SAR (Synthetic Aperture Radar). Earth observing system. Volume 2F: Instrument panel report
NASA Technical Reports Server (NTRS)
1987-01-01
The scientific and engineering requirements for the Earth Observing System (EOS) imaging radar are provided. The radar is based on Shuttle Imaging Radar-C (SIR-C), and would include three frequencies: 1.25 GHz, 5.3 GHz, and 9.6 GHz; selectable polarizations for both transmit and receive channels; and selectable incidence angles from 15 to 55 deg. There would be three main viewing modes: a local high-resolution mode with typically 25 m resolution and 50 km swath width; a regional mapping mode with 100 m resolution and up to 200 km swath width; and a global mapping mode with typically 500 m resolution and up to 700 km swath width. The last mode allows global coverage in three days. The EOS SAR will be the first orbital imaging radar to provide multifrequency, multipolarization, multiple incidence angle observations of the entire Earth. Combined with Canadian and Japanese satellites, continuous radar observation capability will be possible. Major applications in the areas of glaciology, hydrology, vegetation science, oceanography, geology, and data and information systems are described.
NASA Astrophysics Data System (ADS)
Das, N. N.; Entekhabi, D.; Dunbar, R. S.; Colliander, A.; Kim, S.; Yueh, S. H.
2017-12-01
NASA's Soil Moisture Active Passive (SMAP) mission was launched on January 31st, 2015. SMAP utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. However, on July 7th, 2015, the SMAP radar encountered an anomaly and is currently inoperable. During the SMAP post-radar phase, many ways are explored to recover the high-resolution soil moisture capability of the SMAP mission. One of the feasible approaches is to substitute the SMAP radar with other available SAR data. Sentinel 1A/1B SAR data is found more suitable for combining with the SMAP radiometer data because of almost similar orbit configuration that allow overlapping of their swaths with minimal time difference that is key to the SMAP active-passive algorithm. The Sentinel SDV mode acquisition also provide the co-pol and x-pol observations required for the SMAP active-passive algorithm. Some differences do exist between the SMAP SAR data and Sentinel SAR data, they are mainly: 1) Sentinel has C-band SAR and SMAP is L-band; 2) Sentinel has multi incidence angle within its swath, where as SMAP has single incidence angle; and 3) Sentinel swath width is 300 km as compare to SMAP 1000 km swath width. On any given day, the narrow swath width of the Sentinel observations will significantly reduce the spatial coverage of SMAP active-passive approach as compared to the SMAP swath coverage. The temporal resolution (revisit interval) is also degraded from 3-days to 12-days when Sentinel 1A/1B data is used. One bright side of using Sentinel 1A/1B data in the SMAP active-passive algorithm is the potential of obtaining the disaggregated brightness temperature and soil moisture at much finer spatial resolutions of 3 km and 9 km with optimal accuracy. The Beta version of SMAP-Sentinel Active-Passive high-resolution product will be made available to public in September 2017.
NASA Technical Reports Server (NTRS)
Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.
2014-01-01
We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.
Processing of SeaMARC swath sonar imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratson, L.; Malinverno, A.; Edwards, M.
1990-05-01
Side-scan swath sonar systems have become an increasingly important means of mapping the sea floor. Two such systems are the deep-towed, high-resolution SeaMARC I sonar, which has a variable swath width of up to 5 km, and the shallow-towed, lower-resolution SeaMARC II sonar, which has a swath width of 10 km. The sea-floor imagery of acoustic backscatter output by the SeaMARC sonars is analogous to aerial photographs and airborne side-looking radar images of continental topography. Geologic interpretation of the sea-floor imagery is greatly facilitated by image processing. Image processing of the digital backscatter data involves removal of noise by medianmore » filtering, spatial filtering to remove sonar scans of anomalous intensity, across-track corrections to remove beam patterns caused by nonuniform response of the sonar transducers to changes in incident angle, and contrast enhancement by histogram equalization to maximize the available dynamic range. Correct geologic interpretation requires submarine structural fabrics to be displayed in their proper locations and orientations. Geographic projection of sea-floor imagery is achieved by merging the enhanced imagery with the sonar vehicle navigation and correcting for vehicle attitude. Co-registration of bathymetry with sonar imagery introduces sea-floor relief and permits the imagery to be displayed in three-dimensional perspectives, furthering the ability of the marine geologist to infer the processes shaping formerly hidden subsea terrains.« less
Integration of AIRSAR and AVIRIS data for Trail Canyon alluvial fan, Death Valley, California
NASA Technical Reports Server (NTRS)
Kierein-Young, Kathryn S.
1995-01-01
Combining quantitative geophysical information extracted from the optical and microwave wavelengths provides complementary information about both the surface mineralogy and morphology. This study combines inversion results from two remote sensing instruments, a polarimetric synthetic aperture radar, AIRSAR, and an imaging spectrometer, AVIRIS, for Trail Canyon alluvial fan in Death Valley, California. The NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) is a quad-polarization, three frequency instrument. AIRSAR collects data at C-band = 5.66 cm, L-band = 23.98 cm, and P-band = 68.13 cm. The data are processed to four-looks and have a spatial resolution of 10 m and a swath width of 12 km. The AIRSAR data used in this study were collected as part of the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley on 9/14/89. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is a NASA/JPL instrument that flies in an ER-2 aircraft at an altitude of 20 km. AVIRIS uses four spectrometers to collect data in 224 spectral channels from 0.4 micrometer to 2.45 micrometer. The width of each spectral band is approximately 10 nm. AVIRIS collects data with a swath width of 11 km and a pixel size of 20 m. The AVIRIS data used in this study were collected over Death Valley on 5/31/92.
NASA Technical Reports Server (NTRS)
1979-01-01
Satellites provide an excellent platform from which to observe crops on the scale and frequency required to provide accurate crop production estimates on a worldwide basis. Multispectral imaging sensors aboard these platforms are capable of providing data from which to derive acreage and production estimates. The issue of sensor swath width was examined. The quantitative trade trade necessary to resolve the combined issue of sensor swath width, number of platforms, and their orbits was generated and are included. Problems with different swath width sensors were analyzed and an assessment of system trade-offs of swath width versus number of satellites was made for achieving Global Crop Production Forecasting.
Implications of Satellite Swath Width on Global Aerosol Optical Thickness Statistics
NASA Technical Reports Server (NTRS)
Colarco, Peter; Kahn, Ralph; Remer, Lorraine; Levy, Robert; Welton, Ellsworth
2012-01-01
We assess the impact of swath width on the statistics of aerosol optical thickness (AOT) retrieved by satellite as inferred from observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS). We sub-sample the year 2009 MODIS data from both the Terra and Aqua spacecraft along several candidate swaths of various widths. We find that due to spatial sampling there is an uncertainty of approximately 0.01 in the global, annual mean AOT. The sub-sampled monthly mean gridded AOT are within +/- 0.01 of the full swath AOT about 20% of the time for the narrow swath sub-samples, about 30% of the time for the moderate width sub-samples, and about 45% of the time for the widest swath considered. These results suggest that future aerosol satellite missions with only a narrow swath view may not sample the true AOT distribution sufficiently to reduce significantly the uncertainty in aerosol direct forcing of climate.
Calibration and Image Reconstruction for the Hurricane Imaging Radiometer (HIRAD)
NASA Technical Reports Server (NTRS)
Ruf, Christopher; Roberts, J. Brent; Biswas, Sayak; James, Mark W.; Miller, Timothy
2012-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne passive microwave synthetic aperture radiometer designed to provide wide swath images of ocean surface wind speed under heavy precipitation and, in particular, in tropical cyclones. It operates at 4, 5, 6 and 6.6 GHz and uses interferometric signal processing to synthesize a pushbroom imager in software from a low profile planar antenna with no mechanical scanning. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during Fall 2010 as its first science field campaign. HIRAD produced images of upwelling brightness temperature over a aprox 70 km swath width with approx 3 km spatial resolution. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The calibration and image reconstruction algorithms that were used to verify HIRAD functional performance during and immediately after GRIP were only preliminary and used a number of simplifying assumptions and approximations about the instrument design and performance. The development and performance of a more detailed and complete set of algorithms are reported here.
NASA Technical Reports Server (NTRS)
Biswas, Sayak K.; Jones, Linwood; Roberts, Jason; Ruf, Christopher; Ulhorn, Eric; Miller, Timothy
2012-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne synthetic aperture passive microwave radiometer capable of wide swath imaging of the ocean surface wind speed under heavy precipitation e.g. in tropical cyclones. It uses interferometric signal processing to produce upwelling brightness temperature (Tb) images at its four operating frequencies 4, 5, 6 and 6.6 GHz [1,2]. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during 2010 as its first science field campaign. It produced Tb images with 70 km swath width and 3 km resolution from a 20 km altitude. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The column averaged liquid water then could be related to an average rain rate. The retrieval algorithm (and the HIRAD instrument itself) is a direct descendant of the nadir-only Stepped Frequency Microwave Radiometer that is used operationally by the NOAA Hurricane Research Division to monitor tropical cyclones [3,4]. However, due to HIRAD s slant viewing geometry (compared to nadir viewing SFMR) a major modification is required in the algorithm. Results based on the modified algorithm from the GRIP campaign will be presented in the paper.
Hyper-spectral imager of the visible band for lunar observations
NASA Astrophysics Data System (ADS)
Lim, Y.-M.; Choi, Y.-J.; Jo, Y.-S.; Lim, T.-H.; Ham, J.; Min, K. W.; Choi, Y.-W.
2013-06-01
A prototype hyper-spectral imager in the visible spectral band was developed for the planned Korean lunar missions in the 2020s. The instrument is based on simple refractive optics that adopted a linear variable filter and an interline charge-coupled device. This prototype imager is capable of mapping the lunar surface at wavelengths ranging from 450 to 900 nm with a spectral resolution of ˜8 nm and selectable channels ranging from 5 to 252. The anticipated spatial resolution is 17.2 m from an altitude of 100 km with a swath width of 21 km
How frequently will the Surface Water and Ocean Topography (SWOT) observe floods?
NASA Astrophysics Data System (ADS)
Frasson, R. P. M.; Schumann, G.
2017-12-01
The SWOT mission will measure river width and water surface elevations of rivers wider than 100 m. As the data gathered by this mission will be freely available, it can be of great use for flood modeling, especially in areas where streamgage networks are exceedingly sparse, or when data sharing barriers prevent the timely access to information. Despite having world-wide coverage, SWOT's temporal sampling is limited, with most locations being revisited once or twice every 21 days. Our objective is to evaluate which fraction of world-wide floods SWOT will observe and how many observations per event the satellite will likely obtain. We take advantage of the extensive database of floods constructed by the Dartmouth Flood Observatory, who, since 1985, searches through news sources and governmental agencies, and more recently remote sensing imagery for flood information, including flood duration, location and affected area. We cross-referenced the flood locations in the DFO archive with the SWOT prototype prior database of river centerlines and the anticipated satellite's orbit to identify how many of the SWOT swaths were located within 10 km, 20 km, and 50 km from a flood centroid. Subsequently, we estimated the probability that SWOT would have at least one observation of a flood event per distance bin by multiplying the number of swaths in the distance bin by the flood duration divided by the SWOT orbit repeat period. Our analysis contemplated 132 world-wide floods recorded between May 2016 and May 2017. From these, 29, 52, and 86 floods had at least a 50% probability of having one overpass within 10 km, 20 km, and 50 km respectively. Moreover, after excluding flood events with no river centerlines within 10 km of its centroid, the average number of swaths within 10 km of a flood centroid was 1.79, indicating that in the 37 flood events that were likely caused by river flooding, at least one measurement was guaranteed to happen during the event.
Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets
NASA Technical Reports Server (NTRS)
Moller, Delwyn K.; Sadowy, Gregory A.; Rignot, Eric J.; Madsen, Soren N.
2007-01-01
A report discusses Ka-band (35-GHz) radar for mapping the surface topography of glaciers and ice sheets at high spatial resolution and high vertical accuracy, independent of cloud cover, with a swath-width of 70 km. The system is a single- pass, single-platform interferometric synthetic aperture radar (InSAR) with an 8-mm wavelength, which minimizes snow penetration while remaining relatively impervious to atmospheric attenuation. As exhibited by the lower frequency SRTM (Shuttle Radar Topography Mission) AirSAR and GeoSAR systems, an InSAR measures topography using two antennas separated by a baseline in the cross-track direction, to view the same region on the ground. The interferometric combination of data received allows the system to resolve the pathlength difference from the illuminated area to the antennas to a fraction of a wavelength. From the interferometric phase, the height of the target area can be estimated. This means an InSAR system is capable of providing not only the position of each image point in along-track and slant range as with a traditional SAR but also the height of that point through interferometry. Although the evolution of InSAR to a millimeter-wave center frequency maximizes the interferometric accuracy from a given baseline length, the high frequency also creates a fundamental problem of swath coverage versus signal-to-noise ratio. While the length of SAR antennas is typically fixed by mass and stowage or deployment constraints, the width is constrained by the desired illuminated swath width. As the across-track beam width which sets the swath size is proportional to the wavelength, a fixed swath size equates to a smaller antenna as the frequency is increased. This loss of antenna size reduces the two-way antenna gain to the second power, drastically reducing the signal-to-noise ratio of the SAR system. This fundamental constraint of high-frequency SAR systems is addressed by applying digital beam-forming (DBF) techniques to synthesize multiple simultaneous receive beams in elevation while maintaining a broad transmit illumination. Through this technique, a high antenna gain on receive is preserved, thereby reducing the required transmit power and thus enabling high-frequency SARs and high-precision InSAR from a single spacecraft.
Study of a water quality imager for coastal zone missions
NASA Technical Reports Server (NTRS)
Staylor, W. F.; Harrison, E. F.; Wessel, V. W.
1975-01-01
The present work surveys water quality user requirements and then determines the general characteristics of an orbiting imager (the Applications Explorer, or AE) dedicated to the measurement of water quality, which could be used as a low-cost means of testing advanced imager concepts and assessing the ability of imager techniques to meet the goals of a comprehensive water quality monitoring program. The proposed imager has four spectral bands, a spatial resolution of 25 meters, and swath width of 36 km with a pointing capability of 330 km. Silicon photodetector arrays, pointing systems, and several optical features are included. A nominal orbit of 500 km altitude at an inclination of 50 deg is recommended.
NASA Astrophysics Data System (ADS)
Tuozzolo, S.; Durand, M. T.; Pavelsky, T.; Pentecost, J.
2015-12-01
The upcoming Surface Water and Ocean Topography (SWOT) satellite will provide measurements of river width and water surface elevation and slope along continuous swaths of world rivers. Understanding water surface slope and width dynamics in river reaches is important for both developing and validating discharge algorithms to be used on future SWOT data. We collected water surface elevation and river width data along a 6.5km stretch of the Olentangy River in Columbus, Ohio from October to December 2014. Continuous measurements of water surface height were supplemented with periodical river width measurements at twenty sites along the study reach. The water surface slope of the entire reach ranged from during 41.58 cm/km at baseflow to 45.31 cm/km after a storm event. The study reach was also broken into sub-reaches roughly 1km in length to study smaller scale slope dynamics. The furthest upstream sub-reaches are characterized by free-flowing riffle-pool sequences, while the furthest downstream sub-reaches were directly affected by two low-head dams. In the sub-reaches immediately upstream of each dam, baseflow slope is as low as 2 cm/km, while the furthest upstream free-flowing sub-reach has a baseflow slope of 100 cm/km. During high flow events the backwater effect of the dams was observed to propagate upstream: sub-reaches impounded by the dams had increased water surface slopes, while free flowing sub-reaches had decreased water surface slopes. During the largest observed flow event, a stage change of 0.40 m affected sub-reach slopes by as much as 30 cm/km. Further analysis will examine height-width relationships within the study reach and relate cross-sectional flow area to river stage. These relationships can be used in conjunction with slope data to estimate discharge using a modified Manning's equation, and are a core component of discharge algorithms being developed for the SWOT mission.
Climatology of severe hailstorms in Great Britain
NASA Astrophysics Data System (ADS)
Webb, J. D. C.; Elsom, D. M.; Reynolds, D. J.
The annual and seasonal frequency, geographical distribution, and intensity of British hailstorms are examined. In 1986, the Tornado and Storm Research Organisation (TORRO) developed a Hailstorm Intensity Scale to characterise around 2500 hailstorms known to have occurred in Great Britain since the first documented hailstorm event of 1141 AD. The most intense British hailstorm reached intensity H8 on the TORRO international scale which extends from intensities H0 to H10. This paper focuses on over 800 hailstorms that reached TORRO intensity of H3 or more, the "severe" category. Analyses are presented for the historical period and the most recent 50-year period, 1950 to 1999. Consideration is given to examining the 50 most intense hailstorms (TORRO intensity H5-6 or more) known to have occurred in Britain since 1650. These storms all occurred between the months of May and September with a well-defined peak during July. These exceptional storms typically followed a track from the S, SSW or SW to the N, NNE or NE with a swath length of 25 km or more (reaching 335 km in one case) and a swath width sometimes in excess of 10 km.
Hubbard, Bernard E.; Sheridan, Michael F.; Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Rodriguez, Sergio R.
2007-01-01
Finally, ASTERs 60 km swath width and 8% duty cycle presents a challenge for mapping lahar inundation hazards at E–W oriented stream valleys in low-latitude areas with persistent cloud cover. However, its continued operations enhances its utility as a means for updating the continuous but one-time coverage of SRTM, and for filling voids in the SRTM dataset such as those that occur along steep-sided valleys prone to hazards from future lahars.
The effect of wide swathing on wilting times and nutritive value of alfalfa haylage.
Kung, L; Stough, E C; McDonell, E E; Schmidt, R J; Hofherr, M W; Reich, L J; Klingerman, C M
2010-04-01
On 3 consecutive cuttings, alfalfa from a single field was mowed with a John Deere 946 mower-conditioner (4-m cut width; Moline, IL) to leave narrow swaths (NS) ranging from 1.2 to 1.52 m wide (30-37% of cutter bar width) and wide swaths (WS) ranging from 2.44 to 2.74 m wide (62-67% of cutter bar width). Samples were collected from windrows and dry matter (DM) was monitored during wilting until a target of 43 to 45% DM was obtained. Forage from random windrows (n=4-6) was harvested by hand, chopped through a forage harvester before being packed in replicated vacuum-sealed bags, and allowed to ensile for 65 d. There was no swath width x cutting interaction for any parameter tested. Over all cuttings, the resulting silage DM was not different between the NS silage (43.8%) and the WS silage (44.9%). However, wide swathing greatly reduced the time of wilting before making silage. The hours of wilting time needed to reach the targeted DM for the NS silage compared with the WS silage at cuttings 1, 2, and 3 were 50 versus 29, 54 versus 28, and 25 versus 6, respectively. At the time of ensiling, the WS silage had more water-soluble carbohydrates (5.1%) than did the NS silage (3.7%). The WS silage had a lower pH (4.58) than did the NS silage (4.66), but swath width did not affect fermentation end products (lactic acid, acetic acid, and ethanol). The NS silage had more NH(3)-N (0.26%) than did the WS silage (0.21%). Wide swathing did not affect the concentration of ash or the digestibility of NDF, but it lowered the N content (NS=3.45%; WS=3.23%) and increased the ADF content (NS=39.7%; WS=40.9%) of the resulting silage. Wide swathing can markedly reduce the time that alfalfa must wilt before it can be chopped for silage, but under good conditions, as in this study, the resulting silage quality was generally not improved. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wide Swath Stereo Mapping from Gaofen-1 Wide-Field-View (WFV) Images Using Calibration
Chen, Shoubin; Liu, Jingbin; Huang, Wenchao
2018-01-01
The development of Earth observation systems has changed the nature of survey and mapping products, as well as the methods for updating maps. Among optical satellite mapping methods, the multiline array stereo and agile stereo modes are the most common methods for acquiring stereo images. However, differences in temporal resolution and spatial coverage limit their application. In terms of this issue, our study takes advantage of the wide spatial coverage and high revisit frequencies of wide swath images and aims at verifying the feasibility of stereo mapping with the wide swath stereo mode and reaching a reliable stereo accuracy level using calibration. In contrast with classic stereo modes, the wide swath stereo mode is characterized by both a wide spatial coverage and high-temporal resolution and is capable of obtaining a wide range of stereo images over a short period. In this study, Gaofen-1 (GF-1) wide-field-view (WFV) images, with total imaging widths of 800 km, multispectral resolutions of 16 m and revisit periods of four days, are used for wide swath stereo mapping. To acquire a high-accuracy digital surface model (DSM), the nonlinear system distortion in the GF-1 WFV images is detected and compensated for in advance. The elevation accuracy of the wide swath stereo mode of the GF-1 WFV images can be improved from 103 m to 30 m for a DSM with proper calibration, meeting the demands for 1:250,000 scale mapping and rapid topographic map updates and showing improved efficacy for satellite imaging. PMID:29494540
A Detailed Examination of the GPM Core Satellite Gridded Text Product
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz; Kelley, Owen A.; Kummerow, C.; Huffman, George; Olson, William S.; Kwiatowski, John M.
2015-01-01
The Global Precipitation Measurement (GPM) mission quarter-degree gridded-text product has a similar file format and a similar purpose as the Tropical Rainfall Measuring Mission (TRMM) 3G68 quarter-degree product. The GPM text-grid format is an hourly summary of surface precipitation retrievals from various GPM instruments and combinations of GPM instruments. The GMI Goddard Profiling (GPROF) retrieval provides the widest swath (800 km) and does the retrieval using the GPM Microwave Imager (GMI). The Ku radar provides the widest radar swath (250 km swath) and also provides continuity with the TRMM Ku Precipitation Radar. GPM's Ku+Ka band matched swath (125 km swath) provides a dual-frequency precipitation retrieval. The "combined" retrieval (125 km swath) provides a multi-instrument precipitation retrieval based on the GMI, the DPR Ku radar, and the DPR Ka radar. While the data are reported in hourly grids, all hours for a day are packaged into a single text file that is g-zipped to reduce file size and to speed up downloading. The data are reported on a 0.25deg x 0.25 deg grid.
NASA Technical Reports Server (NTRS)
Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki
2012-01-01
The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.
Highly Protable Airborne Multispectral Imaging System
NASA Technical Reports Server (NTRS)
Lehnemann, Robert; Mcnamee, Todd
2001-01-01
A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.
MRO High Resolution Imaging Science Experiment (HiRISE): Instrument Development
NASA Technical Reports Server (NTRS)
Delamere, Alan; Becker, Ira; Bergstrom, Jim; Burkepile, Jon; Day, Joe; Dorn, David; Gallagher, Dennis; Hamp, Charlie; Lasco, Jeffrey; Meiers, Bill
2003-01-01
The primary functional requirement of the HiRISE imager is to allow identification of both predicted and unknown features on the surface of Mars to a much finer resolution and contrast than previously possible. This results in a camera with a very wide swath width, 6km at 300km altitude, and a high signal to noise ratio, >100:1. Generation of terrain maps, 30 cm vertical resolution, from stereo images requires very accurate geometric calibration. The project limitations of mass, cost and schedule make the development challenging. In addition, the spacecraft stability must not be a major limitation to image quality. The nominal orbit for the science phase of the mission is a 3pm orbit of 255 by 320 km with periapsis locked to the south pole. The track velocity is approximately 3,400 m/s.
Detecting small scale CO2 emission structures using OCO-2
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Eldering, Annmarie; Verhulst, Kristal R.; Miller, Charles E.; Nguyen, Hai M.; Oda, Tomohiro; O'Dell, Christopher; Rao, Preeti; Kahn, Brian; Crisp, David; Gunson, Michael R.; Sanchez, Robert M.; Ashok, Manasa; Pieri, David; Linick, Justin P.; Yuen, Karen
2016-04-01
Localized carbon dioxide (CO2) emission structures cover spatial domains of less than 50 km diameter and include cities and transportation networks, as well as fossil fuel production, upgrading and distribution infra-structure. Anthropogenic sources increasingly upset the natural balance between natural carbon sources and sinks. Mitigation of resulting climate change impacts requires management of emissions, and emissions management requires monitoring, reporting and verification. Space-borne measurements provide a unique opportunity to detect, quantify, and analyze small scale and point source emissions on a global scale. NASA's first satellite dedicated to atmospheric CO2 observation, the July 2014 launched Orbiting Carbon Observatory (OCO-2), now leads the afternoon constellation of satellites (A-Train). Its continuous swath of 2 to 10 km in width and eight footprints across can slice through coincident emission plumes and may provide momentary cross sections. First OCO-2 results demonstrate that we can detect localized source signals in the form of urban total column averaged CO2 enhancements of ~2 ppm against suburban and rural backgrounds. OCO-2's multi-sounding swath observing geometry reveals intra-urban spatial structures reflected in XCO2 data, previously unobserved from space. The transition from single-shot GOSAT soundings detecting urban/rural differences (Kort et al., 2012) to hundreds of soundings per OCO-2 swath opens up the path to future capabilities enabling urban tomography of greenhouse gases. For singular point sources like coal fired power plants, we have developed proxy detections of plumes using bands of imaging spectrometers with sensitivity to SO2 in the thermal infrared (ASTER). This approach provides a means to automate plume detection with subsequent matching and mining of OCO-2 data for enhanced detection efficiency and validation. © California Institute of Technology
The Hyperspectral Infrared Imager (HyspIRI) and Global Observations of Tidal Wetlands
NASA Astrophysics Data System (ADS)
Turpie, K. R.; Klemas, V. V.; Byrd, K. B.; Kelly, M.; Jo, Y. H.
2016-02-01
HyspIRI mission will employ a high-spectral resolution VSWIR spectrometer, with a 30 m spatial resolution and swath width equal to Landsat legacy instruments. The spectrometer is expected to have a signal-to-noise (SNR) ratio comparable to or better than the Hyperspectral Imager of the Coastal Ocean (HICO). The mission will also provide an imaging radiometer with eight thermal bands at 60m resolution 600 km swath width. HyspIRI will offer new and unique opportunities to globally study ecosystems where land meets sea. In particular, the mission will be a boon to observations of tidal wetlands, which are highly productive and act as critical habitat for a wide variety of plants, fish, shellfish, and other wildlife. These ecotones between aquatic and terrestrial environments also provide protection from storm damage, run-off filtering, and recharge of aquifers. Many wetlands along coasts have been exposed to stress-inducing alterations globally, including dredge and fill operations, hydrologic modifications, pollutants, impoundments, fragmentation by roads/ditches, and sea level rise. For wetland protection and sensible coastal development, there is a need to monitor these ecosystems at global and regional scales. We will describe how the HyspIRI hyperspectral and thermal infrared sensors can be used to study and map key ecological properties of tidal salt and brackish marshes and mangroves, and perhaps other major wetland types, including freshwater marshes and wooded/shrub wetlands.
SWOT: A high-resolution wide-swath altimetry mission for oceanography and hydrology
NASA Astrophysics Data System (ADS)
Morrow, Rosemary; Fu, Lee-Lueng; Rodriguez, Ernesto
2013-04-01
A new satellite mission called Surface Water and Ocean Topography (SWOT) has been developed jointly by the U.S. National Aeronautics and Space Administration and France's Centre National d'Etudes Spatiales. Based on the success of nadir-looking altimetry missions in the past, SWOT will use the technique of radar interferometry to make wide-swath altimetric measurements of the elevation of surface water on land and the ocean's surface topography. The new measurements will provide information on the changing ocean currents that are key to the prediction of climate change, as well as the shifting fresh water resources resulting from climate change. Conventional satellite altimetry has revolutionized oceanography by providing nearly two decades' worth of global measurements of ocean surface topography. However, the noise level of radar altimeters limits the along-track spatial resolution to 50-100 km over the oceans. The large spacing between the satellite ground tracks limits the resolution of 2D gridded data to 200 km. Yet most of the kinetic energy of ocean circulation takes place at the scales unresolved by conventional altimetry. About 50% of the vertical transfer of heat and chemical properties of the ocean (e.g., dissolved CO2 and nutrients) is also accomplished by processes at these scales. SWOT observations will provide the critical new information at these scales for developing and testing ocean models that are designed for predicting future climate change. SWOT measurements will be in Ka band (~35 GHZ), chosen for the radar to achieve high precision with a much shorter inteferometry baseline of 10 m. Small look angles (~ 4 degrees) are required to minimize elevation errors, which limits the swath width to 120 km. An orbit with inclination of 78 degrees and 22 day repeat period was chosen for gapless coverage and good tidal aliasing properties. With this configuration, SWOT is expected to achieve 1 cm precision at 1 km x 1 km pixels over the ocean and 10 cm precision over 50 m x 50 m pixels over land waters. This presentation will be in two parts. Firstly we will give a brief overview of the SWOT mission and its sampling characteristics. We will then introduce a number of recent scientific results on our present understanding of ocean topography and surface geostropic velocities at mesoscales and sub-mesoscales, results which have been inspired by the upcoming SWOT measurements.
NASA Technical Reports Server (NTRS)
Entekhabi, D.; Njoku, E. G.; Spencer, M.; Kim, Y.; Smith, J.; McDonald, K. C.; vanZyl, J.; Houser, P.; Dorion, T.; Koster, R.;
2004-01-01
The Hydrosphere State Mission (Hydros) is a pathfinder mission in the National Aeronautics and Space Administration (NASA) Earth System Science Pathfinder Program (ESSP). The objective of the mission is to provide exploratory global measurements of the earth's soil moisture at 10-km resolution with two- to three-days revisit and land-surface freeze/thaw conditions at 3-km resolution with one- to two-days revisit. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances in weather and climate prediction and in mapping processes that link the water, energy, and carbon cycles. The Hydros instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations), respectively. The radar and the radiometer share the aperture of a 6-m antenna with a look-angle of 39 with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angle scan across a swath width of 1000 km. The wide swath provides global coverage that meet the revisit requirements. The radiometer measurements allow retrieval of soil moisture in diverse (nonforested) landscapes with a resolution of 40 km. The radar measurements allow the retrieval of soil moisture at relatively high resolution (3 km). The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced-quality 10-km resolution soil moisture estimates. In this paper, the science requirements and their traceability to the instrument design are outlined. A review of the underlying measurement physics and key instrument performance parameters are also presented.
NASA Technical Reports Server (NTRS)
1984-01-01
The Nimbus-7 Coastal Zone Color Scanner (CZCS) is the first spacecraft instrument devoted to the measurement of ocean color. Although instruments on other satellites have sensed ocean color, their spectral bands, spatial resolution, and dynamic range were optimized for geographical or meteorological use. In the CZCS, every parameter is optimized for use over water to the exclusion of any other type of sensing. The signal-to-noise ratios in the spectral channels sensing reflected solar radiance are higher than those required in the past. These ratios need to be high because the ocean is such a poor reflecting surface that the majority of the signal seen by the reflected energy channels at spacecraft altitudes is backscattered solar radiation from the atmosphere rather than reflected solar energy from the ocean. The CZCS is a conventional multichannel scanning radiometer utilizing a rotating plane mirror at a 45 deg angle to the optic axis of a Cassegrain telescope. The mirror scans 360 deg; however, only 80 deg of data centered on the spacecraft nadir is collected for ocean color measurements. Spatial resolution at spacecraft nadir is 825x825 m with some degradation at the edges of the scan swath. The useful swath width from a spacecraft altitude of 955 km is 1600 km.
The Prisma Hyperspectra Mission
NASA Astrophysics Data System (ADS)
Loizzo, R.; Ananasso, C.; Guarini, R.; Lopinto, E.; Candela, L.; Pisani, A. R.
2016-08-01
PRISMA (PRecursore IperSpettrale della Missione Applicativa) is an Italian Space Agency (ASI) hyperspectral mission currently scheduled for the lunch in 2018. PRISMA is a single satellite placed on a sun- synchronous Low Earth Orbit (620 km altitude) with an expected operational lifetime of 5 years. The hyperspectral payload consists of a high spectral resolution (VNIR-SWIR) imaging spectrometer, optically integrated with a medium resolution Panchromatic camera. PRISMA will acquire data on areas of 30 km Swath width and with a Ground Sampling Distance (GSD) of 30 m (hyperspectral) and of 5 m Panchromatic (PAN). The PRISMA Ground Segment will be geographically distributed between Fucino station and ASI Matera Space Geodesy Centre and will include the Mission Control Centre, the Satellite Control Centre and the Instrument Data Handling System. The science community supports the overall lifecycle of the mission, being involved in algorithms definition, calibration and validation activities, research and applications development.
Bathymetry at the head of the Cape Fear Slide, offshore North Carolina
Schmuck, Eric A.; Popenoe, Peter; Paull, Charles K.; Brown, Carol
1992-01-01
The Cape Fear Slide is the largest mass-movement that has been observed on the U.S. Atlantic Margin. It is located off the Carolinas on the continental rise in approximately 1,200-5,500 m water depth and extends downslope for over 300 km (Popenoe, 1982). These maps show the bathymetry at the head of the Cape Fear Slide as interpreted from single-channel 3.5 kHz seismic-reflection profiles and mid-range Sea Marc I sidescan sonar imagery (Popenoe, 1985; Popenoe and others, 1991; Schmuck, 1991). The 3.5 kHz data consist of over 1000 km of profiles that were collected in 1988 for the University of North Carolina, Department of Geology. The UNC 3.5 kHz data were used as the main data set in interpreting the bathymetry. The sidescan sonar data were collected in 1980 by the U.S. Geological Survey in cooperation with the Lamont-Doherty Geological Observatory for the U.S. Bureau of Land Management Environmental Studies Program. Only 28 km (5 km swath width) of the sidescan data were used in the interpretation to identify the morphology of the main slump scarp and visible secondary scarps.
Magellan radar to reveal secrets of enshrouded Venus
NASA Technical Reports Server (NTRS)
Saunders, R. Stephen
1990-01-01
Imaging Venus with a synthetic aperture radar (SAR) with 70 percent global coverage at 1-km optical line-pair resolution to provide a detailed global characterization of the volcanic land-forms on Venus by an integration of image data with altimetry is discussed. The Magellan radar system uses navigation predictions to preset the radar data collection parameters. The data are collected in such a way as to preserve the Doppler signature of surface elements and later they are transmitted to the earth for processing into high-resolution radar images. To maintain high accuracy, a complex on-board filter algorithm allows the altitude control logic to respond only to a narrow range of expected photon intensity levels and only to signals that occur within a small predicted interval of time. Each mapping pass images a swath of the planet that varies in width from 20 to 25 km. Since the orbital plane of the spacecraft remains fixed in the inertial space, the slow rotation of Venus continually brings new areas into view of the spacecraft.
NASA Astrophysics Data System (ADS)
Luquet, Ph.; Chikouche, A.; Benbouzid, A. B.; Arnoux, J. J.; Chinal, E.; Massol, C.; Rouchit, P.; De Zotti, S.
2017-11-01
EADS Astrium is currently developing a new product line of compact and versatile instruments for high resolution missions in Earth Observation. First version has been developed in the frame of the ALSAT-2 contract awarded by the Algerian Space Agency (ASAL) to EADS Astrium. The Silicon Carbide Korsch-type telescope coupled with a multilines detector array offers a 2.5 m GSD in PAN band at Nadir @ 680 km altitude (10 m GSD in the four multispectral bands) with a 17.5 km swath width. This compact camera - 340 (W) x 460 (L) x 510 (H) mm3, 13 kg - is embarked on a Myriade-type small platform. The electronics unit accommodates video, housekeeping, and thermal control functions and also a 64 Gbit mass memory. Two satellites are developed; the first one is planned to be launched on mid 2009. Several other versions of the instrument have already been defined with enhanced resolution or/and larger field of view.
NASA Technical Reports Server (NTRS)
King, Michael D.; Menzel, W. Paul; Kaufman, Yoram J.; Tanre, Didier; Gao, Bo-Cai; Platnick, Steven; Ackerman, Steven A.; Remer, Lorraine A.; Pincus, Robert; Hubanks, Paul A.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) is an earth-viewing sensor that flies on the Earth Observing System (EOS) Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS scans a swath width of 2330 km that is sufficiently wide to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km. MODIS provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to en- able advanced studies of land, ocean, and atmospheric properties. Twenty-six bands are used to derive atmospheric properties such as cloud mask, atmospheric profiles, aerosol properties, total precipitable water, and cloud properties. In this paper we describe each of these atmospheric data products, including characteristics of each of these products such as file size, spatial resolution used in producing the product, and data availability.
BOREAS RSS-18 Level-1B AVIRIS Imagery: At-Sensor Radiance in BIL Format
NASA Technical Reports Server (NTRS)
Newcomer, Jeffrey A.; Hall, Forrest G. (Editor); Nickerson, Jaime (Editor); Green, Robert O.; Smith, David E. (Technical Monitor)
2000-01-01
These data were collected and processed by the BOREAS RSS-18 team at NASA JPL. Data were acquired for BOREAS with NASA's AVIRIS. This optical sensor measures images that consist of spectra from 400 to 2500 nm at 10-nm sampling. These spectra are acquired as images with 20-meter spatial resolution, 11-km swath width and up to 800-km length. The measurements are spectrally, radiometrically, and geometrically calibrated. Spatially, the data are focused on the BOREAS NSA and SSA near Thompson, Manitoba, and Candle Lake, Saskatchewan, Canada, respectively. AVIRIS data were collected in 1994 during the Thaw campaign at the NSA and SSA, at the SSA in IFC-1, and at the NSA and SSA in both IFC-2 and IFC-3. In 1996, AVIRIS was deployed in the winter and summer campaigns in the SSA only. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; May, C.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.
2012-01-01
HIRAD flew on the WB-57 over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new Cband radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. (The resulting swath width for a platform at 60,000 feet is roughly 60 km, and resolution for most of the swath is around 2 km.) By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.
NASA Technical Reports Server (NTRS)
Freeman, Anthony
2006-01-01
Ambiguities are an aliasing effect caused by the periodic sampling of the scene backscatter inherent to pulsed radar systems such as Synthetic Aperture radar (SAR). In this paper we take a fresh look at the relationship between SAR range and azimuth ambiguity constraints on the allowable pulse repetition frequency (PRF) and the antenna length. We show that for high squint angles smaller antennas may be feasible in some cases. For some applications, the ability to form a synthetic aperture at high squint angles is desirable, but the size of the antenna causes problems in the design of systems capable of such operation. This is because the SAR system design is optimized for a side-looking geometry. In two examples design examples we take a suboptimum antenna size and examine the performance in terms of azimuth resolution and swath width as a function of squint angle. We show that for stripmap SARs, the swath width is usually worse for off-boresight squint angles, because it is severely limited by range walk, except in cases where we relax the spatial resolution. We consider the implications for the design of modest-resolution, narrow swath, scanning SAR scatterometers .
The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition.
Zhang, Ying; Bilbao, Aivett; Bruderer, Tobias; Luban, Jeremy; Strambio-De-Castillia, Caterina; Lisacek, Frédérique; Hopfgartner, Gérard; Varesio, Emmanuel
2015-10-02
As tryptic peptides and metabolites are not equally distributed along the mass range, the probability of cross fragment ion interference is higher in certain windows when fixed Q1 SWATH windows are applied. We evaluated the benefits of utilizing variable Q1 SWATH windows with regards to selectivity improvement. Variable windows based on equalizing the distribution of either the precursor ion population (PIP) or the total ion current (TIC) within each window were generated by an in-house software, swathTUNER. These two variable Q1 SWATH window strategies outperformed, with respect to quantification and identification, the basic approach using a fixed window width (FIX) for proteomic profiling of human monocyte-derived dendritic cells (MDDCs). Thus, 13.8 and 8.4% additional peptide precursors, which resulted in 13.1 and 10.0% more proteins, were confidently identified by SWATH using the strategy PIP and TIC, respectively, in the MDDC proteomic sample. On the basis of the spectral library purity score, some improvement warranted by variable Q1 windows was also observed, albeit to a lesser extent, in the metabolomic profiling of human urine. We show that the novel concept of "scheduled SWATH" proposed here, which incorporates (i) variable isolation windows and (ii) precursor retention time segmentation further improves both peptide and metabolite identifications.
NASA Astrophysics Data System (ADS)
Dube, Timothy; Mutanga, Onisimo
2015-03-01
Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge.
A geomorphological seabed classification for the Weddell Sea, Antarctica
NASA Astrophysics Data System (ADS)
Jerosch, Kerstin; Kuhn, Gerhard; Krajnik, Ingo; Scharf, Frauke Katharina; Dorschel, Boris
2016-06-01
Sea floor morphology plays an important role in many scientific disciplines such as ecology, hydrology and sedimentology since geomorphic features can act as physical controls for e.g. species distribution, oceanographically flow-path estimations or sedimentation processes. In this study, we provide a terrain analysis of the Weddell Sea based on the 500 m × 500 m resolution bathymetry data provided by the mapping project IBCSO. Seventeen seabed classes are recognized at the sea floor based on a fine and broad scale Benthic Positioning Index calculation highlighting the diversity of the glacially carved shelf. Beside the morphology, slope, aspect, terrain rugosity and hillshade were calculated and supplied to the data archive PANGAEA. Applying zonal statistics to the geomorphic features identified unambiguously the shelf edge of the Weddell Sea with a width of 45-70 km and a mean depth of about 1200 m ranging from 270 m to 4300 m. A complex morphology of troughs, flat ridges, pinnacles, steep slopes, seamounts, outcrops, and narrow ridges, structures with approx. 5-7 km width, build an approx. 40-70 km long swath along the shelf edge. The study shows where scarps and depressions control the connection between shelf and abyssal and where high and low declination within the scarps e.g. occur. For evaluation purpose, 428 grain size samples were added to the seabed class map. The mean values of mud, sand and gravel of those samples falling into a single seabed class was calculated, respectively, and assigned to a sediment texture class according to a common sediment classification scheme.
Sentinel-1 Mission Overview and Implementation Status
NASA Astrophysics Data System (ADS)
Davidson, M.; Attema, E.; Snoeij, P.; Levrini, G.
2009-04-01
Sentinel-1 is an imaging radar mission at C-band consisting of a constellation of two satellites aimed at providing continuity of all-weather day-and-night supply of imagery for user services. Special emphasis is placed on services identified in ESA's GMES service elements program and on projects funded by the European Union Framework Programmes. Three priorities (fast-track services) for the mission have been identified by user consultation working groups of the European Union: Marine Core Services, Land Monitoring and Emergency Services. These cover applications such as: - Monitoring sea ice zones and the arctic environment - Surveillance of marine environment - Monitoring land surface motion risks - Mapping of land surfaces: forest, water and soil, agriculture - Mapping in support of humanitarian aid in crisis situations. The Sentinel 1 space segment will be designed and built by an industrial consortium with Thales Alenia Space Italia as prime contractor and EADS Astrium GmbH as C-SAR instrument responsible. Data products from current and previous ESA missions including ERS-1, ERS-2 and Envisat missions form the basis for many of the pilot GMES services. Consequently Sentinel-1 data maintain data quality levels of the Agency‘s previous SAR missions in terms of spatial resolution, sensitivity, accuracy, polarization and wavelength. Nonetheless, the Sentinel-1 synthetic aperture radar (SAR) constellation represents a completely new approach to SAR mission design by ESA in direct response to the operational needs for SAR data expressed under the EU-ESA Global Monitoring for Environment and Security (GMES) programme. The Sentinel-1 constellation is expected to provide near daily coverage over Europe and Canada, global coverage all independent of weather with delivery of radar data within 1 hour of acquisition - all vast improvements with respect to the existing SAR systems. The continuity of C-band SAR data combined with the greatly improved data provision is expected not only to support the existing key operational services but will also support the evolving user community both for operational and remote sensing science applications. The Sentinel-1 satellite carries a Synthetic Aperture Radar (SAR) instrument with four standard operational modes: Strip Map Mode, Interferometric Wide Swath Mode, Extra-wide Swath Mode and Wave Mode. Some of their important characteristics are listed below. MODE ACCESS ANGLE (DEG.) SINGLE LOOK RESOLUTION RANGE X AZIMUTH SWATH WIDTH POLARISATION STRIP MAP 20-45 5 X 5 M > 80 KM HH+HV OR VV+VH INTERFEROMETRIC WIDE SWATH > 25 5 X 20 M > 250 KM HH+HV OR VV+VH EXTRA WIDE SWATH > 20 20 X 40 M > 400 KM HH+HV OR VV+VH WAVE MODE 23 AND 36.5 20 X 5 M > 20 X 20 KM VIGNETTES AT 100 KM INTERVALS HH OR VV FOR ALL MODES RADIOMETRIC ACCURACY (3 Σ) 1 DB NOISE EQUIVALENT SIGMA ZERO -22 DB POINT TARGET AMBIGUITY RATIO -25 DB DISTRIBUTED TARGET AMBIGUITY RATIO -22 DB It is expected that Sentinel-1 be launched in 2011. Once in orbit Sentinel-1 will be operated from two centres on the ground. The Agency‘s facilities in Darmstadt, Germany will command the satellite ensuring its proper functioning along the orbit. The mission exploitation will be managed at the Agency‘s facilities in Frascati, Italy, including the planning of the acquisitions by the SAR instrument according to the mission requirements, the processing of the acquired data and the provision of the resulting products to the users. he presentation will provide an overview of the Sentinel-1 mission, the user requirements driving the mission, the status and characteristics of the technical implementation. The key elements of the mission supporting the evolving needs of the user community both in operational and remote sensing science applications will be highlighted.
Snow and Ice Products from the Moderate Resolution Imaging Spectroradiometer
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Klein, Andrew G.
2003-01-01
Snow and sea ice products, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, flown on the Terra and Aqua satellites, are or will be available through the National Snow and Ice Data Center Distributed Active Archive Center (DAAC). The algorithms that produce the products are automated, thus providing a consistent global data set that is suitable for climate studies. The suite of MODIS snow products begins with a 500-m resolution, 2330-km swath snow-cover map that is then projected onto a sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to daily and 8-day composite climate-modeling grid (CMG) products at 0.05 resolution. A daily snow albedo product will be available in early 2003 as a beta test product. The sequence of sea ice products begins with a swath product at 1-km resolution that provides sea ice extent and ice-surface temperature (IST). The sea ice swath products are then mapped onto the Lambert azimuthal equal area or EASE-Grid projection to create a daily and 8-day composite sea ice tile product, also at 1 -km resolution. Climate-Modeling Grid (CMG) sea ice products in the EASE-Grid projection at 4-km resolution are planned for early 2003.
Multispectral Resource Sampler - An experimental satellite sensor for the mid-1980s
NASA Technical Reports Server (NTRS)
Schnetzler, C. C.; Thompson, L. L.
1979-01-01
An experimental pushbroom scan sensor, the Multispectral Resource Sampler (MRS), being developed by NASA for a future earth orbiting flight is presented. This sensor will provide new earth survey capabilities beyond those of current sensor systems, with a ground resolution of 15 m over a swath width of 15 km in four bands. The four arrays are aligned on a common focal surface requiring no beamsplitters, thus causing a spatial separation on the ground which requires computer processing to register the bands. Along track pointing permits stereo coverage at variable base/height ratios and atmospheric correction experiments, while across track pointing will provide repeat coverage, from a Landsat-type orbit, of every 1 to 3 days. The MRS can be used for experiments in crop discrimination and status, rock discrimination, land use classification, and forestry.
Orbit and sampling requirements: TRMM experience
NASA Technical Reports Server (NTRS)
North, Gerald
1993-01-01
The Tropical Rainfall Measuring Mission (TRMM) concept originated in 1984. Its overall goal is to produce datasets that can be used in the improvement of general circulation models. A primary objective is a multi-year data stream of monthly averages of rain rate over 500 km boxes over the tropical oceans. Vertical distributions of the hydrometers, related to latent heat profiles, and the diurnal cycle of rainrates are secondary products believed to be accessible. The mission is sponsored jointly by the U.S. and Japan. TRMM is an approved mission with launch set for 1997. There are many retrieval and ground truth issues still being studied for TRMM, but here we concentrate on sampling since it is the single largest term in the error budget. The TRMM orbit plane is inclined by 35 degrees to the equator, which leads to a precession of the visits to a given grid box through the local hours of the day, requiring three to six weeks to complete the diurnal cycle, depending on latitude. For sampling studies we can consider the swath width to be about 700 km.
Low-cost thermal-IR imager for an Earth observation microsatellite
NASA Astrophysics Data System (ADS)
Oelrich, Brian D.; Underwood, Craig I.
2017-11-01
A new class of thermal infrared (TIR) Earth Observation (EO) data will become available with the flight of miniature TIR EO instruments in a multiple micro-satellite constellation. This data set will provide a unique service for those wishing to analyse trends or rapidly detect anomalous changes in the TIR characteristics of the Earth's surface or atmosphere (e.g. fire detection). Following a preliminary study of potential mission applications, uncooled commercial-off-the-shelf (COTS) technology was selected to form the basis of a low-cost, compact instrument capable of complementing existing visible and near IR EO capabilities on a sub-100kg Surrey micro-satellite. The preliminary 2-3 kg instrument concept has been designed to yield a 325 m ground sample distance over a 200 km swath width from a constellation altitude of 700 km. The radiometric performance, enhanced with time-delayed integration (TDI), is expected to yield a NETD less than 0.5 K for a 300 K ground scene. Fabrication and characterization of a space-ready instrument is planned for late 2004.
Azimuthal resolution degradation due to ocean surface motion in focused arrays and SARS
NASA Astrophysics Data System (ADS)
1990-06-01
During the meeting at WHOI (5-18-90), a discussion arose of the ability of the focused array to simulate the R/v ratios typical of airborne and/or spaceborne SARs. In particular, the ability was questioned of the focused array to yield the same azimuthal resolution, rho, as the SAR. Although the focused array can be sampled to yield the same azimuthal resolution as the SAR, it is likely that the images generated by the focused array will not be identical to those produced by a SAR with the same azimuth resolution. For a true SAR, biases in the Doppler history of azimuthally traveling waves due to their along-track motion will cause shifts in their apparent position. This will cause waves which are physically at one location to shift over several pixel widths in the image. The limited swath width of the focused array will prevent if from observing scattered power from waves falling outside the swath, thus such waves will not affect the image formed within the swath, as would happen in the SAR. Thus, it is likely that the focused array will not yield the same image as a SAR having the same resolution.
NASA Astrophysics Data System (ADS)
Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.
2015-04-01
The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a ~260 km reach of the central Amazon (Solimões) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1 % average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross-sectional averaging and the use of shorter reach lengths) and higher water-surface slopes (reducing the proportional impact of slope errors on discharge calculation).
Calibration of the Lunar Reconnaissance Orbiter Camera
NASA Astrophysics Data System (ADS)
Tschimmel, M.; Robinson, M. S.; Humm, D. C.; Denevi, B. W.; Lawrence, S. J.; Brylow, S.; Ravine, M.; Ghaemi, T.
2008-12-01
The Lunar Reconnaissance Orbiter Camera (LROC) onboard the NASA Lunar Reconnaissance Orbiter (LRO) spacecraft consists of three cameras: the Wide-Angle Camera (WAC) and two identical Narrow Angle Cameras (NAC-L, NAC-R). The WAC is push-frame imager with 5 visible wavelength filters (415 to 680 nm) at a spatial resolution of 100 m/pixel and 2 UV filters (315 and 360 nm) with a resolution of 400 m/pixel. In addition to the multicolor imaging the WAC can operate in monochrome mode to provide a global large- incidence angle basemap and a time-lapse movie of the illumination conditions at both poles. The WAC has a highly linear response, a read noise of 72 e- and a full well capacity of 47,200 e-. The signal-to-noise ratio in each band is 140 in the worst case. There are no out-of-band leaks and the spectral response of each filter is well characterized. Each NAC is a monochrome pushbroom scanner, providing images with a resolution of 50 cm/pixel from a 50-km orbit. A single NAC image has a swath width of 2.5 km and a length of up to 26 km. The NACs are mounted to acquire side-by-side imaging for a combined swath width of 5 km. The NAC is designed to fully characterize future human and robotic landing sites in terms of topography and hazard risks. The North and South poles will be mapped on a 1-meter-scale poleward of 85.5° latitude. Stereo coverage can be provided by pointing the NACs off-nadir. The NACs are also highly linear. Read noise is 71 e- for NAC-L and 74 e- for NAC-R and the full well capacity is 248,500 e- for NAC-L and 262,500 e- for NAC- R. The focal lengths are 699.6 mm for NAC-L and 701.6 mm for NAC-R; the system MTF is 28% for NAC-L and 26% for NAC-R. The signal-to-noise ratio is at least 46 (terminator scene) and can be higher than 200 (high sun scene). Both NACs exhibit a straylight feature, which is caused by out-of-field sources and is of a magnitude of 1-3%. However, as this feature is well understood it can be greatly reduced during ground processing. All three cameras were calibrated in the laboratory under ambient conditions. Future thermal vacuum tests will characterize critical behaviors across the full range of lunar operating temperatures. In-flight tests will check for changes in response after launch and provide key data for meeting the requirements of 1% relative and 10% absolute radiometric calibration.
NASA Astrophysics Data System (ADS)
Turtle, E. P.; McEwen, A. S.; Osterman, S. N.; Boldt, J. D.; Strohbehn, K.; EIS Science Team
2016-10-01
EIS NAC and WAC use identical rad-hard rapid-readout 4k × 2k CMOS detectors for imaging during close (≤25 km) fast ( 4.5 km/s) Europa flybys. NAC achieves 0.5 m/pixel over a 2-km swath from 50 km, and WAC provides context pushbroom stereo imaging.
NASA Astrophysics Data System (ADS)
Dorrestijn, Jesse; Kahn, Brian H.; Teixeira, João; Irion, Fredrick W.
2018-05-01
Satellite observations are used to obtain vertical profiles of variance scaling of temperature (T) and specific humidity (q) in the atmosphere. A higher spatial resolution nadir retrieval at 13.5 km complements previous Atmospheric Infrared Sounder (AIRS) investigations with 45 km resolution retrievals and enables the derivation of power law scaling exponents to length scales as small as 55 km. We introduce a variable-sized circular-area Monte Carlo methodology to compute exponents instantaneously within the swath of AIRS that yields additional insight into scaling behavior. While this method is approximate and some biases are likely to exist within non-Gaussian portions of the satellite observational swaths of T and q, this method enables the estimation of scale-dependent behavior within instantaneous swaths for individual tropical and extratropical systems of interest. Scaling exponents are shown to fluctuate between β = -1 and -3 at scales ≥ 500 km, while at scales ≤ 500 km they are typically near β ≈ -2, with q slightly lower than T at the smallest scales observed. In the extratropics, the large-scale β is near -3. Within the tropics, however, the large-scale β for T is closer to -1 as small-scale moist convective processes dominate. In the tropics, q exhibits large-scale β between -2 and -3. The values of β are generally consistent with previous works of either time-averaged spatial variance estimates, or aircraft observations that require averaging over numerous flight observational segments. The instantaneous variance scaling methodology is relevant for cloud parameterization development and the assessment of time variability of scaling exponents.
Investigating at the Moon With new Eyes: The Lunar Reconnaissance Orbiter Mission Camera (LROC)
NASA Astrophysics Data System (ADS)
Hiesinger, H.; Robinson, M. S.; McEwen, A. S.; Turtle, E. P.; Eliason, E. M.; Jolliff, B. L.; Malin, M. C.; Thomas, P. C.
The Lunar Reconnaissance Orbiter Mission Camera (LROC) H. Hiesinger (1,2), M.S. Robinson (3), A.S. McEwen (4), E.P. Turtle (4), E.M. Eliason (4), B.L. Jolliff (5), M.C. Malin (6), and P.C. Thomas (7) (1) Brown Univ., Dept. of Geological Sciences, Providence RI 02912, Harald_Hiesinger@brown.edu, (2) Westfaelische Wilhelms-University, (3) Northwestern Univ., (4) LPL, Univ. of Arizona, (5) Washington Univ., (6) Malin Space Science Systems, (7) Cornell Univ. The Lunar Reconnaissance Orbiter (LRO) mission is scheduled for launch in October 2008 as a first step to return humans to the Moon by 2018. The main goals of the Lunar Reconnaissance Orbiter Camera (LROC) are to: 1) assess meter and smaller- scale features for safety analyses for potential lunar landing sites near polar resources, and elsewhere on the Moon; and 2) acquire multi-temporal images of the poles to characterize the polar illumination environment (100 m scale), identifying regions of permanent shadow and permanent or near permanent illumination over a full lunar year. In addition, LROC will return six high-value datasets such as 1) meter-scale maps of regions of permanent or near permanent illumination of polar massifs; 2) high resolution topography through stereogrammetric and photometric stereo analyses for potential landing sites; 3) a global multispectral map in 7 wavelengths (300-680 nm) to characterize lunar resources, in particular ilmenite; 4) a global 100-m/pixel basemap with incidence angles (60-80 degree) favorable for morphologic interpretations; 5) images of a variety of geologic units at sub-meter resolution to investigate physical properties and regolith variability; and 6) meter-scale coverage overlapping with Apollo Panoramic images (1-2 m/pixel) to document the number of small impacts since 1971-1972, to estimate hazards for future surface operations. LROC consists of two narrow-angle cameras (NACs) which will provide 0.5-m scale panchromatic images over a 5-km swath, a wide-angle camera (WAC) to acquire images at about 100 m/pixel in seven color bands over a 100-km swath, and a common Sequence and Compressor System (SCS). Each NAC has a 700-mm-focal-length optic that images onto a 5000-pixel CCD line-array, providing a cross-track field-of-view (FOV) of 2.86 degree. The NAC readout noise is better than 100 e- , and the data are sampled at 12 bits. Its internal buffer holds 256 MB of uncompressed data, enough for a full-swath image 25-km long or a 2x2 binned image 100-km long. The WAC has two 6-mm- focal-length lenses imaging onto the same 1000 x 1000 pixel, electronically shuttered CCD area-array, one imaging in the visible/near IR, and the other in the UV. Each has a cross-track FOV of 90 degree. From the nominal 50-km orbit, the WAC will have a resolution of 100 m/pixel in the visible, and a swath width of ˜100 km. The seven-band color capability of the WAC is achieved by color filters mounted directly 1 over the detector, providing different sections of the CCD with different filters [1]. The readout noise is less than 40 e- , and, as with the NAC, pixel values are digitized to 12-bits and may be subsequently converted to 8-bit values. The total mass of the LROC system is about 12 kg; the total LROC power consumption averages at 22 W (30 W peak). Assuming a downlink with lossless compression, LRO will produce a total of 20 TeraBytes (TB) of raw data. Production of higher-level data products will result in a total of 70 TB for Planetary Data System (PDS) archiving, 100 times larger than any previous missions. [1] Malin et al., JGR, 106, 17651-17672, 2001. 2
UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry
NASA Technical Reports Server (NTRS)
Mace, Thomas H.; Lou, Yunling
2009-01-01
NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.
Medium-sized aperture camera for Earth observation
NASA Astrophysics Data System (ADS)
Kim, Eugene D.; Choi, Young-Wan; Kang, Myung-Seok; Kim, Ee-Eul; Yang, Ho-Soon; Rasheed, Ad. Aziz Ad.; Arshad, Ahmad Sabirin
2017-11-01
Satrec Initiative and ATSB have been developing a medium-sized aperture camera (MAC) for an earth observation payload on a small satellite. Developed as a push-broom type high-resolution camera, the camera has one panchromatic and four multispectral channels. The panchromatic channel has 2.5m, and multispectral channels have 5m of ground sampling distances at a nominal altitude of 685km. The 300mm-aperture Cassegrain telescope contains two aspheric mirrors and two spherical correction lenses. With a philosophy of building a simple and cost-effective camera, the mirrors incorporate no light-weighting, and the linear CCDs are mounted on a single PCB with no beam splitters. MAC is the main payload of RazakSAT to be launched in 2005. RazakSAT is a 180kg satellite including MAC, designed to provide high-resolution imagery of 20km swath width on a near equatorial orbit (NEqO). The mission objective is to demonstrate the capability of a high-resolution remote sensing satellite system on a near equatorial orbit. This paper describes the overview of the MAC and RarakSAT programmes, and presents the current development status of MAC focusing on key optical aspects of Qualification Model.
Calibration of the venµs super-spectral camera
NASA Astrophysics Data System (ADS)
Topaz, Jeremy; Sprecher, Tuvia; Tinto, Francesc; Echeto, Pierre; Hagolle, Olivier
2017-11-01
A high-resolution super-spectral camera is being developed by Elbit Systems in Israel for the joint CNES- Israel Space Agency satellite, VENμS (Vegetation and Environment monitoring on a new Micro-Satellite). This camera will have 12 narrow spectral bands in the Visible/NIR region and will give images with 5.3 m resolution from an altitude of 720 km, with an orbit which allows a two-day revisit interval for a number of selected sites distributed over some two-thirds of the earth's surface. The swath width will be 27 km at this altitude. To ensure the high radiometric and geometric accuracy needed to fully exploit such multiple data sampling, careful attention is given in the design to maximize characteristics such as signal-to-noise ratio (SNR), spectral band accuracy, stray light rejection, inter- band pixel-to-pixel registration, etc. For the same reasons, accurate calibration of all the principle characteristics is essential, and this presents some major challenges. The methods planned to achieve the required level of calibration are presented following a brief description of the system design. A fuller description of the system design is given in [2], [3] and [4].
Widespread Mega-Pockmarks Imaged Along the Western Edge of the Cocos Ridge
NASA Astrophysics Data System (ADS)
Gibson, J. C.; Kluesner, J. W.; Silver, E. A.; Bangs, N. L.; McIntosh, K. D.
2012-12-01
A large field (245km2) of 31 seabed mega-pockmarks was imaged between the Cocos ridge and the Quepos plateau on ~16.5 Ma oceanic crust generated at the Cocos-Nazca spreading center. The imaged pockmarks represent only a fraction of the much larger pockmark field evident in 100 m grid cell bathymetry data secured from MGDS. The pockmarks are clustered around 1800-2100 mbsl and were mapped using EM122 multibeam sonar, a 3.5 kHz sub-bottom profiler, and 3D Multi-Channel Seismic (MCS) aboard R/V Marcus G. Langseth during the CRISP seismic survey (2011). Using a constrained swath width of 1.4 km, the increased sounding density facilitated bathymetry/backscatter to be gridded at 10m and 8m respectively. The diameter of the pockmarks varies from ~1 km to ~2 km with a relief range of ~30-80 m, and average slopes of 15°. The MCS data also reveal older buried pockmarks in trench adjacent sediments. Small high-backscatter mounds occur within a subset of the pockmarks, which may indicate bioherms or carbonate banks above focused fluid flow conduits. Based on drilling results of DSDP Site 158 and ODP Site 1381, the pockmarks appear to be the result of paleo-differential advancement of a silica diagenetic front (opal-A to opal-CT). Although, the pockmarks may be erosional features sourced at depth from dewatering of sediments inter-bedded with igneous layers.
Healy, Carrie A; Schultz, John J; Parker, Kenneth; Lowers, Bim
2015-05-01
Forensic investigators routinely deploy side-scan sonar for submerged body searches. This study adds to the limited body of literature by undertaking a controlled project to understand how variables affect detection of submerged bodies using side-scan sonar. Research consisted of two phases using small and medium-sized pig (Sus scrofa) carcasses as proxies for human bodies to investigate the effects of terrain, body size, frequency, swath width, and state of decomposition. Results demonstrated that a clear, flat, sandy pond floor terrain was optimal for detection of the target as irregular terrain and/or vegetation are major limitations that can obscure the target. A higher frequency towfish was preferred for small bodies, and a 20 m swath width allowed greater visibility and easier maneuverability of the boat in this environment. Also, the medium-sized carcasses were discernable throughout the 81-day study period, indicating that it is possible to detect bodies undergoing decomposition with side-scan sonar. © 2015 American Academy of Forensic Sciences.
3D Imaging and Automated Ice Bottom Tracking of Canadian Arctic Archipelago Ice Sounding Data
NASA Astrophysics Data System (ADS)
Paden, J. D.; Xu, M.; Sprick, J.; Athinarapu, S.; Crandall, D.; Burgess, D. O.; Sharp, M. J.; Fox, G. C.; Leuschen, C.; Stumpf, T. M.
2016-12-01
The basal topography of the Canadian Arctic Archipelago ice caps is unknown for a number of the glaciers which drain the ice caps. The basal topography is needed for calculating present sea level contribution using the surface mass balance and discharge method and to understand future sea level contributions using ice flow model studies. During the NASA Operation IceBridge 2014 arctic campaign, the Multichannel Coherent Radar Depth Sounder (MCoRDS) used a three transmit beam setting (left beam, nadir beam, right beam) to illuminate a wide swath across the ice glacier in a single pass during three flights over the archipelago. In post processing we have used a combination of 3D imaging methods to produce images for each of the three beams which are then merged to produce a single digitally formed wide swath beam. Because of the high volume of data produced by 3D imaging, manual tracking of the ice bottom is impractical on a large scale. To solve this problem, we propose an automated technique for extracting ice bottom surfaces by viewing the task as an inference problem on a probabilistic graphical model. We first estimate layer boundaries to generate a seed surface, and then incorporate additional sources of evidence, such as ice masks, surface digital elevation models, and feedback from human users, to refine the surface in a discrete energy minimization formulation. We investigate the performance of the imaging and tracking algorithms using flight crossovers since crossing lines should produce consistent maps of the terrain beneath the ice surface and compare manually tracked "ground truth" to the automated tracking algorithms. We found the swath width at the nominal flight altitude of 1000 m to be approximately 3 km. Since many of the glaciers in the archipelago are narrower than this, the radar imaging, in these instances, was able to measure the full glacier cavity in a single pass.
The Europa Imaging System (EIS): Investigating Europa's geology, ice shell, and current activity
NASA Astrophysics Data System (ADS)
Turtle, Elizabeth; Thomas, Nicolas; Fletcher, Leigh; Hayes, Alexander; Ernst, Carolyn; Collins, Geoffrey; Hansen, Candice; Kirk, Randolph L.; Nimmo, Francis; McEwen, Alfred; Hurford, Terry; Barr Mlinar, Amy; Quick, Lynnae; Patterson, Wes; Soderblom, Jason
2016-07-01
NASA's Europa Mission, planned for launch in 2022, will perform more than 40 flybys of Europa with altitudes at closest approach as low as 25 km. The instrument payload includes the Europa Imaging System (EIS), a camera suite designed to transform our understanding of Europa through global decameter-scale coverage, topographic and color mapping, and unprecedented sub- meter-scale imaging. EIS combines narrow-angle and wide-angle cameras to address these science goals: • Constrain the formation processes of surface features by characterizing endogenic geologic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure and potential near-surface water. • Search for evidence of recent or current activity, including potential plumes. • Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar. • Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. EIS Narrow-angle Camera (NAC): The NAC, with a 2.3°° x 1.2°° field of view (FOV) and a 10-μμrad instantaneous FOV (IFOV), achieves 0.5-m pixel scale over a 2-km-wide swath from 50-km altitude. A 2-axis gimbal enables independent targeting, allowing very high-resolution stereo imaging to generate digital topographic models (DTMs) with 4-m spatial scale and 0.5-m vertical precision over the 2-km swath from 50-km altitude. The gimbal also makes near-global (>95%) mapping of Europa possible at ≤50-m pixel scale, as well as regional stereo imaging. The NAC will also perform high-phase-angle observations to search for potential plumes. EIS Wide-angle Camera (WAC): The WAC has a 48°° x 24°° FOV, with a 218-μμrad IFOV, and is designed to acquire pushbroom stereo swaths along flyby ground-tracks. From an altitude of 50 km, the WAC achieves 11-m pixel scale over a 44-km-wide swath, generating DTMs with 32-m spatial scale and 4-m vertical precision. These data also support characterization of surface clutter for interpretation of radar deep and shallow sounding modes. Detectors: The cameras have identical rapid-readout, radiation-hard 4k x 2k CMOS detectors and can image in both pushbroom and framing modes. Color observations are acquired by pushbroom imaging using six broadband filters (~300-1050 nm), allowing mapping of surface units for correlation with geologic structures, topography, and compositional units from other instruments.
NASA Technical Reports Server (NTRS)
Goetz, A. F. H.; Heidebrecht, K. B.; Gutmann, E. D.; Warner, A. S.; Johnson, E. L.; Lestak, L. R.
1999-01-01
Approximately 100,000 sq. km of the High Plains of the central United States are covered by sand dunes and sand sheets deposited during the Holocene. Soil-dating evidence shows that there were at least four periods of dune reactivation during major droughts in the last 10,000 years. The dunes in this region are anchored by vegetation. We have undertaken a study of land-use change in the High Plains from 1985 to the present using Landsat 5 TM and Landsat 7 ETM+ images to map variation in vegetation cover during wet and dry years. Mapping vegetation cover of less than 20% is important in modeling potential surface reactivation since at this level the vegetation no longer sufficiently shields sandy surfaces from movement by wind. Landsat TM data have both the spatial resolution and temporal coverage to facilitate vegetation cover analysis for model development and verification. However, there is still the question of how accurate TM data are for the measurement of both growing and senescent vegetation in and and semi-arid regions. AVIRIS provides both high spectral resolution as well as high signal-to-noise ratio and can be used to test the accuracy of Landsat TM and ETM+ data. We have analyzed data from AVIRIS flown nearly concurrently with a Landsat 7 overpass. The comparison between an AVIRIS image swath of 11 km width subtending a 30 deg. angle and the same area covered by a 0.8 deg. angle from Landsat required accounting for the BRDF. A normalization technique using the ratio of the reflectances from registered AVIRIS and Landsat data proved superior to the techniques of column averaging on AVIRIS data alone published previously by Kennedy et al. This technique can be applied to aircraft data covering a wider swath angle than AVIRIS to develop BRDF responses for a wide variety of surfaces more efficiently than from ground measurements.
IRCI-Free MIMO-OFDM SAR Using Circularly Shifted Zadoff-Chu Sequences
NASA Astrophysics Data System (ADS)
Cao, Yun-He; Xia, Xiang-Gen
2015-05-01
Cyclic prefix (CP) based MIMO-OFDM radar has been recently proposed for distributed transmit antennas, where there is no inter-range-cell interference (IRCI). It can collect full spatial diversity and each transmitter transmits signals with the same frequency band, i.e., the range resolution is not reduced. However, it needs to transmit multiple OFDM pulses consecutively to obtain range profiles for a single swath, which may be too long in time for a reasonable swath width. In this letter, we propose a CP based MIMO-OFDM synthetic aperture radar (SAR) system, where each transmitter transmits only a single OFDM pulse to obtain range profiles for a swath and has the same frequency band, thus the range resolution is not reduced. It is IRCI free and can collect the full spatial diversity if the transmit antennas are distributed. Our main idea is to use circularly shifted Zadoff-Chu sequences as the weighting coefficients in the OFDM pulses for different transmit antennas and apply spatial filters with multiple receive antennas to divide the whole swath into multiple subswaths, and then each subswath is reconstructed/imaged using our proposed IRCI free range reconstruction method.
Sentinel-3 coverage-driven mission design: Coupling of orbit selection and instrument design
NASA Astrophysics Data System (ADS)
Cornara, S.; Pirondini, F.; Palmade, J. L.
2017-11-01
The first satellite of the Sentinel-3 series was launched in February 2016. Sentinel-3 payload suite encompasses the Ocean and Land Colour Instrument (OLCI) with a swath of 1270 km, the Sea and Land Surface Temperature Radiometer (SLSTR) yielding a dual-view scan with swaths of 1420 km (nadir) and 750 km (oblique view), the Synthetic Aperture Radar Altimeter (SRAL) working in Ku-band and C-band, and the dual-frequency Microwave Radiometer (MWR). In the early stages of mission and system design, the main driver for the Sentinel-3 reference orbit selection was the requirement to achieve a revisit time of two days or less globally over ocean areas with two satellites (i.e. 4-day global coverage with one satellite). The orbit selection was seamlessly coupled with the OLCI instrument design in terms of field of view (FoV) definition driven by the observation zenith angle (OZA) and sunglint constraints applied to ocean observations. The criticality of the global coverage requirement for ocean monitoring derives from the sunglint phenomenon, i.e. the impact on visible channels of the solar ray reflection on the water surface. This constraint was finally overcome thanks to the concurrent optimisation of the orbit parameters, notably the Local Time at Descending Node (LTDN), and the OLCI instrument FoV definition. The orbit selection process started with the identification of orbits with short repeat cycle (2-4 days), firstly to minimise the time required to achieve global coverage with existing constraints, and then to minimise the swath required to obtain global coverage and the maximum required OZA. This step yielded the selection of a 4-day repeat cycle orbit, thus allowing 2-day coverage with two adequately spaced satellites. Then suitable candidate orbits with higher repeat cycles were identified in the proximity of the selected altitudes and the reference orbit was ultimately chosen. Rationale was to keep the swath for global coverage as close as possible to the previous optimum value, but to tailor the repeat cycle length (i.e. the ground-track grid) to optimise the topography mission performances. The final choice converged on the sun-synchronous orbit 14 + 7/27, reference altitude ∼800 km, LTDN = 10h00. Extensive coverage analyses were carried out to characterise the mission performance and the fulfilment of the requirements, encompassing revisit time, number of acquisitions, observation viewing geometry and swath properties. This paper presents a comprehensive overview of the Sentinel-3 orbit selection, starting from coverage requirements and highlighting the close interaction with the instrument design activity.
Ka-Band Digital Beamforming and SweepSAR Demonstration for Ice and Solid Earth Topography
NASA Technical Reports Server (NTRS)
Sadowy, Gregory; Ghaemi, Hirad; Heavy, Brandon; Perkovic, Dragana; Quddus, Momin; Zawadzki, Mark; Moller, Delwyn
2010-01-01
GLISTIN is an instrument concept for a single-pass interferometric SAR operating at 35.6 GHz. To achieve large swath widths using practical levels of transmitter power, a digitally-beamformed planar waveguide array is used. This paper describes results from a ground-based demonstration of a 16-receiver prototype. Furthermore, SweepSAR is emerging as promising technique for achieving very wide swaths for surface change detection. NASA and DLR are studying this approach for the DESDynI and Tandem-L missions. SweepSAR employs a reflector with a digitally-beamformed array feed. We will describe development of an airborne demonstration of SweepSAR using the GLISTIN receiver array and a reflector.
A Three-Line Stereo Camera Concept for Planetary Exploration
NASA Technical Reports Server (NTRS)
Sandau, Rainer; Hilbert, Stefan; Venus, Holger; Walter, Ingo; Fang, Wai-Chi; Alkalai, Leon
1997-01-01
This paper presents a low-weight stereo camera concept for planetary exploration. The camera uses three CCD lines within the image plane of one single objective. Some of the main features of the camera include: focal length-90 mm, FOV-18.5 deg, IFOV-78 (mu)rad, convergence angles-(+/-)10 deg, radiometric dynamics-14 bit, weight-2 kg, and power consumption-12.5 Watts. From an orbit altitude of 250 km the ground pixel size is 20m x 20m and the swath width is 82 km. The CCD line data is buffered in the camera internal mass memory of 1 Gbit. After performing radiometric correction and application-dependent preprocessing the data is compressed and ready for downlink. Due to the aggressive application of advanced technologies in the area of microelectronics and innovative optics, the low mass and power budgets of 2 kg and 12.5 Watts is achieved, while still maintaining high performance. The design of the proposed light-weight camera is also general purpose enough to be applicable to other planetary missions such as the exploration of Mars, Mercury, and the Moon. Moreover, it is an example of excellent international collaboration on advanced technology concepts developed at DLR, Germany, and NASA's Jet Propulsion Laboratory, USA.
An integrated hyperspectral and SAR satellite constellation for environment monitoring
NASA Astrophysics Data System (ADS)
Wang, Jinnian; Ren, Fuhu; Xie, Chou; An, Jun; Tong, Zhanbo
2017-09-01
A fully-integrated, Hyperspectral optical and SAR (Synthetic Aperture Radar) constellation of small earth observation satellites will be deployed over multiple launches from last December to next five years. The Constellation is expected to comprise a minimum of 16 satellites (8 SAR and 8 optical ) flying in two orbital planes, with each plane consisting of four satellite pairs, equally-spaced around the orbit plane. Each pair of satellites will consist of a hyperspectral/mutispectral optical satellite and a high-resolution SAR satellite (X-band) flying in tandem. The constellation is expected to offer a number of innovative capabilities for environment monitoring. As a pre-launch experiment, two hyperspectral earth observation minisatellites, Spark 01 and 02 were launched as secondary payloads together with Tansat in December 2016 on a CZ-2D rocket. The satellites feature a wide-range hyperspectral imager. The ground resolution is 50 m, covering spectral range from visible to near infrared (420 nm - 1000 nm) and a swath width of 100km. The imager has an average spectral resolution of 5 nm with 148 channels, and a single satellite could obtain hyperspectral imagery with 2.5 million km2 per day, for global coverage every 16 days. This paper describes the potential applications of constellation image in environment monitoring.
NASA Astrophysics Data System (ADS)
Blomqvist, Niclas; Whipp, David
2016-04-01
The topography of the Earth's surface is the result of the interaction of tectonics, erosion and climate. Thus, topography should contain a record of these processes that can be extracted by topographic analysis. The question considered in this study is whether the spatial variations in erosion that have sculpted the modern topography are representative of the long-term erosion rates in mountainous regions. We compare long-term erosion rates derived from low-temperature thermochronometry to erosional proxies calculated from topographic and climatic data analysis. The study has been performed on a global scale including six orogens: The Himalaya, Andes, Taiwan, Olympic Mountains, Southern Alps in New Zealand and European Alps. The data was analyzed using a new swath profile analysis tool for ArcGIS called ArcSwath (https://github.com/HUGG/ArcSwath) to determine the correlations between the long-term erosion rates and modern elevations, slope angles, relief in 2.5-km- and 5-km-diameter circles, erosion potential, normalized channel steepness index ksn, and annual rainfall. ArcSwath uses a Python script that has been incorporated into an ArcMap 10.2 add-in tool, extracting swath profiles in about ten seconds compared to earlier workflows that could take more than an hour. In ArcMap, UTM-projected point or raster files can be used for creating swath profiles. Point data are projected onto the swath and the statistical parameters (minimum, mean and maximum of the values across the swath) are calculated for the raster data. Both can be immediately plotted using the Python matplotlib library, or plotted externally using the csv-file that is produced by ArcSwath. When raster and point data are plotted together, it is easier to make comparisons and see correlations between the selected data. An unambiguous correlation between the topographic or climatic metrics and long-term erosion rates was not found. Fitting of linear regression lines to the topographic/ climatic metric data and the long-term erosion rates shows that 86 of 288 plots (30%) have "good" R2 values (> 0.35) and 135 of 288 (47%) have an "acceptable" R2 value (> 0.2). The "good" and "acceptable" values have been selected on the basis of visual fit to the regression line. The majority of the plots with a "good" correlation value have positive correlations, while 11/86 plots have negative slopes for the regression lines. Interestingly, two topographic profile shapes were clear in swath profiles: Concave-up (e.g., the central-western Himalaya and the northern Bolivian Andes) and concave-down or straight (e.g., the eastern Himalayas and the southern Bolivian Andes). On the orogen scale, the concave-up shape is often related to relatively high precipitation and erosion rates on the slopes of steep topography. The concave-down/straight profiles seem to occur in association of low rainfall and/or erosion rates. Though we cannot say with confidence, the lack of a clear correlation between long-term erosion rates and climate or topography may be due to the difference in their respective timescales as climate can vary over shorter timescales than 105-107 years. In that case, variations between fluvial and glacial erosion may have overprinted the erosional effects of one another.
Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK.
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.; Claffey, K. J.; Abelev, A.; Hebert, D. A.; Jones, K.
2014-12-01
During March of 2014, the Naval Research Laboratory and the Cold Regions Research and Engineering Laboratory collected an integrated set of airborne and in-situ measurements over two areas of floating, but land-fast ice near the coast of Barrow, AK. The near-shore site was just north of Point Barrow, and the "offshore" site was ~ 20 km east of Point Barrow. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439) and a snow radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects at both sites consisting of a 2 km long profile of snow depth and ice thickness measurements with periodic boreholes. A 60 m x 400 m swath of snow depth measurements was centered on this profile. Airborne data were collected on five overflights of the two transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The radar measured snow thickness. The freeboard and snow thickness measurements are used to estimate ice thickness via isostasy and density estimates. The central swath of in situ snow depth data allows examination of the effects of cross-track variations considering the relatively large footprint of the snow radar. Assuming a smooth, flat surface the radar range resolution in air is < 4 cm, but the along-track sampling distance is ~ 3 m after unfocussed SAR processing. The width of the footprint varies from ~ 9 m up to about 40 m (beam-limited) for uneven surfaces. However, the radar could not resolve snow thickness except in areas of relatively flat snow and ice. The LiDAR had a ground point spacing of ~25-50 cm (depending on survey altitude) and so easily encompassed all other data. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.
Development of airborne remote sensing methods for surveys of Pacific walrus
Burn, Douglas M.; Udevitz, Mark S.; Webber, M.A.; Garlich-Miller, Joel L.
2006-01-01
In April 2003, we conducted an operational test of an airborne multispectral scanner (AMS) over pack ice in the Bering Sea to evaluate the potential of this system as a survey tool for Pacific walruses. We scanned a total of 28,875 km2 of sea ice habitat at a spatial resolution of 4 m and collected high resolution photographs from a subset of the thermally detected walrus groups. We found a significant positive relationship between walrus group size and the amount of heat measured by the AMS and used this relationship to estimate total walrus numbers in the survey area. The number of walruses hauled out onto sea ice in our study area was estimated at 4,785 animals with a 95% confidence interval of 2,499–7,111. We believe that the AMS system as configured for this study would be a highly effective tool for surveying large areas of sea ice habitat for walrus groups. With a 6 km swath width, it should be possible to sample more 10,000 km2 in an 8-hr flight. Although walrus groups > 4 animals were easily detected and enumerated in the 4 m thermal data, the system was unable to detect individual walruses or seals (Phoca spp. and Erignathus barbatus). We found that most (94.6%) of the walruses photographed in our survey area occurred in groups > 6 animals, therefore we expect the magnitude of any bias due to undetected groups of hauled out animals would be relatively small.
NASA Technical Reports Server (NTRS)
1974-01-01
A study was conducted to determine the recommended orbit for the Earth Observatory Satellite (EOS) Land Resources Mission. It was determined that a promising sun synchronous orbit is 366 nautical miles when using an instrument with a 100 nautical mile swath width. The orbit has a 17 day repeat cycle and a 14 nautical mile swath overlap. Payloads were developed for each mission, EOS A through F. For each mission, the lowest cost booster that was capable of lifting the payload to the EOS orbit was selected. The launch vehicles selected for the missions are identified on the basis of tradeoff studies and recommendations. The reliability aspects of the launch vehicles are analyzed.
USDA-ARS?s Scientific Manuscript database
Aerial spraying plays an important role in promoting agricultural production and protecting the biological environment due to its flexibility, high effectiveness, and large operational area per unit of time. In order to evaluate the performance parameters of the spraying systems on two fixed wing ai...
NASA Astrophysics Data System (ADS)
Alpers, Matthias; Brüns, Christian; Pillukat, Alexander
2017-11-01
The evolving needs of the meteorological community concerning the EUMETSAT Polar System follow-on satellite mission (Post-EPS) require the development of a high-performance multi-spectral imaging radiometer. Recognizing these needs, Jena Optronik GmbH proposed an innovative instrument concept, which comprises a high flexibility to adapt to user requirements as a very important feature. Core parameters like ground sampling distance (GSD), number and width of spectral channels, signal-to-noise ratio, polarization control and calibration facilities can be chosen in a wide range without changing the basic instrument configuration. Core item of the METimage instrument is a rotating telescope scanner to cover the large swath width of about 2800 km, which all polar platforms need for global coverage. The de-rotated image facilitates use of in-field spectral channel separation, which allows tailoring individual channel GSD (ground sampling distance) and features like TDI (time delay and integration). State-of-the-art detector arrays and readout electronics can easily be employed. Currently, the German DLR Space Agency, Jena- Optronik GmbH and AIM Infrarot Module GmbH work together implementing core assemblies of METimage: the rotating telescope scanner and the infrared detectors. The METimage instrument phase B study was kicked-off in September 2008. Germany intents to provide METimage as an in-kind contribution of the first METimage flight model to the EUMETSAT Post-EPS Programme.
Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrieval Assessment with Dropsondes
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Biswas, Sayak K.
2017-01-01
Map surface wind speed over wide swath (approximately 50-60 km, for aircraft greater than FL600) in hurricanes. Provide research data for understanding hurricane structure, and intensity change. Enable improved forecasts, warnings, and decision support.
Analysis of Interferometric Radar Data in a Queensland, Australia Tropical Rain Forest
NASA Technical Reports Server (NTRS)
Hensley, Scott; Rodriquez, Ernesto; Chapin, Elaine; Accad, Arnon
1999-01-01
The radar flies at 8000 m (24000 ft) above the ground and collects data in swath about 10 km wide. The radar simultaneously collects data from multiple frequencies and is capable of making interferometric radar measurements.
NASA Astrophysics Data System (ADS)
Hoang, Linh; Schneiderman, Elliot; Mukundan, Rajith; Moore, Karen; Owens, Emmet; Steenhuis, Tammo
2017-04-01
Surface runoff is the primary mechanism transporting substances such as sediments, agricultural chemicals, and pathogens to receiving waters. In order to predict runoff and pollutant fluxes, and to evaluate management practices, it is essential to accurately predict the areas generating surface runoff, which depend on the type of runoff: infiltration-excess runoff and saturation-excess runoff. The watershed of Cannonsville reservoir is part of the New York City water supply system that provides high quality drinking water to nine million people in New York City (NYC) and nearby communities. Previous research identified saturation-excess runoff as the dominant runoff mechanism in this region. The Soil and Water Assessment Tool (SWAT) is a promising tool to simulate the NYC watershed given its broad application and good performance in many watersheds with different scales worldwide, for its ability to model water quality responses, and to evaluate the effect of management practices on water quality at the watershed scale. However, SWAT predicts runoff based mainly on soil and land use characteristics, and implicitly considers only infiltration-excess runoff. Therefore, we developed a modified version of SWAT, referred to as SWAT-Hillslope (SWAT-HS), which explicitly simulates saturation-excess runoff by redefining Hydrological Response Units (HRUs) based on wetness classes with varying soil water storage capacities, and by introducing a surface aquifer with the ability to route interflow from "drier" to "wetter" wetness classes. SWAT-HS was first tested at Town Brook, a 37 km2 headwater watershed draining to the Cannonsville reservoir using a single sub-basin for the whole watershed. SWAT-HS performed well, and predicted streamflow yielded Nash-Sutcliffe Efficiencies of 0.68 and 0.87 at the daily and monthly time steps, respectively. More importantly, it predicted the spatial distribution of saturated areas accurately. Based on the good performance in the Town Brook watershed, we scale-up the application of SWAT-HS to the 1160 km2 Cannonsville watershed utilizing a setup of multiple sub-basins, and evaluate the model performance on flow simulation at different gauged locations in the watershed. Results from flow predictions will be used as a basis for evaluating the ability of SWAT-HS to make sediment and nutrient loading estimates.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, S.; Gray, M. A.; Hubanks, P. A.
2004-01-01
The Moderate Resolution Imaging Spectroradiometer (MODE) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and the Aqua spacecraft on April 26,2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the globe.
Design and development of the Sentinel-2 Multi Spectral Instrument and satellite system
NASA Astrophysics Data System (ADS)
Chorvalli, Vincent; Cazaubiel, Vincent; Bursch, Stefan; Welsch, Mario; Sontag, Heinz; Martimort, Philippe; Del Bello, Umberto; Sy, Omar; Laberinti, Paolo; Spoto, François
2010-10-01
2A and Sentinel-2B satellites currently under development will ensure systematic global acquisition of all land and coastal waters in the visible and short-wave infrared spectral domain with a 5 day revisit time at the equator. The Multi Spectral Instrument is a push-broom imager providing imagery in 13 spectral channels with spatial resolutions ranging from 10 m to 60 m and a swath width of 290 Km, larger than SPOT and Landsat. The instrument features a full field of view calibration device, a silicon carbide Three Mirror Anastigmat telescope with mirror dimensions up to 600 mm, specific filter stripe assemblies, newly developed Si-CMOS and HgCDTe detectors and a low noise wavelet compression video electronics. The 1.4 Tbits/s raw image date rate is reduced down to 490 Mbits/s at the output of the instrument to cope with the overall system transmission capability. The Sentinel-2 program has entered in the CD phase in 2009. Launch of Sentinel-2A satellite is scheduled for 2013.
MRO's High Resolution Imaging Science Experiment (HiRISE): Polar Science Expectations
NASA Technical Reports Server (NTRS)
McEwen, A.; Herkenhoff, K.; Hansen, C.; Bridges, N.; Delamere, W. A.; Eliason, E.; Grant, J.; Gulick, V.; Keszthelyi, L.; Kirk, R.
2003-01-01
The Mars Reconnaissance Orbiter (MRO) is expected to launch in August 2005, arrive at Mars in March 2006, and begin the primary science phase in November 2006. MRO will carry a suite of remote-sensing instruments and is designed to routinely point off-nadir to precisely target locations on Mars for high-resolution observations. The mission will have a much higher data return than any previous planetary mission, with 34 Tbits of returned data expected in the first Mars year in the mapping orbit (255 x 320 km). The HiRISE camera features a 0.5 m telescope, 12 m focal length, and 14 CCDs. We expect to acquire approximately 10,000 observations in the primary science phase (approximately 1 Mars year), including approximately 2,000 images for 1,000 stereo targets. Each observation will be accompanied by a approximately 6 m/pixel image over a 30 x 45 km region acquired by MRO s context imager. Many HiRISE images will be full resolution in the center portion of the swath width and binned (typically 4x4) on the sides. This provides two levels of context, so we step out from 0.3 m/pixel to 1.2 m/pixel to 6 m/pixel (at 300 km altitude). We expect to cover approximately 1% of Mars at better than 1.2 m/pixel, approximately 0.1% at 0.3 m/pixel, approximately 0.1% in 3 colors, and approximately 0.05% in stereo. Our major challenge is to find the dey contacts, exposures and type morphologies to observe.
Radar Observations of Convective Systems from a High-Altitude Aircraft
NASA Technical Reports Server (NTRS)
Heymsfield, G.; Geerts, B.; Tian, L.
1999-01-01
Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations. Both TEFLUN-A and B were amply supported by surface data, in particular a dense raingauge network, a polarization radar, wind profilers, a mobile radiosonde system, a cloud physics aircraft penetrating the overflown storms, and a network of 10 cm Doppler radars(WSR-88D). This presentation will show some preliminary comparisons between TRMM, EDOP, and WSR-88D reflectivity fields in the case of an MCS, a hurricane, and less organized convection in central Florida. A validation of TRMM reflectivity is important, because TRMM's primary objective is to estimate the rainfall climatology with 35 degrees of the equator. Rainfall is estimated from the radar reflectivity, as well from TRMM's Microwave Imager, which measures at 10.7, 19.4, 21.3, 37, and 85.5 GHz over a broader swath (78 km). While the experiments lasted about three months the cumulative period of near simultaneous observations of storms by ground-based, airborne and space borne radars is only about an hour long. Therefore the comparison is case-study-based, not climatological. We will highlight fundamental differences in the typical reflectivity profiles in stratiform regions of MCS's, Florida convection and hurricanes and will explain why Z-R relationships based on ground-based radar data for convective systems over land should be different from those for hurricanes. These catastrophically intense rainfall from hurricane Georges in Hispaniola and from Mitch in Honduras highlights the importance of accurate Z-R relationships, It will be shown that a Z-R relationship that uses the entire reflectivity profile (rather than just a 1 level) works much better in a variety of cases, making an adjustment of the constants for different precipitation system categories redundant.
MISR Level 1 Near Real Time Products
Atmospheric Science Data Center
2016-10-31
Level 1 Near Real Time The MISR Near Real Time Level 1 data products ... km MISR swath and projected onto a Space-Oblique Mercator (SOM) map grid. The Ellipsoid-projected and Terrain-projected top-of-atmosphere (TOA) radiance products provide measurements respectively resampled onto the ...
TRMM and Its Connection to the Global Water Cycle
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Hong, Ye
1999-01-01
The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35' leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 in. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument.
How wide is a road? The association of roads and mass-wasting in a forested montane environment
Larsen, M.C.; Parks, J.E.
1997-01-01
A spatial data base of 1609 landslides was analysed using a geographic information system to determine landslide frequency in relation to highways. A 126 km long transportation network in a 201km2 area of humid-tropical, mountainous, forested terrain in Puerto Rico was used in conjunction with a series of 20 buffer (disturbance) zones varying from 5 to 400m in length, measured perpendicular to the highways. Average landslide frequency in the study area at distances greater than 85m from roads was about six landslides per square kilometre. At distances of 85m or less on either side of a highway, landslide frequency was about 30 landslides per square kilometre. On average, this elevated disturbance rate affected 330m2km-2a-1 within the 170m swath. The mass-wasting rate outside of the disturbance zone affected 40m2km-2 a-1. These results indicate that the rate of mass-wasting disturbance is increased from five to eight times in a 170m wide swath along road corridors. The lateral extent of the environmental impact of roads in the study area is greater than is commonly perceived. The approach described herein demonstrates a simple method to assess the spatial association of mass-wasting with highways. ?? 1997 by John Wiley & Sons, Ltd.
Impact Craters on Titan? Cassini RADAR View
NASA Technical Reports Server (NTRS)
Wood, Charles A.; Lopes, Rosaly; Stofan, Ellen R.; Paganelli, Flora; Elachi, Charles
2005-01-01
Titan is a planet-size (diameter of 5,150 km) satellite of Saturn that is currently being investigated by the Cassini spacecraft. Thus far only one flyby (Oct. 26, 2004; Ta) has occurred when radar images were obtained. In February, 2005, and approximately 20 more times in the next four years, additional radar swaths will be acquired. Each full swath images about 1% of Titan s surface at 13.78 GHz (Ku-band) with a maximum resolution of 400 m. The Ta radar pass [1] demonstrated that Titan has a solid surface with multiple types of landforms. However, there is no compelling detection of impact craters in this first radar swath. Dione, Tethys and other satellites of Saturn are intensely cratered, there is no way that Titan could have escaped a similar impact cratering past; thus there must be ongoing dynamic surface processes that erase impact craters (and other landforms) on Titan. The surface of Titan must be very young and the resurfacing rate must be significantly higher than the impact cratering rate.
1989-05-01
swat~h widt-h cncd resolutirun 111I 121. A number -if lu,o,. tt, tray I, ii- ccut ii-,- Il related to the use? of active (chased arraysi - Elect ronic...Address Pax ’ues Various 230 12.tlltrtutt~n tetmon This document is distributed in accordanc with NATIO Security Regulations and A0ARI) policies . High
Airborne Grid Sea-Ice Surveys for Comparison with Cryosat-2
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.; Newman, T.
2015-12-01
The Naval Research Laboratory is studying of the changing Arctic with a focus on ice thickness and distribution variability. The goal is optimization of computer models used to predict sea ice changes. An important part of our study is to calibrate/validate Cryosat-2 ice thickness data prior to its incorporation into new ice forecast models. The footprint of the altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of scanning LiDAR and radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. The difficulty in the collection of such grids, which are comprised of adjacent overlapping tracks is ice motion of as much as 300 m over the duration of a single flight track (~ 20 km) of data collection. With a typical LiDAR swath width of < 500m adjustment of the survey tracks in near real-time for the ice motion is necessary for a coherent data set. This was accomplished by a an NRL devised photogrammetric method of ice velocity determination. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. This allows us to reconstruct the ice configuration to the time of the satellite overflight, resulting in a good picture of the surface actually illuminated by the radar. The detailed 2-d LiDAR image is the snow surface, not the underlying ice presumably illuminated by the radar. Our hope is that the 1-D radar profiles collected along the LiDAR swath centerlines will be sufficient to correct the grid for snow thickness. A total of 15 grids 5-20 km wide (cross-track) by 10-30 km long (along-track) centered on ice illuminated by CryoSat-2 were collected north of Barrow, AK. This occured over three field seasons which took place from 2013-15. Data from the grids are shown here and are being used to examine the relationship of the tracked satellite waveform data to the actual surface.
SSTL UK-DMC SLIM-6 data quality assessment
Chander, G.; Saunier, S.; Choate, M.J.; Scaramuzza, P.L.
2009-01-01
Satellite data from the Surrey Satellite Technology Limited (SSTL) United Kingdom (UK) Disaster Monitoring Constellation (DMC) were assessed for geometric and radiometric quality. The UK-DMC Surrey Linear Imager 6 (SLIM-6) sensor has a 32-m spatial resolution and a ground swath width of 640 km. The UK-DMC SLIM-6 design consists of a three-band imager with green, red, and near-infrared bands that are set to similar bandpass as Landsat bands 2, 3, and 4. The UK-DMC data consisted of imagery registered to Landsat orthorectified imagery produced from the GeoCover program. Relief displacements within the UK-DMC SLIM-6 imagery were accounted for by using global 1-km digital elevation models available through the Global Land One-km Base Elevation (GLOBE) Project. Positional accuracy and relative band-to-band accuracy were measured. Positional accuracy of the UK-DMC SLIM-6 imagery was assessed by measuring the imagery against digital orthophoto quadrangles (DOQs), which are designed to meet national map accuracy standards at 1 : 24 000 scales; this corresponds to a horizontal root-mean-square accuracy of about 6 m. The UK-DMC SLIM-6 images were typically registered to within 1.0-1.5 pixels to the DOQ mosaic images. Several radiometric artifacts like striping, coherent noise, and flat detector were discovered and studied. Indications are that the SSTL UK-DMC SLIM-6 data have few artifacts and calibration challenges, and these can be adjusted or corrected via calibration and processing algorithms. The cross-calibration of the UK-DMC SLIM-6 and Landsat 7 Enhanced Thematic Mapper Plus was performed using image statistics derived from large common areas observed by the two sensors.
Orbit Selection for Earth Observation Missions
NASA Technical Reports Server (NTRS)
King, J. C.
1978-01-01
The orbit selection process is simplified for most earth-oriented satellite missions by a restriction to circular orbits, which reduces the primary orbit characteristics to be determined to only two: altitude and inclination. A number of important mission performance characteristics depend on these choices, however, so a major part of the orbit selection task is concerned with developing the correlating relationships in clear and convenient forms to provide a basis for rational orbit selection procedures. The present approach to that task is organized around two major areas of mission performance, orbit plane precession and coverage pattern development, whose dependence on altitude and inclination is delineated graphically in design chart form. These charts provide a visual grasp of the relationships between the quantities cited above, as well as other important mission performance parameters including viewing time of day (solar), sensor swath width (and fields of view), swath sequencing, and pattern repeat condition and repeat periods.
NASA Astrophysics Data System (ADS)
Yong, Sang-Soon; Ra, Sung-Woong
2007-10-01
Multi-Spectral Camera(MSC) is a main payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/ offset and on-board image data compression/ storage. The compression method on KOMPSAT-2 MSC was selected and used to match EOS input rate and PDTS output data rate on MSC image data chain. At once the MSC performance was carefully handled to minimize any degradation so that it was analyzed and restored in KGS(KOMPSAT Ground Station) during LEOP and Cal./Val.(Calibration and Validation) phase. In this paper, on-orbit image data chain in MSC and image data processing on KGS including general MSC description is briefly described. The influences on image performance between on-board compression algorithms and between performance restoration methods in ground station are analyzed, and the relation between both methods is to be analyzed and discussed.
Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 908
2008-08-01
demonstration at Aberdeen Proving Ground, a system with eight fluxgate magnetometers (Foerster CON650 gradiometers) and RTK-DGPS georeferencing will...be used. The spacing between the individual fluxgate sensors will be 25 cm (ca. 10 inches), totaling to a swath width of 2 m. c. The MAGNETO...MX system consists of: the MX-compact hardware multiplexer electronic module, up to 32 fluxgate gradiometers (for the APG demonstration: 8 fluxgate
Two cold-season derechoes in Europe
NASA Astrophysics Data System (ADS)
Gatzen, Christoph; Púčik, Tomas; Ryva, David
2011-06-01
In this study, we apply for the first time the definition of a derecho (Johns and Hirt, 1987) to European cold-season convective storm systems. These occurred on 18 January 2007 and 1 March 2008, respectively, and they are shown to fulfill the criteria of a derecho. Damaging winds were reported over a distance of 1500 km and locally reached F3 intensity. Synoptic analysis for the events reveal strongly forced situations that have been described for cold-season derechoes in the United States. A comparison of swaths of damaging winds, radar structures, detected lightning, cold pool development, and cloud-top temperatures indicates that both derechoes formed along cold fronts that were affected by strong quasi-geostrophic forcing. It seems that the overlap of the cold front position with the strong differential cyclonic vorticity advection at the cyclonic flank of mid-level jet streaks favoured intense convection and high winds. The movement and path width of the two derechoes seemed to be related to this overlap. The wind gust intensity that was also different for both events is discussed and could be related to the component of the mid-level winds perpendicular to the gust fronts.
Status of calibration and data evaluation of AMSR on board ADEOS-II
NASA Astrophysics Data System (ADS)
Imaoka, Keiji; Fujimoto, Yasuhiro; Kachi, Misako; Takeshima, Toshiaki; Igarashi, Tamotsu; Kawanishi, Toneo; Shibata, Akira
2004-02-01
The Advanced Microwave Scanning Radiometer (AMSR) is the multi-frequency, passive microwave radiometer on board the Advanced Earth Observing Satellite-II (ADEOS-II), currently called Midori-II. The instrument has eight-frequency channels with dual polarization (except 50-GHz band) covering frequencies between 6.925 and 89.0 GHz. Measurement of 50-GHz channels is the first attempt by this kind of conically scanning microwave radiometers. Basic concept of the instrument including hardware configuration and calibration method is almost the same as that of ASMR for EOS (AMSR-E), the modified version of AMSR. Its swath width of 1,600 km is wider than that of AMSR-E. In parallel with the calibration and data evaluation of AMSR-E instrument, almost identical calibration activities have been made for AMSR instrument. After finished the initial checkout phase, the instrument has been continuously obtaining the data in global basis. Time series of radiometer sensitivities and automatic gain control telemetry indicate the stable instrument performance. For the radiometric calibration, we are now trying to apply the same procedure that is being used for AMSR-E. This paper provides an overview of the instrument characteristics, instrument status, and preliminary results of calibration and data evaluation activities.
Real Time Monitoring of Flooding from Microwave Satellite Observations
NASA Technical Reports Server (NTRS)
Galantowicz, John F.; Frey, Herb (Technical Monitor)
2002-01-01
We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).
Finlayson, David P.; Triezenberg, Peter J.; Hart, Patrick E.
2010-01-01
This report describes geophysical data acquired by the U.S. Geological Survey (USGS) in San Andreas Reservoir and Upper and Lower Crystal Springs Reservoirs, San Mateo County, California, as part of an effort to refine knowledge of the location of traces of the San Andreas Fault within the reservoir system and to provide improved reservoir bathymetry for estimates of reservoir water volume. The surveys were conducted by the Western Coastal and Marine Geology (WCMG) Team of the USGS for the San Francisco Public Utilities Commission (SFPUC). The data were acquired in three separate surveys: (1) in June 2007, personnel from WCMG completed a three-day survey of San Andreas Reservoir, collecting approximately 50 km of high-resolution Chirp subbottom seismic-reflection data; (2) in November 2007, WCMG conducted a swath-bathymetry survey of San Andreas reservoir; and finally (3) in April 2008, WCMG conducted a swath-bathymetry survey of both the upper and lower Crystal Springs Reservoir system. Top of PageFor more information, contact David Finlayson.
A high resolution soil moisture radiometer
NASA Technical Reports Server (NTRS)
Dod, L. R.
1980-01-01
The design of an L-band high resolution soil moisture radiometer is described. The selected system is a planar slotted waveguide array at L-band frequencies. The square aperture is 74.75 m by 74.75 m subdivided into 8 tilted subarrays. The system has a 290 km circular orbit and provides a spatial resolution of 1 km. The aperture forms 230 simultaneous beams in a cross-track pattern which covers a swath 420 km wide. A revisit time of 6 days is provided for an orbit inclination of 50 deg. The 1 km resolution cell allows an integration time of 1/7 second and sharing this time period sequentially between two orthogonal polarization modes can provide a temperature resolution of 0.7 K.
Summary of KOMPSAT-5 Calibration and Validation
NASA Astrophysics Data System (ADS)
Yang, D.; Jeong, H.; Lee, S.; Kim, B.
2013-12-01
Korean Multi-Purpose Satellite 5 (KOMPSAT-5), equipped with high resolution X-band (9.66 GHz) Synthetic Aperture Radar (SAR), is planning to be launched on August 22, 2013. With the satellite's primary mission objective being providing Geographical Information System (GIS), Ocean monitoring and Land management, and Disaster and ENvironment monitoring (GOLDEN), it is expected that its applications for scientific research on geographical processes will be extensive. In order to meet its mission objective, the KOMPSAT-5 will provide three different kinds of SAR imaging modes; High Resolution Mode (1 m resolution, 5 km swath), Standard Mode (3 m resolution, 30 km swath), and Wide Swath Mode (20 m resolution, 100 km swath). The KOMPSAT-5 will be operated in a 550 km sun-synchronous, dawn- dusk orbit with a 28-day ground repeat cycle providing valuable image information on Earth surface day-or-night and even in bad weather condition. After successful launch of the satellite, it will go through Launch and Early Operation (LEOP) and In-Orbit Testing (IOT) period about for 6 months to carry out various tests on satellite bus and payload systems. The satellite bus system will be tested during the first 3 weeks after the launch focusing on the Attitude and Orbit Control Subsystem (AOCS) and Integrated GPS Occultation Receiver (IGOR) calibration. With the completion of bus system test, the SAR payload system will be calibrated during initial In-Flight check period (11 weeks) by the joint effort of Thales Alenia Space Italy (TAS-I) and Korea Aerospace Research Institute (KARI). The pointing and relative calibration will be carried out during this period by analyzing the doppler frequency and antenna beam pattern of reflected microwave signal from selected regions with uniform backscattering coefficients (e.g. Amazon rainforest). A dedicated SAR calibration, called primary calibration, will be allocated at the end of LEOP for 12 weeks to perform thorough calibration activities including pointing, relative and absolute calibration as well as geolocation accuracy determination. The absolute calibration will be accomplished by determining absolute radiometric accuracy using already deployed trihedral corner reflectors on calibration and validation sites located southeast from Ulaanbaatar, Mongolia. To establish a measure for the assess the final image products, geolocation accuracies of image products with different imaging modes will be determined by using deployed point targets and available Digital Terrain Model (DTM), and on different image processing levels. In summary, this paper will present calibration and validation activities performed during the LEOP and IOT of KOMPSAT-5. The methodology and procedure of calibration and validation will be explained as well as its results. Based on the results, the applications of SAR image products on geophysical processes will be also discussed.
Full 2D observation of water surface elevation from SWOT under different flow conditions
NASA Astrophysics Data System (ADS)
Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin
2016-04-01
The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first evaluation of the possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards more appropriate exploitation of future potential hydrologic data.
NASA Astrophysics Data System (ADS)
Dunker, Tim
2018-05-01
I investigate the nightly mean emission height and width of the OH* (3-1) layer by comparing nightly mean temperatures measured by the ground-based spectrometer GRIPS 9 and the Na lidar at ALOMAR. The data set contains 42 coincident measurements taken between November 2010 and February 2014, when GRIPS 9 was in operation at the ALOMAR observatory (69.3° N, 16.0° E) in northern Norway. To closely resemble the mean temperature measured by GRIPS 9, I weight each nightly mean temperature profile measured by the lidar using Gaussian distributions with 40 different centre altitudes and 40 different full widths at half maximum. In principle, one can thus determine the altitude and width of an airglow layer by finding the minimum temperature difference between the two instruments. On most nights, several combinations of centre altitude and width yield a temperature difference of ±2 K. The generally assumed altitude of 87 km and width of 8 km is never an unambiguous, good solution for any of the measurements. Even for a fixed width of ˜ 8.4 km, one can sometimes find several centre altitudes that yield equally good temperature agreement. Weighted temperatures measured by lidar are not suitable to unambiguously determine the emission height and width of an airglow layer. However, when actual altitude and width data are lacking, a comparison with lidars can provide an estimate of how representative a measured rotational temperature is of an assumed altitude and width. I found the rotational temperature to represent the temperature at the commonly assumed altitude of 87.4 km and width of 8.4 km to within ±16 K, on average. This is not a measurement uncertainty.
A system overview of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
NASA Technical Reports Server (NTRS)
Porter, Wallace M.; Enmark, Harry T.
1987-01-01
The AVIRIS instrument has been designed to do high spectral resolution remote sensing of the Earth. Utilizing both silicon and indium antimonide line array detectors, AVIRIS covers the spectral region from 0.41 to 2.45 microns in 10-nm bands. It was designed to fly aboard NASA's U-2 and ER-2 aircraft, where it will simulate the performance of future spacecraft instrumentation. Flying at an altitude of 20 km, it has an instantaneous field of view of 20 m and views a swath over 10 km wide. With an ability to record 40 minutes of data, it can, during a single flight, capture 500 km of flight line.
Design and breadboarding activities of the second-generation Global imager (SGLI) on GCOM-C
NASA Astrophysics Data System (ADS)
Okamura, Yoshihiko; Tanaka, Kazuhiro; Amano, Takahiro; Hiramatsu, Masaru; Shiratama, Koichi
2017-11-01
The Global Change Observation Mission (GCOM) is the next generation earth observation project of Japan Aerospace Exploration Agency (JAXA). GCOM concept will take over the Advanced Earth Observing Satellite-II (ADEOS-II) and develop into long-term monitoring of global climate change. The GCOM observing system consists of two series of medium size satellites: GCOM-W (Water) and GCOM-C (Climate). The Second-generation Global Imager (SGLI) on GCOM-C is a multi-band imaging radiometer with 19 spectral bands in the wavelength range of near-UV to thermal infrared. SGLI will provide high-accuracy measurements of Ocean, Atmosphere, Land and Cryosphere. These data will be utilized for studies to understand the global climate change, especially human activity influence on earth environments. SGLI is a suite of two radiometers called Visible and Near Infrared Radiometer (VNR) and Infrared Scanner (IRS). VNR is a pushbroom-type radiometer with 13 spectral bands in 380nm to 865nm range. While having quite wide swath (1150km), instantaneous field of view (IFOV) of most bands is set to 250m comparing to GLI's 1km requirement. Unique observation function of the VNR is along-track +/-45deg tilting and polarization observation for 670nm and 865nm bands mainly to improve aerosol retrieval accuracy. IRS is a wiskbroom-type infrared radiometer that has 6 bands in 1μm to 12μm range. Swath and IFOV are 1400km and 250m to 1km, respectively. This paper describes design and breadboarding activities of the SGLI instrument.
NASA Astrophysics Data System (ADS)
Hofton, M. A.; Blair, J. B.; Rabine, D.; Brooks, C.; Cornejo, H.; Story, S.
2016-12-01
In February-March 2016, NASA's Land, Vegetation and Ice Sensor (LVIS) was used to image sub-canopy topography, canopy topography and structure at several sites in Gabon. Data were collected as part of the NASA and ESA Afrisar Campaign, a joint remote sensing mission involving multiple airborne and ground-based data collection activities that support the calibration and validation of future spaceborne missions, particularly GEDI, NISAR and BIOMASS, as well as other investigations. LVIS is a wide-swath, medium-footprint, waveform recording laser altimeter (lidar) sensor that can collect contiguous data within a 2 km-wide swath using 20m wide footprints from 10km altitude. For the Gabon deployment, the sensor was mounted in the NASA Langley King Air aircraft and flown at 8 km altitude over five, 70x15km-wide areas and along multiple country-wide transects. Data products include footprint-level canopy height, ground topography and canopy metrics, as well as vertically and horizontally-geolocated lidar return waveforms that enable end users to produce additional georeferenced data products as needed. We present a summary of the data products from the campaign, as well as a performance assessment of the ground and canopy structure data using available airborne and ground based data. Uses of the data include the simulation of GEDI-like data and the derivation of canopy height and profile metric algorithms for implementation in GEDI level2 products, as well as to improve our understanding of ground-finding errors in dense vegetation environments from waveform lidar.
NASA Astrophysics Data System (ADS)
Blair, J. B.; Wake, S.; Rabine, D.; Hofton, M. A.; Mitchell, S.
2013-12-01
The Land Vegetation and Ice Sensor (LVIS) is a high-altitude, wide-swath laser altimeter that has, for over 15 years, demonstrated state-of-the-art performance in surface altimetry, including many aspects of remote sensing of the cryosphere such as precise topography of ice sheets and sea ice. NASA Goddard, in cooperation with NASA's Earth Science Technology Office (ESTO), has developed a new, more capable sensor that can operate autonomously from a high-altitude UAV aircraft to further enhance the LVIS capability and extend its reach and coverage. In June 2012, this latest sensor, known as LVIS-GH, was integrated onto NASA's Global Hawk aircraft and completed a successful high-altitude demonstration flight over Death Valley, Owens Valley, and the Sierra Nevada region of California. Data were collected over a wide variety of terrain types from 58,000' (> 17 km) altitude during the 6 hour long test flight. The full-waveform laser altimetry technique employed by LVIS and LVIS-GH provides precise surface topography measurements for solid earth and cryospheric applications and captures the vertical structure of forests in support of territorial ecology studies. LVIS-GH fully illuminates and maps a 4 km swath and provides cm-level range precision, as demonstrated in laboratory and horizontal range testing, as well as during this test flight. The cm range precision is notable as it applies to accurate measurements of sea ice freeboard and change detection of subtle surface deformation such as heaving in permafrost areas. In recent years, LVIS has primarily supported Operation IceBridge activities, including deployments to the Arctic and Antarctic on manned aircraft such as the NASA DC-8 and P-3. The LVIS-GH sensor provides an major upgrade of coverage capability and remote access; LVIS-GH operating on the long-duration Global Hawk aircraft can map up to 50,000 km^2 in a single flight and can provide access to remote regions such as the entirety of Antarctica. Future applications of LVIS-GH could include comprehensive mapping of cryosphere targets over large regions such as Alaska, Greenland, and Antarctica as well as an opportunity for seasonal mapping of sea and land ice. Data from the test flight will be presented along with accuracy assessment and specific examples of the cm-level range precision and wide swath mapping ability relevant to cryospheric remote sensing.
Physical and performance characteristics of instruments selected for global change monitoring
NASA Technical Reports Server (NTRS)
Allen, Cheryl L.
1991-01-01
The following appendix (appendix B) lists the instruments chosen for the Global Change Monitoring program. The instruments are described according to the following categories: (1) Title; (2) Measurement; (3) Contact; (4) Instrument Type; (5) Dimensions; (6) Mass; (7) Average Operational Power; (8) Data Rate; (9) Spectral/Frequency Range; (10) Number of Channels/Frequencies; (11) Viewing Field; (12) Scanning Characteristics; (13) Resolution (Horizontal/Vertical); (14) Swath Width; (15) Satellite Application; and (16) Technology Status. A technical drawing of each instrument is also provided.
The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product
NASA Technical Reports Server (NTRS)
Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John
2010-01-01
The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture that are informed by and consistent with SMAP observations. Such estimates are obtained by merging SMAP observations with estimates from a land surface model in a soil moisture data assimilation system. The land surface model component of the assimilation system is driven with observations-based surface meteorological forcing data, including precipitation, which is the most important driver for soil moisture. The model also encapsulates knowledge of key land surface processes, including the vertical transfer of soil moisture between the surface and root zone reservoirs. Finally, the model interpolates and extrapolates SMAP observations in time and in space. The L4_SM product thus provides a comprehensive and consistent picture of land surface hydrological conditions based on SMAP observations and complementary information from a variety of sources. The assimilation algorithm considers the respective uncertainties of each component and yields a product that is superior to satellite or model data alone. Error estimates for the L4_SM product are generated as a by-product of the data assimilation system.
NASA Astrophysics Data System (ADS)
Ito, N.; Uematsu, A.; Yajima, Y.; Isoguchi, O.
2014-12-01
Japan Aerospace Exploration Agency (JAXA) is working on a conceptual study of altimeter mission named Coastal and Ocean measurement Mission with Precise and Innovative Radar Altimeter (COMPIRA), which will carry a wide-swath altimeter named Synthetic aperture radar (SAR) Height Imaging Oceanic Sensor with Advanced Interferometry (SHIOSAI). Capturing meso/submeso-scale phenomena is one of important objectives of the COMPIRA mission, as well as operational oceanography and fishery. For operational oceanography including coastal forecast, swath of SHIOSAI is selected to be 80 km in left and right sides to maximize temporal and spatial sampling of the sea surface height. Orbit specifications are also designed to be better sampling especially for mid-latitude region. That is, a spatial grid sampling is 5 km and an observation times per revisit period (about 10 days) is 2 to 3 times. In order to meet both sampling frequency and spatial coverage requirements as much as possible, orbit inclination was set relatively low, 51 degrees. Although this sampling frequency is, of course, not enough high to capture time evolution of coastal phenomena, an assimilation process would compensate its time evolution if 2D SSH fields was observed at least once within decal time scale of phenomena. JAXA has launched a framework called "Coastal forecast core team" to aim at developing coastal forecast system through pre-launch activities toward COMPIRA. Assimilation segment as well as satellite and in situ data provision will play an important role on these activities. As a first step, we evaluated effects of ocean current forecast improvement with COMPIRA-simulated wide-swath and high sampling sea surface heights (SSH) data. Simulated SSH data are generated from regional ocean numerical models and the COMPIRA orbit and error specifications. Then, identical twin experiments are conducted to investigate the effect of wide-swath SSH measurements on coastal forecast in the Tohoku Pacific coast region. The experiment shows that simulated sea surface current using COMPIRA data as an input data for assimilation well represents vortical feature, which cannot be reproduced by conventional nadir altimeters.
NASA Astrophysics Data System (ADS)
Anderssohn, J.; Motagh, M.; Walter, T. R.; Rosenau, M.; Kaufmann, H.; Oncken, O.
2009-12-01
The variable spatio-temporal scales of Earth's surface deformation in potentially hazardous volcanic areas pose a challenge for observation and assessment. Here we used Envisat data acquired in Wide Swath Mode (WSM) and Image Mode (IM) from ascending and descending geometry, respectively, to study time-dependent ground uplift at the Lazufre volcanic system in Chile and Argentina. A least-squares adjustment was performed on 65 IM interferograms that covered the time period of 2003-2008. We obtained a clear trend of uplift reaching 15-16 cm in this 5-year interval. Using a joint inversion of ascending and descending interferograms, we evaluated the geometry and time-dependent progression of a horizontally extended pressurized source beneath the Lazufre volcanic system. Our results hence indicate that an extended magma body at a depth between 10 and 15 km would account for most of the ground uplift. The maximum inflation reached up to ~40 cm during 2003-2008. The lateral propagation velocity of the intrusion was estimated to be nearly constant at 5-10 km/yr during the observation time, which has important implications for the physical understanding of magma intrusion processes.
NASA Astrophysics Data System (ADS)
González-Jorge, H.; Bueno, M.; Martínez-Sánchez, J.; Arias, P.
2017-08-01
Unamnned aerial systems (UAS) show great potential in operations related to surveillance. These systems can be successfully applied to the prevention of forest fires, especially those caused by human intervention. The present works focuses on a study of the operational possibilities of the unmanned system "AtlantikSolar" developed by the ETH Zurich for the prevention of forest fires in the Spanish natural park of Serra do Xurés, an area of 20,920 ha with height variations between 300 m and 1,500 m. The operation evaluation of AtlantikSolar is based on the use of Flir Tau 2 LWIR camera as imaging payload which could detect illegal activities in the forest, such as bonfires, uncontrolled burning or pyromaniacs. Flight surveillance is planned for an altitude of 100 m to obey the legal limit of the Spanish UAS regulation. This altitude produces a swath width of 346.4 m and pixel resolution between 1.5 and 1.8 pixels/m. Operation is planned to adapt altitude to the change on the topography and obtain a constant ground resolution. Operational speed is selected to 52 km/h. The UAS trajectory is adapted to the limits of the natural park and the border between Spain and Portugal. Matlab code is developed for mission planning. The complete surveillance of the natural park requires a total time of 15.6 hours for a distance of 811.6 km.
Development of detailed design concepts for the EarthCARE multi-spectral imager
NASA Astrophysics Data System (ADS)
Lobb, Dan; Escadero, Isabel; Chang, Mark; Gode, Sophie
2017-11-01
The EarthCARE mission is dedicated to the study of clouds by observations from a satellite in low Earth orbit. The payload will include major radar and LIDAR instruments, supported by a multi-spectral imager (MSI) and a broadband radiometer. The paper describes development of detailed design concepts for the MSI, and analysis of critical performance parameters. The MSI will form Earth images at 500m ground sample distance (GSD) over a swath width of 150km, from a nominal platform altitude of around 400km. The task of the MSI is to provide spatial context for the single-point measurements made by the radar and LIDAR systems; it will image Earth in 7 spectral bands: one visible, one near-IR, two short-wave IR and three thermal IR. The MSI instrument will be formed in two parts: a visible-NIR-SWIR (VNS) system, radiometrically calibrated using a sunilluminated diffuser, and a thermal IR (TIR) system calibrated using cold space and an internal black-body. The VNS system will perform push-broom imaging, using linear array detectors (silicon and InGaAs) and 4 separate lenses. The TIR system will use a microbolometer array detector in a time delay and integration (TDI) mode. Critical issues discussed for the VNS system include detector selection and detailed optical design trade-offs. The latter are related to the desirability of dichroics to achieve a common aperture, which influences the calibration hardware and lens design. The TIR system's most significant problems relate to control of random noise and bias errors, requiring optimisation of detector operation and calibration procedures.
New NASA Satellite Zooms in on Tornado Swath
NASA Technical Reports Server (NTRS)
2002-01-01
A number of severe thunder storms swept through the mid-Atlantic states on April 28, bringing high winds, hailstones, and heavy rains to many areas. The intense storms spawned at least two tornadoes, one of which was classified as an F4 twister. The powerful tornado touched down in southern Maryland and ripped through the town of La Plata, destroying most of the historic downtown. The twister-the strongest ever recorded to hit the state and perhaps the strongest ever recorded in the eastern U.S.-flattened everything in its path along a 24-mile (39 km) swath running west to east through the state. The tornado's path can be seen clearly in this band-sharpened color image acquired on May 1 by the Advanced Land Imager (ALI), flying aboard NASA's EO-1 satellite. La Plata is situated toward the lefthand side of this scene and the twister's swath is the bright stripe passing through the town and running eastward 6 miles (10 km) toward the Patuxent River beyond the righthand side of the image. This stripe is the result of the vegetation flattened by the storm. The flattened vegetation reflects more light than untouched vegetation. EO-1 is the first Earth observing satellite launched as part of NASA's New Millennium Program. This program is designed to spearhead development and testing of a new generation of satellite remote sensing technologies for future Earth and space science missions. The ALI is designed to improve upon and extend the measurement heritage begun by the Landsat series of satellites well into the 21st Century. For more images of the tornado's path, including Landsat, visit Tornado Hits La Plata, Maryland in the Natural Hazards section of the Earth Observatory. Image courtesy Lawrence Ong, EO-1 Mission Science Office, NASA GSFC
NASA Technical Reports Server (NTRS)
Spencer, Michael; Dunbar, Scott; Chen, Curtis
2013-01-01
The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, a focus will be places on the radar design and associated data products at high latitudes. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used, among other things, to produce a surface freeze/thaw state data product.
New Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
Platnick, Steven; Tsay, Si-Chee; Ackerman, Steven A.; Gray, Mark A.; Moody, Eric G.; Li, Jason Y.; Arnold, G. T.; King, Michael D. (Technical Monitor)
2000-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999. It achieved its final orbit and began Earth observations on February 24, 2000. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this paper I will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of cloud drops and ice crystals. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.
Radiometric and Geometric Accuracy Analysis of Rasat Pan Imagery
NASA Astrophysics Data System (ADS)
Kocaman, S.; Yalcin, I.; Guler, M.
2016-06-01
RASAT is the second Turkish Earth Observation satellite which was launched in 2011. It operates with pushbroom principle and acquires panchromatic and MS images with 7.5 m and 15 m resolutions, respectively. The swath width of the sensor is 30 km. The main aim of this study is to analyse the radiometric and geometric quality of RASAT images. A systematic validation approach for the RASAT imagery and its products is being applied. RASAT image pair acquired over Kesan city in Edirne province of Turkey are used for the investigations. The raw RASAT data (L0) are processed by Turkish Space Agency (TUBITAK-UZAY) to produce higher level image products. The image products include radiometrically processed (L1), georeferenced (L2) and orthorectified (L3) data, as well as pansharpened images. The image quality assessments include visual inspections, noise, MTF and histogram analyses. The geometric accuracy assessment results are only preliminary and the assessment is performed using the raw images. The geometric accuracy potential is investigated using 3D ground control points extracted from road intersections, which were measured manually in stereo from aerial images with 20 cm resolution and accuracy. The initial results of the study, which were performed using one RASAT panchromatic image pair, are presented in this paper.
Multispectral Cloud Retrievals from MODIS on Terra and Aqua
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.
2002-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and the Aqua spacecraft on April 26, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.
New Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Tsay, Si-Chee; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.; Li, Jason Y.; Arnold, G. Thomas
2001-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999. It achieved its final orbit and began Earth observations on February 24, 2000. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun- synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.
NASA Astrophysics Data System (ADS)
Hoersch, Bianca
2017-04-01
The SENTINEL-2 mission is the European Multispectral Imaging Mission for the Copernicus joint initiative of the European Commission (EC) and the European Space Agency (ESA). The SENTINEL-2 mission includes 13-spectral band multispectral optical imager with different resolution (down to 10 m) and a swath width of 290km. It provides very short revisit times and rapid product delivery. The mission is composed of a constellation of two satellite units, SENTINEL-2A and SENTINEL-2B, sharing the same orbital plane and featuring a short repeat cycle of 5 days at the equator optimized to mitigate the impact of clouds for science and applications. SENTINEL-2 enables exploitation for a variety of land and coastal applications such as agriculture, forestry, land cover and land cover change, urban mapping, emergency, as well as inland water, ice, glaciers and also coastal zone and closed seas applications. Following the launch of the Sentinel-2A in June 2015 and successful operations and data delivery since December 2015, the Sentinel-2B satellite is set for launch in March 2017. The full operation capacity is foreseen after the in-orbit commissioning phase of the Sentinel-2B unit in early summer 2017. The objective of the talk is to provide information about the mission status, and the way to achieve full operational capacity with 2 satellites.
Marine Geophysical Characterization of the Chain Fracture Zone in the Equatorial Atlantic
NASA Astrophysics Data System (ADS)
Harmon, N.; Rychert, C.; Agius, M. R.; Tharimena, S.; Kendall, J. M.
2017-12-01
The Chain Fracture zone is part of a larger system of fracture zones along the Mid Atlantic Ridge that is thought to be one of the original zones of weakness during the break up of Pangea. It is over 300 km long and produces earthquakes as large as Mw 6.9 on segments of the active fault zone. Here we present the results of two marine geophysical mapping campaigns over the active part of the Chain Fracture zone as part of the PI-LAB (Passive Imaging of the Lithosphere-Asthenosphere Boundary) experiment. We collected swath bathymetry, backscatter imagery, gravity and total field magnetic anomaly. We mapped the fault scarps within the transform fault system using the 50 m resolution swath and backscatter imagery. In addition, a 30-40 mGal residual Mantle Bouguer Anomaly determined from gravity analysis suggests the crust is by up to 1.4-2.0 km beneath the Chain relative to the adjacent ridge segments. However, in the eastern 75 km of the active transform we find evidence for thicker crust. The active fault system cuts through the region of thicker crust and there is a cluster of MW > 6 earthquakes in this region. There is a cluster of similar sized earthquakes on the western end where thinner crust is inferred. This suggests that variations in melt production and crustal thickness at the mid ocean ridge systems may have only a minor effect on the seismicity and longevity of the transform fault system.
CCE fire regimes and their management
Robert E. Keane; Carl Key
2007-01-01
A spectacular forest in the center of the CCE cuts a 15- by 5-km swath along the Flathead River's South Fork around Big Prairie in the middle of the Bob Marshall Wilderness Area in Montana (Figure 13- 1). This wide valley bottom, which contains two patches (of about 1,000 ha each) of the last vestiges of the historic ponderosa pine ecosystem in the CCE, provides a...
Applications of NASA TROPICS Data for Tropical Cyclone Analysis, Nowcasting, and Impacts
NASA Astrophysics Data System (ADS)
Zavodsky, B.; Dunion, J. P.; Blackwell, W. J.; Braun, S. A.; Green, D. S.; Velden, C.; Adler, R. F.; Cossuth, J.; Murray, J. J.; Brennan, M. J.
2017-12-01
The National Aeronautics and Space Administration (NASA) Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission is a constellation of state-of-the-science observing platforms that will measure temperature and humidity soundings and precipitation with spatial resolution comparable to current operational passive microwave sounders but with unprecedented temporal resolution. TROPICS is a cost-capped ($30M) Venture-class mission funded by the NASA Earth Science Division. The mission is comprised of a constellation of 3 unit (3U) SmallSats, each hosting a 12-channel passive microwave spectrometer based on the Micro-sized Microwave Atmospheric Satellite 2 (MicroMAS-2) developed at MIT LL. TROPICS will provide imagery near 91 and 205 GHz, temperature sounding near 118 GHz, and moisture sounding near 183 GHz. Spatial resolution at nadir will be around 27 km for temperature and 17 km for moisture and precipitation. The swath width is approximately 2000 km. TROPICS enables temporal resolution similar to geostationary orbit but at a much lower cost, demonstrating a technology that could impact the design of future Earth-observing missions. The TROPICS satellites for the mission are slated for delivery to NASA in 2019 with potential launch opportunities in 2020. The primary mission objective of TROPICS is to relate temperature, humidity, and precipitation structure to the evolution of tropical cyclone (TC) intensity. This abstract summarizes the outcomes of the 1st TROPICS Applications Workshop, held from May 8-10, 2017 at the University of Miami. At this meeting, a series of presentations and breakout discussions in the topical areas of Tropical Cyclone Dynamics, Tropical Cyclone Analysis and Nowcasting, Tropical Cyclone Modeling and Data Assimilation, and Terrestrial Impacts were convened to identify applications of the mission data and to begin to establish a community of end-users who will be able to benefit from TROPICS. Key takeaways, partnerships, and applications will be highlighted.
NASA Technical Reports Server (NTRS)
Spencer, Michael; Dunbar, Scott; Chen, Curtis
2013-01-01
The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band in order to achieve the science objectives of measuring soil moisture and land surface freeze-thaw state. To achieve requirements for a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, focus will be placed on the radar design. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used to produce a surface freeze/thaw state data product.
NASA Astrophysics Data System (ADS)
Schubert, J.; Sanders, B. F.; Andreadis, K.
2013-12-01
The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting features, including a high degree of variability in the water depth and velocity and lesser variability in the free-surface profile and river discharge. Hydraulic control sections are also revealed, and shown to depend on flow stage. Reach-averaging of model output is applied to study the macro-scale balance of forces in this system, and the scales at which such a force balance is appropriate. We find that the reach-average slope exhibits a declining reach-length dependence with increasing reach length, up to reach lengths of 1 km. Hence, 1 km appears to be the minimum appropriate length for reach-averaging, and at this scale, a diffusive-wave momentum balance is a reasonable approximation suitable for emerging models of discharge estimation that rely only on SWOT-observable river properties (width, height, slope, etc.).
Significant Wave Height under Hurricane Irma derived from SAR Sentinel-1 Data
NASA Astrophysics Data System (ADS)
Lehner, S.; Pleskachevsky, A.; Soloviev, A.; Fujimura, A.
2017-12-01
The 2017 Atlantic hurricane season was with three major hurricanes a particular active one. The Category 4 hurricane Irma made landfall on the Florida Keys on September 10th 2017 and was imaged several times by ESAs Sentinel-1 satellites in C-band and the TerraSAR-X satellite in X-band. The high resolution TerraSAR-X imagery showed the footprint of individual tornadoes on the sea surface together with their turbulent wake imaged as a dark line due to increased turbulence. The water-cloud structures of the tornadoes are analyzed and their sea surface structure is compared to optical and IR cloud imagery. An estimate of the wind field using standard XMOD algorithms is provided, although saturating under the strong rain and high wind speed conditions. Imaging the hurricanes by space radar gives the opportunity to observe the sea surface and thus measure the wind field and the sea state under hurricane conditions through the clouds even in this severe weather, although rain features, which are usually not observed in SAR become visible due to damping effects. The Copernicus Sentinel-1 A and B satellites, which are operating in C-band provided several images of the sea surface under hurricane Irma, Jose and Maria. The data were acquired daily and converted into measurements of sea surface wind field u10 and significant wave height Hs over a swath width of 280km about 1000 km along the orbit. The wind field of the hurricanes as derived by CMOD is provided by NOAA operationally on their web server. In the hurricane cases though the wind speed saturates at 20 m/sec and is thus too low in the area of hurricane wind speed. The technique to derive significant wave height is new though and does not show any calibration issues. This technique provides for the first time measurements of the areal coverage and distribution of the ocean wave height as caused by a hurricane on SAR wide swath images. Wave heights up to 10 m were measured under the forward quadrant of the hurricane while making landfall on Cuba and the Florida Keys, where IRMA still hit as a category 3 to 4 hurricane. Results are compared to the WW3 model, which could not be validated over an area under strong and variable wind conditions before. A new theory on hurricane intensification based on Kelvin-Helmholtz instability is discussed and a first comparison to the SAR data is given.
The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter
Thomas, N.; Cremonese, G.; Ziethe, R.; Gerber, M.; Brändli, M.; Bruno, G.; Erismann, M.; Gambicorti, L.; Gerber, T.; Ghose, K.; Gruber, M.; Gubler, P.; Mischler, H.; Jost, J.; Piazza, D.; Pommerol, A.; Rieder, M.; Roloff, V.; Servonet, A.; Trottmann, W.; Uthaicharoenpong, T.; Zimmermann, C.; Vernani, D.; Johnson, M.; Pelò, E.; Weigel, T.; Viertl, J.; De Roux, N.; Lochmatter, P.; Sutter, G.; Casciello, A.; Hausner, T.; Ficai Veltroni, I.; Da Deppo, V.; Orleanski, P.; Nowosielski, W.; Zawistowski, T.; Szalai, S.; Sodor, B.; Tulyakov, S.; Troznai, G.; Banaskiewicz, M.; Bridges, J.C.; Byrne, S.; Debei, S.; El-Maarry, M. R.; Hauber, E.; Hansen, C.J.; Ivanov, A.; Keszthelyil, L.; Kirk, Randolph L.; Kuzmin, R.; Mangold, N.; Marinangeli, L.; Markiewicz, W. J.; Massironi, M.; McEwen, A.S.; Okubo, Chris H.; Tornabene, L.L.; Wajer, P.; Wray, J.J.
2017-01-01
The Colour and Stereo Surface Imaging System (CaSSIS) is the main imaging system onboard the European Space Agency’s ExoMars Trace Gas Orbiter (TGO) which was launched on 14 March 2016. CaSSIS is intended to acquire moderately high resolution (4.6 m/pixel) targeted images of Mars at a rate of 10–20 images per day from a roughly circular orbit 400 km above the surface. Each image can be acquired in up to four colours and stereo capability is foreseen by the use of a novel rotation mechanism. A typical product from one image acquisition will be a 9.5 km×∼45 km">9.5 km×∼45 km9.5 km×∼45 km swath in full colour and stereo in one over-flight of the target thereby reducing atmospheric influences inherent in stereo and colour products from previous high resolution imagers. This paper describes the instrument including several novel technical solutions required to achieve the scientific requirements.
MACSAT - A Near Equatorial Earth Observation Mission
NASA Astrophysics Data System (ADS)
Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.
MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean
NASA Technical Reports Server (NTRS)
Wright, C. W.; Walsh, E. J.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.
1999-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 deg half-power width (two-way) across the aircraft ground track over a swath equal to 0. 8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The data presented were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Wave heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction and at times there were wave fields traveling at right angles to each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 2-minute animation of the directional wave spectrum spatial variation over this period will be shown.
NASA Astrophysics Data System (ADS)
Serief, Chahira
2017-11-01
Alsat-1B, launched into a 670 km sun-synchronous orbit on board the PSLV launch vehicle from the Sriharikota launch site in India on 26 September 2016, is a medium resolution Earth Observation satellite with a mass of 100 kg. Alsat-1B will be used for agricultural and resource monitoring, disaster management, land use mapping and urban planning. It is based on the SSTL-100 platform, and flies a 24 m multispectral imager and a 12 m panchromatic imager delivering images with a swath width of 140 km. One of the main factors affecting the performance of satellite-borne optical imaging systems is micro-vibration. Micro-vibration is a low level mechanical disturbance inevitably generated from moving parts on a satellite and exceptionally difficult to be controlled by the attitude and orbital control system (AOCS) of a spacecraft. Micro-vibration usually causes problems for optical imaging systems onboard Earth Observation satellites. The major effect of micro-vibration is the excitation of the support structures for the optical elements during imaging operations which can result in severe degradation of image quality by smearing and distortion. Quantitative characterization of image degradation caused by micro-vibration is thus quite useful and important as part of system level analysis which can help preventing micro-vibration influence by proper design and restoring the degraded image. The aim of this work is to provide quantitative estimates of the effect of micro-vibration on the performance of Alsat-1B imager, which may be experienced operationally, in terms of the modulation transfer function (MTF) and based on ground micro-vibration tests results.
NASA Technical Reports Server (NTRS)
Razak, K.
1980-01-01
The question of the effect of distribution and magnitude of spanwise circulation and shed vorticity from an airplane wing on the distribution pattern of agricultural products distributed from an airplane was studied. The first step in an analysis of this question is the determination of the actual distribution of lift along an airplane wing, from which the pattern of shed vorticity can be determined. A procedure is developed to calculate the span loading for flapped and unflapped wings of arbitrary aspect ratio and taper ratio. The procedure was programmed on a small programmable calculator, the Hewlett Packard HP-97, and also was programmed in BASIC language. They could be used to explore the variations in span loading that can be secured by variable flap deflections or the effect of flying at varying air speeds at different airplane gross weights. Either an absolute evaluation of span loading can be secured or comparative span loading can be evaluated to determine their effect on swath width and swath distribution pattern. The programs are intended to assist the user in evaluating the effect of a given spanload distribution.
The Structure of Chariklo’s Rings from Stellar Occultations
NASA Astrophysics Data System (ADS)
Bérard, D.; Sicardy, B.; Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Ortiz, J.-L.; Duffard, R.; Morales, N.; Meza, E.; Leiva, R.; Benedetti-Rossi, G.; Vieira-Martins, R.; Gomes Júnior, A.-R.; Assafin, M.; Colas, F.; Dauvergne, J.-L.; Kervella, P.; Lecacheux, J.; Maquet, L.; Vachier, F.; Renner, S.; Monard, B.; Sickafoose, A. A.; Breytenbach, H.; Genade, A.; Beisker, W.; Bath, K.-L.; Bode, H.-J.; Backes, M.; Ivanov, V. D.; Jehin, E.; Gillon, M.; Manfroid, J.; Pollock, J.; Tancredi, G.; Roland, S.; Salvo, R.; Vanzi, L.; Herald, D.; Gault, D.; Kerr, S.; Pavlov, H.; Hill, K. M.; Bradshaw, J.; Barry, M. A.; Cool, A.; Lade, B.; Cole, A.; Broughton, J.; Newman, J.; Horvat, R.; Maybour, D.; Giles, D.; Davis, L.; Paton, R. A.; Loader, B.; Pennell, A.; Jaquiery, P.-D.; Brillant, S.; Selman, F.; Dumas, C.; Herrera, C.; Carraro, G.; Monaco, L.; Maury, A.; Peyrot, A.; Teng-Chuen-Yu, J.-P.; Richichi, A.; Irawati, P.; De Witt, C.; Schoenau, P.; Prager, R.; Colazo, C.; Melia, R.; Spagnotto, J.; Blain, A.; Alonso, S.; Román, A.; Santos-Sanz, P.; Rizos, J.-L.; Maestre, J.-L.; Dunham, D.
2017-10-01
Two narrow and dense rings (called C1R and C2R) were discovered around the Centaur object (10199) Chariklo during a stellar occultation observed on 2013 June 3. Following this discovery, we planned observations of several occultations by Chariklo’s system in order to better characterize the physical properties of the ring and main body. Here, we use 12 successful occulations by Chariklo observed between 2014 and 2016. They provide ring profiles (physical width, opacity, edge structure) and constraints on the radii and pole position. Our new observations are currently consistent with the circular ring solution and pole position, to within the ±3.3 km formal uncertainty for the ring radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal significant width variations from ˜5 to 7.5 km. The width of the fainter ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and outer edges of C1R are consistent with infinitely sharp boundaries, with typical upper limits of one kilometer for the transition zone between the ring and empty space. No constraint on the sharpness of C2R’s edges is available. A 1σ upper limit of ˜20 m is derived for the equivalent width of narrow (physical width < 4 km) rings up to distances of 12,000 km, counted in the ring plane.
Oil Spill Detection and Monitoring of Abu Dhabi Coastal Zone Using KOMPSAT-5 SAR Imagery
NASA Astrophysics Data System (ADS)
Harahsheh, H. A.
2016-06-01
Abu Dhabi Government endorsed vision for its Maritime Strategy `A safe, secure and sustainable maritime domain for Abu Dhabi'. This research study share this vision using the concept of monitoring as tool for marine protection against any possible oil pollution. The best technology to detect and monitor oil pollution and in particularly oil spill is SAR imagery In this case study we chose KOMPSAT-5 SAR. KOMPSAT-5 carries X-band SAR for earth observation, and is capable of day-and-night imaging under all weather condition. It provides three operation modes: High Resolution Mode to provide 1 m resolution, Standard Mode to provide 3 m resolution and Wide Swath Mode to provide 20 m resolution with 100 km swath at 550 km altitude, with four modes of polarization. KOMPSAT-5 provides products for various applications; security and defense, mapping, and natural resource management, environmental monitoring, disaster monitoring and more. For our case study we chose to work with Wide Swath mode (WS) with Vertical polarization (VV) to cover a wide area of interest located to the north west of Abu Dhabi including some important islands like "Zirku Island", and areas with oil production activities. The results of data acquired on 4th May 2015 show some spot of oil spill with length estimated about 3 KM, and the daily satellite data acquisition over the period July 24 through July 31 shows serious and many oil spill events some are small, but many others are considered to be big with area size around 20 km2. In the context of oil spill pollution in the seas, we have to consider the development and increase of overseas transportation, which is an important factor for both social and economic sectors. The harmful effects of marine pollution are numerous, from the damage of marine life to the damage of the aquatic ecosystem as whole. As such, the need for oil slick detection is crucial, for the location of polluted areas and to evaluate slick drift to protect the coastline. Satellite-based oil spill monitoring system now can be used to take precautions and even to determine the possible polluter; it has a vital importance on the detection and protection of national and international waters from the possible damages of petroleum hazard. Finally, and as we suggested in previous studies, we recommend to the national authorities to establish a national near-real time oil spill monitoring system based on SAR satellite imagery, with the support of other tools like AIS and navigation radars
NASA Astrophysics Data System (ADS)
Leberl, F.; Gruber, M.; Ponticelli, M.; Wiechert, A.
2012-07-01
The UltraCam-project created a novel Large Format Digital Aerial Camera. It was inspired by the ISPRS Congress 2000 in Amsterdam. The search for a promising imaging idea succeeded in May 2001, defining a tiling approach with multiple lenses and multiple area CCD arrays to assemble a seamless and geometrically stable monolithic photogrammetric aerial large format image. First resources were spent on the project in September 2011. The initial UltraCam-D was announced and demonstrated in May 2003. By now the imaging principle has resulted in a 4th generation UltraCam Eagle, increasing the original swath width from 11,500 pixels to beyond 20,000. Inspired by the original imaging principle, alternatives have been investigated, and the UltraCam-G carries the swath width even further, namely to a frame image with nearly 30,000 pixels, however, with a modified tiling concept and optimized for orthophoto production. We explain the advent of digital aerial large format imaging and how it benefits from improvements in computing technology to cope with data flows at a rate of 3 Gigabits per second and a need to deal with Terabytes of imagery within a single aerial sortie. We also address the many benefits of a transition to a fully digital workflow with a paradigm shift away from minimizing a project's number of aerial photographs and towards maximizing the automation of photogrammetric workflows by means of high redundancy imaging strategies. The instant gratification from near-real-time aerial triangulations and dense image matching has led to a reassessment of the value of photogrammetric point clouds to successfully compete with direct point cloud measurements by LiDAR.
The NASA Soil Moisture Active Passive (SMAP) Mission - Science and Data Product Development Status
NASA Technical Reports Server (NTRS)
Nloku, E.; Entekhabi, D.; O'Neill, P.
2012-01-01
The Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has the objective of frequent, global mapping of near-surface soil moisture and its freeze-thaw state. The SMAP measurement system utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The instruments will operate on a spacecraft in a 685 km polar orbit with 6am/6pm nodal crossings, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments will yield global maps of soil moisture and freeze/thaw state at 10 km and 3 km resolutions, respectively, every two to three days. The 10-km soil moisture product will be generated using a combined radar and radiometer retrieval algorithm. SMAP will also provide a radiometer-only soil moisture product at 40-km spatial resolution and a radar-only soil moisture product at 3-km resolution. The relative accuracies of these products will vary regionally and will depend on surface characteristics such as vegetation water content, vegetation type, surface roughness, and landscape heterogeneity. The SMAP soil moisture and freeze/thaw measurements will enable significantly improved estimates of the fluxes of water, energy and carbon between the land and atmosphere. Soil moisture and freeze/thaw controls of these fluxes are key factors in the performance of models used for weather and climate predictions and for quantifYing the global carbon balance. Soil moisture measurements are also of importance in modeling and predicting extreme events such as floods and droughts. The algorithms and data products for SMAP are being developed in the SMAP Science Data System (SDS) Testbed. In the Testbed algorithms are developed and evaluated using simulated SMAP observations as well as observational data from current airborne and spaceborne L-band sensors including data from the SMOS and Aquarius missions. We report here on the development status of the SMAP data products. The Testbed simulations are designed to capture various sources of errors in the products including environment effects, instrument effects (nonideal aspects of the measurement system), and retrieval algorithm errors. The SMAP project has developed a Calibration and Validation (Cal/Val) Plan that is designed to support algorithm development (pre-launch) and data product validation (post-launch). A key component of the Cal/Val Plan is the identification, characterization, and instrumentation of sites that can be used to calibrate and validate the sensor data (Level l) and derived geophysical products (Level 2 and higher).
Kilpatrick, John W.; Tonn, Robert J.; Jatanasen, Sujarti
1970-01-01
An evaluation study of ultra-low-volume (ULV) spraying of insecticide from aircraft was carried out in Thailand, to determine if this technique could be used for the emergency control of Aedes aegypti, the major vector of haemorrhagic fever. A small, single-engined aircraft, a Cessna-180, was used in the trials and 2 types of spraying equipment were tested; both were found to be equally effective. The aircraft was fitted with 6 spraying nozzles and flew at an altitude of 150 feet (46 m) at a speed of 100 miles/h (161 km/h). The insecticide used was 95% technical grade malathion and swaths 75 feet wide (22.8 m) were laid down; the rate of application was 3 US fl oz/acre (219 ml/ha). Trials were made in 3 villages near Bangkok and it became apparent that a small aircraft could not produce the required even distribution of insecticide; the rate of application was therefore increased to 6 US fl oz/acre (438 ml/ha). This increased rate appeared to compensate for the narrow width of the swath and produced very satisfactory mortalities in caged mosquitos as well as in natural populations. The size and distribution of droplets was monitored by the use of oil-sensitive red dye cards which showed that there was a good penetration of insecticide into dwellings, etc. Trial results were evaluated by biting counts, bioassays of Aedes and Culex adults and larvae, Culex dips and ovitraps. Biossays indicated that the 6 US fl oz/acre rate of application was almost 100% effective in the open and produced satisfactory mortalities inside markets and dwellings. It was concluded that larger aircraft would be required to treat areas of more than 1000 acres (405 ha) and congested city areas but that the rate of application of insecticide could be considerably lower. Nevertheless, small aircraft can be useful in smaller and less congested areas. PMID:5309517
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, D.W.
1989-03-01
The US Geological Survey's remote sensing instrument for regional imaging of the deep sea floor (> 400 m water depth) is the GLORIA (Geologic Long-Range Inclined Asdic) sidescan sonar system, designed and operated by the British Institute of Oceanographic Sciences. A 30-sec sweep rate provides for a swath width of approximately 45 km, depending on water depth. The return signal is digitally recorded as 8 bit data to provide a cross-range pixel dimension of 50 m. Postcruise image processing is carried out by using USGS software. Processing includes precision water-column removal, geometric and radiometric corrections, and contrast enhancement. Mosaicking includesmore » map grid fitting, concatenation, and tone matching. Seismic reflection profiles, acquired along track during the survey, are image correlative and provide a subsurface dimension unique to marine remote sensing. Generally GLORIA image interpretation is based on brightness variations which are largely a function of (1) surface roughness at a scale of approximately 1 m and (2) slope changes of more than about 4/degrees/ over distances of at least 50 m. Broader, low-frequency changes in slope that cannot be detected from the Gloria data can be determined from seismic profiles. Digital files of bathymetry derived from echo-sounder data can be merged with GLORIA image data to create relief models of the sea floor for geomorphic interpretation of regional slope effects.« less
Coarse Resolution SAR Imagery to Support Flood Inundation Models in Near Real Time
NASA Astrophysics Data System (ADS)
Di Baldassarre, Giuliano; Schumann, Guy; Brandimarte, Luigia; Bates, Paul
2009-11-01
In recent years, the availability of new emerging data (e.g. remote sensing, intelligent wireless sensors, etc) has led to a sudden shift from a data-sparse to a data-rich environment for hydrological and hydraulic modelling. Furthermore, the increased socioeconomic relevance of river flood studies has motivated the development of complex methodologies for the simulation of the hydraulic behaviour of river systems. In this context, this study aims at assessing the capability of coarse resolution SAR (Synthetic Aperture Radar) imagery to support and quickly validate flood inundation models in near real time. A hydraulic model of a 98km reach of the River Po (Italy), previously calibrated on a high-magnitude flood event with extensive and high quality field data, is tested using a SAR flood image, acquired and processed in near real time, during the June 2008 low-magnitude event. Specifically, the image is an acquisition by the ENVISAT-ASAR sensor in wide swath mode and has been provided through ESA (European Space Agency) Fast Registration system at no cost 24 hours after the acquisition. The study shows that the SAR image enables validation and improvement of the model in a time shorter than the flood travel time. This increases the reliability of model predictions (e.g. water elevation and inundation width along the river reach) and, consequently, assists flood management authorities in undertaking the necessary prevention activities.
Observation of sand waves in the Taiwan Banks using HJ-1A/1B sun glitter imagery
NASA Astrophysics Data System (ADS)
Zhang, Hua-guo; Lou, Xiu-lin; Shi, Ai-qin; He, Xie-kai; Guan, Wei-bing; Li, Dong-ling
2014-01-01
This study focuses on the large sand waves in the Taiwan Banks. Our goals are to observe the sand waves as completely as possible, to obtain their direction, wavelength, density, and ridge length, to analyze their spatial distributions, and to understand the effects of the current field and water depth on the sand waves. This study demonstrates the possibility of using HJ-1A/1B sun glitter imagery with a large swath width and rapid coverage in studying sand waves. Six cloud-free HJ-1A/1B optical images with sun glitter signals received during 2009 to 2011 were processed. The sand waves were mapped based on their features in the images; their direction, wavelength, density, and ridge length were measured and analyzed. We identified 4604 sand waves distributed in an area of 16,400 km2. The distributions of sand waves and their characteristics were analyzed, and the differences of sand waves between the northwestern subregion and the southeastern subregion are reported. Further analysis and discussion of the relationships between spatial distribution of the sand waves and both the tidal current field from a numerical simulation and water depth led to some interesting conclusions. The current field determines the orientation of the sand wave, while the hydrodynamic conditions and water depth influence the shape, size, and density of sand waves to a certain degree.
Martian Rocks Lining Possible Ancient Channel (Enhanced Color)
2017-06-23
NASA's Mars Exploration Rover Opportunity took the component images of this enhanced-color scene during the mission's "walkabout" survey of an area just above the top of "Perseverance Valley," in preparation for driving down the valley. The location is just outside the crest line of the western rim of Endeavour Crater, looking toward the northwest. The rim crest at the top of Perseverance Valley is off the scene to the right. A swath across the top half of the image is lined with dark rocks, especially on the far side. The swath runs east-west, and one possible history under investigation is that it was a channel into a lake perched against the edge of the crater billions of years ago. Another hypothesis is that the linear pattern of the rock piles is related to radial fractures from the impact that excavated Endeavour Crater. One goal of the walkabout is to determine whether a close look at the rocks will provide clues to the history of the site. For scale, the width of the swath near the center of the image is roughly 30 feet (9 meters). Opportunity's panoramic camera (Pancam) recorded this scene on June 3, 2017, during the 4,749th Martian day, or sol, of the rover's work on Mars. The enhanced color helps make differences in surface materials visible. The view merges exposures taken through three of the Pancam's color filters, centered on wavelengths of 753 nanometers (near-infrared), 535 nanometers (green) and 432 nanometers (violet). https://photojournal.jpl.nasa.gov/catalog/PIA21711
Floristic composition and across-track reflectance gradient in Landsat images over Amazonian forests
NASA Astrophysics Data System (ADS)
Muro, Javier; doninck, Jasper Van; Tuomisto, Hanna; Higgins, Mark A.; Moulatlet, Gabriel M.; Ruokolainen, Kalle
2016-09-01
Remotely sensed image interpretation or classification of tropical forests can be severely hampered by the effects of the bidirectional reflection distribution function (BRDF). Even for narrow swath sensors like Landsat TM/ETM+, the influence of reflectance anisotropy can be sufficiently strong to introduce a cross-track reflectance gradient. If the BRDF could be assumed to be linear for the limited swath of Landsat, it would be possible to remove this gradient during image preprocessing using a simple empirical method. However, the existence of natural gradients in reflectance caused by spatial variation in floristic composition of the forest can restrict the applicability of such simple corrections. Here we use floristic information over Peruvian and Brazilian Amazonia acquired through field surveys, complemented with information from geological maps, to investigate the interaction of real floristic gradients and the effect of reflectance anisotropy on the observed reflectances in Landsat data. In addition, we test the assumption of linearity of the BRDF for a limited swath width, and whether different primary non-inundated forest types are characterized by different magnitudes of the directional reflectance gradient. Our results show that a linear function is adequate to empirically correct for view angle effects, and that the magnitude of the across-track reflectance gradient is independent of floristic composition in the non-inundated forests we studied. This makes a routine correction of view angle effects possible. However, floristic variation complicates the issue, because different forest types have different mean reflectances. This must be taken into account when deriving the correction function in order to avoid eliminating natural gradients.
COSMO - SkyMed Mission Overview
2000-10-01
antenna with range and cross-range steering capabilities; The SAR Payload is an X-band Radar which 0 development and qualification of low mass ...summarised as follows: * Swaths: 20 Kmn to 300 Km SIlfale sflos" Swaccs: regKion: t 350 (a) to support the Payload mass (on ground,"• Access region: -/+ 35...real-time product is requested); situ" product delivery. This raises the problem of the size of the data to be transmitted and the geo- Customisation
Modeling Sea Ice Trajectories for Oil Spill Tracking.
1981-06-01
is compared with sea ice motions observed during the AIDJEX main field experiment in the Beaufort Sea from April 1975 to February 1976. The average ...more recently grown on leads formed as the floes fracture and divide. The large-scale average thickness of the pack ice is roughly 3 m. As an...opposite extreme, during the summer when air temperatures rise above freezing, melting and offshore winds combine to form an approximately 300-km-wide swath
Morphology and tectonics of the Mid-Atlantic Ridge, 7°-12°S
NASA Astrophysics Data System (ADS)
Bruguier, N. J.; Minshull, T. A.; Brozena, J. M.
2003-02-01
We present swath bathymetric, gravity, and magnetic data from the Mid-Atlantic Ridge between the Ascension and the Bode Verde fracture zones, where significant ridge-hot spot interaction has been inferred. The ridge axis in this region may be divided into four segments. The central two segments exhibit rifted axial highs, while the northernmost and southernmost segments have deep rift valleys typical of slow-spreading mid-ocean ridges. Bathymetric and magnetic data indicate that both central segments have experienced ridge jumps since ˜1 Ma. Mantle Bouguer anomalies (MBAs) derived from shipboard free air gravity and swath bathymetric data show deep subcircular lows centered on the new ridge axes, suggesting that mantle flow has been established beneath the new spreading centers for at least ˜1 Myr. Inversion of gravity data indicates that crustal thicknesses vary by ˜4 km along axis, with the thickest crust occurring beneath a large axial volcanic edifice. Once the effects of lithospheric aging have been removed, a model in which gravity variations are attributed entirely to crustal thickness variations is more consistent with data from an axis-parallel seismic line than a model that includes additional along-axis variations in mantle temperature. Both geophysical and geochemical data from the region may be explained by the melting of small (<200 km) mantle chemical heterogeneities rather than elevated temperatures. Therefore, there may be no Ascension/Circe plume.
The value of coastal wetlands for hurricane protection.
Costanza, Robert; Pérez-Maqueo, Octavio; Martinez, M Luisa; Sutton, Paul; Anderson, Sharolyn J; Mulder, Kenneth
2008-06-01
Coastal wetlands reduce the damaging effects of hurricanes on coastal communities. A regression model using 34 major US hurricanes since 1980 with the natural log of damage per unit gross domestic product in the hurricane swath as the dependent variable and the natural logs of wind speed and wetland area in the swath as the independent variables was highly significant and explained 60% of the variation in relative damages. A loss of 1 ha of wetland in the model corresponded to an average USD 33,000 (median = USD 5000) increase in storm damage from specific storms. Using this relationship, and taking into account the annual probability of hits by hurricanes of varying intensities, we mapped the annual value of coastal wetlands by 1 km x 1 km pixel and by state. The annual value ranged from USD 250 to USD 51,000 ha(-1) yr(-1), with a mean of USD 8240 ha(-1) yr(-1) (median = USD 3230 ha(-1) yr(-1)) significantly larger than previous estimates. Coastal wetlands in the US were estimated to currently provide USD 23.2 billion yr(-1) in storm protection services. Coastal wetlands function as valuable, selfmaintaining "horizontal levees" for storm protection, and also provide a host of other ecosystem services that vertical levees do not. Their restoration and preservation is an extremely cost-effective strategy for society.
Enjolras, Vivien; Vincent, Patrick; Souyris, Jean-Claude; Rodriguez, Ernesto; Phalippou, Laurent; Cazenave, Anny
2006-01-01
The main limitations of standard nadir-looking radar altimeters have been known for long. They include the lack of coverage (intertrack distance of typically 150 km for the T/P / Jason tandem), and the spatial resolution (typically 2 km for T/P and Jason), expected to be a limiting factor for the determination of mesoscale phenomena in deep ocean. In this context, various solutions using off-nadir radar interferometry have been proposed by Rodriguez and al to give an answer to oceanographic mission objectives. This paper addresses the performances study of this new generation of instruments, and dedicated mission. A first approach is based on the Wide-Swath Ocean Altimeter (WSOA) intended to be implemented onboard Jason-2 in 2004 but now abandoned. Every error domain has been checked: the physics of the measurement, its geometry, the impact of the platform and external errors like the tropospheric and ionospheric delays. We have especially shown the strong need to move to a sun-synchronous orbit and the non-negligible impact of propagation media errors in the swath, reaching a few centimetres in the worst case. Some changes in the parameters of the instrument have also been discussed to improve the overall error budget. The outcomes have led to the definition and the optimization of such an instrument and its dedicated mission.
Titan's diverse landscapes as evidenced by Cassini RADAR's third and fourth looks at Titan
Lunine, J.I.; Elachi, C.; Wall, S.D.; Janssen, M.A.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Franceschetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Kirk, R.L.; Lopes, R.M.; Lorenz, R.; Muhleman, D.O.; Orosei, R.; Ostro, S.J.; Paganelli, F.; Paillou, P.; Picardi, G.; Posa, F.; Radebaugh, J.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Stofan, E.R.; Vetrella, S.; West, R.; Wood, C.A.; Wye, L.; Zebker, H.; Alberti, G.; Karkoschka, E.; Rizk, B.; McFarlane, E.; See, C.; Kazeminejad, B.
2008-01-01
Cassini's third and fourth radar flybys, T7 and T8, covered diverse terrains in the high southern and equatorial latitudes, respectively. The T7 synthetic aperture radar (SAR) swath is somewhat more straightforward to understand in terms of a progressive poleward descent from a high, dissected, and partly hilly terrain down to a low flat plain with embayments and deposits suggestive of the past or even current presence of hydrocarbon liquids. The T8 swath is dominated by dunes likely made of organic solids, but also contain somewhat enigmatic, probably tectonic, features that may be partly buried or degraded by erosion or relaxation in a thin crust. The dark areas in T7 show no dune morphology, unlike the dark areas in T8, but are radiometrically warm like the dunes. The Huygens landing site lies on the edge of the T8 swath; correlation of the radar and Huygens DISR images allows accurate determination of its coordinates, and indicates that to the north of the landing site sit two large longitudinal dunes. Indeed, had the Huygens probe trajectory been just 10 km north of where it actually was, images of large sand dunes would have been returned in place of the fluvially dissected terrain actually seen-illustrating the strong diversity of Titan's landscapes even at local scales. ?? 2008 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Orange, D. L.; Teas, P. A.; Decker, J.; Baillie, P.; Djajadihardja, Y. S.; Danque, H.; Digby, A.; Rathore, S.; Patton, J.
2007-12-01
When the 12 September M8.4 Southern Sumatra Earthquake hit, TGS-Nopec was carrying out a multibeam survey in the Sunda Straits, between Java and Sumatra. Working in collaboration with UTIG, OSU, BGR, and BPPT, we designed a 48 hour target-of-opportunity survey in the forearc region of the earthquake in an area where two trench perpendicular multibeam and seismic lines had previously been acquired by BGR. The objectives of the survey were to fill in an area of previously unsurveyed seafloor, and to acquire a data set for before and after comparison with the BGR data. Approx. 1100 line km of multibeam data were acquired between 17 and 20 September on a series of trench-perpendicular lines spaced 8km apart (weather limitations constrained the line orientation). Steep slopes and high backscatter seafloor result in some areas of data dropout. Using a fixed swath width and equi-distant beam spacing, bathymetric grids have been created at a range of scales that provide detailed imagery of the seafloor. The toe of slope is at ~6000m, with several normal faults cutting the seafloor on the incoming plate. The toe region of the accretionary complex shows individual folds 10-40km long, with both seaward and landward vergence. Fold wavelength is ~4km, with fold axes showing a trend slightly oblique to structures higher up on the accretionary complex. The folds in the toe region are cut by ENE trending high angle faults. 20km landward of the toe, in water depths of 5000-3000m, there is a 10km wide region of complex geomorphology and steeper slopes (locally 20 degrees and higher) showing a more degraded character with numerous slump headscarps and linear canyons 5-10km long. Although the slope is dissected by numerous slumps we observe no evidence for recent slope failure in the adjacent forearc basins. We interpret this region to be the seafloor projection of a significant thrust ramp in the accretionary complex. Landward of this area we identify 2 continuous ridges over 80km long, but that in detail show an irregular seafloor morphology. At 2500m water depth, 65km from the toe of slope, a significant geomorphic break with 10-20 degree slopes extends the length of the survey area, with water depths shoaling to 800m. We interpret this to be the surface projection of an out-of-sequence thrust. Although we identify some large debris blocks (>1km in length) in the adjacent forearc basin, the blocks appear rounded, with no obvious source or associated smaller scale debris that would suggest relatively recent emplacement. We find no clear evidence for any large recent slope failures associated with the M8.4 Earthquake or its aftershocks.
An image of the Columbia Plateau from inversion of high-resolution seismic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutter, W.J.; Catchings, R.D.; Jarchow, C.M.
1994-08-01
The authors use a method of traveltime inversion of high-resolution seismic data to provide the first reliable images of internal details of the Columbia River Basalt Group (CRBG), the subsurface basalt/sediment interface, and the deeper sediment/basement interface. Velocity structure within the basalts, delineated on the order of 1 km horizontally and 0.2 km vertically, is constrained to within [plus minus]0.1 km/s for most of the seismic profile. Over 5,000 observed traveltimes fit their model with an rms error of 0.018 s. The maximum depth of penetration of the basalt diving waves (truncated by underlying low-velocity sediments) provides a reliable estimatemore » of the depth to the base of the basalt, which agrees with well-log measurements to within 0.05 km (165 ft). The authors use image blurring, calculated from the resolution matrix, to estimate the aspect ratio of images velocity anomaly widths to true widths for velocity features within the basalt. From their calculations of image blurring, they interpret low velocity zones (LVZ) within the basalts at Boylston Mountain and the Whiskey Dick anticline to have widths of 4.5 and 3 km, respectively, within the upper 1.5 km of the model. At greater depth, the widths of these imaged LVZs thin to approximately 2 km or less. They interpret these linear, subparallel, low-velocity zones imaged adjacent to anticlines of the Yakima Fold Belt to be brecciated fault zones. These fault zones dip to the south at angles between 15 to 45 degrees.« less
The Soil Moisture Active and Passive Mission (SMAP): Science and Applications
NASA Technical Reports Server (NTRS)
Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni
2009-01-01
The Soil Moisture Active and Passive mission (SMAP) will provide global maps of soil moisture content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial water and carbon cycle applications. The SMAP observatory consists of two multipolarization L-band sensors, a radar and radiometer, that share a deployable-mesh reflector antenna. The combined observations from the two sensors will allow accurate estimation of soil moisture at hydrometeorological (10 km) and hydroclimatological (40 km) spatial scales. The rotating antenna configuration provides conical scans of the Earth surface at a constant look angle. The wide-swath (1000 km) measurements will allow global mapping of soil moisture and its freeze/thaw state with 2-3 days revisit. Freeze/thaw in boreal latitudes will be mapped using the radar at 3 km resolution with 1-2 days revisit. The synergy of active and passive observations enables measurements of soil moisture and freeze/thaw state with unprecedented resolution, sensitivity, area coverage and revisit.
Blattmann, Peter; Heusel, Moritz; Aebersold, Ruedi
2016-01-01
SWATH-MS is an acquisition and analysis technique of targeted proteomics that enables measuring several thousand proteins with high reproducibility and accuracy across many samples. OpenSWATH is popular open-source software for peptide identification and quantification from SWATH-MS data. For downstream statistical and quantitative analysis there exist different tools such as MSstats, mapDIA and aLFQ. However, the transfer of data from OpenSWATH to the downstream statistical tools is currently technically challenging. Here we introduce the R/Bioconductor package SWATH2stats, which allows convenient processing of the data into a format directly readable by the downstream analysis tools. In addition, SWATH2stats allows annotation, analyzing the variation and the reproducibility of the measurements, FDR estimation, and advanced filtering before submitting the processed data to downstream tools. These functionalities are important to quickly analyze the quality of the SWATH-MS data. Hence, SWATH2stats is a new open-source tool that summarizes several practical functionalities for analyzing, processing, and converting SWATH-MS data and thus facilitates the efficient analysis of large-scale SWATH/DIA datasets.
NASA Technical Reports Server (NTRS)
Wu, Xiaoqing; Paden, John; Jezek, Ken; Rignot, Eric; Gim, Young
2013-01-01
We produced the high resolution bedmaps of several glaciers in western Greenland from IceBridge Mission sounding radar data using tomographic sounding technique. The bedmaps cover 3 regions: Russell glaciers, Umanaq glaciers and Jakobshavn glaciers of western Greenland. The covered areas is about 20x40 km(sup 2) for Russell glaciers and 300x100 sq km, and 100x80 sq km for Jakobshavn glaciers. The ground resolution is 50 meters and the average ice thickness accuracy is 10 to 20 meters. There are some void areas within the swath of the tracks in the bedmaps where the ice thickness is not known. Tomographic observations of these void areas indicate that the surface and shallow sub-surface pockets, likely filled with water, are highly reflective and greatly weaken the radar signal and reduce the energy reaching and reflected from the ice sheet bottom.
Reconciling CloudSat and GPM Estimates of Falling Snow
NASA Technical Reports Server (NTRS)
Munchak, S. Joseph; Jackson, Gail Skofronick; Kulie, Mark; Wood, Norm; Miliani, Lisa
2017-01-01
Satellite-based estimates of falling snow have been provided by CloudSat (launched in 2006) and the Global Precipitation Measurement (GPM) core satellite (launched in 2014). The CloudSat estimates are derived from W-band radar measurements whereas the GPM estimates are derived from its scanning Ku- and Ka-band Dual-Frequency Precipitation Radar (DPR) and 13-channel microwave imager (GMI). Each platform has advantages and disadvantages: CloudSat has higher resolution (approximately 1.5 km) and much better sensitivity (-28 dBZ), but poorer sampling (nadir-only and daytime-only since 2011) and the reflectivity-snowfall (Z-S) relationship is poorly constrained with single-frequency measurements. Meanwhile, DPR suffers from relatively poor resolution (5 km) and sensitivity (approximately 13 dBZ), but has cross-track scanning capability to cover a 245-km swath. Additionally, where Ku and Ka measurements are available, the conversion of reflectivity to snowfall rate is better-constrained than with a single frequency.
NASA Astrophysics Data System (ADS)
Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.
2017-11-01
The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.
Tropical rain mapping radar on the Space Station
NASA Technical Reports Server (NTRS)
Im, Eastwood; Li, Fuk
1989-01-01
The conceptual design for a tropical rain mapping radar for flight on the manned Space Station is discussed. In this design the radar utilizes a narrow, dual-frequency (9.7 GHz and 24.1 GHz) beam, electronically scanned antenna to achieve high spatial (4 km) and vertical (250 m) resolutions and a relatively large (800 km) cross-track swath. An adaptive scan strategy will be used for better utilization of radar energy and dwell time. Such a system can detect precipitation at rates of up to 100 mm/hr with accuracies of roughly 15 percent. With the proposed space-time sampling strategy, the monthly averaged rainfall rate can be estimated to within 8 percent, which is essential for many climatological studies.
NASA Astrophysics Data System (ADS)
Bates, R.; Hubbard, A.; Neale, M.; Woodward, J.; Box, J. E.; Nick, F.
2010-12-01
Calving and submarine melt account for the majority of loss from the Antarctic and over 50% of that from the Greenland Ice Sheet. These ice-ocean processes are highly efficient mass-loss mechanisms, providing a rapid link between terrestrial ice (storage) and the oceanic sink (sea level/freshwater flux) which renders the ocean-outlet-ice sheet system potentially highly non-linear. Despite this, the controls on tidewater processes are poorly understood and a process based description of them is lacking from the present generation of coupled ice sheet models. We present details from an innovative study where two survey techniques are integrated to enable the construction of accurate, ~m resolution 3d digital terrain models (DTMs) of the aerial and submarine ice front of calving outlet glaciers. A 2km range terrestrial laser scanner was combined with a 416KHz swath-interferometric system and corrected via an inertial motion unit stabilized by RTK GPS and gyro-compass data. The system was mounted aboard a heavy displacement (20,000kg) yacht in addition to a light displacement (100kg) semi-autonomous boat and used to image the aerial and submarine calving fronts of two large outlet glaciers in W Greenland. Six daily surveys, each 2.5km long were repeated across Lille Glacier during which significant ice flow, melt and calving events were observed and captured from on-ice GPS stations and time-lapse sequences. A curtain of CTD and velocity casts were also conducted to constrain the fresh and oceanic mass and energy fluxes within the fjord. The residual of successive DTMs yield the spatial pattern of frontal change enabling the processes of aerial and submarine calving and melt to be quantified and constrained in unprecedented detail. These observed frontal changes are tentatively related to local dynamic, atmospheric and oceanographic processes that drive them. A partial survey of Store Glacier (~7km calving front & W Greenland 2nd largest outlet after Jakobshavn Isbrae) was conducted, indicating that the technique is successful up to ~500m from the ice front and to a similar water depth. These data sets show that it is possible to integrate and build 3d DTMs at the metre-scale both above and below the water surface. The successful acquisition from our semi-autonomous vessel supervised up to 2km away greatly eases repeat surveys and reduces the exposure of equipment and personnel to the risks posed by large, active calving glaciers. Lille Glacier and s/v Gambo surveyed & photographed from the semi-autonomous vessel. Mock-up of Lille Glacier calving front and fore-bay submarine topography imaged by interferometric swath-bathymetry.
Lunar Sodium and Potassium Exosphere in May 2014
NASA Astrophysics Data System (ADS)
Oliversen, R. J.; Kuruppuaratchi, D. C. P.; Mierkiewicz, E. J.; Derr, N. J.; Rosborough, S.; Gallant, M. A.; Roesler, F. L.
2015-12-01
We apply high resolution spectroscopy to investigate the lunar exosphere by measuring sodium and potassium spectral line profiles to determine the variations in exospheric effective temperatures and velocities. Observations were made at the National Solar Observatory McMath-Pierce Telescope during May 2014. Data were collected over several nights, centered on full moon (May 14) and covering a waxing phase angle of 67° to a waning phase angle of 75°. We used a dual-etalon Fabry-Perot spectrometer with a resolving power of 184,000 (1.63 km s-1) to measure the line widths and radial velocity shifts of the sodium D2 (5889.951 Å) and potassium D1 (7698.965 Å) emission lines. The field of view was 3 arcmin (~330 km) and positioned at several locations, each centered at 1.5 arcmin (~165 km) off the East and West sunlit limbs. The deconvolved line widths indicate significant differences between the sodium and potassium temperatures. The sodium line widths were mostly symmetric as a function of phase for both the waxing and waning phases. At phase angles > 40º (outside of the magnetotail) the full width half maximum (FWHM) line widths are 1.5 - 2.0 km s-1 or ~1500 K for FWHM = 1.75 km s-1. Inside the magnetotail (phase angle < 40º) and near full moon (phase angle ~6°), the FWHM increased to ~4 km s-1. The implied line width temperature is 8000 K, although some of the observed line width may be due to a dispersion in velocities from many contribution along the extended sodium tail. Unlike sodium, the potassium line widths are wider by 50% during the waxing phase compared to the waning phase at phases > 40º. The potassium temperatures pre-magnetotail passage are ~1000 K while the temperatures post-magnetotail passage are ~2000K. At phase angles < 40º, the potassium intensities decreased dramatically; on consecutive days, when the phase angle changed from 44º to 31º to 20º, the relative intensities dropped by 1.0:0.6:0.15. The potassium intensity in the East and West equatorial regions (latitude < 10º) were similar; however, the potassium intensity was brightest off the limb near Aristarchus (latitude ~24º), which was the crater we observed nearest the KREEP region. This work was partially supported by the NASA Planetary Astronomy programs, NNX11AE38G and NNX13AL30G.
An operational satellite scatterometer for wind vector measurements over the ocean
NASA Technical Reports Server (NTRS)
Grantham, W. L.; Bracalente, E. M.; Jones, W. L.; Schrader, J. H.; Schroeder, L. C.; Mitchell, J. L.
1975-01-01
Performance requirements and design characteristics of a microwave scatterometer wind sensor for measuring surface winds over the oceans on a global basis are described. Scatterometer specifications are developed from user requirements of wind vector measurement range and accuracy, swath width, resolution cell size and measurement grid spacing. A detailed analysis is performed for a baseline fan-beam scatterometer design, and its performance capabilities for meeting the SeaSat-A user requirements. Various modes of operation are discussed which will allow the resolution of questions concerning the effects of sea state on the scatterometer wind sensing ability and to verify design boundaries of the instrument.
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall
NASA Technical Reports Server (NTRS)
Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marks, Frank D.
2000-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1' half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the off-nadir angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving toward 330 deg at about 5 m/s. Individual waves up to 18 m height were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the eye, and made five eye penetrations. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft flight lines included segments near and along the shoreline as well as far offshore. Animations of the directional wave spectrum spatial variation along the aircraft tracks on the two flights will be presented using a 100: 1 time compression.
Assessment of the Short-Term Radiometric Stability between Terra MODIS and Landsat 7 ETM+ Sensors
NASA Technical Reports Server (NTRS)
Choi, Taeyoung; Xiong, Xiaxiong; Chander, G.; Angal, Amit
2009-01-01
The Landsat 7 (L7) Enhanced Thematic Mapper (ETM+) sensor was launched on April 15th, 1999 and has been in operation for over nine years. It has six reflective solar spectral bands located in the visible and shortwave infrared part of the electromagnetic spectrum (0.5 - 2.5 micron) at a spatial resolution of 30 m. The on-board calibrators are used to monitor the on-orbit sensor system changes. The ETM+ performs solar calibrations using on-board Full Aperture Solar Calibrator (FASC) and the Partial Aperture Solar Calibrator (PASC). The Internal Calibrator Lamp (IC) lamps, a blackbody and shutter optics constitute the on-orbit calibration mechanism for ETM+. On 31 May 2003, a malfunction of the scan-line corrector (SLC) mirror assembly resulted in the loss of approximately 22% of the normal scene area. The missing data affects most of the image with scan gaps varying in width from one pixel or less near the centre of the image to 14 pixels along the east and west edges of the image, creating a wedge-shaped pattern. However, the SLC failure has no impacts on the radiometric performance of the valid pixels. On December 18, 1999, the Moderate Resolution Imaging Spectroradiometer (MODIS) Proto-Flight Model (PFM) was launched on-board the NASA's EOS Terra spacecraft. Terra MODIS has 36 spectral bands with wavelengths ranging from 0.41 to 14.5 micron and collects data over a wide field of view angle (+/-55 deg) at three nadir spatial resolutions of 250 m, 500 in 1 km for bands 1 to 2, 3 to 7, and 8 to 36, respectively. It has 20 reflective solar bands (RSB) with spectral wavelengths from 0.41 to 2.1 micron. The RSB radiometric calibration is performed by using on-board solar diffuser (SD), solar diffuser stability monitor (SDSM), space-view (SV), and spectro-radiometric calibration assembly (SRCA). Through the SV port, periodic lunar observations are used to track radiometric response changes at different angles of incidence (AOI) of the scan mirror. As a part of the AM Constellation satellites, Terra MODIS flies approximately 30 minutes behind L7 ETM+ in the same orbit. The orbit of L7 is repetitive, circular, sunsynchronous, and near polar at a nominal altitude of 705 km (438 miles) at the Equator. The spacecraft crosses the Equator from north to south on a descending node between 10:00 AM and 10:15 AM. Circling the Earth at 7.5 km/sec, each orbit takes nearly 99 minutes. The spacecraft completes just over 14 orbits per day, covering the entire Earth between 81 degrees north and south latitude every 16 days. The longest continuous imaging swath that L7 sensor can collect is for a 14-minute subinterval contact period which is equivalent to 35 full WRS-2 scenes. On the other hand, Terra can provide the entire corresponding orbit with wider swath at any given ETM+ collection without contact time limitation. There are six spectral matching band pairs between MODIS (bands 3, 4, 1, 2, 6, 7) and ETM+ (bands 1, 2, 3, 4, 5, 7) sensor. MODIS has narrower spectral responses than ETM+ in all the bands. A short-term radiometric stability was evaluated using continuous ETM+ scenes within the contact period and the corresponding half orbit MODIS scenes. The near simultaneous earth observations (SNO) were limited by the smaller swath size of ETM+ (187 km) as compared to MODIS (2330 km). Two sets of continuous granules for MODIS and ETM+ were selected and mosaiced based on pixel geolocation information for non cloudy pixels over the North American continent. The Top-of- Atmosphere (TOA) reflectances were computed for the spectrally matching bands between ETM+ and MODIS over the regions of interest (ROI). The matching pixel pairs were aggregated from a finer to a coarser pixel resolution and the TOA reflectance values covering a wide dynamic range of the sensors were compared and analyzed. Considering the uncertainties of the absolute calibration of the both sensors, radiometric stability was verified for the band pairs. The Railroad Valley Playa, Nada (RVPN) was included in the path of this continuous orbit, which served as a verification point between the shortterm and the long-term trending results from previous studies. This work focuses on monitoring the short-term on-orbit stability of MODIS and the ETM+ RSB. It also provides an assessment of the absolute calibration differences between the two sensors over their wide dynamic ranges.
NASA Astrophysics Data System (ADS)
Tack, Frederik; Merlaud, Alexis; Meier, Andreas; Ge, Xinrui; Meuleman, Koen; Ruhtz, Thomas; van der Wal, Len; Van Roozendael, Michel; Iordache, Daniel; Schönhardt, Anja; Richter, Andreas; Vlemmix, Tim; de Goeij, Bryan; Ardelean, Magdalena; Boscornea, Andreea; Constantin, Daniel; Shaifangar, Reza; Wagner, Thomas; Lampel, Johannes; Schuettemeyer, Dirk
2017-04-01
The AROMAPEX campaign took place in Berlin in April, 2016, co-funded by the EU (EUFAR) and ESA, with the primary objective to intercompare experimental airborne atmospheric imagers dedicated to the mapping of the spatial distribution of tropospheric nitrogen dioxide (NO2). AROMAPEX is also a preparatory step for forthcoming intercomparison/validation campaigns of satellite air quality sensors, such as TROPOMI (TROPOspheric Monitoring Instrument). The instruments were operated from two planes, performing synchronized flights: APEX (VITO/BIRA-IASB) was operated from DLR's DO-228 D-CFFU plane at 6.1 km altitude while AirMAP (IUP Bremen), and the small, lightweight SWING (BIRA-IASB) and Spectrolite (TNO/TU Delft) instruments were operated from the FUB Cessna 207T D-EAFU at 3 km. Two synchronized flights took place on 21 April, 2016, the only cloud-free day during the campaign, in the morning from 09:34 to 12:01 LT and in the afternoon from 14:24 to 16:39 LT. APEX, AirMAP and SWING have a comparable swath width of 3 km, while Spectrolite has a swath of 450 m due to the fact that the field-of-view had to be reduced from 40° to 8.3° for practical reasons. The spatial resolution is approximately 100 m after spatial aggregation for APEX, AirMAP and Spectrolite (pushbroom scanning), and 300 m for SWING (whiskbroom scanning). The airborne Sunphotometer FUBISS-ASA2 was installed and operated during the ascent and descent of the FUB aircraft to derive aerosol optical depth (AOD). During the overpass of the imagers, simultaneous car mobile-DOAS observations were performed with three systems covering transects from north to south and west to east. The ground-based instrumental set-up was completed by a DOAS instrument, an Aeronet station and a ceilometer installed at the rooftop of FUB, located in the southwest of Berlin. The AROMAPEX experiment builds on the experience gained during the AROMAT campaigns held in September, 2014 and August, 2015 in Romania, and the BUMBA campaigns held in April, 2015 and July, 2016 in Belgium. We present first results of an intercomparison study of both the NO2 slant column densities (SCDs) and vertical column densities (VCDs) retrieved from the APEX, AirMAP, SWING and Spectrolite instruments. Two large NO2 plumes, crossing the city from west to east, were detected by all imaging systems with high consistency. Retrieved NO2 VCDs range between 1.5 x 1015 and 2.4 x 1016 molec cm-2. For the sake of harmonizing the different data sets, efforts are currently ongoing to agree on a common set of parameter settings, gridding algorithm and AMF LUT in the NO2 retrieval approach. Despite these efforts, discrepancies will remain due to a combination of (1) instrumental differences, e.g. SNR, spatial and spectral resolution; (2) algorithmic differences, e.g. DOAS fitting, RTM, a priori input; and (3) observation differences, e.g. flight altitude, overpass time and viewing geometry.
NASA Astrophysics Data System (ADS)
Sachpazi, M.; Laigle, M.; Diaz, J.; Gesret, A.; Charalampakis, M.; Kissling, E. H.; Hirn, A.
2010-12-01
Observations from teleseismic converted waves recorded at 100 sites in Greece from Crete to North Aegean in a 500 km swath along the slab strike during the EU project “Thales was right” allow imaging its top in 3D. Multiscale analysis brings high-resolution to interface imaging at depth which resolved for the first time a thin, oceanic, crust for the slab under southern Greece. This first indication of its large negative buoyancy suggests its roll-back and is consistent with the upper plate trenchward motion with the highest velocities there, as shown by GPS. With respect to up to now subduction zone surveys with receivers deployed along the presumed dip to get a cross-section of the downgoing slab, our swath was instead perpendicular, that is along strike. This was in order to track down lateral changes in slab attitude along the subduction zone, that is a possible segmentation. The expected subduction strike at shallow depth, as approximated by a line from SW of Crete to W of the Ionian Islands is about N 135°E. Instead, the slab top is found along an almost N-S line at several places, at 60-70 km depth. However the slab depth contours deviate from it in-between. Their broad correspondance with the Aegean coastline or extensional domain suggests a possible control on surface morphology, and on upper plate deformation as mirrored in the topography of its crust-mantle boundary. Indeed, this first image recovered with such a high lateral resolution reveals that several slab segments can be defined dipping N 60°E, that is with a N 160 °E strike, and that these are juxtaposed through domains of strong localized variations along-strike that suggest warping or tearing of the slab. Apart their strong bearing on geodynamic reconstructions, and the continental/oceanic nature of the slab fragments, these 3D images reach the high-resolution for their discussion with respect to major earthquakes. The attitude of the slab, the dip of its upper part and its buoyancy force enter the balance controlling the degree of seismic coupling, of the seismogenic interplate fault, as well as its along dip extent as discussed earlier for the Ionian Islands. The segmented nature revealed at depth suggests a possible segmentation of the shallower interplate seismogenic zone. The precise location of the stronger intermediate-depth earthquakes occurred during the deployment appears also related to this deep structural and tectonic control.
TRMM and its Connection to the Global Water Cycle
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Hong, Ye
1999-01-01
The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The Tropical Rainfall Measuring Mission (TRMM) orbit is inclined 35 degrees leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 m. The minimum detectable signal from the precipitation radar has been measured at - 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument. This presentation will focus primarily on the advances in our understanding of tropical rain systems needed to interpret the TRMM data. Global averages, as well as case studies from TRMM radar (PR), the TRMM Microwave Imager (TMI) and Visible and Infrared Sensor (VIRS) will be presented. Comparisons and contrasts among the different sensors will be drawn. Results will also be compared to previous rainfall climatologies generated from the SSM/I instrument. In particular this paper will focus on the synergy between the TRMM radar and passive microwave radiometer and what we have learned from its synergy.
TRMM and Its Connection to the Global Water Cycle
NASA Technical Reports Server (NTRS)
Kummerow, Chiristian
1999-01-01
The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35 degrees leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 m. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument. This presentation will focus primarily on the advances in our understanding of tropical rain systems needed to interpret the TRMM data. Global averages, as well as case studies from TRMM radar (PR), the TRMM Microwave Imager (TMI) and Visible and Infrared Sensor (VIRS) will be presented. Comparisons and contrasts among the different sensors will be drawn. Results will also be compared to previous rainfall climatologies generated from the SSM/I instrument. In particular this paper will focus on the synergy between the TRMM radar and passive microwave radiometer and what we have learned from is synergy.
A SEASAT-A synthetic aperture imaging radar system
NASA Technical Reports Server (NTRS)
Jordan, R. L.; Rodgers, D. H.
1975-01-01
The SEASAT, a synthetic aperture imaging radar system is the first radar system of its kind designed for the study of ocean wave patterns from orbit. The basic requirement of this system is to generate continuous radar imagery with a 100 km swath with 25m resolution from an orbital altitude of 800 km. These requirements impose unique system design problems. The end to end data system described including interactions of the spacecraft, antenna, sensor, telemetry link, and data processor. The synthetic aperture radar system generates a large quantity of data requiring the use of an analog link with stable local oscillator encoding. The problems associated in telemetering the radar information with sufficient fidelity to synthesize an image on the ground is described as well as the selected solutions to the problems.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Moody, Eric G.
2002-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999 and the Aqua satellite in May 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this paper we will describe the various methods being used for the remote sensing of cloud, aerosol, and surface properties using MODIS data, focusing primarily on (i) the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, (ii) cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals, (iii) aerosol optical thickness and size characteristics both over land and ocean, and (iv) ecosystem classification and surface spectral reflectance. The physical principles behind the determination of each of these products will be described, together with an example of their application using MODIS observations to the east Asian region. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 min (Level-3 products).
MODIS Direct Broadcast and Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee
2004-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard both Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). Equipped with direct broadcast capability, the MODIS measurements can be received worldwide real time. There are 82 ingest sites (over 900 users, listed on the Direct Readout Portal) around the world for Terra/Aqua-MODIS Direct Broadcast DB) downlink. This represents 27 (6 from EOS science team members) science research organizations for DB land, ocean and atmospheric processing, and 53 companies that base their application algorithms and value added products on DB data. In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of aerosol/cloud optical properties, especially optical thickness and effective particle size. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Preliminary results will be presented and discussed their implications in regional-to-global climatic effects.
The EarthCARE multi spectral imager thermal infrared optical unit
NASA Astrophysics Data System (ADS)
Chang, M. P. J. L.; Woods, D.; Baister, Guy; Lobb, Dan; Wood, Trevor
2017-11-01
The EarthCARE satellite mission objective is the observation of clouds and aerosols from low Earth orbit. The key spatial context providing instrument within the payload suite of 4 instruments is the Multi-Spectral Imager (MSI), previously described in [1]. The MSI is intended to provide information on the horizontal variability of the atmospheric conditions and to identify e.g. cloud type, textures, and temperature. It will form Earth images at 500m ground sample distance (GSD) over a swath width of 150km; it will image Earth in 7 spectral bands: one visible, one near-IR, two short-wave IR and three thermal IR. The instrument will be comprised of two key parts: • a visible-NIR-SWIR (VNS) optical unit radiometrically calibrated using a sun illuminated quasivolume diffuser and shutter system • a thermal IR (TIR) optical unit radiometrically calibrated using cold space and an internal black-body. This paper, being the first of a sequence of two, will provide an overview of the MSI and enter into more detail the critical performance parameters and detailed design the MSI TIR optical design. The TIR concept is to provide pushbroom imaging of its 3 bands through spectral separation from a common aperture. The result is an efficient, well controlled optical design without the need for multiple focal plane arrays. The designed focal plane houses an area array detector and will meet a challenging set of requirements, including radiometric resolution, accuracy, distortion and MTF.
Crustal architecture of the oblique-slip conjugate margins of George V Land and southeast Australia
Stagg, H.M.J.; Reading, A.M.
2007-01-01
A conceptual, lithospheric-scale cross-section of the conjugate, oblique-slip margins of George V Land, East Antarctica, and southeast Australia (Otway Basin) has been constructed based on the integration of seismic and sample data. This cross-section is characterised by asymmetry in width and thickness, and depth-dependent crustal extension at breakup in the latest Maastrichtian. The broad Antarctic margin (~360 km apparent rift width) developed on thick crust (~42 km) of the Antarctic craton, whereas the narrow Otway margin (~220 km) developed on the thinner crust (~31 km) of the Ross–Delamerian Orogen. The shallow basement (velocities ~5.5 km.s-1) and the deep continental crust (velocities >6.4 km.s-1) appear to be largely absent across the central rift, while the mid-crustal, probably granitic layer (velocities ~6 km.s-1) is preserved. Comparison with published numerical models suggests that the shallow basement and deep crust may have been removed by simple shear, whereas the mid-crust has been ductilely deformed.
Arctic sea ice leads from advanced very high resolution radiometer images
NASA Technical Reports Server (NTRS)
Lindsay, R. W.; Rothrock, D. A.
1995-01-01
A large number of advanced very high resolution radiometer (AVHRR) images from throughout 1989 are analyzed to determine lead characteristics. The units of analysis are square 200-km cells, and there are 270 such cells in the data set. Clouds are masked manually. Leads determine from images of the potential open water delta, a scaled version of the surface temperature or albedo that weights thin ice by its thermal or brightness impact. The lead fraction is determined as the mean delta, the monthly mean lead fraction ranges from 0.02 in winter to 0.06 in summer in the central Arctic and is near 0.08 in the winter in the peripheral seas. A method of accounting for lead width sampling errors due to the finite sample areas is introduced. In the central Arctic the observed mean lead width for a threshold of delta = 0.1 ranges from 2 or 3 km (near the resolution of the instrument) in the winter to 6 km in the summer. In the peripheral seas it is about 5 km in the winter. Width distributions are often more heavily weighted in the tail than exponential distributions and are well approximated by a power law. The along-track, number density power law N = aw(exp -6) has a mean exponent of b = 1.60 (standard deviation 0.18) and shows some seasonal variability. Mean floe widths in the central Arctic are 40 to 50 km in the winter, dropping to about 10 km in the summer. For floes the power law has a mean exponent of 0.93 and exhibits a clearer annual cycle. Lead orientation is determined with a method based on the direction of maximum extent.
Hyperresolution: an hyperspectral and high resolution imager for Earth observation
NASA Astrophysics Data System (ADS)
De Vidi, R.; Chiarantini, L.; Bini, A.
2017-11-01
Hyperspectral space imagery is an emerging technology that supports many scientific, civil, security and defence operational applications. The main advantage of this remote sensing technique is that it allows the so-called Feature Extraction: in fact the spectral signature allows the recognition of the materials composing the scene. Hyperspectral Products and their applications have been investigated in the past years by Galileo Avionica to direct the instrument characteristics design. Sample products have been identified in the civil / environment monitoring fields (such as coastal monitoring, vegetation, hot spot and urban classification) and in defense / security applications: their performances have been verified by means of airborne flight campaigns. The Hyperspectral and High Resolution Imager is a space-borne instrument that implement a pushbroom technique to get strip spectral images over the Hyperspectral VNIR and SWIR bands, with a ground sample distance at nadir of 20m in a 20 km wide ground swath, with 200 spectral channels, realizing an average spectral resolution of 10nm. The High Resolution Panchromatic Channel insists in the same swath to allow for multiresolution data fusion of hyperspectral imagery.
The Impacts of Bowtie Effect and View Angle Discontinuity on MODIS Swath Data Gridding
NASA Technical Reports Server (NTRS)
Wang, Yujie; Lyapustin, Alexei
2007-01-01
We have analyzed two effects of the MODIS viewing geometry on the quality of gridded imagery. First, the fact that the MODIS scans a swath of the Earth 10 km wide at nadir, causes abrupt change of the view azimuth angle at the boundary of adjacent scans. This discontinuity appears as striping of the image clearly visible in certain cases with viewing geometry close to principle plane over the snow of the glint area of water. The striping is a true surface Bi-directional Reflectance Factor (BRF) effect and should be preserved during gridding. Second, due to bowtie effect, the observations in adjacent scans overlap each other. Commonly used method of calculating grid cell value by averaging all overlapping observations may result in smearing of the image. This paper describes a refined gridding algorithm that takes the above two effects into account. By calculating the grid cell value by averaging the overlapping observations from a single scan, the new algorithm preserves the measured BRF signal and enhances sharpness of the image.
The 2012 Arctic Field Season of the NRL Sea-Ice Measurement Program
NASA Astrophysics Data System (ADS)
Gardner, J. M.; Brozena, J. M.; Hagen, R. A.; Liang, R.; Ball, D.
2012-12-01
The U.S. Naval Research Laboratory (NRL) is beginning a five year study of the changing Arctic with a particular focus on ice thickness and distribution variability with the intent of optimizing state-of-the-art computer models which are currently used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat2 ice thickness data prior to its incorporation into new ice forecast models. NRL Code 7420 collected coincident data with the CryoSat2 satellite in both 2011 and 2012 using a LiDAR (Riegl Q560) to measure combined snow and ice thickness and a 10 GHz pulse-limited precision radar altimeter to measure sea-ice freeboard. These measurements were coordinated with the Seasonal Ice Zone Observing Network (SIZONet) group who conducted surface based ice thickness surveys using a Geonics EM-31 along hunter trails on the landfast ice near Barrow as well as on drifting ice offshore during helicopter landings. On two sorties, a twin otter carrying the NRL LiDAR and radar altimeter flew in tandem with the helicopter carrying the EM-31 to achieve synchronous data acquisition. Data from these flights are shown here along with a digital elevation map. The LiDAR and radar altimeter were also flown on grid patterns over the ice that were synchronous with 5 Cryosat2 satellite passes. These grids were intended to cover roughly 10 km long segments of Cryosat2 tracks with widths similar to the footprint of the satellite (~2 km). Reduction of these grids is challenging because of ice drift which can be many hundreds of meters over the 1-2 hours collection period of each grid. Relocation of the individual scanning LiDAR tracks is done by means of tie-points observed in the overlapping swaths. Data from these grids are shown here and will be used to examine the relationship of the tracked satellite waveform data to the actual surface across the footprint.
NASA Astrophysics Data System (ADS)
Purser, A.; Marcon, Y.; Boetius, A.
2016-02-01
The current supplies of many high technology elements from land-based sources are at capacity, such as copper, nickel and yttrium. Potential future sources of some of these elements include the deep sea manganese nodule fields of the Atlantic, Indian and Pacific oceans. Large swathes of deep-sea seafloor are covered with high densities of 5 - 25 cm diameter nodules - agglomerations of manganese, iron and trace metals. In the 1980's these manganese fields were first seriously considered as mining targets, and the ''DISturbance and reCOLonization (DISCOL) experiment was started in the South Pacific, to simulate the likely environmental impacts of mining. In September 1989, 'RV Sonne', deploying a custom-built plough device, removed manganese nodules from the seafloor surface by ploughing them down into the sediment. This removal of nodules (and therefore hard substrate) was considered to likely be the most significant environmental impact of any future mining efforts. 78 plough tracks of 8 - 16m width were made across a 10.8 km diameter circular area centered on 7°04.4´S 88°27.6´W. Megafauna abundances were assessed prior and post ploughing, both within the disturbed area and at reference stations 6 km from the disturbed area. Research cruises in the 1990s investigated the short-term temporal impact ploughing had on the faunal community in the DISCOL area. Cruises conducted 3 and 7 years after disturbance showed that megafaunal communities within ploughed areas remained quite distinct from those observed pre-disturbance or in the reference areas. In 2016 the 'RV Sonne' revisited the DISCOL site with two research cruises, as part of the 'JPI-Oceans' programme. Here we report the current megafaunal community structures observed by SO242-2 within the DISCOL area, and the slow recovery rates of many taxa 26 years after the initial experimental disturbance, and provide images of the long term impact of experimental disturbances at the seafloor.
NASA Technical Reports Server (NTRS)
Rignot, Eric; Jezek, K.; Vanzyl, J. J.; Drinkwater, Mark R.; Lou, Y. L.
1993-01-01
In June 1991, the NASA/JPL airborne SAR (AIRSAR) acquired C- (lambda = 5.6cm), L- (lambda = 24cm), and P- (lambda = 68m) band polarimetric SAR data over the Greenland ice sheet. These data are processed using version 3.55 of the AIRSAR processor which provides radiometrically and polarimetrically calibrated images. The internal calibration of the AIRSAR data is cross-checked using the radar response from corner reflectors deployed prior to flight in one of the scenes. In addition, a quantitative assessment of the noise power level at various frequencies and polarizations is made in all the scenes. Synoptic SAR data corresponding to a swath width of about 12 by 50 km in length (compared to the standard 12 x 12 km size of high-resolution scenes) are also processed and calibrated to study transitions in radar backscatter as a function of snow facies at selected frequencies and polarizations. The snow facies on the Greenland ice sheet are traditionally categorized based on differences in melting regime during the summer months. The interior of Greenland corresponds to the dry snow zone where terrain elevation is the highest and no snow melt occurs. The lowest elevation boundary of the dry snow zone is known traditionally as the dry snow line. Beneath it is the percolation zone where melting occurs in the summer and water percolates through the snow freezing at depth to form massive ice lenses and ice pipes. At the downslope margin of this zone is the wet snow line. Below it, the wet snow zone corresponds to the lowest elevations where snow remains at the end of the summer. Ablation produces enough meltwater to create areas of snow saturated with water, together with ponds and lakes. The lowest altitude zone of ablation sees enough summer melt to remove all traces of seasonal snow accumulation, such that the surface comprises bare glacier ice.
NASA Astrophysics Data System (ADS)
Sierk, B.; Caron, J.; Bézy, J.-L.; Löscher, A.; Meijer, Y.; Jurado, P.
2017-11-01
CarbonSat is a candidate mission for ESA's Earth Explorer program, currently undergoing industrial feasibility studies. The primary mission objective is the identification and quantification of regional and local sources and sinks of carbon dioxide (CO2) and methane (CH4). The mission also aims at discriminating natural and anthropogenic fluxes. The space-borne instrument will quantify the spatial distribution of CO2 and CH4 by measuring dry air column-averaged mixing ratios with high precision and accuracy (0.5 ppm for CO2 and 5 ppb for CH4). These products are inferred from spectrally resolved measurements of Earth reflectance in three spectral bands in the Near Infrared (747-773 nm) and Short Wave Infrared (1590-1675 nm and 1925-2095 nm), at high and medium spectral resolution (0.1nm, 0.3 nm, and 0.55 nm). Three spatially co-aligned push-broom imaging spectrometers with a swath width <180 km will acquire observations at a spatial resolution of 2 x 3 km2 , reaching global coverage every 12 days above 40 degrees latitude (30 days at the equator). The targeted product accuracy translates into stringent radiometric, spectral and geometric requirements for the instrument. Because of the high sensitivity of the product retrieval to spurious spectral features of the instrument, special emphasis is placed on constraining relative spectral radiometric errors from polarisation sensitivity, diffuser speckles and stray light. A new requirement formulation targets to simultaneously constrain both the amplitude and the correlation of spectral features with the absorption structures of the targeted gases. The requirement performance analysis of the so-called effective spectral radiometric accuracy (ESRA) establishes a traceable link between instrumental artifacts and the impact on the level-2 products (column-averaged mixing ratios). This paper presents the derivation of system requirements from the demanding mission objectives and report preliminary results of the feasibility studies.
Derive Arctic Sea-ice Freeboard and Thickness from NASA's LVIS Observations
NASA Astrophysics Data System (ADS)
Yi, D.; Hofton, M. A.; Harbeck, J.; Cornejo, H.; Kurtz, N. T.
2015-12-01
The sea-ice freeboard and thickness are derived from the six sea-ice flights of NASA's IceBridge Land, Vegetation, and Ice Sensor (LVIS) over the Arctic from 2009 to 2013. The LVIS is an airborne scanning laser altimeter. It can operate at an altitude up to 10 km above the ground and produce a data swath up to 2 km wide with 20-m wide footprints. The laser output wavelength is 1064 nm and pulse repetition rate is 1000 Hz. The LVIS L2 geolocated surface elevation product and Level-1b waveform product (http://nsidc.org/data/ilvis2.html and http://nsidc.org/data/ilvis1b.html) at National Snow and Ice Data Center, USA (NSIDC) are used in this study. The elevations are referenced to a geoid with tides and dynamic atmospheric corrections applied. The LVIS waveforms were fitted with Gaussian curves to calculate pulse width, peak location, pulse amplitude, and signal baseline. For each waveform, the centroid, skewness, kurtosis, and pulse area were also calculated. The waveform parameters were calibrated based on laser off pointing angle and laser channels. Calibrated LVIS waveform parameters show a coherent response to variations in surface features along their ground tracks. These parameters, combined with elevation, can be used to identify leads, enabling the derivation of sea-ice freeboard and thickness without relying upon visual images. Preliminary results show that the elevations in some of the LVIS campaigns may vary with laser incident angle; this can introduce an elevation bias if not corrected. Further analysis of the LVIS data shown that the laser incident angle related elevation bias can be removed empirically. The sea-ice freeboard and thickness results from LVIS are compared with NASA's Airborne Topographic Mapper (ATM) for an April 20, 2010 flight, when both LVIS and ATM sensors were on the same aircraft and made coincidental measurements along repeat ground tracks.
Synthetic aperture radar range - Azimuth ambiguity design and constraints
NASA Technical Reports Server (NTRS)
Mehlis, J. G.
1980-01-01
Problems concerning the design of a system for mapping a planetary surface with a synthetic aperture radar (SAR) are considered. Given an ambiguity level, resolution, and swath width, the problems are related to the determination of optimum antenna apertures and the most suitable pulse repetition frequency (PRF). From the set of normalized azimuth ambiguity ratio curves, the designer can arrive at the azimuth antenna length, and from the sets of normalized range ambiguity ratio curves, he can arrive at the range aperture length or pulse repetition frequency. A procedure based on this design method is shown in an example. The normalized curves provide results for a SAR using a uniformly or cosine weighted rectangular antenna aperture.
AVIRIS data quality for coniferous canopy chemistry
NASA Technical Reports Server (NTRS)
Swanberg, Nancy A.
1988-01-01
An assessment of AVIRIS data quality for studying coniferous canopy chemistry was made. Seven flightlines of AVIRIS data were acquired over a transect of coniferous forest sites in central Oregon. Both geometric and radiometric properties of the data were examined including: pixel size, swath width, spectral position and signal-to-noise ratio. A flat-field correction was applied to AVIRIS data from a coniferous forest site. Future work with this data set will exclude data from spectrometers C and D due to low signal-to-noise ratios. Data from spectrometers A and B will be used to examine the relationship between the canopy chemical composition of the forest sites and AVIRIS spectral response.
Inflatable Antenna Microwave Radiometer for Soil Moisture Measurement
NASA Technical Reports Server (NTRS)
Bailey, M. C.; Kendall, Bruce M.; Schroeder, Lyle C.; Harrington, Richard F.
1993-01-01
Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current technology. Recently, new novel designs for lightweight reflector systems have been developed using deployable inflatable antenna structures which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30 meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type radiometer designs at 1.4 and 4.3 GHz to produce a 370 kilometer cross-track swath with a 10 kilometer resolution that could be packaged for launch with a Titan 2 class vehicle. This study includes design of the inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials.
A concept for global crop forecasting. [using microwave radiometer satellites
NASA Technical Reports Server (NTRS)
Lovelace, U. M.; Wright, R. L.
1983-01-01
The mission, instrumentation, and design concepts for microwave radiometer satellites for continuous crop condition forecasting and monitoring on a global basis are described. Soil moisture affects both crop growth and the dielectric properties of the soil, and can be quantified by analysis of reflected radiance passively received by orbiting spacecraft. A dedicated satellite reading a swath 200 km across, with 1 km and 1 K temperature resolution, could track the time-varying changes of solid moisture, sea ice, and water surface temperature. Launched by the Shuttle into an interim orbit, a boost would place the satellite in a 400 or 700 km orbit. Resolution requirements indicate a 45-725 m diam antenna, with 70 dB gain, operating at frequencies of 1.08, 2.03, and 4.95 GHz to ensure atmospheric transparency. Alternative structural concepts include either double-layer tetrahedral or single-layer geodesic trusses as the basic structural members. An analysis of the electrostatic positioning of the parabolic antenna membrane is outlined.
NASA Technical Reports Server (NTRS)
Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem
2012-01-01
Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.
Jupiter's Great Red Spot upper cloud morphology and dynamics from JunoCam images
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, A.; Hueso, R.; Eichstädt, G.; Orton, G.; Rogers, J.; Hansen, C. J.; Momary, T.; Tabataba-Vakili, F.
2017-12-01
We present an analysis of RGB color-composite images of the Great Red Spot (GRS) obtained with JunoCam during Juno's seventh close flyby (PJ7) on July 11, 2017. The images have been projected as 4 cylindrical maps with a resolution of 180 pixels per degree (about 7 km/pixel) spanning a temporal interval of 9 min 41s. The GRS shows a rich variety of cloud morphologies that reveal different dynamical processes in its interior. We consider three major regions. (1) An outer peripheral ring of homogeneous reddish clouds (width about 1,300 km) traces a laminar flow. A family of at least three packets of gravity waves with a mean wavelength of 75 km is present at the internal edge of the ring (in its northern side). They occupy an area of 2,500 km in length (East-West, EW) and 670 km in the North-South (NS) direction. Single clouds in the groups forming the wave have extents of 35 km EW and 70-135 km NS. (2) A large internal region of red clouds (width about 3,200 km) contains three morphologies: (a) fields of bright cumulus-like clusters, (b) long, dark curved filaments (about 7,000 km length with 100 km width), two of them converging into an arrowhead shape, and (c) individual anticyclonic vortices with radius of 500 km that grow due to the radial shear of the wind velocity in the GRS interior as previously measured. A cumulus cluster is conspicuous inside one such anticyclone. Each single cloud element is 50 km in size and the cluster has a 25-30 percent area coverage in cumulus-convective activity, presumably due to ammonia moist convection. (3) A central core has quasi-rectangular shape, extending about 5000 km EW and 3000 km NS, that is confined by elongated clouds distributed along its periphery. Its interior is filled with the redder clouds in the GRS that have a scale 100 km and form a turbulent pattern whose cloud orientations suggest three adjacent areas with alternating cyclonic-cyclonic-anticyclonic vorticity, each with radius 650-850 km.
Multispectral Snapshot Imagers Onboard Small Satellite Formations for Multi-Angular Remote Sensing
NASA Technical Reports Server (NTRS)
Nag, Sreeja; Hewagama, Tilak; Georgiev, Georgi; Pasquale, Bert; Aslam, Shahid; Gatebe, Charles K.
2017-01-01
Multispectral snapshot imagers are capable of producing 2D spatial images with a single exposure at selected, numerous wavelengths using the same camera, therefore operate differently from push broom or whiskbroom imagers. They are payloads of choice in multi-angular, multi-spectral imaging missions that use small satellites flying in controlled formation, to retrieve Earth science measurements dependent on the targets Bidirectional Reflectance-Distribution Function (BRDF). Narrow fields of view are needed to capture images with moderate spatial resolution. This paper quantifies the dependencies of the imagers optical system, spectral elements and camera on the requirements of the formation mission and their impact on performance metrics such as spectral range, swath and signal to noise ratio (SNR). All variables and metrics have been generated from a comprehensive, payload design tool. The baseline optical parameters selected (diameter 7 cm, focal length 10.5 cm, pixel size 20 micron, field of view 1.15 deg) and snapshot imaging technologies are available. The spectral components shortlisted were waveguide spectrometers, acousto-optic tunable filters (AOTF), electronically actuated Fabry-Perot interferometers, and integral field spectrographs. Qualitative evaluation favored AOTFs because of their low weight, small size, and flight heritage. Quantitative analysis showed that waveguide spectrometers perform better in terms of achievable swath (10-90 km) and SNR (greater than 20) for 86 wavebands, but the data volume generated will need very high bandwidth communication to downlink. AOTFs meet the external data volume caps well as the minimum spectral (wavebands) and radiometric (SNR) requirements, therefore are found to be currently feasible in spite of lower swath and SNR.
Himalayan Strain Accumulation 100 ka Timescales
NASA Astrophysics Data System (ADS)
Cannon, J. M.; Murphy, M. A.; Liu, Y.
2015-12-01
Crustal scale fault systems and tectonostratigraphic units in the Himalaya can be traced for 2500 km along strike. However regional studies have shown that there is variability in the location and rate of strain accumulation which appears to be driven by Main Himalayan Thrust (MHT) geometry and convergence obliquity. GPS illuminates the modern interseismic strain rate and the historical record of great earthquakes elucidates variations in strain accumulation over 103 years. To connect these patterns with the 106 year structural and thermochronometric geologic record we examine normalized river channel steepness (ksn), a proxy for rock uplift rate, which develops over 104 - 105 years. Here we present a ksn map of the Himalaya and compare it with bedrock geology, precipitation, the historic earthquake record, GPS, seismicity, and seismotectonic models. Our map shows significant along strike changes in the magnitude of channel steepness, the areal extent of swaths of high ksn channels, and their location with respect to the range front. Differences include the juxtaposition of two narrow (30 - 40 km) range parallel belts of high ksn in west Nepal and Bhutan coincident with MHT duplexes and belts of microseismcity, with a single broad (70 km) swath of high ksn and microseismicity in central and eastern Nepal. Separating west and central Nepal a band of low ksn crosses the range coincident with the West Nepal Fault (WNF) and the lowest rate of microseismicity in Nepal. To the west the orogen is obliquely convergent and has less high ksn channels, while the orthogonally convergent region to the east contains the highest concentration of oversteepened channels in the Himalaya supporting the idea that the WNF is a strain partitioning boundary. The syntaxes are characterized by locally high channel steepness surrounded by low to moderate ksn channels consistent with the hypothesis that rapid exhumation within the syntaxes is sustained by an influx of lower crust.
Digital shaded-relief map of Venezuela
Garrity, Christopher P.; Hackley, Paul C.; Urbani, Franco
2004-01-01
The Digital Shaded-Relief Map of Venezuela is a composite of more than 20 tiles of 90 meter (3 arc second) pixel resolution elevation data, captured during the Shuttle Radar Topography Mission (SRTM) in February 2000. The SRTM, a joint project between the National Geospatial-Intelligence Agency (NGA) and the National Aeronautics and Space Administration (NASA), provides the most accurate and comprehensive international digital elevation dataset ever assembled. The 10-day flight mission aboard the U.S. Space Shuttle Endeavour obtained elevation data for about 80% of the world's landmass at 3-5 meter pixel resolution through the use of synthetic aperture radar (SAR) technology. SAR is desirable because it acquires data along continuous swaths, maintaining data consistency across large areas, independent of cloud cover. Swaths were captured at an altitude of 230 km, and are approximately 225 km wide with varying lengths. Rendering of the shaded-relief image required editing of the raw elevation data to remove numerous holes and anomalously high and low values inherent in the dataset. Customized ArcInfo Arc Macro Language (AML) scripts were written to interpolate areas of null values and generalize irregular elevation spikes and wells. Coastlines and major water bodies used as a clipping mask were extracted from 1:500,000-scale geologic maps of Venezuela (Bellizzia and others, 1976). The shaded-relief image was rendered with an illumination azimuth of 315? and an altitude of 65?. A vertical exaggeration of 2X was applied to the image to enhance land-surface features. Image post-processing techniques were accomplished using conventional desktop imaging software.
NASA Technical Reports Server (NTRS)
Simon, G.; Mein, P.; Vial, J. C.; Shine, R. A.; Woodgate, B. E.
1982-01-01
The UVSP instrument on SMM is able to observe solar regions at two wavelengths in the same line with a band-pass of 0.3 A. Intensity and Doppler velocity maps are derived. It is shown that the numerical values are sensitive to the adopted Doppler width and the range of velocities is limited to within 30 km/sec. A method called Double Dopplergram Determination (DDD) is described for deriving both the Doppler width and the velocity (up to 80 km/sec), and the main sources of uncertainties are discussed. To illustrate the method, a set of C IV 1548 A observations is analyzed according to this procedure. The mean C IV Doppler width measured (0.15 A) is comparable to previous determinations. A relation is found between bright regions and down-flows. Large Doppler widths correspond to strong velocity gradients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghavamian, Parviz; Seitenzahl, Ivo R.; Dopita, M. A.
2017-10-01
We present results of integral field spectroscopy of Balmer-dominated shocks in the LMC supernova remnant (SNR) N103B, carried out using the Wide Field Integral Spectrograph (WiFeS ) on the 2.3 m telescope at the Siding Spring Observatory in Australia. Existing X-ray studies of N103B have indicated an SN Ia origin. Radiative shock emission from clumpy material surrounding the SNR may result from interaction of the forward shock with relic stellar wind material, possibly implicating a thermonuclear explosion in a single-degenerate binary system. The recently discovered Balmer-dominated shocks mark the impact of the forward shock with low density, partially neutral CSMmore » gas, and form a partial shell encircling clumps of material exhibiting radiative shocks. The WiFeS spectra of N103B reveal broad H α emission having a width as high as 2350 km s{sup −1} along the northern rim, and both H α and H β broad profiles having widths around 1300 km s{sup −1} along the southern rim. Fits to the H α line profiles indicate that in addition to the usual broad and narrow emission components, a third component of intermediate width exists in these Balmer-dominated shocks, ranging from around 125 km s{sup −1} up to 225 km s{sup −1} in width. This is consistent with predictions of recent Balmer-dominated shock models, which predict that an intermediate-width component will be generated in a fast neutral precursor. We derive a Sedov age of approximately 685 ± 20 years for N103B from the Balmer-dominated spectra, consistent with the young age of 380–860 years estimated from light echo studies.« less
NASA Astrophysics Data System (ADS)
Holmes, Adrian A. J.; Rodgers, David W.; Hughes, Scott S.
2008-04-01
Extension across the southern Great Rift of the Eastern Snake River Plain (ESRP), Idaho, was measured to calculate the dimensions of underlying dikes and interpret magmatic and extensional processes. Cumulative rift-perpendicular extension ranges from 0.64 to 4.50 m along the 14 km long Kings Bowl segment, from 1.33 to 4.41 m along the 14 km long New Butte segment, and from 0.74 to 1.57 m along the 4 km long Minidoka segment. Along strike of each segment, extension increases toward coeval vents. Each rift segment is interpreted to be underlain by a subsurface dike, whose dimensions are calculated using buoyancy equilibrium and boundary element models. Dikes are calculated to have tops that are 950-530 m deep, bottoms that are 23-31 km deep, and widths that taper to zero from a maximum of 2-21 m. Modeling suggests that the Kings Bowl dike has a maximum probable width of ˜8 m and a volume of ˜2 km3, about 400 times the volume of its coeval lava flow. Dike widths and ages at the southern Great Rift provide evidence for a Holocene ESRP strain rate of about 1 to 3 × 10-16 s-1, which is as much as an order of magnitude slower than strain rates in the adjacent, seismically active Basin and Range province. Eruptive fissures are present where rift width is <1650 m. This corresponds to a depth to dike top of <700 m, which we propose was the depth where vesiculation initiated, thus increasing magma pressure and inducing eruption.
Hou, Guixue; Lou, Xiaomin; Sun, Yulin; Xu, Shaohang; Zi, Jin; Wang, Quanhui; Zhou, Baojin; Han, Bo; Wu, Lin; Zhao, Xiaohang; Lin, Liang; Liu, Siqi
2015-09-04
We propose an efficient integration of SWATH with MRM for biomarker discovery and verification when the corresponding ion library is well established. We strictly controlled the false positive rate associated with SWATH MS signals and carefully selected the target peptides coupled with SWATH and MRM. We collected 10 samples of esophageal squamous cell carcinoma (ESCC) tissues paired with tumors and adjacent regions and quantified 1758 unique proteins with FDR 1% at protein level using SWATH, in which 467 proteins were abundance-dependent with ESCC. After carefully evaluating the SWATH MS signals of the up-regulated proteins, we selected 120 proteins for MRM verification. MRM analysis of the pooled and individual esophageal tissues resulted in 116 proteins that exhibited similar abundance response modes to ESCC that were acquired with SWATH. Because the ESCC-related proteins consisted of a high percentile of secreted proteins, we conducted the MRM assay on patient sera that were collected from pre- and postoperation. Of the 116 target proteins, 42 were identified in the ESCC sera, including 11 with lowered abundances postoperation. Coupling SWATH and MRM is thus feasible and efficient for the discovery and verification of cancer-related protein biomarkers.
Mapping small elevation changes over large areas - Differential radar interferometry
NASA Technical Reports Server (NTRS)
Gabriel, Andrew K.; Goldstein, Richard M.; Zebker, Howard A.
1989-01-01
A technique is described, based on synthetic aperture radar (SAR) interferometry, which uses SAR images for measuring very small (1 cm or less) surface motions with good resolution (10 m) over swaths of up to 50 km. The method was applied to a Seasat data set of an imaging site in Imperial Valley, California, where motion effects were observed that were identified with movements due to the expansion of water-absorbing clays. The technique can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual displacements from seismic events, and prevolcanic swelling.
Spectral Analysis of the Primary Flight Focal Plane Arrays for the Thermal Infrared Sensor
NASA Technical Reports Server (NTRS)
Montanaro, Matthew; Reuter, Dennis C.; Markham, Brian L.; Thome, Kurtis J.; Lunsford, Allen W.; Jhabvala, Murzy D.; Rohrbach, Scott O.; Gerace, Aaron D.
2011-01-01
Thermal Infrared Sensor (TIRS) is a (1) New longwave infrared (10 - 12 micron) sensor for the Landsat Data Continuity Mission, (2) 185 km ground swath; 100 meter pixel size on ground, (3) Pushbroom sensor configuration. Issue of Calibration are: (1) Single detector -- only one calibration, (2) Multiple detectors - unique calibration for each detector -- leads to pixel-to-pixel artifacts. Objectives are: (1) Predict extent of residual striping when viewing a uniform blackbody target through various atmospheres, (2) Determine how different spectral shapes affect the derived surface temperature in a realistic synthetic scene.
Observation of Neutral Sodium Above Mercury During the Transit of November 8, 2006
NASA Technical Reports Server (NTRS)
Potter, A. E.; Killen, R. M.; Reardon, Kevin P.; Bida, T. A.
2013-01-01
We mapped the absorption of sunlight by sodium vapor in the exosphere of Mercury during the transit of Mercury on November 8, 2006, using the IBIS Interferometric BIdimensional Spectrometer at the Dunn Solar Telescope operated by the National Solar Observatory at Sunspot, New Mexico. The measurements were reduced to line-of-sight equivalent widths for absorption at the sodium D2 line around the shadow of Mercury. The sodium absorption fell off exponentially with altitude up to about 600 km. However there were regions around north and south polar-regions where relatively uniform sodium absorptions extended above 1000 km. We corrected the 0-600 km altitude profiles for seeing blur using the measured point spread function. Analysis of the corrected altitude distributions yielded surface densities, zenith column densities, temperatures and scale heights for sodium all around the planet. Sodium absorption on the dawn side equatorial terminator was less than on the dusk side, different from previous observations of the relative absorption levels. We also determined Earthward velocities for sodium atoms, and line widths for the absorptions. Earthward velocities resulting from radiation pressure on sodium averaged 0.8 km/s, smaller than a prediction of 1.5 km/s. Most line widths were in the range of 20 mA after correction for instrumental broadening, corresponding to temperatures in the range of 1000 K.
Polarimetric Ku-Band Scatterometer for High Accuracy, Large Swath Global Wind Vector Measurements
NASA Technical Reports Server (NTRS)
Tsai, Wu-Yang; Nghiem, Son V.; Huddleston, James; Spencer, Michael; Stiles, Bryan; West, Richard
2000-01-01
In the past, wind measurements from space using fan-beam antennas, such as Seasat Scatterometer (SASS-1), ERS-1 &2, and NASA scatterometer (NSCAT), required up to six large stick-like antennas and suffered a nadir gap of up to 400 km. In the near future, a spinning pencil-beam scatterometer system is to be used for the SeaWinds scatterometer on QuikSCAT (QSCAT) and on ADEOS-2 (SeaWinds). This scatterometer, though offering wind measurements in the nadir region, still suffers from degraded performance in the nadir and outer swath. The purpose of this paper is to present an advanced polarimetric spinning pencil-beam scatterometer system, which can significantly improve the wind performance across the entire swath. The polarimetric scatterometer simultaneously measures co-polarized backscatter and the polarimetric correlation of co- and cross-polarized radar returns from the ocean surface. The advantage over the conventional scatterometer system is that, while the co-polarization radar returns are even function of the wind direction, the polarimetric correlation is an odd function of wind direction due to the reflection symmetry of the wind roughened surface. Therefore, this polarimetric scatterometer system can provide additional, equivalent measurements at azimuth angle 45degree away from the corresponding co-polarization measurements. The combined co-polarization and correlation measurements enable good wind performance across the whole swath to be obtained. In this paper, we will first present the theoretical formulation of all of the key components required for designing a polarimetric scatterometer. Then, we show that good wind performance can be achieved by a slight improvement in the signal-to-noise ratio of the current QSCAT/SeaWinds design. We then present the predicated wind performance using computer simulation based on a model function for the co-polarized backscatter obtained from actual spaceborne scatterometer data and an estimated model function for the polarimetric correlation based on the asymmetry observed in backscatter data. Finally, we will show that, aside from ocean applications, this polarimetric scatterometer can also be used for ice and land applications.
NASA Astrophysics Data System (ADS)
Moller, D.; Hensley, S.; Khazendar, A.; Willis, J. K.
2017-12-01
The airborne glacier and ice surface topography interferometer (GLISTIN-A) is a Ka-band single pass interferometer, operated as part of the UAVSAR suite of instruments. Developed initially for swath ice-surface topography mapping, GLISTIN-A is expanding its utility to support new fields of science. Flights in the past year alone have covered seven separate flight requests over sites ranging from Hawaii to Greenland and for science applications that, in addition to ice surface topography, now include snow-mapping, flood hydrology, sea-ice freeboard and volcanology. This paper focuses on the cryosphere and will present campaign data and results from the first two years of the Oceans Melting Greenland (OMG) NASA Earth Venture Mission. On 3/6/17, GLISTIN-A departed Palmdale, CA to Greenland for its second year of OMG observations. With a series of aircraft and ship-based observations, OMG is characterizing the extent and intensity of ocean thermal forcing around Greenland and the subsequent response of its marine-terminating outlet glaciers. GLISTIN-A's role is to survey marine-terminating glaciers to observe yearly changes in the volume within 10 km of their termini. The 2017 campaign marks the second year of observations circumnavigating Greenland mapping over 90% of its marine terminating glaciers. In 2016 a total of 70 lines were flown over 8 flight days. In 2017 a full campaign was achieved with 81 lines over 8 flight days. In addition to the glacier lines, we also flew over the ICESat calibration site at Greenland's summit and a coordinated campaign with Operation Ice Bridge to image sea-ice in support of science and instrument calibration. After a final calibration to detrend the GLISTIN-A data, systematic biases are reduced to sub-meter level. The precision of the system varies across the swath and as a function of the spatial resolution, but exceeds OMG requirements by an order of magnitude for a 10km swath. Validation results comparing GLISTIN-A with the Airborne Terrain Mapper lidar flying with Operation Ice-Bridge (OIB) will be presented. We will end with some of the first change maps as derived from 2017/2016 to demonstrate the impact these multi-year observations will yield in accurately assessing mass-change in these dynamic regions.
Metal mirror TMA, telescopes of the JSS product line: design and analysis
NASA Astrophysics Data System (ADS)
Kirschstein, Steffen; Koch, Amelia; Schöneich, Jürgen; Döngi, Frank
2005-09-01
For the increasing market of low-cost multispectral pushbroom scanners for spaceborne Earth remote sensing the Jena-Optronik GmbH have developed the JSS product line. They are typically operated on micro-satellites with strong resources constraints. This leads to instrument designs optimised with respect to minimum size and mass, power consumption, and cost. From various customer requirements, Jena-Optronik has derived the JSS product line of low-cost optical spaceborne scanners in the visible wavelength range. Three-mirror anastigmat (TMA) telescope designs have become a widespread design solution for fields of view from 2 to 12 deg. The design solution chosen by Jena-Optronik is based on all-aluminium telescopes. Novel ultra-precision milling and polishing techniques now give the opportunity to achieve the necessary optical surface quality for applications in the visible range. The TMA telescope optics design of the JSS-56 imager will be accommodated onboard the RapidEye spacecraft. The JSS-56 TMA with a F-number of 4.3 realised a swath width of 78km with a Ground pixel resolution of 6.5m × 6.5m. The aluminium mirrors are Ni coated to achieve a suitable surface polish quality. This paper discusses typical requirements for the thermal design the bimetallic effects of the mirrors. To achieve a nearly diffracted limited imaging the typical surface irregularities due to the turning process have to be addressed in the ray tracing models. Analysis and integration of real mirror data in the ZEMAX design software are demonstrated here and compared with build-in standard tolerance concepts.
NASA Technical Reports Server (NTRS)
King, M. D.
1992-01-01
The Moderate Resolution Imaging Spectrometer (MODIS) is an Earth-viewing sensor being developed as a facility instrument for the Earth Observing System (EOS) to be launched in the late 1990s. MODIS consists of two separate instruments that scan a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, Sun-synchronous, platform at an altitude of 705 km. Of primary interest for studies of atmospheric physics is the MODIS-N (nadir) instrument which will provide images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resoulutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean and atmosperhic processes. The intent of this lecture is to describe the current status of MODIS-N and its companion instrument MODIS-T (tilt), a tiltable cross-track scanning radiometer with 32 uniformly spaced channels between 0.410 and 0.875 micrometers, and to describe the physical principles behind the development of MODIS for the remote sensing of atmospheric properties. Primary emphasis will be placed on the main atmospheric applications of determining the optical, microphysical and physical properties of clouds and aerosol particles form spectral-reflection and thermal-emission measurements. In addition to cloud and aerosol properties, MODIS-N will be utilized for the determination of the total precipitable water vapor over land and atmospheric stability. The physical principles behind the determination of each of these atmospheric products will be described herein.
The visible, near-infrared and short wave infrared channels of the EarthCARE multi-spectral imager
NASA Astrophysics Data System (ADS)
Doornink, J.; de Goeij, B.; Marinescu, O.; Meijer, E.; Vink, R.; van Werkhoven, W.; van't Hof, A.
2017-11-01
The EarthCARE satellite mission objective is the observation of clouds and aerosols from low Earth orbit. The payload will include active remote sensing instruments being the W-band Cloud Profiling Radar (CPR) and the ATLID LIDAR. These are supported by the passive instruments Broadband Radiometer (BBR) and the Multispectral Imager (MSI) providing the radiometric and spatial context of the ground scene being probed. The MSI will form Earth images over a swath width of 150 km; it will image the Earth atmosphere in 7 spectral bands. The MSI instrument consists of two parts: the Visible, Near infrared and Short wave infrared (VNS) unit, and the Thermal InfraRed (TIR) unit. Subject of this paper is the VNS unit. In the VNS optical unit, the ground scene is imaged in four spectral bands onto four linear detectors via separate optical channels. Driving requirements for the VNS instrument performance are the spectral sensitivity including out-of-band rejection, the MTF, co-registration and the inter-channel radiometric accuracy. The radiometric accuracy performance of the VNS is supported by in-orbit calibration, in which direct solar radiation is fed into the instrument via a set of quasi volume diffusers. The compact optical concept with challenging stability requirements together with the strict thermal constraints have led to a sophisticated opto-mechanical design. This paper, being the second of a sequence of two on the Multispectral Imager describes the VNS instrument concept chosen to fulfil the performance requirements within the resource and accommodation constraints.
The Teton-Yellowstone Tornado of 21 July 1987
NASA Technical Reports Server (NTRS)
Fujita, T. Theodore
1989-01-01
The Teton-Yellowstone Tornado, rated F4, crossed the Continental Divide at 3070 m, leaving behind a damage swath 39.2-km long and 2.5-km wide. A detailed damage analysis by using stereo-pair and color photos revealed the existence of four spinup swirl marks and 72 microburst outflows inside the damage area. The tornado was spawned by a mesocyclone that formed at the intersection of a mesohigh boundary and a warm front. The parent cloud of the tornado, tracked on eight infrared-temperature maps from GOES East and West, moved at 25 m s-1 and the number of cold temperature pixels below -60 C reached a distinct peak during the tornado time. Identified and tracked also are two warm spots enclosed inside the cold anvil cloud. On the basis of their identity and movement, an attempt was made to explain the cause of these spots as being the stratospheric cirrus clouds.
NASA Astrophysics Data System (ADS)
Luquet, Ph.; Brouard, L.; Chinal, E.
2017-11-01
Astrium has developed a product line of compact and versatile instruments for HR and VHR missions in Earth Observation. These cameras consist on a Silicon Carbide Korsch-type telescope, a focal plane with one or several retina modules - including five lines CCD, optical filters and front end electronics - and the instrument main electronics. Several versions have been developed with a telescope pupil diameter from 200 mm up to 650 mm, covering a large range of GSD (from 2.5 m down to sub-metric) and swath (from 10km up to 30 km) and compatible with different types of platform. Nine cameras have already been manufactured for five different programs: ALSAT2 (Algeria), SSOT (Chile), SPOT6 & SPOT7 (France), KRS (Kazakhstan) and VNREDSat (Vietnam). Two of them have already been launched and are delivering high quality images.
Use of C-band Sentinel-1 and L-band UAVSAR data for flood extent mapping during Hurricane Harvey
NASA Astrophysics Data System (ADS)
Lakshmi, V.; Kundu, S.; Torres, R.
2017-12-01
Hurricane Harvey was one of the most destructive storms that struck the Houston area in August 2017 causing loss of life and property. In this study, an estimation of flooding extent is done using two sets of microwave remote sensing data, Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Sentinel-1. UAVSAR is an L-band SAR (Synthetic Aperture Radar) data which is an airborne repeat-pass interferometric observation system and has 16 km swath. Sentinel-1 is the C band microwave data developed by European Space Agency covering a large area (250 km). Data are analyzed to examine the flood extent over Houston during Harvey. Flood extent mapping is carried out using the Sentinel-1 data and UAVSAR using backscatter signatures which displays the extent of changes and destruction during the flood. Keywords: Harvey, UAVSAR, Sentinel-1, flood extent
Design and test of a high performance off-axis TMA telescope
NASA Astrophysics Data System (ADS)
Fan, Bin; Cai, Wei-jun; Huang, Ying
2017-11-01
A new complete Optical Demonstration Model (ODM) of high performance off-axis Three Mirror Anastigmatic (TMA) telescope has been successfully developed in BISME. This 1.75-m focal length, 1/9 relative aperture, 6.2°×1.0°field of view visible telescope, which uses the TDICCD detectors of 7μm pixel size, can provide 2.0-m ground sampling distance and 51-km swath from an altitude of 500 km. With some significant efforts, the main goals of the ODM have been reached: a compact lightweight design while realizing high performance and high stability. The optical system and key technologies have been applied in the multispectral camera of ZY-3 Satellite (the first high resolution stereo mapping satellite of China), which was successfully launched on January 9th, 2012. The main technology of ODM was described. The test results and applications were outlined.
Detection and tracking of a low energy swell system off the U.S. East Coast with the Seasat SAR
NASA Technical Reports Server (NTRS)
Beal, R. C.
1980-01-01
It is noted that on the morning of September 28, 1978, at 1520 GMT, Seasat approached the East Coast of the U.S. with the 100 km swath of its synthetic aperture radar (SAR) running approximately parallel to the coast but displayed eastward by about 20 km. This pass is analyzed and the following conclusions are drawn: (1) the SAR can successfully detect low-energy swell systems with wave heights under 1 m (actually 0.65 + or - 0.25 m); (2) the refraction of low-energy but well-organized swells deriving from changes in the local depth of the ocean is clearly detectable in both wavelength and direction; and (3) the complexity of the ocean spectrum (whether composed of more than one system or spread in direction and wave number) appears to have little bearing on the threshold detection limits.
NASA Astrophysics Data System (ADS)
Belova, E.; Kirkwood, S.; Sergienko, T.
2013-07-01
Polar mesosphere winter echoes (PMWE) were detected by two radars, ESRAD at 52 MHz located near Kiruna, Sweden, and EISCAT at 224 MHz located near Tromsø, Norway, during the strong solar proton event on 11-12 November 2004. PMWE maximum volume reflectivity was estimated to be 3 × 10-15 m-1 for ESRAD and 2 × 10-18 m-1 for EISCAT. It was found that the shape of the echo power spectrum is close to Gaussian inside the PMWE layers, and outside of them it is close to Lorentzian, as for the standard ion line of incoherent scatter (IS). The EISCAT PMWE spectral width is about 5-7 m s-1 at 64-67 km and 7-10 m s-1 at 68-70 km. At the lower altitudes the PMWE spectral widths are close to those for the IS ion line derived from the EISCAT data outside the layers. At the higher altitudes the PMWE spectra are broader by 2-4 m s-1 than those for the ion line. The ESRAD PMWE spectral widths at 67-72 km altitude are 3-5 m s-1, that is, 2-4 m s-1 larger than ion line spectral widths modelled for the ESRAD radar. The PMWE spectral widths for both EISCAT and ESRAD showed no dependence on the echo strength. It was found that all these facts cannot be explained by turbulent origin of the echoes. We suggested that evanescent perturbations in the electron gas generated by the incident infrasound waves may explain the observed PMWE spectral widths. However, a complete theory of radar scatter from this kind of disturbance needs to be developed before a full conclusion can be made.
Titan Topography: A Comparison Between Cassini Altimeter and SAR Imaging from Two Titan Flybys
NASA Astrophysics Data System (ADS)
Gim, Y.; Stiles, B.; Callahan, P. S.; Johnson, W. T.; Hensley, S.; Hamilton, G.; West, R.; Alberti, G.; Flamini, E.; Lorenz, R. D.; Zebker, H. A.; Cassini RADAR Team
2007-12-01
The Cassini RADAR has collected twelve altimeter data sets of Titan since the beginning of the Saturn Tour in 2004. Most of the altimeter measurements were made at high altitudes, from 4,000 km to 15,000 km, resulting in low spatial resolutions due to beam footprint sizes larger than 20 km, as well as short ground tracks less than 600 km. One flyby (T30) was dedicated to altimeter data collection from 15,000 km to the closest approach altitude of 950 km. This produced a beam footprint size of 6 km at the lowest altitude and an altimeter ground track of about 3,500 km covering Titan's surface from near the equator to high latitude areas near Titan's north pole. More importantly, the ground track is located inside the SAR swath viewed from an earlier Titan flyby (T28). This provides a rare opportunity to investigate Titan topography with a relatively high spatial resolution and compare nadir-looking altimeter data with side-looking SAR imaging. From altimeter data, we have measured the mean Titan radius of 2575.1 km +/- 0.1 km and observed rather complex topographical variations over a short distance. By comparing altimeter data and SAR images at altitudes below 2,000 km, we have found that there is a strong correlation between SAR brightness and altimeter waveform; SAR dark areas correspond to strong and sharp altimeter waveforms while SAR bright areas correspond to weak and diffused altimeter waveforms. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.; Houston, S. H.; Powell, M. D.; Black, P. G.; Marks, F. D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 E half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Individual waves with heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 3-minute animation of the directional wave spectrum spatial variation over this period will be shown as well as summary plots of the wave field spatial variation. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
Guided-wave high-performance spectrometers for the MEOS miniature earth observation satellite
NASA Astrophysics Data System (ADS)
Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Jamroz, Wes; Sloan, James; Cloutis, Edward
2017-11-01
The MEOS Miniature Earth Observing Satellite is a low-cost mission being developed for the Canadian Space Agency with international collaborations that will innovatively combine remote correlated atmospheric/land-cover measurements with the corresponding atmospheric and ecosystem modelling in near real-time to obtain simultaneous variations in lower tropospheric GHG mixing ratios and the resulting responses of the surface ecosystems. MEOS will provide lower tropospheric CO2, CH4, CO, N2O, H2O and aerosol mixing ratios over natural sources and sinks using two kinds of synergistic observations; a forward limb measurement and a follow-on nadir measurement over the same geographical tangent point. The measurements will be accomplished using separate limb and nadir suites of innovative miniature line-imaging spectrometers and will be spatially coordinated such that the same air mass is observed in both views within a few minutes. The limb data will consist of 16-pixel vertical spectral line imaging to provide 1-km vertical resolution, while the corresponding nadir measurements will view sixteen 5 by 10 km2 ground pixels with a 160-km East-West swath width. To facilitate the mission accommodation on a low-cost microsat with a net payload mass under 22 kg, groundbreaking miniature guided-wave spectrometers with advanced optical filtering and coding technologies will be employed based on MPBC's patented IOSPEC technologies. The data synergy requirements for each view will be innovatively met using two complementary miniature line-imaging spectrometers to provide broad-band measurements from 1200 to 2450 nm at about 1.2 nm/pixel bandwidth using a multislit binary-coded MEMS-IOSPEC and simultaneous high-resolution multiple microchannels at 0.03 nm FWHM using the revolutionary FP-IOSPEC Fabry-Perot guided-wave spectrometer concept. The guided-wave spectrometer integration provides an order of magnitude reduction in the mass and volume relative to traditional bulk-optic spectrometers while also providing significant performance advantages; including an optically immersed master grating for minimal optical aberrations, robust optical alignment using a low-loss dielectric IR waveguide, and simultaneous broad-band spectral acquisition using advanced infrared linear arrays and multiplexing electronics. This paper describes the trial bread-boarding of the groundbreaking new spectrometer concepts and associated technologies towards the MEOS mission requirements.
JEOS. The JANUS earth observation satellite
NASA Astrophysics Data System (ADS)
Molette, P.; Jouan, J.
The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4). The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations. The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed. After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,… The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground station, and image data are directly transmitted to the ground station by the spacecraft X-band transmitter. Finally, the paper presents a set of typical Earth observation missions which can be realized with JEOS, for countries which wish to have their own observation system, possibly also as a complement to the SPOT and/or LANDSAT observation data.
Fencl, Jane S.; Mather, Martha E.; Costigan, Katie H.; Daniels, Melinda D.
2015-01-01
Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams.
Costigan, Katie H.; Daniels, Melinda D.
2015-01-01
Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams. PMID:26540105
Quasars Probing Quasars. IX. The Kinematics of the Circumgalactic Medium Surrounding z ∼ 2 Quasars
NASA Astrophysics Data System (ADS)
Lau, Marie Wingyee; Prochaska, J. Xavier; Hennawi, Joseph F.
2018-04-01
We examine the kinematics of the gas in the environments of galaxies hosting quasars at z ∼ 2. We employ 148 projected quasar pairs to study the circumgalactic gas of the foreground quasars in absorption. The sample selects foreground quasars with precise redshift measurements, using emission lines with precision ≲300 km s‑1 and average offsets from the systemic redshift ≲ | 100 {km} {{{s}}}-1| . We stack the background quasar spectra at the foreground quasar’s systemic redshift to study the mean absorption in C II, C IV, and Mg II. We find that the mean absorptions exhibit large velocity widths σv ≈ 300 km s‑1. Further, the mean absorptions appear to be asymmetric about the systemic redshifts. The mean absorption centroids exhibit small redshift relative to the systemic δv ≈ +200 km s‑1, with large intrinsic scatter in the centroid velocities of the individual absorption systems. We find the observed widths are consistent with gas in gravitational motion and Hubble flow. However, while the observation of large widths alone does not require galactic-scale outflows, the observed offsets suggest that the gas is on average outflowing from the galaxy. The observed offsets also suggest that the ionizing radiation from the foreground quasars is anisotropic and/or intermittent.
Near-surface stratigraphy and morphology, Mississippi Inner Shelf, northern Gulf of Mexico
Flocks, James G.; Kindinger, Jack; Kelso, Kyle W.; Bernier, Julie C.; DeWitt, Nancy T.; FitzHarris, Michael
2015-01-01
In June 2013, as part of the MsCIP project, the USGS conducted a geophysical survey consisting of about 650 line-kilometers (km), encompassing an area of approximately 212 square kilometers (km2). The survey area extended from 1 to 13 km offshore of Petite Bois Island. The geophysical investigation included interferometric swath bathymetry, sidescan sonar, and chirp subbottom profiling. The intent of the survey was to provide geologic information that would assist the USACE in developing a sediment sampling strategy for identifying deposits suitable for shoreline restoration operations. The data from the geophysical survey would also further our understanding of the geologic framework along the inner shelf. Numerous seafloor and subbottom features were identified. At the surface, shoals and shelf sand sheets of various sizes and orientations are the predominant morphology. In the subsurface, Holocene- and Pleistocene-age features include marine transgressive deposits infilling older fluvia distributary systems. These interpretations from the geophysical research were integrated with sediment cores collected by the USGS and USACE to provide textural and volumetric information.
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Olsen, Edward T.
2012-01-01
The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.
NASA Astrophysics Data System (ADS)
Baines, A. Graham; Cheadle, Michael J.; Dick, Henry J. B.; Hosford Scheirer, Allegra; John, Barbara E.; Kusznir, Nick J.; Matsumoto, Takeshi
2003-12-01
Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ˜1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10° change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.
Baines, A.G.; Cheadle, Michael J.; Dick, H.J.B.; Scheirer, A.H.; John, Barbara E.; Kusznir, N.J.; Matsumoto, T.
2003-01-01
Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ???1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10?? change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.
NASA Astrophysics Data System (ADS)
Garay, M. J.; Bull, M. A.; Witek, M. L.; Diner, D. J.; Seidel, F.
2017-12-01
Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing operational Level 2 (swath-based) aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution and atmospherically corrected land surface products at 1.1 km resolution. A major, multi-year development effort has led to the release of updated operational MISR Level 2 aerosol and land surface retrieval products. The spatial resolution of the aerosol product has been increased to 4.4 km, allowing more detailed characterization of aerosol spatial variability, especially near local sources and in urban areas. The product content has been simplified and updated to include more robust measures of retrieval uncertainty and other fields to benefit users. The land surface product has also been updated to incorporate the Version 23 aerosol product as input and to improve spatial coverage, particularly over mountainous terrain and snow/ice-covered surfaces. We will describe the major upgrades incorporated in Version 23, present validation of the aerosol product, and describe some of the applications enabled by these product updates.
NASA Astrophysics Data System (ADS)
Kluesner, J. W.; Silver, E. A.; Gibson, J. C.; Bangs, N. L.; McIntosh, K.; von Huene, R.; Orange, D.; Ranero, C. R.
2012-12-01
Offshore southern Costa Rica we have identified 161 potential fluid seepage sites on the shelf and slope regions within an 11 x 55 km strip where no fluid indicators had been reported previously using conventional deep-water mutlibeam bathymetry (100 m grid cell size) and deep towed side scan sonar. Evidence includes large and small pockmarks, mounds, ridges, and slope failure features with localized anomalous high-amplitude backscatter strength. The majority of seepage indicators are associated with shallow sub-bottom reversed polarity bright spots and flat spots imaged within the CRISP 3D seismic grid. Data were collected ~50 km west of Osa Peninsula, Costa Rica onboard the R/V Marcus G. Langseth during the spring of 2011. We obtained EM122 multibeam data using fixed, closely spaced receiver beams and 9-10 times swath overlap, which greatly improved the signal-to-noise ratio and sounding density and allowed for very small grid and mosaic cell sizes (2-10 m). A gas plume in the water column, seen on a 3.5 kHz profile, is located along a fault trace and above surface and subsurface seep indicators. Fluid indicators on the outer shelf occur largely on a dense array of faults, some of which cut through the reflective basement. Seismic flat spots commonly underlie axes of large anticlines on the shelf and slope. Pockmarks are also located at the foot of mid-slope canyons, very near to the upper end of the BSR. These pockmarks appear to be associated with canyon abandonment and folded beds that channel fluids upward, causing hydrate instability. Our findings suggest that significant amounts of methane are venting into ocean and potentially into the atmosphere across the heavily deformed shelf and slope of Costa Rica.
The next Landsat satellite; the Landsat Data Continuity Mission
Irons, James R.; Dwyer, John L.; Barsi, Julia A.
2012-01-01
The National Aeronautics and Space Administration (NASA) and the Department of Interior United States Geological Survey (USGS) are developing the successor mission to Landsat 7 that is currently known as the Landsat Data Continuity Mission (LDCM). NASA is responsible for building and launching the LDCM satellite observatory. USGS is building the ground system and will assume responsibility for satellite operations and for collecting, archiving, and distributing data following launch. The observatory will consist of a spacecraft in low-Earth orbit with a two-sensor payload. One sensor, the Operational Land Imager (OLI), will collect image data for nine shortwave spectral bands over a 185 km swath with a 30 m spatial resolution for all bands except a 15 m panchromatic band. The other instrument, the Thermal Infrared Sensor (TIRS), will collect image data for two thermal bands with a 100 m resolution over a 185 km swath. Both sensors offer technical advancements over earlier Landsat instruments. OLI and TIRS will coincidently collect data and the observatory will transmit the data to the ground system where it will be archived, processed to Level 1 data products containing well calibrated and co-registered OLI and TIRS data, and made available for free distribution to the general public. The LDCM development is on schedule for a December 2012 launch. The USGS intends to rename the satellite "Landsat 8" following launch. By either name a successful mission will fulfill a mandate for Landsat data continuity. The mission will extend the almost 40-year Landsat data archive with images sufficiently consistent with data from the earlier missions to allow long-term studies of regional and global land cover change.
1990-11-16
This Magellan image reveals Sacajawea Patera, a large, elongate caldera located in wester Ishtar Terra on the smooth plateau of Lakshmi Planum. The image is centered at 64.5 degrees north latitude adn 337 degrees east longitude. It is approx. 420 km (252 mi.) wide at the base Sacajawea is a depression approx. 1-2 km (0.6-1.2 mi.) deep and 120 by 215 km (74 by 133 mi.) in diameter; it is elongate in a sousthwest-northeast direction. The depression is interpreted to be graben adn fault scarps. These structures are space 0.5 to 4 km (0.3 to 2.5 mi.) apart, are 0.6 to 4 km (0.4 to 2.5 mi.) in width and up to 100 km (62 mi.) in length. Extending up to 140 km (87 mi.) in length from the southeast of the patera is a system of linear structures thought to represent a flanking rift zone along which the lateral injection and eruption of magma may have occurred. A shield edifice 12 km (7 mi.) in diameter with a prominent central pit lies along the trend of one of these features. The impact crater zlata, approx. 6 km (4 mi.) in diameter is located within the zone of graben to the northwest of the patera. Few flow features are observed in association with sacajawea, possibly due to age and state of degradation of the flows. Mottled bright deposits 4 to 20 km (2.5 to 12 mi.) in width are located near the periphery and in the center of the patera floor within local topographic lows. Diffuse patches of dark material approx. 40 km (25 mi.) in width are observed southwest of the patera, superimposed on portions of the surrounding graben. The formation of sacajawea is thought to be related to the drainage and collapse of a large magma chamber. Gravitational relaxation may have caused the resultant caldera to sag, producing the numerous complex, highly deformed tessera-like terrain are located north and east of the patera and are seen in the upper portion of the image. Color has been added to this image to simulate the appearance of the Venus surface.
Multi-agent robotic systems and applications for satellite missions
NASA Astrophysics Data System (ADS)
Nunes, Miguel A.
A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi-agent robotic system has a consistent lower CPU load of 0.29 +/- 0.03 compared to 0.35 +/- 0.04 for the monolithic implementation, a 17.1 % reduction. The second contribution of this work is the development of a multi-agent robotic system for the autonomous rendezvous and docking of multiple spacecraft. To compute the maneuvers guidance, navigation and control algorithms are implemented as part of the multi-agent robotic system. The navigation and control functions are implemented using existing algorithms, but one important contribution of this section is the introduction of a new six degrees of freedom guidance method which is part of the guidance, navigation and control architecture. This new method is an explicit solution to the guidance problem, and is particularly useful for real time guidance for attitude and position, as opposed to typical guidance methods which are based on numerical solutions, and therefore are computationally intensive. A simulation scenario is run for docking four CubeSats deployed radially from a launch vehicle. Considering fully actuated CubeSats, the simulations show docking maneuvers that are successfully completed within 25 minutes which is approximately 30% of a full orbital period in low earth orbit. The final section investigates the problem of optimization of satellite constellations for fast revisit time, and introduces a new method to generate different constellation configurations that are evaluated with a genetic algorithm. Two case studies are presented. The first is the optimization of a constellation for rapid coverage of the oceans of the globe in 24 hours or less. Results show that for an 80 km sensor swath width 50 satellites are required to cover the oceans with a 24 hour revisit time. The second constellation configuration study focuses on the optimization for the rapid coverage of the North Atlantic Tracks for air traffic monitoring in 3 hours or less. The results show that for a fixed swath width of 160 km and for a 3 hour revisit time 52 satellites are required.
The characters of ion acoustic rogue waves in nonextensive plasma
NASA Astrophysics Data System (ADS)
Du, Hai-su; Lin, Mai-mai; Gong, Xue; Duan, Wen-shan
2017-10-01
Several well-known nonlinear waves in the rational solutions of the nonlinear Schrödinger equation are studied in two-component plasmas consisting of ions fluid and nonextensive electrons, such as Kuznetsov-Ma breather (K-M), bright soliton, rogue wave (RW), Akhmediev breather (AB) and dark soliton, and so on. In this paper, we have investigated the characteristics of K-M, AB, and RW's propagation in plasma with nonextensive electron distribution, and the dependence of amplitude and width for ion acoustic rogue waves in this system. It is found that K-M' triplet is appearance-disappearance-appearance-disappearance. AB solitons only appear once and RW is a single wave that appears from nowhere and then disappears. It is also noted that the wave number and nonextensive parameter of electrons have a significant influence on the maximum envelope amplitude, but, the influence of the width was not significant. At the same time, the effects of the small parameter, which represent the nonlinear strength, on the amplitude and width of ion acoustic rogue waves are also being highlighted.
[Measurement of Speed and Direction of Ocean Surface Winds Using Quik Scat Scatterometer
NASA Technical Reports Server (NTRS)
Stiles, Bryan; Pollard, Brian
2000-01-01
The SeaWinds on QuikSCAT scatterometer was developed by NASA JPL to measure the speed and direction of ocean surface winds. Simulations performed to estimate the performance of the instrument prior to its launch have indicated that the mid-swath accuracy is worse than that of the rest of the swath. This behavior is a general characteristic of scanning pencil beam scatterometers. For SeaWinds, the accuracy of the rest of the swath, and the size of the swath are such that the instrument meets its science requirements despite mid-swath shortcomings. However, by understanding the problem at mid-swath, we can improve the performance there as well. We discuss the underlying causes of the problem in detail and propose a new wind retrieval algorithm which improves mid-swath performance. The directional discrimination ability of the instrument varies with cross track distance wind speed, and direction. By estimating the range of likely wind directions for each measurement cell, one can optimally apply information from neighboring cells where necessary in order to reduce random wind direction errors without significantly degrading the resolution of the resultant wind field. In this manner we are able to achieve mid-swath RMS wind direction errors as low as 15 degrees for low winds and 10 degrees for moderate to high winds, while at the same time preserving high resolution structures such as cyclones and fronts.
Mathematical model of small water-plane area twin-hull and application in marine simulator
NASA Astrophysics Data System (ADS)
Zhang, Xiufeng; Lyu, Zhenwang; Yin, Yong; Jin, Yicheng
2013-09-01
Small water-plane area twin-hull (SWATH) has drawn the attention of many researchers due to its good sea-keeping ability. In this paper, MMG's idea of separation was used to perform SWATH movement modeling and simulation; respectively the forces and moment of SWATH were divided into bare hull, propeller, rudder at the fluid hydrodynamics, etc. Wake coefficient at the propellers which reduces thrust coefficient, and rudder mutual interference forces among the hull and propeller, for the calculation of SWATH, were all considered. The fourth-order Runge-Kutta method of integration was used by solving differential equations, in order to get SWATH's movement states. As an example, a turning test at full speed and full starboard rudder of `Seagull' craft is shown. The simulation results show the SWATH's regular pattern and trend of motion. It verifies the correctness of the mathematical model of the turning movement. The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen, or safety assessment for ocean engineering project. Lastly, the full mission navigation simulating system (FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.
NASA Technical Reports Server (NTRS)
Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.
1994-01-01
High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.
Spaceborne Hybrid Quad-Pol SAR Range Ambiguity Analysis and Simulations
NASA Astrophysics Data System (ADS)
Yang, Shilin; Li, Yang; Zhang, Jingjing; Hong, Wen
2014-11-01
The higher levels of range ambiguities in the cross-polarized measurement channels are the primary limitations for the matched quad-pol (e.g., HH, VV, VH, and HV) spaceborne synthetic aperture radar (SAR) systems. These ambiguities severely constrain the useful range of incident angles and the swath widths particularly at larger incidence. Adopting hybridpolarimetric architecture can remarkably reduce these ambiguities. In this paper, we analyse and develop the expression of range ambiguity to signal ratio (RASR) in the hybrid-polarimetric architecture. Simulations are made to testify this novel architecture’s advantage in the improvement of range ambiguities. The system operating parameters are derived from NASA’s DESDynl mission. In addition, we used the second order moments of polarimetric covariance matrices to depict target or the environment which are more precisely.
Spaceborne Hybrid Quad-Pol SAR Range Ambiguity Analysis and Simulations
NASA Astrophysics Data System (ADS)
Yang, Shilin; Li, Yang; Zhang, Jingjing; Hong, Wen
2014-11-01
The higher levels of range ambiguities in the cross- polarized measurement channels are the primary limitations for the matched quad-pol (e.g., HH, VV, VH, and HV) spaceborne synthetic aperture radar (SAR) systems. These ambiguities severely constrain the useful range of incident angles and the swath widths particularly at larger incidence. Adopting hybrid- polarimetric architecture can remarkably reduce these ambiguities. In this paper, we analyse and develop the expression of range ambiguity to signal ratio (RASR) in the hybrid-polarimetric architecture. Simulations are made to testify this novel architecture's advantage in the improvement of range ambiguities. The system operating parameters are derived from NASA's DESDynl mission. In addition, we used the second order moments of polarimetric covariance matrices to depict target or the environment which are more precisely.
Radar properties of the Huygens Landing Site on Titan
NASA Astrophysics Data System (ADS)
Lorenz, Ralph; Cassini RADAR Team
2006-09-01
The Huygens landing site on Titan was not expected to be observed with SAR imaging by the Cassini RADAR until late in the nominal tour. However, better-than-expected performance, permitting operation at higher altitudes and thus over longer times than originally anticipated, has permitted two observations of the landing site. The first was an extension to the 5-beam SAR swath on T8 (October 2005) from altitudes of 4000km to 5000km ; the second was an experimental observation at an altitude range of 10,000km-13,000km using custom pointing and SAR-processing only the central high-gain beam. The latter 'experimental' observation opens a new capability (see also the abstract by West et al) for observing targets of interest with a resolution of approximately 1-2km. Here we compare the two images, which have slightly different incidence angles and look azimuths, noting correlations and differences. These can also be compared with the optical image mosaic from the Huygens descent imager DISR. Some correlations exist (notably the two prominent dark lines - linear sand dunes) but there are many differences. Additional information on the radar properties of the landing site can be derived from the Huygens radar altimeter, and the intensity of the probe's radio signal received as Cassini set on the horizon, a fortuitous bistatic scattering experiment.
Childs, Jonathan R.; Triezenberg, Peter J.; Danforth, William W.
2012-01-01
In September 2008, the U.S. Geological Survey (USGS), in cooperation with Natural Resources Canada, Geological Survey of Canada (GSC), conducted bathymetric and geophysical surveys in the Arctic Beaufort Sea aboard the U.S. Coast Guard cutter USCGC Healy. The principal objective of this mission to the high Arctic was to acquire data in support of delineation of the outer limits of the U.S. and Canadian Extended Continental Shelf (ECS) in the Arctic Ocean in accordance with the provisions of Article 76 of the Law of the Sea Convention. The Healy was accompanied by the Canadian Coast Guard icebreaker Louis S. St- Laurent. The science parties on the two vessels consisted principally of staff from the USGS (Healy), and the GSC and the Canadian Hydrographic Service (Louis). The crew included marine mammal and Native-community observers, ice observers, and biologists conducting research of opportunity in the Arctic Ocean. The joint survey proved an unqualified success. The Healy collected 5,528 km of swath (multibeam) bathymetry (38,806 km2) and CHIRP subbottom profile data, with accompanying marine gravity measurements. The Louis acquired 2,817 km of multichannel seismic (airgun) deep-penetration reflection-profile data along 12 continuous lines, as well as 35 sonobuoy refraction stations and accompanying single-beam bathymetry. The coordinated efforts of the two vessels resulted in seismic-reflection profile data of much higher quality and continuity than if the data had been acquired with a single vessel alone. Equipment failure rate of the seismic equipment gear aboard the Louis was greatly improved with the advantage of having a leading icebreaker. When ice conditions proved too severe to deploy the seismic system, the Louis led the Healy, resulting in much improved quality of the swath bathymetry and CHIRP sub-bottom data in comparison with data collected by the Healy in the lead or working alone. Ancillary science objectives, including ice observations, deployment of ice-monitoring buoys and water-column sampling for biologic (phytoplankton) studies, were also successfully accomplished.
A Real-Time MODIS Vegetation Composite for Land Surface Models and Short-Term Forecasting
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.; Jedlovec, Gary J.
2011-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center is producing real-time, 1- km resolution Normalized Difference Vegetation Index (NDVI) gridded composites over a Continental U.S. domain. These composites are updated daily based on swath data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the polar orbiting NASA Aqua and Terra satellites, with a product time lag of about one day. A simple time-weighting algorithm is applied to the NDVI swath data that queries the previous 20 days of data to ensure a continuous grid of data populated at all pixels. The daily composites exhibited good continuity both spatially and temporally during June and July 2010. The composites also nicely depicted high greenness anomalies that resulted from significant rainfall over southwestern Texas, Mexico, and New Mexico during July due to early-season tropical cyclone activity. The SPoRT Center is in the process of computing greenness vegetation fraction (GVF) composites from the MODIS NDVI data at the same spatial and temporal resolution for use in the NASA Land Information System (LIS). The new daily GVF dataset would replace the monthly climatological GVF database (based on Advanced Very High Resolution Radiometer [AVHRR] observations from 1992-93) currently available to the Noah land surface model (LSM) in both LIS and the public version of the Weather Research and Forecasting (WRF) model. The much higher spatial resolution (1 km versus 0.15 degree) and daily updates based on real-time satellite observations have the capability to greatly improve the simulation of the surface energy budget in the Noah LSM within LIS and WRF. Once code is developed in LIS to incorporate the daily updated GVFs, the SPoRT Center will conduct simulation sensitivity experiments to quantify the impacts and improvements realized by the MODIS real-time GVF data. This presentation will describe the methodology used to develop the 1-km MODIS NDVI composites and show sample output from summer 2010, compare the MODIS GVF data to the AVHRR monthly climatology, and illustrate the sensitivity of the Noah LSM within LIS and/or the coupled LIS/WRF system to the new MODIS GVF dataset.
NASA Astrophysics Data System (ADS)
Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.
2015-12-01
The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform collaborative science with other investigations, including cartographic and geologic maps, regional and high-resolution digital topography, GIS products, color and photometric data products, a geodetic control network tied to radar altimetry, and a database of plume-search observations.
The potential of Sentinel-2 for investigating glaciers and related natural hazards
NASA Astrophysics Data System (ADS)
Winsvold, Solveig H.; Altena, Bas; Kääb, Andreas
2016-04-01
Sentinel-2 (S2) features a number of characteristics that will improve mapping and monitoring of glaciers and related hazards, meaning the large swath width of 290km, the spatial resolution of 10-20m, and the repeat cycle of at least 10 days (higher towards the poles). In this study we perform a number of general tests on image radiometry and geometry as relevant to the glaciological image analysis. Based on commissioning-phase and ramp-up phase data, we find a geolocation accuracy of one pixel (at 10m) or better and co-registration accuracy between repeat scenes of around 1/3 pixel. Both error magnitudes are well acceptable for most glaciological applications. We also found patterns related to the mosaicking of the 12 detector sub-systems that form the full S2 swath. Also their magnitude will only matter in science-grade high-precision applications. Cross-track offsets in orthoprojected L1C data due to vertical errors in the DEM used have, however, to be observed. In particular at glacier tongues, DEMs will typically be outdated due to glacier shrinkage. For some examples in the Swiss Alps we found lateral offsets in S2 images of 30-40 m over such areas. For latitudes larger than 60 degree North (i.e. north of the SRTM coverage) we found geolocation bias patterns of the same order of magnitude all over the scenes, not only over glaciers. Geolocation biases in S2-derived products would for instance affect glacier outlines, especially when compared to other data such as Landsat, because of different orbit settings and use of other DEMs in the orthorectification process. This can be avoided to a large extent for glacier velocity measurements by relying on repeat data from the relative same orbit. Through a number of case studies, we demonstrate and evaluate the capability of S2 for glaciological applications: Automatic multispectral glacier mapping based on S2 bands 4 (red) and 11 (SWIR) turns out to be very successful, among others due to the improved resolution compared to Landsat data. This improved resolution together with the high radiometric fidelity is also important for detecting and assessing glacier lakes and their changes over time. From S2 data it becomes possible to track velocities of smaller glaciers and even over seasonal scales, as we demonstrate for the European Alps, the Caucasus, New Zealand and Greenland. This opens up for the possibility of obtaining both summer and annual velocities from the same sensor.
NASA Technical Reports Server (NTRS)
Njoku, Eni; Entekhabi, Dara; O'Neill, Peggy; Jackson, Tom; Kellogg, Kent; Entin, Jared
2011-01-01
NASA's Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has as its key measurement objective the frequent, global mapping of near-surface soil moisture and its freeze-thaw state. SMAP soil moisture and freeze/thaw measurements at 10 km and 3 km resolutions respectively, would enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections Soil moisture measurements are also of great importance in assessing floods and for monitoring drought. In addition, observations of soil moisture and freeze/thaw timing over the boreal latitudes can help reduce uncertainties in quantifying the global carbon balance. The SMAP measurement concept utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP radiometer and radar flight hardware and ground processing designs are incorporating approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). The radar and radiometer instruments are planned to operate in a 680 km polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments would yield global maps of soil moisture and freeze/thaw state to be provided at 10 km and 3 km resolutions respectively, every two to three days. Plans are to provide also a radiometer-only soil moisture product at 40-km spatial resolution. This product and the underlying brightness temperatures have characteristics similar to those provided by the Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are unique opportunities for common data product development and continuity between the two missions. SMAP also has commonalities with other satellite missions having L-band radiometer and/or radar sensors applicable to soil moisture measurement, such as Aquarius, SAO COM, and ALOS-2. The algorithms and data products for SMAP are being developed in the SMAP Science Data System (SDS) Testbed. The algorithms are developed and evaluated in the SDS Testbed using simulated SMAP observations as well as observational data from current airborne and spaceborne L-band sensors including SMOS. The SMAP project is developing a Calibration and Validation (Cal/Val) Plan that is designed to support algorithm development (pre-launch) and data product validation (post-launch). A key component of the Cal/Val Plan is the identification, characterization, and instrumentation of sites that can be used to calibrate and validate the sensor data (Level I) and derived geophysical products (Level 2 and higher). In this presentation we report on the development status of the SMAP data product algorithms, and the planning and implementation of the SMAP Cal/Val program. Several components of the SMAP algorithm development and Cal/Val plans have commonality with those of SMOS, and for this reason there are shared activities and resources that can be utilized between the missions, including in situ networks, ancillary data sets, and long-term monitoring sites.
Back-to-Back Martian Dust Storms
2017-03-09
This frame from a movie clip of hundreds of images from NASA's Mars Reconnaissance Orbiter shows a global map of Mars with atmospheric changes from Feb. 18, 2017 through March 6, 2017, a period when two regional-scale dust storms appeared. It combines hundreds of images from the Mars Color Imager (MARCI) camera on NASA's Mars Reconnaissance Orbiter. The date for each map in the series is given at upper left. Dust storms appear as pale tan. In the opening frames, one appears left of center, near the top (north) of the map, then grows in size as it moves south, eventually spreading to about half the width of the map after reaching the southern hemisphere. As the dust from that first storm becomes more diffuse in the south, another storm appears near the center of the map in the final frames. In viewing the movie, it helps to understand some of the artifacts produced by the nature of MARCI images when seen in animation. MARCI acquires images in swaths from pole-to-pole during the dayside portion of each orbit. The camera can cover the entire planet in just over 12 orbits, and takes about one day to accumulate this coverage. The individual swaths for each day are assembled into a false-color, map-projected mosaic for the day. Equally spaced blurry areas that run from south-to-north result from the high off-nadir viewing geometry in those parts of each swath, a product of the spacecraft's low orbit. Portions with sharper-looking details are the central part of an image, viewing more directly downward through less atmosphere than the obliquely viewed portions. MARCI has a 180-degree field of view, and Mars fills about 78 percent of that field of view when the camera is pointed down at the planet. However, the Mars Reconnaissance Orbiter often is pointed to one side or the other off its orbital track in order to acquire targeted observations by other imaging systems on the spacecraft. When such rolls exceed about 20 degrees, gaps occur in the mosaic of MARCI swaths. Other dark gaps appear where data are missing. It isn't easy to see the actual dust motion in the atmosphere in these images, owing to the apparent motion of these artifacts. However, by concentrating on specific surface features (craters, prominent ice deposits, etc.) and looking for the tan clouds of dust, it is possible to see where the storms start and how they grow, move and eventually dissipate. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21484
Efficient Swath Mapping Laser Altimetry Demonstration Instrument Incubator Program
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A,; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan
2010-01-01
In this paper we will discuss our eighteen-month progress of a three-year Instrument Incubator Program (IIP) funded by NASA Earth Science Technology Office (ESTO) on swath mapping laser altimetry system. This paper will discuss the system approach, enabling technologies and instrument concept for the swath mapping laser altimetry.
Luo, Yanzhang; Mok, Tin Seak; Lin, Xiuxian; Zhang, Wanling; Cui, Yizhi; Guo, Jiahui; Chen, Xing; Zhang, Tao; Wang, Tong
2017-01-01
Nasopharyngeal carcinoma (NPC) is a serious threat to public health, and the biomarker discovery is of urgent needs. The data-independent mode (DIA) based sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry (MS) has been proved to be precise in protein quantitation and efficient for cancer biomarker researches. In this study, we performed the first SWATH-MS analysis comparing the NPC and normal tissues. Spike-in stable isotope labeling by amino acids in cell culture (super-SILAC) MS was used as a shotgun reference. We identified and quantified 1414 proteins across all SWATH-MS analyses. We found that SWATH-MS had a unique feature to preferentially detect proteins with smaller molecular weights than either super-SILAC MS or human proteome background. With SWATH-MS, 29 significant differentially express proteins (DEPs) were identified. Among them, carbonic anhydrase 2 (CA2) was selected for further validation per novelty, MS quality and other supporting rationale. With the tissue microarray analysis, we found that CA2 had an AUC of 0.94 in differentiating NPC from normal tissue samples. In conclusion, SWATH-MS has unique features in proteome analysis, and it leads to the identification of CA2 as a potentially new diagnostic biomarker for NPC. PMID:28117408
NASA Technical Reports Server (NTRS)
2005-01-01
4 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small landslide off a steep slope in southwestern Ophir Chasma. Location near: 4.6oS, 72.8oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern SpringNASA Technical Reports Server (NTRS)
Federspiel, Martin; Sandage, Allan; Tammann, G. A.
1994-01-01
The observational selection bias properties of the large Mathewson-Ford-Buchhorn (MFB) sample of axies are demonstrated by showing that the apparent Hubble constant incorrectly increases outward when determined using Tully-Fisher (TF) photometric distances that are uncorreted for bias. It is further shown that the value of H(sub 0) so determined is also multivlaued at a given redshift when it is calculated by the TF method using galaxies with differenct line widths. The method of removing this unphysical contradiction is developed following the model of the bias set out in Paper II. The model developed further here shows that the appropriate TF magnitude of a galaxy that is drawn from a flux-limited catalog not only is a function of line width but, even in the most idealistic cases, requires a triple-entry correction depending on line width, apparent magnitude, and catalog limit. Using the distance-limited subset of the data, it is shown that the mean intrinsic dispersion of a bias-free TF relation is high. The dispersion depends on line width, decreasing from sigma(M) = 0.7 mag for galaxies with rotational velocities less than 100 km s(exp-1) to sigma(M) = 0.4 mag for galaxies with rotational velocities greater than 250 km s(exp-1). These dispersions are so large that the random errors of the bias-free TF distances are too gross to detect any peculiar motions of individual galaxies, but taken together the data show again the offset of 500 km s(exp-1) fond both by Dressler & Faber and by MFB for galaxies in the direction of the putative Great Attractor but described now in a different way. The maximum amplitude of the bulk streaming motion at the Local Group is approximately 500 km s(exp-1) but the perturbation dies out, approaching the Machian frame defined by the CMB at a distance of approximately 80 Mpc (v is approximately 4000 km s(exp -1)). This decay to zero perturbation at v is approximately 4000 km s(exp -1) argues against existing models with a single attraction at approximately 4500 km s(exp -1) (the Great Attactor model) pulling the local region. Rather, the cause of the perturbation appears to be the well-known clumpy mass distribution within 4000 km s(exp -1) in the busy directions of Hydra, Centaurus, Antila and Dorado, as postulated earlier (Tammann & Sandage 1985).
NASA Astrophysics Data System (ADS)
Hayas, Antonio; Giráldez, Juan V.; Laguna, Ana; Peña, Peña; Vanwalleghem, Tom
2015-04-01
Gully erosion is widely recognized as an important erosion process and source of sediment, especially in Mediterranean basins. Recent advances in monitoring techniques, such as ground-based LiDAR, drone-bounded cameras or photoreconstruction, allow quantifying gully erosion rates with unprecedented accuracy. However, many studies only focus on gully growth during a short period. In agricultural areas, farmers frequently erase gullies artificially. Over longer time scales, this results in an important dynamic of gully growth and infilling. Also, given the significant temporal variability of precipitation, land use and the proper gully erosion processes, gully growth is non-linear over time. This study therefore aims at analyzing gully morphodynamics over a long time scale (1957-2011) in a large catchment in order to quantify gully erosion processes and its contribution to overall sediment dynamics. The 20 km2 study area is located in SW Spain. The extension of the gully network was digitized by photographic interpretation based on aerial photographs from 1957, 1981, 1985, 1999, 2002, 2005, 2007, 2009 and 2011. Gully width was measured at representative control points for each of these years. During this period, the dominant land use changed considerably from herbaceous crops to olive orchards. A field campaign was conducted in 2014 to measure current gully width and depth. Total gully volume and uncertainty was determined by Monte Carlo-based simulations of gully cross-sectional area for unmeasured sections. The extension of the gully network both increased and decreased in the study period. Gully density varied between 1.93 km km-2 in 1957, with a minimum of 1.37 km km-2 in 1981 and a maximum of 5.40 km km-2 in 2011. Gully width estimated in selected points from the orthophotos range between 0.9 m and 59.2 m, and showed a good lognormal fit. Field campaigns results in a collection of cross-section measures with gullies widths between 1.87 and 28.5 m and depths from 0.55 m to 5.02 m. A gully width-depth relation was established according to a logarithm expression with an overall r2 of 0.82. As no historical information on gully depth was available, this relation was assumed to be constant over time. Monte Carlo simulation was then used to generate width and depth values for the different gully segments, based on different lognormal distributions fitted to the estimated gully widths from 1957-2011 and on the width-depth regression. The calculated mean gully volume between 1953 and 2011 varied between 145.103 m3 and 2454.103 m3. The contribution of gully erosion to the overall sediment budget was found to be relatively stable between 1957-2008 with a mean value of 11.2 ton ha-1 year-1, while in the period 2008-2011 which includes frequent rainy days winter resulted in a mean value of 604 ton ha-1 year-1. Uncertainty estimates by Monte Carlo place the estimated contribution of gully erosion for this last period between 523-694 ton ha-1 year-1. The relation between gully erosion rates and driving factors such as land use change and rainfall was analysed in order to explain this variation. The high gully erosion rates of the period 2008-2011 could be linked to extreme rainfall events. This study has determined gully erosion rates with a high temporal resolution over several decades. The results show that gully erosion rates are highly variable and therefore that a simple interpolation between the start and end date would highly underestimate gully contribution during certain years, such as for example between 2005-2011. Overall, gully erosion is shown to be an important process of sediment generation in Mediterranean basins.
Forage intake and wastage by ewes in pea/hay barley swath grazing and bale feeding systems
USDA-ARS?s Scientific Manuscript database
Harvested feed costs, particularly during the winter, are traditionally the highest input associated with a ruminant livestock operation. Although swath grazing has been practiced for over 100 years and literature exists for cattle use of swath grazing, no published results are available on use of s...
Mapping of Titan: Results from the first Titan radar passes
Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.
2006-01-01
The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zavodsky, B.; Dunion, J.; Blackwell, W.; Braun, S.; Velden, C.; Brennan, M.; Adler, R.
2017-01-01
The National Aeronautics and Space Administration (NASA) Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of SmallSats (TROPICS) mission is a constellation of state-of-the-science observing platforms that will measure temperature and humidity soundings and precipitation with spatial resolution comparable to current operational passive microwave sounders but with unprecedented temporal resolution. TROPICS is a cost-capped ($30 million) Venture-class mission funded by the NASA Earth Science Division (ESD) and led by principal investigator Dr. William Blackwell from the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). The mission is comprised of a constellation of six, three-unit (3U) Cube-Sats (approximately 10 by 10 by 34 centimeters), each hosting a 12-channel passive microwave spectrometer based on the Micro-sized Microwave Atmospheric Satellite 2 (MicroMAS-2) developed at MIT LL. TROPICS will provide imagery at frequencies near 91 and 205 gigahertz, temperature sounding near 118 gigahertz, and moisture sounding near 183 gigahertz. Spatial resolution at nadir will be around 27 kilometers for temperature and 17 kilometers for moisture and precipitation with a swath width of approximately 2,000 kilometers. Both the spatial resolution and swath width are similar to the Advanced Technology Microwave Sounder (ATMS) that is being flown as part of the Suomi National Polar-Orbiting Partnership and will fly starting in 2017 on the National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite System (JPSS). In addition, TROPICS meets many of the requirements outlined in the 2007 Decadal Survey for the Precision and All-Weather Temperature and Humidity mission, which was originally envisioned as a microwave instrument in geostationary orbit. TROPICS enables temporal resolution similar to geostationary orbit but at a much lower cost, demonstrating a technology that could impact the design of future Earth-observing missions. The satellites for the TROPICS mission are slated for delivery to NASA in 2019 for launches planned no earlier than 2020. The primary mission objective of TROPICS is to relate temperature, humidity, and precipitation structure to the evolution of tropical cyclone (TC) intensity.
Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-01-01
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813
Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long
2018-01-01
With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637
Evaluation of the operational SAR based Baltic sea ice concentration products
NASA Astrophysics Data System (ADS)
Karvonen, Juha
Sea ice concentration is an important ice parameter both for weather and climate modeling and sea ice navigation. We have developed an fully automated algorithm for sea ice concentration retrieval using dual-polarized ScanSAR wide mode RADARSAT-2 data. RADARSAT-2 is a C-band SAR instrument enabling dual-polarized acquisition in ScanSAR mode. The swath width for the RADARSAT-2 ScanSAR mode is about 500 km, making it very suitable for operational sea ice monitoring. The polarization combination used in our concentration estimation is HH/HV. The SAR data is first preprocessed, the preprocessing consists of geo-rectification to Mercator projection, incidence angle correction fro both the polarization channels. and SAR mosaicking. After preprocessing a segmentation is performed for the SAR mosaics, and some single-channel and dual-channel features are computed for each SAR segment. Finally the SAR concentration is estimated based on these segment-wise features. The algorithm is similar as introduced in Karvonen 2014. The ice concentration is computed daily using a daily RADARSAT-2 SAR mosaic as its input, and it thus gives the concentration estimated at each Baltic Sea location based on the most recent SAR data at the location. The algorithm has been run in an operational test mode since January 2014. We present evaluation of the SAR-based concentration estimates for the Baltic ice season 2014 by comparing the SAR results with gridded the Finnish Ice Service ice charts and ice concentration estimates from a radiometer algorithm (AMSR-2 Bootstrap algorithm results). References: J. Karvonen, Baltic Sea Ice Concentration Estimation Based on C-Band Dual-Polarized SAR Data, IEEE Transactions on Geoscience and Remote Sensing, in press, DOI: 10.1109/TGRS.2013.2290331, 2014.
NASA Astrophysics Data System (ADS)
Alp, H.; Vardar, D.; Alpar, B.
2017-12-01
The sea-bottom sediment distribution, benthic habitats and erosional pathways between Küçükçekmece and Büyükçekmece lagoons at the northern margin of the Marmara Sea were mapped via 340-680 kHz dual frequency side scan sonar, one of the most effective tools for underwater exploration. In fact these lagoons were two former estuaries, later separated from the sea by coarse grained sediments mainly made up of natural sand bars and man-made barriers constructed for roads about a century ago. In the summer 2016, a total of 250-km long side scan data were acquired, with a 300 m of swath width. The coastal strip between the present coastline and the -10 m depth, the seafloor sediments are made up of coarse-grained sandy deposits and determined as continuous bright reflections on the sonograms. Silty and muddy sand units are distributed between the water depths of -10 to -20 m, and they give continuous less bright reflections on sonograms if compared to those of shallow sandy deposits. Deeper muddy units (sandy silt) appeared on the sonograms as uniform dark reflections and soft scatterings. The areal distribution of seafloor sediments and their acoustical characteristics indicated that the net sediment transport in the study area is mainly controlled under the E-W directional longshore currents and dominant southerly waves. Some strong sonar reflections observed at shallow depths (0-15 m) in the Küçükçekmece lagoon and characteristically comprised of remarkable round-shape structures, represent reefs which need sunlight and stable hydrographic conditions to be formed. Various sand ripples are defined in the lagoon, as well.
Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-06-24
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Chu, D. Allen; Moody, Eric G.
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations to the east Asian region in Spring 2001. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
NASA Astrophysics Data System (ADS)
Meng, Lingsen; Zhang, Ailin; Yagi, Yuji
2016-01-01
The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9000 people was the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process was imaged by teleseismic back projections (BP) of seismograms recorded by three, large regional networks in Australia, North America, and Europe. The source images of all three arrays reveal a unilateral eastward rupture; however, the propagation directions and speeds differ significantly between the arrays. To understand the spatial uncertainties of the BP analyses, we analyze four moderate size aftershocks recorded by all three arrays exactly as had been conducted for the main shock. The apparent source locations inferred from BPs are systematically biased from the catalog locations, as a result of a slowness error caused by three-dimensional Earth structures. We introduce a physics-based slowness correction that successfully mitigates the source location discrepancies among the arrays. Our calibrated BPs are found to be mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s, localized in a relatively narrow and deep swath along the downdip edge of the locked Himalayan thrust zone. We find that the 2015 Gorkha earthquake was a localized rupture that failed to break the entire Himalayan décollement to the surface, which can be regarded as an intermediate event during the interseismic period of larger Himalayan ruptures that break the whole seismogenic zone width. Thus, our physics-based slowness correction is an important technical improvement of BP, mitigating spatial uncertainties and improving the robustness of single and multiarray studies.
NASA Astrophysics Data System (ADS)
Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo
2016-10-01
Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria. The result of our study detect as snow cover in the several regions which are did not detected as snow in MOD10 L2 and detected as snow cover in MODIS RGB image. The result of our study can improve accuracy of other surface product such as land surface reflectance and land surface emissivity. Also it can use input data of hydrological modeling.
NASA Astrophysics Data System (ADS)
Dias-Oliveira, A.; Sicardy, B.; Ortiz, J. L.; Braga-Ribas, F.; Leiva, R.; Vieira-Martins, R.; Benedetti-Rossi, G.; Camargo, J. I. B.; Assafin, M.; Gomes-Júnior, A. R.; Baug, T.; Chandrasekhar, T.; Desmars, J.; Duffard, R.; Santos-Sanz, P.; Ergang, Z.; Ganesh, S.; Ikari, Y.; Irawati, P.; Jain, J.; Liying, Z.; Richichi, A.; Shengbang, Q.; Behrend, R.; Benkhaldoun, Z.; Brosch, N.; Daassou, A.; Frappa, E.; Gal-Yam, A.; Garcia-Lozano, R.; Gillon, M.; Jehin, E.; Kaspi, S.; Klotz, A.; Lecacheux, J.; Mahasena, P.; Manfroid, J.; Manulis, I.; Maury, A.; Mohan, V.; Morales, N.; Ofek, E.; Rinner, C.; Sharma, A.; Sposetti, S.; Tanga, P.; Thirouin, A.; Vachier, F.; Widemann, T.; Asai, A.; Hayato, Watanabe; Hiroyuki, Watanabe; Owada, M.; Yamamura, H.; Hayamizu, T.; Bradshaw, J.; Kerr, S.; Tomioka, H.; Andersson, S.; Dangl, G.; Haymes, T.; Naves, R.; Wortmann, G.
2017-07-01
We present results derived from four stellar occultations by the plutino object (208996) 2003 AZ84, detected on 2011 January 8 (single-chord event), 2012 February 3 (multi-chord), 2013 December 2 (single-chord), and 2014 November 15 (multi-chord). Our observations rule out an oblate spheroid solution for 2003 AZ84's shape. Instead, assuming hydrostatic equilibrium, we find that a Jacobi triaxial solution with semiaxes (470+/- 20)× (383+/- 10)× (245+/- 8) km can better account for all our occultation observations. Combining these dimensions with the rotation period of the body (6.75 hr) and the amplitude of its rotation light curve, we derive a density ρ =0.87+/- 0.01 g cm-3, a geometric albedo {p}V=0.097+/- 0.009. A grazing chord observed during the 2014 occultation reveals a topographic feature along 2003 AZ84's limb, which can be interpreted as an abrupt chasm of width ˜23 km and depth > 8 km, or a smooth depression of width ˜80 km and depth ˜13 km (or an intermediate feature between those two extremes).
Intercomparison of wind speeds inferred by the SASS, altimeter, and SMMR
NASA Technical Reports Server (NTRS)
Wentz, F. J.; Cardone, V. J.; Fedor, L. S.
1982-01-01
The operational theory, control algorithms, and comparisons with surface-determined wind speeds for the scatterometer (SASS), altimeter (ALT), and passive microwave radiometer (SMMR) on board the Seasat satellite are presented. Radiative scattering combining specular reflections and Bragg resonance scattering are noted to occur at tilting waves and sea foam, two conditions highly correlated with wind speed. SASS scans swaths of 70, 200, and 700 km from nadir, the SMMR covers a 150 km strip. Normalized radar sections are derived from the SASS and ALT telemetry, and brightness temperature from the SMMR. ALT winds were found to be biased about 3 m/sec low, while intercomparison between the SMMR and SASS data showed a mean difference of 0.3 m/sec with a standard deviation from measured winds of 1.7 m/sec or less. The effects of land thermal emissions, rain, and sun glint are discussed, and good viewing conditions are concluded to result in 2 m/sec accuracy.
NASA Astrophysics Data System (ADS)
Gopalswamy, N.; Makela, P.; Yashiro, S.; Davila, J. M.
2012-08-01
It is difficult to measure the true speed of Earth-directed CMEs from a coronagraph along the Sun-Earth line because of the occulting disk. However, the expansion speed (the speed with which the CME appears to spread in the sky plane) can be measured by such coronagraph. In order to convert the expansion speed to radial speed (which is important for space weather applications) one can use empirical relationship between the two that assumes an average width for all CMEs. If we have the width information from quadrature observations, we can confirm the relationship between expansion and radial speeds derived by Gopalswamy et al. (2009a). The STEREO spacecraft were in qudrature with SOHO (STEREO-A ahead of Earth by 87oand STEREO-B 94obehind Earth) on 2011 February 15, when a fast Earth-directed CME occurred. The CME was observed as a halo by the Large-Angle and Spectrometric Coronagraph (LASCO) on board SOHO. The sky-plane speed was measured by SOHO/LASCO as the expansion speed, while the radial speed was measured by STEREO-A and STEREO-B. In addition, STEREO-A and STEREO-B images measured the width of the CME, which is unknown from Earth view. From the SOHO and STEREO measurements, we confirm the relationship between the expansion speed (Vexp) and radial speed (Vrad) derived previously from geometrical considerations (Gopalswamy et al. 2009a): Vrad=1/2 (1 + cot w)Vexp, where w is the half width of the CME. STEREO-B images of the CME, we found that CME had a full width of 7 6o, so w=3 8o. This gives the relation as Vrad=1.1 4 Vexp. From LASCO observations, we measured Vexp=897 km/s, so we get the radial speed as 10 2 3 km/s. Direct measurement of radial speed yields 945 km/s (STEREO-A) and 105 8 km/s (STEREO-B). These numbers are different only by 7.6 % and 3.4 % (for STEREO-A and STEREO-B, respectively) from the computed value.
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat; Makela, Pertti; Yashiro, Seiji
2011-01-01
It is difficult to measure the true speed of Earth-directed CMEs from a coronagraph along the Sun-Earth line because of the occulting disk. However, the expansion speed (the speed with which the CME appears to spread in the sky plane) can be measured by such coronagraph. In order to convert the expansion speed to radial speed (which is important for space weather applications) one can use empirical relationship between the two that assumes an average width for all CMEs. If we have the width information from quadrature observations, we can confirm the relationship between expansion and radial speeds derived by Gopalswamy et al. (2009, CEAB, 33, 115,2009). The STEREO spacecraft were in quadrature with SOHO (STEREO-A ahead of Earth by 87 and STEREO-B 94 behind Earth) on 2011 February 15, when a fast Earth-directed CME occurred. The CME was observed as a halo by the Large-Angle and Spectrometric Coronagraph (LASCO) on board SOHO. The sky-plane speed was measured by SOHO/LASCO as the expansion speed, while the radial speed was measured by STEREO-A and STEREO-B. In addition, STEREO-A and STEREO-B images measured the width of the CME, which is unknown from Earth view. From the SOHO and STEREO measurements, we confirm the relationship between the expansion speed (Vexp ) and radial speed (Vrad ) derived previously from geometrical considerations (Gopalswamy et al. 2009): Vrad = 1/2 (1 + cot w) Vexp, where w is the half width of the CME. STEREO-B images of the CME, we found that CME had a full width of 75 degrees, so w = 37.5 degrees. This gives the relation as Vrad = 1.15 Vexp. From LASCO observations, we measured Vexp = 897 km/s, so we get the radial speed as 1033 km/s. Direct measurement of radial speed from STEREO gives 945 km/s (STEREO-A) and 1057 km/s (STEREO-B). These numbers are different only by 2.3% and 8.5% (for STEREO-A and STEREO-B, respectively) from the computed value.
NASA Technical Reports Server (NTRS)
Warmke, J. M.
1979-01-01
Modifications to Battelle's Interactive Graphics Orbit Selection (IGOS) computer program to assist in the planning and evaluation of the Seasat-A Scatterometer System (SASS) flight program were studied. To meet the planning needs of the LaRC Seasat-A Scatterometer team, the following features/modifications were implemented in IGOS: (1) display and specification of time increments in orbital passes represented by the cross-hatching of ground swaths; (2) addition of pass number annotations on the horizontal axis of the STPLNG and STPTOD plots; (3) modification of the sensor model to include more than two swaths associated with a single sensor to approximate the SASS cell pattern; (4) inclusion of down range and cross-track swath geometry to display the characteristic skewed SASS pattern; (5) addition of a swath schedule to allow the display of the SASS mode changes and to calibrate gaps; and (6) development of a set of commands to generate the detailed swath data from sensor characteristics and orbit/earth motion.
Popenoe, Peter; Cashman, K.V.; Chayes, Dale; Ryan, William B. F.
1981-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Bureau of Land Management (BLM) and the Lamont-Doherty Geological Observatory (LDGO), collected 335 km of mid-range sidescan-sonar data in some of the tracts proposed for inclusion in Federal OCS (Outer Continental Shelf) Oil and Gas Lease Sale 56 and in some contiguous areas (R.V. GYRE, September 18-25, 1980 [GYRE 80-9, leg 1]). The data were collected by use of the Sea Mark I mid-range sidescan-sonar system designed by International Submarine Technology, Ltd. (IST). This system surveys a swath having a width of approximately 2-1/2 km on each side of the deep-towed fish. Transducers were towed about 300 m above the bottom on a neutrally bouyant vehicle at a speed of 1-1/2 to 2 knots. Transducers were pulsed at 4-second intervals at a frequency of 27 kHz on one side and 30 kHz on the other. Data recorded on seven EPC recorders aboard ship included slant-range corrected port channel, starboard channel, and port and starboard channels; uncorrected port channel, starboard channel, and port and starboard channels, and a 3.5-kHz tuned-transducer record of the bottom. Fish height or the altitude above the bottom was recorded on a strip-chart recorder. Distance of the fish from the ship (slant range) was recorded by use of a sled-mounted 4.5-kHz transducer.Data recorded on sonograms lagged the 3.5-kHz tuned-transducer record and ship navigational fix by as much as 1 hour (2 km) owing to tow-cable length (up to 5 km). Navigation of the ship was by Loran-C at a 5-minute fix interval, supplemented by satellite fixes.Data are of excellent quality and bottom features several meters high and about 6-12 m wide can be identified. Figures 1 and 2 show the location of track lines in the Manteo (NI 18-2) quadrangle just east of Cape Hatteras where the upper slope within proposed lease tract areas was surveyed. Figures 3 and 4 show track lines in the Cape Fear (NI 18-7) and contiguous quandrangles where data were recorded over the outer Blake Plateau, the Continental Slope, and the upper Continental Rise.The original records may be examined at the U.S. Survey, Woods Hole, MA 02543. Microfilm copies of the data are available for purchase only from the National Geophysical and Solar-Terrestrial Data c,nt er, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (303-497-6338).
Multipolarization radar images for geologic mapping and vegetation discrimination
NASA Technical Reports Server (NTRS)
Evans, D. L.; Farr, T. G.; Ford, J. P.; Thompson, T. W.; Werner, C. L.
1986-01-01
NASA has developed an airborne SAR that simultaneously yields image data in four linear polarizations in L-band with 10-m resolution over a swath of about 10 km. Signal data are recorded both optically and digitally and annotated in each of the channels to facilitate completely automated digital correlation. Comparison of the relative intensities of the different polarizations furnishes discriminatory mapping information. Local intensity variations in like-polarization images result from topographic effects, while strong cross polarization responses denote the effects of vegetation cover and, in some cases, possible scattering from the subsurface. In each of the areas studied, multiple polarization data led to the discrimination and mapping of unique surface unit features.
NASA Astrophysics Data System (ADS)
Mau, S.; Reed, J.; Clark, J.; Valentine, D.
2006-12-01
Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.
Determining Titan surface topography from Cassini SAR data
Stiles, Bryan W.; Hensley, Scott; Gim, Yonggyu; Bates, David M.; Kirk, Randolph L.; Hayes, Alex; Radebaugh, Jani; Lorenz, Ralph D.; Mitchell, Karl L.; Callahan, Philip S.; Zebker, Howard; Johnson, William T.K.; Wall, Stephen D.; Lunine, Jonathan I.; Wood, Charles A.; Janssen, Michael; Pelletier, Frederic; West, Richard D.; Veeramacheneni, Chandini
2009-01-01
A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan. SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage. We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Peterson, Craig
2006-01-01
Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: Is The Number of Antarctic Icebergs Really Increasing? [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, Transactions of the American Geophysical Union 83 (42): 469 & 474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E s 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I s comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with nearglobal coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC (Rapid Prototyping Capability) of NASA s (National Aeronautics and Space Administration) Applied Science Program to demonstrate that passive microwave brightness temperature measurements acquired by AMSR-E can be effectively used to track iceberg movement around Antarctica. The RPC s robust computation environment enabled processing of terabytes of data products available from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center. Iceberg tracking based on the AMSR-E Level 2A data product was compared with records from the National Ice Center for currently existing icebergs. Some icebergs as small as roughly 10 km in size were easily observed, but tracking of many others, even larger ones, was obscured by presence of sea ice surrounding the icebergs. The best results, such as for the large iceberg A22A, were achieved when an iceberg was in open ocean.
Single-pass Airborne InSAR for Wide-swath, High-Resolution Cryospheric Surface Topography Mapping
NASA Astrophysics Data System (ADS)
Moller, D.; Hensley, S.; Wu, X.; Muellerschoen, R.
2014-12-01
In May 2009 a mm-wave single-pass interferometric synthetic aperture radar (InSAR) for the first time demonstrated ice surface topography swath-mapping in Greenland. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A). Ka-band (35.6GHz) was chosen for high-precision topographic mapping from a compact sensor with minimal surface penetration. In recent years, the system was comprehensively upgraded for improved performance, stability and calibration. In April 2013, after completing the upgrades, GLISTIN-A flew a brief campaign to Alaska. The primary purpose was to demonstrate the InSAR's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Comparison of GLISTIN-A's elevations over glacial ice with lidar verified the precision requirements and established elevation accuracies to within 2 m without tie points. Feature tracking of crevasses on Columbia Glacier using data acquired with a 3-day separation exhibit an impressive velocity mapping capability. Furthermore, GLISTIN-A flew over the Beaufort sea to determine if we could not only map sea ice, but also measure freeboard. Initial analysis has established we can measure sea-ice freeboard using height differences from the top of the sea-ice and the sea surface in open leads. In the future, a campaign with lidar is desired for a quantitative validation. Another proof-of-concept collection mapped snow-basins for hydrology. Snow depth measurements using summer and winter collections in the Sierras were compared with lidar measurements. Unsurprisingly when present, trees complicate the interpretation, but additional filtering and processing is in work. For each application, knowledge of the interferometric penetration is important for scientific interpretation. We present analytical predictions and experimental data to upper bound the elevation bias of the InSAR measurements over snow and snow-covered ice.
Western Rainier Seismic Zone Airborne Laser Swath Mapping
NASA Technical Reports Server (NTRS)
Harding, David J.; Haugerud, Ralph A.; Johnson, Samuel Y.; Scott, Kevin M.; Weaver, Craig S.; Martinez, Diana M.; Zeigler, John C.; Latypov, Damir
2003-01-01
Airborne laser swath mapping (ALSM) of the Puget Lowland conducted by TerraPoint LLC for the Purget Sound Lidar Concortium (PSLC), has been successful in revealing Holocene fault scarps and lendsliders hidden beneath the dense, temperate rain forest cover and in quantifying shoreline terrace uplift. Expanding the PSLC efforts, NASA-USGS collaboration is now focusing on topographic mapping of seismogenic zones adjacent to volcanois in the western Cascades range in order to assess the presence of active faulting and tectonic deformation, better define the extend of lahars and understand their flow processes, and characterize landslide occurrence. Mapping of the western Rainier zone (WRZ) was conducted by TerraPoint in late 2002, after leaf fall and before snow accumulation. The WRZ is a NNW-trending, approx. 30 km-long zone of seismicity west of Mount Rainier National Park. The Puget Lowland ALSM methods were modified to accommodate challenges posed by the steep, high relief terrian. The laser data, acquired with a density of approx. 2 pulses /sq m, was filtered to identify returns from the ground from which a bare Earth digital elevation model (DEM) was produced with a grid size of 1.8 m. The RMS elevation accuracy of the DEM in flat, unvegetated areas is approx. 10cm based on consistency between overlapping flight swaths and comparisons to ground control points. The resulting DEM substantially improves upon Shuttle Radar Topography Mission and USGS photogrammetric mapping. For example, the DEM defines the size and spatial distribution of flood erratics left by the Electron lahar and of megaclasts within the Round Pass lahar, important for characterizing the lahar hydraulics. A previously unknown lateral levee on the Round Pass lahar is also revealed. In addition, to illustrating geomorfic feature within the WRZ, future plans for laser mapping of the Saint Helens and Darrington seismic zones will be described.
Sampling Singular and Aggregate Point Sources of Carbon Dioxide from Space Using OCO-2
NASA Astrophysics Data System (ADS)
Schwandner, F. M.; Gunson, M. R.; Eldering, A.; Miller, C. E.; Nguyen, H.; Osterman, G. B.; Taylor, T.; O'Dell, C.; Carn, S. A.; Kahn, B. H.; Verhulst, K. R.; Crisp, D.; Pieri, D. C.; Linick, J.; Yuen, K.; Sanchez, R. M.; Ashok, M.
2016-12-01
Anthropogenic carbon dioxide (CO2) sources increasingly tip the natural balance between natural carbon sources and sinks. Space-borne measurements offer opportunities to detect and analyze point source emission signals anywhere on Earth. Singular continuous point source plumes from power plants or volcanoes turbulently mix into their proximal background fields. In contrast, plumes of aggregate point sources such as cities, and transportation or fossil fuel distribution networks, mix into each other and may therefore result in broader and more persistent excess signals of total column averaged CO2 (XCO2). NASA's first satellite dedicated to atmospheric CO2observation, the Orbiting Carbon Observatory-2 (OCO-2), launched in July 2014 and now leads the afternoon constellation of satellites (A-Train). While continuously collecting measurements in eight footprints across a narrow ( < 10 km) wide swath it occasionally cross-cuts coincident emission plumes. For singular point sources like volcanoes and coal fired power plants, we have developed OCO-2 data discovery tools and a proxy detection method for plumes using SO2-sensitive TIR imaging data (ASTER). This approach offers a path toward automating plume detections with subsequent matching and mining of OCO-2 data. We found several distinct singular source CO2signals. For aggregate point sources, we investigated whether OCO-2's multi-sounding swath observing geometry can reveal intra-urban spatial emission structures in the observed variability of XCO2 data. OCO-2 data demonstrate that we can detect localized excess XCO2 signals of 2 to 6 ppm against suburban and rural backgrounds. Compared to single-shot GOSAT soundings which detected urban/rural XCO2differences in megacities (Kort et al., 2012), the OCO-2 swath geometry opens up the path to future capabilities enabling urban characterization of greenhouse gases using hundreds of soundings over a city at each satellite overpass. California Institute of Technology
NASA Astrophysics Data System (ADS)
Bovensmann, Heinrich; Buchwitz, M.; Burrows, J. P.; Notholt, J.; Bovensmann, H.; Reuter, M.; Trautmann, T.; Ehret, G.; Heimann, M.; Monks, P.; B&Ü, H.; Sch; Harding, R.; Quegan, S.; Rayner, P.; Breon, F. M.; Bergam-O Aschi, P.; Dittus, H. J.; Erzinger, J.; Crisp, D.
Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geo-logic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5 percent goal (1 percent threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO her-itage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 -especially in high northern latitudes -as well as information on clouds and vegetation height. The overall mission concept will be presented.
NASA Astrophysics Data System (ADS)
Bovensmann, Heinrich; Buchwitz, Michael
2010-05-01
Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geologic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5% goal (1%, threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO heritage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 - especially in high northern latitudes - as well as information on clouds and vegetation height. The overall mission concept, the expected data quality and selected application areas will be presented.
Airborne Grid Sea-Ice Surveys for Comparison with CryoSat-2
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.
2014-12-01
The U.S. Naval Research Laboratory is engaged in a study of the changing Arctic with a particular focus on ice thickness and distribution variability. The purpose is to optimize computer models used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat-2 ice thickness data prior to its incorporation into new ice forecast models. The large footprint of the CryoSat-2 altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of airborne scanning lidar and nadir pointing radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. One difficulty in the collection of grids comprised of adjacent overlapping tracks is that the ice moves as much as 300 m over the duration of a single track (~ 10 min). With a typical lidar swath width of 500m we needed to adjust the survey tracks in near real-time for the ice motion. This was accomplished by a photogrammetric method of ice velocity determination (RTIME) reported in another presentation. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. An important factor is that we were able to reconstruct the ice configuration at the time of the satellite overflight, resulting in an accurate representation of the surface illuminated by CryoSat-2. Our intention is to develop a model of the ice surface using the lidar grid which includes both snow and ice using radar profiles to determine snow thickness. In 2013 a set of 6 usable grids 5-20 km wide (cross-track) by 10-30 km long were collected north of Barrow, AK. In 2014 a further 5 narrower grids (~5km) were collected. Data from these grids are shown here and will be used to examine the relationship of the tracked satellite waveform data to the actual surface.
Barone, V; Verdini, F; Burattini, L; Di Nardo, F; Fioretti, S
2016-03-01
A markerless low cost prototype has been developed for the determination of some spatio-temporal parameters of human gait: step-length, step-width and cadence have been considered. Only a smartphone and a high-definition webcam have been used. The signals obtained by the accelerometer embedded in the smartphone are used to recognize the heel strike events, while the feet positions are calculated through image processing of the webcam stream. Step length and width are computed during gait trials on a treadmill at various speeds (3, 4 and 5 km/h). Six subjects have been tested for a total of 504 steps. Results were compared with those obtained by a stereo-photogrammetric system (Elite, BTS Engineering). The maximum average errors were 3.7 cm (5.36%) for the right step length and 1.63 cm (15.16%) for the right step width at 5 km/h. The maximum average error for step duration was 0.02 s (1.69%) at 5 km/h for the right steps. The system is characterized by a very high level of automation that allows its use by non-expert users in non-structured environments. A low cost system able to automatically provide a reliable and repeatable evaluation of some gait events and parameters during treadmill walking, is relevant also from a clinical point of view because it allows the analysis of hundreds of steps and consequently an analysis of their variability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gummadi, V.; He, Y.; Beighley, E. R.
2007-12-01
Modeling fine scale spatial and temporal processes of the hydrologic cycle over continental to global extents is vital for assessing the potential impacts of climate and land use change on global water resources and related systems. Significant advancement in understanding and predicting the magnitude, trend, timing and partitioning of terrestrial water stores and fluxes requires the development of methodologies and knowledge for extracting representative hydraulic geometries from remote sensing data products and field data, suitable for estimating inundation characteristics and water storage changes which are limited for much of the globe. In this research, relationships between channel and floodplain widths and spatial drainage characteristics are developed for the Amazon Basin. Channel and floodplain widths were measured using SRTM data and LandSat TM/ETM imagery at 510 sites. The study sites were selected based on the Pfafstetter decomposition methodology which provides an irregular model grid based on repeatedly subdividing landscape units into nine subunits consisting of basins and interbasins. The selected sites encompass all possible combinations of Pfafstetter modeling units (ex., basins of interbasins, interbasins of basins, etc.). The 510 study sites are within the Amazon Basin with drainage areas ranging 10 to 5.4 million sq km and mean watershed ground slopes ranging from 0.4 and 30 percent. Preliminary results indicate that channel widths can be predicted using drainage area and mean watershed slope (R2 = 0.85). Floodplain widths can be predicted using channel width and the local slope (R2 = 0.70). Using the Purus watershed, a sub-basin to the Amazon (350,000 sq km), effects of channel and floodplain widths on simulated hydrographs are presented.
Yang, Wei; Chen, Jie; Zeng, Hong Cheng; Wang, Peng Bo; Liu, Wei
2016-01-01
Based on the terrain observation by progressive scans (TOPS) mode, an efficient full-aperture image formation algorithm for focusing wide-swath spaceborne TOPS data is proposed. First, to overcome the Doppler frequency spectrum aliasing caused by azimuth antenna steering, the range-independent derotation operation is adopted, and the signal properties after derotation are derived in detail. Then, the azimuth deramp operation is performed to resolve image folding in azimuth. The traditional dermap function will introduce a time shift, resulting in appearance of ghost targets and azimuth resolution reduction at the scene edge, especially in the wide-swath coverage case. To avoid this, a novel solution is provided using a modified range-dependent deramp function combined with the chirp-z transform. Moreover, range scaling and azimuth scaling are performed to provide the same azimuth and range sampling interval for all sub-swaths, instead of the interpolation operation for the sub-swath image mosaic. Simulation results are provided to validate the proposed algorithm. PMID:27941706
FLEX: an imaging spectrometer for measurement of vegetation fluorescence
NASA Astrophysics Data System (ADS)
Smorenburg, Kees; Visser, Huib; Court, Andrew; Stoll, Marc Ph.
2017-11-01
Detection of vegetation fluorescence gives information about plant functioning, stress and vitality. During the past decades several ground based laser fluorosensors have been developed to investigate these processes and to demonstrate the value of this technique. FLEX (= FLuorescense EXplorer) is a space mission to measure the fluorescence of vegetation on earth over large areas from space. Such a mission would greatly improve the understanding and enhance the capability to quantify e.g. the role of terrestrial vegetation in global carbon sequestration. Because the fluorescence signal, which is excited by solar irradiation is low with respect to the reflected sunlight the signal from a satellite is proposed to be measured in the solar Fraunhofer lines, where the reflection signal is much reduced. The heart of FLEX is a high resolution imaging spectrometer with 2 channels: channel 1 around the Fraunhofer lines at ‡ = 397 nm, ‡= 423 nm and/or ‡ = 434 nm and channel 2 around the Fraunhofer line at ‡ = 656 nm. The required spectral resolution will depend on the linewidth (0.02-0.3 nm). A first definition of the field of view is 8.4 degrees, leading from an 800 km satellite altitude to a swath of about 120 km. For detection a 1024x1024 pixel frame transfer CCD detector is proposed, with a pixel dimension of 13 x 13 ‡ mm2. The maximum footprint is about 500x500m2. The optical configuration contains a scan mirror for solar calibration, for pointing the FOV in swath direction and for freezing the observed ground scene up to a few seconds to increase the signal to noise performance. At this moment the concept of FLEX is elaborated in a feasibility study. Both the scientific and instrument requirements are updated and the concept is studied in detail. Besides a development plan for FLEX is made. In this paper the idea and the headlines of FLEX are described.
Tectonic evolution of the South Fiji Basin: UNCLOS helps tackle regional tectonics
NASA Astrophysics Data System (ADS)
Herzer, R.; Roest, W.; Barker, D.; Mortimer, N.; Mauffret, A.; Lafoy, Y.
2005-12-01
Marine surveys to study the evolution of remnant arcs and backarc basins north of New Zealand have been complemented by UNCLOS surveys by three countries - France, New Zealand and Australia - with potential extended continental shelf claims in the region. The UNCLOS factor allowed 9 cruises to focus on the region in the past 9 years, collecting approximately 30,000 km of seismic reflection (5,000 deep crustal), 263,700 sq km of swath bathymetry, and 70 dredge samples. Feedback through sharing or publishing data and joint participation allowed efficient planning and deployment of academic and UNCLOS cruises. Two models for South Fiji (SFB) and Norfolk (NB) basin evolution arise from current studies: at the level of the Three Kings Ridge - NB - southern SFB both involve Pacific trench roll-back and southward propagating spreading, but one also uses two subduction systems and arc-continent collision. Linked spreading of the NB and SFB is invoked in both models, but the veracity and geodynamics of the link are not investigated. A growing body of petrological and radiometric evidence and the tectonics of the New Zealand continental margin point to tandem Early Miocene spreading of the SFB and NB despite published magnetic interpretations that would confine SFB spreading to the Oligocene. The Franco-NZ NOUCAPLAC-1 cruise, the last cruise relevant to UNCLOS in this region, included a scientific objective to investigate the SFB-NB link in the critical area bounded by the Loyalty Ridge (LR), the Cook Fracture Zone (CFZ), the Bounty spreading centre (BSC) and the Julia Lineament (JL) with swath mapping, magnetics and seismic reflection. Initial results show a complex bathymetry where a possible link between the BSC and the CFZ involves ridge propagation, overlapping spreading centres, rift blocks and overprinting volcanoes. The link to the JL was not adequately tested due to sparse coverage. Closer to the LR, a thick, faulted sedimentary basin was found.
Earth Reflectivity from Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Camera (EPIC)
NASA Astrophysics Data System (ADS)
Song, W.; Knyazikhin, Y.; Wen, G.; Marshak, A.; Yan, G.; Mu, X.; Park, T.; Chen, C.; Xu, B.; Myneni, R. B.
2017-12-01
Earth reflectivity, which is also specified as Earth albedo or Earth reflectance, is defined as the fraction of incident solar radiation reflected back to space at the top of the atmosphere. It is a key climate parameter that describes climate forcing and associated response of the climate system. Satellite is one of the most efficient ways to measure earth reflectivity. Conventional polar orbit and geostationary satellites observe the Earth at a specific local solar time or monitor only a specific area of the Earth. For the first time, the NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) collects simultaneously radiance data of the entire sunlit earth at 8 km resolution at nadir every 65 to 110 min. It provides reflectivity images in backscattering direction with the scattering angle between 168º and 176º at 10 narrow spectral bands in ultraviolet, visible, and near-Infrared (NIR) wavelengths. We estimate the Earth reflectivity using DSCOVR EPIC observations and analyze errors in Earth reflectivity due to sampling strategy of polar orbit Terra/Aqua MODIS and geostationary Goddard Earth Observing System-R series missions. We also provide estimates of contributions from ocean, clouds, land and vegetation to the Earth reflectivity. Graphic abstract shows enhanced RGB EPIC images of the Earth taken on July-24-2016 at 7:04GMT and 15:48 GMT. Parallel lines depict a 2330 km wide Aqua MODIS swath. The plot shows diurnal courses of mean Earth reflectance over the Aqua swath (triangles) and the entire image (circles). In this example the relative difference between the mean reflectances is +34% at 7:04GMT and -16% at 15:48 GMT. Corresponding daily averages are 0.256 (0.044) and 0.231 (0.025). The relative precision estimated as root mean square relative error is 17.9% in this example.
Improved TDEM formation using fused ladar/digital imagery from a low-cost small UAV
NASA Astrophysics Data System (ADS)
Khatiwada, Bikalpa; Budge, Scott E.
2017-05-01
Formation of a Textured Digital Elevation Model (TDEM) has been useful in many applications in the fields of agriculture, disaster response, terrain analysis and more. Use of a low-cost small UAV system with a texel camera (fused lidar/digital imagery) can significantly reduce the cost compared to conventional aircraft-based methods. This paper reports continued work on this problem reported in a previous paper by Bybee and Budge, and reports improvements in performance. A UAV fitted with a texel camera is flown at a fixed height above the terrain and swaths of texel image data of the terrain below is taken continuously. Each texel swath has one or more lines of lidar data surrounded by a narrow strip of EO data. Texel swaths are taken such that there is some overlap from one swath to its adjacent swath. The GPS/IMU fitted on the camera also give coarse knowledge of attitude and position. Using this coarse knowledge and the information from the texel image, the error in the camera position and attitude is reduced which helps in producing an accurate TDEM. This paper reports improvements in the original work by using multiple lines of lidar data per swath. The final results are shown and analyzed for numerical accuracy.
NASA Technical Reports Server (NTRS)
McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald
2012-01-01
An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.
Satellite detection of smoke plumes and inadvertant weather modification
Wayne A. Pettyjohn; John B. McKeon
1976-01-01
Satellite imagery provides a convenient and inexpensive means for monitoring smoke plumes and evaluating inadvertant weather modification. Visual examination of LANDSAT-1 imagery for two sites in east-central Ohio indicates that, at times, a plume may extend nearly 48 km downwind and reach a width of six km. Density slicing techniques provide clues as to the...
NASA Astrophysics Data System (ADS)
Sahan, M.
2011-02-01
A 7.5 cm, dual étalon Fabry-Pérot spectrometer called DEFPOS has been set up at Coudé focus of 150 cm RTT150 telescope at TUBITAK National Observatory (TUG, Antalya, Turkey) to investigate the physical properties of Diffuse Ionized Gas (DIG) in our Galaxy. The spectrometer, having a 4 arcmin circular field of view over a 200 km s-1 (4.4 Å) spectral window near Hα, has been used to observe H II regions and Planetary Nebulae (PNe) since May 2007 (Sahan et al. 2009). Early observations have been analyzed and physical and kinematic properties such as the intensity, the line width, and the LSR velocity are presented here. These values are compared with earlier results from different studies. In this study, I discuss some results obtained by DEFPOS, including two H II regions (Sh2-156, Sh2-157), and two PNe (NGC 1360, and NGC 6826). The Intensities, the radial velocities and the line widths of the Hα emission line vary from 101.4R to 149.97R (1 Rayleigh =106/4π photons cm-2 sr-1 s-1 = 2.41×10-7 erg cm-2 s-1 sr-1 at Hα), -41.19 km s-1 to +8.34 km s-1, and 39.55 km s-1 to 58.23 km s-1, respectively.
NASA Technical Reports Server (NTRS)
2005-01-01
16 October 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows streamlined landforms carved by catastrophic floods that occurred in the eastern Cerberus region, some time in the distant martian past. Location near: 15.1oN, 193.5oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern AutumnNASA Technical Reports Server (NTRS)
2005-01-01
12 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark squiggles and streaks created by passing spring and summer dust devils near Pallacopas Vallis in the martian southern hemisphere. Location near: 53.9oS, 17.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SummerNASA Technical Reports Server (NTRS)
2005-01-01
7 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a mesa in northeastern Isidis Planitia. The mesa might be a remnant of terrain that once more extensively covered the region. Location near: 20.3oN, 267.7oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern WinterNeon and [CII] 158 μm Emission Line Profiles in Dusty Starbursts and Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Samsonyan, A.; Weedman, D.; Lebouteiller, V.; Barry, D.; Sargsyan, L.
2017-07-01
Identifying and understanding the initial formation of massive galaxies and quasars in the early universe is a fundamental goal of observational cosmology. A rapidly developing capability for tracing luminosity sources to high redshifts is the observation of the [CII] 158 μm emission line at redshifts z > 4 using ground based submillimeter interferometers, with detections now having been made to z = 7. This has long been known as the strongest far-infrared line in most sources, often carrying about 1% of the total source luminosity, and is thought to be associated with star formation because it should arise within the photodissociation region (PDR) surrounding starbursts. The sample of 382 extragalactic sources has been analysed that have mid-infrared,high resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS) and also spectroscopy of the [CII] 158 μm line with the Herschel Photodetector Array Camera and Spectrometer (PACS). The emission line profiles of [NeII] 12.81μm , [NeIII] 15.55 μm , and [CII] 158 μm are studied, and intrinsic line widths are determined. All line profiles together with overlays comparing positions of PACS and IRS observations are made available in the Cornell Atlas of Spitzer IRS Sources (CASSIS). Sources are classified from AGN to starburst based on equivalent widths of the 6.2 μm polycyclic aromatic hydrocarbon feature. It is found that intrinsic line widths do not change among classification for [CII], with median widths of 207 km s-1 for AGN, 248 km s-1 for composites, and 233 km s-1 for starbursts. The [NeII] line widths also do not change with classification, but [NeIII] lines are progressively broader from starburst to AGN. A small number of objects with unusually broad lines or unusual redshift differences in any feature are identified.
Constraints on the Martian Plate Tectonic Hypothesis from Gravity and Topography Data
NASA Technical Reports Server (NTRS)
Smrekar, S.; Raymond, C.
1999-01-01
The Mars Global Surveyor Magnetic Fields Experiment/ Electron Reflectometer (MGS MAG/ER) experiment serendipitously discovered unanticipated and unprecedented regions of high amplitude crustal magnetic anomalies, indicating strong sources of remanent crustal magnetism. In one area of the southern hemisphere, the anomalies appear lineated and alternate in direction, resembling the stripes formed at terrestrial oceanic spread-ing regions. However, many significant differences exist. The inferred magnetization are easily an order of magnitude greater in strength than terrestrial counterparts. The width of the anomalies appears to be approximately 200 km, in comparison to a variable width of order 10-1000 km at terrestrial spreading centers. However, the spacecraft altitude of 100-200 km may be such that narrower anomalies are simply unresolved. Although the majority of strong anomalies are found in the southern highlands, there is no clear correlation with landforms at the surface. The lack of a correlation between magnetism and topography hinders the confident interpretation of magnetic sources. Additional information is contained in the original extended abstract.
Designation of River Klina-Skenderaj Inputs, in the Absence of Measurements (Monitoring)-Kosova
NASA Astrophysics Data System (ADS)
Osmanaj, Lavdim; Karahoda, Dafina
2009-11-01
The territory of Republic of Kosova is divided in four catchment basins, such as: Basin of river Drini i Bardhë, river Ibri, river Morava of Binca and river Lepenci. [1]The river Klina is left part of the Drini i Bardhë basin.The inputs are designated by the following authors:a) GIANDOTT - VISSENTINb) GA VRILOVICc) THE METHOD OF TYPICALHYDROGRAMAs a result of this studies derive the following parameters: the surface of basin F=77.75km2, width of main flow L=22.00km', width of basin Wb=68.00km', highest quota of the basin Hqb=1750m.l.m, highest quota of inflow Hi=600.00m.l.m, average difference of height D=303.5m, maximal water input: Qmax100 years=112.00 m3/s, an average produce of Alluvium W=980.76m3/s, specific produce of Alluvium Gyears=35270.57 m3/s, secondary conveyance of Alluvium Qa=14.70 m3/s.
NASA Astrophysics Data System (ADS)
Thomas, P.; Gierasch, P. J.
1985-10-01
Viking Orbiter photographic imagery has confirmed the occurrence of dust devils on Mars. The images were of small bright clouds with long, tapered shadows viewed from a nearly-nadir angle. Spectra of the features were consistent with dust and not condensates. A maximum height of 6.8 km and width of 1 km were measured. The dust devils appeared on smooth planes, and had average dimensions of 2 km height and 200 m diam, carrying 3000 kg of dust. The data may be of use in interpreting convective processes on earth.
NASA Technical Reports Server (NTRS)
Jordan, F. L., Jr.
1980-01-01
As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.
Ships and Maritime Targets Observation Campaigns Using Available C- and X-Band SAR Satellite
NASA Astrophysics Data System (ADS)
Velotto, Domenico; Bentes, Carlos; Lehner, Susanne
2015-04-01
Obviously, radar resolution and swath width are two very important factors when it comes to synthetic aperture radar (SAR) maritime targets detections. The dilemma of using single polarization SAR imagery with higher resolution and coverage or quad- (or dual- polarimetric) imagery with its richness of information, is still unsolved when it comes to this application.In the framework of ESA project MARISS and EU project DOLPHIN, in situ campaigns aimed at solving this dilemma have been carried out. Single and multi- polarimetric SAR data acquired by TerraSAR-X, RADARSAT-2 and COSMO-SkyMed have been acquired with close time gaps and partial coverage overlap. In this way several moving and non-moving maritime targets have been imaged with different polarization, geometry and working frequency. Available ground truth reports provided by Automatic Identification System (AIS) data, nautical chart and wind farm location are used to validate the different types of maritime targets.
Assessment of Full and Compact Polarimetric SAR Observations for Land-Cover and Crop Classification
NASA Astrophysics Data System (ADS)
Nafari, Nima Fallah; Homayouni, Saeid; Safari, Abdolreza; Akbari, Vahid
2016-08-01
The recently developed compact polarimetric (CP) synthetic aperture radar (SAR) data tend to confer a valuable source of information -comparable to full polarimetric (FP) data- in many applications. However, this assertion still needs confirmation in practice. This paper evaluates the potential of FP and CP data in land- cover and crop classification and determines the prospects of CP data in such applications. To this end, two data sets including full polarimetric L-band data from UAVSAR, acquired over an agricultural area in Winnipeg (Canada), and full polarimetric C-band data acquired by RADARSAT-2 over San Francisco are used. CP data are simulated from the FP data of the both datasets and classified by the support vector machine (SVM) algorithm. Based on the results, CP system with a simpler design compared to FP system still has the potential to be used as an alternative when a larger swath width is required.
Space-based Swath Imaging Laser Altimeter for Cryospheric Topographic and Surface Property Mapping
NASA Technical Reports Server (NTRS)
Abshire, James; Harding, David; Shuman, Chris; Sun, Xiaoli; Dabney, Phil; Krainak, Michael; Scambos, Ted
2005-01-01
Uncertainties in the response of the Greenland and Antarctic polar ice sheets to global climatic change inspired the development of ICESat/GLAS as part of NASA's Earth Observing System. ICESat's primary purpose is the measurement of ice sheet surface elevation profiles with sufficient accuracy, spatial density, and temporal coverage so that elevation changes can be derived with an accuracy of <1.5 cm/year for averages of measurements over the ice sheets with areas of 100 x 100 km. The primary means to achieve this elevation change detection is spatial averaging of elevation differences at cross-overs between ascending and descending profiles in areas of low ice surface slope. Additional information is included in the original extended abstract.
Influence of fault steps on rupture termination of strike-slip earthquake faults
NASA Astrophysics Data System (ADS)
Li, Zhengfang; Zhou, Bengang
2018-03-01
A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.
NASA Technical Reports Server (NTRS)
2005-01-01
8 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of light-toned, sedimentary rock among darker-toned mesas in Aram Chaos. Dark, windblown megaripples -- large ripples -- are also present at this location. Location near: 3.0oN, 21.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern AutumnTELAER: a multi-mode/multi-antenna interferometric airborne SAR system
NASA Astrophysics Data System (ADS)
Perna, Stefano; Amaral, Tiago; Berardino, Paolo; Esposito, Carmen; Jackson, Giuseppe; Pauciullo, Antonio; Vaz Junior, Eurico; Wimmer, Christian; Lanari, Riccardo
2014-05-01
The present contribution is aimed at showing the capabilities of the TELAER airborne Synthetic Aperture Radar (SAR) system recently upgraded to the interferometric mode [1]. TELAER is an Italian airborne X-Band SAR system, mounted onboard a LearJet 35A aircraft. Originally equipped with a single TX/RX antenna, it now operates in single-pass interferometric mode thanks to a system upgrading [1] funded by the Italian National Research Council (CNR), via the Italian Ministry of Education, Universities and Research (MIUR), in the framework of a cooperation between CNR and the Italian Agency for Agriculture Subsidy Payments (AGEA). In the frame of such cooperation, CNR has entrusted the Institute for Electromagnetic Sensing of the Environment (IREA) for managing all the activities, included the final flight tests, related to the system upgrading. According to such an upgrading, two additional receiving X-band antennas have been installed in order to allow, simultaneously, single-pass Across-Track and Along-Track interferometry [1]. More specifically, the three antennas are now installed in such a way to produce three different across-track baselines and two different along-track baselines. Moreover, in the frame of the same system upgrading, it has been mounted onboard the Learjet an accurate embedded Global Navigation Satellite System and Inertial Measurement Unit equipment. This allows precise measurement of the tracks described by the SAR antennas during the flight, in order to accurately implement Motion Compensation (MOCO) algorithms [2] during the image formation (focusing) step. It is worth remarking that the TELAER system upgraded to the interferometric mode is very flexible, since the user can set different operational modes characterized by different geometric resolutions and range swaths. In particular, it is possible to reach up to 0.5 m of resolution with a range swath of 2km; conversely, it is possible to enlarge the range swath up to 10 km at expenses of a degradation of the geometric resolution, which in this case becomes equal to 5m. Such an operational flexibility, added to the above discussed single-pass interferometric capability and to the intrinsic flexibility of airborne platforms, renders the TELAER airborne SAR system a powerful instrument for fast generation of high resolution Digital Elevation Models, even in natural disaster scenarios. Accordingly, this system can play today a key role not only for strictly scientific purposes, but also for the monitoring of natural hazards, especially if properly integrated with other remote sensing sensors. [1] S. Perna et al., "Capabilities of the TELAER airborne SAR system upgraded to the multi-antenna mode", In Proceedings IGARSS 2012 Symposium, Munich, 2012. [2] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.
NASA Astrophysics Data System (ADS)
Wilkerson, Gregory V.; Kandel, Dinesh R.; Perg, Lesley A.; Dietrich, William E.; Wilcock, Peter R.; Whiles, Matt R.
2014-02-01
We explore the bankfull width (Wbf) versus drainage area (Ada) relationship across a range of climatic and geologic environments and ask (1) is the relationship between ln(Wbf) and ln(Ada) best described by a linear function and (2) can a reliable relationship be developed for predicting Wbf with Ada as the only independent variable. The principal data set for this study was compiled from regional curve studies and other reports that represent 1018 sites (1 m ≤ Wbf ≤ 110 m and 0.50 km2 ≤ Ada ≤ 22,000 km2) in the continental United States. Two additional data sets were used for validation. After dividing the data into small, medium, and large-size basins which, respectfully, correspond to Ada < 4.95 km2, 4.95 km2 ≤ Ada < 337 km2, and Ada ≥ 337 km2, regression lines from each data set were compared using one-way analysis of covariance (ANCOVA). A second ANCOVA was performed to determine if mean annual precipitation (P) is an extraneous factor in the Wbf versus Ada relationship. The ANCOVA results reveal that using Ada alone does not yield a reliable Wbf versus Ada relationship that is applicable across a wide range of environments and that P is a significant extraneous factor in the relationship. Considering data for very small basins (Ada ≤ 0.49 km2) and very large basins (Ada ≥ 1.0 × 105 km2) we conclude that a two-segment linear model is the most probable form of the ln(Wbf) versus ln(Ada) relationship. This study provides useful information for building complex multivariate models for predicting Wbf.
Radiometer requirements for Earth-observation systems using large space antennas
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Harrington, R. F.
1983-01-01
Requirements are defined for Earth observation microwave radiometry for the decade of the 1990's by using large space antenna (LSA) systems with apertures in the range from 50 to 200 m. General Earth observation needs, specific measurement requirements, orbit mission guidelines and constraints, and general radiometer requirements are defined. General Earth observation needs are derived from NASA's basic space science program. Specific measurands include soil moisture, sea surface temperature, salinity, water roughness, ice boundaries, and water pollutants. Measurements are required with spatial resolution from 10 to 1 km and with temporal resolution from 3 days to 1 day. The primary orbit altitude and inclination ranges are 450 to 2200 km and 60 to 98 deg, respectively. Contiguous large scale coverage of several land and ocean areas over the globe dictates large (several hundred kilometers) swaths. Radiometer measurements are made in the bandwidth range from 1 to 37 GHz, preferably with dual polarization radiometers with a minimum of 90 percent beam efficiency. Reflector surface, root mean square deviation tolerances are in the wavelength range from 1/30 to 1/100.
NASA Astrophysics Data System (ADS)
Dalguer, L. A.; Miyake, H.; Irikura, K.; Wu, H., Sr.
2016-12-01
Empirical scaling models of seismic moment and rupture area provide constraints to parameterize source parameters, such as stress drop, for numerical simulations of ground motion. There are several scaling models published in the literature. The effect of the finite width seismogenic zone and the free-surface have been attributed to cause the breaking of the well know self-similar scaling (e.g. Dalguer et al, 2008) given origin to the so called L and W models for large faults. These models imply the existence of three-stage scaling relationship between seismic moment and rupture area (e.g. Irikura and Miyake, 2011). In this paper we extend the work done by Dalguer et al 2008, in which these authors calibrated fault models that match the observations showing that the average stress drop is independent of earthquake size for buried earthquakes, but scale dependent for surface-rupturing earthquakes. Here we have developed additional sets of dynamic rupture models for vertical strike slip faults to evaluate the effect of the weak shallow layer (WSL) zone for the calibration of stress drop. Rupture in the WSL zone is expected to operate with enhanced energy absorption mechanism. The set of dynamic models consists of fault models with width 20km and fault length L=20km, 40km, 60km, 80km, 100km, 120km, 200km, 300km and 400km and average stress drop values of 2.0MPa, 2.5MPa, 3.0MPa, 3.5MPa, 5.0MPa and 7.5MPa. For models that break the free-surface, the WSL zone is modeled assuming a 2km width with stress drop 0.0MPa or -2.0 MPa. Our results show that depending on the characterization of the WSL zone, the average stress drop at the seismogenic zone that fit the empirical models changes. If WSL zone is not considered, that is, stress drop at SL zone is the same as the seismogenic zone, average stress drop is about 20% smaller than models with WSL zone. By introducing more energy absorption at the SL zone, that could be the case of large mature faults, the average stress drop in the seismogenic zone increases. Suggesting that large earthquakes need higher stress drop to break the fault than buried and moderate earthquakes. Therefore, the value of the average stress drop for large events that break the free-source depend on the definition of the WSL. Suggesting that the WSL plays an important role on the prediction of final slip and fault displacement.
Continental-Scale View of Bankfull Width Versus Drainage Area Relationship
NASA Astrophysics Data System (ADS)
Wilkerson, G. V.
2012-12-01
While recognizing that there are multiple variables that influence bankfull channel width (Wbf), this study explores the relationship between Wbf and drainage area (Ada) across a range of geologic, terrestrial, climatic, and botanical environments. The study aims to develop a foundational model that will facilitate developing a comprehensive multivariate model for predicting channel width. Data for this study was compiled from independent regional curve studies (i.e., studies in which Wbf vs. Ada relationships are developed). The data represent 1,018 sites that span 12 states in the continental U.S. The channels are alluvial and are such that 1 m ≤ Wbf ≤ 110 m and 0.50 km2 ≤ Ada ≤ 22,000 km2. For developing regional curves, the Wbf vs. Ada relationship is generally assumed to be log-linear. Also, past studies have indicated that the Wbf vs. Ada relationship differs for small basins (i.e., 10 to 100 km2) and large basins due to the effects of vegetation. Linear and nonlinear (i.e., sigmoidal) models were considered for this study. The best model relates ln(Wbf ) and ln(Ada) using a three-piece linear model (Figure 1). The value of dWbf /dAda is significantly greater (p < 0.001) for mid-size basins (5 km2 ≤ Ada ≤ 350 km2) than either small or large basins. The noted change in dWbf /dAda is likely in response to vegetation. Also, the change in dWbf /dAda is so abrupt that the three-piece linear model, fits the data better than any of the sigmoidal functions explored in this study. For every model evaluated in this study, the residuals were bi-modal (Figure 2). For the residuals to begin converging on a normal distribution, at least one other factor (probably precipitation) needs to be included in the model.
The Dependence of Galactic Outflows on the Properties and Orientation of zCOSMOS Galaxies at z ~ 1
NASA Astrophysics Data System (ADS)
Bordoloi, R.; Lilly, S. J.; Hardmeier, E.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Carollo, C. M.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Garilli, B.; Iovino, A.; Kampczyk, P.; Kovač, K.; Knobel, C.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Mignoli, M.; Oesch, P.; Pello, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Cappi, A.; Cimatti, A.; Coppa, G.; Franzetti, P.; Koekemoer, A.; Moresco, M.; Nair, P.; Pozzetti, L.
2014-10-01
We present an analysis of cool outflowing gas around galaxies, traced by Mg II absorption lines in the coadded spectra of a sample of 486 zCOSMOS galaxies at 1 <= z <= 1.5. These galaxies span a range of stellar masses (9.45 <= log10[M */M ⊙] <= 10.7) and star formation rates (0.14 <= log10[SFR/M ⊙ yr-1] <= 2.35). We identify the cool outflowing component in the Mg II absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses, the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong correlation with the star formation surface density (ΣSFR) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from -150 km s-1 ~-200 km s-1 and, on average, the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit mass outflow rates >5-7 M ⊙ yr-1 and a mass loading factor ({ η = \\dot{M}out /SFR}) comparable to the star formation rates of the galaxies. Based on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Program 175.A-0839.
NASA Technical Reports Server (NTRS)
2005-01-01
5 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dust-mantled, wind-eroded landscape in the Medusae Sulci region of Mars. Wind eroded the bedrock in this region, and then, later, windblown dust covered much of the terrain. Location near: 5.7oS, 160.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern SpringNASA Technical Reports Server (NTRS)
2005-01-01
8 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows landforms created by sublimation processes on the south polar residual cap of Mars. The bulk of the ice in the south polar residual cap is frozen carbon dioxide. Location near: 86.6oS, 342.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SummerVerdi, Richard J.; Lotspeich, R. Russell; Robbins, Jeanne C.; Busciolano, Ronald J.; Mullaney, John R.; Massey, Andrew J.; Banks, William S.; Roland, Mark A.; Jenter, Harry L.; Peppler, Marie C.; Suro, Thomas P.; Schubert, Christopher E.; Nardi, Mark R.
2017-06-20
After Hurricane Sandy made landfall along the northeastern Atlantic coast of the United States on October 29, 2012, the U.S. Geological Survey (USGS) carried out scientific investigations to assist with protecting coastal communities and resources from future flooding. The work included development and implementation of the Surge, Wave, and Tide Hydrodynamics (SWaTH) network consisting of more than 900 monitoring stations. The SWaTH network was designed to greatly improve the collection and timely dissemination of information related to storm surge and coastal flooding. The network provides a significant enhancement to USGS data-collection capabilities in the region impacted by Hurricane Sandy and represents a new strategy for observing and monitoring coastal storms, which should result in improved understanding, prediction, and warning of storm-surge impacts and lead to more resilient coastal communities.As innovative as it is, SWaTH evolved from previous USGS efforts to collect storm-surge data needed by others to improve storm-surge modeling, warning, and mitigation. This report discusses the development and implementation of the SWaTH network, and some of the regional stories associated with the landfall of Hurricane Sandy, as well as some previous events that informed the SWaTH development effort. Additional discussions on the mechanics of inundation and how the USGS is working with partners to help protect coastal communities from future storm impacts are also included.
Nakamura, Kenji; Hirayama-Kurogi, Mio; Ito, Shingo; Kuno, Takuya; Yoneyama, Toshihiro; Obuchi, Wataru; Terasaki, Tetsuya; Ohtsuki, Sumio
2016-08-01
The purpose of the present study was to examine simultaneously the absolute protein amounts of 152 membrane and membrane-associated proteins, including 30 metabolizing enzymes and 107 transporters, in pooled microsomal fractions of human liver, kidney, and intestine by means of SWATH-MS with stable isotope-labeled internal standard peptides, and to compare the results with those obtained by MRM/SRM and high resolution (HR)-MRM/PRM. The protein expression levels of 27 metabolizing enzymes, 54 transporters, and six other membrane proteins were quantitated by SWATH-MS; other targets were below the lower limits of quantitation. Most of the values determined by SWATH-MS differed by less than 50% from those obtained by MRM/SRM or HR-MRM/PRM. Various metabolizing enzymes were expressed in liver microsomes more abundantly than in other microsomes. Ten, 13, and eight transporters listed as important for drugs by International Transporter Consortium were quantified in liver, kidney, and intestinal microsomes, respectively. Our results indicate that SWATH-MS enables large-scale multiplex absolute protein quantification while retaining similar quantitative capability to MRM/SRM or HR-MRM/PRM. SWATH-MS is expected to be useful methodology in the context of drug development for elucidating the molecular mechanisms of drug absorption, metabolism, and excretion in the human body based on protein profile information. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries.
Wu, Jemma X; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P
2016-07-01
The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries*
Wu, Jemma X.; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P.
2016-01-01
The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. PMID:27161445
PoPSat: The Polar Precipitation Satellite Mission
NASA Astrophysics Data System (ADS)
Binder, Matthias J.; Agten, Dries; Arago-Higueras, Nadia; Borderies, Mary; Diaz-Schümmer, Carlos; Jamali, Maryam; Jimenez-Lluva, David; Kiefer, Joshua; Larsson, Anna; Lopez-Gilabert, Lola; Mione, Michele; Mould, Toby JD; Pavesi, Sara; Roth, Georg; Tomicic, Maja
2017-04-01
The terrestrial water cycle is one of many unique regulatory systems on planet Earth. It is directly responsible for sustaining biological life on land and human populations by ensuring sustained crop yields. However, this delicate balanced system continues to be influenced significantly by a changing climate, which has had drastic impacts particularly on the polar regions. Precipitation is a key process in the weather and climate system, due to its storage, transport and release of latent heat in the atmosphere. It has been extensively investigated in low latitudes, in which detailed models have been established for weather prediction. However, a gap has been left in higher latitudes above 65°, which show the strongest response to climate changes and where increasing precipitations have been foreseen in the future. In order to establish a global perspective of atmospheric processes, space observation of high-latitude areas is crucial to produce globally consistent data. The increasing demand for those data has driven a critical need to devise a mission which fills the gaps in current climate models. The authors propose the Polar Precipitation Satellite (PoPSat), an innovative satellite mission to provide enhanced observation of light and medium precipitation, focusing on snowfall and light rain in high latitudes. PoPSat is the first mission aimed to provide high resolution 3D structural information about snow and light precipitation systems and cloud structure in the covered areas. The satellite is equipped with a dual band (Ka and W band) phased-array radar. These antennas provide a horizontal resolution of 2 km and 4 km respectively which will exceed all other observations made to date at high-latitudes, while providing the additional capability to monitor snowfall. The data gathered will be compatible and complementary with measurements made during previous missions. PoPSat has been designed to fly on a sun-synchronous, dawn-dusk orbit at 460 km. This orbit enables the required optimal instrument resolution for precipitation events occurring within the troposphere, between 8 and 12 km altitude. Additionally, with an 18° instrument half-cone angle capability, both phased-array radars can provide a 300 km swath width at this altitude. This results in an optimal atmospheric layer coverage of 91% for latitudes above 50° N after 72 hr. A required total system power of 1021 W of the satellite will be sustained using 7.2 m2 of solar arrays, housed on the sunward side of the spacecraft. The mission has an expected total cost of an M-class mission for a nominal lifetime of 5 years. The PoPSat mission has been developed by 15 students of Team Blue supported by a group of experts at the Alpbach Summer School 2016, a ten-days design challenge organised by FFG and ESA and devoted to 'Satellite Observations of the Global Water Cycle'. PoPSat was selected by the jury to be further developed at the Post-Alpbach design challenge at the ESA Redu Centre for an additional four days, with 15 students out of all 4 teams from the Alpbach Summer School. Post-Alpbach Tutors: A. Hahne, J. Huesing, A. Ivanov, G. Kargl, H. Rott, J. Vennekens
NASA Astrophysics Data System (ADS)
Matejkova, R.; Spicak, A.; Vanek, J.
2010-12-01
Our former investigation into heterogeneous distribution of earthquakes at convergent plate margins led us to an idea of discontinuities in the process of subduction (e.g. Hanuš and Vaněk, 1978; Špičák et al., 2007). This idea suggests the existence of subduction cycles lasting several million years. A fade-out of a subduction process should be caused e.g. by a collision of the slab with the 670 boundary, convergence of hardly subductable seamount provinces, collision with a thick continental crust etc. Such a fade-out of subduction may be followed by an onset of a new subduction cycle, with important consequences to, e.g., position of the volcanic arc. In this contribution, we analyse spatial distribution of intermediate-depth and deep earthquakes in the southern part of the Banda Arc region (5°-10°S and 127°-132°E). The EHB global hypocentral determinations (Engdahl et al., 1998) covering the period 1964-2007 have been used. To visualize depth distribution of earthquake foci, we covered the region of interest by narrow (25 km width) swaths, oriented perpendicular to the plate margin, and displayed earthquake foci in vertical sections. The vertical sections show concentration of earthquake foci of the Wadati-Benioff zone (hereafter denoted as WBZ) in four distinct domains that do not fit a continuous plate-like body. These domains can be clearly distinguished from each other by a distinct gap in seismicity between them and/or a noticeable change in dip angle of neighbouring domains. This observation casts doubt on a generally accepted idea that the seismically active domains of the Banda WBZ represent one continuous slab. The deepest domain D1 of earthquakes (400-700 km depth) is probably associated with deep earthquakes north of Java and corresponds to a subduction cycle that faded about 8 Ma ago. Our estimate of the age of the cycle is based on the assumption of a steady convergence rate of about 7 cm/yr. The domain D2 of earthquakes at depths between 200-400 km corresponds to a subduction cycle that was active 8-4 Ma BP. The remnants of related arc volcanism can be found along the Lucipara and Nieuwerkerk-Emperor of China ridges in the Banda Sea; ages of these volcanic rocks (Honthaas et al., 1998) correspond well with our estimate. This subduction cycle, still running beneath Java and Sumatra, was probably ended by collision with the Australian continent in the Banda Arc region. Such a collisional event is reflected by a vertically situated domain D3 of unusually strong seismicity concentrated at depths 100 - 200 km; the deepest part of the domain corresponds to the beginning of the collisional event 4 Ma BP. A present analogy of the collisional event can be found in the Timor region, west of the region of our interest. The domain D4 of seismicity south/southeast of the Timor-Tanimbar trough (focal depth down to 100 km) corresponds to the recent subduction of the Australian shelf beneath the Banda Arc region. This recent subduction has already reached a depth of about 100 km decisive for arc magma formation (Damar, Teon, Nila volcanoes).
Effects of large floods on channel width: recent insights from Italian rivers
NASA Astrophysics Data System (ADS)
Scorpio, Vittoria; Righini, Margherita; Amponsah, William; Crema, Stefano; Ciccarese, Giuseppe; Nardi, Laura; Zoccatelli, Davide; Borga, Marco; Cavalli, Marco; Comiti, Francesco; Corsini, Alessandro; Marchi, Lorenzo; Rinaldi, Massimo; Surian, Nicola
2017-04-01
Variations of channel morphology occurring during large flood events (recurrence interval > 50-100 years.) are very often the cause of damages to buildings and infrastructures, as well as of casualties. However, our knowledge of such processes remains poor, as is our capability to predict them. Post-event campaigns documenting channel changes and linking them to hydrological and morphological factors thus bear an enormous value for both the scientific community and river management agencies. We present the results of an analysis on the geomorphic response associated to 4 large floods that occurred between October 2011 and September 2015, affecting several catchments in Northern Italy (Magra-Vara, Trebbia, Nure rivers) and Sardinia (Posada and Mannu di Bitti rivers), characterized by different climatic, lithological and geomorphological settings. The analysis considered more than 400 channel reaches characterized by a drainage area ranging from 39 to 1,100 km2 and featuring a wide range of lateral confinement, mostly within the partly- and unconfined conditions. The approach to flood analysis encompassed: (i) hydrological and hydraulic analysis; (ii) analysis of sediment delivery by landslides to the channel network; (iii) GIS-based and field assessment of morphological channel modifications. For the Nure River flood event (September 2015) a quantitative assessment on average bed level variations was also carried out. Return period for maximum hourly rainfall intensities and peak water discharges exceeded in all basins 100 yr, in some cases even 300 yr. Very high unit peak discharges were estimated, reaching 8.8 m3 s-1km-2 in the Nure River (205 km2) and up to 30 m3 s-1km-2in few Magra River tributaries (5-10 km2). Notable channel widening (post-flood width / pre-flood width > 1.1) occurred in 83% of studied reaches, and it was found more relevant in the channels with narrower initial width, i.e. along the relatively steep tributaries. For these tributaries, the ratio between post-flood and pre-flood width presents an average value of 4.2, with a maximum approaching 20. In the main river channels, due to the presence of wider sections and lower slope, the ratio resulted < 5, on average 1.3. The analysis of width ratio vs. flood peak unit stream power shows that the minimum unit stream power required to cause relevant widening was about 500 Wm-2. Nonetheless, some reaches affected by unit stream power as high as 4,000 Wm-2 exhibited limited or no widening at all. Indeed, a statistical analysis on the relationship between widening and both morphological and hydraulic controlling factors indicates that unit stream power and confinement index were the most relevant variables, whereas sediment input from mass wasting processes seems to have a localized influence. Remarkably, the analysis of subset referring to Trebbia and Nure basins showed that channel widening is strongly associated to bed aggradation, and that steeper tributaries underwent higher aggradation despite their larger sediment transport capacity. These results points out that geomorphic changes due to large floods are controlled by several factors that induce a highly variable pattern of change even within the same river basin.
NASA Astrophysics Data System (ADS)
Pérez-Peña, J. V.; Al-Awabdeh, M.; Azañón, J. M.; Galve, J. P.; Booth-Rea, G.; Notti, D.
2017-07-01
The present-day great availability of high-resolution Digital Elevation Models has improved tectonic geomorphology analyses in their methodological aspects and geological meaning. Analyses based on topographic profiles are valuable to explore the short and long-term landscape response to tectonic activity and climate changes. Swath and river longitudinal profiles are two of the most used analysis to explore the long and short-term landscape responses. Most of these morphometric analyses are conducted in GIS software, which have become standard tools for analyzing drainage network metrics. In this work we present two ArcGIS Add-Ins to automatically delineate swath and normalized river profiles. Both tools are programmed in Visual Basic . NET and use ArcObjects library-architecture to access directly to vector and raster data. The SwathProfiler Add-In allows analyzing the topography within a swath or band by representing maximum-minimum-mean elevations, first and third quartile, local relief and hypsometry. We have defined a new transverse hypsometric integral index (THi) that analyzes hypsometry along the swath and offer valuable information in these kind of graphics. The NProfiler Add-In allows representing longitudinal normalized river profiles and their related morphometric indexes as normalized concavity (CT), maximum concavity (Cmax) and length of maximum concavity (Lmax). Both tools facilitate the spatial analysis of topography and drainage networks directly in a GIS environment as ArcMap and provide graphical outputs. To illustrate how these tools work, we analyzed two study areas, the Sierra Alhamilla mountain range (Betic Cordillera, SE Spain) and the Eastern margin of the Dead Sea (Jordan). The first study area has been recently studied from a morphotectonic perspective and these new tools can show an added value to the previous studies. The second study area has not been analyzed by quantitative tectonic geomorphology and the results suggest a landscape in transient state due to a continuous base-level fall produced by the formation of the Dead Sea basin.
NASA Astrophysics Data System (ADS)
Borrelli, M.; Giese, G. S.; Dingman, S. L.; Gontz, A. M.; Adams, M. B.; Norton, A. R.; Brown, T. L.
2011-12-01
A series of ambiguous features on the seafloor off the coast of Provincetown, Massachusetts USA has been identified in two bathymetric lidar surveys (2007, 2010) conducted by the US Army Corps of Engineers. Similar features in the area have been described as linear scour depressions by other investigators, but at deeper water depths. These features exhibit some of the characteristics of bedforms, they have migrated tens of meters and maintained similar 3 dimensional morphologies. However, what would be described as the slipface more closely resembles the updrift face of a linear scour depression. The features are in relatively shallow water (9 - 15 m), are 150 - 200 m long, have spacings of 100 - 150 m and are 5-6 m in height. Further investigations are being undertaken to better understand these features and nearshore sediment transport in the area. The features appear along a high energy, accreting coast with both strong wave-driven sediment flux and tidal currents. Mapping of the study area with an interferometric sonar system, which collects coincident swath bathymetry and acoustic backscatter imagery, is ongoing. Interferometric sonar increases bathymetric swath width to depth ratios, in comparison to multibeam systems, and expedites data collection by reducing costs, vessel-time and hazards associated with navigating shallow waters. In addition, sediment grab samples and a series of seismic reflection profiles will also be collected in the area to ground-truth acoustic imagery and provide a subsurface framework for the features, respectively. These datasets will allow investigators to better document bottom conditions, estimate flow velocities needed to create these features and improve our understanding of sediment transport processes and pathways in the area.
NASA Astrophysics Data System (ADS)
Xu, Min; Pablo Canales, J.; Carbotte, Suzanne M.; Carton, Helene; Nedimović, Mladen R.; Mutter, John C.
2014-04-01
We use three-dimensional multistreamer seismic reflection data to investigate variations in axial magma lens (AML) physical properties along the East Pacific Rise between 9°30'N and 10°00'N. Using partial-offset stacks of P- and S-converted waves reflecting off the top of the AML, we image four 2-4 km long melt-rich sections spaced 5-10 km from each other. One-dimensional waveform inversion indicates that the AML in a melt-rich section is best modeled with a low Vp (2.95-3.23 km/s) and Vs (0.3-1.5 km/s), indicating >70% melt fraction. In contrast, the AML in a melt-poor section requires higher Vp (4.52-4.82 km/s) and Vs (2.0-3.0 km/s), which indicates <40% melt fraction. The thicknesses of the AML are constrained to be 8-32 m and 8-120 m at the melt-rich and -poor sites, respectively. Based on the AML melt-mush segmentation imaged in the area around the 2005-2006 eruption, we infer that the main source of this eruption was a 5 km long section of the AML between 9°48'N and 51'N. The eruption drained most of the melt in this section of the AML, leaving behind a large fraction of connected crystals. We estimate that during the 2005-2006 eruption, a total magma volume of 9-83 × 106 m3 was extracted from the AML, with a maximum of 71 × 106 m3 left unerupted in the crust as dikes. From this, we conclude that an eruption of similar dimensions to the 2005-2006, one would be needed with a frequency of years to decades in order to sustain the long-term average seafloor spreading rate at this location.
Surface elevation change over the Patagonia Ice Fields using CryoSat-2 swath altimetry
NASA Astrophysics Data System (ADS)
Foresta, Luca; Gourmelen, Noel; José Escorihuela, MarÍa; Garcia Mondejar, Albert; Wuite, Jan; Shepherd, Andrew; Roca, Mònica; Nagler, Thomas; Brockley, David; Baker, Steven; Nienow, Pete
2017-04-01
Satellite altimetry has been traditionally used in the past few decades to infer elevation of land ice, quantify changes in ice topography and infer mass balance estimates over large and remote areas such as the Greenland and Antarctic ice sheets. Radar Altimetry (RA) is particularly well suited to this task due to its all-weather year-round capability of observing the ice surface. However, monitoring of ice caps (area < 104 km^2) as well as mountain glaciers has proven more challenging. The large footprint of a conventional radar altimeter and relatively coarse ground track coverage are less suited to monitoring comparatively small regions with complex topography, so that mass balance estimates from RA rely on extrapolation methods to regionalize elevation change. Since 2010, the European Space Agency's CryoSat-2 (CS-2) satellite has collected ice elevation measurements over ice caps with its novel radar altimeter. CS-2 provides higher density of observations w.r.t. previous satellite altimeters, reduces the along-track footprint using Synthetic Aperture Radar (SAR) processing and locates the across-track origin of a surface reflector in the presence of a slope with SAR Interferometry (SARIn). Here, we exploit CS-2 as a swath altimeter [Hawley et al., 2009; Gray et al., 2013; Christie et al., 2016; Ignéczi et al., 2016, Foresta et al., 2016] over the Southern and Northern Patagonian Ice Fields (SPI and NPI, respectively). The SPI and NPI are the two largest ice masses in the southern hemisphere outside of Antarctica and are thinning very rapidly in recent decades [e.g Rignot et al., 2003; Willis et al, 2012]. However, studies of surface, volume and mass change in the literature, covering the entire SPI and NPI, are limited in number due to their remoteness, extremely complex topography and wide range of slopes. In this work, we present rates of surface elevation change for five glaciological years between 2011-2016 using swath-processed CS-2 SARIn heights and discuss the spatial and temporal coverage of elevation and its rate of change over the two regions.
Space Radar Image of West Texas - SAR Scan
1999-04-15
This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by "scanning" the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the forthcoming Canadian RADARSAT satellite. http://photojournal.jpl.nasa.gov/catalog/PIA01787
Radar image processing for rock-type discrimination
NASA Technical Reports Server (NTRS)
Blom, R. G.; Daily, M.
1982-01-01
Image processing and enhancement techniques for improving the geologic utility of digital satellite radar images are reviewed. Preprocessing techniques such as mean and variance correction on a range or azimuth line by line basis to provide uniformly illuminated swaths, median value filtering for four-look imagery to eliminate speckle, and geometric rectification using a priori elevation data. Examples are presented of application of preprocessing methods to Seasat and Landsat data, and Seasat SAR imagery was coregistered with Landsat imagery to form composite scenes. A polynomial was developed to distort the radar picture to fit the Landsat image of a 90 x 90 km sq grid, using Landsat color ratios with Seasat intensities. Subsequent linear discrimination analysis was employed to discriminate rock types from known areas. Seasat additions to the Landsat data improved rock identification by 7%.
The Eighty Six Hα Spectra from the Orion Nebula (M42, Sh2-281) with DEFPOS
NASA Astrophysics Data System (ADS)
Sahan, M.; Yegingil, I.
2017-12-01
In this study, eighty six Hα (6563 Å) emission line spectra from the central region (˜ 40^' }× 40^' }) of the Orion Nebula (NGC1976, M42, Sh2-281) have been obtained using DEFPOS spectrometer with a circular field of view of 4^' } at TUBITAK National Observatory (TUG, Antalya, Turkey). Measurements provide information about the intensities, line widths, and radial velocities of the gas surrounding the Sh2-281 HII-region. The intensities, the radial velocities and the line widths of the Hα emission line were found in the range of from 319.85 R to 6009.08 R (mean 2006 ± 400 R), from -14.91 km s^{-1} to + 5.40 km s^{-1} (mean -4.51± 3.80 km s^{-1}), and from 27.83 km s^{-1} to 49.60 km s^{-1} (mean 41.09± 7.74 km s^{-1}), respectively. Moreover, the mean emission measure (EM) calculated from {I_{H{α }}} values was obtained as 4513.02 cm^{-6} pc. The mean LSR velocity of the nebula was found to be -4.51 km s^{-1} and was compared with some previous works. The intensity values of DEFPOS data were also compared with the data obtained from VTSS, SkyView, and SHASSA maps using APER and SKY codes. We found that our results were approximately the similar variation with VTSS (mean 2002.04 R), SkyView (mean 2680.05 R), and SHASSA (mean 2400.06 R) maps. We believe that DEFPOS spectrometer with a 4' diameter field of view is able to provide a powerful tool for the study of diffuse ionized gas and this new results may have significant contribution to the literature.
Uranus and the shape of elliptical rings
NASA Technical Reports Server (NTRS)
Lucke, R. L.
1978-01-01
It is reported that when the star SAO158687 passed behind the Uranus system, its light was occulted twice by the epsilon (fifth) ring of the planet. The first part of the ring to occult was about 100 km wide and the second part was about 40 km wide. The variable width of the ring is accounted for by differences in the orbital eccentricities of the individual particles composing the ring.
NASA Technical Reports Server (NTRS)
2005-01-01
18 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the east margin of a landslide off the southern rim of Mutch Crater in the Xanthe Terra region of Mars. This particular landslide was likely triggered by a meteor impact that occurred nearby. Location near: 0.7oS, 55.9oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern SpringHigh-Resolution Spectroscopy of the Lunar Sodium Exosphere
NASA Technical Reports Server (NTRS)
Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.
2014-01-01
We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.
Understanding transportation-caused rangeland damage in Mongolia.
Keshkamat, S S; Tsendbazar, N E; Zuidgeest, M H P; Shiirev-Adiya, S; van der Veen, A; van Maarseveen, M F A M
2013-01-15
Mongolia, a vast and sparsely populated semi-arid country, has very little formal road infrastructure. Since the 1990s, private ownership and usage of vehicles has been increasing, which has created a web of dirt track corridors due to the communal land tenure and unobstructed terrain, with some of these corridors reaching over 4 km in width. This practice aids wind- and water-aided erosion and desertification, causing enormous negative environmental effects. Little is being done to counter the phenomenon, mainly because the logic of the driving behaviour that causes this dirt road widening is not fully understood. The research in this article postulates that this driving behaviour has rational foundations and is linked to various geographical factors (natural and man-made geographical features). We analysed 11,000 km of arterial routes in the country using spatial statistics and determined that geographically weighted regression (GWR) analysis offers a good explanation for whether, and by how much, the selected geographical factors affect the creation of corridor widths and how their effect varies across the landscape. We determined that corridor widths are correlated to factors such as proximity to river crossings, traffic intensity, and vegetation abundance. Knowing these factors can help local planners and engineers design counter-measures that could help to control and reduce the widths of these corridors, until paved roads can replace the dirt track corridors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Optical spectrophotometry of Comet P/Giacobini-Zinner and emission profiles of H2O+
NASA Technical Reports Server (NTRS)
Strauss, M. A.; Mccarthy, P. J.; Spinrad, H.
1986-01-01
Two-dimensional CCD spectrograms were obtained of Comet P/Giacobini-Zinner (1984e) on five occasions between July and October 1985. Spatial emission profiles of H2O+ were extracted at 6198 angstroms (the strongest ionic line in the visible spectrum). This emission line traces the extent of the ion, or plasma, tail. The spectrographic slit was placed approximately along the trajectory of the ICE spacecraft on September 11, 1985; the resulting H2O+ profile has a full-width-half-maximum of about 5700 km, about three times that of the plasma density profile measured by ICE, and has a full-width-zero-intensity of about 30,000 km, very similar to the ICE values. H2O production rates for the comet are derived and compared with those of Comet P/Halley (1982i).
Circumnuclear star formation in Mrk 42 mapped with Gemini Near-infrared Integral Field Spectrograph
NASA Astrophysics Data System (ADS)
Hennig, Moiré G.; Riffel, Rogemar A.; Dors, O. L.; Riffel, Rogerio; Storchi-Bergmann, Thaisa; Colina, Luis
2018-06-01
We present Gemini Near-infrared Integral Field Spectrograph (NIFS) observations of the inner 1.5 × 1.5 kpc2 of the narrow-line Seyfert 1 galaxy Mrk 42 at a spatial resolution of 60 pc and spectral resolution of 40 km s^{-1}. The emission-line flux and equivalent width maps clearly show a ring of circumnuclear star formation regions surrounding the nucleus with radius of ˜500 pc. The spectra of some of these regions show molecular absorption features which are probably of CN, TiO, or VO, indicating the presence of massive evolved stars in the thermally pulsing asymptotic giant branch phase. The gas kinematics of the ring is dominated by rotation in the plane of the galaxy, following the large-scale disc geometry, while at the nucleus an additional outflowing component is detected blueshifted by 300-500 km s^{-1}, relative to the systemic velocity of the galaxy. Based on the equivalent width of Br γ we find pieces of evidence of gradients in the age of H II regions along the ring of Mrk 42, favouring the pearls on a string scenario of star formation. The broad component of Pa β emission line presents a Full Width at Half Maximum of ˜1480 km s^{-1}, implying in a mass of ˜2.5 × 106 M⊙ for the central supermassive black hole. Based on emission-line ratios we conclude that besides the active galactic nucleus, Mrk 42 presents nuclear Starburst activity.
NASA Astrophysics Data System (ADS)
Ranero, C. R.; Phipps Morgan, J.
2006-12-01
The existence of sudden along-strike transitions between volcanic and non-volcanic rifted margins is an important constraint for conceptual models of rifting and continental breakup. We think there is a promising indirect approach to infer the maximum width of the region of upwelling that exists beneath a rifted margin during the transition from rifting to seafloor-spreading. We infer this width of ~30km from the minimum length of the ridge-offsets that mark the limits of the `region of influence' of on-ridge plumes on the axial relief, axial morphology, and crustal thickness along the ridge and at the terminations of fossil volcanic rifted margins. We adopt Vogt's [1972] hypothesis for along-ridge asthenospheric flow in a narrow vertical slot beneath the axis of plume-influenced `macro-segments' and volcanic rifted margins. We find that: (1) There is a threshold distance to the lateral offsets that bound plume-influenced macrosegments; all such `barrier offsets' are greater than ~30km, while smaller offsets do not appear to be a barrier to along-axis flow. This pattern is seen in the often abrupt transitions between volcanic and non-volcanic rifted margins; these transitions coincide with >30km ridge offsets that mark the boundary between the smooth seafloor morphology and thick crust of a plume- influenced volcanic margin and a neighboring non-volcanic margin, as recorded in 180Ma rifting of the early N. Atlantic, the 42Ma rifting of the Kerguelen-Broken Ridge, and the 66Ma Seychelles-Indian rifting in the Indian Ocean. (2) A similar pattern is seen in the often abrupt transitions between `normal' and plume-influenced mid- ocean ridge segments, which is discussed in a companion presentation by Phipps Morgan and Ranero (this meeting). (3) The coexistance of adjacent volcanic and non-volcanic rifted margin segments is readily explained in this conceptual framework. If the volcanic margin macrosegment is plume-fed by hot asthenosphere along an axial ridge slot, while adjacent non-volcanic margin segments stretch and upwell ambient cooler subcontinental mantle, then there will be a sudden transition from volcanic to non-volcanic margins across a transform offset. (4) A 30km width for the region of ridge upwelling and melting offers a simple conceptual explanation for the apparent 30km threshold length for the existence of strike-slip transform faults and the occurrence of non-transform offsets at smaller ridge offset-distances. (5) The conceptual model leads to the interpretation of the observed characteristic ~1000km-2000km-width of plume-influenced macro- segments as a measure of the maximum potential plume supply into a subaxial slot of 5-10 cubic km per yr. (6) If asthenosphere consumption by plate-spreading is less than plume-supply into a macro-segment, then the shallow seafloor and excess gravitational spreading stresses associated with a plume-influenced ridge can lead to growth of the axial slot by ridge propagation. We think this is a promising conceptual framework with which to understand the differences between volcanic and non-volcanic rifted margins.
NASA Astrophysics Data System (ADS)
Taylor, Stephen B.; Steven Kite, J.
2006-08-01
Factors that control the routing and storage of sediments in the Appalachian region are poorly understood. This study involves a comparative geomorphic analysis of three watersheds underlain by sandstones and shales of the Acadian clastic wedge. These areas include the Fernow Experimental Forest, Tucker County, West Virginia; the North Fork basin, Pocahontas County, West Virginia; and the Little River basin, Augusta County, Virginia. GIS-based analyses of surficial map units allow first-order approximation of sediment-storage volumes in valley bottoms. Estimates of volumes are examined in tandem with morphometric analyses and the distribution of bedrock channels to make inferences regarding controls on sediment-transport efficiency in the central Appalachians. The Fernow and North Fork areas are characterized by V-shaped valleys with mixed reaches of alluvial-bedrock channels distributed throughout the drainage network. In contrast, the Little River valley is notably wider and gravelly alluvial fill is abundant. Comparator watershed parameters for the Fernow, North Fork and Little River areas include, respectively: (1) basin area = 15.2 km 2, 49.3 km 2, 41.5 km 2; (2) basin relief = 0.586 km, 0.533 km, 0.828 km; (3) drainage density = 4.2 km - 1 , 3.3 km - 1 , 4.7 km - 1 ; (4) ruggedness = 2.5, 1.7, 3.9; (5) Shreve magnitude = 139, 287, 380; (6) total valley-bottom area (km 2) = 0.76 km 2, 1.86 km 2, 3.09 km 2; (7) average hillslope gradients = 17.2°, 18.4°, 22.1°; (8) total debris-fan surface area = 0.113 km 2, 0.165 km 2, 0.486 km 2; and (9) debris-fan frequency = 2.0 km - 2 , 1.0 km - 2 , 2.8 km - 2 . The storage volumes in valley bottoms were estimated using map polygon areas and surface heights above channel grade. The Little River contains significantly higher sediment volumes in floodplain, terrace and fan storage compartments; total volumes of the valley bottoms are approximately twice that of the Fernow and North Fork areas combined. Unit storage volumes for the Fernow, North Fork and Little River are 5.2 × 10 4 m 3 km - 2 , 5.5 × 10 4 m 3 km - 2 and 1.6 × 10 5 m 3 km - 2 , respectively. A conceptual model postulates that valley-width morphometry and style of delivery from hillslopes are the primary factors controlling the efficiency of sediment transport. Steep, debris-flow-prone hillslopes at the Little River deliver high volumes of gravelly sediment at magnitudes greater than transport capacity of the channel. Patterns of stream power are complex, as low-order tributaries are under capacity and high-order tributaries over capacity with respect to sediment load. Aggraded alluvial fill insulates valley-floor bedrock from vertical erosion and valley widening dominates. Expansion of the valley width creates a positive response via increased storage capacity and lower unit stream power. Conversely, the Fernow and North Fork are characterized by diffusive mass movement on hillslopes with incremental bedload transport to higher-order tributaries. Rates of hillslope delivery are balanced by the rate of channel export. Mixed alluvial-bedrock reaches provide the optimal channel configuration for active incision of the valley floor. Low expansion of valley width promotes high unit stream power and processes of vertical erosion. The model implies that the Fernow and North Fork have been more effective at sediment transport during the Late Quaternary. Given similar climatic and tectonic settings, variation in bedrock lithofacies is likely the primary factor modulating the efficiency of sediment transport.
R/V Kilo Moana's New Geophysical Instrumentation, Processing Methods, and Online Data Repository
NASA Astrophysics Data System (ADS)
Miller, J. E.; Chandler, M. T.; Taylor, B.; Shor, A.; Ferguson, J. S.; Wessel, P.
2012-12-01
In 2012 several upgrades were made to the underway geophysical systems on R/V Kilo Moana, which the University of Hawaii School of Ocean and Earth Science and Technology (SOEST) operates as part of the University-National Oceanographic Laboratory System (UNOLS) fleet. New instrumentation includes a Bell BGM-3 forced feedback-type gravimeter, a Kongsberg EM 122 12-kHz receiver array, and a high resolution 70-100 kHz EM 710 multibeam echo sounder. Multibeam acceptance trials carried out in June by the Multibeam Advisory Committee, Gates Acoustic Services and UH-SOEST found that both sonars are performing within expected levels with ~5x water depth (WD) for the EM 710 system in shallow water and ~19 km swath width at 4,700 m depth (~4x WD) for the EM 122 deep water system. UH-SOEST also took steps this year to fulfill its obligation to make Kilo Moana's geophysical data more accessible to the public. After an audit of Kilo Moana data at SOEST, Lamont's Rolling Deck to Repository (R2R) and the National Geophysical Data Center (NGDC), as of July 2012 all National Science Foundation-funded Kilo Moana multibeam, gravity, magnetics, center beam depth and Acoustic Doppler Current Profiler (ADCP) data have been submitted to R2R and any multibeam data over 2 years old is being transferred to NGDC. Because it had previously been difficult to access some of SOEST's geophysical data, updated data processing routines have been developed for converting raw gravity, magnetics, and centerbeam depth data to NGDC's standard marine data exchange format (MGD77) for archival and dissemination by NGDC. MGD77 files are being generated and inspected using rigorous along-track analytical techniques for ~270 surveys dating from 2002 to the present and are being submitted to NGDC. We are also developing an online data portal to further facilitate access to SOEST data.
Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands from 0.415 to 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation I will review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of: (1) developing a cloud mask for distinguishing clear sky from clouds, (2) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (3) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (4) determining atmospheric profiles of moisture and temperature, and (5) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 deg (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented. Finally, I will present some highlights from the land and ocean algorithms developed for processing global MODIS observations, including: (1) surface reflectance, (2) vegetation indices, leaf area index, and FPAR, (3) albedo and nadir BRDF-adjusted reflectance, (4) normalized water-leaving radiance, (5) chlorophyll-a concentration, and (6) sea surface temperature.
NASA Technical Reports Server (NTRS)
2005-01-01
18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringNASA Technical Reports Server (NTRS)
2005-01-01
28 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a view of linear troughs and mesas formed in the frozen carbon dioxide of the martian south polar residual cap. This image, obtained in May 2005, is a reminder that not all of the south polar cap landscapes resemble 'swiss cheese.' Location near: 86.7oS, 24.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringNASA Technical Reports Server (NTRS)
2005-01-01
17 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows channels carved by catastrophic floods in the Tharsis region of Mars. This area is located northwest of the volcano, Jovis Tholus, and east of the large martian volcano, Olympus Mons. The terrain is presently mantled with fine dust. Location near: 20.8oN, 118.8oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern AutumnNASA Technical Reports Server (NTRS)
2005-01-01
10 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded remnants of carbon dioxide ice in the south polar residual cap of Mars. The scarps that outline each small mesa have retreated about 3 meters (10 feet) per Mars year since MGS began orbiting the red planet in 1997. Location near: 87.0oS, 31.9oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringNASA Technical Reports Server (NTRS)
2005-01-01
30 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of south polar layered terrain. Their appearance in this July 2005 springtime image is enhanced by bright patches of carbon dioxide frost. The frost is left over from the previous southern winter season; by summer, the frost would be gone. Location near: 84.6oS, 203.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringImaging the molecular outflows of the prototypical ULIRG NGC 6240 with ALMA
NASA Astrophysics Data System (ADS)
Saito, T.; Iono, D.; Ueda, J.; Espada, D.; Sliwa, K.; Nakanishi, K.; Lu, N.; Xu, C. K.; Michiyama, T.; Kaneko, H.; Yamashita, T.; Ando, M.; Yun, M. S.; Motohara, K.; Kawabe, R.
2018-03-01
We present 0.97 × 0.53 arcsec2 (470 pc × 250 pc) resolution CO (J = 2-1) observations towards the nearby luminous merging galaxy NGC 6240 with the Atacama Large Millimeter/submillimeter Array. We confirmed a strong CO concentration within the central 700 pc, which peaks between the double nuclei, surrounded by extended CO features along the optical dust lanes (˜11 kpc). We found that the CO emission around the central, a few kpc, has extremely broad velocity wings with full width at zero intensity ˜ 2000 km s-1, suggesting a possible signature of molecular outflow(s). In order to extract and visualize the high-velocity components in NGC 6240, we performed a multiple Gaussian fit to the CO data cube. The distribution of the broad CO components shows four extremely large line width regions (˜1000 km s-1) located 1-2 kpc away from both nuclei. Spatial coincidence of the large line width regions with H α, near-IR H2, and X-ray suggests that the broad CO (2-1) components are associated with nuclear outflows launched from the double nuclei.
Nyiragongo Volcano before the Eruption
NASA Technical Reports Server (NTRS)
2002-01-01
Nyiragongo is an active stratovolcano situated on the Eastern African Rift; it is part of Africa's Virunga Volcanic Chain. In a massive eruption that occurred on January 17, 2002, Nyiragongo sent a vast plume of smoke and ash skyward, and three swifly-moving rivers of lava streaming down its western and eastern flanks. Previous lava flows from Nyiragongo have been observed moving at speeds of up to 40 miles per hour (60 kph). The lava flows from the January 17 eruption destroyed more than 14 villages in the surrounding countryside, forcing tens of thousands to flee into the neighboring country of Rwanda. Within one day the lava ran to the city of Goma, situated on the northern shore of Lake Kivu about 12 miles (19 km) south of Nyiragongo. The lava cut a 200 foot (60 meter) wide swath right through Goma, setting off many fires, as it ran into Lake Kivu. Goma, the most heavily populated city in eastern Democratic Republic of Congo, is home to about 400,000 people. Most of these citizens were forced to flee, while many have begun to return to their homes only to find their homes destroyed. This true-color scene was captured by the Enhanced Thematic Mapper Plus (ETM+), flying aboard the Landsat 7 satellite, on December 11, 2001, just over a month before the most recent eruption. Nyiragongo's large crater is clearly visible in the image. As recently as June 1994, there was a large lava lake in the volcano's crater which had since solidified. The larger Nyamuragira Volcano is located roughly 13 miles (21 km) to the north of Nyiragongo. Nyamuragira last erupted in February and March 2001. That eruption was also marked by columns of erupted ash and long fluid lava flows, some of which are apparent in the image as dark greyish swaths radiating away from Nyamuragira. Both peaks are also notorious for releasing large amounts of sulfur dioxide, which presents another health hazard to people and animals living in close proximity. Image by Robert Simmon, based on data supplied by the NASA GSFC Landsat 7 Science Team
NASA Astrophysics Data System (ADS)
Grevemeyer, Ingo; Gràcia, Eulàlia; Villaseñor, Antonio; Leuchters, Wiebke; Watts, Anthony B.
2015-12-01
Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.
Atmospheric Science Data Center
2016-02-21
The generic data file for MISR is a swath, i.e., a set of measurements for the entire area observed during the day part of the orbit. This is a very large amount of data. To simplify the storing and processing of these data, swathes are broken...
Building high-quality assay libraries for targeted analysis of SWATH MS data.
Schubert, Olga T; Gillet, Ludovic C; Collins, Ben C; Navarro, Pedro; Rosenberger, George; Wolski, Witold E; Lam, Henry; Amodei, Dario; Mallick, Parag; MacLean, Brendan; Aebersold, Ruedi
2015-03-01
Targeted proteomics by selected/multiple reaction monitoring (S/MRM) or, on a larger scale, by SWATH (sequential window acquisition of all theoretical spectra) MS (mass spectrometry) typically relies on spectral reference libraries for peptide identification. Quality and coverage of these libraries are therefore of crucial importance for the performance of the methods. Here we present a detailed protocol that has been successfully used to build high-quality, extensive reference libraries supporting targeted proteomics by SWATH MS. We describe each step of the process, including data acquisition by discovery proteomics, assertion of peptide-spectrum matches (PSMs), generation of consensus spectra and compilation of MS coordinates that uniquely define each targeted peptide. Crucial steps such as false discovery rate (FDR) control, retention time normalization and handling of post-translationally modified peptides are detailed. Finally, we show how to use the library to extract SWATH data with the open-source software Skyline. The protocol takes 2-3 d to complete, depending on the extent of the library and the computational resources available.
A multi-center study benchmarks software tools for label-free proteome quantification
Gillet, Ludovic C; Bernhardt, Oliver M.; MacLean, Brendan; Röst, Hannes L.; Tate, Stephen A.; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I.; Aebersold, Ruedi; Tenzer, Stefan
2016-01-01
The consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra), a method that uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test datasets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation windows setups. For consistent evaluation we developed LFQbench, an R-package to calculate metrics of precision and accuracy in label-free quantitative MS, and report the identification performance, robustness and specificity of each software tool. Our reference datasets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics. PMID:27701404
A multicenter study benchmarks software tools for label-free proteome quantification.
Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan
2016-11-01
Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.
NASA Astrophysics Data System (ADS)
Rebesco, Michele; Liu, Yanguang; Camerlenghi, Angelo; Winsborrow, Monica; Sverre Laberg, Jan; Caburlotto, Andrea; Diviacco, Paolo; Accettella, Daniela; Sauli, Chiara; Wardell, Nigel
2010-05-01
Kveithola Trough, an E-W trending cross-shelf glacial trough in the NW Barents Sea, was surveyed for the first time during the EGLACOM cruise between 8th July and 4th August 2008 on board R/V OGS-Explora. EGLACOM (Evolution of a GLacial Arctic COntinental Margin: the southern Svalbard ice stream-dominated sedimentary system) project is the Italian contribution to the International Polar Year (IPY) Activity 367 (Neogene ice streams and sedimentary processes on high- latitude continental margins - NICE STREAMS). Such IPY activity included as well the Spanish SVAIS 2008 cruise on board BIO Hesperides. EGLACOM data acquisition, focused on the Storfjorden Fan and Kveithola Trough, included a multi-channel seismic (MCS) reflection survey and the simultaneous collection of swath bathymetry and sub-bottom CHIRP profiles. Swath bathymetry in the Kveithola Trough shows that the seafloor is characterized by E-W trending mega-scale glacial lineations (MSGL). These include large-scale ridges about 2 km wide and 15 m high as well as smaller grooves about 100 m wide and a few metres deep. Such MSGL record the fast flow of an ice stream draining the Svalbard/Barents Sea Ice Sheet (SBSIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase long profile of the trough. Such transverse ridges are interpreted as grounding-zone wedges (GZW) formed by deposition of unconsolidated, saturated subglacial till during ice stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that the morphology is controlled by stacked sets of lensoidal transparent units (tills) overlain by a draping glaciomarine unit up to over 15 m thick. Formed during temporary stillstands in grounding-zone position before complete deglaciation, GZW ridges are diagnostic of episodic retreat. Our data allow the reconstruction of deglaciation in the Spitsbergen Bank area, with each stage during deglaciation recorded by deposition of a GZW. Three independent lines of reasoning suggest that an ice cap persisted on Spitsbergen Bank for some thousand years and lasted much longer than those that fed the adjacent glacial troughs: 1) the freshness of the morphology in Kveithola Trough compared to that of adjacent Storfjorden and Bear Island troughs; 2) the volume of sediment in the GZW ridges compared to the small catchment area; 3) preliminary assessment of the stratigraphic position of debris flow deposits on the continental slope. The 15 m of sedimentary drape deposited on top of GZW ridges contains a high-resolution palaeoclimatic record of the last thousand years, which accumulated at a very high average sedimentation rate. Sampling (through drilling) of the thin glaciomarine sediments between the till lenses of the successive GZW ridges may allow the dating of deglaciation phases in the Barents Sea.
NASA Astrophysics Data System (ADS)
Naudts, L.; Khlystov, O.; Khabuev, A.; Seminskiy, I.; Casier, R.; Cuylaerts, M.; 'chenko, P., General; Synaeve, J.; Vlamynck, N.; de Batist, M. A.; Grachev, M. A.
2009-12-01
Lake Baikal is a large rift lake in Southern Siberia (Russian Federation). It occupies the three central depressions of the Baikal Rift Zone (BRZ): i.e. the Southern, Central and Northern Baikal Basins. Rifting started ca. 30 Ma ago and is still active with a present-day average extension rate of about 4 mm/yr. With a depth of 1637 m, Lake Baikal is the deepest lake in the World. It also holds 20 % of the world’s liquid surface fresh water, which makes it the largest lake in the World in terms of volume. Lake Baikal is also the only freshwater lake in the World with demonstrated occurrences of gas hydrates in its sedimentary infill. Methane hydrates are stable at water depths below 375 m. The presence of hydrates in the sedimentary infill is evidenced by a widespread BSR. Hydrates have also been encountered locally, in the near-bottom sediments of mud-volcano-like structures. In the summer of 2009, the lake floor has been mapped with multibeam swath bathymetry for the first time during a two-month-long survey with RV Titov. Swath bathymetry data were acquired with RCMG’s mobile 50 kHz SeaBeam 1050 multibeam system. In total 12600 km of echosounder tracks were sailed covering 15000 km2, including the Academician Ridge Accommodation Zone, the Central Baikal Basin, the Selenga Delta Accommodation Zone en the South Baikal Basin. In general, the lake floor was mapped starting from water depths of about -200 m to -1637 m, with an average survey depth of -1000 m. The new bathymetric data image the lake-floor morphology in unprecedented detail, revealing many small- and large-scall morphosedimentary, morphostructural and fluid-flow-related features, many of which were hitherto unknown. Known mud-volcano provinces in the Southern and Central Baikal Basins (i.e. the Posolsky Bank mud-volcano province, the Kukuy Canyon mud volcano province and the Olkhon Gate mud-volcano province) were mapped in detail, and several new, often isolated, mud-volcano-like structures were discovered. In addition, different possible fluid-flow features were identified in front of the Selenga Delta. Also the gas-hydrate-bearing areas around the oil seeps of Gorevoi Utes and the methane seeps of Goloustnoye have been mapped in detail, revealing that these hydrate occurrences are not associated with mud-volcano-like structures. The multibeam mapping survey coincided with the 2nd season of exploration of the lake floor by manned MIR submersibles (http://baikalfund.ru/eng/projects/expedition/index.wbp). Several of the MIR dives focused on features imaged by the new bathymetry data, such as gas-hydrate occurrences at methane seeps and oil seeps and in the mud-volcano-like structures, and gas seeps and fluid-flow phenomena along active fault scarps. The multibeam mapping survey was conducted in the framework of SBRAS project 17.8 and FWO Flanders project 1.5.198.09.
Swath sonar mapping of Earth's submarine plate boundaries
NASA Astrophysics Data System (ADS)
Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.
2014-12-01
The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would enable global comparisons of plate boundary structures and processes and could facilitate a more coordinated approach to optimizing the future acquisition of these high-value data by the global research community.
NGC 1058: Gas motions in an extended, quiescent spiral disk
NASA Technical Reports Server (NTRS)
Hanson, Margaret Murray; Dickey, John M.; Helou, George
1990-01-01
Researchers investigate in detail the motion of gas in the galaxy NGC 1058 using the very large array (VLA) to map the emission in the 21-cm line. This galaxy is so nearly face-on that the contribution to the line width due to the variation of the rotational velocity across the D-array beam is small compared with the random z-motion of the gas. Researchers confirm results of earlier studies (Lewis 1987, A. and A. Suppl., 63, 515; van der Kruit and Shostak 1984, A. and A., 134, 258) of the galaxy's total neutral hydrogen (HI) and kinematics, including the fact that the rotation curve drops faster than Keplerian at the outer edge of the disk, which is interpreted as a fortuitous twist of the plane of rotation in the outer disk. However, their very high velocity resolution (2.58 km s(exp -1) after Hanning smoothing) coupled with good spatial resolution, allows researchers to measure more accurately the line width, and even to some extent its shape, throughout the disk. One of the most interesting results of this study is the remarkable constancy of the line width in the outer disk. From radius 90 to 210 seconds the Gaussian velocity dispersion (sigma sub nu) of the 21-cm line has a mean value of 5.7 km s(exp -1) (after correcting for the spectral resolution) with a dispersion of less than 0.9 km s(exp -1) (after correcting for the spectral resolution) with a dispersion of less than 0.9 km s(exp -1). Translating this directly into a kinetic temperature (Doppler temperature): T sub Dopp equals 121K (sigma sub mu exp 2/(km s(exp -1) (exp 2) gives 4000 K, with a dispersion of less than 1500 K over the outer disk. This constancy is observed even when comparing the spiral arms versus inter-arm regions, which in the radius range from 100 to 150 seconds the surface density modulates (defined as the ratio N sub peak -N sub trough/N sub peak + N sub trough) from 0.5 to 0.25 in the range 150 to 200 seconds.
Thermal Infrared Spectral Imager for Airborne Science Applications
NASA Technical Reports Server (NTRS)
Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.
2009-01-01
An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.
Hurricane Sandy: observations and analysis of coastal change
Sopkin, Kristin L.; Stockdon, Hilary F.; Doran, Kara S.; Plant, Nathaniel G.; Morgan, Karen L.M.; Guy, Kristy K.; Smith, Kathryn E.L.
2014-01-01
Hurricane Sandy, the largest Atlantic hurricane on record, made landfall on October 29, 2012, and impacted a long swath of the U.S. Atlantic coastline. The barrier islands were breached in a number of places and beach and dune erosion occurred along most of the Mid-Atlantic coast. As a part of the National Assessment of Coastal Change Hazards project, the U.S. Geological Survey collected post-Hurricane Sandy oblique aerial photography and lidar topographic surveys to document the changes that occurred as a result of the storm. Comparisons of post-storm photographs to those collected prior to Sandy’s landfall were used to characterize the nature, magnitude, and spatial variability of hurricane-induced coastal changes. Analysis of pre- and post-storm lidar elevations was used to quantify magnitudes of change in shoreline position, dune elevation, and beach width. Erosion was observed along the coast from North Carolina to New York; however, as would be expected over such a large region, extensive spatial variability in storm response was observed.
Characterizing the structural maturity of fault zones using high-resolution earthquake locations.
NASA Astrophysics Data System (ADS)
Perrin, C.; Waldhauser, F.; Scholz, C. H.
2017-12-01
We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.
NASA Astrophysics Data System (ADS)
Allen, G. H.; Pavelsky, T.
2015-12-01
The width of a river reflects complex interactions between river water hydraulics and other physical factors like bank erosional resistance, sediment supply, and human-made structures. A broad range of fluvial process studies use spatially distributed river width data to understand and quantify flood hazards, river water flux, or fluvial greenhouse gas efflux. Ongoing technological advances in remote sensing, computing power, and model sophistication are moving river system science towards global-scale studies that aim to understand the Earth's fluvial system as a whole. As such, a global spatially distributed database of river location and width is necessary to better constrain these studies. Here we present the Global River Width from Landsat (GRWL) Database, the first global-scale database of river planform at mean discharge. With a resolution of 30 m, GRWL consists of 58 million measurements of river centerline location, width, and braiding index. In total, GRWL measures 2.1 million km of rivers wider than 30 m, corresponding to 602 thousand km2 of river water surface area, a metric used to calculate global greenhouse gas emissions from rivers to the atmosphere. Using data from GRWL, we find that ~20% of the world's rivers are located above 60ºN where little high quality information exists about rivers of any kind. Further, we find that ~10% of the world's large rivers are multichannel, which may impact the development of the new generation of regional and global hydrodynamic models. We also investigate the spatial controls of global fluvial geomorphology and river hydrology by comparing climate, topography, geology, and human population density to GRWL measurements. The GRWL Database will be made publically available upon publication to facilitate improved understanding of Earth's fluvial system. Finally, GRWL will be used as an a priori data for the joint NASA/CNES Surface Water and Ocean Topography (SWOT) Satellite Mission, planned for launch in 2020.
NASA Astrophysics Data System (ADS)
Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.
2015-07-01
An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analysed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode. The Na layer has a nearly constant altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but substantial seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At mid to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the Summer Hemisphere, have lower number densities with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at mid latitudes. The results are compared with other observations and models and there is overall a good agreement with these.
Impact of GPM Rainrate Data Assimilation on Simulation of Hurricane Harvey (2017)
NASA Technical Reports Server (NTRS)
Li, Xuanli; Srikishen, Jayanthi; Zavodsky, Bradley; Mecikalski, John
2018-01-01
Built upon Tropical Rainfall Measuring Mission (TRMM) legacy for next-generation global observation of rain and snow. The GPM was launched in February 2014 with Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) onboard. The GPM has a broad global coverage approximately 70deg S -70deg N with a swath of 245/125-km for the Ka (35.5 GHz)/Ku (13.6 GHz) band radar, and 850-km for the 13-channel GMI. GPM also features better retrievals for heavy, moderate, and light rain and snowfall To develop methodology to assimilate GPM surface precipitation data with Grid-point Statistical Interpolation (GSI) data assimilation system and WRF ARW model To investigate the potential and the value of utilizing GPM observation into NWP for operational environment The GPM rain rate data has been successfully assimilated using the GSI rain data assimilation package. Impacts of rain rate data have been found in temperature and moisture fields of initial conditions. 2.Assimilation of either GPM IMERG or GPROF rain product produces significant improvement in precipitation amount and structure for Hurricane Harvey (2017) forecast. Since IMERG data is available half-hourly, further forecast improvement is expected with continuous assimilation of IMERG data
Polar continental margins: Studies off East Greenland
NASA Astrophysics Data System (ADS)
Mienert, J.; Thiede, J.; Kenyon, N. H.; Hollender, F.-J.
The passive continental margin off east Greenland has been shaped by tectonic and sedimentary processes, and typical physiographic patterns have evolved over the past few million years under the influence of the late Cenozoic Northern Hemisphere glaciations. The Greenland ice shield has been particularly affected.GLORIA (Geological Long Range Inclined Asdic), the Institute of Oceanographic Sciences' (IOS) long-range, side-scan sonar, was used on a 1992 RV Livonia cruise to map large-scale changes in sedimentary patterns along the east Greenland continental margin. The overall objective of this research program was to determine the variety of large-scale seafloor processes to improve our understanding of the interaction between ice sheets, current regimes, and sedimentary processes. In cooperation with IOS and the RV Livonia, a high-quality set of seafloor data has been produced. GLORIA'S first survey of east Greenland's continental margin covered several 1000- × 50-km-wide swaths (Figure 1) and yielded an impressive sidescan sonar image of the complete Greenland Basin and margin (about 250,000 km2). A mosaic of the data was made at a scale of 1:375,000. The base map was prepared with a polar stereographic projection having a standard parallel of 71°.
Cal/Val Study for Geostationary Ocean Color Imager
NASA Astrophysics Data System (ADS)
Ryu, J.; Moon, J.; Min, J.; Cho, S.; Ahn, Y.
2009-12-01
GOCI, the first Geostationary Ocean Color Imager, shall be operated in a staring-frame capture mode onboard its Communication Ocean and Meteorological Satellite (COMS) and tentatively scheduled for launch in 2010. The mission concept includes eight visible-to-near-infrared bands, 0.5 km pixel resolution, and a coverage region of 2,500 × 2,500 km2 centered at Korea. The GOCI is expected to provide SeaWiFS quality observations for a single study area with imaging interval of 1 hour from 10 am to 5 pm. Due to optically more complex waters of GOCI swath area, we developed new atmospheric correction and bio-optical algorithms for GOCI. The 1st objective is to compare and validate the water-leaving radiance using the radiometric data from spectroradiometer installed in Ieodo and Gaegeocho ocean research station. The 2nd objective is to calibrate and validate the bio-optical product by GDPS using the Dokdo buoy and in situ measurements. As the result of comparison of spectrum shape using the remote reflectance normalized 555 nm, most of all data was well matched. Validation result of local bio-optical algorithms installed in GDPS showed the less than 20 %.
Assessment of the short-term radiometric stability between Terra MODIS and Landsat 7 ETM+ sensors
Choi, Taeyoung; Xiong, Xiaoxiong; Chander, Gyanesh; Angal, A.
2009-01-01
Short-term radiometric stability was evaluated using continuous ETM+ scenes within a single orbit (contact period) and the corresponding MODIS scenes for the four matching solar reflective visible and near-infrared (VNIR) band pairs between the two sensors. The near-simultaneous earth observations were limited by the smaller swath size of ETM+ (183 km) compared to MODIS (2330 km). Two sets of continuous granules for Terra MODIS and Landsat 7 ETM+ were selected and mosaicked based on pixel geolocation information for noncloudy pixels over the African continent. The matching pixel pairs were resampled from a fine to a coarse pixel resolution, and the at-sensor spectral radiance values for a wide dynamic range of the sensors were compared and analyzed, covering various surface types. The following study focuses on radiometric stability analysis from the VNIR band-pairs of ETM+ and MODIS. The Libya-4 desert target was included in the path of this continuous orbit, which served as a verification point between the short-term and the long-term trending results from previous studies. MODTRAN at-sensor spectral radiance simulation is included for a representative desert surface type to evaluate the consistency of the results.
NASA Technical Reports Server (NTRS)
Gagliano, J. A.; Mcsheehy, J. J.; Cavalieri, D. J.
1983-01-01
An airborne imaging 92/183 GHz radiometer was recently flown onboard NASA's Convair 990 research aircraft during the February 1983 Bering Sea Marginal Ice Zone Experiment (MIZEX-WEST). The 92 GHz portion of the radiometer was used to gather ice signature data and to generate real-time millimeter wave images of the marginal ice zone. Dry atmospheric conditions in the Arctic resulted in good surface ice signature data for the 183 GHz double sideband (DSB) channel situated + or - 8.75 GHz away from the water vapor absorption line. The radiometer's beam scanner imaged the marginal ice zone over a + or - 45 degrees swath angle about the aircraft nadir position. The aircraft altitude was 30,000 feet (9.20 km) maximum and 3,000 feet (0.92 km) minimum during the various data runs. Calculations of the minimum detectable target (ice) size for the radiometer as a function of aircraft altitude were performed. In addition, the change in the atmospheric attenuation at 92 GHz under varying weather conditions was incorporated into the target size calculations. A radiometric image of surface ice at 92 GHz in the marginal ice zone is included.
Accessing Suomi NPP OMPS Products Through the GES DISC Online Data Services
NASA Astrophysics Data System (ADS)
Johnson, J. E.; Wei, J. C.; Garasimov, I.; Vollmer, B.
2017-12-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the primary archive of the latest versions of atmospheric composition data from the Suomi National Polar-orbiting Partnership (NPP) Ozone Mapping Profiler Suite (OMPS) mission. OMPS consists of three spectrometers: a Nadir Mapper (300-420 nm) with 50×50 km2 resolution and 2600 km wide swath, a Nadir Profiler (250-310 nm) with 250×250 km2 footprint, and a three-slit Limb Profiler (290-1000 nm) making 3 vertical profiles spaced about 250 km apart with 1-2 km vertical resolution up to 65 km altitude. OMPS measures primarily ozone, both total column and vertical profiles, but also includes measurements of NO2 and SO2 total and tropospheric columns, aerosol extinction profiles. Also available from OMPS are the Level-1B calibrated and geolocated radiances. All data products are generated at the OMPS Science Investigator Processing System (SIPS) at NASA/GSFC. This presentation will provide an overview of the OMPS products available at the GES DISC archive, as well as demonstrate the various data services provided by the GES DISC. Traditionally users have accessed data by downloading data files using anonymous FTP. Although one may still download the full OMPS data products from the archive (using HTTPS instead), the GES DISC now also offers online data services that allow users to not have to physically download the full data files to their desktop computer. Users can access the data through a desktop client tool (such as IDL, Matlab or Panoply) using OPeNDAP. Other data services include file subsetters (spatially, temporally, and/or by variable), as well as data visualization and exploration services for users to preview or quickly analyze the data. Since TOMS and EOS Aura data products are also available from the GES DISC archive, these can be easily accessed and compared with the OMPS data.
TIME EVOLUTION OF PLASMA PARAMETERS DURING THE RISE OF A SOLAR PROMINENCE INSTABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.
We present high-spatial resolution spectropolarimetric observations of a quiescent hedgerow prominence taken in the He I 1083.0 nm triplet. The observation consisted of a time series in sit-and-stare mode of ∼36 minutes duration. The spectrograph's slit crossed the prominence body and we recorded the time evolution of individual vertical threads. Eventually, we observed the development of a dark Rayleigh-Taylor plume that propagated upward with a velocity, projected onto the plane of the sky, of 17 km s{sup –1}. Interestingly, the plume apex collided with the prominence threads pushing them aside. We inferred Doppler shifts, Doppler widths, and magnetic field strength variations bymore » interpreting the He I Stokes profiles with the HAZEL code. The Doppler shifts show that clusters of threads move coherently while individual threads have oscillatory patterns. Regarding the plume we found strong redshifts (∼9-12 km s{sup –1}) and large Doppler widths (∼10 km s{sup –1}) at the plume apex when it passed through the prominence body and before it disintegrated. We associate the redshifts with perspective effects while the Doppler widths are more likely due to an increase in the local temperature. No local variations of the magnetic field strength associated with the passage of the plume were found; this leads us to conclude that the plumes are no more magnetized than the surroundings. Finally, we found that some of the threads' oscillations are locally damped, what allowed us to apply prominence seismology techniques to infer additional prominence physical parameters.« less
Observations of Large-Amplitude, Whistler-Mode Wave Ducts in the Outer Plasmasphere
1990-02-12
evidence for whistler ducts [Smith and Angerami , 1968]. They showed that the spectral shape (dispersion) of whistlers arising from lightning strokes...the equatorial separation of the ducts near L z 3 ranged from 50 to 500 km and that the equatorial thicknesses were about 400 km. Angerami [1970...reported [Smith and Angerami , 1968; Angerami , 1970; Scarf and Chappell, 1973; Carpenter et al., 1981]. The half- width of the ducts and the density
Ocean Nowcast/Forecast Systems for Naval Undersea Capability
2007-01-01
Tonkin to the Taiwan Strait is consistently nearly 70 m deep, averaging 150 km in width; the central deep basin is 1900 km along its major axis...shaped basin in the center, and numerous reef islands 5 and underwater plateaus scattered throughout. The shelf that extends from the Gulf of...connection between southeastern Asia, Malaysia, Sumatra , Java, and Borneo and reaches 100 m depth in the middle; the center of the Gulf of Thailand is about
NASA Astrophysics Data System (ADS)
Dianov, Evgenii M.; Kuznetsov, A. V.; Makarenko, A. Yu; Okhotnikov, O. G.; Prokhorov, A. M.; Shcherbakov, E. A.
1990-12-01
Single-mode fiber waveguides were used in constructing a Michelson interferometer with a 50-km difference between its arm lengths. An analysis was made of its resolving power as a function of the parameters of the optical part and of the characteristics of the electronic apparatus used in the system. The width of a spectral emission line of a semiconductor laser with a distributed Rayleigh fiber resonator was determined.
Tectonics and kinematics of a foreland folded belt influenced by salt, arctic Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, J.C.
1996-12-31
The Ordovician (upper Arenig-Llanvirn) Bay Fiord Formation is one of three widespread evaporite units known to have profoundly influenced the style of contractional tectonics within the Innuitian orogen of Arctic Canada. In the western Arctic Islands, the salt-bearing Bay Fiord Formation has accommodated buckling and mostly subsurface thrusting in the west-trending Parry Islands foldbelt. A characteristic feature of this belt is a stratigraphic succession more than 10 km thick featuring three rigid and widespread sedimentary layers and two intervening ductile layers (lower salt and upper shale). The ductile strata have migrated to anticlinal welts during buckling. Other features of themore » foldbelt include (1) an extreme length of individual upright folds (up to 330 km), (2) extreme foldbelt width (up to 11%), (5) a shallow dipping salt decollement system (0.1{degrees}-0.6{degrees}) that has also been folded in the hinterland and later extended, and (6) a complete absence of halokinetic piercing diapirs. The progression from simple thrust-fold structure on the foldbelt periphery to complex in the interior provides a viable kinematic model for this and other contractional salt provinces. One feature of this model is a single massive triangle zone structure (passive roof duplex) that may envelop the entire 200-km width of the foldbelt and underlie an area exceeding 52,000 km{sup 2}.« less
Atomic oxygen in the lower thermosphere
NASA Technical Reports Server (NTRS)
Lin, Florence J.; Chance, Kelly V.; Traub, Wesley A.
1987-01-01
The 63-micron line due to thermospheric atomic oxygen O(P-3), using a far-infrared spectrometer on a balloon platform at 37 km altitude over Palestine, TX, on June 20, 1983. From measurements of the equivalent width of this line at two elevation angles, a weak angular dependence is found: the equivalent width increases by a factor of 1.5 + or - 0.3 as the angle decreases from +30 deg to +1 deg. Since the optical depth of the O(P-3) line is large, the measured line intensity cannot be directly converted to a column abundance. Instead, the measurements are interpreted in terms of radiative transfer through a 16-layer atmosphere extending to 200 km. A model atmosphere for summer at 30 deg N, with an exospheric temperature of 1300 K, including an assumed daytime atomic oxygen abundance profile constructed from recent chemical and dynamical models and a water vapor abundance profile constructed from recent experimental and model results is used. For this assumed O(P-3) vertical profile shape a multiplicative scaling factor of 0.8, with an altitude-dependent uncertainty is determined. In the best-determined layer the uncertainty in the multiplier is + or - 0.2 at 119 km. The model-dependent peak atomic oxygen density is 3.6 (+ or - 1.9) x 10 to the 11th/cu cm at an altitude of about 101 km.
Geometric Corrections for Topographic Distortion from Side Scan Sonar Data Obtained by ANKOU System
NASA Astrophysics Data System (ADS)
Yamamoto, Fujio; Kato, Yukihiro; Ogasawara, Shohei
The ANKOU is a newly developed, full ocean depth, long-range vector side scan sonar system. The system provides real time vector side scan sonar data to produce backscattering images and bathymetric maps for seafloor swaths up to 10 km on either side of ship's centerline. Complete geometric corrections are made using towfish attitude and cross-track distortions known as foreshortening and layover caused by violation of the flat bottom assumption. Foreshortening and layover refers to pixels which have been placed at an incorrect cross-track distance. Our correction of this topographic distortion is accomplished by interpolating a bathymetric profile and ANKOU phase data. We applied these processing techniques to ANKOU backscattering data obtained from off Boso Peninsula, and confirmed their efficiency and utility for making geometric corrections of side scan sonar data.
High-resolution geophysical data from the inner continental shelf—Buzzards Bay, Massachusetts
Ackerman, Seth D.; Andrews, Brian D.; Foster, David S.; Baldwin, Wayne E.; Schwab, William C.
2012-01-01
The U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM) have cooperated to map approximately 410 square kilometers (km²) of the inner continental shelf in Buzzards Bay, Massachusetts. This report contains geophysical data collected by the USGS on three cruises conducted in 2009, 2010, and 2011, and additional bathymetry data collected by the National Oceanic and Atmospheric Administration in 2004. The geophysical data include (1) swath bathymetry using interferometric sonar and multibeam echosounder systems, (2) acoustic backscatter from sidescan sonar, and (3) seismic-reflection profiles from a chirp subbottom profiler. These spatial data support research on the Quaternary evolution of Buzzards Bay, the influence of sea-level change and sediment supply on coastal evolution, and efforts to understand the type, distribution, and quality of subtidal marine habitats in the coastal ocean of Massachusetts.
Sampling of the Diurnal Cycle of Precipitation using TRMM
NASA Technical Reports Server (NTRS)
Negri, Andrew J.; Bell, Thomas L.; Xu, Li-Ming; Starr, David OC. (Technical Monitor)
2001-01-01
We examine the temporal sampling of tropical regions using observations from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR). We conclude that PR estimates at any one hour, even using three years of data, are inadequate to describe the diurnal cycle of precipitation over regions smaller than 12 degrees, due to high spatial variability in sampling. We show that the optimum period of accumulation is four hours. Diurnal signatures display half as much sampling error when averaged over four hours of local time. A similar pattern of sampling variability is found in the TMI data, despite the TMI's wider swath and increased sampling. These results are verified using an orbital model. The sensitivity of the sampling to satellite altitude is presented, as well as sampling patterns at the new TRMM altitude of 402.5 km.
NASA Astrophysics Data System (ADS)
Wang, Aijun; Ye, Xiang; Cheng, Peng; Wang, Liang
2017-04-01
Estuaries are key nodes of land-ocean interaction, the associated suspended sediment processes being crucial for global and regional material fluxes and environmental health. Within estuaries, there is commonly a reach where the water turbidity is markedly higher than both landward and seaward. This elevated suspended sediment concentration (SSC) is termed the estuarine turbidity maximum (ETM). The ETM has important influences on harbor siltation, ecological conservation, and biogeochemical dynamics. Jiulongjiang estuary is a small macro-tidal estuary in southeast China coastal area, which is a typical example for estuarine ecosystem conservation and its response to catchment management. Observed results show that the tidal current is the main factor which control the variations of SSC in ETM under the normal condition. However, under the influence of typhoon event, the hydrodynamic action was strengthened and the salt water intrusion was also enhanced, and the fresh water and sediment discharged from river system increased, which led to the complicated variations of the ETM. Under the normal conditions, the maximum width of ETM was about 10 km in spring tide. However, before typhoon landed, the maximum width of the ETM was about 14 km; after the typhoon landed, the maximum width of the ETM was more than 20 km, and during the low tide stage, the width of the ETM was still 19 km which was induced by high turbidity water input from river system. The particulate organic carbon (POC) concentration reached 19.26 mg/L within the ETM at the next day after typhoon landed, which was much higher than that under normal weather condition (the maximum value was only 3.15 mg/L). During the low tide level, the POC concentration increased remarkably from upstream to the core of ETM and then decreased toward downstream, while the POC concentration decreased toward downstream during high tide level. Compared with normal weather condition, the POC concentration varied not obviously along the river channel except at the core of ETM. The existence of ETM plays a much significant role for POC trapping during the influence of typhoon event. Acknowledgement: This research was supported by the NSFC (41376070). The authors with thank Shu-ren Huang, Hai-huang Chen and Peng-fa Chen for their help in the field work.
First manned submersible dives on the East Pacific Rise at 21°N (project RITA): general results
Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, W.R.; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.
1981-01-01
A submersible study has been conducted in February–March 1978 at the axis of the East Pacific Rise near 21°N. The expedition CYAMEX, the first submersible program to be conducted on the East Pacific Rise, is part of the French-American-Mexican project RITA (Rivera-Tamayo), a 3-year study devoted to detailed geological and geophysical investigations of the East Pacific Rise Crest. On the basis of the 15 dives made by CYANA in the axial area of the Rise, a morphological and tectonic zonation can be established for this moderately-fast spreading center. A narrow, 0.6 to 1.2 km wide zone of extrusion (zone 1), dominated by young lava flows, is flanked by a highly fissured and faulted zone of extension (zone 2) with a width of 1 to 2 km. Further out, zone 3 is dominated by outward tilted blocks bounded by inward-facing fault scarps. Active or recent faults extend up to 12 km from the axis of extrusion of the East Pacific Rise. This represents the first determination from direct field evidence of the width of active tectonism associated with an accreting plate boundary. Massive sulfide deposits, made principally of zinc, copper and iron, were found close to the axis of the Rise. Other signs of the intense hydrothermal activity included the discovery of benthic fauna of gian size similar to that found at the axis of the Galapagos Rift. We emphasize the cyclic character of the volcanicity. The main characteristics of the geology of this segment of the East Pacific Rise can be explained by the thermal structure at depth below this moderately-fast spreading center. The geological observations are compatible with the existence of a shallow magma reservoir centered at the axis of the Rise with a half-width of the order of 10 km.
High-resolution mid-infrared spectra of Co II, Ni I, and Fe II in SN 1987A
NASA Technical Reports Server (NTRS)
Jennings, D. E.; Boyle, R. J.; Wiedemann, G. R.; Moseley, S. H.
1993-01-01
Ground-based infrared observations of SN 1987A on day 612 after the explosion have yielded resolved line profiles of Co II, Ni I, Fe II at 10.52, 11.31, and 17.94 micron, respectively. The spectra were taken at a resolving power of about 1000 with an array grating spectrometer on the 4 m telescope of Cerro Tololo Inter-American Observatory. Based on the observed line intensities we have estimated the minimum mass of each ion: M(Co II) = (6.0 +/- 1.8) x 10 exp -5 solar mass; M(Ni I) = (1.1 +/- 0.1) x 10 exp -3 solar mass; and M(Fe II) = (8.0 +/- 1.5) x 10 exp -3 solar mass. From these we infer total masses for cobalt, nickel, and iron in the ejecta. The nickel and iron line profiles are markedly asymmetric. We interpret these as arising from two components, one centered on the stellar rest velocity with an approximately 3250 km/s full width, and the second at about +1200 km/s with an approximately 1100 km/s full width. The asymmetry may represent a large-scale fracturing of the ejecta by Rayleigh-Taylor instabilities.
Dust devil track survey at Elysium Planitia, Mars: Implications for the InSight landing sites
NASA Astrophysics Data System (ADS)
Reiss, Dennis; Lorenz, Ralph D.
2016-03-01
The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) robotic lander is scheduled to land in Elysium Planitia on Mars in September 2016. InSight will perform the first comprehensive surface-based geophysical investigation including seismic measurements. Knowledge about encounter rates of dust devils with the InSight lander are important for two main reasons: (1) dust devils will affect the scientific measurements, i.e., wind-induced seismic noise, and (2) the power-supply of the InSight lander and instruments is provided by solar arrays and previous landers and rovers on Mars were affected by a steady decline in electrical power output due to atmospheric dust deposition on the solar panels. Long term science operations were only made possible by dust clearing events of the solar arrays caused by wind gusts and dust devils. In this study we analyzed dust devil tracks (DDTs) at the final InSight landing site region in Elysium Planitia. Formation of DDTs is caused by the removal of a layer of dust by passing dust devils, hence in principle the same process as clearing of dust from solar panels. We mapped the number, size (width and length), and orientation of DDTs in repeat observations using High Resolution Imaging Science Experiment (HiRISE) images covering the exact same surface area acquired within a relatively short time span (<90 martian days). In total, we analyzed 557 newly formed dust devil tracks in 8 study areas. DDTs are morphologically relatively straight with a low mean sinuosity of 1.03 and only reach maximum widths of 30 m. The mean DDT width is 4 m, indicating that the dust devil size population is dominated by small dust devils with a diameter <10 m. The size-frequency distribution of DDTs follows a -2 power law. The mean lengths of DDTs are 0.62 km and 1.23 km for complete (tracks which are visible from their start to end point) and incomplete DDTs (tracks running across the HiRISE footprint), respectively. The alignment of DDTs in combination with Mars Climate Database (MCD) predicted wind directions imply that dust devils are moving from SE to NW until early northern autumn with a reversal to NW-SE directions of movement at LS = 200° consistent with the seasonal reversal in direction of the Hadley circulation. DDT formation rates vary between 0.002 and 0.08 ddt km-2 sol-1. DDT area formation rates using the measured DDT widths, lengths, and formation rates are in the range of 0.0003-0.00006 km2 km-2 sol-1, implying that a given spot on the surface may be cleared of dust only once between ∼3000 and 16,000 sols (i.e. every ∼5-24 Mars years). Measured DDT formation rates were used to find a scaling factor to the seasonal DDA index, and then integrated over the year to estimate a mean annual DDT formation rate of 0.046 ddt km-2 sol-1. This translates into a solar panel clearing recurrence interval estimate of ∼11 Mars years using the mean annual DDT formation rate, and the mean DDT width and length from all measured DDTs. Due to several uncertainties this solar panel clearing recurrence interval for the InSight landing should be seen as an upper limit estimate.
NASA Technical Reports Server (NTRS)
Blair, B.; Hofton, M.; Rabine, D.; Padden, P.; Rhoads, J.
2004-01-01
Full-waveform, scanning laser altimeters (i.e. lidar) provide a unique and precise view of the vertical and horizontal structure of vegetation across wide swaths. These unique laser altimeters systems are able to simultaneously image sub-canopy topography and the vertical structure of any overlying vegetation. These data reveal the true 3-D distribution of vegetation in leaf-on conditions enabling important biophysical parameters such as canopy height and aboveground biomass to be estimated with unprecedented accuracy. An airborne lidar mission was conducted in the summer of 2003 in support of preliminary studies for the North America Carbon Program. NASA's Laser Vegetation Imaging Sensor (LVIS) was used to image approximately 2,000 sq km in Maine, New Hampshire, Massachusetts and Maryland. Areas with available ground and other data were included (e.g., experimental forests, FLUXNET sites) in order to facilitate numerous bio- and geophysical investigations. Data collected included ground elevation and canopy height measurements for each laser footprint, as well as the vertical distribution of intercepted surfaces (i.e. the return waveform). Data are currently available at the LVIS website (http://lvis.gsfc.nasa.gov/). Further details of the mission, including the lidar system technology, the locations of the mapped areas, and examples of the numerous data products that can be derived from the return waveform data products are available on the website and will be presented. Future applications including potential fusion with other remote sensing data sets and a spaceborne implementation of wide-swath, full-waveform imaging lidar will also be discussed.
PROBA V multispectral imager: status
NASA Astrophysics Data System (ADS)
Zuccaro Marchi, Alessandro; Versluys, Jorg; Torralba, Ignacio; Beguin, Didier; Stockman, Yvan; Kassel, Ronald
2017-11-01
PROBA V is an ESA mission devoted to the observation of the Earth's vegetation, providing data continuity with the Spot 4 and 5 vegetation payloads. Thanks to the heritage of the Proba series, the satellite's platform is smaller than a cubic metre, accommodating the main payload, i.e. the Vegetation Instrument (VI), and some technology demonstrators. The VI extremely wide viewing swath, together with a polar low Earth orbit, enables daily revisits during 2.5 years, with a possible extension to 5 years. The mission, whose satellite is developed by Belgian QuinetiQ Space, is actually in Phase D and the targeted launch is early 2013 with the VEGA launcher. The Vegetation Instrument is a high spatial resolution pushbroom 4 spectral bands imager composed of three distinct Spectral Imagers (SI). Each SI has 34° Field Of View (FOV) across track, and the total FOV of the VI is 102°, covering an Earth swath of 2260 Km with ground sampling distance down to 96 m at Nadir for VNIR bands. The spectral bands are centred around 460 nm for the blue, 655 nm for the red, 845nm for the NIR and 1600 nm for the SWIR. The imaging telescope is built from a Three-Mirrors Anastigmat (TMA) configuration, including two highly aspheric mirrors. The optics is manufactured from special grade aluminium by diamond turning. The material being identical to the whole structure, no defocus or stresses build up with temperature variations in flight. This paper gives an overview of the VI performances, and focuses on the results of the optical tests and on-ground calibrations.
1975-11-01
of its existence was coni. sidered. The frequencies were counted In boxes 5° latitude in length and of the varying widths listed in Table 111-1-3...in Perpignan (sta. no. 07747); cierzo in Spain; cers in the Pyrenees, etc. South of Mont Ventcjx (sta. no. 07585) a similar wind is named bise. A local...de Cristo Mountains h = 1.1 km in Colorado X = 10 km k = km- -1 UI = 20 m sec -l w0 2.7 m sec According to Figure V-B-2, one could expect light to
NASA Technical Reports Server (NTRS)
2005-01-01
21 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polygon-cracked plain in the south polar region of Mars. When this picture was acquired in April 2005, the surface was covered with seasonal carbon dioxide frost. Dark spots and streaks indicate areas where the frost had begun to change and sublime away. Location near: 86.8oS, 300.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringNASA Technical Reports Server (NTRS)
2005-01-01
23 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small, springtime dust devil creating a dark streak on the plains of Argyre. The small, bright dot is the dust devil. Many other dark streaks on the plains indicate the areas where other dust devils had passed within the past several weeks before this July 2005 image was acquired. Location near: 44.6oS, 40.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringNASA Technical Reports Server (NTRS)
2005-01-01
14 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a circular depression and a suite of eroding mesas of carbon dioxide. These features occur in the south polar residual cap of Mars. The eroding carbon dioxide creates landforms reminiscent of 'Swiss cheese.' The circular feature might indicate the location of a filled, buried impact crater. Location near: 86.8oS, 111.0oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringNASA Astrophysics Data System (ADS)
Cook, Kristen; Turowski, Jens; Hovius, Niels
2017-04-01
In mixed bedrock-alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes, bedrock-controlled changes in channel width, and the shape of the hydrograph. Local hydraulics and therefore bedload transport capacity depend on discharge and channel geometry, typically quantified by channel width and bed slope. However, the influence of channel width on total bedload transport capacity depends on discharge. For a given slope, narrow channels are more efficient than wide ones at low discharges, while wider channels are more efficient at higher discharges. Therefore, abrupt changes in downstream channel width may affect bedload flux through a channel and have important influences on channel behavior. We use the model sedFlow (Heimann et al., 2014) to explore this effect. We ran the model in a 4.5 km long channel, the center of which contains a 1 km gorge section with a width of 15 m, bounded upstream and downstream by sections with widths of 50 m. We imposed a discharge time series with a random sequence of floods of different size. The channel responds to the imposed floods in complex ways. At high discharges, the gorge reach transports less total sediment than the wide reaches, leading to aggradation in the upper part of the gorge and upstream and erosion in the lower part of the gorge and downstream. At lower discharges, the gorge becomes more efficient at transporting sediment and the trends reverse. The channel may experience both of these regimes during the peak and recession periods of a single flood, leading to a highly dynamic channel bed. This is consistent with observations from the Daan River gorge in western Taiwan, where we observe substantial intra-flood variations in channel bed elevation. Our modeling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. Because the relationship between channel width and sediment transport capacity depends on the discharge, the long-term response of a channel with variable width depends on the entire hydrograph, not just on the flood peak. In addition, the net effect of a flood depends strongly on the preceding sequence of floods, as the long profile and channel slopes are continually adjusting to different forcing. Therefore modeling studies that use uniform discharge or a step function discharge will miss these dynamics. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different segments of the hydrograph.
NASA Technical Reports Server (NTRS)
Condie, K. C.; Allen, P.
1983-01-01
In southern India, it is possible to study the transition from an Archean granite-greenstone terrain (the Karnataka province) into high grade charnockites. The transition occurs over an outcrop width of 20-35 km and appears to represent burial depths ranging from 15 to 20 km. Field and geochemical studies indicate that the charnockites developed at the expense of tonalites, granites, and greenstones. South of the transition zone, geobarometer studies indicate burial depths of 7-9 kb.
1990-07-01
1979, Late Holocene faulting and earthquake recurrence in the Reelfoot Lake area, northwestern Tennessee, Bull, Geol. Soc. Am.. vol. J. pp. 1013-1018...upstream from Covington, Virginia. The dam is located in northern Alleghany County and the majority of the reservoir, Lake Moomaw, is located in southern...Bath County. Lake Moomaw is approximately 12 miles (19 km) long and ranges from less than 1/4 to 1-1/2 miles (1/2 to 2-1/2 km) in width. Gathright Dam
Bohannon, R.G.; Eittreim, S.L.
1991-01-01
The continental margins of the southern and central Red Sea and most of Wilkes Land, Antarctica have bulk crustal configurations and detailed structures that are best explained by a prolonged history of magmatic expansion that followed a brief, but intense period of mechanical extension. Extension on the Red Sea margins was spatially confined to a rift that was 20-30 km in width. The rifting phase along the Arabian margin of the central and southern Red Sea occurred 25-32 Ma ago, primarily by detachment faulting at upper crustal levels and ductile uniform stretching at depth. Rifting was followed by an early magmatic phase during which the margin was invaded by dikes and plutons, primarily of gabbro and diorite, at 20-24 Ma, after the crust was mechanically thinned from 40 km to ??? 20 km. We infer continued spreading after that in which broad shelves were formed by a process of magmatic expansion, because the offshore crust is only 8-15 km thick, including sediment, and seismic reflection data do not depict horst and graben or half graben structures from which mechanical extension might be inferred. The Wilkes Land margin is similar to the Arabian example. The margin is about 150 km in width, the amount of upper crustal extension is too low to explain the change in sub-sediment crustal thickness from ??? 35 km on the mainland to < 10 km beneath the margin and reflectors in the deepest seismic sequence are nearly flat lying. Our model requires large volumes of melt in the early stages of continental rifting. The voluminous melt might be partly a product of nearby hot spots, such as Afar and partly the result of an initial period of partial fusion in the deep continental lithosphere under lower temperatures than ordinarily required by dry solidus conditions. ?? 1991.
Individual mineral supplement intake by ewes swath grazing or confinement fed pea-barley forage
USDA-ARS?s Scientific Manuscript database
Sixty mature ewes (non-pregnant, non-lactating) were used in a completely randomized design to determine if feeding method of pea-barley forage (swath grazing or hay in confinement) had an effect on individual ewe mineral consumption. Thirty ewes were randomly allocated to 3 confinement pens and 30 ...
First Results From the (Multibeam) Hydrosweep DS2 Upgrade on the R/V Maurice Ewing
NASA Astrophysics Data System (ADS)
Chayes, D. N.; Slagle, A.; Caress, D. W.; Arko, R. A.
2001-12-01
The ATLAS Hydrosweep DS multibeam swath mapping sonar system on the R/V Maurice Ewing was upgraded to a DS2 in May 2000. This upgrade increased the effective swath width from 59 beams over about 89 degrees to as many as 140 beams over approximately 118 degrees, added sidescan image as well as data records from which backscatter can be extracted. The upgrade replaced the outdated processing computer, half-inch tape drive and console with modern workstations and 4mm tape. The upgrade did not require changes to the under hull transducer arrays or transceivers so it was relatively inexpensive and was accomplished in a few days during a transit of the Panama Canal. Evaluation and software enhancements were done during subsequent transits. MB-System was enhanced to support the native, raw data format of the Hydrosweep DS2. We also expect to be able to support the more general SURF format that is also generated by new ATLAS sonar systems in the near future. In addition to the hardware and software upgrades to the multibeam, we installed a POS/MV-320 vertical reference system to take over from our venerable HIPPY-120 as the primary attitude reference for the Hydrosweep on the Ewing. The attitude data from the POS has allowed us to eliminate the turn rate restrictions and to improve the data quality. As an additional benefit the P-Code aided position data produced by the POS is significantly more stable and better behaved than our other navigation sources. The upgraded sonar was used during EW0108 (Taylor) in the Gulf of Corinth. As is usually the case with new implementations or modifications of complex systems, some unexpected behaviors were observed and carefully documented. Good remote support from the manufacturer enabled us to implement fixes and to generate very good quality bathymetry and sidescan images on board and in shore-side post processing. Two related software prototypes are currently being evaluated as part of this upgrade package. One is a web-based real-time watch standers logbook that facilitates the entry of standard log information directly into a relational database (rather than by hand on paper forms.) The second is a relational database that contains the FGDC metadata for multibeam swath bathymetry. This initial upgrade to our Hydrosweep establishes a stable base from which we expect to evolve significant new capabilities in the future. Some of these capabilities will be based on the unique cross fan capabilities of the Hydrosweep design.
NASA Astrophysics Data System (ADS)
Aaronson, M.; Mould, J.; Huchra, J.; Sullivan, W. T., III; Schommer, R. A.; Bothun, G. D.
1980-07-01
Infrared magnitudes and 21 cm H I velocity widths are presented for galaxies in the Pegasus I cluster (V ≍ 4000 km s-1), the Cancer cluster (V ≍ 4500 km s-1), cluster Zwicky 1400.4 ± 0949 (Z74-23) (V ≍ 6000 km s-1), and the Perseus supercluster (V ≍ 5500 km s-1). The data are used to determine redshift-independent distances from which values of the Hubble ratio can be derived. With a zero point based solely on the Sandage-Tammann distances to M3 1 and M33, the following results are obtained (zero-point error excluded): Pegasus I.--r = 42 ± 4 Mpc, V/r = 91 ± 8 km s-1 Mpc-1; Cancer.--r = = 49 ± 6 Mpc, V/r = 89 ± 11 km s-1 Mpc-1; Z74-23.--r = 6l ± 4 Mpc, V/r = 96 ± 7 km s-1 Mpc-1; Perseus supercluster.--r = 53 ± 2 Mpc, V/r = 104 ± 6 km s-1 Mpc-1; The closely similar value of the Hubble ratio found in the four independent samples suggests that the zero-point calibration in the IR/H I technique does not depend on environment. The difference between the mean of these Hubble ratios, V/r = 95 ± 4 km s-1 Mpc -1, and that measured for Virgo in Paper II, V/r = 65 ±4 km s-1 Mpc-1, is significant at a formal level of 5 σ. The simplest explanation of the discrepancy is to postulate a Local Group component of motion in the direction of Virgo. The resulting velocity perturbation is ΔV = 480 ± 75 km s-1. This value agrees well with recent observations of a dipole term in the 3 K microwave background, the only other anisotropy test for which a detection significance of 5 σ or more is claimed. We are thus led to a preliminary estimate for the value of the Hubble constant of H0 = 95 ± 4 km s-1 Mpc-1. If a zero point based on de Vaucouleurs's distances to M31 and M33 is adopted instead, all distances decrease by , and the Hubble constant increases by a similar amount. A variety of possible systematic errors which might affect the present conclusions are investigated, but we can find none that are relevant. In particular, because the galaxy samples are chosen from a cluster population which is generally all at the same distance, Malmquist bias does not occur. In fact, two of the clusters (Pegasus I and Z74-23) are sampled in both magnitude and velocity width to a level as deep as Virgo itself. Other observational data related to the value of H0 are examined, as are a number of previously used anisotropy tests, including color-luminosity relations, brightest cluster member(s), central surface brightnesses, and supernovae. We find that some of these tests support the present results, while contrary evidence is currently weak. A model in which Virgo gravitationally retards the Hubble flow of galaxies within the Local Supercluster provides a natural interpretation of our findings. A range of 1.5-3 in local density contrast then leads to a value of the density parameter Ω ≍ 0.7-0.2. The deceleration parameter q0 is then 0.35-0.1 for a simple Friedmann-type expanding universe.
Forest biomass mapping from fusion of GEDI Lidar data and TanDEM-X InSAR data
NASA Astrophysics Data System (ADS)
Qi, W.; Hancock, S.; Armston, J.; Marselis, S.; Dubayah, R.
2017-12-01
Mapping forest above-ground biomass (hereafter biomass) can significantly improve our ability to assess the role of forest in terrestrial carbon budget and to analyze the ecosystem productivity. Global Ecosystem Dynamic Investigation (GEDI) mission will provide the most complete lidar observations of forest vertical structure and has the potential to provide global-scale forest biomass data at 1-km resolution. However, GEDI is intrinsically a sampling mission and will have a between-track spacing of 600 m. An increase in adjacent-swath distance and the presence of cloud cover may also lead to larger gaps between GEDI tracks. In order to provide wall-to-wall forest biomass maps, fusion algorithms of GEDI lidar data and TanDEM-X InSAR data were explored in this study. Relationship between biomass and lidar RH metrics was firstly developed and used to derive biomass values over GEDI tracks which were simulated using airborne lidar data. These GEDI biomass values were then averaged in each 1-km cell to represent the biomass density within that cell. Whereas for cells without any GEDI observations, regression models developed between GEDI-derived biomass and TDX InSAR variables were applied to predict biomass over those places. Based on these procedures, contiguous biomass maps were finally generated at 1-km resolution over three representative forest types. Uncertainties for these biomass maps were also estimated at 1 km following methods developed in Saarela et al. (2016). Our results indicated great potential of GEDI/TDX fusion for large-scale biomass mapping. Saarela, S., Holm, S., Grafstrom, A., Schnell, S., Naesset, E., Gregoire, T.G., Nelson, R.F., & Stahl, G. (2016). Hierarchical model-based inference for forest inventory utilizing three sources of information. Annals of Forest Science, 73, 895-910
NASA Astrophysics Data System (ADS)
Wang, J.; Su, Z.; Klein, P.; Thompson, A. F.; Menemenlis, D.; Fu, L. L.
2016-12-01
The major observational advance expected from the Surface Water and Ocean Topography (SWOT) altimeter, compared with existing altimeters, is that it will provide wide-swath (120 km) along-track data that permit the sampling of oceanic scales between 15 and 150km. The potential of this satellite mission is to understand the dynamical impact of these small scales on ocean dynamics. Such impact is known to affect the vertical velocity field (and therefore the vertical fluxes of ocean properties) and significantly affect both the inverse and direct kinetic energy cascades. The need to monitor these scales on a global scale is illustrated by the results of a realistic global ocean simulation. This model has 1/48-degree horizontal grid spacing, 90 vertical levels, and the inclusion of tidal forcing. This simulation reveals a strong seasonality of ocean dynamics at scales less than 100 km, not only in the previously documented regions, such as the Kuroshio extension, Gulf Stream, and subtropical gyres; but also in most other regions, such as most of the Southern Hemisphere and the North-East Atlantic. This strong seasonality, with a maximum amplitude consistently in winter, is associated with deep winter mixed-layer and energetic mesoscale eddies, pointing to mixed-layer instability as a major driver of the seasonality of dynamics at small scales. In addition to seasonal variations, strong intermittencies of ocean dynamics with a period of one to two weeks are also observed occasionally with the same amplitude as the seasonal variability. In this presentation, we discuss the consequences and the challenges posed by the strong spatial and temporal variability to SWOT data analysis.
Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode
NASA Astrophysics Data System (ADS)
Banerjee, D.; Pérez-Suárez, D.; Doyle, J. G.
2009-07-01
Context: We diagnose the properties of the plume and interplume regions in a polar coronal hole and the role of waves in the acceleration of the solar wind. Aims: We attempt to detect whether Alfvén waves are present in the polar coronal holes through variations in EUV line widths. Methods: Using spectral observations performed over a polar coronal hole region with the EIS spectrometer on Hinode, we study the variation in the line width and electron density as a function of height. We use the density sensitive line pairs of Fe xii 186.88 Å and 195.119 Å and Fe xiii 203.82 Å and 202.04 Å. Results: For the polar region, the line width data show that the nonthermal line-of-sight velocity increases from 26~km s-1 at 10´´ above the limb to 42~km s-1 some 150´´ (i.e. ~110 000 km) above the limb. The electron density shows a decrease from 3.3 × 10^9~cm-3 to 1.9 × 10^8~cm-3 over the same distance. Conclusions: These results imply that the nonthermal velocity is inversely proportional to the quadratic root of the electron density, in excellent agreement with what is predicted for undamped radially propagating linear Alfvén waves. Our data provide signatures of Alfvén waves in the polar coronal hole regions, which could be important for the acceleration of the solar wind. Table [see full textsee full textsee full text] and Fig. [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papastergis, Emmanouil; Martin, Ann M.; Giovanelli, Riccardo
The ongoing Arecibo Legacy Fast ALFA (ALFALFA) survey is a wide-area, extragalactic HI-line survey conducted at the Arecibo Observatory. Sources have so far been extracted over {approx}3000 deg{sup 2} of sky (40% of its final area), resulting in the largest HI-selected sample to date. We measure the space density of HI-bearing galaxies as a function of their observed velocity width (uncorrected for inclination) down to w = 20 km s{sup -1}, a factor of two lower than the previous generation HI Parkes All-Sky Survey. We confirm previous results that indicate a substantial discrepancy between the observational distribution and the theoreticalmore » one expected in a cold dark matter (CDM) universe, at low widths. In particular, a comparison with synthetic galaxy samples populating state-of-the-art CDM simulations imply a factor of {approx}8 difference in the abundance of galaxies with w = 50 km s{sup -1} (increasing to a factor of {approx}100 when extrapolated to the ALFALFA limit of w = 20 km s{sup -1}). We furthermore identify possible solutions, including a keV warm dark matter scenario and the fact that HI disks in low-mass galaxies are usually not extended enough to probe the full amplitude of the galactic rotation curve. In this latter case, we can statistically infer the relationship between the measured HI rotational velocity of a galaxy and the mass of its host CDM halo. Observational verification of the presented relationship at low velocities would provide an important test of the validity of the established dark matter model.« less
NASA Astrophysics Data System (ADS)
Bazhenova, E.; Zarayskaya, Y.; Wigley, R. A.; Anderson, R.; Falconer, R. K. H.; Kearns, T.; Martin, T.; Minami, H.; Roperez, J.; Rosedee, A.; Sade, H.; Seeboruth, S.; Simpson, B.; Sumiyoshi, M.; Tinmouth, N.; Zwolak, K.
2017-12-01
In preparation for the XPRIZE 2017 Round 1, a new sea-floor mapping system has been assembled based on an Unmanned Surface Vessel (USV) coupled with an Autonomous Underwater Vehicle (AUV). USV operation allows reducing logistics costs, while the AUV provides enhanced maneuverability and high accuracy of stabilization for the mapping missions. The AUV is equipped with a high-resolution interferometric synthetic aperture sonar (HISAS) and a multibeam sonar (MBES), covering a wide bathymetry swath and the nadir, respectively. Typically operating at 20 to 40 m altitude, the HISAS is capable of providing SAS imagery with 4 x 4 cm resolution and bathymetry with 40 x 40 cm resolution throughout the swath. Smaller areas of interest (50 x 50 m) can be further examined using the Spot processing technique, to produce SAS imagery with 2 x 2 cm resolution and high- resolution SAS bathymetry with 5 x 5 cm resolution. This allows multi-aspect imaging and examination of seabed geological features at different scales. Advanced data post-processing can be performed to produce 3D images of objects and explore their structure using the shadow contrast and shape. Being an interferometric system, the HISAS collects data for both imagery and bathymetry in the same swath. This improves the robustness for SAS in areas with significant relief. In the standard survey mode, the HISAS can typically collect SAS data at 2.6 km2/hr over relatively flat ground. Another limiting factor to the HISAS data coverage and quality is the vehicle stability influenced by downslope and cross currents and the resulting vehicle's speed. From experience, the best coverage occurs at a vehicle speed of around 2 m/s. At slower speeds the vehicle starts to lose steerage leading to degradation of tracking and navigation performance, which harms the focusing algorithm that creates the SAS data. For the AUV mission planning in unknown areas or in case of highly variable conditions at the study site, MBES reconnaissance data can be acquired at higher altitudes prior to running the AUV close to the seabed. Additionally, the MBES is used to collect the acoustic bottom reflectivity (backscatter) data, which allows further sea-floor characterization and potentially description of sediment types and marine bottom habitats, such as coral reefs, deep sea hydrothermal vents etc.
Airborne Multi-Band SAR in the Arctic
NASA Astrophysics Data System (ADS)
Gardner, J. M.; Brozena, J. M.; Liang, R.; Ball, D.; Holt, B.; Thomson, J.
2016-12-01
As one component of the Office of Naval Research supported Sea State Departmental Research Initiative during October of 2015 the Naval Research Laboratory flew an ultrawide-band, low-frequency, polarimetric SAR over the southward advancing sea ice in Beaufort Sea. The flights were coordinated with the research team aboard the R/V Sikuliaq working near and in the advancing pack ice. The majority of the SAR data were collected with the L-Band sensor (1000-1500 MHz) from an altitude of 10,000', providing a useful swath 6 km wide with 75o and 25 o angles of incidence at the inner and outer edge of the swath respectively. Some data were also collected with the P-Band SAR (215-915 MHz). The extremely large bandwidths allowed for formation of image pixels as small as 30 cm, however, we selected 60 cm pixel size to reduce image speckle. The separate polarimetric images are calibrated to one pixel to allow for calculations such as polarimetric decompositions that require the images to be well aligned. Both frequencies are useful particularly for the detection of ridges and areas of deformed ice. There are advantages and disadvantages to airborne SAR imagery compared to satellites. The chief advantages being the enormous allowable bandwidth leading to very fine range resolution, and the ability to fly arbitrary trajectories on demand. The latter permits specific areas to be imaged at a given time with a specified illumination direction. An area can even be illuminated from all directions by flying a circular trajectory around the target area. This captures ice features that are sensitive to illumination direction such as cracks, sastrugi orientation, and ridges. The disadvantages include variation of intensity across the swath with range and incidence angle. In addition to the SAR data, we collected photogrammetric imagery from a DSS-439, scanning lidar from a Riegl Q560 and surface brightness temperatures from a KT-19. However, since all of these sensors are nadir pointing, and some restricted to relatively low-altitude, it was difficult to obtain data co-registered with the SAR. At this meeting we will present some initial results from the SAR imagery, including differentiation of young, thin, and older ice features, and comparisons with satellite SAR with L-band and C-band frequencies.
USDA-ARS?s Scientific Manuscript database
CP flat-fan nozzles with selectable tips were evaluated for droplet spectra and coverage using water sensitive papers placed in the spray swath. This study used low application volumes (1, 2, and 3 GPA) at a certain spray application height as measured precisely by laser mounted in the aircraft. No...
Identifying high frequency signals in the daily swath mascon solutions from GRACE
NASA Astrophysics Data System (ADS)
Save, H.
2016-12-01
The Gravity Recovery and Climate Experiment (GRACE) mission has provided us with unique information about the total water column in the Earth system over the past 14 years. The GRACE project provides a monthly mean time-variable gravity solution. There has been significant progress in the community over the years to develop shorter time-window gravity solutions. The daily swath mascon solutions, which are under development at the Center for Space Research (CSR), are computed using daily GRACE observation data. This paper discusses the development and the progress of this product. This paper summarizes the analysis of these solutions with special emphasis on identifying the higher frequency natural processes observed by GRACE using these daily swath mascon solutions.
AIRS Maps from Space Processing Software
NASA Technical Reports Server (NTRS)
Thompson, Charles K.; Licata, Stephen J.
2012-01-01
This software package processes Atmospheric Infrared Sounder (AIRS) Level 2 swath standard product geophysical parameters, and generates global, colorized, annotated maps. It automatically generates daily and multi-day averaged colorized and annotated maps of various AIRS Level 2 swath geophysical parameters. It also generates AIRS input data sets for Eyes on Earth, Puffer-sphere, and Magic Planet. This program is tailored to AIRS Level 2 data products. It re-projects data into 1/4-degree grids that can be combined and averaged for any number of days. The software scales and colorizes global grids utilizing AIRS-specific color tables, and annotates images with title and color bar. This software can be tailored for use with other swath data products for the purposes of visualization.
NASA Astrophysics Data System (ADS)
Valadares, V.; Roque, C.; Terrinha, P.
2009-04-01
The S. Vicente Canyon is located in the Gulf of Cadiz (GoC), in the Northwest Atlantic Ocean, offshore SW Iberia. The GoC is located between the Straits of Gibraltar (5°W) and the Gorringe Bank (12°W) and 34°N and 38°N. It is situated in a complex geodynamic setting at the Eastern tip of the Azores-Gibraltar fracture zone, part of the convergent plate boundary between Northwest Africa and Southwest Eurasia. There are several evidences for active tectonics, moderate seismic activity and some events of high magnitude for earthquakes and tsunamis (like the 1755 and 1969 events). The canyon lies between two of the most prominent faults in the GoC: the Marquês de Pombal and the Horseshoe thrust faults. Since the 1990's nineteen multibeam swath bathymetry surveys were carried out in the Gulf of Cadiz and a compilation of the data was produced adding up to more than 180.000km2. This 100m cellsize compilation allowed a detailed analysis of the seafloor of the GoC including the South and Western Portuguese margins and is in the junction point between these two margins that the S. Vicente Canyon (SVC) is located. The bathymetry data here presented is derived from the MATESPRO survey from 2004, the first large multibeam swath bathymetry survey in the area. The canyon has a general staircase-like shape with the upper and lower parts trending NE-SW and the middle sector with an NNE-SSW direction. The SVC head lies very close to the shore, at depths shallower than 70m and runs towards the Horseshoe Abyssal Plain (HAP) at around 4900m depth. It extends for more than 120km (larger than any other submarine canyon on the GoC) and can reach up to 20 km in width. The walls are steep and frequently affected by mass wasting scars and also strongly incised by minor contributories valleys. A major kink is present where the canyon diverts about 60° from its upper course, as well as several minor ones and some knickpoints are also identifiable across its entire track. Across its length the morphology changes: the SE side is the steepest for the upper and deepest parts, whilst for the intermediate sector the NW wall is steeper. Its head has an amphitheater shape due to the pattern defined by its minor contributories as a result of slumps and slides and therefore appears to be retreating upslope in the direction of the shore. Reflectivity imagery derived from the multibeam probe shows high reflectance throughout the whole of the S. Vicente Canyon thalweg indicating that the canyon and its sedimentary transport are active in present times. The HAP also shows a relatively high backscatter response, probably related to the abundant turbidite deposits whose coarse sedimentary load was partially carried by the SVC. Inspection of several multichannel seismic profiles revealed that the two major structures that are more closely located to the canyon present a polyphase and complex history. The Marquês de Pombal Thrust (MPT), located to the NW of the SVC, reveals an extensional activity during continental break-up in the Mesozoic. The compressive episodes started in the Eocene/Oligocene (and extended until present times) and were followed by other compressive events, the more relevant ones in the Late Miocene. The Horseshoe Thrust Fault, located SE of the deepest section of the canyon, revealed no major extensional events and shows a compressional history somewhat similar to the previously described MPT. These events and the compressive history is related with the relative movement between Africa and Iberia and the tectonic plate boundary convergence. The compressive episodes and fault activity during the Miocene have led to the uplift of this sector of the margin, causing major erosion onshore, redistributing sediments and leading to the submarine incision and canyon formation after the Miocene, more precisely in Lower Pliocene times.
Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser
NASA Astrophysics Data System (ADS)
Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa
2018-02-01
A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.
Transforming Surface Water Hydrology Through SWOT Altimetry
NASA Astrophysics Data System (ADS)
Alsdorf, Douglas; Mognard, Nelly; Rodriguez, Ernesto
2013-09-01
SWOT will measure water surface elevations across rivers, lakes, wetlands, and reservoirs with a 120km wide swath using decimeter-scale pixels having centimetric-scale height accuracies. Nothing like this "water surface topography" has been collected on a consistent basis from any method. Thus, SWOT will provide a transformative measurement for global hydrology. Storage change measurements from SWOT are expected to have an error of 10% or better for 250m2 and larger water bodies. Discharge estimation is complicated by the lack of channel bathymetric knowledge. Nevertheless, two model-based studies of the Ohio River suggest SWOT discharge errors will be 10%. Important questions will be addressed via SWOT measurements, e.g., (1) What is the water balance of the Congo Basin and indeed of any basin? (2) Where does a wetland receive its water: from upland runoff or from an adjacent river? (3) What are the implications for transboundary rivers?
Global ice and land climate studies using scatterometer image data
NASA Astrophysics Data System (ADS)
Long, David G.; Drinkwater, Mark R.; Holt, Benjamin; Saatchi, Sasan; Bertoia, Cheryl
Scatterometers have provided continuous synoptic microwave radar coverage of the Earth from space for nearly a decade. NASA launched three scatterometers: the current SeaWinds scatterometer onboard QuikSCAT (QSCAT, 13.4 GHz) launched in 1999; the NASA scatterometer (NSCAT, 14.0 GHz), which flew on the Japanese Space Agency's ADEOS-1 platform during 1996-1997 and the Seasat-A scatterometer system (SASS, 14.6 GHz), which flew in 1978. The European Space Agency's (ESA) 5.3-GHz scatterometer (ESCAT) has been carried onboard both the ERS-1 and ERS-2 satellites since 1991.properties, including the phase state, of a particular surface type. Varying response from the surface also results from different polarizations, viewing angles and orientations, and radar frequencies. The wide swath of scatterometers provides near daily global coverage at intrinsic sensor resolutions that are generally between 25-50 km.
Geophysical and sampling data from the inner continental shelf: Duxbury to Hull, Massachusetts
Barnhardt, Walter A.; Ackerman, Seth D.; Andrews, Brian D.; Baldwin, Wayne E.
2010-01-01
The U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM) have cooperated to map approximately 200 km² of the Massachusetts inner continental shelf between Duxbury and Hull. This report contains geophysical and geological data collected by the USGS on three cruises between 2006 and 2007. These USGS data are supplemented with a National Oceanic and Atmospheric Administration (NOAA) hydrographic survey conducted in 2003 to update navigation charts. The geophysical data include (1) swath bathymetry from interferometric sonar and multibeam echosounders, (2) acoustic backscatter from sidescan sonar and multibeam echosounders, and (3) subsurface stratigraphy and structure from seismic-reflection profilers. The geological data include sediment samples, seafloor photographs, and bottom videos. These spatial data support research on the influence sea-level change and sediment supply have on coastal evolution, and on efforts to understand the type, distribution, and quality of subtidal marine habitats in the Massachusetts coastal ocean.
Structure of young oceanic crust at 13°N on the East Pacific Rise from expanding spread profiles
NASA Astrophysics Data System (ADS)
Harding, A. J.; Orcutt, J. A.; Kappus, M. E.; Vera, E. E.; Mutter, J. C.; Buhl, P.; Detrick, R. S.; Brocher, T. M.
1989-09-01
We present the results of the analysis of expanding spread profiles (ESPs) collected on and near the axis of the East Pacific Rise at 13°N. These profiles were collected at 0, 1.1, 2.1, 3.6, and 9.5 km from the rise axis, and all but the most distant profile show a distinct low-velocity zone (LVZ) located within layer 3 of the oceanic crust. At the ridge crest, the top of the magma chamber is at the base of layer 2, while 3.6 km off axis, the roof of the LVZ is 1.1 km below the top of layer 3. The profile farthest from the ridge could possibly have a residual LVZ confined to the lower 1.5 km of the crust. The total width of the LVZ, as determined from the ESP data, is at least 6 km, and possibly much greater. This wide LVZ apparently contradicts multichannel seismic data which show cross-axis reflections from the magma chamber with a width of <5 km. We suggest that a resolution of this apparent contradiction lies in a model of the rise axis with a small and transient central magma chamber of high partial melt fraction surrounded by a much larger and permanent region of hot rock with only isolated pockets of partial melt. The ESP data are sensitive to this larger region, while the reflection data accurately map the presence or absence of the central magma chamber with its high impedance contrast. We identify the presence of a layer at the top of the oceanic crust with initial P wave velocities between 2.35 and 2.6 km/s, while the S wave velocity is estimated as being ≤0.8 km/s. The layer thickness lies between 100 and 200 m. These velocities are consistent with previous estimates for the Pacific and recent results for the Atlantic. The thickness of this layer is consistent with that of layer 2A determined from geophysical measurements at Deep Sea Drilling Project hole 504B.
NASA Astrophysics Data System (ADS)
Wen, Y.; Li, C.
2017-12-01
Dispute remains on the process of continental rifting to subsequent seafloor spreading in the South China Sea (SCS). Several crust-scale multi-channel seismic reflection profiles acquired in the continent-ocean transition zone (COT) of the SCS provide a detailed overview of Moho and deep crustal reflectors and give key information on rifting-to-drifting transition of the area. Moho has strong but discontinuous seismic reflection in COT. These discontinuities are mainly located in the landward side of continent-ocean boundary (COB), and may own to upwelling of lower crustal materials during initial continental extension, leading to numerous volcanic edifices and volcanic ridges. The continental crust in COT shows discontinuous Moho reflections at 11-8.5 s in two-way travel time (twtt), and thins from 18-20.5 km under the uppermost slope to 6-7 km under the lower slope, assuming an average crustal velocity of 6.0 km/s. The oceanic crust has Moho reflections of moderate to high continuity mostly at 1.8-2.2 s twtt below the top of the igneous basement, which means that the crustal thickness excluding sediment layer in COT is 5.4-6.6 km. Subhorizontal Moho reflections are often abruptly interrupted by large seaward dipping normal faults in southern COT but are more continuous compared with the fluctuant and very discontinuous Moho reflections in northern COT. The thickness of thinned continental crust (4.2-4.8 km) is smaller than that of oceanic crust (5.4-6.0 km) near southern COB, indicating that the continental crust has experienced a long period of rifting before seafloor spreading started. The smaller width of northern COT (0-40 km) than in southern COT (0-60 km), and thinner continental crust in southern COT, all indicate that the continental margin rifting and extension was asymmetric. The COT width in the SCS is narrower than that found in other magma-poor continental margins, indicating a swift transition from the final stage of rifting to the inception of normal seafloor spreading.
Titan's radar images: cross-cutting ripples are dunes or warping surface waves?
NASA Astrophysics Data System (ADS)
Kochemasov, G.
The radar mapping of the Titan's surface (Cassini SC) covering by wide mainly latitudinal strips an important portion of the satellite discovered one persisting pattern related to the dark smooth plains. They are rippled by very regular cross-cutting wavy forms hundred and thousand kilometers long with spacing between ridges or grooves about 1-2 km (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454)-so called "cat scratches". Some important characteristics of this pattern are: 1) it affects very vast expanses of dark smooth material (low-lying terrains of planetary scale) presumably consisting of frozen methane; it penetrates, in not so evident form, onto islands of light icy material (bright terrain) and normally curve them around. 2) it consists of intersecting (cross-cutting) ridge-groove structures not destroying each other under intersection; radar can fix at least two structure directions. 3) the most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long , 1120 km wide, almost a half length of the great planetary circle !) has ridge-to-ridge spacing about 10-20 km. 4) a width of ridges and grooves is nearly equal with variations to both sides. 5) ridges are more bright, grooves are more dark. 6) intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size. Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and neutral (0) tectonic blocks. Wavelengths are different but tied as harmonics. The fundamental wave1 produces ubiquitous tectonic dichotomy -two segments (2πR-structure), the first harmonics wave2 produces tectonic sectors (πR-structures) [1]. This structurisation is adorned by individual for any body waves whose lengths are inversely proportional to their orbital frequencies: higher frequency - smaller waves and, vice versa, lower frequency - larger waves. These waves produce tectonic granules. There is a row of increasing granule sizes strictly tied to orb. fr. : Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. In this row Titan with its orb fr. around its central body Saturn about 16 days occupies position before Mercury -πR/91. But Titan as a satellite has also 1 another frequency around Sun - that of its master Saturn. A wave created by this frequency is too large to be confined in Titan (7.5πR granule) but it can, according to the wave theory modulate the higher frequency (wave with granule πR/91) creating two side frequencies. They are get by division and multiplication of the higher fr. by the lower one: the modulations give size πR/12 or 670 km and πR/667 or 12 km [(1/91 x 7.5)πR and (1/91 : 7.5)πR]. Both 670 and 12 km sizes are discernable on Titan's radar image PIA08454. The first as roundish white and dark areas (these granules were discerned and calculated earlier on the Hubble image of Titan in pre-Cassini era [2]). The second size is produced by an intersection of regular wavings-ripples (erroneously interpreted as dunes) with spacing about 10-20 km covering mainly smooth dark parts of the satellite. Titan's dichotomy -an opposition of mostly light (Xanadu) and dark hemispheres - is well known and also represents the wave structurization. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1, # 3, 700; [2] Kochemasov G.G. (2000) Titan: frequency modulation of warping waves // Geophys. Res. Abstr., v. 2, (CD-ROM). 2
Amazon floodplain channels regulate channel-floodplain water exchange
NASA Astrophysics Data System (ADS)
Bates, P. D.; Baugh, C.; Trigg, M.
2017-12-01
We examine the role of floodplain channels in regulating the exchange of water between the Amazon main stem and its extensive floodplains using a combination of field survey, remote sensing and numerical modelling for a 30,000 km2 area around the confluence of the Solimões and Purus rivers. From Landsat imagery we identified 1762 individual floodplain channel reaches with total length of nearly 9300 line km that range in width from 900m to 20m. Using a boat survey we measured width and depth along 509 line km of floodplain channels in 45 separate reaches and used these data to develop geomorphic relationships between width and depth. This enabled reconstruction of the depth of all other channels in the Landsat survey to an RMSE of 2.5m. We then constructed a 2D hydraulic model of this site which included all 9300km of floodplain channels as sub-grid scale features using a recently developed version of the LISFLOOD-FP code. The DEM for the model was derived from a version of the SRTM Digital Elevation Model that was processed to remove vegetation artefacts. The model was run at 270m resolution over the entire 30,000 km2 domain for the period from 2002-2009. Simulations were run with and without floodplain channels to examine the impact of these features on floodplain flow dynamics and storage. Simulated floodplain channel hydraulics were validated against a combination of in-situ and remotely sensed data. Our results show that approximately 100 km3 of water is exchanged between the channel and the floodplain during a typical annual cycle, and 8.5±2.1% of mainstem flows is routed through the floodplain. The overall effect of floodplains channels was to increase the duration of connections between the Amazon River and the floodplain. Inclusion of floodplain channels in the model increased inundation volume by 7.3% - 11.3% at high water, and decreased it at low water by 4.0% - 16.6%, with the range in these estimates due to potential errors in floodplain channel geometry. Inundation extent in the model did not increase at high water, but low water flood extents declined by 8.8% - 29.7% due to increased connectivity between the floodplain and the mainstem. The wide range of flow decrease estimates demonstrates that the results are sensitive to errors in the estimation of floodplain channel geometries, particularly bed elevations.
Channel Storage change: a new remote sensed surface water measurement
NASA Astrophysics Data System (ADS)
Coss, S. P.; Durand, M. T.; Yi, Y.; Guo, Q.; Shum, C. K.; Allen, G. H.; Pavelsky, T.
2017-12-01
Here we present river channel storage change (CSC) measurements for 17 major world rivers from 2002-2016. We combined interpolated daily 1 km resolution Global River Radar Altimeter Time Series (GRRATS) river surface elevation data with static widths from the global river Global River Widths from Landsat (GRWL) dataset, to generate preliminary channel storage measurements. CSC is a previously unmeasured component of the terrestrial water balance It is a fundamental Earth science quantity with global bearing on floodplains, ecology, and geochemistry. CSC calculations require only remote sensed data, making them an ideal tool for studying remote regions where hydrological data is not easily accessible. CSC is uniquely suited to determine the role of hydrologic and hydraulic controls in basins with strong seasonal cycles (freeze-up and break-up). The cumulative CSC anomaly can impart spatial details that discharge measurements cannot. With this new measurement, we may be able to determine critical hydrological and hydraulic controls on rapidly changing systems like Arctic rivers. Results for Mississippi River indicate that peak CSC anomaly was the highest in 2011 (12.6 km3) and minimum CSC anomaly was in 2012 (-12.2 km3). Peak CSC has most frequently occurs in May (5 years), but has come as late in the year as July, and as early as January. Results for the Yukon River indicate that peak CSC anomaly was the highest in 2013 (13.9 km3) and minimum CSC anomaly was in 2010 (-14.2 km3). Peak CSC has most frequently come in early to mid-June (4-18), but has occurred in May (19-31) four years in the study period (three of the last 6 years) and once on April 30th.
Sun-sized Water Vapor Masers in Cepheus A
NASA Astrophysics Data System (ADS)
Sobolev, A. M.; Moran, J. M.; Gray, M. D.; Alakoz, A.; Imai, H.; Baan, W. A.; Tolmachev, A. M.; Samodurov, V. A.; Ladeyshchikov, D. A.
2018-03-01
We present the first VLBI observations of a Galactic water maser (in Cepheus A) made with a very long baseline interferometric array involving the RadioAstron Earth-orbiting satellite station as one of its elements. We detected two distinct components at ‑16.9 and 0.6 km s‑1 with a fringe spacing of 66 μas. In total power, the 0.6 km s‑1 component appears to be a single Gaussian component of strength 580 Jy and width of 0.7 km s‑1. Single-telescope monitoring showed that its lifetime was only eight months. The absence of a Zeeman pattern implies the longitudinal magnetic field component is weaker than 120 mG. The space–Earth cross power spectrum shows two unresolved components smaller than 15 μas, corresponding to a linear scale of 1.6 × 1011 cm, about the diameter of the Sun, for a distance of 700 pc, separated by 0.54 km s‑1 in velocity and by 160 ± 35 μas in angle. This is the smallest angular structure ever observed in a Galactic maser. The brightness temperatures are greater than 2 × 1014 K, and the line widths are 0.5 km s‑1. Most of the flux (about 87%) is contained in a halo of angular size of 400 ± 150 μas. This structure is associated with the compact H II region HW3diii. We have probably picked up the most prominent peaks in the angular size range of our interferometer. We discuss three dynamical models: (1) Keplerian motion around a central object, (2) two chance overlapping clouds, and (3) vortices caused by flow around an obstacle (i.e., von Kármán vortex street) with a Strouhal number of about 0.3.
Physiologically constrained aerocapture for manned Mars missions
NASA Technical Reports Server (NTRS)
Lyne, James Evans
1992-01-01
Aerobraking has been proposed as a critical technology for manned missions to Mars. The variety of mission architectures currently under consideration presents aerobrake designers with an enormous range of potential entry scenarios. Two of the most important considerations in the design of an aerobrake are the required control authority (lift-to-drag ratio) and the aerothermal environment which the vehicle will encounter. Therefore, this study examined the entry corridor width and stagnation-point heating rate and load for the entire range of probable entry velocities, lift-to-drag ratios, and ballistic coefficients for capture at both Earth and Mars. To accomplish this, a peak deceleration limit for the aerocapture maneuvers had to be established. Previous studies had used a variety of load limits without adequate proof of their validity. Existing physiological and space flight data were examined, and it was concluded that a deceleration limit of 5 G was appropriate. When this load limit was applied, numerical studies showed that an aerobrake with an L/D of 0.3 could provide an entry corridor width of at least 1 degree for all Mars aerocaptures considered with entry velocities up to 9 km/s. If 10 km/s entries are required, an L/D of 0.4 to 0.5 would be necessary to maintain a corridor width of at least 1 degree. For Earth return aerocapture, a vehicle with an L/D of 0.4 to 0.5 was found to provide a corridor width of 0.7 degree or more for all entry velocities up to 14.5 km/s. Aerodynamic convective heating calculations were performed assuming a fully catalytic, 'cold' wall; radiative heating was calculated assuming that the shock layer was in thermochemical equilibrium. Heating rates were low enough for selected entries at Mars that a radiatively cooled thermal protection system might be feasible, although an ablative material would be required for most scenarios. Earth return heating rates were generally more severe than those encountered by the Apollo vehicles, and would require ablative heat shields in all cases.
NASA Astrophysics Data System (ADS)
He, Enyuan; Zhao, Minghui; Qiu, Xuelin; Sibuet, Jean-Claude; Wang, Jian; Zhang, Jiazheng
2016-05-01
The 140-km wide last phase of opening of the South China Sea (SCS) corresponds to a N145° direction of spreading with rift features identified on swath bathymetric data trending N055° (Sibuet et al., 2016). These N055° seafloor spreading features of the East Sub-basin are cut across by a post-spreading volcanic ridge oriented approximately E-W in its western part (Zhenbei-Huangyan seamounts chain). The knowledge of the deep crustal structure beneath this volcanic ridge is essential to elucidate not only the formation and tectonic evolution of the SCS, but also the mechanism of emplacement of the post-spreading magmatism. We use air-gun shots recorded by ocean bottom seismometers to image the deep crustal structure along the N-S oriented G8G0 seismic profile, which is perpendicular to the Zhenbei-Huangyan seamounts chain but located in between the Zhenbei and Huangyan seamounts, where topographic changes are minimum. The velocity structure presents obvious lateral variations. The crust north and south of the Zhenbei-Huangyan seamounts chain is ca. 4-6 km in thickness and velocities are largely comparable with those of normal oceanic crust of Atlantic type. To the south, the Jixiang seamount with a 7.2-km thick crust, seems to be a tiny post-spreading volcanic seamount intruded along the former extinct spreading ridge axis. In the central part, a 1.5-km thick low velocity zone (3.3-3.7 km/s) in the uppermost crust is explained by the presence of extrusive rocks intercalated with thin sedimentary layers as those drilled at IODP Site U1431. Both the Jixiang seamount and the Zhenbei-Huangyan seamounts chain started to form by the intrusion of decompressive melt resulting from the N-S post-spreading phase of extension and intruded through the already formed oceanic crust. The Jixiang seamount probably formed before the emplacement of the E-W post-spreading seamounts chain.
NASA Astrophysics Data System (ADS)
Junquas, C.; Takahashi, K.; Condom, T.; Espinoza, J.-C.; Chavez, S.; Sicart, J.-E.; Lebel, T.
2018-06-01
In the tropical Andes, the identification of the present synoptic mechanisms associated with the diurnal cycle of precipitation and its interaction with orography is a key step to understand how the atmospheric circulation influences the patterns of precipitation variability on longer time-scales. In particular we aim to better understand the combination of the local and regional mechanisms controlling the diurnal cycle of summertime (DJF) precipitation in the Northern Central Andes (NCA) region of Southern Peru. A climatology of the diurnal cycle is obtained from 15 wet seasons (2000-2014) of 3-hourly TRMM-3B42 data (0.25° × 0.25°) and swath data from the TRMM-2A25 precipitation radar product (5 km × 5 km). The main findings are: (1) in the NCA region, the diurnal cycle shows a maximum precipitation occurring during the day (night) in the western (eastern) side of the Andes highlands, (2) in the valleys of the Cuzco region and in the Amazon slope of the Andes the maximum (minimum) precipitation occurs during the night (day). The WRF (Weather Research and Forecasting) regional atmospheric model is used to simulate the mean diurnal cycle in the NCA region for the same period at 27 km and 9 km horizontal grid spacing and 3-hourly output, and at 3 km only for the month of January 2010 in the Cuzco valleys. Sensitivity experiments were also performed to investigate the effect of the topography on the observed rainfall patterns. The model reproduces the main diurnal precipitation features. The main atmospheric processes identified are: (1) the presence of a regional-scale cyclonic circulation strengthening during the afternoon, (2) diurnal thermally driven circulations at local scale, including upslope (downslope) wind and moisture transport during the day (night), (3) channelization of the upslope moisture transport from the Amazon along the Apurimac valleys toward the western part of the cordillera.
NASA Astrophysics Data System (ADS)
Fu, Lee-Lueng; Morrow, Rosemary
2016-07-01
The global observations of the sea surface height (SSH) have revolutionized oceanography since the beginning of precision radar altimetry in the early 1990s. For the first time we have continuous records of SSH with spatial and temporal sampling for detecting the global mean sea level rise, the waxing and waning of El Niño, and the ocean circulation from gyres to ocean eddies. The limit of spatial resolution of the present constellation of radar altimeters in mapping SSH variability is approaching 100 km (in wavelength) with 3 or more simultaneous altimetric satellites in orbit. At scales shorter than 100 km, the circulation contains substantial amount of kinetic energy in currents, eddies and fronts that are responsible for the stirring and mixing of the ocean, especially from the vertical exchange of the upper ocean with the deep. A mission currently in development will use the technique of radar interferometry for making high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT promises the detection of SSH at scales approaching 15 km, depending on the sea state. SWOT will make SSH measurement over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. A conventional radar altimeter will provide measurement along the nadir. This is an exploratory mission with applications in oceanography and hydrology. The increased spatial resolution offers an opportunity to study ocean surface processes to address important questions about the ocean circulation. However, the limited temporal sampling poses challenges to map the evolution of the ocean variability that changes rapidly at the small scales. The measurement technique and the development of the mission will be presented with emphasis on its science program with outlook on the opportunities and challenges.
NASA Astrophysics Data System (ADS)
Zivney, L. L.; Morgan, J. K.; McGovern, P. J.
2009-12-01
We have carried out 2-D numerical simulations using the discrete element method (DEM) to investigate density-driven deformation in Martian volcanic edifices. Our initial simulations demonstrated that gravitationally-driven settling of a dense, ductile cumulate body within a volcano causes enhanced lateral spreading of the edifice flanks, influencing the overall volcano morphology and generating pronounced summit subsidence. Here, we explore the effects of cumulate bodies and their geometries on the generation of summit calderas, to gain insight into the origin of Martian caldera complexes, in particular the Olympus Mons and Arsia Mons calderas. The Olympus Mons caldera, roughly 80 km in diameter, is composed of several small over-lapping craters with steep walls, thought to be produced by episodic collapse events of multiple shallow magma chambers. The Arsia Mons caldera spans ~130 km across and displays one prominent crater with gently sloping margins, possibly reflecting the collapse of a single magma chamber. Although the depth of the magma chamber is debated, its lateral width is thought to approximate the diameter of the caldera. Our models indicate that cumulate bodies located at shallow depths of <10 km below the edifice surface produce caldera complexes on the order of 80-100 km in width, with increasing cumulate widths producing widening calderas. Narrow cumulate bodies with densities near 4000 kg/m3 produce the deepest calderas (up to ~8 km deep). We conclude that the generation of large Arsia-type calderas may be adequately modeled by the presence of a wide cumulate body found at shallow depths beneath the summit. Although we do not model the multiple magma chamber systems thought to exist beneath the Olympus Mons summit, the closely spaced craters and the small size of the caldera relative to the size of the volcano (~13% of the edifice) suggests that the cumulate body would be narrow; our simulations of a single narrow cumulate body are capable of generating summit subsidence that is similar in dimension to the Olympus Mons caldera. Our findings suggest that cumulate spreading may play a primary role in the long-term development of caldera geometry, although the collapse of magma reservoirs (not modeled here) may cause important short-term changes in caldera structure.
NASA Astrophysics Data System (ADS)
Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan
2017-02-01
Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.
NASA Technical Reports Server (NTRS)
2005-01-01
24 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows collapse pits and troughs on the lower northeast flank of the giant martian volcano, Ascraeus Mons. Layers of volcanic rock are evident in some of the pit and valley walls, and boulders the size of houses and trucks that were liberated from these walls by gravity can be seen on the floors of the depressions. Location near: 13.6oN, 102.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern AutumnNASA Technical Reports Server (NTRS)
2005-01-01
3 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygons enhanced by subliming seasonal frost in the martian south polar region. Polygons similar to these occur in frozen ground at high latitudes on Earth, suggesting that perhaps their presence on Mars is also a sign that there is or once was ice in the shallow subsurface. The circular features are degraded meteor impact craters. Location near: 72.2oS, 310.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringNASA Technical Reports Server (NTRS)
2005-01-01
3 October 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, defrosting spots formed on a polygon-cracked plain in the south polar region of Mars. The surface was covered with carbon dioxide frost during the previous winter. In spring, the material begins to sublime away, creating a pattern of dark spots that sometimes have wind streaks emanating from them, as wind carries away or erodes the frost. Location near: 87.2oS, 28.4oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringNASA Technical Reports Server (NTRS)
2005-01-01
19 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows deep gullies cut into the wall of a south mid-latitude crater. Erosion has exposed layers in the upper wall of the crater; it is possible that groundwater seeping through a layer or layers in the wall led to the genesis of the gullies. The banked nature of the gully channels suggests that a liquid was involved. Location near: 35.5oS, 194.8oW Image width: width: 2 km (1.2 mi) Illumination from: upper left Season: Southern SpringNASA Technical Reports Server (NTRS)
2005-01-01
16 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of catastrophic flooding in Marte Vallis, Mars. Marte is the Spanish word for Mars. Many of the major valleys on the red planet are named for the word for 'Mars' in the various languages of Earth. This image shows just a very small portion of the hundreds-of-kilometers-long Marte Vallis system. Location near: 17.4oN, 174.7o Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern WinterNASA Astrophysics Data System (ADS)
Gladstone, R.; Greathouse, T. K.; Versteeg, M. H.; Hue, V.; Kammer, J.; Gerard, J. C. M. C.; Grodent, D. C.; Bonfond, B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Adriani, A.; Allegrini, F.; Bagenal, F.; Bunce, E. J.; Branduardi-Raymont, G.; Clark, G. B.; Dunn, W.; Ebert, R. W.; Hansen, C. J.; Jackman, C. M.; Kraft, R.; Kurth, W. S.; Mauk, B.; Mura, A.; Orton, G.; Ranquist, D. A.; Ravine, M. A.; Valek, P. W.
2017-12-01
Juno's Ultraviolet Spectrograph (Juno-UVS) has observed the Jovian aurora during eight perijove passes. UVS typically observes Jupiter for 10 hours centered on closest approach in a series of swaths, with one swath per Juno spin ( 30s). During this period the spacecraft range to Jupiter's aurora decreases from 6 RJ to 0.3 RJ (or less) in the north, and then reverses this in the south, so that spatial resolution changes dramatically. A scan mirror is used to target different features or raster across the entire auroral region. Juno-UVS observes a particular location for roughly 17 ms/swath, so the series of swaths provide snapshots of ultraviolet auroral brightness and color. A variety of forms and activity levels are represented in the Juno-UVS data-some have been described before with HST observations, but others are new. One interesting result is that the color ratio, often used as a proxy for energetic particle precipitation, may instead (in certain regions) indicate excitation of H2 by low-energy ionospheric electrons. Additional results from comparisons with simultaneous observations at x-ray, visible, and near-IR wavelengths will also be presented.
Connecting Swath Satellite Data With Imagery in Mapping Applications
NASA Astrophysics Data System (ADS)
Thompson, C. K.; Hall, J. R.; Penteado, P. F.; Roberts, J. T.; Zhou, A. Y.
2016-12-01
Visualizations of gridded science data products (referred to as Level 3 or Level 4) typically provide a straightforward correlation between image pixels and the source science data. This direct relationship allows users to make initial inferences based on imagery values, facilitating additional operations on the underlying data values, such as data subsetting and analysis. However, that same pixel-to-data relationship for ungridded science data products (referred to as Level 2) is significantly more challenging. These products, also referred to as "swath products", are in orbital "instrument space" and raster visualization pixels do not directly correlate to science data values. Interpolation algorithms are often employed during the gridding or projection of a science dataset prior to image generation, introducing intermediary values that separate the image from the source data values. NASA's Global Imagery Browse Services (GIBS) is researching techniques for efficiently serving "image-ready" data allowing client-side dynamic visualization and analysis capabilities. This presentation will cover some GIBS prototyping work designed to maintain connectivity between Level 2 swath data and its corresponding raster visualizations. Specifically, we discuss the DAta-to-Image-SYstem (DAISY), an indexing approach for Level 2 swath data, and the mechanisms whereby a client may dynamically visualize the data in raster form.
NASA Astrophysics Data System (ADS)
Calaudi, Rosamaria; Lo Feudo, Teresa; Calidonna, Claudia Roberta; Sempreviva, Anna Maria
2016-04-01
Renewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from Remote Sensing can provide detailed information for analysis for sources of renewable energy and to determine the potential energy and socially acceptability of suggested location. Coastal sites of Southern Italy have the advantage of favorable climatic conditions to use renewable energy, such us cloud free days and local breeze phenomena. Many ports are located where they have opportunities for exploitation of renewable energy, by using existing port area and by taking advantage of their coastal locations. Policies of European-Committee and Global-Navigation-PIANC for a better use of energy and an efficient supply from renewable sources are also focused on the construction of port facilities in zero emissions. Using data from Remote Sensing, can reduce the financial resources currently required for finding and assessing suitable areas, we defined an integrated methodology for potential wind and solar energy in harbor areas. In this study we compared the hourly solar power energy using MSG-SEVIRI (Meteosat Second Generation Spinning Enhanced Visible and Infrared) data products DSSF (Down-welling Surface Short-wave-Flux), and PV-Plant measurements with Nominal Power Peak of 19,85 kWp. The PV Plant is situated at a coastal site in Calabrian region, located near Vibo Valentia harbor area. We estimate potential energy by using input solar radiation of Satellite data, with same characteristics of the PV-plant. The RMSE and BIAS for hourly averaged solar electrical reproducibility are estimated including clear and sky conditions. Comparison between energy reproducibility by using DSSF product and PV-plant measurements, made over the period October 2013-June 2014, showed a good agreement in our costal site and generally overestimate (RMSE(35W/m2) and BIAS(4W/m2)) electrical reproducibility from a PV-plant. For wind resource estimation we used Synthetic-Aperture-Radar (SAR) images from March 2002 to April 2012 for a total of 3269 ENVISAT-ASAR scenes acquired in Wide-Swath-Mode (WSM). Wind speed in the Mediterranean is retrieved using the Johns Hopkins University, Applied Physics Laboratory (JHU-APL) software APL-NOAA-SAR Wind Retrieval System. The ASAR is a C-band VV and HH instrument with a 405 km swath with 150 m and 1 km resolution in wide-swath mode. With a 35-day repeat orbit the revisit frequency will give daily coverage near the poles and weekly at the equator. We performed statistical analyses for wind parameters. The SAR-based wind results at the location test near Vibo Valentia show that the average of wind speed is U= 5.63 ms-1, the Weibull parameters are A=6.3 ms-1 and k=1.70. The power density of the wind is E=245 Wm-2.The high spatial resolution of the gridded SAR data is particularly relevant to study coastal sites, where most part of human activities is located. In order to create a zero emissions' harbor area, remote sensing satellite data, can be used for smart grid which employed renewable energies.
NASA Astrophysics Data System (ADS)
Seton, M.; Williams, S.; Mortimer, N. N.; Meffre, S.; Moore, J.; Micklethwaite, S.; Zahirovic, S.
2013-12-01
The eastern Coral Sea region is an underexplored area at the northeastern corner of the Australian plate, where long-lived interaction between the Pacific and Australian plate boundaries has resulted in an intricate assemblage of deep oceanic basins and ridges, continental fragments and volcanic products. A paucity of marine geophysical and geological data from this complex region has resulted in the lack of a clear conceptual framework to describe its formation, ultimately affecting our understanding of the connection between the plate boundaries of the SW Pacific and SE Asia. In particular, the tectonic relationship between two back-arc basins, the Santa Cruz and d'Entrecasteaux Basins, and the South Rennell Trough, has yet to be resolved. In October-November, 2012, we collected 6,200 km of marine magnetic, 6,800 km of gravity and over 13,600 km2 of swath bathymetry data from the eastern Coral Sea onboard the RV Southern Surveyor. A complementary dredging program yielded useful samples from 14 seafloor sites. Our preliminary geochemical interpretation of the dredge samples obtained from the South Rennell Trough reveal volcanic rocks resembling MORB or BABB-type basalts, similar in composition to the recently re-analysed and dated ORSTOM dredges from the area that yielded ~28 Ma MORB-like basalts. Swath bathymetry profiles from the Santa Cruz Basin reveal that the South Rennell Trough extends into this basin, with seafloor spreading fabric being parallel to the trough. Preliminary analysis of the three full and four partial new magnetic anomaly profiles across the Santa Cruz Basin, coupled with limited existing profiles, reveals that the basin may have formed between Chrons 13-18 (~32-38 Ma), with an extinct spreading ridge along the inferred continuation of the South Rennell Trough, consistent with ORSTOM age dates. Our results suggest that the South Rennell Trough is an extinct southwestward propagating spreading ridge, which may have initiated along a pre-existing zone of weakness. A preliminary interpretation of the 4 magnetic profiles collected in the d'Entrecasteaux Basin and existing profiles of seafloor fabric shows that this basin does not share a common seafloor spreading history with the Santa Cruz Basin, as has been suggested previously. Our preliminary interpretation of the relationship between the Santa Cruz Basin, South Rennell Trough and d'Entrecasteaux Basin requires a re-interpretation of existing models of the SW Pacific to take into account a southwestward propagating spreading ridge between 38-32 Ma, contemporaneous with seafloor spreading further south in the North Loyalty Basin. Further work on age-dating and geochemical analysis of the newly collected dredge samples and an in-depth analysis of the magnetic anomalies in the d'Entrecasteaux Basin may further yield important information concerning the tectonic evolution of the area.
NASA Astrophysics Data System (ADS)
Welford, J. Kim; Peace, Alexander L.; Geng, Meixia; Dehler, Sonya A.; Dickie, Kate
2018-05-01
Mesozoic to Cenozoic continental rifting, breakup, and spreading between North America and Greenland led to the opening, from south to north, of the Labrador Sea and eventually Baffin Bay between Baffin Island, northeast Canada, and northwest Greenland. Baffin Bay lies at the northern limit of this extinct rift, transform, and spreading system and remains largely underexplored. With the sparsity of existing crustal-scale geophysical investigations of Baffin Bay, regional potential field methods and quantitative deformation assessments based on plate reconstructions provide two means of examining Baffin Bay at the regional scale and drawing conclusions about its crustal structure, its rifting history, and the role of pre-existing structures in its evolution. Despite the identification of extinct spreading axes and fracture zones based on gravity data, insights into the nature and structure of the underlying crust have only been gleaned from limited deep seismic experiments, mostly concentrated in the north and east where the continental shelf is shallower and wider. Baffin Bay is partially underlain by oceanic crust with zones of variable width of extended continental crust along its margins. 3-D gravity inversions, constrained by bathymetric and depth to basement constraints, have generated a range of 3-D crustal density models that collectively reveal an asymmetric distribution of extended continental crust, approximately 25-30 km thick, along the margins of Baffin Bay, with a wider zone on the Greenland margin. A zone of 5 to 13 km thick crust lies at the centre of Baffin Bay, with the thinnest crust (5 km thick) clearly aligning with Eocene spreading centres. The resolved crustal thicknesses are generally in agreement with available seismic constraints, with discrepancies mostly corresponding to zones of higher density lower crust along the Greenland margin and Nares Strait. Deformation modelling from independent plate reconstructions using GPlates of the rifted margins of Baffin Bay was performed to gauge the influence of original crustal thickness and the width of the deformation zone on the crustal thicknesses obtained from the gravity inversions. These results show the best match with the results from the gravity inversions for an original unstretched crustal thickness of 34-36 km, consistent with present-day crustal thicknesses derived from teleseismic studies beyond the likely continentward limits of rifting around the margins of Baffin Bay. The width of the deformation zone has only a minimal influence on the modelled crustal thicknesses if the zone is of sufficient width that edge effects do not interfere with the main modelled domain.
Auto-calibration of GF-1 WFV images using flat terrain
NASA Astrophysics Data System (ADS)
Zhang, Guo; Xu, Kai; Huang, Wenchao
2017-12-01
Four wide field view (WFV) cameras with 16-m multispectral medium-resolution and a combined swath of 800 km are onboard the Gaofen-1 (GF-1) satellite, which can increase the revisit frequency to less than 4 days and enable large-scale land monitoring. The detection and elimination of WFV camera distortions is key for subsequent applications. Due to the wide swath of WFV images, geometric calibration using either conventional methods based on the ground control field (GCF) or GCF independent methods is problematic. This is predominantly because current GCFs in China fail to cover the whole WFV image and most GCF independent methods are used for close-range photogrammetry or computer vision fields. This study proposes an auto-calibration method using flat terrain to detect nonlinear distortions of GF-1 WFV images. First, a classic geometric calibration model is built for the GF1 WFV camera, and at least two images with an overlap area that cover flat terrain are collected, then the elevation residuals between the real elevation and that calculated by forward intersection are used to solve nonlinear distortion parameters in WFV images. Experiments demonstrate that the orientation accuracy of the proposed method evaluated by GCF CPs is within 0.6 pixel, and residual errors manifest as random errors. Validation using Google Earth CPs further proves the effectiveness of auto-calibration, and the whole scene is undistorted compared to not using calibration parameters. The orientation accuracy of the proposed method and the GCF method is compared. The maximum difference is approximately 0.3 pixel, and the factors behind this discrepancy are analyzed. Generally, this method can effectively compensate for distortions in the GF-1 WFV camera.
NASA Astrophysics Data System (ADS)
Ogawa, Kenta; Konno, Yukiko; Yamamoto, Satoru; Matsunaga, Tsuneo; Tachikawa, Tetsushi; Komoda, Mako
2017-09-01
Hyperspectral Imager Suite (HISUI) is a Japanese future space-borne hyperspectral instrument being developed by Ministry of Economy, Trade, and Industry (METI). HISUI will be launched in 2019 or later onboard International Space Station (ISS) as platform. HISUI has 185 spectral band from 0.4 to 2.5 μm with 20 by 30 m spatial resolution with swath of 20 km. Swath is limited as such, however observations in continental scale area are requested in HISUI mission lifetime of three years. Therefore we are developing a scheduling algorithm to generate effective observation plans. HISUI scheduling algorithm is to generate observation plans automatically based on platform orbit, observation area maps (we say DAR; "Data Acquisition Request" in HISUI project), their priorities, and available resources and limitation of HISUI system such as instrument operation time per orbit and data transfer capability. Then next we need to set adequate DAR before start of HISUI observation, because years of observations are needed to cover continental scale wide area that is difficult to change after the mission started. To address these issues, we have developed observation simulator. The simulator's critical inputs are DAR and the ISS's orbit, HISUI limitations in observation minutes per orbit, data storage and past cloud coverage data for term of HISUI observations (3 years). Then the outputs of simulator are coverage map of each day. Areas with cloud free image are accumulated for the term of observation up to three years. We have successfully tested the simulator and tentative DAR and found that it is possible to estimate coverage for each of requests for the mission lifetime.
NASA Astrophysics Data System (ADS)
Blair, B.; Hofton, M.; Rabine, D.; Welch, W.; Ramos, L.; Padden, P.
2003-12-01
Full-Waveform lidar measurements provide unprecedented views of the vertical and horizontal structure of vegetation and the topography of the Earth's surface. Utilizing a high signal-to-noise ratio lidar system, larger than typical laser footprints (10-20 m), and the recorded time history of interaction between a short-duration (10 ns) pulse of laser light and the surface of the Earth, full-waveform lidar is able to simultaneously image sub-canopy topography as well as the vertical structure of any overlying vegetation. These data reveal the true 3-D vegetation structure in leaf-on conditions enabling important biophysical parameters such as above-ground biomass to be estimated with unprecedented accuracy. An airborne lidar mission was conducted July-August 2003 in support of the North America Carbon Program. NASA's Laser Vegetation Imaging Sensor (LVIS) was used to image approximately 2,000 sq. km in Maine, New Hampshire, Massachusetts and Maryland. Areas with available ground and other data were included (e.g., experimental forests, FLUXNET sites) in order to facilitate as many bio- and geophysical investigations as possible. Data collected included ground elevation and canopy height measurements for each laser footprint, as well as the vertical distribution of intercepted surfaces. Data will be publicly distributed within 6-12 months of collection. Further details of the mission, including the lidar system technology, the locations of the mapped areas, and examples of the numerous data products that can be derived from the return waveform data products will be presented. Future applications including detection of ground and vegetation canopy changes and a spaceborne implementation of wide-swath, full-waveform imaging lidar will also be discussed.
NASA Technical Reports Server (NTRS)
Blair, James B.; Hofton, M.; Rabine, David; Welch, Wayne; Ramos, Luis; Padden, Phillip
2003-01-01
Full-Waveform lidar measurements provide unprecedented views of the vertical and horizontal structure of vegetation and the topography of the Earth s surface. Utilizing a high signal-to-noise ratio lidar system, larger than typical laser footprints (10-20 m), and the recorded time history of interaction between a short-duration (approx. 10 ns) pulse of laser light and the surface of the Earth, full-waveform lidar is able to simultaneously image sub-canopy topography as well as the vertical structure of any overlying vegetation. These data reveal the true 3-D vegetation structure in leaf-on conditions enabling important biophysical parameters such as above-ground biomass to be estimated with unprecedented accuracy. An airborne lidar mission was conducted July-August 2003 in support of the North America Carbon Program. NASA s Laser Vegetation Imaging Sensor (LVIS) was used to image approximately 2,000 km$^2$ in Maine, New Hampshire, Massachusetts and Maryland. Areas with available ground and other data were included (e.g., experimental forests, FLUXNET sites) in order to facilitate as many bio- and geophysical investigations as possible. Data collected included ground elevation and canopy height measurements for each laser footprint, as well as the vertical distribution of intercepted surfaces. Data will be publicly distributed within 6- 12 months of collection. Further details of the mission, including the lidar system technology, the locations of the mapped areas, and examples of the numerous data products that can be derived from the return waveform data products will be presented. Future applications including detection of ground and vegetation canopy changes and a spaceborne implementation of wide-swath, full-waveform imaging lidar will also be discussed.
A Relationship Between Visible and Near-IR Global Spectral Reflectance based on DSCOVR/EPIC
NASA Astrophysics Data System (ADS)
Wen, G.; Marshak, A.; Song, W.; Knyazikhin, Y.
2017-12-01
The launch of Deep Space Climate Observatory (DSCOVR) to the Earth's first Lagrange point (L1) allows us to see a new perspective of the Earth. The Earth Polychromatic Imaging Camera (EPIC) on the DSCOVR measures the back scattered radiation of the entire sunlit side of the Earth at 10 narrow band wavelengths ranging from ultraviolet to visible and near-infrared. We analyzed EPIC global averaged reflectance data. We found that the global averaged visible reflectance has a unique non-linear relationship with near infrared (NIR) reflectance. This non-linear relationship was not observed by any other satellite observations due to a limited spatial and temporal coverage of either low earth orbit (LEO) or geostationary satellite. The non-linear relationship is associated with the changing in the coverages of ocean, cloud, land, and vegetation as the Earth rotates. We used Terra and Aqua MODIS daily global radiance data to simulate EPIC observations. Since MODIS samples the Earth in a limited swath (2330km cross track) at a specific local time (10:30 am for Terra, 1:30 pm for Aqua) with approximately 15 orbits per day, the global average reflectance at a given time may be approximated by averaging the reflectance in the MODIS nearest-time swaths in the sunlit hemisphere. We found that MODIS simulated global visible and NIR spectral reflectance captured the major feature of the EPIC observed non-linear relationship with some errors. The difference between the two is mainly due to the sampling limitation of polar satellite. This suggests that that EPIC observations can be used to reconstruct MODIS global average reflectance time series for studying Earth system change in the past decade.
Landsat-Swath Imaging Spectrometer Design
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis; Green, Robert O.; Van Gorp, Byron; Moore, Lori; Wilson, Daniel W.; Bender, Holly A.
2015-01-01
We describe the design of a high-throughput pushbroom imaging spectrometer and telescope system that is capable of Landsat swath and resolution while providing better than 10 nm per pixel spectral resolution. The design is based on a 3200 x 480 element x 18 µm pixel size focal plane array, two of which are utilized to cover the full swath. At an optical speed of F/1.8, the system is the fastest proposed to date to our knowledge. The utilization of only two spectrometer modules fed from the same telescope reduces system complexity while providing a solution within achievable detector technology. Predictions of complete system response are shown. Also, it is shown that detailed ghost analysis is a requirement for this type of spectrometer and forms an essential part of a complete design.
NASA Astrophysics Data System (ADS)
Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.
2016-01-01
An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analyzed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode (mid-2008 to early 2012). The Na layer has a nearly constant peak altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but significant seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At middle to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the summer hemisphere, have lower number densities, with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at middle latitudes. The results are compared with other observations and models and there is overall a good agreement with these.
The SiC hardware of the Sentinel-2 multi spectral instrument
NASA Astrophysics Data System (ADS)
Bougoin, Michel; Lavenac, Jérôme
2017-11-01
The Sentinel-2 mission is a major part of the GMES (Global Monitoring for Environment and Security) program which has been set up by the European Union, on a joint initiative with the European Space Agency. A pair of identical satellites will observe the earth from a sun-synchronous orbit at 786 km altitude. Astrium is the prime contractor of the satellites and their payload. The MultiSpectral Instrument features a "all-SiC" TMA (Three Mirror Anastygmat) telescope. MSI will provide optical images in 13 spectral bands, in the visible and also the near infra-red range, with a 10 to 60 m resolution and a 290 km wide swath. The Boostec® SiC material is used mainly for its high specific stiffness (Youngs modulus / density) and its high thermal stability (thermal conductivity / coefficient of thermal expansion) which allow to reduce the distortions induced by thermo-elastic stresses. Its high mechanical properties as well as the relevant technology enable to make not only the mirrors but also the structure which holds them and the elements of the focal plane (including some detectors packaging). Due to the required large size, accuracy and shape complexity, developing and manufacturing some of these SiC parts required innovative manufacturing approach. It is reviewed in the present paper.
An L-band SAR for repeat pass deformation measurements on a UAV platform
NASA Technical Reports Server (NTRS)
Hensley, Scott; Lou, Yunling; Rosen, Paul; Wheeler, Kevin; Zebker, Howard; Madsen, Soren; Miller, Tim; Hoffman, Jim; Farra, Don
2003-01-01
We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeat-pass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV) or minimally piloted vehicle (MPV). Upon surveying the capabilities and availabilities of such aircraft, the Proteus aircraft and the ALTAIR UAV appear to meet our criteria in terms of payload capabilities, flying altitude, and endurance. To support the repeat pass deformation capability it is necessary to control flight track capability of the aircraft to be within a specified 10 m tube with a goal of 1 m. This requires real-time GPS control of the autopilot to achieve these objectives that has not been demonstrated on these aircraft. Based on the Proteus and ALTAIR's altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and a 16 km range swath. The radar will have an active electronic beam steering antenna to achieve a Doppler centroid stability that is necessary for repeat-pass interferometry. This paper presents some of the trade studies for the platform, instrument and the expected science.
NASA Technical Reports Server (NTRS)
Burke, H. H. K.; Bowley, C. J.; Barnes, J. C.
1979-01-01
The spatial and temporal measurement requirements of satellite sensors for monitoring regional air pollution episodes were evaluated. Use was made of two sets of data from the Sulfate Regional Experiment (SURE), which provided the first ground-based aerosol measurements from a regional-scale station network. The sulfate data were analyzed for two air pollution episode cases. The results of the analysis indicate that the key considerations required for episode mapping from satellite sensors are the following: (1) detection of sulfate levels exceeding 20 micron-g/cu m; (2) capability to view a broad area (of the order of 1500 km swath) because of regional extent of pollution episodes; (3) spatial resolution sufficient to detect variations in sulfate levels of greater than 10 micron-g/cu m over distances of the order of 50 to 75 km; (4) repeat coverage at least on a daily basis; and (5) satellite observations during the mid to late morning local time, when the sulfate levels have begun to increase after the early morning minimum levels, and convective-type cloud cover has not yet increased to the amount reached later in the afternoon. Analysis of the satellite imagery shows that convective clouds can obscure haze patterns. Additional parameters based on spectral analysis include wavelength and bandwidth requirements.
The Width Distribution of Loops and Strands in the Solar Corona—Are We Hitting Rock Bottom?
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.; Peter, Hardi
2017-05-01
In this study, we analyze Atmospheric Imaging Assembly (AIA) and Hi-C images in order to investigate absolute limits for the finest loop strands. We develop a model of the occurrence-size distribution function of coronal loop widths, characterized by the lower limit of widths w min, the peak (or most frequent) width w p , the peak occurrence number n p , and a power-law slope a. Our data analysis includes automated tracing of curvilinear features with the OCCULT-2 code, automated sampling of the cross-sectional widths of coronal loops, and fitting of the theoretical size distribution to the observed distribution. With Monte Carlo simulations and variable pixel sizes {{Δ }}x, we derive a first diagnostic criterion to discriminate whether the loop widths are unresolved ({w}p/{{Δ }}x≈ 2.5+/- 0.2) or fully resolved (if {w}p/{{Δ }}x≳ 2.7). For images with resolved loop widths, we can apply a second diagnostic criterion that predicts the lower limit of loop widths as a function of the spatial resolution. We find that the loop widths are marginally resolved in AIA images but are fully resolved in Hi-C images, where our model predicts a most frequent (peak) value at {w}p≈ 550 {km}, in agreement with recent results of Brooks et al. This result agrees with the statistics of photospheric granulation sizes and thus supports coronal heating mechanisms operating on the macroscopic scale of photospheric magneto-convection, rather than nanoflare braiding models on unresolved microscopic scales.
NASA Technical Reports Server (NTRS)
Racette, Paul; Wang, James R.; Ackerman, Steven; Skofronick-Jackson, Gail; Evans, K. Frank; O'CStarr, David
2006-01-01
This paper presents the chronological development of technologies and techniques that have led to a satellite mission concept aimed at quantifying the temporal and spatial distributions of upper tropospheric ice clouds. The Submillimeter-wave and Infrared Ice Cloud Experiment (SIRICE) is an Earth System Science Pathfinder mission concept designed to improve our understanding of the upper tropospheric water cycle and its coupling to the Earth s radiation budget. Ice outflow from convective storm systems is known to play an important role in regional energy budgets; however, ice generation and subsequent precipitation and sublimation are poorly quantified. SIRICE will provide measurements of ice cloud distributions and microphysical properties which are needed for understanding the crucial link between the hydrologic and energy cycles. The SIRICE measurement platform is comprised of two integrated instruments, the Submillimeter/millimeter-wave radiometer (SM4) and the Infrared Cloud Ice Radiometer (IRCIR). The primary instrument is the SM4, a conical scanner that provides a 1600 km swath of the Earth's surface at 53 degree incidence. The SM4 has 6 linearly polarized receivers measuring 12 spectral bands centered at 183 GHz, 325 GHz, 448 GHz, 643 GHz and 874 GHz; two receivers at 643 GHz measure horizontal and vertical polarizations. Submillimeter-wavelengths are well suited to the remote sensing of ice clouds due to the relative size of the wavelengths to particle sizes. Upwelling emission from lower tropospheric water vapor is scattered by the ice clouds thus causing a brightness temperature depression at submillimeter wavelengths. The IRCIR is a push broom imager with approximately 1500 km swath and spectral channels at 11 and 12 micrometers. This combination of coincident infrared and submillimeter-wavelength measurements were chosen because of its ability to provide retrieval of ice water path and median particle size for a wide range of ice clouds from thin cirrus to thick anvil structures. Over the past decade there has been a parallel development of submillimeter-wave technologies, demonstration instruments, and remote sensing techniques that have led to the present SIRICE mission concept. Mapping of these developmental paths reveals the origins, rational and maturity of features of the SIRICE payload such as its channel selection, compact design, and multipoint calibration. This presentation traces the evolution of the SIRICE mission concept from the early 1990's to its present status.
NASA Astrophysics Data System (ADS)
Wasowski, Janusz; Bovenga, Fabio; Nitti, Davide Oscar; Tijani, Khalid; Morea, Alberto; Nutricato, Raffaele; Chiaradia, Maria Teresa
2017-04-01
The shorter repeat cycle (6 days since October 2016) and regularity of acquisitions of Sentinel-1A/B with respect to earlier European Space Agency (ESA) satellites with C-band sensors (ERS1/2, ENVISAT) represent the key advantages for the research-oriented and practical applications of multi-temporal interferometry (MTI). The applicability of the Interferometric Wide Swath acquisition mode of Sentinel-1 (images covering a 250 km swath on the ground) to regional scale slope instability detection through MTI has already been demonstrated, e.g., via studies of landslide-prone areas in Italy. Here we focus on the potential of Sentinel-1 data for local (site-specific), MTI-based monitoring and capturing pre-failure signs of slope instability, by exploiting the Persistent and Distributed Scatterers processing capability of the SPINUA algorithm. In particular, we present an example of a retrospective study of a large (over 2 km long) landslide, which took place in 2016 in an active open-cast coal mine in central Europe. This seemingly sudden failure caused destruction of the mining equipment, blocked the mining operations thereby resulting in significant economic losses. For the study, we exploited over 60 Sentinel-1A/B images acquired since November 2014. The MTI results furnished a valuable overview of the ground instability/stability conditions within and around the active mine, even though considerable spatial gaps in information were encountered due to surface disturbance by mining operations. Significantly, the ground surface displacement time series revealed that the 2016 slope failure was preceded by very slow (generally 1-3 cm/yr) creep-like deformations, already present in 2014. The MTI results also indicated that the slope experienced a phase of accelerated movement several weeks prior to the landslide event. Furthermore, the spatio-temporal analysis of interferometric coherence changes in the unstable area (mapped on Sentinel-2 Bottom Of Atmosphere reflectance images processed by using the ESA Sen2Cor processor), indicated a sharp coherence loss in the last few weeks before the slope collapse. The availability of more frequent measurements represents a key improvement for MTI-based ground surface displacement monitoring and this will better support research on slope destabilization processes over time and, ultimately, on slope failure forecasting. Acknowledgments We thank ESA for Sentinel-1 & Sentinel-2 images.
Velocity-resolved [Ne III] from X-ray irradiated Sz 102 microjets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chun-Fan; Shang, Hsien; Walter, Frederick M.
2014-05-10
Neon emission lines are good indicators of high-excitation regions close to a young stellar system because of their high ionization potentials and large critical densities. We have discovered [Ne III] λ3869 emission from the microjets of Sz 102, a low-mass young star in Lupus III. Spectroastrometric analyses of two-dimensional [Ne III] spectra obtained from archival high-dispersion (R ≈ 33, 000) Very Large Telescope/UVES data suggest that the emission consists of two velocity components spatially separated by ∼0.''3, or a projected distance of ∼60 AU. The stronger redshifted component is centered at ∼ + 21 km s{sup –1} with a linemore » width of ∼140 km s{sup –1}, and the weaker blueshifted component at ∼ – 90 km s{sup –1} with a line width of ∼190 km s{sup –1}. The two components trace velocity centroids of the known microjets and show large line widths that extend across the systemic velocity, suggesting their potential origins in wide-angle winds that may eventually collimate into jets. Optical line ratios indicate that the microjets are hot (T ≲ 1.6 × 10{sup 4} K) and ionized (n{sub e} ≳ 5.7 × 10{sup 4} cm{sup –3}). The blueshifted component has ∼13% higher temperature and ∼46% higher electron density than the redshifted counterpart, forming a system of an asymmetric pair of jets. The detection of the [Ne III] λ3869 line with the distinct velocity profile suggests that the emission originates in flows that may have been strongly ionized by deeply embedded hard X-ray sources, most likely generated by magnetic processes. The discovery of [Ne III] λ3869 emission along with other optical forbidden lines from Sz 102 supports the picture of wide-angle winds surrounding magnetic loops in the close vicinity of the young star. Future high-sensitivity X-ray imaging and high angular-resolution optical spectroscopy may help confirm the picture proposed.« less
NASA Technical Reports Server (NTRS)
Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng
2016-01-01
On December 18, 2015, the Terra spacecraft completed 16 years of successful operation in space. Terra has five instruments designed to facilitate scientific measurements of the earths land, ocean, and atmosphere. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectroradiometer (MISR) instruments provide information for the temporal studies of the globe. After providing over 16 years of complementary measurements, a synergistic use of the measurements obtained from these sensors is beneficial for various science products. The 20 reflective solar bands (RSBs) of MODIS are calibrated using a combination of solar diffuser and lunar measurements, supplemented by measurements from pseudoinvariant desert sites. MODIS views the on-board calibrators and the earth via a two-sided scan mirror at three spatial resolutions: 250 m using 40 detectors in bands 1 and 2, 500 m using 20 detectors in bands 3 and 4, and 1000 m using 10 detectors in bands 819 and 26. Simultaneous measurements of the earths surface are acquired in a push-broom fashion by MISR at nine view angles spreading out in the forward and backward directions along the flight path. While the swath width for MISR acquisitions is 360 km, MODIS scans a wider swath of 2330 km via its two-sided scan mirror. The reflectance of the MODIS scan mirror has an angle dependence characterized by the response versus scan angle (RVS). Its on-orbit change is derived using the gain from a combination of on-board and earth-view measurements. The on-orbit RVS for MODIS has experienced a significant change, especially for the short-wavelength bands. The on-orbit RVS change for the short-wavelength bands (bands 3, 8, and 9) at nadir is observed to be greater than 10 over the mission lifetime. Due to absence of a scanning mechanism, MISR can serve as an effective tool to evaluate and monitor the on-orbit performance of the MODIS RVS. Furthermore, it can also monitor the detector and scan-mirror differences for the MODIS bands using simultaneous measurements from earth-scene targets, e.g., North Atlantic Ocean and North African desert. Simultaneous measurements provide the benefit of minimizing the impact of earth-scene features while comparing the radiometric performance using vicarious techniques. Long-term observations of both instruments using select ground targets also provide an evaluation of the long-term calibration stability. The goal of this paper is to demonstrate the use of MISR to monitor and enhance the on-orbit calibration of the MODIS RSB. The radiometric calibration requirements for the MODIS RSB are +/- 2% in reflectance and +/- 5% in radiance at typical radiance levels within +/- 45 deg. of nadir. The results show that the long-term changes in the MODIS reflectance at nadir frames are generally within 1. The MODIS level 1B calibrated products, generated after correcting for the on-orbit changes in the gain and RVS, do not have any correction for changes in the instruments polarization sensitivity. The mirror-side-dependent polarization sensitivity exhibits an on-orbit change, primarily in the blue bands, that manifests in noticeable mirror side differences in the MODIS calibrated products. The mirror side differences for other RSB are observed to be less than 1%, therefore demonstrating an excellent on-orbit performance. The detector differences in the blue bands of MODIS exhibit divergence in recent years beyond 1%, and a calibration algorithm improvement has been identified to mitigate this effect. Short-term variations in the recent year caused by the forward updates were identified in bands 1 and 2 and are planned to be corrected in the next reprocess.
Hα line measurements from ten diffuse galactic sources using the DEFPOS facility
NASA Astrophysics Data System (ADS)
Sahan, M.; Oflaz, F. M.; Yegingil, I.; Tel, E.
2015-08-01
The hydrogen Balmer-α emission line spectrum of ten diffuse ionization sources in the Milk Way - NGC 40 (WC8), NGC 2022, NGC 6210, NGC 6618 (M17, Sh2-45), NGC 6720 (M57), NGC 6781, NGC 6888 (Sh2-105), NGC 6992 (Sh2-103), NGC 7635 (Sh2-162,) and IC 1848 (Sh2-199) - has been investigated using a dual etalon Fabry-Pérot optical spectrometer (DEFPOS) aatached to the 150 cm RTT150 telescope at TUBITAK National Observatory (TUG, Antalya, Turkey: 36° 51' N; 30° 20' E; elevation: 2547 m). All of our galactic Hα observations discussed in this paper were carried out during the nights of 2013 June 21-24 with exposure time of 3600 s. As main results the intensity, the full width at half maximum, and the radial velocity with respect to the LSR have been determined for each data set. The intensities, the radial velocities, and the line widths of the Hα emission line vary from 59.15 to 8923.44 R, -46.72 to +54.07 km s-1, and 31.4 to 48.01 km s-1, respectively. The radial velocities and the half-widths of the H II regions and planetary nebulae determined from our measurements are found to be consistent with values given in literature, especially with those in Schneider et al. (1983) and Fich et al. (1990).
NASA Astrophysics Data System (ADS)
Baher, S. A.; Thurber, C.; Roberts, K.; Rowe, C.
2002-12-01
Waveform cross-correlation based refinement of P arrival times and subsequent relocation of earthquakes was determined for events that occurred near the summit of Mauna Loa, Hawaii prior to the March, 1984 eruption and at the Hengill volcano, Iceland during a two-month survey in 1991. Hengill and Mauna Loa volcanoes have a similar rift structure and are hot-spot related volcanoes. The relocated events at Mauna Loa illuminated a previously obscured structure beneath the northwestern flank. Simultaneous inversion for hypocenters and velocity model parameters using the refined arrival times resulted in well-constrained relative earthquake locations with very low arrival time misfits (average RMS 0.03 s). Pre-eruption seismicity from this time period occurred in two groups: a shallow group located near the Mauna Loa summit region, at depths of 1-3 km, and a deeper group located 4-6 km northwest of the summit, at depths of 5-10 km. After relocation, we found that most of the northwest flank earthquakes occurred along a 1 km planar feature striking about 60o E of North in a thin band about 500 m thick. This feature we interpret to be related to a rift zone that was stunted by the buttressing of the adjacent volcanoes Hualalai and Mauna Kea. Previous gravity and magnetic studies provide supporting evidence for the existence of a failed rift zone. Northwest flank focal mechanisms reveal a change in faulting from strike-slip in the southwest to a mix of strike-slip and normal faulting in the northeast. The near summit seismicity that was previously diffuse (4.5 km in width) is reduced to a 6 km long feature (0.5 km in width) extending from depth (6 km) toward the summit. The focal mechanisms analyzed from the summit events showed a mix of faulting without a consistent pattern. Previous studies at Hengill yielded locations of seismic activity that extend from 2-6 km in depth and no apparent correlation with surface features. The existence of non-double-couple focal mechanisms has been confirmed and attributed to high fluid pressures arising from geothermal activity. With the application of these relocation techniques, we hope to improve the resolution of any existing hypocenter clusters and/or fine scale subsurface structures.
Radar antenna pointing for optimized signal to noise ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter; Marquette, Brandeis
2013-01-01
The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.
NASA Astrophysics Data System (ADS)
Agrawal, A. P.; Carnegie, D. W.; Boerner, W.-M.
This paper presents an evaluation of polarimetric rain backscatter measurements collected with coherent dual polarization radar systems in the X (8.9 GHz) and Q (45GHz) bands, the first being operated in a pulsed mode and the second being a FM-CW system. The polarimetric measurement data consisted for each band of fifty files of time-sequential scattering matrix measurements expressed in terms of a linear (H, V) antenna polarization state basis. The rain backscattering takes place in a rain cell defined by the beam widths and down range distances of 275 ft through 325 ft and the scattering matrices were measured far below the hydrometeoric scattering center decorrelation time so that ensemble averaging of time-sequential scattering matrices may be applied. In the data evaluation great care was taken in determining: (1) polarimetric Doppler velocities associated with the motion of descending oscillating raindrops and/or eddies within the moving swaths of coastal rain showers, and (2) also the properties of the associated co/cross-polarization rain clutter nulls and their distributions on the Poincare polarization sphere.
NASA Astrophysics Data System (ADS)
Ishii, M.; Park, S.
2016-12-01
Constraining elastic properties of the 410- and 660-km discontinuities is crucial for understanding the mantle composition and dynamics. One approach to study the transition zone is to use the "triplicated" arrivals of seismic data. These arrivals consist of three seismic phases that are sensitive to seismic structure slightly above, at, and below the discontinuity. Thus, these data are powerful tools in providing constraints on the depth and velocity jump of the discontinuities with consequences for the studies of mantle composition and relevant phase transitions. One of the most challenging aspects of using the triplication data, however, is to identify the three individual phases that arrive close in time. In order to separate the three phases, we apply Radon transform to short-period seismograms recorded by a dense array of stations. This approach unwraps the triplication pattern, and brings out the high-frequency information that is not easily accessible in the original form of data. Subsequent modeling of the unwrapped data allows velocity jump, depth, and width of the discontinuities to be obtained. This method is applied to study the transition zone around the Kuril subduction zone, a region northeast of Japan. We take advantage of the High-Sensitivity Seismograph Network in Japan that consists of more than 700 stations. These stations provide dense sampling in distance that allows us to capture the triplication pattern. The wave speeds immediately above and below the 410- and 660-km discontinuities as well as their depths and widths are constrained. In general, both discontinuities are depressed compared to the global average, and exhibit finite widths. The width estimates have implications on effects such as the existence of water or melt, and garnet transformations occurring at similar depths as the post-spinel transition.
NASA Astrophysics Data System (ADS)
Burrage, D. M.; Wesson, J. C.; Hwang, P. A.; Wang, D. W.; Wijesekera, H. W.
2016-02-01
Airborne mapping of Sea Surface Salinity (SSS) with L-band radiometers has been practiced for 20 yrs., while global satellite observations began with the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) Satellite launch in 2009. Airborne data with high ( 1km) resolution, but limited coverage, complement the lower resolution ( 35 km at nadir) but global coverage and 3-5 day revisit of SMOS. The record June, 2011 Mississippi R. peak flood, with flows exceeding 42,500 m^3/s, required diversions into Lake Pontchartrain and the Atchafalaya R. to avoid flooding New Orleans and Baton Rouge. The resulting merged outflows formed a single freshwater plume that spanned the Mississippi, Louisiana and Texas `Gulf Coast', and reached up to 300 km across the shelf. SSS was mapped by the NRL airborne Salinity Temperature and Roughness Remote Scanner (STARRS) and SMOS radiometers during a two week (2-13 June 2011) campaign immediately following the flood crest. STARRS obtained oblique across-shelf transects spanning the Northern Gulf of Mexico, under-flying SMOS, and shorter zig-zag coastal transects. SSS samples from a ship near the shelf edge agreed well with STARRS and SMOS after applying standard geophysical correction models and roughness corrections from an SSA/SPM E-M model and an advanced wave spectrum. The minimum SMOS footprint size (35 km at nadir), produced a coastal data gap filled by STARRS transects that reached the coast. The 200 km overlap between the two sensors along coincident ground tracks agreed closely near the frontal boundary, with salinity contrasts of 7-15 psu over a 10 km span at the plume edge evident in both data sets. Successive SMOS Level 2 (L2) SSS data swaths obtained at 2-5 day intervals showed the evolution of the plume in three well-separated seaward extensions located near the Mississippi Delta, and well east and west of the Delta. The dispersal of the plume was also detected by SMOS following the airborne campaign.
Definition of a RACK1 Interaction Network in Drosophila melanogaster Using SWATH-MS.
Kuhn, Lauriane; Majzoub, Karim; Einhorn, Evelyne; Chicher, Johana; Pompon, Julien; Imler, Jean-Luc; Hammann, Philippe; Meignin, Carine
2017-07-05
Receptor for Activated protein C kinase 1 (RACK1) is a scaffold protein that has been found in association with several signaling complexes, and with the 40S subunit of the ribosome. Using the model organism Drosophila melanogaster , we recently showed that RACK1 is required at the ribosome for internal ribosome entry site (IRES)-mediated translation of viruses. Here, we report a proteomic characterization of the interactome of RACK1 in Drosophila S2 cells. We carried out Label-Free quantitation using both Data-Dependent and Data-Independent Acquisition (DDA and DIA, respectively) and observed a significant advantage for the Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) method, both in terms of identification of interactants and quantification of low abundance proteins. These data represent the first SWATH spectral library available for Drosophila and will be a useful resource for the community. A total of 52 interacting proteins were identified, including several molecules involved in translation such as structural components of the ribosome, factors regulating translation initiation or elongation, and RNA binding proteins. Among these 52 proteins, 15 were identified as partners by the SWATH strategy only. Interestingly, these 15 proteins are significantly enriched for the functions translation and nucleic acid binding. This enrichment reflects the engagement of RACK1 at the ribosome and highlights the added value of SWATH analysis. A functional screen did not reveal any protein sharing the interesting properties of RACK1, which is required for IRES-dependent translation and not essential for cell viability. Intriguingly however, 10 of the RACK1 partners identified restrict replication of Cricket paralysis virus (CrPV), an IRES-containing virus. Copyright © 2017 Kuhn et al.
Roemmelt, Andreas T; Steuer, Andrea E; Poetzsch, Michael; Kraemer, Thomas
2014-12-02
Forensic and clinical toxicological screening procedures are employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques with information-dependent acquisition (IDA) approaches more and more often. It is known that the complexity of a sample and the IDA settings might prevent important compounds from being triggered. Therefore, data-independent acquisition (DIA) methods should be more suitable for systematic toxicological analysis (STA). The DIA method sequential window acquisition of all theoretical fragment-ion spectra (SWATH), which uses Q1 windows of 20-35 Da for data-independent fragmentation, was systematically investigated for its suitability for STA. Quality of SWATH-generated mass spectra were evaluated with regard to mass error, relative abundance of the fragments, and library hits. With the Q1 window set to 20-25 Da, several precursors pass Q1 at the same time and are fragmented, thus impairing the library search algorithms to a different extent: forward fit was less affected than reverse fit and purity fit. Mass error was not affected. The relative abundance of the fragments was concentration dependent for some analytes and was influenced by cofragmentation, especially of deuterated analogues. Also, the detection rate of IDA compared to SWATH was investigated in a forced coelution experiment (up to 20 analytes coeluting). Even using several different IDA settings, it was observed that IDA failed to trigger relevant compounds. Screening results of 382 authentic forensic cases revealed that SWATH's detection rate was superior to IDA, which failed to trigger ∼10% of the analytes.
A Statistical Study of Solar Sources of Wide Coronal Mass Ejections in 2011
NASA Astrophysics Data System (ADS)
Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Makela, P. A.; Xie, H.; Olmedo, O. A.
2013-12-01
Solar surface signatures of coronal mass ejections (CMEs) are flares, filament eruptions/disappearances, EUVI waves, dimmings, and post-eruption arcades. After the SDO launch we have an excellent opportunity to investigate the solar sources of CMEs because of the high spatial- and temporal-resolution images from SDO/AIA and multiple views from SOHO, SDO, and STEREO-A/B. We examined the solar sources of all wide CMEs (width ≥ 60°) observed by either SOHO/LASCO or STEREO/SECCHI in 2011. Out of the 597 wide CMEs identified, 322 (54%) were associated with active region flares (FLs) and 164 (27%) with eruptive quiescent prominences (EPs). In 88 cases (15%) only EUV dimmings (DIMs) were observed. For the remaining 23 (4%) CMEs we were not able to identify the solar sources (UNK), i.e. they were stealth CMEs. The average speed and width of the CMEs are, 481 km/s and 115° for FLs, 349 km/s and 90° for EPs, 270 km/s and 78° for DIMs, and 171 km/s and 90° for UNKs, respectively. According to Ma et al. (2010), one third of CMEs observed by STEREO-A/B from 2009 Jan. 1 to Aug. 31 was categorized as stealth CMEs. Our study shows that the rate of stealth CMEs is much smaller for wide CMEs. We also compared the average appearance latitude of CMEs between the stealth and all wide CMEs and found that the stealth CMEs appeared from higher latitude (48°) than the general population (35°). Reference: Ma et al. (2010) ApJ, 722, 289
NASA Astrophysics Data System (ADS)
Soomere, Tarmo; Berezovski, Mihhail; Quak, Ewald; Viikmäe, Bert
2011-10-01
We address possibilities of minimising environmental risks using statistical features of current-driven propagation of adverse impacts to the coast. The recently introduced method for finding the optimum locations of potentially dangerous activities (Soomere et al. in Proc Estonian Acad Sci 59:156-165, 2010) is expanded towards accounting for the spatial distributions of probabilities and times for reaching the coast for passively advecting particles released in different sea areas. These distributions are calculated using large sets of Lagrangian trajectories found from Eulerian velocity fields provided by the Rossby Centre Ocean Model with a horizontal resolution of 2 nautical miles for 1987-1991. The test area is the Gulf of Finland in the northeastern Baltic Sea. The potential gain using the optimum fairways from the Baltic Proper to the eastern part of the gulf is an up to 44% decrease in the probability of coastal pollution and a similar increase in the average time for reaching the coast. The optimum fairways are mostly located to the north of the gulf axis (by 2-8 km on average) and meander substantially in some sections. The robustness of this approach is quantified as the typical root mean square deviation (6-16 km) between the optimum fairways specified from different criteria. Drastic variations in the width of the `corridors' for almost optimal fairways (2-30 km for the average width of 15 km) signifies that the sensitivity of the results with respect to small changes in the environmental criteria largely varies in different parts of the gulf.
Post-eruptive Submarine Terrace Development of Capelinhos, Azores
NASA Astrophysics Data System (ADS)
Zhongwei Zhao, Will; Mitchell, Neil; Quartau, Rui; Tempera, Fernando; Bricheno, Lucy
2017-04-01
Erosion of the coasts of volcanic islands by waves creates shallow banks, but how erosion proceeds with time to create them and how it relates to wave climate is unclear. In this study, historical and recent marine geophysical data collected around the Capelinhos promontory (western Faial Island, Azores) offer an unusual opportunity to characterize how a submarine terrace developed after the eruption. The promontory was formed in 1957/58 during a Surtseyan eruption that terminated with extensive lava forming new rocky coastal cliffs. Historical measurements of coastline position are supplemented here with coastlines measured from 2004 and 2014 Google Earth images in order to characterize coastline retreat rate and distance for lava- and tephra-dominated cliffs. Swath mapping sonars were used to characterize the submarine geometry of the resulting terrace (terrace edge position, gradient and morphology). Limited photographs are available from a SCUBA dive and drop-down camera deployments to ground truth the submarine geomorphology. The results reveal that coastal retreat rates have decreased rapidly with the time after the eruption, possibly explained by the evolving resistance to erosion of cliff base materials. Surprisingly, coastline retreat rate decreases with terrace width in a simple inverse power law with terrace width. We suspect this is only a fortuitous result as wave attenuation over the terrace will not obviously produce the variation, but nevertheless it shows how rapidly the retreat rate declines. Understanding the relationship between terrace widening shelf and coastal cliff retreat rate may be more widely interesting if they can be used to understand how islands evolve over time into abrasional banks and guyots.
Shaded Relief of Rio Sao Francisco, Brazil
2000-02-14
This topographic image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The scrub forest terrain shows relief of about 400 meters (1300 feet). Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. This region has little topographic relief, but even subtle changes in topography have far-reaching effects on regional ecosystems. The image covers an area of 57 km x 79 km and represents one quarter of the 225 km SRTM swath. Colors range from dark blue at water level to white and brown at hill tops. The terrain features that are clearly visible in this image include tributaries of the Sao Francisco, the dark-blue branch-like features visible from top right to bottom left, and on the left edge of the image, and hills rising up from the valley floor. The San Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems. This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning. http://photojournal.jpl.nasa.gov/catalog/PIA02700
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros
2004-01-01
The MODIS Level-3 optical thickness and effective radius cloud product is a gridded l deg. x 1 deg. dataset that is derived from aggregation and subsampling at 5 km of 1 km, resolution Level-2 orbital swath data (Level-2 granules). This study examines the impact of the 5 km subsampling on the mean, standard deviation and inhomogeneity parameter statistics of optical thickness and effective radius. The methodology is simple and consists of estimating mean errors for a large collection of Terra and Aqua Level-2 granules by taking the difference of the statistics at the original and subsampled resolutions. It is shown that the Level-3 sampling does not affect the various quantities investigated to the same degree, with second order moments suffering greater subsampling errors, as expected. Mean errors drop dramatically when averages over a sufficient number of regions (e.g., monthly and/or latitudinal averages) are taken, pointing to a dominance of errors that are of random nature. When histograms built from subsampled data with the same binning rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The results in this paper provide guidance to users of MODIS Level-3 optical thickness and effective radius cloud products on the range of errors due to subsampling they should expect and perhaps account for, in scientific work with this dataset. In general, subsampling errors should not be a serious concern when moderate temporal and/or spatial averaging is performed.
1986-01-25
P-29506BW Range: 1.12 million kilometers (690,000 miles) This high-resolution image of the epsilon ring of Uranus is a clear-filter picture from Voyager's narrow-angle camera and has a resolution of about 10 km (6 mi). The epsilon ring, approx. 100 km (60 mi) wide at this location, clearly shows a structural variation. Visible here are a broad, bright outer component about 40 km (25 mi) wide; a darker, middle region of comparable width; and a narrow, bright inner strip about 15 km (9 mi) wide. The epsilon-ring structure seen by Voyager is similiar to that observed from the ground with stellar-occultation techniques. This frame represents the first Voyager image that resolves these features within the epsilon ring. The occasional fuzzy splotches on the outer and innerparts of the ring are artifacts left by the removal of reseau marks (used for making measurements on the image).
First results from the Giotto magnetometer experiment at comet Halley
NASA Technical Reports Server (NTRS)
Neubauer, F. M.; Glassmeier, K. H.; Pohl, M.; Raeder, J.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.
1986-01-01
The Giotto magnetometer experiment at comet Halley has for the first time provided magnetic field measurements in all the important spatial regions characterizing the front-side interaction between the solar-wind magnetoplasma and a cometary atmosphere. Upstream waves of cometary origin have been observed at distances greater than two million km from the comet, both inbound and outbound. A cometary bow shock has been identified at 1.15 million inbound on the dawn side and a thick quasi-parallel cometary bow shock outbound. A turbulent magnetosheath has been observed further inside. A magnetic pile-up region has been identified inside 135,000 km, inbound, and 263,000 km, outbound, with fields up to 57 and 65 nT, respectively. A cavity region with essentially zero magnetic field has been discovered, with a width of 8500 km along the trajectory around closest approach.
Wide swath imaging spectrometer utilizing a multi-modular design
Chrisp, Michael P.
2010-10-05
A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.
NASA Technical Reports Server (NTRS)
2005-01-01
1 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an impact crater cut by troughs which formed after the crater formed. The crater and troughs have large windblown ripples on their floors. The ripples, troughs, craters, and other surfaces in this scene have all been mantled by dust. Dark streaks on slopes indicate areas where avalanches of dry dust have occurred. These features are located on Sacra Mena, a large mesa in the Kasei Valles region. Location near: 25.4oN, 66.8oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern AutumnSchmidt, Tom L.; Barton, Nicholas H.; Rašić, Gordana; Turley, Andrew P.; Montgomery, Brian L.; Iturbe-Ormaetxe, Inaki; Cook, Peter E.; Ryan, Peter A.; Ritchie, Scott A.; Hoffmann, Ary A.; O’Neill, Scott L.
2017-01-01
Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100–200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation. PMID:28557993
Schmidt, Tom L; Barton, Nicholas H; Rašić, Gordana; Turley, Andrew P; Montgomery, Brian L; Iturbe-Ormaetxe, Inaki; Cook, Peter E; Ryan, Peter A; Ritchie, Scott A; Hoffmann, Ary A; O'Neill, Scott L; Turelli, Michael
2017-05-01
Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100-200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation.
Diakaridia, Sanogo; Pan, Yue; Xu, Pengbai; Zhou, Dengwang; Wang, Benzhang; Teng, Lei; Lu, Zhiwei; Ba, Dexin; Dong, Yongkang
2017-07-24
In distributed Brillouin optical fiber sensor when the length of the perturbation to be detected is much smaller than the spatial resolution that is defined by the pulse width, the measured Brillouin gain spectrum (BGS) experiences two or multiple peaks. In this work, we propose and demonstrate a technique using differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) based on double-peak BGS to enhance small-scale events detection capability, where two types of single mode fiber (main fiber and secondary fiber) with 116 MHz Brillouin frequency shift (BFS) difference have been used. We have realized detection of a 5-cm hot spot at the far end of 24-km single mode fiber by employing a 50-cm spatial resolution DPP-BOTDA with only 1GS/s sampling rate (corresponding to 10 cm/point). The BFS at the far end of 24-km sensing fiber has been measured with 0.54 MHz standard deviation which corresponds to a 0.5°C temperature accuracy. This technique is simple and cost effective because it is implemented using the similar experimental setup of the standard BOTDA, however, it should be noted that the consecutive small-scale events have to be separated by a minimum length corresponding to the spatial resolution defined by the pulse width difference.
Flora: A Proposed Hyperspectral Mission
NASA Technical Reports Server (NTRS)
Ungar, Stephen; Asner, Gregory; Green, Robert; Knox, Robert
2006-01-01
In early 2004, one of the authors (Stephen Ungar, NASA GSFC) presented a mission concept called "Spectrasat" at the AVIRIS Workshop in Pasadena, CA. This mission concept grew out of the lessons learned from the Earth Observing-One (EO-1) Hyperion Imaging Spectrometer and was structured to more effectively accomplish the types of studies conducted with Hyperion. The Spectrasat concept represented an evolution of the technologies and operation strategies employed on EO-I. The Spectrasat concept had been preceded by two community-based missions proposed by Susan Ustin, UC Davis and Robert Green, NASA JPL. As a result of community participation, starting at this AVIRIS Workshop, the Spectrasat proposal evolved into the Flora concept which now represents the combined visions of Gregory Asner (Carnegie Institute), Stephen Ungar, Robert Green and Robert Knox, NASA GSFC. Flora is a proposed imaging spectrometer mission, designed to address global carbon cycle science issues. This mission centers on measuring ecological disturbance for purposes of ascertaining changes in global carbon stocks and draws heavily on experience gained through AVIRIS airborne flights and Hyperion space born flights. The observing strategy exploits the improved ability of imaging spectrometers, as compared with multi-spectral observing systems, to identify vegetation functional groups, detect ecosystem response to disturbance and assess the related discovery. Flora will be placed in a sun synchronous orbit, with a 45 meter pixel size, a 90 km swath width and a 31 day repeat cycle. It covers the spectral range from 0.4 to 2.5 micrometers with a spectral sampling interval of 10 nm. These specifications meet the needs of the Flora science team under the leadership of Gregory Asner. Robert Green, has introduced a spectrometer design for Flora which is expected to have a SNR of 600: 1 in the VNIR and 450: 1 in the SWIR. The mission team at NASA GSFC is designing an Intelligent Payload Module (IPM) designed to effectively reduce the volume of data required to be transmitted down to the ground. This paper discusses mission science objectives, describes the mission concept and presents the current status of possible funding opportunities leading to realization of the mission.
Large-scale phenomena, chapter 3, part D
NASA Technical Reports Server (NTRS)
1975-01-01
Oceanic phenomena with horizontal scales from approximately 100 km up to the widths of the oceans themselves are examined. Data include: shape of geoid, quasi-stationary anomalies due to spatial variations in sea density and steady current systems, and the time dependent variations due to tidal and meteorological forces and to varying currents.
Observations of the 10-micron natural laser emission from the mesospheres of Mars and Venus
NASA Technical Reports Server (NTRS)
Espenak, F.; Deming, D.; Jennings, D.; Kostiuk, T.; Mumma, M.; Zipoy, D.
1983-01-01
Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74 percent of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 + or - 10 K.
The Effects of Walking Workstations on Biomechanical Performance.
Grindle, Daniel M; Baker, Lauren; Furr, Mike; Puterio, Tim; Knarr, Brian; Higginson, Jill
2018-04-03
Prolonged sitting has been associated with negative health effects. Walking workstations have become increasingly popular in the workplace. There is a lack of research on the biomechanical effect of walking workstations. This study analyzed whether walking while working alters normal gait patterns. Nine participants completed four walking trials at 2.4 km·h -1 and 4.0 km·h -1 : baseline walking condition, walking while performing a math task, a reading task, and a typing task. Biomechanical data were collected using standard motion capture procedures. The first maximum vertical ground reaction force, stride width, stride length, minimum toe clearance, peak swing hip abduction and flexion angles, peak swing and stance ankle dorsiflexion and knee flexion angles were analyzed. Differences between conditions were evaluated using analysis of variance tests with Bonferroni correction (p ≤ 0.05). Stride width decreased during the reading task at both speeds. Although other parameters exhibited significant differences when multitasking, these changes were within the normal range of gait variability. It appears that for short periods, walking workstations do not negatively impact gait in healthy young adults.
Observations of the 10 micrometer natural laser emission from the mesospheres of Mars and Venus
NASA Technical Reports Server (NTRS)
Deming, D.; Espenak, F.; Jennings, D.; Kostiuk, T.; Mumma, M. J.
1983-01-01
Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74% of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 + or - 10 K.
Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe
NASA Astrophysics Data System (ADS)
Pak Hong, Y. R.
2016-12-01
nfectious diseases have become a rising challenge to mankind in a globalizing world. Yet, little is known about the inland transmission of infectious diseases in history. In this study, we based on the spatio-temporal information of 5559 plague (Yersinia pestis) outbreaks in Europe and its neighboring regions in AD1347-1760 to statistically examine the connection between navigable rivers and plague outbreak. Our results showed that 95.5% of plague happened within 10km proximity of navigable rivers. Besides, the count of plague outbreak was positively correlated with the width of river and negatively correlated with the distance between city and river. This association remained robust in different regression model specifications. An increase of 100m in the width of river and a shortening of 1km distance between city and river resulted in 9 and 0.96 more plague outbreaks in our study period, respectively. We suggested that trade and transportation brought by river was an important medium for the spread and recurrence of plague in pre-industrial Europe.
NASA Astrophysics Data System (ADS)
Cook, K. L.; Suppe, J.
2009-12-01
The 1999 magnitude 7.6 Chi-Chi earthquake resulted in significant surface uplift along the rupture zone in western Taiwan. At northeastern-most end of the rupture zone, near the town of Cholan, motion on the Chelungpu fault was accommodated by growth of the Tungshi Anticline, resulting in up to 10m of surface uplift in the channel of the Da’an River. Where the river crosses the anticline, the zone of uplift is approximately 1 km wide, with a gently sloping downstream (western) limb about 400 m long and an abrupt upstream (eastern) limb less than 50 m long. The bedrock consists of the Pliocene Cholan Formation, composed of alternating sandstone, siltstone, and mudstone beds. The bedrock is quite weak and is also pervasively fractured, making it extremely easy to erode. In response to the 1999 uplift, the Da’an River has cut a dramatic gorge, with more than 20 m of incision over a very short period. The rapid pace of incision allows us to directly observe how factors such as lithology, structure, and discharge influence the evolution of an actively incising gorge. We use a series of aerial photographs to map out the development of the gorge since 1999. We monitor the more recent evolution of the system with RTK GPS surveys to measure channel profiles, laser rangefinder measurements of channel width, and terrestrial LIDAR surveys to quantify changes in the gorge walls. The channel can currently be divided into four segments: 1) A broad network of braided alluvial channels upstream of the gorge with an average slope of 1.5 cm/km, 2) A steep knickzone about 600 m long with an average slope of 2.7 cm/km, about 8 meters of ‘excess’ incision, and abundant bedrock in the channel, 3) A lower gorge zone with low slopes, averaging between 0.6 and 1.1 cm/km, a significant amount of aggradation, and relatively narrow width, as flow is confined to the incised gorge, and 4) A broad network of braided alluvial channels downstream of the gorge with an average slope of 1.5 cm/km. The morphology of the gorge is heavily influenced by structure and lithology. Individual waterfalls within the knickzone are localized on thick beds of the more resistant sandstone, and the propagation and morphology of knickpoints have been influenced by lithologic variations and by changes in the dip of the bedding across the anticline. Steep fractures within the bedrock play a significant role in channel widening, which occurs primarily by wall collapse, particularly where the fractures dip toward the channel wall. The extremely rapid erosion rates in the gorge also provide an excellent opportunity to examine the co-evolution of channel slope and channel width in the lower section of the gorge. The presence of large amounts of bedload in the channel allow for rapid adjustment of channel slope in the wake of the knickpoint; however, the slope within the lower part of the gorge remains shallower than the reaches above and below the gorge by 0.4 to 0.9 cm/km, illustrating the influence of channel width on streampower and equilibrium slope. We expect that as the gorge continues to widen, the slopes in this segment of the gorge will steepen.
What Controls the Hydrodynamics of the Central Congo River?
NASA Astrophysics Data System (ADS)
O'Loughlin, F.; Bates, P. D.
2014-12-01
Despite being the second largest river basin in the world, with a drainage area greater than 3.7 million square kilometres, little is known about the hydraulics of the Congo River. This lack of knowledge is mainly due to a mixture of conflicts and the difficulty of accessing existing data. We present results of studies which have focused primarily on the middle reach of the Congo River, located between Kisangani and Kinshasa, and its six main tributaries (Kasai, Ubangai, Sangha, Ruki, Lulonga and Lomami rivers). Through a combination of remotely sensed datasets and a hydrodynamic model we investigated what factors control the hydrodynamics of the middle reach. From the analysis of the remotely sensed datasets, we discover that variability in river width of the middle reach of the Congo is large and cannot be represented by empirical equations which relate channel geometry to basin area and discharge. Water surface slopes vary from 3.5 cm/km to 9 cm/km, which is far more than previous studies suggest. The remote datasets indicate that there exist 5 large constrictions in the river width which may result in backwater affecting between 11 and 33 percent of middle reach at low and high water respectively. These results were corroborated by the hydrodynamic model. In fact, when all constrictions caused by a narrowing in width of 1 km or more are considered, water levels along 43 percent of the middle reach change by at least 0.5 m. Using the hydrodynamic model we also investigated the importance of the wetlands to the attenuation of the flood wave through the system. Initial results suggest that for the Congo River, floodplains have far more impact on the peak magnitude than the timing of the flood wave. When the model was run with no floodplain interactions an increase in the magnitude of flood peak was observed, with the timing of the waves being consistent with observed measurements.
MOLECULAR GAS VELOCITY DISPERSIONS IN THE ANDROMEDA GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldú-Primo, Anahi; Schruba, Andreas, E-mail: caldu@mpia.de, E-mail: schruba@mpe.mpg.de
In order to characterize the distribution of molecular gas in spiral galaxies, we study the line profiles of CO (1 – 0) emission in Andromeda, our nearest massive spiral galaxy. We compare observations performed with the IRAM 30 m single-dish telescope and with the CARMA interferometer at a common resolution of 23 arcsec ≈ 85 pc × 350 pc and 2.5 km s{sup −1}. When fitting a single Gaussian component to individual spectra, the line profile of the single dish data is a factor of 1.5 ± 0.4 larger than the interferometric data one. This ratio in line widths ismore » surprisingly similar to the ratios previously observed in two other nearby spirals, NGC 4736 and NGC 5055, but measured at ∼0.5–1 kpc spatial scale. In order to study the origin of the different line widths, we stack the individual spectra in five bins of increasing peak intensity and fit two Gaussian components to the stacked spectra. We find a unique narrow component of FWHM = 7.5 ± 0.4 km s{sup −1} visible in both the single dish and the interferometric data. In addition, a broad component with FWHM = 14.4 ± 1.5 km s{sup −1} is present in the single-dish data, but cannot be identified in the interferometric data. We interpret this additional broad line width component detected by the single dish as a low brightness molecular gas component that is extended on spatial scales >0.5 kpc, and thus filtered out by the interferometer. We search for evidence of line broadening by stellar feedback across a range of star formation rates but find no such evidence on ∼100 pc spatial scale when characterizing the line profile by a single Gaussian component.« less
Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland
NASA Astrophysics Data System (ADS)
Rossi, Matti J.
1997-09-01
An open-channel lava flow of olivine tholeiite basalt, 9 km long and 1-2 km wide, formed in a volcanic eruption that took place in the Krafla volcano, Iceland, on the 4-18 September 1984. The eruption started with emplacement of a pahoehoe sheet which was fed by a 8.5-km-long fissure. After two days of eruption, lava effusion from the fissure ceased but one crater at the northern end of the fissure continued to release lava for another twelve days. That crater supplied an open-channel flow that moved toward the north along the rift valley. The lava was emplaced on a slope of 1°. The final lava flow is composed of five flow facies: (1) the initial pahoehoe sheet; (2) proximal slab pahoehoe and aa; (3) shelly-type overflows from the channel; (4) distal rubbly aa lava; and (5) secondary outbreaks of toothpaste lava and cauliflower aa. The main lava channel within the flow is 6.4 km long. The mean width of this channel is 189 m (103 m S.D.). An initial lava channel that forms in a Bingham plastic substance is fairly constant in width. This channel, however, varies in width especially in the proximal part indicating channel erosion. Large drifted blocks of channel walls are found throughout the flow front area and on the top of overflow levees. This suggests that the channel erosion was mainly mechanical. The lava flow has a mean height of 6 m above its surroundings, measured at the flow margins. However, a study of the pre-flow topography indicates that the lava filled a considerable topographic depression. Combined surface and pre-flow profiles give an average lava-flow thickness of 11 m; the thickness of the initial sheet-flow is estimated as 2 m. The volume of the lava flow calculated from these figures is 0.11 km 3. The mean effusion rate was 91 m 3/s. When lava flow models are used to deduce the rheological properties of this type of lava flow, the following points must be considered: (1) when a lava flow is emplaced along tectonic lineaments, its depth and volume may be significantly larger than what the surface exposure suggests; (2) lava channels may become severely eroded during channel flow even if a lava flow was formed in a relatively short time; (3) the levee dimensions, and hence lava flow dimensions, may be significantly altered by extensive overflows.
1984 Ivanovo tornado outbreak: Determination of actual tornado tracks with satellite data
NASA Astrophysics Data System (ADS)
Chernokulsky, Alexander; Shikhov, Andrey
2018-07-01
The 1984 Ivanovo tornado outbreak is one of the most fatal tornado events in Europe with previously unspecified tornado track characteristics. In this paper, we used Landsat images to discover tornado-induced forest disturbances and restore actual characteristics of tornadoes during the outbreak. We defined boundaries of tornado-induced windthrows by visual comparison of satellite images and specified them with Normalized Difference Infrared Index. We confirmed the occurrence of eight tornadoes during the outbreak and determined their location, path width and length. Other tornadoes occurrence during the outbreak was discussed. Fujita-scale intensity of confirmed tornadoes was estimated based on the related literature corpus including previously omitted sources. In addition, information on tornado path lengths and widths was used to estimate minimal tornado intensity for those tornadoes that passed no settlements. In total, the Ivanovo outbreak includes 8-13 tornadoes with F-scale rating mean ranges from 1.8-2.5 and has adjusted Fujita length around 540 km, which makes the outbreak one the strongest in Europe and places it within the upper quartile of U.S. outbreaks. Characteristics of certain tornadoes within the Ivanovo outbreak are exceptional for Russia. The widest tornado path during the Ivanovo outbreak is 1740 m; the longest is from 81.5-85.9 km. With the example of the Ivanovo outbreak, we showed that existing databases on historical Russian tornadoes tend to overestimate tornado path length (for very long tornadoes) and underestimate maximum tornado path width.
NASA Astrophysics Data System (ADS)
Kervalishvili, Guram; Stolle, Claudia; Xiong, Chao
2016-04-01
ESA's constellation mission Swarm was successfully launched on 22 November 2013. The three satellites achieved their final constellation on 17 April 2014 and since then Swarm-A and Swarm-C orbiting the Earth at about 470 km (flying side-by-side) and Swarm-B at about 520 km altitude. The satellites carry instruments to monitor the F-region electron density with a sampling frequency of 2 Hz. This paper will present a detection algorithm for low-latitude post-sunset plasma bubbles (depletions), which uses local minima and maxima to detect depletions directly from electron density readings from Swarm. Our analyses were performed in the magnetic latitude (MLat) and local time (MLT) coordinate system. The detection procedure also captures the amplitude of depletion, which is called depth in the following. The width of a bubble corresponds to the length the satellite is located inside a depletion. We discuss the global distribution of depth and width of plasma bubbles and its seasonal and local time dependence for all three Swarm satellites from April 2015 through September 2015. As expected, on global average the bubble occurrence rate is highest for combined equinoxes (Mar, Apr, Sep, and Oct) and smallest for June solstice (May, Jun, Jul, and Aug). MLT distribution of the bubble occurrence number shows a sharp increase at about 19 MLT and decreases towards post-midnight hours. Interestingly, there is an inverse relation between depth and width of bubbles as function of MLT. This is true for all seasons and for all Swarm satellites. The bubble depth (width) is decreasing (increasing) from post-sunset to post-midnight for December solstice (Jan, Feb, Nov, and Dec) and combined equinoxes with about the same amplitude values for bubbles depth (width). Therefore we suggest that at post midnight when the depletions are less steep the structures of the depletions is broader than early after sunset. However for June solstice the depletions are less deep and the bubble depth and width do not change significantly throughout the evening. Deepest depletions occur at around +/- 10° magnetic latitude that is at the inner edge of the ionisation anomaly with density maxima at around 15° MLat. Therefore, the level of background electron density does not only determine the depth of a post-sunset depletion.
Development of a Near-Real Time Hail Damage Swath Identification Algorithm for Vegetation
NASA Technical Reports Server (NTRS)
Bell, Jordan R.; Molthan, Andrew L.; Schultz, Lori A.; McGrath, Kevin M.; Burks, Jason E.
2015-01-01
The Midwest is home to one of the world's largest agricultural growing regions. Between the time period of late May through early September, and with irrigation and seasonal rainfall these crops are able to reach their full maturity. Using moderate to high resolution remote sensors, the monitoring of the vegetation can be achieved using the red and near-infrared wavelengths. These wavelengths allow for the calculation of vegetation indices, such as Normalized Difference Vegetation Index (NDVI). The vegetation growth and greenness, in this region, grows and evolves uniformly as the growing season progresses. However one of the biggest threats to Midwest vegetation during the time period is thunderstorms that bring large hail and damaging winds. Hail and wind damage to crops can be very expensive to crop growers and, damage can be spread over long swaths associated with the tracks of the damaging storms. Damage to the vegetation can be apparent in remotely sensed imagery and is visible from space after storms slightly damage the crops, allowing for changes to occur slowly over time as the crops wilt or more readily apparent if the storms strip material from the crops or destroy them completely. Previous work on identifying these hail damage swaths used manual interpretation by the way of moderate and higher resolution satellite imagery. With the development of an automated and near-real time hail swath damage identification algorithm, detection can be improved, and more damage indicators be created in a faster and more efficient way. The automated detection of hail damage swaths will examine short-term, large changes in the vegetation by differencing near-real time eight day NDVI composites and comparing them to post storm imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua and Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi NPP. In addition land surface temperatures from these instruments will be examined as for hail damage swath identification. Initial validation of the automated algorithm is based upon Storm Prediction Center storm reports but also the National Severe Storm Laboratory (NSSL) Maximum Estimated Size Hail (MESH) product. Opportunities for future work are also shown, with focus on expansion of this algorithm with pixel-based image classification techniques for tracking surface changes as a result of severe weather.
Remarkably Consistent Thermal State of the south Central Chile Subduction Zone from 36°S to 45°S
NASA Astrophysics Data System (ADS)
Rotman, H.; Spinelli, G. A.
2013-12-01
Delineating the rupture areas of large subduction zone earthquakes is necessary for understanding the controls on seismic and aseismic slip on faults. For the largest recorded earthquake, an event in south central Chile in 1960 with moment magnitude 9.5, the rupture area is only loosely defined due to limitations in the global seismic network at the time. The rupture extends ~900 km along strike on the margin. Coastal deformation is consistent with either a constant rupture width of ~200 km along the entire length, or a much narrower width (~115 km) for the southern half of the rupture. A southward narrowing of the seismogenic zone has been hypothesized to result from warming of the subduction zone to the south, where the subducting plate is younger. Here, we present results of thermal models at 36°S, 38°S, 43°S, and 45°S to examine potential along-strike changes the thermal state of the margin. We find that temperatures in the subduction zone are strongly affected by both fluid circulation in the high permeability upper oceanic crust and frictional heating on the plate boundary fault. Hydrothermal circulation preferentially cools transects with young subducting lithosphere; frictional heating preferentially warms transects with older subducting lithosphere. The combined effects of frictional heating and hydrothermal circulation increase decollement temperatures in the 36°S and 38°S transects by up to ~155°C, and decrease temperatures in the 45°S transect by up to ~150°C. In our preferred models, decollement temperatures 200 km landward of the trench in all four transects are ~350-400°C. This is consistent with a constant ~200 km wide seismogenic zone for the 1960 Mw 9.5 rupture, with decreasing slip magnitude in the southern half of the rupture.
Moulin, Bertrand; Schenk, Edward R.; Hupp, Cliff R.
2011-01-01
A 177 river km georeferenced aerial survey of in-channel large wood (LW) on the lower Roanoke River, NC was conducted to determine LW dynamics and distributions on an eastern USA low-gradient large river. Results indicate a system with approximately 75% of the LW available for transport either as detached individual LW or as LW in log jams. There were approximately 55 individual LW per river km and another 59 pieces in log jams per river km. Individual LW is a product of bank erosion (73% is produced through erosion) and is isolated on the mid and upper banks at low flow. This LW does not appear to be important for either aquatic habitat or as a human risk. Log jams rest near or at water level making them a factor in bank complexity in an otherwise homogenous fine-grained channel. A segmentation test was performed using LW frequency by river km to detect breaks in longitudinal distribution and to define homogeneous reaches of LWfrequency. Homogeneous reaches were then analyzed to determine their relationship to bank height, channel width/depth, sinuosity, and gradient. Results show that log jams are a product of LW transport and occur more frequently in areas with high snag concentrations, low to intermediate bank heights, high sinuosity, high local LW recruitment rates, and narrow channel widths. The largest concentration of log jams (21.5 log jams/km) occurs in an actively eroding reach. Log jam concentrations downstream of this reach are lower due to a loss of river competency as the channel reaches sea level and the concurrent development of unvegetated mudflats separating the active channel from the floodplain forest. Substantial LW transport occurs on this low-gradient, dam-regulated large river; this study, paired with future research on transport mechanisms should provide resource managers and policymakers with options to better manage aquatic habitat while mitigating possible negative impacts to human interests.
Lyα vs. fundamental properties of galaxies
NASA Astrophysics Data System (ADS)
Wofford, Aida; Leitherer, Claus; Salzer, John; COS Science Team
2013-03-01
We obtained HST COS Lyα spectroscopy for 20 galaxies that were Hα-selected from the Kitt Peak International Spectroscopic Survey data release. We cover redshifts of z=0.02-0.06 and a broad range in metallicity, reddening, and luminosity. We investigate correlations between the properties of the Lyα-lines and fundamental properties of the galaxies. Our seven emitters have: equivalent widths in the range EW(Lyα)=1-12 Å, i.e., below the completeness limits of higher redshift studies; extinction corrected Lyα/Hα ratios of at most 12-15% of the case B recombination theory value; and O I λ1302 ISM absorptions blueshifted to
Gerrity, Paul C.; Guy, C.S.; Gardner, W.M.
2008-01-01
Natural recruitment of pallid sturgeon Scaphirhynchus albus has not been observed in the Missouri River above Fort Peck Reservoir, Montana, for at least 20 years. To augment the population, age-1 hatchery-reared juvenile pallid sturgeon were released in 1998. The objective of this study was to evaluate the habitat use of these fish and compare it with that of indigenous shovelnose sturgeon S. platorynchus. Twenty-nine juvenile pallid sturgeon and 21 indigenous shovelnose sturgeon were implanted with radio transmitters in 2003 and 2004. The two species showed no differences in habitat use in terms of mean depth, cross-sectional relative depth, longitudinal relative depth, column velocity, bottom velocity, and channel width. However, there were seasonal differences within both species for cross-sectional relative depth, column velocity, and channel width. Both shovelnose sturgeon and juvenile pallid sturgeon were primarily associated with silt and sand substrate. However, shovelnose sturgeon were associated with gravel and cobble substrate more than juvenile pallid sturgeon. Shovelnose sturgeon and juvenile pallid sturgeon both selected reaches without islands and avoided reaches with islands; the two species also selected main-channel habitat and avoided secondary channels. Mean home range was similar between juvenile pallid sturgeon (15 km; 90% confidence interval, ??5.0 km) and shovelnose sturgeon (16.5 km; ??4.7 km). Spatial distribution differed between the two species, with shovelnose sturgeon using upstream areas more often than juvenile pallid sturgeon. Twenty-eight percent of juvenile pallid sturgeon frequented 60 km of lotie habitat that would be inundated by Fort Peck Reservoir at maximum pool. Stocking juvenile pallid sturgeon can successfully augment the wild pallid sturgeon population in the Missouri River above Fort Peck Reservoir, which is crucial to the long-term recovery of the species. However, water-level management in downstream reservoirs such as Fort Peck can influence the amount of habitat available for pallid sturgeon. ?? Copyright by the American Fisheries Society 2008.
Satake, K.; Wang, K.; Atwater, B.F.
2003-01-01
The 1700 Cascadia earthquake attained moment magnitude 9 according to new estimates based on effects of its tsunami in Japan, computed coseismic seafloor deformation for hypothetical ruptures in Cascadia, and tsunami modeling in the Pacific Ocean. Reports of damage and flooding show that the 1700 Casscadia tsunami reached 1-5 m heights at seven shoreline sites in Japan. Three sets of estimated heights express uncertainty about location and depth of reported flooding, landward decline in tsunami heights from shorelines, and post-1700 land-level changes. We compare each set with tsunami heights computed from six Cascadia sources. Each source is vertical seafloor displacement calculated with a three-dimensional elastic dislocation model, for three sources the rupture extends the 1100 km length of the subduction zone and differs in width and shallow dip; for the other sources, ruptures of ordinary width extend 360-670 km. To compute tsunami waveforms, we use a linear long-wave approximation with a finite difference method, and we employ modern bathymetry with nearshore grid spacing as small as 0.4 km. The various combinations of Japanese tsunami heights and Cascadia sources give seismic moment of 1-9 ?? 1022 N m, equivalent to moment magnitude 8.7-9.2. This range excludes several unquantified uncertainties. The most likely earthquake, of moment magnitude 9.0, has 19 m of coseismic slip on an offshore, full-slip zone 1100 km long with linearly decreasing slip on a downdip partial-slip zone. The shorter rupture models require up to 40 m offshore slip and predict land-level changes inconsistent with coastal paleoseismological evidence. Copyright 2003 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Xu, Yi; Li, Xuelei; Wang, Sheng
2018-05-01
Tengchong is a young volcanic area on the collision boundary between the Indian and Euro-Asian plates of the southeastern Tibetan margin. Holocene volcanoes are concentrated in the Tengchong basin, where they align an N-S trending string-like cluster. To study the magma activity and its relation with the volcanoes, we deployed a passive seismic observation across the volcanic area in northern Tengchong. Using tele-seismic data and receiver function technique, we determined the S-wave velocity structure beneath nine temporary stations. Results show that the Tengchong basin is underlain by prominent low-velocity zones that are associated with the magma chambers of the volcanoes. In the north, a small and less pronounced magma chamber lies beneath two crater lakes, with a depth range of 9-16 km and a lateral width of <8 km. To the south, an interconnected magma chamber is found between the Dayingshan (DYS) volcano and the Dakongshan (DKS) volcanic cluster, with a depth range of 6-15 km and a lateral width of <12 km. In the south, the Laoguipo (LGP) volcano is characterized by anomalous low velocities throughout the upper-mid crust. Combined with other studies, we infer that the DYS volcano shares the same magma chamber with the DKS volcanic cluster, whereas the heat flow beneath the LGP volcano belongs to another thermal system, probably relating to the magma activity beneath the Rehai geothermal field in the south or affected by the intersection between the Tengchong volcanic fault zone and the Dayingjiang fault zone. In addition, mantle intrusion has resulted in the Moho elevation beneath the DKS volcanic cluster, and the thick transition zones on the crust-mantle boundary imply a possible penetration of the heat flow from the uppermost mantle into the lower crust.
The SWATH Concept: Designing Superior Operability into a Surface Displacement Ship
1975-12-01
ACKNOWLEDGMENTS 140 REFERENCES 141 —^f* • ■ " mil,. .„.. • LIST OF FIGURES Page 1 — Artist’s Concept of a 4000-Ton ", WATH Combatant 4 2 ~ The...the design process for SWATH combatants is iterative. At either the feasibility or conceptual stage, the designer starts with a "reasonable" hull...parameters, the multitude of design factors and innumerable combinations thereof constitute a difficult synthesis problem. Because they are
Heat flow anomalies and their interpretation
NASA Astrophysics Data System (ADS)
Chapman, David S.; Rybach, Ladislaus
1985-12-01
More than 10,000 heat flow determinations exist for the earth and the data set is growing steadily at about 450 observations per year. If heat flow is considered as a surface expression of geothermal processes at depth, the analysis of the data set should reveal properties of those thermal processes. They do, but on a variety of scales. For this review heat flow maps are classified by 4 different horizontal scales of 10 n km (n = 1, 2, 3 and 4) and attention is focussed on the interpretation of anomalies which appear with characteristic dimensions of 10 (n - 1) km in the respective representations. The largest scale of 10 4 km encompasses heat flow on a global scale. Global heat loss is 4 × 10 13 W and the process of sea floor spreading is the principal agent in delivering much of this heat to the surface. Correspondingly, active ocean ridge systems produce the most prominent heat flow anomalies at this scale with characteristic widths of 10 3 km. Shields, with similar dimensions, exhibit negative anomalies. The scale of 10 3 km includes continent wide displays. Heat flow patterns at this scale mimic tectonic units which have dimensions of a few times 10 2 km, although the thermal boundaries between these units are sometimes sharp. Heat flow anomalies at this scale also result from plate tectonic processes, and are associated with arc volcanism, back arc basins, hot spot traces, and continental rifting. There are major controversies about the extent to which these surface thermal provinces reflect upper mantle thermal conditions, and also about the origin and evolution of the thermal state of continental lithosphere. Beginning with map dimensions of 10 2 km thermal anomalies of scale 10 1 km, which have a definite crustal origin, become apparent. The origin may be tectonic, geologic, or hydrologic. Ten kilometers is a common wavelength of topographic relief which drives many groundwater flow systems producing thermal anomalies. The largest recognized continental geothermal systems have thermal anomalies 10 1 km wide and are capable of producing hundreds of megawatts of thermal energy. The smallest scale addressed in this paper is 10 1 km. Worldwide interest in exploiting geothermal systems has been responsible for a recent accumulation of heat flow data on the smallest of scales considered here. The exploration nature of the surveys involve 10's of drillholes and reveal thermal anomalies having widths of 10 0 km. These are almost certainly connected to surface and subsurface fluid discharge systems which, in spite of their restricted size, are typically delivering 10 MW of heat to the near surface environment.
Characterizing the SWOT discharge error budget on the Sacramento River, CA
NASA Astrophysics Data System (ADS)
Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.
2013-12-01
The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.
Distribution of the Red Imported Ant, Solenopsis invicta, in Road and Powerline Habitats
Judith H. Stiles; Robert H. Jones
1998-01-01
For early-successional species, road and powerline cuts through forests provide refugia and source populations for invading adjacent forest gaps. Within an 800 km2 forest matrix in South Carolina, we determined if width disturbance frequency or linear features of road and powerline cuts influenced the mound distribution of the red imported fire...
NASA Technical Reports Server (NTRS)
2006-01-01
12 February 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a large landslide deposit on the floor of western Tithonium Chasma. Location near: 4.3oS, 87.9oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern SummerNASA Technical Reports Server (NTRS)
2005-01-01
17 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows mesas and pits formed by sublimation of carbon dioxide of the south polar cap. Location near: 85.8oS, 351.5oW Image width: 2 km (1.2 mi) Illumination from: upper left Season: Southern SummerSilviculture's role in managing boreal forests
Russell T. Graham; Theresa B. Jain
1998-01-01
Boreal forests, which are often undeveloped, are a major source of raw materials for many countries. They are circumpolar in extent and occupy a belt to a width of 1000 km in certain regions. Various conifer and hardwood species ranging from true firs to poplars grow in boreal forests. These species exhibit a wide range of shade tolerance and growth characteristics,...
NASA Technical Reports Server (NTRS)
2005-01-01
26 February 2005 This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows light-toned sedimentary rock outcrops and large dark-toned, windblown ripples in Aram Chaos. Location near: 3.0oN, 20.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern SummerComparison of LSS-IV and LISS-III+LISS-IV merged data for classification of crops
NASA Astrophysics Data System (ADS)
Hebbar, R.; Sesha Sai, M. V. R.
2014-11-01
Resourcesat-1 satellite with its unique capability of simultaneous acquisition of multispectral images at different spatial resolutions (AWiFS, LISS-III and LISS-IV MX / Mono) has immense potential for crop inventory. The present study was carried for selection of suitable LISS-IV MX band for data fusion and its evaluation for delineation different crops in a multi-cropped area. Image fusion techniques namely intensity hue saturation (IHS), principal component analysis (PCA), brovey, high pass filter (HPF) and wavelet methods were used for merging LISS-III and LISS-IV Mono data. The merged products were evaluated visually and through universal image quality index, ERGAS and classification accuracy. The study revealed that red band of LISS-IV MX data was found to be optimal band for merging with LISS-III data in terms of maintaining both spectral and spatial information and thus, closely matching with multispectral LISS-IVMX data. Among the five data fusion techniques, wavelet method was found to be superior in retaining image quality and higher classification accuracy compared to commonly used methods of IHS, PCA and Brovey. The study indicated that LISS-IV data in mono mode with wider swath of 70 km could be exploited in place of 24km LISS-IVMX data by selection of appropriate fusion techniques by acquiring monochromatic data in the red band.
Status of a UAV SAR Designed for Repeat Pass Interferometry for Deformation Measurements
NASA Technical Reports Server (NTRS)
Hensley, Scott; Wheeler, Kevin; Hoffman, Jim; Miller, Tim; Lou, Yunling; Muellerschoen, Ron; Zebker, Howard; Madsen, Soren; Rosen, Paul
2004-01-01
Under the NASA ESTO sponsored Instrument Incubator Program we have designed a lightweight, reconfigurable polarimetric L-band SAR designed for repeat pass deformation measurements of rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes. This radar will be installed on an unmanned airborne vehicle (UAV) or a lightweight, high-altitude, and long endurance platform such as the Proteus. After a study of suitable available platforms we selected the Proteus for initial development and testing of the system. We want to control the repeat track capability of the aircraft to be within a 10 m tube to support the repeat deformation capability. We conducted tests with the Proteus using real-time GPS with sub-meter accuracy to see if pilots could fly the aircraft within the desired tube. Our results show that pilots are unable to fly the aircraft with the desired accuracy and therefore an augmented autopilot will be required to meet these objectives. Based on the Proteus flying altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and 16 km range swath. This radar will have an active electronic beam steering antenna to achieve Doppler centroid stability that is necessary for repeat-pass interferometry (RPI). This paper will present are design criteria, current design and expected science applications.
NASA Astrophysics Data System (ADS)
Elias, Ata; Tapponnier, Paul; Singh, Satish C.; King, Geoffrey C. P.; Briais, Anne; Daëron, Mathieu; Carton, Helene; Sursock, Alexander; Jacques, Eric; Jomaa, Rachid; Klinger, Yann
2007-08-01
On 9 July A.D. 551, a large earthquake, followed by a tsunami, destroyed most of the coastal cities of Phoenicia (modern-day Lebanon). Tripoli is reported to have “drowned,” and Berytus (Beirut) did not recover for nearly 1300 yr afterwards. Geophysical data from the Shalimar survey unveil the source of this event, which may have had a moment magnitude (Mw) of 7.5 and was arguably one of the most devastating historical submarine earthquakes in the eastern Mediterranean: rupture of the offshore, hitherto unknown, ˜100-150-km-long active, east-dipping Mount Lebanon thrust. Deep-towed sonar swaths along the base of prominent bathymetric escarpments reveal fresh, west-facing seismic scarps that cut the sediment-smoothed seafloor. The Mount Lebanon thrust trace comes closest (˜8 km) to the coast between Beirut and Enfeh, where, as 13 14C-calibrated ages indicate, a shoreline-fringing vermetid bench suddenly emerged by ˜80 cm in the sixth century A.D. At Tabarja, the regular vertical separation (˜1 m) of higher fossil benches suggests uplift by three more earthquakes of comparable size since the Holocene sea level reached a maximum ca. 7-6 ka, implying a 1500-1750 yr recurrence time. Unabated thrusting on the Mount Lebanon thrust likely drove the growth of Mount Lebanon since the late Miocene.
Sharma, Neha; D'Sa, Eurico
2008-03-18
The northern Gulf of Mexico is a region that has been frequently impacted in recent years by natural disasters such as hurricanes. The use of remote sensing data such as winds from NASA's QuikSCAT satellite sensor would be useful for emergency preparedness during such events. In this study, the performance of QuikSCAT products, including JPL's latest Level 2B (L2B) 12.5 km swath winds, were evaluated with respect to buoy-measured winds in the Gulf of Mexico for the period January 2005 to February 2007. Regression analyses indicated better accuracy of QuikSCAT's L2B DIRTH, 12.5 km than the Level 3 (L3), 25 km wind product. QuikSCAT wind data were compared directly with buoy data keeping a maximum time interval of 20 min and spatial interval of 0.1° (≈10 km). R² values for moderate wind speeds were 0.88 and 0.93 for L2B, and 0.75 and 0.89 for L3 for speed and direction, respectively. QuikSCAT wind comparisons for buoys located offshore were better than those located near the coast. Hurricanes that took place during 2002-06 were studied individually to obtain regressions of QuikSCAT versus buoys for those events. Results show QuikSCAT's L2B DIRTH wind product compared well with buoys during hurricanes up to the limit of buoy measurements. Comparisons with the National Hurricane Center (NHC) best track analyses indicated QuikSCAT winds to be lower than those obtained by NHC, possibly due to rain contamination, while buoy measurements appeared to be constrained at high wind speeds. This study has confirmed good agreement of the new QuikSCAT L2B product with buoy measurements and further suggests its potential use during extreme weather conditions in the Gulf of Mexico.
The Mentawai forearc sliver off Sumatra: A model for a strike-slip duplex at a regional scale
NASA Astrophysics Data System (ADS)
Berglar, Kai; Gaedicke, Christoph; Ladage, Stefan; Thöle, Hauke
2017-07-01
At the Sumatran oblique convergent margin the Mentawai Fault and Sumatran Fault zones accommodate most of the trench parallel component of strain. These faults bound the Mentawai forearc sliver that extends from the Sunda Strait to the Nicobar Islands. Based on multi-channel reflection seismic data, swath bathymetry and high resolution sub-bottom profiling we identified a set of wrench faults obliquely connecting the two major fault zones. These wrench faults separate at least four horses of a regional strike-slip duplex forming the forearc sliver. Each horse comprises an individual basin of the forearc with differing subsidence and sedimentary history. Duplex formation started in Mid/Late Miocene southwest of the Sunda Strait. Initiation of new horses propagated northwards along the Sumatran margin over 2000 km until Early Pliocene. These results directly link strike-slip tectonics to forearc evolution and may serve as a model for basin evolution in other oblique subduction settings.
NASA Technical Reports Server (NTRS)
Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason
2010-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.
A Cloud and Precipitation Radar System Concept for the ACE Mission
NASA Technical Reports Server (NTRS)
Durden, S. L.; Tanelli, S.; Epp, L.; Jamnejad, V.; Perez, R.; Prata, A.; Samoska, L.; Long, E; Fang, H.; Esteban-Fernandez, D.;
2011-01-01
One of the instruments recommended for deployment on the Aerosol/Cloud/Ecosystems (ACE) mission is a new advanced cloud profiling radar. In this paper, we describe such a radar design, called ACERAD, which has 35- and 94-GHz channels, each having Doppler and dual-polarization capabilities. ACERAD will scan at Ka-band and will be nadir-looking at W-band. To get a swath of 25-30 km, considered the minimum useful for Ka-band, ACERAD needs to scan at least 2 degrees off nadir; this is at least 20 beamwidths, which is quite large for a typical parabolic reflector. This problem is being solved with a Dragonian design; a scaled prototype of the antenna is being fabricated and will be tested on an antenna range. ACERAD also uses a quasi-optical transmission line at W-band to connect the transmitter to the antenna and antenna to the receiver. A design for this has been completed and is being laboratory tested. This paper describes the current ACERAD design and status.
Satellite (SWOT) and Airborne (AirSWOT) Wide-Swath Altimeters to Study the Garonne River
NASA Astrophysics Data System (ADS)
Biancamaria, S.; Rodriguez, E.; Goutal, N.; Ricci, S.; Mognard, N.; Rogel, P.; Le Pape, E.
2013-09-01
The future NASA/CNES Surface Water and Ocean Topography (SWOT) satellite mission will provide global 2D maps of water elevations, water surface volume change and river discharge at an unprecedented resolution. To prepare this mission, airborne campaigns, called AirSWOT, will fly over the Garonne River (and other targets of interest) in 2014. To plan AirSWOT flights over the Garonne, 1D and 2D hydrodynamic models of the 50 km Garonne River reach between Tonneins and La Reole towns developed by the Laboratoire National d'Hydraulique et Environnement (LNHE) will be used. Models outputs will help to validate airborne measurements. After validation, AirSWOT measurements will be assimilated in the models to reduce model errors. Finally, potential algorithms to estimate discharge from AirSWOT and SWOT observations will be tested over this river reach. This paper presents the study domain, the hydrodynamic models and their use in the context of AirSWOT campaigns in France.
Lundgren, Paul; Lu, Zhong
2006-01-01
We analyzed RADARSAT-1 synthetic aperture radar (SAR) data to compute interferometric SAR (InSAR) images of surface deformation at Uzon caldera, Kamchatka, Russia. From 2000 to 2003 approximately 0.15 m of inflation occurred at Uzon caldera, extending beneath adjacent Kikhpinych volcano. This contrasts with InSAR data showing no significant deformation during either the 1999 to 2000, or 2003 to 2004, time periods. We performed three sets of numerical source inversions to fit InSAR data from three different swaths spanning 2000 to 2003. The preferred source model is an irregularly shaped, pressurized crack, dipping ∼20° to the NW, 4 km below the surface. The geometry of this solution is similar to the upper boundary of the geologically inferred magma chamber. Extension of the surface deformation and source to adjacent Kikhpinych volcano, without an eruption, suggests that the deformation is more likely of hydrothermal origin, possibly driven by recharge of the magma chamber.
NASA Technical Reports Server (NTRS)
2005-01-01
2 October 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a view of frozen carbon dioxide in the south polar residual cap of Mars. Much of the south polar residual cap exhibits terrain that resembles stacks of sliced Swiss cheese, but this portion of the cap lacks the typical, circular depressions that characterize much of the region. Carbon dioxide on Mars freezes at a temperature of around 148 Kelvins, which is -125oC or about -193oF. Location near: 87.2oS, 28.4oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringNASA Technical Reports Server (NTRS)
2005-01-01
17 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows kidney bean-shaped pits, and other pits, formed by erosion in a landscape of frozen carbon dioxide. This images shows one of about a dozen different patterns that are common in various locations across the martian south polar residual cap, an area that has been receiving intense scrutiny by the MGS MOC this year, because it is visible on every orbit and in daylight for most of 2005. Location near: 86.9oS, 6.9oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringPatterns and Processes of Width Adjustment to Increased Streamflows in Semi-Alluvial Rivers
NASA Astrophysics Data System (ADS)
Kelly, S. A.; Belmont, P.
2015-12-01
While it is understood that river channel width is determined by fluxes of water and sediment, predictive models of channel width, and especially changes in width under non-stationary conditions, have proven elusive. Classic hydraulic geometry relations commonly used in numerical models and channel design typically scale width as a power law function of discharge, without consideration of bank properties. This study investigates the role of bank material in determining spatial and temporal variability in channel width and widening rates for semi-alluvial rivers that have experienced increases in flow. The 45,000 km2 Minnesota River Basin contains many semi-alluvial rivers that have been rapidly incising into fine-grained glacial deposits over the last 13,400 years in response to a catastrophic base level drop. Large, recent increases in streamflows have caused significant channel widening and migration, exacerbated erosion of channel (alluvial) banks and (consolidated till) bluffs, and dramatically increased sediment supply. Here we leverage multiple decades of aerial photos, repeat lidar surveys, Structure from Motion photogrammetry and sediment gaging to examine past, and predict future, changes in channel width. We use empirical observations and a simple model to examine whether semi-alluvial channels tend toward a single, or multiple, equilibrium channel width(s). Preliminary results suggest that under stationary hydrologic conditions (1930s - 1970s) channel width was relatively consistent among reaches underlain by alluvium versus consolidated till. Since the late 1970s the study area has undergone profound hydrologic changes, with geomorphically-active flows nearly doubling in magnitude. Alluvial reaches widened relatively quickly in response to the increase in flows, whereas reaches underlain by till have not seen the same amount of widening. Aerial lidar-based geomorphic change detection between 2005 - 2012 records channel width changes in response to an extreme flood in 2010 and corroborates the notion that alluvial reaches respond more quickly than do till counterparts. We use a bathymetric map and morphodynamic modeling to explore whether the rates of adjustment simply differ or whether differences in bank strength change the processes governing channel width adjustment.
Curvilinear ridges and related features in southwest Cydonia Mensae, Mars
NASA Technical Reports Server (NTRS)
Parker, Timothy J.; Schneeberger, Dale M.; Pieri, David C.; Saunders, R. Stephen
1987-01-01
Examined is a region on Mars in southwest Cydonia Mensae (32 deg lat., 17 deg long.) just northwest of the lowland/upland boundary escarpment. The dominant morphological features in this region are the clusters of large massifs and plateau outliers (PI), knobby material (K), and smooth lowland plains (Ps). Surrounding the clusters and linking many isolated knobs is a system of curvilinear ridges and arcuate terrain boundaries which tend to separate the massifs and knobs from the smooth plains. Curvilinear ridges are arcuate to nearly linear and smoother in plan than wrinkle ridges and show no apparent correlation with regional structural grain. They are typically 5 to 10 km long but can range from as little as 2 or 3 km to greater than 50 km long. The widths vary from about 100 m to as much as 2 km. Curvilinear ridges are most numerous within 100 km of the lowland/upland boundary escarpment and are associated with massifs and knobby terrain. Arcuate terrain boundaries appear between units of different apparent albedo or arcuate breaks in slope.
NASA Technical Reports Server (NTRS)
Lee, J. S.; Doering, J. P.; Potemra, T. A.; Brace, L. H.
1980-01-01
A study is presented of the ambient photoelectron spectrum below 300 km which includes 500 AE-E orbits observed from Dec. 13, 1975 to Feb. 24, 1976. The daytime photoelectron spectrum from 1 to 100 eV was illustrated by several spectra; high resolution 10-32 eV spectra show the widths of the photoelectron lines and the variation of the linewidth and intensity with altitude. The photoelectron flux below 300 km is constant over a period of several months; the photoelectron lines between 20 and 30 eV are very sharp when the total plasma density is low, but broaden at high altitudes as the plasma density builds up during the day. The photo-electron flux above 300 km had an intensity and energy spectrum characteristic of the 250-300 km region only in the presence of low plasma density at the satellite altitude. The flux at high altitudes was extremely variable 3 h after sunrise as a result of attenuation and energy loss to thermal plasma along the path of escaping electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGregor, B.A.; Garrison, L.E.; Kenyon, N.H.
1985-02-01
GLORIA II long-range side-scan data provide a mosaic of the continental slope in the northern Gulf of Mexico, seaward of the Texas-Louisiana coast. A swath as wide as 30 km and a 10% overlap of the data between parallel track lines provide a continuous picture of the complex slope morphology, which is largely controlled by salt deformation. Morphologic features range from piercement structures approximately 2 km in diameter to basins as much as 30 km across. The GLORIA data delineate the East Breaks submarine slide, where surface lineations are suggestive of deformation features. High-resolution 10 kHz seismic-reflection profiles indicate thatmore » the very irregular surface on the slide has a relief of 10 m. The 3 types of intraslope basins (blocked canyon, interdomal, and collapse) described by A.H. Bouma can be identified on the GLORIA data. The walls of Gyre basin, an example of a blocked canyon, have what are interpreted to be gullies, which are commonly associated with submarine canyons. Another basin downslope has similar gully-like features on the walls, which suggest that it may have been part of the original canyon system. Although many canyon-like features direct the movement of sediment downslope, the present data show that all conduits end in closed basins. No system of basins can be shown to transport sediment across the entire slope between the Mississippi Canyon and the East Breaks slide. Small-scale slumps, which can be identified on the flanks of some of the diapiric structures, also contribute sediments to basins such as Gyre basin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruns, T.R.; Carlson, P.R.; Stevenson, A.J.
1990-05-01
GLORIA images collected from 1986 to 1989 show sea-floor morphology from the shelf break seaward to 400 km in the Gulf of Alaska and a 70-km-wide swath along British Columbia. Along the Aleutian convergent margin sediment is dominantly trapped in mid-slope basins, where few canyons reach the trench. Accretionary wedge structures range from highly discontinuous to long and continuous. The Yakutat transition margin is either extensively cut by dendritic drainages or, at sea-valley mouths, covered by glacially derived sediment. Young structures underlie the slope from Middleton Island to Pamplona Spur, but are absent from Pamplona Spur to Cross Sound. Alongmore » the southeast Alaska transform margin the Queen Charlotte fault is imaged as a narrow linear feature. The fault steps westward at Tuzo Wilson Knolls, which likely is a spreading ridge segment. Large anticlines lie seaward of and trend parallel to the fault. On the abyssal plain off the Shumagin margin inherited structural and bathymetric features trend parallel to magnetic anomalies, and trench parallel features reflect faulting as the ocean plate bends into the trench. To the north, three turbidite systems drain the margin. The Surveyor system begins between Pamplona Spur and Alsek Canyon and empties into the Aleutian Trench. The Chirikof system arises near Cross Sound and ends in turbidite fans south of the Kodiak-Bowie Seamount chain, a relic Chirikov channel that once carried sediment westward to the Aleutian Trench. The Mukluk and Horizon channels start along southeast Alaska and end 1,000 km away on the Tufts abyssal plain.« less
NASA Astrophysics Data System (ADS)
Renqi, L.; Wu, J. E.; Suppe, J.; Kanda, R. V.
2013-12-01
It is well known from seafloor spreading and hotspot data that the Australian plate has moved ~2500km northward in a mantle reference frame since 43Ma, during which time the Pacific plate moved approximately orthogonally ~3000km in a WNW direction. In addition the Australian plate has expanded up to 2000 km as a result of back arc spreading associated with evolving subduction systems on its northern and eastern margins. Here we attempt to account for this plate motion and subduction using new quantitative constraints of mapped slabs of subducted mantle lithosphere underlying the Australian plate and its surroundings. We have mapped a large swath of sub-horizontal slabs in the lower mantle under onshore and offshore NE Australia using global mantle seismic tomography. When restored together with other mapped slabs from the Asia Pacific region, these slabs reveal the existence of a major ocean between NE Australia, E. Asian, and the Pacific at 43 Ma, which we call the East Asian Sea. The southern half of this East Asian Sea was overrun and completely subducted by northward-moving Australia and the expanding Melanesian arcs, and the WNW-converging Pacific. This lost ocean fills a major gap in plate tectonic reconstructions and also constraints the possible motion of the Caroline Sea and New Guinea arcs. Slabs were mapped from MITP08 global P-wave seismic tomography data (Li and Hilst, 2008) and the TX2011 S-wave seismic tomography data (Grand and Simmons, 2011) using Gocad software. The mapped slabs were unfolded to the spherical Earth surface to assess their pre-subduction geometry. Gplates software was used to constrain plate tectonic reconstructions within a fully animated, globally consistent framework.
Precipitation, landsliding, and erosion across the Olympic Mountains, Washington State, USA
NASA Astrophysics Data System (ADS)
Smith, Stephen G.; Wegmann, Karl W.
2018-01-01
In the Olympic Mountains of Washington State, landsliding is the primary surface process by which bedrock and hillslope regolith are delivered to river networks. However, the relative importance of large earthquakes versus high magnitude precipitation events to the total volume of landslide material transported to valley bottoms remains unknown in part due to the absence of large historical earthquakes. To test the hypothesis that erosion is linked to precipitation, approximately 1000 landslides were mapped from Google Earth imagery between 1990 and 2015 along a 15 km-wide × 85 km-long (1250 km2) swath across the range. The volume of hillslope material moved by each slide was calculated using previously published area-volume scaling relationships, and the spatial distribution of landslide volume was compared to mean annual precipitation data acquired from the PRISM climate group for the period 1981-2010. Statistical analysis reveals a significant correlation (r = 0.55; p < 0.001) between total landslide volume and mean annual precipitation, with 98% of landslide volume occurring along the windward, high-precipitation side of the range during the 25-year interval. Normalized to area, this volume yields a basin-wide erosion rate of 0.28 ± 0.11 mm yr- 1, which is similar to previous time-variable estimates of erosion throughout the Olympic Mountains, including those from river sediment yield, cosmogenic 10Be, fluvial terrace incision, and thermochronometry. The lack of large historic earthquakes makes it difficult to assess the relative contributions of precipitation and seismic shaking to total erosion, but our results suggest that climate, and more specifically a sharp precipitation gradient, plays an important role in controlling erosion and landscape evolution over both short and long timescales across the Olympic Mountains.
Megaflutes in a continental shelf setting, Placentia Bay, Newfoundland
NASA Astrophysics Data System (ADS)
Shaw, John; Puig, Pere; Han, Guoqi
2013-05-01
Megaflutes - erosional scours normally found in deep water on continental slopes - were identified in 1978 on sidescan sonograms and seismic reflection profiles from Placentia Bay on the south coast of Newfoundland, Canada. Data from recent extensive multibeam sonar surveys provide an opportunity to describe the morphology and distribution of the megaflutes in detail, and to consider the formative processes. They occur on the east side of the outer bay, at a depth of ~ 200 m, in a 2-3 km-wide swath that continues to the south into Halibut Channel, over a total distance of ~ 100 km. The megaflutes have been formed by removal of a layer of postglacial mud, exposing underlying glaciomarine sediments and releasing a volume of 4.5 km3. They occur in a range of forms, including single, multiple, and coalescent types, and in some areas at least their inception was related to pre-existing pockmarks. Radiocarbon dates from piston cores are used to demonstrate that megaflute formation post-dated ca. 9 ka. Megaflute formation in Placentia Bay has been attributed to a 'reverse flow' from the tsunami generated by the 1929 Grand Banks earthquake, and this is still the accepted hypothesis. We argue that the return flow from a tsunami did not generate the megaflutes, and suggest instead that they could be formed during south-flowing density currents generated when volumes of cold saline water stored in the deep (> 250 m) basins at the head of Placentia Bay are intermittently displaced and spilled south in a shallow channel at the east side of the bay after intense coastal surface dense water formation events, perhaps during very cold winters.
Growth of a Structure Connecting the 2010 M 7.2 El Mayor - Cucapah Rupture with the Elsinore Faul
NASA Astrophysics Data System (ADS)
Donnellan, A.; Parker, J. W.
2015-12-01
The M 7.2 El Mayor - Cucapah earthquake occurred on 4 April 2010 in the northern part of Baja, Mexico. The rupture extended about 120 km from near the northern tip of the Gulf of California to the US - Mexican border south of the Elsinore fault zone. Most of the aftershocks occurred within days of the main event. On 14 June 2010 a M 5.7 late aftershock occurred 8 km southeast of Ocotillo, CA and is the largest aftershock in the sequence. The right-lateral event occurred in a cluster of aftershocks and was followed by its own aftershock sequence. UAVSAR data were collected for a swath covering the aftershock on 13 April, 2010 just after the El Mayor - Cucapah earthquake and before the earthquake on 21 October 2009. The line was reflown 1 July 2010 after the M 5.7 14 June 2010 aftershock. Data have been continued to be collected semi yearly to yearly since then. Repeat Pass Interferomety (RPI) products spanning the aftershock show the growth of a lineament that with an azimuth of 121.5° or a strike of -58.5°. The interferograms suggest that a stepover develops following the earthquake. The epicenter of the M 5.7 aftershock is proximal to the linear discontinuity in the postseismic interferogram and the mechanism of the event is consistent with slip on this stepover. Inversions for slip on the northeast linear structure that steps west of the mainshock rupture yield a moment magnitude ranging from 5.5 - 5.8, which is consistent with the magnitude of the aftershock. Slip occurs at a depth of 2-10 km on a steeply dipping fault.
Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates
NASA Astrophysics Data System (ADS)
Lievens, H.; Reichle, R. H.; Liu, Q.; De Lannoy, G.; Dunbar, R. S.; Kim, S.; Das, N. N.; Cosh, M. H.; Walker, J. P.; Wagner, W.
2017-12-01
SMAP (Soil Moisture Active and Passive) radiometer observations at 40 km resolution are routinely assimilated into the NASA Catchment Land Surface Model (CLSM) to generate the SMAP Level 4 Soil Moisture product. The use of C-band radar backscatter observations from Sentinel-1 has the potential to add value to the radiance assimilation by increasing the level of spatial detail. The specifications of Sentinel-1 are appealing, particularly its high spatial resolution (5 by 20 m in interferometric wide swath mode) and frequent revisit time (6 day repeat cycle for the Sentinel-1A and Sentinel-1B constellation). However, the shorter wavelength of Sentinel-1 observations implies less sensitivity to soil moisture. This study investigates the value of Sentinel-1 data for hydrologic simulations by assimilating the radar observations into CLSM, either separately from or simultaneously with SMAP radiometer observations. To facilitate the assimilation of the radar observations, CLSM is coupled to the water cloud model, simulating the radar backscatter as observed by Sentinel-1. The innovations, i.e. differences between observations and simulations, are converted into increments to the model soil moisture state through an Ensemble Kalman Filter. The assimilation impact is assessed by comparing 3-hourly, 9 km surface and root-zone soil moisture simulations with in situ measurements from 9 km SMAP core validation sites and sparse networks, from May 2015 to 2017. The Sentinel-1 assimilation consistently improves surface soil moisture, whereas root-zone impacts are mostly neutral. Relatively larger improvements are obtained from SMAP assimilation. The joint assimilation of SMAP and Sentinel-1 observations performs best, demonstrating the complementary value of radar and radiometer observations.
NASA Astrophysics Data System (ADS)
Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.
2014-06-01
Repeated Light Detection and Ranging (LiDAR) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 LiDAR-derived dataset of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically-based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the coterminous United States. Independent validation data is scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation dataset with substantial geographic coverage. Within twelve distinctive 500 m × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 LiDAR acquisitions. This supplied a dataset for constraining the uncertainty of upscaled LiDAR estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled LiDAR snow depths were then compared to the SNODAS-estimates over the entire study area for the dates of the LiDAR flights. The remotely-sensed snow depths provided a more spatially continuous comparison dataset and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between LiDAR observations and SNODAS estimates were most drastic, suggesting natural processes specific to these regions as causal influences on model uncertainty.
NASA Astrophysics Data System (ADS)
Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.
2015-01-01
Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage. Within 12 distinctive 500 × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty.
Global Swath and Gridded Data Tiling
NASA Technical Reports Server (NTRS)
Thompson, Charles K.
2012-01-01
This software generates cylindrically projected tiles of swath-based or gridded satellite data for the purpose of dynamically generating high-resolution global images covering various time periods, scaling ranges, and colors called "tiles." It reconstructs a global image given a set of tiles covering a particular time range, scaling values, and a color table. The program is configurable in terms of tile size, spatial resolution, format of input data, location of input data (local or distributed), number of processes run in parallel, and data conditioning.
Development of a synthetic aperture radar design approach for wide-swath implementation
NASA Technical Reports Server (NTRS)
Jean, B. R.
1981-01-01
The first phase of a study program to develop an advanced synthetic aperture radar design concept is presented. Attributes of particular importance for the system design include wide swath coverage, reduced power requirements, and versatility in the selection of frequency, polarization and incident angle. The multiple beam configuration provides imaging at a nearly constant angle of incidence and offers the potential of realizing a wide range of the attributes desired for an orbital imaging radar for Earth resources applications.
NASA Astrophysics Data System (ADS)
Kraft, S.; Bézy, J.-L.; Del Bello, U.; Berlich, R.; Drusch, M.; Franco, R.; Gabriele, A.; Harnisch, B.; Meynart, R.; Silvestrin, P.
2013-10-01
The Fluorescence Explorer (FLEX) mission is currently subject to feasibility (Phase A) study as one of the two candidates of ESA's 8th Earth Explorer opportunity mission. The FLuORescence Imaging Spectrometer (FLORIS) will be an imaging grating spectrometer onboard of a medium sized satellite flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe vegetation fluorescence and reflectance within a spectral range between 500 nm and 780 nm. It will thereby cover the photochemical reflection features between 500 nm and 600 nm, the Chlorophyll absorption band between 600 and 677 nm, and the red-edge in the region from 697 nm to 755 nm being located between the Oxygen A and B absorption bands. By this measurement approach, it is expected that the full spectrum and amount of the vegetation fluorescence radiance can be retrieved, and that atmospheric corrections can efficiently be applied. FLORIS will measure Earth reflected spectral radiance at a relatively high spectral resolution of ~0.3 nm around the Oxygen absorption bands. Other spectral band areas with less pronounced absorption features will be measured at medium spectral resolution between 0.5 and 2 nm. FLORIS will provide imagery at 300 m resolution on ground with a swath width of 150 km. This will allow achieving global revisit times of less than one month so as to monitor seasonal variations of the vegetation cycles. The mission life time is expected to be at least 4 years. The fluorescence retrieval will make use of information coming from OLCI and SLSTR, which are onboard of Sentinel-3, to monitor temperature, to detect thin clouds and to derive vegetation reflectance and information on the aerosol content also outside the FLORIS spectral range. In order to mitigate the technological and programmatic risk of this Explorer mission candidate, ESA has initiated two comprehensive bread-boarding activities, in which the most critical technologies and instrument performance shall be investigated and demonstrated. The breadboards will include representative optics and dispersive elements in a configuration, which is expected to be very close to the instrument flight configuration. This approach follows the guideline to reach, before it goes into the implementation phase, a technology readiness level of at least 5. It thereby requires a demonstration of predicted performance in a configuration, where the basic technological components are integrated with reasonably realistic supporting elements such that it can be tested in a simulated environment. We will report, within the limits of the competitive nature of the industrial studies, on the currently running or planned preparatory activities. We will present the mission configuration, the imposed instrument requirements and the identified instrument concepts as derived by the Phase A studies.
Procedure for locating 10 km UTM grid on Alabama County general highway maps
NASA Technical Reports Server (NTRS)
Paludan, C. T. N.
1975-01-01
Each county highway map has a geographic grid of degrees and tens of minutes in both longitude and latitude in the margins and within the map as intersection crosses. These will be used to locate the universal transverse mercator (UTM) grid at 10 km intervals. Since the maps used may have stretched or shrunk in height and/or width, interpolation should be done between the 10 min intersections when possible. A table of UTM coordinates of 10 min intersections is required and included. In Alabama, all eastings are referred to a false easting of 500,000 m at 87 deg W longitude (central meridian, CM).
Coupled Modeling and Field Approach to Explore Patterns of Barrier Ridge and Swale Development
NASA Astrophysics Data System (ADS)
Ciarletta, D. J.; Lorenzo-Trueba, J.; Shawler, J. L.; Hein, C. J.
2017-12-01
Previous work has suggested the morphologies of barrier ridge and swale systems potentially reflect the environmental conditions under which they developed, especially in response to sediment budget. We use this inference to examine progradational dune systems on barriers along the USA Mid-Atlantic coast, constructing a simple morphodynamic model to capture the magnitude of changes in key processes affecting the pattern of ridge and swale development. Based on our initial investigation, we demonstrate a range of potential morphological patterns generated by the interaction of longshore transport, accommodation, overwash, aeolian sand flux, and vegetation controls. The patterns are based on three basic cross-sectional morphologies describing the spacing and width of ridges. Regularly spaced ridges of roughly equal width are defined as washboards; wide platform-like ridges or complex multi-ridge dunes are described as tables; and wide swaths of open sand or poorly developed dunes are identified as pans. The inclusion of overwash, in competition with the other processes, further allows the creation of infilled swales, or baffled structures, as well as inter-ridge and backbarrier fans/flats. Model outcomes are validated via comparison to observations from barriers in Virginia, Maryland, and New Jersey. In particular, historical (post-1850) mapping of the evolution of the Fishing Point spit (Assateague Island) reveals the ability of the model to approximate the growth of structures seen in the field. We then apply the model to the development of a prehistoric progradational system on Parramore Island, VA, using field stratigraphic/chronologic data to supply input parameters and begin predictively quantifying past changes in longshore transport and accommodation. Our investigations suggest that modeling patterns of ridge and swale development preserved on modern coasts could result in novel approaches to employ barriers as archives of past environmental/climate forcing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, X. Y.; Liu, S. Q.; Su, J. T.
We report a subarcsecond penumbral transient brightening event with the high-spatial resolution observations from the 1.6 m New Solar Telescope (NST), Interface Region Imaging Spectrograph ( IRIS ), and the Solar Dynamics Observatory . The transient brightening, whose thermal energy is in the range of nanoflares, has signatures in the chromosphere, the transient region, and the corona. NST's H α channel reveals the fine structure of the event with a width as narrow as 101 km (0.″14), which is much smaller than the width from the previous observation. The transient brightening lasts for about 3 minutes. It is associated withmore » a redshift of about 17 km s{sup −1}, found in the Si iv 1402.77 Å line and exhibits an inward motion to the umbra with a speed of 87 km s{sup −1}. The small-scale energy released from the event has a multi-temperature component. Spectral analysis of the brightening region from IRIS shows that not only the transition region lines such as Si iv 1402.77 Å and C ii 1334.53 Å, but also the chromospheric Mg ii k 2796.35 Å line are significantly enhanced and broadened. In addition, the event can be found in all the extreme-ultraviolet passbands of the Atmospheric Imaging Assembly and the derived differential emission measure profile increases between 4 and 15 MK (or 6.6 ≤ log T ≤ 7.2) in the transient brightening phase. It is possible that the penumbral transient brightening event is caused by magnetic reconnection.« less
Comparison of Cone Model Parameters for Halo Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Y.-J.; Jang, Soojeong; Lee, Kyoung-Sun; Kim, Hae-Yeon
2013-11-01
Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms, hence their three-dimensional structures are important for space weather. We compare three cone models: an elliptical-cone model, an ice-cream-cone model, and an asymmetric-cone model. These models allow us to determine three-dimensional parameters of HCMEs such as radial speed, angular width, and the angle [ γ] between sky plane and cone axis. We compare these parameters obtained from three models using 62 HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root-mean-square (RMS) error between the highest measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another ( R > 0.8). The correlation coefficients between angular widths range from 0.1 to 0.48 and those between γ-values range from -0.08 to 0.47, which is much smaller than expected. The reason may be the different assumptions and methods. The RMS errors between the highest measured projection speeds and the highest estimated projection speeds of the elliptical-cone model, the ice-cream-cone model, and the asymmetric-cone model are 376 km s-1, 169 km s-1, and 152 km s-1. We obtain the correlation coefficients between the location from the models and the flare location ( R > 0.45). Finally, we discuss strengths and weaknesses of these models in terms of space-weather application.
Line Profile Measurements of the Lunar Exospheric Sodium
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Line, Michael R.; Roesler, Fred L.; Lupie, Olivia L.
2012-01-01
We report ongoing results of a program to measure the lunar sodium exospheric line profile from near the lunar limb out to two lunar radii (approx 3500 km). These observations are conducted from the National Solar Observatory McMath-Pierce telescope using a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,600 (1.7 km/s) to measure line widths and velocity shifts of the Na D2 (5889 950 A) emission line in equatorial and polar regions at different lunar phases. The typical field of view (FOV) is 3 arcmin (approx 360 km) with an occasional smaller 1 arcmin FOV used right at the limb edge. The first data were obtained from full Moon to 3 days following full Moon (waning phase) in March 2009 as part of a demonstration run aimed at establishing techniques for a thorough study of temperatures and velocity variations in the lunar sodium exosphere. These data indicate velocity displacements from different locations off the lunar limb range between 150 and 600 m/s from the lunar rest velocity with a precision of +/- 20 to +/- 50 m/s depending on brightness. The measured Doppler line widths for observations within 10.5 arcmin of the east and south lunar limbs for observations between 5 deg and 40 deg lunar phase imply temperatures ranging decreasing from 3250 +/- 260K to 1175 +/- 150K. Additional data is now being collected on a quarterly basis since March 2011 and preliminary results will be reported.
NASA Astrophysics Data System (ADS)
Lahiri, Siddhartha K.; Sinha, Rajiv
2012-10-01
The Brahmaputra is one of the largest tropical rivers of the world and is located in an area of high structural instability as evidenced from the presence of a large number of earthquakes in the Himalayan catchment through which it flows. Syntectonic evidence of changes in the morphodynamics is difficult to identify for the large rivers. Nevertheless, we note that the Brahmaputra River has become astonishingly large in planform in a historical timescale. Reconstruction of planform changes over a period of 90 years in the upper reaches of the Assam valley shows that the 240-km-long channel belt is widening all along its course in the region. From the average width of 9.74 km in 1915, the channel belt has widened to the average width of 14.03 km in 2005 (44% widening), and in certain reaches the average widening is as high as 250%. However, the bank line shift is not symmetric along both banks. Further, the planform characteristics of the Brahmaputra River reveal significant spatial and temporal variability from upstream to downstream reaches, and we attribute this variability to tectonogeomorphic zonation of the river based on subsurface configuration and channel slope. Further, the tributaries joining the northern and southern banks of the Brahmaputra differ remarkably in terms of river dynamics, and this is attributed to the differences in tectonic regimes of the Himalaya in the north and the Naga Patkai hills in the south.
NASA Astrophysics Data System (ADS)
Contenti, Sean; Gu, Yu Jeffrey; Ökeler, Ahmet; Sacchi, Mauricio D.
2012-01-01
In this study we utilize over 5000 SS waveforms to investigate the high-resolution mantle reflectivity structure down to 1200 km beneath the South American convergent margin. Our results indicate that the dynamics of the Nazca subduction are more complex than previously suggested. The 410- and 660-km seismic discontinuities beneath the Pacific Ocean and Amazonian Shield exhibit limited lateral depth variations, but their depths vary substantially in the vicinity of the subducting Nazca plate. The reflection amplitude of the 410-km discontinuity is greatly diminished in a ˜1300-km wide region in the back-arc of the subducting plate, which is likely associated with a compositional heterogeneity on top of the upper mantle transition zone. The underlying 660-km discontinuity is strongly depressed, showing localized depth and amplitude variations both within and to the east of the Wadati-Benioff zone. The width of this anomalous zone (˜1000 km) far exceeds that of the high-velocity slab structure and suggesting significant slab deformation within the transition zone. The shape of the 660-km discontinuity and the presence of lower mantle reflectivity imply both stagnation and penetration are possible as the descending Nazca slab impinges upon the base of the upper mantle.
NASA Astrophysics Data System (ADS)
Wesley Lauer, J.; Echterling, Caitlyn; Lenhart, Christian; Belmont, Patrick; Rausch, Rachel
2017-11-01
The Minnesota River and major tributaries have experienced large increases in discharge over the past century. Aerial photograph-based measurements of channel width were made for the 1938-2015 period at 16 multibend subreaches by digitizing the area between vegetation lines and dividing by centerline length. Results show considerable increases in width for the main stem (0.62 ± 0.10%/y) and major tributaries (0.31 ± 0.08%/y) but are inconclusive for smaller channels (width < 25 m). Width change for a 146.5-km reach of the lower Minnesota River between 1938 and 2008 is similar to that from the subreach-scale analysis. Widening was associated with lateral centerline movement and temporal change in at-a-station hydraulic geometry for water surface width, indicating that widening is associated with cross-sectional change and not simply upward movement of the vegetation line. Digital elevation model analysis and regional hydraulic geometry show that the main stem and larger tributaries account for the vast majority ( 85%) of bankfull channel volume. High-order channels are thus disproportionately responsible for sediment production through cross section enlargement, although floodplains or off-channel water bodies adjacent to these channels likely represent important sediment sinks. Because channel enlargement can play an important role in sediment production, it should be considered in sediment reduction strategies in the Minnesota River basin and carefully evaluated in other watersheds undergoing long-term increases in discharge.
A highway's road-effect zone for desert tortoises (Gopherus agassizii)
Boarman, W.I.; Sazaki, M.
2006-01-01
Roads and highways can affect populations of animals directly (e.g. due to road mortality) and indirectly (e.g. due to fragmentation of habitat and proliferation of non-native or predatory species). We investigated the effect of roads on threatened desert tortoise (Gopherus agassizii) populations in the Mojave Desert, California, and attempted to determine the width of the road-effect zone by counting tortoise signs along transects at 0, 400, 800, and 1600 m from the edge of a highway. Mean sign count was 0.2/km at 0 m, 4.2/km at 400 m, 5.7/km at 800 m, and 5.4/km at 1600 m from the highway edge. The differences between all pairs of distances, except 800 and 1600 m, were statistically significant, suggesting that tortoise populations in our study area are depressed in a zone extending at least 400 m from roadways. We speculate that the major cause for this depression zone is road mortality.
Kinematics and M(sub v) calibration of K and M dwarf stars using Hipparcos data
NASA Technical Reports Server (NTRS)
Upgren, A. R.; Ratnatunga, K. U.; Casertano, S.; Weis, E.
1997-01-01
The luminosities and kinematics of lower main sequence stars in a spectroscopically selected sample covering spectral types K 3 to M 5 are determined using Hipparcos parallaxes and proper motions. The stars separate into two kinematically distinct components, called young disk and old disk components. The young component has velocity dispersion (30, 17, 12) km/s in the U, V and W directions, respectively, and features an asymmetric drift of 8 km/s, a vertex deviation of 10 +/- 3 deg and an absolute magnitude of 10.48 mag at color (R - I)(sub Kron) = 1.0 mag. The respective features of the old component are: (56, 34, 31) km/s, 28 km/s and 0.6 mag at the same color. The slope and intrinsic width of the magnitude calibration of each component are determined. The analysis is used to investigate the possible presence of residual systematic discrepancies of the model with Hipparcos data. There are indications of a possible underestimation of the parallax errors.
Lambert, Jean-Philippe; Ivosev, Gordana; Couzens, Amber L; Larsen, Brett; Taipale, Mikko; Lin, Zhen-Yuan; Zhong, Quan; Lindquist, Susan; Vidal, Marc; Aebersold, Ruedi; Pawson, Tony; Bonner, Ron; Tate, Stephen; Gingras, Anne-Claude
2013-12-01
Characterizing changes in protein-protein interactions associated with sequence variants (e.g., disease-associated mutations or splice forms) or following exposure to drugs, growth factors or hormones is critical to understanding how protein complexes are built, localized and regulated. Affinity purification (AP) coupled with mass spectrometry permits the analysis of protein interactions under near-physiological conditions, yet monitoring interaction changes requires the development of a robust and sensitive quantitative approach, especially for large-scale studies in which cost and time are major considerations. We have coupled AP to data-independent mass spectrometric acquisition (sequential window acquisition of all theoretical spectra, SWATH) and implemented an automated data extraction and statistical analysis pipeline to score modulated interactions. We used AP-SWATH to characterize changes in protein-protein interactions imparted by the HSP90 inhibitor NVP-AUY922 or melanoma-associated mutations in the human kinase CDK4. We show that AP-SWATH is a robust label-free approach to characterize such changes and propose a scalable pipeline for systems biology studies.
NASA Astrophysics Data System (ADS)
Zhu, Y.; Jin, S.; Tian, Y.; Wang, M.
2017-09-01
To meet the requirement of high accuracy and high speed processing for wide swath high resolution optical satellite imagery under emergency situation in both ground processing system and on-board processing system. This paper proposed a ROI-orientated sensor correction algorithm based on virtual steady reimaging model for wide swath high resolution optical satellite imagery. Firstly, the imaging time and spatial window of the ROI is determined by a dynamic search method. Then, the dynamic ROI sensor correction model based on virtual steady reimaging model is constructed. Finally, the corrected image corresponding to the ROI is generated based on the coordinates mapping relationship which is established by the dynamic sensor correction model for corrected image and rigours imaging model for original image. Two experimental results show that the image registration between panchromatic and multispectral images can be well achieved and the image distortion caused by satellite jitter can be also corrected efficiently.
The Iron Abundance of IOTA Herculis From Ultraviolet Iron Lines
NASA Astrophysics Data System (ADS)
Grigsby, J.; Mulliss, C.; Baer, G.
1995-03-01
We have obtained (Adelman 1992, 1993, private comunication) coadded, high-resolution IUE spectra of Iota Herculis (B3 IV) in both short wavelength (SWP) and long wavelength (LWP) regions. The spectra span the ultraviolet spectrum from 110 - 300 nm and have a SNR of roughly 30 -50; they are described in Adelman et. al. (1993, ApJ 419, 276). Abundance indicators were 54 lines of Fe II and 26 lines of Fe III whose atomic parameters have been measured in the laboratory. LTE synthetic spectra for comparison with observations were produced with the Kurucz model atmosphere and spectral synthesis codes ATLAS9/SYNTHE (Kurucz 1979, ApJS 40,1; Kurucz and Avrett 1981, SAO Special Report 391). Model parameters were chosen from the literature: effective temperature = 17500 K, log g =3.75, v sin i= 11 km/s, and turbulent velocity = 0 km/s. (Peters and Polidan 1985, in IAU Symposium 111, ed. D. S. Hayes et al. (Dordrecht: Reidel), 417). We determined the equivalent widths of the chosen lines by fitting gaussian profiles to the lines and by measuring the equivalent widths of the gaussians. We derived abundances by fitting a straight line to a plot of observed equivalent widths vs. synthetic equivalent widths; we adjusted the iron abundance of the models until a slope of unity was achieved. The abundances derived from the different ionization stages are in agreement: Fe II lines indicate an iron abundance that is 34 +15/-10% the solar value([Fe/H]=-0.47 +0.16-0.15dex), while from Fe III lines we obtain 34 +/- 10% ([Fe/H]=-0.47 +0.11/-0.15 dex). A search of the literature suggests that no previous investigations of this star's iron abundance have found agreement between the different ionization stages. We thank Saul Adelman for his generous assistance, and the Faculty Research Fund Board of Wittenberg University for support of this research.