and Forecasting (WRF) model as covariate together with spatial and temporal (periodic) components. The approach is able to provide short-term spatio-temporal predictions of PM2.5 concentrations on a fine spatial grid (at 1km × 1km horizontal resolution.)

  15. Numerical simulation of the interaction of transport, diffusion and chemical reactions in an urban plume

    NASA Technical Reports Server (NTRS)

    Vogel, Bernhard; Vogel, Heike; Fiedler, Franz

    1994-01-01

    A model system is presented that takes into account the main physical and chemical processes on the regional scale here in an area of 100x100 sq km. The horizontal gridsize used is 2x2 sq km. For a case study, it is demonstrated how the model system can be used to separate the contributions of the processes advection, turbulent diffusion, and chemical reactions to the diurnal cycle of ozone. In this way, typical features which are visible in observations and are reproduced by the numerical simulations can be interpreted.

  16. Co- and postseismic deformations associated with large earthquakes in Sumatra detected by ALOS/PALSAR

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Fukushima, Y.

    2009-04-01

    Since the occurrence of the 2004 Sumatra-Andaman earthquake (Mw9.2), the Sumatra-Andaman Subduction zone has attracted geophysicists' attention. On March 6, 2007, a doublet of M6 events hit central Sumatra. On September 12, 2007, another Mw8.4 event occurred SW off Sumatra. We report deformations observed by ALOS/PALSAR including co- and postseismic deformation following these events. The March 6 doublet occurred in a pull-apart basin along the Sumatra fault north of Padang. We analyzed PALSAR images acquired on October 15, 2006 and June 6, 2007. Interferogram shows coseismic line-of-sight displacement up to 8cm and clear discontinuity of fringes along the surface rupture detected by field survey, although correlation is not good in the mountain region due to long perpendicular baseline. Observed LOS displacement suggests that the two events occurred on the same fault plane. Estimated fault plane is about 50km x 20km, but slip is estimated as large as 30cm. We analyzed ALOS/PALSAR images from two paths, 445 and 446, to detect coseismic displacement from the 2007 Sumatra event which occurred north of Benkgulu on the coast of southern Sumatra. The largest LOS displacement of about 35cm in the interferogram of path 445 is observed ~100km NW of Bengkulu. Coseismic westward displacements of 3.5cm from the 2007 Sumatra event are also observed at Singapore, whose epicentral distance is about 700km, with CGPS. The above observed LOS displacement can be simulated by a plane fault model gently dipping northeastward with a 10m slip. Interestingly, we found discontinuity between interferogram of 445 and 446. This discontinuity may be attributed to a postseismic transient, since slave images for 446 were acquired three weeks after the acquisition on path 445. CGPS observation at Singapore suggests that postseismic transient during this interval may be about one third of coseismic displacement.

  17. Design, Development, And Testing of Umbilical System Mechanisms for the X-33 Advanced Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Littlefield, Alan C.; Melton, Gregory S.

    2000-01-01

    The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-off" umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.

  18. Design, Development,and Testing of Umbillical System Mechanisms for the X-33 Advanced Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Littlefield, Alan C.; Melton, Gregory S.

    1999-01-01

    The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-ofF' umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.

  19. Simulation of advective flow under steady-state and transient recharge conditions, Camp Edwards, Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.

    2003-01-01

    The U.S. Geological Survey has developed several ground-water models in support of an investigation of ground-water contamination being conducted by the Army National Guard Bureau at Camp Edwards, Massachusetts Military Reservation on western Cape Cod, Massachusetts. Regional and subregional steady-state models and regional transient models were used to (1) improve understanding of the hydrologic system, (2) simulate advective transport of contaminants, (3) delineate recharge areas to municipal wells, and (4) evaluate how model discretization and time-varying recharge affect simulation results. A water-table mound dominates ground-water-flow patterns. Near the top of the mound, which is within Camp Edwards, hydraulic gradients are nearly vertically downward and horizontal gradients are small. In downgradient areas that are further from the top of the water-table mound, the ratio of horizontal to vertical gradients is larger and horizontal flow predominates. The steady-state regional model adequately simulates advective transport in some areas of the aquifer; however, simulation of ground-water flow in areas with local hydrologic boundaries, such as ponds, requires more finely discretized subregional models. Subregional models also are needed to delineate recharge areas to municipal wells that are inadequately represented in the regional model or are near other pumped wells. Long-term changes in recharge rates affect hydraulic heads in the aquifer and shift the position of the top of the water-table mound. Hydraulic-gradient directions do not change over time in downgradient areas, whereas they do change substantially with temporal changes in recharge near the top of the water-table mound. The assumption of steady-state hydraulic conditions is valid in downgradient area, where advective transport paths change little over time. In areas closer to the top of the water-table mound, advective transport paths change as a function of time, transient and steady-state paths do not coincide, and the assumption of steady-state conditions is not valid. The simulation results indicate that several modeling tools are needed to adequately simulate ground-water flow at the site and that the utility of a model varies according to hydrologic conditions in the specific areas of interest.

  20. High-resolution Teleseismic Tomography Reveals a Complex Lithospheric Structure Beneath the North Anatolian Fault

    NASA Astrophysics Data System (ADS)

    Papaleo, E.; Cornwell, D. G.; Rawlinson, N.

    2016-12-01

    We present high-resolution tomography images of a major active continental strike slip fault zone, the North Anatolian Fault (NAF) in northern Turkey. Historical seismic records show that the NAF, with a length of 1500 km and a current slip rate of 25 mm/yr, is capable of producing large magnitude earthquakes that have activated different segments of the fault in a westward progression towards the study region, where the devastating Izmit and Düzce events occurred in 1999. The NAF poses a major seismic hazard to the city of Istanbul, situated close to one of the two strands into which the fault splays east of the Sea of Marmara. In order to improve our understanding of the lower crust and upper mantle properties that influence fault dynamics throughout the seismic cycle, we constrain NAF structure across the Moho in unprecedented detail by applying teleseismic tomography to data recorded by an array of 70 temporary seismic stations deployed with 7 km spacing (Dense Array for North Anatolia, DANA). High quality recordings of teleseismic earthquakes combined with the dense nature of the array allow high-resolution (i.e. horizontal and vertical resolution of 8 and 15 km, respectively) 3D seismic imaging of the velocity structure beneath the NAF. The northern branch of the NAF coincides with an abrupt change between opposite polarity velocity anomalies and can be traced to at least Moho depths ( 36 km) with a width of ≤8 km. A similar pattern of antithetic anomalies occurs over a horizontal distance of 30-50 km below the Moho and may indicate a widening shear zone as it passes from the crust into the upper mantle. We find evidence for significant along-strike variation in NAF structure over distances of ≤20 km and interpret an east-to-west narrowing of upper mantle slow velocity anomalies (from 50 to 30 km) to represent laterally variable strain focussing within the lithosphere. Our observations are consistent with the notion that the NAF marks the boundary between compositionally distinct lithospheres with different tectonic histories and reactivates the pre-existing Intra-Pontide suture zone. We discuss our results in terms of the influence of lithosphere heterogeneity on the development and evolution of global continental strike-slip fault zones and assess the applicability of current shear zone deformation models.

  1. Feasibility of Sensing Tropospheric Ozone with MODIS 9.6 Micron Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Moon-Yoo, Jung

    2004-01-01

    With the infrared observations made by the Moderate Resolution Imaging Spectrometer (MODIS) on board the EOS-Aqua satellite, which include the 9.73 micron channel, a method is developed to deduce horizontal patterns of tropospheric ozone in cloud free conditions on a scale of about 100 km. It is assumed that on such small scale, at a given instant, horizontal changes in stratospheric ozone are small compared to that in the troposphere. From theoretical simulations it is found that uncertainties in the land surface emissivity and the vertical thermal stratification in the troposphere can lead to significant errors in the inferred tropospheric ozone. Because of this reason in order to derive horizontal patterns of tropospheric ozone in a given geographic area a tuning of this method is necessary with the help of a few dependent cases. After tuning, this method is applied to independent cases of MODIS data taken over Los Angeles basin in cloud free conditions to derive horizontal distribution of ozone in the troposphere. Preliminary results indicate that the derived patterns of ozone resemble crudely the patterns of surface ozone reported by EPA.

  2. Constraints on seismic anisotropy of the innermost inner core from observations of antipode PKIIKP phases

    NASA Astrophysics Data System (ADS)

    Niu, F.

    2006-12-01

    While the existence of seismic anisotropy in the inner core is well accepted, its magnitude and depth variations are still debated. Besides seismic anisotropy, there is growing evidence that suggests the top several hundred kilometers of the inner core exhibits a hemispherical variation in both velocity (the isotropic wave speed and the magnitude of anisotropy) and attenuation structure. When the PKIKP wave propagates through the uppermost ~400 km of the inner core and reaches a distance less than ~155°, there are two other phases, PKiKP and PKPbc, which have mantle ray paths very close to it. The former is a P wave that reflects off the inner-core boundary (ICB) and the latter is P wave that travels above the ICB. These two phases are usually used as reference phases to infer the uppermost structure of the inner core. As the result, the top ~400 km of the inner core is relatively well studied and its structure is well known. On the other hand to study the deeper ~800 km of the inner core, one must use PKIKP arrivals observed at greater distances where there is no regular phase can be used as a suitable reference phase to remove mantle anomalies. PKPab is sometime used as the reference, but it is generally considered to be a poor reference phase as it has a very different ray path from PKIPK in the mantle and it also travels along the core-mantle boundary (CMB) where very strong lateral heterogeneities are known to exist. Another approach is to use a 3D global mantle velocity model to correct the mantle anomalies in the PKIKP travel time residuals. Using this approach Ishii and Dziewonski (2002) found that the innermost ~300 km exhibits a distinct seismic anisotropy from the rest of body, which they used to argue that the Earth's center might have a unique early history in the core's formation and evolution. Here we report on an observation of the PKIIKP phase, an underside reflected P wave at the ICB, for both the major- and minor-arc ray paths. The major-arc PKIIKP phase can be seen in individual seismograms recorded by 11 broadband stations in a distance range of 176.5° 179.5° from a deep earthquake occurring in the Indonesia arc. The stations recording the phase were in northern Venezuela and the southern Caribbean and consisted of the Venezuelan national seismograph network, and the BB U.S. BOLIVAR project stations. Both the major-arc and minor-arc PKIIKP can be identified in the vespagram stacked from records in the distance range between 172.6° and 176.5°. To our knowledge observation of major-arc PKIIKP phase has never before been reported. Since PKIIKP has a very similar ray path to PKIKP in the mantle and has almost a normal incidence to the D" layer, it serves as a much better reference phase than the PKPab phase to remove mantle effects from the PKIKP residual times. In fact we observed a very consistent PKIIKP- PKIKP residual time across the entire array, indicating that mantle anomalies can indeed be removed efficiently using PKIIKP. After correcting very trivial anomalies due to the PKIIKP ray path in the uppermost ~100 km of the inner core, we obtained a ~1.5 s PKIKP-PKIIKP differential time residual with respect to PREM. As the paths have an almost 90° ray angle to the Earth's rotational axis, it is impossible to explain the early PKIKP arrival by a model of uniform anisotropy with fast direction parallel to the rotational axis The tilt anisotropy model for the innermost 300 km proposed by Ishii and Dziewonski can roughly explain the 1.5 s positive residual.

  3. Evaluation of predicted diurnal cycle of precipitation after tests with convection and microphysics schemes in the Eta Model

    NASA Astrophysics Data System (ADS)

    Gomes, J. L.; Chou, S. C.; Yaguchi, S. M.

    2012-04-01

    Physics parameterizations and the model vertical and horizontal resolutions, for example, can significantly contribute to the uncertainty in the numerical weather predictions, especially at regions with complex topography. The objective of this study is to assess the influences of model precipitation production schemes and horizontal resolution on the diurnal cycle of precipitation in the Eta Model . The model was run in hydrostatic mode at 3- and 5-km grid sizes, the vertical resolution was set to 50 layers, and the time steps to 6 and 10 s, respectively. The initial and boundary conditions were taken from ERA-Interim reanalysis. Over the sea the 0.25-deg sea surface temperature from NOAA was used. The model was setup to run for each resolution over Angra dos Reis, located in the Southeast region of Brazil, for the rainy period between 18 December 2009 and 01 de January 2010, the model simulation range was 48 hours. In one set of runs the cumulus parameterization was switched off, in this case the model precipitation was fully simulated by cloud microphysics scheme, and in the other set the model was run with weak cumulus convection. The results show that as the model horizontal resolution increases from 5 to 3 km, the spatial pattern of the precipitation hardly changed, although the maximum precipitation core increased in magnitude. Daily data from automatic station data was used to evaluate the runs and shows that the diurnal cycle of temperature and precipitation were better simulated for 3 km when compared against observations. The model configuration results without cumulus convection shows a small contraction in the precipitating area and an increase in the simulated maximum values. The diurnal cycle of precipitation was better simulated with some activity of the cumulus convection scheme. The skill scores for the period and for different forecast ranges are higher at weak and moderate precipitation rates.

  4. DYNAMICS OF VERTICAL THREADS AND DESCENDING KNOTS IN A HEDGEROW PROMINENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Jongchul

    The existence and behavior of vertical fine structures of plasma-threads and knots-are a significant observational clue to understanding the magnetic structure and dynamics of quiescent prominences on the quiet Sun. Based on the equation of motion in ideal MHD, we reason that the non-hydrostatic support of plasma against gravity in general requires either the motion of plasma with a high value of downward acceleration (dynamical support) or the role of horizontal magnetic fields (magnetic support). By carefully tracking the motion of several bright threads seen in a hedgerow prominence observed by the Solar Optical Telescope aboard Hinode, we confirm thatmore » these threads are essentially static and stable, which negates the dynamic support. The application of the Kippenhahn-Schlueter solution suggests that they may be supported by sagged magnetic field lines with a sag angle of about 43{sup 0}. We also track several bright descending knots and find that their descending speeds range from 10 to 30 km s{sup -1}, with a mean value of 16 km s{sup -1}, and their vertical accelerations from -0.10 to 0.10 km s{sup -2}, with a mean of practically zero. This finding suggests that these knots are basically supported by horizontal magnetic fields against gravity even when they descend, and the complex variations of their descending speeds should be attributed to small imbalances between gravity and the force of magnetic tension. Furthermore, some knots are observed to impulsively get accelerated downward from time to time. We conjecture that these impulsive accelerations are a result of magnetic reconnection and the subsequent interchange of magnetic configuration between a knot and its surrounding structure. It is proposed that this process of reconnection and interchange not only initiates the descending motion of the knots, but also allows knots to keep falling long distance through the medium permeated by horizontal magnetic fields.« less

  5. Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study

    NASA Astrophysics Data System (ADS)

    Preusse, Peter; Dörnbrack, Andreas; Eckermann, Stephen D.; Riese, Martin; Schaeler, Bernd; Bacmeister, Julio T.; Broutman, Dave; Grossmann, Klaus U.

    2002-09-01

    The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument measured stratospheric temperatures and trace species concentrations with high precision and spatial resolution during two missions. The measuring technique is infrared limb-sounding of optically thin emissions. In a general approach, we investigate the applicability of the technique to measure gravity waves (GWs) in the retrieved temperature data. It is shown that GWs with wavelengths of the order of 100-200 km horizontally can be detected. The results are applicable to any instrument using the same technique. We discuss additional constraints inherent to the CRISTA instrument. The vertical field of view and the influence of the sampling and retrieval imply that waves with vertical wavelengths ~3-5 km or larger can be retrieved. Global distributions of GW fluctuations were extracted from temperature data measured by CRISTA using Maximum Entropy Method (MEM) and Harmonic Analysis (HA), yielding height profiles of vertical wavelength and peak amplitude for fluctuations in each scanned profile. The method is discussed and compared to Fourier transform analyses and standard deviations. Analysis of data from the first mission reveals large GW amplitudes in the stratosphere over southernmost South America. These waves obey the dispersion relation for linear two-dimensional mountain waves (MWs). The horizontal structure on 6 November 1994 is compared to temperature fields calculated by the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) mesoscale model (MM5). It is demonstrated that precise knowledge of the instrument's sensitivity is essential. Particularly good agreement is found at the southern tip of South America where the MM5 accurately reproduces the amplitudes and phases of a large-scale wave with 400 km horizontal wavelength. Targeted ray-tracing simulations allow us to interpret some of the observed wave features. A companion paper will discuss MWs on a global scale and estimates the fraction that MWs contribute to the total GW energy (Preusse et al., in preparation, 2002).

  6. Bora-driven potential vorticity banners over the Adriatic

    NASA Astrophysics Data System (ADS)

    Grubii, Vanda

    2004-10-01

    A case study is presented of the secondary potential vorticity (PV) banners over the northern Adriatic that occurred in an early stage of a bora on 7 November 1999 during the Mesoscale Alpine Programme (MAP) Special Observation Period. The dynamics and structure of the lee-side and cross-mountain flow past the Dinaric Alps were investigated using data collected in a dual-aircraft (NCAR Electra and NOAA P-3) MAP Intensive Observing Period 15 mission over the Adriatic and high-resolution numerical simulations. The observational study employs flight-level, dropsonde, and Scanning Aerosol Backscatter Lidar data. The observed flow structure is compared with simulations results of the COAMPS model run at a horizontal resolution of 3 km. The Dinaric Alps, the north-west/south-east oriented coastal mountain range of Croatia, has an irregular ridge line with a number of peaks in the range of 1.5-2 km with several prominent mountain passes. The identified jet and wake structure within the east-north-easterly bora over the Adriatic was found to be well correlated with the upwind distribution of mountain passes and peaks. The wake flow structure was found also to be in excellent agreement with the climatological profile of the bora strength along the Croatian coast. The attendant secondary PV banners separating individual jets and wakes, diagnosed by computing PV from the flight-level data, were found to have a characteristic horizontal scale of 10-25 km, and a maximum amplitude of up to ~6 pvu within the boundary layer. Over the open sea, the thickness of the boundary layer, within which the east-north-easterly bora also achieved its maximum strength, was approximately 1 km. Detailed comparison with the numerical model results shows that, at the horizontal resolution of 3 km, the COAMPS model reproduces well the overall flow structure. The COAMPS-simulated PV field was found to be in good agreement with the PV derived from observations. The differences in substructure between simulated and experimentally derived PV profiles derive from minor differences between modelled and observed velocity and potential temperature profiles, which are subsequently accentuated by computing differentiated quantities such as vorticity and potential temperature gradients. The high predictability and steadiness of the PV banners, and a good correlation with the geometry of the upwind topography, support the orographic generation mechanism of PV with dissipation in hydraulic jumps and gravity-wave breaking regions as the likely main source of PV.

  7. Optical fibers for the distribution of frequency and timing references

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1981-01-01

    An optical fiber communications link was installed for the purpose of evaluating the applicability of optical fiber technology to the distribution of frequency and timing reference signals. It incorporated a 1.5km length of optical fiber cable containing two multimode optical fibers. The two fibers were welded together at one end of the cable to attain a path length of 3km. Preliminary measurements made on this link, including Allan variance and power spectral density of phase noise are reported.

  8. Frequency comb-based time transfer over a 159 km long installed fiber network

    NASA Astrophysics Data System (ADS)

    Lessing, M.; Margolis, H. S.; Brown, C. T. A.; Marra, G.

    2017-05-01

    We demonstrate a frequency comb-based time transfer technique on a 159 km long installed fiber link. Timing information is superimposed onto the optical pulse train of an ITU-channel-filtered mode-locked laser using an intensity modulation scheme. The environmentally induced optical path length fluctuations are compensated using a round-trip phase noise cancellation technique. When the fiber link is stabilized, a time deviation of 300 fs at 5 s and an accuracy at the 100 ps level are achieved.

  9. Viscoelasticity and pattern formations in stock market indices

    NASA Astrophysics Data System (ADS)

    Gündüz, Güngör; Gündüz, Aydın

    2017-06-01

    The viscoelastic and thermodynamic properties of four stock indices, namely, DJI, Nasdaq-100, Nasdaq-Composite, and S&P were analyzed for a period of 30 years from 1986 to 2015. The asset values (or index) can be placed into Aristotelian `potentiality-actuality' framework by using scattering diagram. Thus, the index values can be transformed into vectorial forms in a scattering diagram, and each vector can be split into its horizontal and vertical components. According to viscoelastic theory, the horizontal component represents the conservative, and the vertical component represents the dissipative behavior. The related storage and the loss modulus of these components are determined and then work-like and heat-like terms are calculated. It is found that the change of storage and loss modulus with Wiener noise (W) exhibit interesting patterns. The loss modulus shows a featherlike pattern, whereas the storage modulus shows figurative man-like pattern. These patterns are formed due to branchings in the system and imply that stock indices do have a kind of `fine-order' which can be detected when the change of modulus values are plotted with respect to Wiener noise. In theoretical calculations it is shown that the tips of the featherlike patterns stay at negative W values, but get closer to W = 0 as the drift in the system increases. The shift of the tip point from W = 0 indicates that the price change involves higher number of positive Wiener number corrections than the negative Wiener. The work-like and heat-like terms also exhibit patterns but with different appearance than modulus patterns. The decisional changes of people are reflected as the arrows in the scattering diagram and the propagation path of these vectors resemble the path of crack propagation. The distribution of the angle between two subsequent vectors shows a peak at 90°, indicating that the path mostly obeys the crack path occurring in hard objects. Entropy mimics the Wiener noise in the evolution of stock index value although they describe different properties. Entropy fluctuates at fast increase and fast fall of index value, and fluctuation becomes very high at minimum values of the index. The curvature of a circle passing from the two ends of the vector and the point of intersection of its horizontal and vertical components designates the reactivity involved in the market and the radius of circle behaves somehow similar to entropy and Wiener noise. The change of entropy and Wiener noise with radius exhibits patterns with four branches.

  10. Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, Philip M.; de Lépinay, Bernard Mercier

    1997-11-01

    Analysis of seismic reflection profiles, swath bathymetry, side-scan sonar imagery, and sediment samples reveal the three-dimensional structure, morphology, and stratigraphic evolution of the central to southern Hikurangi margin accretionary wedge, which is developing in response to thick trench fill sediment and oblique convergence between the Australian and Pacific plates. A seismic stratigraphy of the trench fill turbidites and frontal part of the wedge is constrained by seismic correlations to an already established stratigraphic succession nearby, by coccolith and foraminifera biostratigraphy of three core and dredge samples, and by estimates of stratigraphic thicknesses and rates of accumulation of compacted sediment. Structural and stratigraphic analyses of the frontal part of the wedge yield quantitative data on the timing of inception of thrust faults and folds, on the growth and mechanics of frontal accretion under variable convergence obliquity, and on the amounts and rates of horizontal shortening. The data place constraints on the partitioning of geological strain across the entire southern Hikurangi margin. The principal deformation front at the toe of the wedge is discontinuous and represented by right-stepping thrust faulted and folded ridges up to 1 km high, which develop initially from discontinuous protothrusts. In the central part of the margin near 41°S, where the convergence obliquity is 50°, orthogonal convergence rate is slow (27 mm/yr), and about 75% of the total 4 km of sediment on the Pacific Plate is accreted frontally, the seismically resolvable structures within 30 km of the deformation front accommodate about 6 km of horizontal shortening. At least 80% of this shortening has occurred within the last 0.4±0.1 m.y. at an average rate of 12±3 mm/yr. This rate indicates that the frontal 30 km of the wedge accounts for about 33-55% of the predicted orthogonal contraction across the entire plate boundary zone. Despite plate convergence obliquity of 50°, rapid frontal accretion has occurred during the late Quaternary with the principal deformation front migrating seaward up to 50 km within the last 0.5 m.y. (i.e., at a rate of 100 km/m.y.). The structural response to this accretion rate has been a reduction in wedge taper and, consequently, internal deformation behind the present deformation front. Near the southwestern termination of the wedge, where there is an along-the-margin transition to continental transpressional tectonics, the convergence obliquity increases to >56°, and the orthogonal convergence rate decreases to 22 mm/yr, the wedge narrows to 13 km and is characterized simply by two frontal backthrusts and landward-verging folds. These structures have accommodated not more than 0.5 km of horizontal shortening at a rate of < 1 mm/yr, which represents < 5% of the predicted orthogonal shortening across the entire plate boundary in southern North Island. The landward-vergent structural domain may represent a transition zone from rapid frontal accretion associated with low basal friction and high pore pressure ratio in the central part of the margin, to the northern South Island region where the upper and lower plates are locked or at least very strongly coupled.

  11. Seismicity in South Carolina

    USGS Publications Warehouse

    Shedlock, K.M.

    1988-01-01

    The largest historical earthquake in South Carolina, and in the southeastern US, occurred in the Coastal Plain province, probably northwest of Charleston, in 1886. Locations for aftershocks associated with this earthquake, estimated using intensities based on newspaper accounts, defined a northwest trending zone about 250 km long that was at least 100 km wide in the Coastal Plain but widened to a northeast trending zone in the Piedmont. The subsequent historical and instrumentally recorded seismicity in South Carolina images the 1886 aftershock zone. Instrumentally recorded seismicity in the Coastal Plain province occurs in 3 seismic zones or clusters: Middleton Place-Summervile (MPSSZ), Adams Run (ARC), and Bowman (BSZ). Approximately 68% of the Coastal Plain earthquakes occur in the MPSSZ, a north trending zone about 22 km long and 12 km wide, lying about 20 km northwest of Charleston. The hypocenters of MPSSZ earthquakes range in depth from near the surface to almost 12 km. Thrust, strike-slip, and some normal faulting are indicated by the fault plane solutions for Coastal Plain earthquakes. The maximum horizontal compressive stress, inferred from the P-axes of the fault plane solutions, is oriented NE-SW in the shallow crust (<9 km deep) but appears to be diffusely E-W between 9 to 12 km deep. -from Author

  12. Deformation, crystal preferred orientations, and seismic anisotropy in the Earth's D″ layer

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa; Goryaeva, Alexandra; Carrez, Philippe; Cordier, Patrick; Mainprice, David

    2018-06-01

    We use a forward multiscale model that couples atomistic modeling of intracrystalline plasticity mechanisms (dislocation glide ± twinning) in MgSiO3 post-perovskite (PPv) and periclase (MgO) at lower mantle pressures and temperatures to polycrystal plasticity simulations to predict crystal preferred orientations (CPO) development and seismic anisotropy in D″. We model the CPO evolution in aggregates of 70% PPv and 30% MgO submitted to simple shear, axial shortening, and along corner-flow streamlines, which simulate changes in flow orientation similar to those expected at the transition between a downwelling and flow parallel to the core-mantle boundary (CMB) within D″ or between CMB-parallel flow and upwelling at the borders of the large low shear wave velocity provinces (LLSVP) in the lowermost mantle. Axial shortening results in alignment of PPv [010] axes with the shortening direction. Simple shear produces PPv CPO with a monoclinic symmetry that rapidly rotates towards parallelism between the dominant [100](010) slip system and the macroscopic shear. These predictions differ from MgSiO3 post-perovskite textures formed in diamond-anvil cell experiments, but agree with those obtained in simple shear and compression experiments using CaIrO3 post-perovskite. Development of CPO in PPv and MgO results in seismic anisotropy in D″. For shear parallel to the CMB, at low strain, the inclination of ScS, Sdiff, and SKKS fast polarizations and delay times vary depending on the propagation direction. At moderate and high shear strains, all S-waves are polarized nearly horizontally. Downwelling flow produces Sdiff, ScS, and SKKS fast polarization directions and birefringence that vary gradually as a function of the back-azimuth from nearly parallel to inclined by up to 70° to CMB and from null to ∼5%. Change in the flow to shear parallel to the CMB results in dispersion of the CPO, weakening of the anisotropy, and strong azimuthal variation of the S-wave splitting up to 250 km from the corner. Transition from horizontal shear to upwelling also produces weakening of the CPO and complex seismic anisotropy patterns, with dominantly inclined fast ScS and SKKS polarizations, over most of the upwelling path. Models that take into account twinning in PPv explain most observations of seismic anisotropy in D″, but heterogeneity of the flow at scales <1000 km is needed to comply with the seismological evidence for low apparent birefringence in D″.

  13. A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity

    NASA Astrophysics Data System (ADS)

    Reckinger, Shanon M.; Petersen, Mark R.; Reckinger, Scott J.

    2015-12-01

    MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are carried out using three of the vertical coordinate types available in MPAS-Ocean, including z-star with partial bottom cells, z-star with full cells, and sigma coordinates. The results are first benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model, which are used to set the base case used for this work. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Lastly, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates.

  14. Visual, motor and attentional influences on proprioceptive contributions to perception of hand path rectilinearity during reaching

    PubMed Central

    Scheidt, Robert A.; Lillis, Kyle P.; Emerson, Scott J.

    2010-01-01

    We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject-driven) and passive (robot-driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target vs. when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed. PMID:20532489

  15. Does the Effect of Micro-Environmental Factors on a Street's Appeal for Adults' Bicycle Transport Vary across Different Macro-Environments? An Experimental Study.

    PubMed

    Mertens, Lieze; Van Cauwenberg, Jelle; Ghekiere, Ariane; Van Holle, Veerle; De Bourdeaudhuij, Ilse; Deforche, Benedicte; Nasar, Jack; Van de Weghe, Nico; Van Dyck, Delfien

    2015-01-01

    Characteristics of the physical environment can be classified into two broad categories: macro- ("raw" urban planning features influenced on a regional level) and micro- (features specifically within a streetscape influenced on a neighborhood level) environmental factors. In urban planning applications, it is more feasible to modify conditions at the neighborhood level than at the regional level. Yet for the promotion of bicycle transport we need to know whether relationships between micro-environmental factors and bicycle transport depend on different types of macro-environments. This study aimed to identify whether the effect of three micro-environmental factors (i.e., evenness of the cycle path surface, speed limits and type of separation between cycle path and motorized traffic) on the street's appeal for adults' bicycle transport varied across three different macro-environments (i.e., low, medium and high residential density street). In total, 389 middle-aged adults completed a web-based questionnaire consisting of socio-demographic characteristics and a series of choice tasks with manipulated photographs, depicting two possible routes to cycle along. Conjoint analysis was used to analyze the data. Although the magnitude of the overall effects differed, in each macro-environment (i.e., low, medium and high residential density), middle-aged adults preferred a speed limit of 30 km/h, an even cycle path surface and a hedge as separation between motorized traffic and the cycle path compared to a speed limit of 50 or 70 km/h, a slightly uneven or uneven cycle path surface and a curb as separation or no separation between motorized traffic and the cycle path. Our results suggest that irrespective of the macro-environment, the same micro-environmental factors are preferred in middle-aged adults concerning the street's appeal for bicycle transport. The controlled environment simulations in the experimental choice task have the potential to inform real life environmental interventions and suggest that micro-environmental changes can have similar results in different macro-environments.

  16. Improved hydrological-model design by integrating nutrient and water flow

    NASA Astrophysics Data System (ADS)

    Arheimer, B.; Lindstrom, G.

    2013-12-01

    The potential of integrating hydrologic and nutrient concentration data to better understand patterns of catchment response and to better design hydrological modeling was explored using a national multi-basin model system for Sweden, called ';S-HYPE'. The model system covers more than 450 000 km2 and produce daily values of nutrient concentration and water discharge in 37 000 catchments from 1961 and onwards. It is based on the processed-based and semi-distributed HYdrological Predictions for the Environment (HYPE) code. The model is used operationally for assessments of water status or climate change impacts and for forecasts by the national warning service of floods, droughts and fire. The first model was launched in 2008, but S-HYPE is continuously improved and released in new versions every second year. Observations are available in 400 sites for daily water discharge and some 900 sites for monthly grab samples of nutrient concentrations. The latest version (2012) has an average NSE for water discharge of 0.7 and an average relative error of 5%, including both regulated and unregulated rivers with catchments from ten to several thousands of km2 and various landuse. The daily relative errors of nutrient concentrations are on average 20% for total Nitrogen and 35% for total Phosphorus. This presentation will give practical examples of how the nutrient data has been used to trace errors or inadequate parameter values in the hydrological model. Since 2008 several parts of the model structure has been reconsidered both in the source code, parameter values and input data of catchment characteristics. In this process water quality has been guiding much of the overall model design of catchment hydrological functions and routing along the river network. The model structure has thus been developed iteratively when evaluating results and checking time-series. Examples of water quality driven improvements will be given for estimation of vertical flow paths, such as separation of the hydrograph in surface flow, snow melt and baseflow, as well as horizontal flow paths in the landscape, such as mixing from various land use, impact from lakes and river channel volume. Overall, the S-HYPE model performance of water discharge increased from NSE 0.55 to 0.69 as an average for 400 gauges between the version 2010 and 2012. Most of this improvement, however, can be referred to improved regulations routines, rating curves for major lakes and parameters correcting ET and precipitation. Nevertheless, integrated water and nutrient modeling put constraints on the hydrological parameter values, which reduce equifinality for the hydrological part without reducing the model performance. The examples illustrates that the credibility of the hydrological model structure is thus improved by integrating water and nutrient flow. This lead to improved understanding of flow paths and water-nutrient process interactions in Sweden, which in turn will be very useful in further model analysis on impact of climate change or measures to reduce nutrient load from rivers to the Baltic Sea.

  17. Oceanic Lithosphere/Asthenosphere Boundary from surface wave dispersion data

    NASA Astrophysics Data System (ADS)

    Burgos, G.; Montagner, J.; Beucler, E.; Capdeville, Y.; Mocquet, A.

    2013-12-01

    The nature of Lithosphere-Asthenosphere boundary (LAB) is controversial according to different types of observations. Using a massive dataset of surface wave dispersions in a broad frequency range (15-300s), we have developed a 3-D tomographic model (1st order perturbation theory) of the upper-mantle at the global scale. It is used to derive maps of LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distributions primarily below oceans according to three different proxies which corresponds to the base of the lithosphere from the vertically polarized shear velocity variation at depth, the top of the radial anisotropy positive anomaly and from the changes in orientation of the fast axis of azimuthal anisotropy. The LAB depth determinations of the different proxies are basically consistent for each oceanic region. The estimations of the LAB depth based on the shear velocity proxy increase from thin (20 km) lithosphere in the ridges to thick (120--130 km) old ocean lithosphere. The radial anisotropy proxy presents a very fast increase of the LAB depth from the ridges, from 50 km to older ocean where it reaches a remarkable monotonic sub-horizontal profile (70--80 km). LAB depths inferred from azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (130--135 km). The results present two types of pattern of the age of oceanic lithosphere evolution with the LAB depth. The shear velocity and azimuthal anisotropy proxies show age-dependent profiles in agreement with thermal plate models while the LAB based on radial anisotropy is characterized by a shallower depth, defining a sub-horizontal interface with a very small age dependence for all three main oceans (Pacific, Atlantic and Indian). These different patterns raise questions about the nature of the LAB in the oceanic regions, and of the formation of oceanic plates.

  18. Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees

    NASA Astrophysics Data System (ADS)

    Theunissen, T.; Chevrot, S.; Sylvander, M.; Monteiller, V.; Calvet, M.; Villaseñor, A.; Benahmed, S.; Pauchet, H.; Grimaud, F.

    2018-03-01

    Local seismic networks are usually designed so that earthquakes are located inside them (primary azimuthal gap <<180°) and close to the seismic stations (0-100 km). With these local or near-regional networks (0°-5°), many seismological observatories still routinely locate earthquakes using 1-D velocity models. Moving towards 3-D location algorithms requires robust 3-D velocity models. This work takes advantage of seismic monitoring spanning more than 30 yr in the Pyrenean region. We investigate the influence of a well-designed 3-D model with station corrections including basins structure and the geometry of the Mohorovicic discontinuity on earthquake locations. In the most favourable cases (GAP < 180° and distance to the first station lower than 15 km), results using 1-D velocity models are very similar to 3-D results. The horizontal accuracy in the 1-D case can be higher than in the 3-D case if lateral variations in the structure are not properly resolved. Depth is systematically better resolved in the 3-D model even on the boundaries of the seismic network (GAP > 180° and distance to the first station higher than 15 km). Errors on velocity models and accuracy of absolute earthquake locations are assessed based on a reference data set made of active seismic, quarry blasts and passive temporary experiments. Solutions and uncertainties are estimated using the probabilistic approach of the NonLinLoc (NLLoc) software based on Equal Differential Time. Some updates have been added to NLLoc to better focus on the final solution (outlier exclusion, multiscale grid search, S-phases weighting). Errors in the probabilistic approach are defined to take into account errors on velocity models and on arrival times. The seismicity in the final 3-D catalogue is located with a horizontal uncertainty of about 2.0 ± 1.9 km and a vertical uncertainty of about 3.0 ± 2.0 km.

  19. Strategy of thunderstorm measurement with super dense ground-based observation network

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Sato, M.

    2014-12-01

    It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a new super dense observation network with simple and low cost sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge. This sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure well smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.

  20. Inorganic and organic carbon spatial variability in the Congo River during high waters (December 2013)

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Bouillon, Steven; Teodoru, Cristian; Leporcq, Bruno; Descy, Jean-Pïerre; Darchambeau, François

    2014-05-01

    Rivers are important components of the global carbon cycle, as they transport terrestrial organic matter from the land to the sea, and emit CO2 to the atmosphere. In particular, tropical systems that account for 60% of global freshwater discharge to the oceans. In contrast with south American rivers, very little information is available for African rivers on their carbon flows and stocks, in particular the Congo river, the second largest river in the World in terms of freshwater discharge (1457 km3 yr-1) and in terms of drainage basin (3.75 106 km2) located the second largest tropical forest in the World. Here, we report a data-set of continuous (every minute) records of the partial pressure of CO2 (pCO2) (total of 10,000 records), and discrete samples of particulate (POC) and dissolved (DOC) organic carbon (total of 75 samples) in the mainstem and major tributaries of the Congo river, along the 1700 km stretch from Kisangani to Kinshasa (total river length = 4374 km), during the high water period (December 2013). The pCO2 dynamic range was high ranging from minimum values of 2000 ppm in white waters tributaries (higher turbidity, conductivity and O2, lower DOC), up to maximal values of 18,000 ppm in blackwaters tributaries (lower turbidity, conductivity and O2, higher DOC). In the mainstem, very strong horizontal (cross-section) gradients were imposed by the presence of blackwaters close to the riverbanks and the presence of whitewaters in the middle of the river. In the mainstem, a distinct horizontal (longitudinal) pattern was observed with pCO2 increasing, and conductivity and turbidity decreasing downstream.

  1. Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on 30 October 2007

    NASA Astrophysics Data System (ADS)

    Vadas, Sharon L.; Crowley, Geoff

    2010-07-01

    We model the gravity waves (GWs) excited by Tropical Storm (TS) Noel at 0432 UT on 30 October 2007. Using forward ray tracing, we calculate the body forces which result from the saturation and dissipation of these GWs. We then analyze the 59 traveling ionospheric disturbances (TIDs) observed by the TIDDBIT ionospheric sounder at 0400-1000 UT near Wallops Island. These TIDs were located at the bottomside of the F layer at z = 230-290 km, had periods of τr = 15 to 90 min, horizontal wavelengths of λH = 100 to 3000 km, and horizontal phase speeds of cH = 140 to 650 m/s. 33 (˜60%) of the TIDs were propagating northwest(NW) and north(N)ward, from the direction of TS Noel 1700-2000 km away. We show that these TIDs were likely GWs. 40% of these GWs had phase speeds larger than 280m/s. This precluded a tropospheric source and suggested mesospheric and thermospheric sources instead. Using reverse ray tracing, we compare the GW locations with the regions of convective overshoot, mesospheric body forces, and thermospheric body forces. We identify 27 of the northwest/northward propagating GWs as likely being secondary GWs excited by thermospheric body forces. Three may have originated from mesospheric body forces, although this is much less likely. None are identified as primary GWs excited directly by TS Noel. 11 of these GWs with cH < 205 m/s likely reflected near the tropopause prior to detection. This secondary GW spectrum peaks at λH ˜ 100-300 km and cH ˜ 100-300 m/s. To our knowledge, this is the first identification and quantification of secondary GWs from thermospheric body forces.

  2. The potential near-source ozone impacts of upstream oil and gas industry emissions.

    PubMed

    Olaguer, Eduardo P

    2012-08-01

    Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution.

  3. Observations and predictability of gap winds in a steep, narrow, fire-prone canyon in central Idaho, USA

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, N. S.; Forthofer, J.; Gibson, C.; Lamb, B. K.

    2017-12-01

    Frequent strong gap winds were measured in a deep, steep, wildfire-prone river canyon of central Idaho, USA during July-September 2013. Analysis of archived surface pressure data indicate that the gap wind events were driven by regional scale surface pressure gradients. The events always occurred between 0400 and 1200 LT and typically lasted 3-4 hours. The timing makes these events particularly hazardous for wildland firefighting applications since the morning is typically a period of reduced fire activity and unsuspecting firefighters could be easily endangered by the onset of strong downcanyon winds. The gap wind events were not explicitly forecast by operational numerical weather prediction (NWP) models due to the small spatial scale of the canyon ( 1-2 km wide) compared to the horizontal resolution of operational NWP models (3 km or greater). Custom WRF simulations initialized with NARR data were run at 1 km horizontal resolution to assess whether higher resolution NWP could accurately simulate the observed gap winds. Here, we show that the 1 km WRF simulations captured many of the observed gap wind events, although the strength of the events was underpredicted. We also present evidence from these WRF simulations which suggests that the Salmon River Canyon is near the threshold of WRF-resolvable terrain features when the standard WRF coordinate system and discretization schemes are used. Finally, we show that the strength of the gap wind events can be predicted reasonably well as a function of the surface pressure gradient across the gap, which could be useful in the absence of high-resolution NWP. These are important findings for wildland firefighting applications in narrow gaps where routine forecasts may not provide warning for wind effects induced by high-resolution terrain features.

  4. A horse’s locomotor signature: COP path determined by the individual limb

    PubMed Central

    Hobbs, Sarah Jane; Back, Willem

    2017-01-01

    Introduction Ground reaction forces in sound horses with asymmetric hooves show systematic differences in the horizontal braking force and relative timing of break-over. The Center Of Pressure (COP) path quantifies the dynamic load distribution under the hoof in a moving horse. The objective was to test whether anatomical asymmetry, quantified by the difference in dorsal wall angle between the left and right forelimbs, correlates with asymmetry in the COP path between these limbs. In addition, repeatability of the COP path was investigated. Methods A larger group (n = 31) visually sound horses with various degree of dorsal hoof wall asymmetry trotted three times over a pressure mat. COP path was determined in a hoof-bound coordinate system. A relationship between correlations between left and right COP paths and degree of asymmetry was investigated. Results Using a hoof-bound coordinate system made the COP path highly repeatable and unique for each limb. The craniocaudal patterns are usually highly correlated between left and right, but the mediolateral patterns are not. Some patterns were found between COP path and dorsal wall angle but asymmetry in dorsal wall angle did not necessarily result in asymmetry in COP path and the same could be stated for symmetry. Conclusion This method is a highly sensitive method to quantify the net result of the interaction between all of the forces and torques that occur in the limb and its inertial properties. We argue that changes in motor control, muscle force, inertial properties, kinematics and kinetics can potentially be picked up at an early stage using this method and could therefore be used as an early detection method for changes in the musculoskeletal apparatus. PMID:28196073

  5. Vertical and horizontal resolution dependency in the model representation of tracer dispersion along the continental slope in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Bracco, Annalisa; Choi, Jun; Kurian, Jaison; Chang, Ping

    2018-02-01

    A set of nine regional ocean model simulations at various horizontal (from 1 to 9 km) and vertical (from 25 to 150 layers) resolutions with different vertical mixing parameterizations is carried out to examine the transport and mixing of a passive tracer released near the ocean bottom over the continental slope in the northern Gulf of Mexico. The release location is in proximity to the Deepwater Horizon oil well that ruptured in April 2010. Horizontal and diapycnal diffusivities are calculated and their dependence on the model set-up and on the representation of mesoscale and submesoscale circulations is discussed. Horizontal and vertical resolutions play a comparable role in determining the modeled horizontal diffusivities. Vertical resolution is key to a proper representation of passive tracer propagation and - in the case of the Gulf of Mexico - contributes to both confining the tracer along the continental slope and limiting its vertical spreading. The choice of the tracer advection scheme is also important, with positive definiteness in the tracer concentration being achieved at the price of spurious mixing across density surfaces. In all cases, however, the diapycnal mixing coefficient derived from the model simulations overestimates the observed value, indicating an area where model improvement is needed.

  6. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Bender, Michael; Dick, Galina; Ge, Maorong; Deng, Zhiguo; Wickert, Jens; Kahle, Hans-Gert; Raabe, Armin; Tetzlaff, Gerd

    2011-05-01

    A GNSS water vapour tomography system developed to reconstruct spatially resolved humidity fields in the troposphere is described. The tomography system was designed to process the slant path delays of about 270 German GNSS stations in near real-time with a temporal resolution of 30 min, a horizontal resolution of 40 km and a vertical resolution of 500 m or better. After a short introduction to the GPS slant delay processing the framework of the GNSS tomography is described in detail. Different implementations of the iterative algebraic reconstruction techniques (ART) used to invert the linear inverse problem are discussed. It was found that the multiplicative techniques (MART) provide the best results with least processing time, i.e., a tomographic reconstruction of about 26,000 slant delays on a 8280 cell grid can be obtained in less than 10 min. Different iterative reconstruction techniques are compared with respect to their convergence behaviour and some numerical parameters. The inversion can be considerably stabilized by using additional non-GNSS observations and implementing various constraints. Different strategies for initialising the tomography and utilizing extra information are discussed. At last an example of a reconstructed field of the wet refractivity is presented and compared to the corresponding distribution of the integrated water vapour, an analysis of a numerical weather model (COSMO-DE) and some radiosonde profiles.

  7. Successive Two-sided Loop Jets Caused by Magnetic Reconnection between Two Adjacent Filamentary Threads

    NASA Astrophysics Data System (ADS)

    Tian, Zhanjun; Liu, Yu; Shen, Yuandeng; Elmhamdi, Abouazza; Su, Jiangtao; Liu, Ying D.; Kordi, Ayman. S.

    2017-08-01

    We present observational analysis of two successive two-sided loop jets observed by the ground-based New Vacuum Solar Telescope and the space-borne Solar Dynamics Observatory. The two successive two-sided loop jets manifested similar evolution processes and both were associated with the interaction of two small-scale adjacent filamentary threads, magnetic emerging, and cancellation processes at the jet’s source region. High temporal and high spatial resolution observations reveal that the two adjacent ends of the two filamentary threads are rooted in opposite magnetic polarities within the source region. The two threads approached each other, and then an obvious brightening patch is observed at the interaction position. Subsequently, a pair of hot plasma ejections are observed heading in opposite directions along the paths of the two filamentary threads at a typical speed for two-sided loop jets of the order 150 km s-1. Close to the end of the second jet, we report the formation of a bright hot loop structure at the source region, which suggests the formation of new loops during the interaction. Based on the observational results, we propose that the observed two-sided loop jets are caused by magnetic reconnection between the two adjacent filamentary threads, largely different from the previous scenario that a two-sided loop jet is generated by magnetic reconnection between an emerging bipole and the overlying horizontal magnetic fields.

  8. Functional Itô versus Banach space stochastic calculus and strict solutions of semilinear path-dependent equations

    NASA Astrophysics Data System (ADS)

    Cosso, Andrea; Russo, Francesco

    2016-11-01

    Functional Itô calculus was introduced in order to expand a functional F(t,Xṡ+t,Xt) depending on time t, past and present values of the process X. Another possibility to expand F(t,Xṡ+t,Xt) consists in considering the path Xṡ+t = {Xx+t,x ∈ [-T, 0]} as an element of the Banach space of continuous functions on C([-T, 0]) and to use Banach space stochastic calculus. The aim of this paper is threefold. (1) To reformulate functional Itô calculus, separating time and past, making use of the regularization procedures which match more naturally the notion of horizontal derivative which is one of the tools of that calculus. (2) To exploit this reformulation in order to discuss the (not obvious) relation between the functional and the Banach space approaches. (3) To study existence and uniqueness of smooth solutions to path-dependent partial differential equations which naturally arise in the study of functional Itô calculus. More precisely, we study a path-dependent equation of Kolmogorov type which is related to the window process of the solution to an Itô stochastic differential equation with path-dependent coefficients. We also study a semilinear version of that equation.

  9. Multi-hop path tracing of mobile robot with multi-range image

    NASA Astrophysics Data System (ADS)

    Choudhury, Ramakanta; Samal, Chandrakanta; Choudhury, Umakanta

    2010-02-01

    It is well known that image processing depends heavily upon image representation technique . This paper intends to find out the optimal path of mobile robots for a specified area where obstacles are predefined as well as modified. Here the optimal path is represented by using the Quad tree method. Since there has been rising interest in the use of quad tree, we have tried to use the successive subdivision of images into quadrants from which the quad tree is developed. In the quad tree, obstacles-free area and the partial filled area are represented with different notations. After development of quad tree the algorithm is used to find the optimal path by employing neighbor finding technique, with a view to move the robot from the source to destination. The algorithm, here , permeates through the entire tree, and tries to locate the common ancestor for computation. The computation and the algorithm, aim at easing the ability of the robot to trace the optimal path with the help of adjacencies between the neighboring nodes as well as determining such adjacencies in the horizontal, vertical and diagonal directions. In this paper efforts have been made to determine the movement of the adjacent block in the quad tree and to detect the transition between the blocks equal size and finally generate the result.

  10. Master dye laser oscillator including a specific grating assembly for use therein

    DOEpatents

    Davin, James M.

    1992-01-01

    A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam.

  11. Master dye laser oscillator including a specific grating assembly for use therein

    DOEpatents

    Davin, J.M.

    1992-09-01

    A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam. 5 figs.

  12. Using the USU ionospheric model to predict radio propagation through a simulated ionosphere

    NASA Astrophysics Data System (ADS)

    Huffines, Gary R.

    1990-12-01

    To evaluate the capabilities of communication, navigation, and defense systems utilizing electromagnetic waves which interact with the ionosphere, a three-dimensional ray tracing program was used. A simple empirical model (Chapman function) and a complex physical model (Schunk and Sojka model) were used to compare the representation of ionospheric conditions. Four positions were chosen to test four different features of the Northern Hemispheric ionosphere. It seems that decreasing electron density has little or no effect on the horizontal components of the ray path while increasing electron density causes deviations in the ray path. It was also noted that rays in the physical model's mid-latitude trough region escaped the ionosphere for all frequencies used in this study.

  13. Radial viscous fingering of hot asthenosphere within the Icelandic plume beneath the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Schoonman, C. M.; White, N. J.; Pritchard, D.

    2017-06-01

    The Icelandic mantle plume has had a significant influence on the geologic and oceanographic evolution of the North Atlantic Ocean during Cenozoic times. Full-waveform tomographic imaging of this region shows that the planform of this plume has a complex irregular shape with significant shear wave velocity anomalies lying beneath the lithospheric plates at a depth of 100-200 km. The distribution of these anomalies suggests that about five horizontal fingers extend radially beneath the fringing continental margins. The best-imaged fingers lie beneath the British Isles and beneath western Norway where significant departures from crustal isostatic equilibrium have been measured. Here, we propose that these radial fingers are generated by a phenomenon known as the Saffman-Taylor instability. Experimental and theoretical analyses show that fingering occurs when a less viscous fluid is injected into a more viscous fluid. In radial, miscible fingering, the wavelength and number of fingers are controlled by the mobility ratio (i.e. the ratio of viscosities), by the Péclet number (i.e. the ratio of advective and diffusive transport rates), and by the thickness of the horizontal layer into which fluid is injected. We combine shear wave velocity estimates with residual depth measurements around the Atlantic margins to estimate the planform distribution of temperature and viscosity within a horizontal asthenospheric layer beneath the lithospheric plate. Our estimates suggest that the mobility ratio is at least 20-50, that the Péclet number is O (104), and that the asthenospheric channel is 100 ± 20 km thick. The existence and planform of fingering is consistent with experimental observations and with theoretical arguments. A useful rule of thumb is that the wavelength of fingering is 5 ± 1 times the thickness of the horizontal layer. Our proposal has been further tested by examining plumes of different vigor and planform (e.g. Hawaii, Cape Verde, Yellowstone). Our results support the notion that dynamic topography of the Earth's surface can be influenced by fast, irregular horizontal flow within thin, but rapidly evolving, asthenospheric fingers.

  14. Temperature anomalies in the plumes of the August, 18 and August, 29, 2000 eruptions of Miyake Jima volcano (Japan) inferred from delays of GPS waves crossing them.

    NASA Astrophysics Data System (ADS)

    Houlié, N.; Nercessian, A.; Briole, P.; Murakami, M.

    2003-12-01

    Using the GAMIT software we processed seventy days of GPS data (30s sampling rate) collected by the GSI at four sites on Miyake Jima volcanic island (Japan) between June 27, 2000 and September 5, 2000. This period includes a large seismic swarm (June 27, 2000 - July 8, 2000) followed by several major paroxysms at the volcano crater (July 9, 10, 14, 15, August 29) producing a 1 km wide caldera. The medium term velocity of the stations coordinates, already published elsewhere, is maximum during the seismic swarm and corresponds to a large dyke intrusion mostly offshore west of the volcano. No anomalies are observed in the time series of the daily GPS coordinates for the days of the paroxysms. An epoch by epoch processing of those days, using a kinematic software shows that there is no deformation during the paroxysms themselves. We then examined epoch by epoch the path delay residuals of the GPS phases at each GPS station during the events. Those delays exceed 200 mm in some cases. As they cannot be explained by a temporal change of the stations coordinates, we conclude that the cause of these delays is the presence of the hot volcanic plume not modeled by the GPS data processing which assumes a homogenous troposphere. We used a classical seismic tomography algorithm (modified to handle 3D + time) to map the path delay anomaly in the plume as a function of time. We interpret the anomalous delays as temperature anomalies in the plume, assuming a normal pressure and a plume saturated in humidity. The maximum average temperature anomaly is 20° , a low value compared to what is currently proposed in the literature. Higher temperature should exist in the inner part of the plume, but the horizontal extension of this hot zone cannot be more than 50-100 m, otherwise the GPS data would detect it.

  15. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)

    Treesearch

    Glen E. Liston; Kelly Elder

    2006-01-01

    An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...

  16. International Data | Geospatial Data Science | NREL

    Science.gov Websites

    International Data International Data These datasets detail solar and wind resources for select Annual.xml India 10-km Monthly Direct Normal and Global Horizontal Zip 4.68 MB 04/25/2013 Monthly.xml Wind Data 50-m Wind Data These 50-m hub-height datasets have been validated by NREL and wind energy

  17. NASA Cold Land Processes Experiment (CLPX 2002/03): Atmospheric analyses datasets

    Treesearch

    Glen E. Liston; Daniel L. Birkenheuer; Christopher A. Hiemstra; Donald W. Cline; Kelly Elder

    2008-01-01

    This paper describes the Local Analysis and Prediction System (LAPS) and the 20-km horizontal grid version of the Rapid Update Cycle (RUC20) atmospheric analyses datasets, which are available as part of the Cold Land Processes Field Experiment (CLPX) data archive. The LAPS dataset contains spatially and temporally continuous atmospheric and surface variables over...

  18. Evaluation of regional climate simulations over the Great Lakes region driven by three global data sets

    Treesearch

    Shiyuan Zhong; Xiuping Li; Xindi Bian; Warren E. Heilman; L. Ruby Leung; William I. Jr. Gustafson

    2012-01-01

    The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990-1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-...

  19. USING MM5V3 WITH ETA ANALYSES FOR AIR-QUALITY MODELING AT THE EPA

    EPA Science Inventory

    Efforts have been underway since MM5v3 was released in July 1999 to set up air-quality simulations using Eta analyses as background fields. Our previous simulations used a one-way quadruple-nested set of domains with horizontal grid spacing of 108, 36, 12 and 4 km. With Eta a...

  20. Multiscale GPS tomography during COPS: validation and applications

    NASA Astrophysics Data System (ADS)

    Champollion, Cédric; Flamant, Cyrille; Masson, Frédéric; Gégout, Pascal; Boniface, Karen; Richard, Evelyne

    2010-05-01

    Accurate 3D description of the water vapour field is of interest for process studies such as convection initiation. None of the current techniques (LIDAR, satellite, radio soundings, GPS) can provide an all weather continuous 3D field of moisture. The combination of GPS tomography with radio-soundings (and/or LIDAR) has been used for such process studies using both advantages of vertically resolved soundings and high temporal density of GPS measurements. GPS tomography has been used at short scale (10 km horizontal resolution but in a 50 km² area) for process studies such as the ESCOMPTE experiment (Bastin et al., 2005) and at larger scale (50 km horizontal resolution) during IHOP_2002. But no extensive statistical validation has been done so far. The overarching goal of the COPS field experiment is to advance the quality of forecasts of orographically induced convective precipitation by four-dimensional observations and modeling of its life cycle for identifying the physical and chemical processes responsible for deficiencies in QPF over low-mountain regions. During the COPS field experiment, a GPS network of about 100 GPS stations has been continuously operating during three months in an area of 500 km² in the East of France (Vosges Mountains) and West of Germany (Black Forest). If the mean spacing between the GPS is about 50 km, an East-West GPS profile with a density of about 10 km is dedicated to high resolution tomography. One major goal of the GPS COPS experiment is to validate the GPS tomography with different spatial resolutions. Validation is based on additional radio-soundings and airborne / ground-based LIDAR measurement. The number and the high quality of vertically resolved water vapor observations give an unique data set for GPS tomography validation. Numerous tests have been done on real data to show the type water vapor structures that can be imaging by GPS tomography depending of the assimilation of additional data (radio soundings), the resolution of the tomography grid and the density of GPS network. Finally some applications to different cases studies will be shortly presented.

Top