Ohnishi, Mutsuko; Nakatani, Teruyo; Lanske, Beate; Razzaque, M. Shawkat
2011-01-01
Changes in the expression of klotho, a β-glucuronidase, contribute to the development of features that resemble those of premature aging, as well as chronic renal failure. Klotho knockout mice have increased expression of the sodium/phosphate cotransporter (NaPi2a) and 1α-hydroxylase in their kidneys, along with increased serum levels of phosphate and 1,25-dihydroxyvitamin D. These changes are associated with widespread soft-tissue calcifications, generalized tissue atrophy, and a shorter lifespan in the knockout mice. To determine the role of the increased vitamin D activities in klotho knockout animals, we generated klotho and 1α-hydroxylase double-knockout mice. These double mutants regained body weight and developed hypophosphatemia with a complete elimination of the soft-tissue and vascular calcifications that were routinely found in klotho knockout mice. The markedly increased serum fibroblast growth factor 23 and the abnormally low serum parathyroid hormone levels, typical of klotho knockout mice, were significantly reversed in the double-knockout animals. These in vivo studies suggest that vitamin D has a pathologic role in regulating abnormal mineral ion metabolism and soft-tissue anomalies of klotho-deficient mice. PMID:19225558
Ferguson, Carolyn; Hardy, Steven L; Werner, David F; Hileman, Stanley M; DeLorey, Timothy M; Homanics, Gregg E
2007-01-01
Background The β3 subunit of the γ-aminobutyric acid type A receptor (GABAA-R) has been reported to be important for palate formation, anesthetic action, and normal nervous system function. This subunit has also been implicated in the pathogenesis of Angelman syndrome and autism spectrum disorder. To further investigate involvement of this subunit, we previously produced mice with a global knockout of β3. However, developmental abnormalities, compensation, reduced viability, and numerous behavioral abnormalities limited the usefulness of that murine model. To overcome many of these limitations, a mouse line with a conditionally inactivated β3 gene was engineered. Results Gene targeting and embryonic stem cell technologies were used to create mice in which exon 3 of the β3 subunit was flanked by loxP sites (i.e., floxed). Crossing the floxed β3 mice to a cre general deleter mouse line reproduced the phenotype of the previously described global knockout. Pan-neuronal knockout of β3 was achieved by crossing floxed β3 mice to Synapsin I-cre transgenic mice. Palate development was normal in pan-neuronal β3 knockouts but ~61% died as neonates. Survivors were overtly normal, fertile, and were less sensitive to etomidate. Forebrain selective knockout of β3 was achieved using α CamKII-cre transgenic mice. Palate development was normal in forebrain selective β3 knockout mice. These knockouts survived the neonatal period, but ~30% died between 15–25 days of age. Survivors had reduced reproductive fitness, reduced sensitivity to etomidate, were hyperactive, and some became obese. Conclusion Conditional inactivation of the β3 gene revealed novel insight into the function of this GABAA-R subunit. The floxed β3 knockout mice described here will be very useful for conditional knockout studies to further investigate the role of the β3 subunit in development, ethanol and anesthetic action, normal physiology, and pathophysiologic processes. PMID:17927825
Ueda, Kohei; Nishimoto, Mitsuhiro; Hirohama, Daigoro; Ayuzawa, Nobuhiro; Kawarazaki, Wakako; Watanabe, Atsushi; Shimosawa, Tatsuo; Loffing, Johannes; Zhang, Ming-Zhi; Marumo, Takeshi; Fujita, Toshiro
2017-07-01
Genome-wide analysis of renal sodium-transporting system has identified specific variations of Mendelian hypertensive disorders, including HSD11B2 gene variants in apparent mineralocorticoid excess. However, these genetic variations in extrarenal tissue can be involved in developing hypertension, as demonstrated in former studies using global and brain-specific Hsd11b2 knockout rodents. To re-examine the importance of renal dysfunction on developing hypertension, we generated kidney-specific Hsd11b2 knockout mice. The knockout mice exhibited systemic hypertension, which was abolished by reducing salt intake, suggesting its salt-dependency. In addition, we detected an increase in renal membrane expressions of cleaved epithelial sodium channel-α and T53-phosphorylated Na + -Cl - cotransporter in the knockout mice. Acute intraperitoneal administration of amiloride-induced natriuresis and increased urinary sodium/potassium ratio more in the knockout mice compared with those in the wild-type control mice. Chronic administration of amiloride and high-KCl diet significantly decreased mean blood pressure in the knockout mice, which was accompanied with the correction of hypokalemia and the resultant decrease in Na + -Cl - cotransporter phosphorylation. Accordingly, a Na + -Cl - cotransporter blocker hydrochlorothiazide significantly decreased mean blood pressure in the knockout mice. Chronic administration of mineralocorticoid receptor antagonist spironolactone significantly decreased mean blood pressure of the knockout mice along with downregulation of cleaved epithelial sodium channel-α and phosphorylated Na + -Cl - cotransporter expression in the knockout kidney. Our data suggest that kidney-specific deficiency of 11β-HSD2 leads to salt-dependent hypertension, which is attributed to mineralocorticoid receptor-epithelial sodium channel-Na + -Cl - cotransporter activation in the kidney, and provides evidence that renal dysfunction is essential for developing the phenotype of apparent mineralocorticoid excess. © 2017 American Heart Association, Inc.
CD34 EXPRESSION BY HAIR FOLLICLE STEM CELLS IS REQUIRED FOR SKIN TUMOR DEVELOPMENT IN MICE
We used knockout mice to show that a cell surface protein called CD34 is required for skin tumor formation in mice. Wild type mice treated with 7-12-Dimethylbenz(a)anthracene (DMBA) and a tumor promoter developed papillomas. When we treated CD34 knockout (KO) mice the same way, n...
Exacerbated febrile responses to LPS, but not turpentine, in TNF double receptor-knockout mice.
Leon, L R; Kozak, W; Peschon, J; Kluger, M J
1997-02-01
We examined the effects of injections of systemic [lipopolysaccharide (LPS), 2.5 mg/kg or 50 pg/kg ip] or local (turpentine, 100 microl sc) inflammatory stimuli on fever, motor activity, body weight, and food intake in tumor necrosis factor (TNF) double receptor (TNFR)-knockout mice. A high dose of LPS resulted in exacerbated fevers in TNFR-knockout mice compared with wild-type mice for the early phase of fever (3-15 h); the late phase of fever (16-24 h) and fevers to a low dose of LPS were similar in both groups. Motor activity, body weight, and food intake were similarly reduced in both groups of mice after LPS administration. In response to turpentine, TNFR-knockout and wild-type mice developed virtually identical responses to all variables monitored. These results suggest that 1) TNF modulates fevers to LPS dose dependently, 2) TNF does not modulate fevers to a subcutaneous injection of turpentine, and 3) knockout mice may develop cytokine redundancy in the regulation of the acute phase response to intraperitoneally injected LPS or subcutaneously injected turpentine.
Transgenic and gene knockout mice in gastric cancer research
Jiang, Yannan; Yu, Yingyan
2017-01-01
Mouse models are useful tool for carcinogenic study. They will greatly enrich the understanding of pathogenesis and molecular mechanisms for gastric cancer. However, only few of mice could develop gastric cancer spontaneously. With the development and improvement of gene transfer technology, investigators created a variety of transgenic and knockout/knockin mouse models of gastric cancer, such as INS-GAS mice and gastrin knockout mice. Combined with helicobacter infection and carcinogens treatment, these transgenic/knockout/knockin mice developed precancerous or cancerous lesions, which are proper for gene function study or experimental therapy. Here we review the progression of genetically engineered mouse models on gastric cancer research, and emphasize the effects of chemical carcinogens or infectious factors on carcinogenesis of genetically modified mouse. We also emphasize the histological examination on mouse stomach. We expect to provide researchers with some inspirations on this field. PMID:27713138
Furnari, Melody A; Jobes, Michelle L; Nekrasova, Tanya; Minden, Audrey; Wagner, George C
2014-04-01
PAK5 and PAK6 are protein kinases highly expressed in the brain. Previously, we observed that Pak6 knockout mice gained significantly more weight during development than Pak5 knockout mice as well as wild-type controls and double-knockout mice lacking both Pak5 and Pak6. In this study, we assessed the effects of exercise on food intake and weight gain of these mice as well as their sensitivity to the stimulant effects of amphetamine. Mice of each genotype were placed in cages with free access to run wheel exercise or in cages without run wheels for a total of 74 days. Food and fluid intake as well as body weight of each mouse were measured on a weekly basis. Finally, mice were given a high dose of amphetamine and activity levels were observed immediately thereafter for 90 minutes. Brains and testes of mice were assayed for protein levels of the estrogen alpha and progesterone receptors. While run wheel mice consumed significantly more food, they weighed less than non-run wheel mice. In addition, although Pak6 knockout mice consumed the same amount of food as wild-type mice, they were significantly heavier regardless of run wheel condition. Pak5 knockout mice were found to be more active than other genotypes after amphetamine treatment. Finally, protein levels of the progesterone and estrogen alpha receptors were altered in brain and testes of the Pak6 knockout mice. Collectively, these data suggest that PAK6 play a role in weight gain unrelated to exercise and caloric intake and that Pak5 knockout mice are more sensitive to the stimulant effects of amphetamine.
Thymosin Beta-4 Induces Mouse Hair Growth
Hou, Fang; Zhang, Zhipeng; Nuo, Mingtu; Guo, Xudong; Liu, Dongjun
2015-01-01
Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts. PMID:26083021
Thymosin Beta-4 Induces Mouse Hair Growth.
Gao, Xiaoyu; Liang, Hao; Hou, Fang; Zhang, Zhipeng; Nuo, Mingtu; Guo, Xudong; Liu, Dongjun
2015-01-01
Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts.
Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension
Li, Wencheng; Peng, Hua; Mehaffey, Eamonn P.; Kimball, Christie D.; Grobe, Justin L.; van Gool, Jeanette M.G.; Sullivan, Michelle N.; Earley, Scott; Danser, A.H. Jan; Ichihara, Atsuhiro; Feng, Yumei
2013-01-01
The (pro)renin receptor, which binds both renin and prorenin, is a newly discovered component of the renin angiotensin system that is highly expressed in the central nervous system. The significance of brain PRRs in mediating local angiotensin II formation and regulating blood pressure remains unclear. The current study was performed to test the hypothesis that PRR-mediated, non-proteolytic activation of prorenin is the main source of angiotensin II in the brain. Thus, PRR knockout in the brain is expected to prevent angiotensin II formation and development of deoxycorticosterone acetate salt induced hypertension. A neuron-specific PRR (ATP6AP2) knockout mouse model was generated using the Cre-LoxP system. Physiological parameters were recorded by telemetry. (Pro)renin receptor expression, detected by immunostaining and RT-PCR, was significantly decreased in the brains of knockout compared with wide-type mice. Intracerebroventricular infusion of mouse prorenin increased blood pressure and angiotensin II formation in wild type mice. This hypertensive response was abolished in (pro)renin receptor knockout mice in association with a reduction in angiotensin II levels. Deoxycorticosterone acetate salt increased (pro)renin receptor expression and angiotensin II formation in the brains of wild-type mice, an effect that was attenuated in (pro)renin receptor knockout mice. (Pro)renin receptor knockout in neurons prevented the development of Deoxycorticosterone acetate salt-induced hypertension as well as activation of cardiac and vasomotor sympathetic tone. In conclusion, non-proteolytic activation of prorenin through binding to the PRR mediates angiotensin II formation in the brain. Neuron-specific PRR knockout prevents the development of deoxycorticosterone acetate salt-induced hypertension, possibly through diminished angiotensin II formation. PMID:24246383
Rindler, Tara N.; Lasko, Valerie M.; Nieman, Michelle L.; Okada, Motoi; Lorenz, John N.
2013-01-01
The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using β-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function. PMID:23436327
Deficiency in the manganese efflux transporter SLC30A10 induces severe hypothyroidism in mice.
Hutchens, Steven; Liu, Chunyi; Jursa, Thomas; Shawlot, William; Chaffee, Beth K; Yin, Weiling; Gore, Andrea C; Aschner, Michael; Smith, Donald R; Mukhopadhyay, Somshuvra
2017-06-09
Manganese is an essential metal that becomes toxic at elevated levels. Loss-of-function mutations in SLC30A10, a cell-surface-localized manganese efflux transporter, cause a heritable manganese metabolism disorder resulting in elevated manganese levels and parkinsonian-like movement deficits. The underlying disease mechanisms are unclear; therefore, treatment is challenging. To understand the consequences of loss of SLC30A10 function at the organism level, we generated Slc30a10 knock-out mice. During early development, knock-outs were indistinguishable from controls. Surprisingly, however, after weaning and compared with controls, knock-out mice failed to gain weight, were smaller, and died prematurely (by ∼6-8 weeks of age). At 6 weeks, manganese levels in the brain, blood, and liver of the knock-outs were ∼20-60-fold higher than controls. Unexpectedly, histological analyses revealed that the brain and liver of the knock-outs were largely unaffected, but their thyroid exhibited extensive alterations. Because hypothyroidism leads to growth defects and premature death in mice, we assayed for changes in thyroid and pituitary hormones. At 6 weeks and compared with controls, the knock-outs had markedly reduced thyroxine levels (∼50-80%) and profoundly increased thyroid-stimulating hormone levels (∼800-1000-fold), indicating that Slc30a10 knock-out mice develop hypothyroidism. Importantly, a low-manganese diet produced lower tissue manganese levels in the knock-outs and rescued the phenotype, suggesting that manganese toxicity was the underlying cause. Our unanticipated discovery highlights the importance of determining the role of thyroid dysfunction in the onset and progression of manganese-induced disease and identifies Slc30a10 knock-out mice as a new model for studying thyroid biology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Tsuboyama-Kasaoka, Nobuyo; Sano, Kayo; Shozawa, Chikako; Osaka, Toshimasa; Ezaki, Osamu
2008-03-01
Uncoupling protein 2 (UCP2) is a possible target molecule for energy dissipation. Many dietary fats, including safflower oil and lard, induce obesity in C57BL/6 mice, whereas fish oil does not. Fish oil increases UCP2 expression in hepatocytes and may enhance UCP2 activity by activating the UCP2 molecule or altering the lipid bilayer environment. To examine the role of liver UCP2 in obesity, we created transgenic mice that overexpressed human UCP2 in hepatocytes and examined whether UCP2 transgenic mice showed less obesity when fed a high-fat diet (safflower oil or lard). In addition, we examined whether fish oil had antiobesity effects in UCP2 knockout mice. UCP2 transgenic and wild-type mice fed a high-fat diet (safflower oil or lard) developed obesity to a similar degree. UCP2 knockout and wild-type mice fed fish oil had lower rates of obesity than mice fed safflower oil. Remarkably, safflower oil did not induce obesity in female UCP2 knockout mice, an unexpected phenotype for which we presently have no explanation. However, this unexpected effect was not observed in male UCP2 knockout mice or in UCP2 knockout mice fed a high-lard diet. These data indicate that liver UCP2 is not essential for fish oil-induced decreases in body fat.
Alcoholic fatty liver is enhanced in CYP2A5 knockout mice: The role of the PPARα-FGF21 axis.
Chen, Xue; Ward, Stephen C; Cederbaum, Arthur I; Xiong, Huabao; Lu, Yongke
2017-03-15
Cytochrome P450 2A5 (CYP2A5) is induced by ethanol, and the ethanol induction of CYP2A5 is regulated by nuclear factor-erythroid 2-related factor 2 (NRF2). Cyp2a5 knockout (Cyp2a5 -/- ) mice develop more severe alcoholic fatty liver than Cyp2a5 +/+ mice. Fibroblast growth factor 21 (FGF21), a PPARα-regulated liver hormone, is involved in hepatic lipid metabolism. Alcoholic and non-alcoholic fatty liver are enhanced in Pparα knockout (Pparα -/- ) mice. This study investigates the relationship between the PPARα-FGF21 axis and the enhanced alcoholic fatty liver in Cyp2a5 -/- mice. Mice were fed the Lieber-Decarli ethanol diet to induce alcoholic fatty liver. More severe alcoholic fatty liver disease was developed in Cyp2a5 -/- mice than in Cyp2a5 +/+ mice. Basal FGF21 levels were higher in Cyp2a5 -/- mice than in Cyp2a5 +/+ mice, but ethanol did not further increase the elevated FGF21 levels in Cyp2a5 -/- mice while FGF21 was induced by ethanol in Cyp2a5 +/+ mice. Basal levels of serum FGF21 were lower in Pparα -/- mice than in Pparα +/+ mice; ethanol induced FGF21 in Pparα +/+ mice but not in Pparα -/- mice, whereas ethanol induced hypertriglyceridemia in Pparα -/- mice but not in Pparα +/+ mice. Administration of recombinant FGF21 normalized serum FGF21 and triglyceride in Pparα -/- mice. Alcoholic fatty liver was enhanced in liver-specific Fgf21 knockout mice. Pparα and Cyp2a5 double knockout (Pparα -/- /Cyp2a5 -/- ) mice developed more severe alcoholic fatty liver than Pparα +/+ /Cyp2a5 -/- mice. These results suggest that CYP2A5 protects against the development of alcoholic fatty liver disease, and the PPARα-FGF21 axis contributes to the protective effects of CYP2A5 on alcoholic fatty liver disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.
Wang, Hao; Shun, Ming-Chieh; Dickson, Amy K; Engelman, Alan N
2015-01-01
Hepatoma-derived growth factor (HDGF) related protein 2 (HRP2) and lens epithelium-derived growth factor (LEDGF)/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E) 13.5. Histological examination revealed ventricular septal defect (VSD) associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s), RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf) β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality of Psip1/Hdgfrp2 double-deficient mice.
Huang, Bonnie; Gomez-Rodriguez, Julio; Preite, Silvia; Garrett, Lisa J; Harper, Ursula L; Schwartzberg, Pamela L
2016-01-01
The SLAM family receptors contribute to diverse aspects of lymphocyte biology and signal via the small adaptor molecule SAP. Mutations affecting SAP lead to X-linked lymphoproliferative syndrome Type 1, a severe immunodysregulation characterized by fulminant mononucleosis, dysgammaglobulinemia, and lymphoproliferation/lymphomas. Patients and mice having mutations affecting SAP also lack germinal centers due to a defect in T:B cell interactions and are devoid of invariant NKT (iNKT) cells. However, which and how SLAM family members contribute to these phenotypes remains uncertain. Three SLAM family members: SLAMF1, SLAMF5 and SLAMF6, are highly expressed on T follicular helper cells and germinal center B cells. SLAMF1 and SLAMF6 are also implicated in iNKT development. Although individual receptor knockout mice have limited iNKT and germinal center phenotypes compared to SAP knockout mice, the generation of multi-receptor knockout mice has been challenging, due to the genomic linkage of the genes encoding SLAM family members. Here, we used Cas9/CRISPR-based mutagenesis to generate mutations simultaneously in Slamf1, Slamf5 and Slamf6. Genetic disruption of all three receptors in triple-knockout mice (TKO) did not grossly affect conventional T or B cell development and led to mild defects in germinal center formation post-immunization. However, the TKO worsened defects in iNKT cells development seen in SLAMF6 single gene-targeted mice, supporting data on positive signaling and potential redundancy between these receptors.
Abnormal cerebellar development and Purkinje cell defects in Lgl1-Pax2 conditional knockout mice.
Hou, Congzhe; Ding, Lingcui; Zhang, Jian; Jin, Yecheng; Sun, Chen; Li, Zhenzu; Sun, Xiaoyang; Zhang, Tingting; Zhang, Aizhen; Li, Huashun; Gao, Jiangang
2014-11-01
Lgl1 was initially identified as a tumour suppressor in flies and is characterised as a key regulator of epithelial polarity and asymmetric cell division. A previous study indicated that More-Cre-mediated Lgl1 knockout mice exhibited significant brain dysplasia and died within 24h after birth. To overcome early neonatal lethality, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in almost all cells in the cerebellum, and we examined the functions of Lgl1 in the cerebellum. Impaired motor coordination was detected in the mutant mice. Consistent with this abnormal behaviour, homozygous mice possessed a smaller cerebellum with fewer lobes, reduced granule precursor cell (GPC) proliferation, decreased Purkinje cell (PC) quantity and dendritic dysplasia. Loss of Lgl1 in the cerebellum led to hyperproliferation and impaired differentiation of neural progenitors in ventricular zone. Based on the TUNEL assay, we observed increased apoptosis in the cerebellum of mutant mice. We proposed that impaired differentiation and increased apoptosis may contribute to decreased PC quantity. To clarify the effect of Lgl1 on cerebellar granule cells, we used Math1-Cre to specifically delete Lgl1 in granule cells. Interestingly, the Lgl1-Math1 conditional knockout mice exhibited normal proliferation of GPCs and cerebellar development. Thus, we speculated that the reduction in the proliferation of GPCs in Lgl1-Pax2 conditional knockout mice may be secondary to the decreased number of PCs, which secrete the mitogenic factor Sonic hedgehog to regulate GPC proliferation. Taken together, these findings suggest that Lgl1 plays a key role in cerebellar development and folia formation by regulating the development of PCs. Copyright © 2014. Published by Elsevier Inc.
Kim, Han-Byul; Kim, Minchul; Park, Young-Soo; Park, Intae; Kim, Tackhoon; Yang, Sung-Yeun; Cho, Charles J; Hwang, DaeHee; Jung, Jin-Hak; Markowitz, Sanford D; Hwang, Sung Wook; Yang, Suk-Kyun; Lim, Dae-Sik; Myung, Seung-Jae
2017-02-01
Prostaglandin E 2 (PGE 2 ) is mediator of inflammation that regulates tissue regeneration, but its continual activation has been associated with carcinogenesis. Little is known about factors in the PGE 2 signaling pathway that contribute to tumor formation. We investigated whether yes-associated protein 1 (YAP1), a transcriptional co-activator in the Hippo signaling pathway, mediates PGE 2 function. DLD-1 and SW480 colon cancer cell lines were transfected with vectors expressing transgenes or small hairpin RNAs and incubated with recombinant PGE 2 , with or without pharmacologic inhibitors of signaling proteins, and analyzed by immunoblot, immunofluorescence, quantitative reverse-transcription polymerase chain reaction, transcriptional reporter, and proliferation assays. Dextran sodium sulfate (DSS) was given to induce colitis in C57/BL6 (control) mice, as well as in mice with disruption of the hydroxyprostaglandin dehydrogenase 15 gene (15-PGDH-knockout mice), Yap1 gene (YAP-knockout mice), and double-knockout mice. Some mice also were given indomethacin to block PGE 2 synthesis. 15-PGDH knockout mice were crossed with mice with intestine-specific disruption of the salvador family WW domain containing 1 gene (Sav1), which encodes an activator of Hippo signaling. We performed immunohistochemical analyses of colon biopsy samples from 26 patients with colitis-associated cancer and 51 age-and sex-matched patients with colorectal cancer (without colitis). Incubation of colon cancer cell lines with PGE 2 led to phosphorylation of cyclic adenosine monophosphate-responsive element binding protein 1 and increased levels of YAP1 messenger RNA, protein, and YAP1 transcriptional activity. This led to increased transcription of the prostaglandin-endoperoxide synthase 2 gene (PTGS2 or cyclooxygenase 2) and prostaglandin E-receptor 4 gene (PTGER4 or EP4). Incubation with PGE 2 promoted proliferation of colon cancer cell lines, but not cells with knockdown of YAP1. Control mice developed colitis after administration of DSS, but injection of PGE 2 led to colon regeneration in these mice. However, YAP-knockout mice did not regenerate colon tissues and died soon after administration of DSS. 15-PGDH-knockout mice regenerated colon tissues more rapidly than control mice after withdrawal of DSS, and had faster recovery of body weight, colon length, and colitis histology scores. These effects were reversed by injection of indomethacin. SAV1-knockout or 15-PGDH-knockout mice did not develop spontaneous tumors after colitis induction, but SAV1/15-PGDH double-knockout mice developed polyps that eventually progressed to carcinoma in situ. Administration of indomethacin to these mice prevented spontaneous tumor formation. Levels of PGE 2 correlated with those of YAP levels in human sporadic colorectal tumors and colitis-associated tumors. PGE 2 signaling increases the expression and transcriptional activities of YAP1, leading to increased expression of cyclooxygenase 2 and EP4 to activate a positive signaling loop. This pathway promotes proliferation of colon cancer cell lines and colon tissue regeneration in mice with colitis. Constitutive activation of this pathway led to formation of polyps and colon tumors in mice. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Morphological observation of the stria vascularis in midkine and pleiotrophin knockout mice.
Sone, Michihiko; Muramatsu, Hisako; Muramatsu, Takashi; Nakashima, Tsutomu
2011-02-01
Midkine and Pleiotrophin are low molecular weight basic proteins with closely related structures and serve as growth/differentiation factors. They have been reported to be expressed in the cochlea during the embryonic and perinatal periods. In the present study, we focused on the roles of midkine and pleiotrophin in the stria vascularis and investigated morphological changes using mice deficient in these genes. Midkine knockout, pleiotrophin knockout, and double knockout mice were used and compared to wild-type mice. Auditory brain stem responses (ABRs) and cochlear blood flows were measured in each type of mice. Pathological changes in the stria vascularis were examined by light microscopy, including immunohistochemical staining with anti-Kir4.1 antibody, and electron microscopy. Hearing thresholds examined by ABRs were significantly higher in midkine knockout and pleiotrophin knockout mice than in wild-type mice. Double knockout mice showed higher thresholds compared to midkine knockout and pleiotrophin knockout mice. Blood flow in the lateral walls did not significantly differ and light microscopy examination showed an almost normal appearance of the stria vascularis in these knockout mice. However, the expression of Kir4.1 was weak in the knockout mice and severe vacuolar degeneration was observed by electron microscopy in the intermediate cells of the double knockout mice. The present study demonstrates that midkine and pleiotrophin play some roles for the morphological maintenance of intermediate cell in the stria vascularis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Zhang, Jun; Xiao, Yechen; Guo, Yinshi; Breslin, Peter; Zhang, Shubin; Wei, Wei; Zhang, Zhou; Zhang, Jiwang
2011-01-01
Myeloproliferative disorders (MPDs), lymphoproliferative disorders (LPDs), acute T-lymphocytic or myeloid leukemia and T-lymphocytic lymphoma were developed in inducible Pten-knockout (Pten−/−) mice. The appearance of these multiple diseases in one animal model provides an opportunity to study the pathogenesis of multiple diseases simultaneously. To study whether Myc function is required for the development of these hematopoietic disorders in Pten−/− mice, we generated inducible Pten/Myc double-knockout mice (Pten−/−/Myc−/−). By comparing the hematopoietic phenotypes of these double-knockout mice with those of Pten−/− mice, we found that both sets of animals developed MPDs and LPDs. However, none of the compound-mutant mice developed acute leukemia or lymphoma. Interestingly, in contrast to the MPDs which developed in Pten−/− mice which are dominated by granulocytes, megakaryocytes predominate in the MPDs of Pten−/−/Myc−/− mice. Our study suggests that the deregulation of PI3K/Akt signaling in Pten−/− hematopoietic cells protects these cells from apoptotic cell death, resulting in chronic proliferative disorders. But due to the differential requirement for Myc in granulocyte as compared to megakaryocyte proliferation, Myc deletion converts Pten−/− MPDs from granulocyte-dominated to megakaryocyte-dominated conditions. Myc is absolutely required for the development of acute hematopoietic malignancies. PMID:21926961
Alcoholic fatty liver is enhanced in CYP2A5 knockout mice: the role of the PPARα-FGF21 axis
Chen, Xue; Ward, Stephen C.; Cederbaum, Arthur I.; Xiong, Huabao; Lu, Yongke
2017-01-01
Background & Aims Cytochrome P450 2A5 (CYP2A5) is induced by ethanol, and the ethanol induction of CYP2A5 is regulated by nuclear factor-erythroid 2-related factor 2 (NRF2). Cyp2a5 knockout (Cyp2a5−/−) mice develop more severe alcoholic fatty liver than Cyp2a5+/+ mice. Fibroblast growth factor 21 (FGF21), a PPARα-regulated liver hormone, is involved in hepatic lipid metabolism. Alcoholic and non-alcoholic fatty liver are enhanced in Pparα knockout (Pparα−/−) mice. This study investigates the relationship between the PPARα-FGF21 axis and the enhanced alcoholic fatty liver in Cyp2a5−/− mice. Methods Mice were fed the Lieber-Decarli ethanol diet to induce alcoholic fatty liver. Results More severe alcoholic fatty liver disease was developed in Cyp2a5−/− mice than in Cyp2a5+/+ mice. Basal FGF21 levels were higher in Cyp2a5−/− mice than in Cyp2a5+/+ mice, but ethanol did not further increase the elevated FGF21 levels in Cyp2a5−/− mice while FGF21 was induced by ethanol in Cyp2a5+/+ mice. Basal levels of serum FGF21 were lower in Pparα−/− mice than in Pparα+/+ mice; ethanol induced FGF21 in Pparα+/+ mice but not in Pparα−/− mice, whereas ethanol induced hypertriglyceridemia in Pparα−/− mice but not in Pparα+/+ mice. Administration of recombinant FGF21 normalized serum FGF21 and triglyceride in Pparα−/− mice. Alcoholic fatty liver was enhanced in liver-specific Fgf21 knockout mice. Pparα and Cyp2a5 double knockout (Pparα−/−/Cyp2a5−/−) mice developed more severe alcoholic fatty liver than Pparα+/+/Cyp2a5−/− mice. Conclusions These results suggest that CYP2A5 protects against the development of alcoholic fatty liver disease, and the PPARα-FGF21 axis contributes to the protective effects of CYP2A5 on alcoholic fatty liver disease. PMID:28131861
Horiguchi, Masahito; Todorovic, Vesna; Hadjiolova, Krassimira; Weiskirchen, Ralf; Rifkin, Daniel B
2015-04-01
Latent transforming growth factor-β binding protein-1 (LTBP-1) is an extracellular protein that is structurally similar to fibrillin and has an important role in controlling transforming growth factor-β (TGF-β) signaling by storing the cytokine in the extracellular matrix and by being involved in the conversion of the latent growth factor to its active form. LTBP-1 is found as both short (LTBP-1S) and long (LTBP-1L) forms, which are derived through the use of separate promoters. There is controversy regarding the importance of LTBP-1L, as Ltbp1L knockout mice showed multiple cardiovascular defects but the complete null mice did not. Here, we describe a third line of Ltbp1 knockout mice generated utilizing a conditional knockout strategy that ablated expression of both L and S forms of LTBP-1. These mice show severe developmental cardiovascular abnormalities and die perinatally; thus these animals display a phenotype similar to previously reported Ltbp1L knockout mice. We reinvestigated the other "complete" knockout line and found that these mice express a splice variant of LTBP-1L and, therefore, are not complete Ltbp1 knockouts. Our results clarify the phenotypes of Ltbp1 null mice and re-emphasize the importance of LTBP-1 in vivo. Copyright © 2015. Published by Elsevier B.V.
Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David
2013-01-01
Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some transgenic/gene knockout and other studies on low-EAE susceptibility backgrounds with inconsistent disease course and susceptibility.
Jackson, Samuel J.; Tanner, Carolyn; Ross, Ruth A.; Michael, Gregory J.; Selwood, David L.; Giovannoni, Gavin; Baker, David
2013-01-01
Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some transgenic/gene knockout and other studies on low-EAE susceptibility backgrounds with inconsistent disease course and susceptibility. PMID:24130809
Generation of ER{alpha}-floxed and knockout mice using the Cre/LoxP system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonson, P., E-mail: per.antonson@ki.se; Omoto, Y.; Humire, P.
2012-08-10
Highlights: Black-Right-Pointing-Pointer ER{alpha} floxed and knockout mice were generated. Black-Right-Pointing-Pointer Disruption of the ER{alpha} gene results in sterility in both male and female mice. Black-Right-Pointing-Pointer ER{alpha}{sup -/-} mice have ovaries with hemorrhagic follicles and hypoplastic uterus. Black-Right-Pointing-Pointer Female ER{alpha}{sup -/-} mice develop obesity. -- Abstract: Estrogen receptor alpha (ER{alpha}) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ER{alpha} mouse line that can be used to knock out ER{alpha} in selected tissues by using the Cre/LoxP system. In this study, we established amore » new ER{alpha} knockout mouse line by crossing the floxed ER{alpha} mice with Cre deleter mice. Here we show that genetic disruption of the ER{alpha} gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4 months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ER{alpha} is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.« less
Hook, Vivian Y H; Kindy, Mark; Reinheckel, Thomas; Peters, Christoph; Hook, Gregory
2009-08-21
Neurotoxic beta-amyloid (Abeta) peptides participate in Alzheimer's disease (AD); therefore, reduction of Abeta generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Abeta may identify targets for reducing Abeta. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decreases in brain Abeta40 and Abeta42 by 67% and decreases in levels of the C-terminal beta-secretase fragment (CTFbeta) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Abeta. The difference in reduction of Abeta in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Abeta in AD.
Rhodes, M E; Rubin, R T; McKlveen, J M; Karwoski, T E; Fulton, B A; Czambel, R K
2008-05-01
Both within the brain and in the periphery, M(1) muscarinic receptors function primarily as postsynaptic receptors and M(2) muscarinic receptors function primarily as presynaptic autoreceptors. In addition to classical parasympathetic effectors, cholinergic stimulation of central muscarinic receptors influences the release of adrenocorticotrophic hormone (ACTH) and corticosterone. We previously reported that oxotremorine administration to male and female M(2) receptor knockout and wild-type mice increased ACTH to a significantly greater degree in knockout males compared to all other groups, and that M(2) knockout mice of both sexes were significantly more responsive to the mild stress of saline injection than were wild-type mice. These results accord with the primary function of M(2) receptors as presynaptic autoreceptors. In the present study, we explored the role of the M(1) receptor in pituitary-adrenal responses to oxotremorine and saline in male and female M(1) knockout and wild-type mice. Because these mice responded differently to the mild stress of saline injection than did the M(2) knockout and wild-type mice, we also determined hormone responses to restraint stress in both M(1) and M(2) knockout and wild-type mice. Male and female M(1) knockout and wild-type mice were equally unresponsive to the stress of saline injection. Oxotremorine increased both ACTH and corticosterone in M(1) wild-type mice to a significantly greater degree than in knockout mice. In both M(1) knockout and wild-type animals, ACTH responses were greater in males compared to females, and corticosterone responses were greater in females compared to males. Hormone responses to restraint stress were increased in M(2) knockout mice and decreased in M(1) knockout mice compared to their wild-type counterparts. These findings suggest that M(1) and M(2) muscarinic receptor subtypes differentially influence male and female pituitary-adrenal responses to cholinergic stimulation and stress. The decreased pituitary-adrenal sensitivity to oxotremorine and restraint stress noted in M(1) knockout mice is consistent with M(1) being primarily a postsynaptic receptor. Conversely, the increased pituitary-adrenal sensitivity to these challenges noted in M(2) knockout mice is consistent with M(2) being primarily a presynaptic autoreceptor.
Differential gene expression in Ndph-knockout mice in retinal development.
Schäfer, Nikolaus F; Luhmann, Ulrich F O; Feil, Silke; Berger, Wolfgang
2009-02-01
Mutations in the NDP gene impair angiogenesis in the eyes of patients diagnosed with a type of blindness belonging to the group of exudative vitreoretinopathies. This study was conducted to investigate the differential gene expression caused by the absence of Norrin (the NDP protein) in the developing mouse retina and to elucidate early pathogenic events. A comparative gene expression analysis was performed on postnatal day (p)7 retinas from a knockout mouse model for Norrie disease using gene microarrays. Subsequently, results were verified by quantitative real-time PCR analyses. Immunohistochemistry was performed for the vascular permeability marker plasmalemma vesicle associated protein (Plvap). Our study identified expression differences in Ndph(y/-) versus wild-type mice retinas at p7. Gene transcription of the neutral amino acid transporter Slc38a5, apolipoprotein D (ApoD), and angiotensin II receptor-like 1 (Agtrl1) was decreased in the knockout mouse, whereas transcript levels of adrenomedullin (Adm) and of the plasmalemma vesicle associated protein (Plvap) were increased in comparison to the wild-type. In addition, ectopic expression of Plvap was found in the developing retinal vasculature of Norrin-knockout mice on the protein level. These data provide molecular evidence for a role of Norrin in the development of the retinal vasculature. Expression of two genes, Plvap and Slc38a5, is considerably altered in retinal development of Norrin-knockout mice and may reflect or contribute to the pathogenesis of the disease. In particular, ectopic expression of Plvap is consistent with hallmark disease symptoms in mice and humans.
Chae, Yun Jeong; Zhang, Jianan; Au, Paul; Sabbadini, Marta; Xie, Guo-Xi; Yost, C Spencer
2010-12-01
We investigated the role of tandem pore potassium ion channel (K2P) TRESK in neurobehavioral function and volatile anesthetic sensitivity in genetically modified mice. Exon III of the mouse TRESK gene locus was deleted by homologous recombination using a targeting vector. The genotype of bred mice (wild type, knockout, or heterozygote) was determined using polymerase chain reaction. Morphologic and behavioral evaluations of TRESK knockout mice were compared with wild-type littermates. Sensitivity of bred mice to isoflurane, halothane, sevoflurane, and desflurane were studied by determining the minimum alveolar concentration preventing movement to tail clamping in 50% of each genotype. With the exception of decreased number of inactive periods and increased thermal pain sensitivity (20% decrease in latency with hot plate test), TRESK knockout mice had healthy development and behavior. TRESK knockout mice showed a statistically significant 8% increase in isoflurane minimum alveolar concentration compared with wild-type littermates. Sensitivity to other volatile anesthetics was not significantly different. Spontaneous mortality of TRESK knockout mice after initial anesthesia testing was nearly threefold higher than that of wild-type littermates. TRESK alone is not critical for baseline central nervous system function but may contribute to the action of volatile anesthetics. The inhomogeneous change in anesthetic sensitivity corroborates findings in other K2P knockout mice and supports the theory that the mechanism of volatile anesthetic action involves multiple targets. Although it was not shown in this study, a compensatory effect by other K2P channels may also contribute to these observations.
Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi
2015-10-23
HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Wen-Jing; Xu, Chang; Wang, Kun; Li, Teng-Yan; Wang, Xiao-Nan; Yang, Hui; Xing, Tiaosi; Li, Wen-Xia; Chen, Yan-Hua; Gao, Hong; Ding, Lei
2018-05-01
As a potential tumor suppressor gene, Claudin-7 (Cldn7), which is a component of tight junctions, may play an important role in colorectal cancer occurrence and development. To generate a knockout mouse model of inducible conditional Cldn7 in the intestine and analyze the phenotype of the mice after induction with tamoxifen. We constructed Cldn7-flox transgenic mice and crossed them with Villin-CreERT2 mice. The Cldn7 inducible conditional knockout mice appeared normal and were well developed at birth. We induced Cldn7 gene deletion by injecting different dosages of tamoxifen into the mice and then conducted a further phenotypic analysis. After induction for 5 days in succession at a dose of 200 µl tamoxifen in sunflower oil at 10 mg/ml per mouse every time, the mice appeared dehydrated, had a lower temperature, and displayed inactivity or death. The results of hematoxylin-eosin staining showed that the intestines of the Cldn7 inducible conditional knockout mice had severe intestinal defects that included epithelial cell sloughing, necrosis, inflammation and hyperplasia. Owing to the death of ICKO mice, we adjusted the dose of tamoxifen to a dose of 100 µl in sunflower oil at 10 mg/ml per mouse (aged more than 8 weeks old) every 4 days. And we could induce atypical hyperplasia and adenoma in the intestine. Immunofluorescent staining indicated that the intestinal epithelial structure was destroyed. Electron microscopy experimental analysis indicated that the intercellular gap along the basolateral membrane of Cldn7 inducible conditional knockout mice in the intestine was increased and that contact between the cells and matrix was loosened. We generated a model of intestinal Cldn7 inducible conditional knockout mice. Intestinal Cldn7 deletion induced by tamoxifen initiated inflammation and hyperplasia in mice.
Kortekaas, Jeroen; Vloet, Rianka P M; McAuley, Alexander J; Shen, Xiaoli; Bosch, Berend Jan; de Vries, Laura; Moormann, Rob J M; Bente, Dennis A
2015-12-01
Crimean-Congo hemorrhagic fever virus is a tick-borne bunyavirus of the Nairovirus genus that causes hemorrhagic fever in humans with high case fatality. Here, we report the development of subunit vaccines and their efficacy in signal transducer and activator of transcription 1 (STAT1) knockout mice. Ectodomains of the structural glycoproteins Gn and Gc were produced using a Drosophila insect cell-based expression system. A single vaccination of STAT129 mice with adjuvanted Gn or Gc ectodomains induced neutralizing antibody responses, which were boosted by a second vaccination. Despite these antibody responses, mice were not protected from a CCHFV challenge infection. These results suggest that neutralizing antibodies against CCHFV do not correlate with protection of STAT1 knockout mice.
Glutaminyl Cyclase Knock-out Mice Exhibit Slight Hypothyroidism but No Hypogonadism
Schilling, Stephan; Kohlmann, Stephanie; Bäuscher, Christoph; Sedlmeier, Reinhard; Koch, Birgit; Eichentopf, Rico; Becker, Andreas; Cynis, Holger; Hoffmann, Torsten; Berg, Sabine; Freyse, Ernst-Joachim; von Hörsten, Stephan; Rossner, Steffen; Graubner, Sigrid; Demuth, Hans-Ulrich
2011-01-01
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamate (pGlu) residues at the N terminus of peptides and proteins. Hypothalamic pGlu hormones, such as thyrotropin-releasing hormone and gonadotropin-releasing hormone are essential for regulation of metabolism and fertility in the hypothalamic pituitary thyroid and gonadal axes, respectively. Here, we analyzed the consequences of constitutive genetic QC ablation on endocrine functions and on the behavior of adult mice. Adult homozygous QC knock-out mice are fertile and behave indistinguishably from wild type mice in tests of motor function, cognition, general activity, and ingestion behavior. The QC knock-out results in a dramatic drop of enzyme activity in the brain, especially in hypothalamus and in plasma. Other peripheral organs like liver and spleen still contain QC activity, which is most likely caused by its homolog isoQC. The serum gonadotropin-releasing hormone, TSH, and testosterone concentrations were not changed by QC depletion. The serum thyroxine was decreased by 24% in homozygous QC knock-out animals, suggesting a mild hypothyroidism. QC knock-out mice were indistinguishable from wild type with regard to blood glucose and glucose tolerance, thus differing from reports of thyrotropin-releasing hormone knock-out mice significantly. The results suggest a significant formation of the hypothalamic pGlu hormones by alternative mechanisms, like spontaneous cyclization or conversion by isoQC. The different effects of QC depletion on the hypothalamic pituitary thyroid and gonadal axes might indicate slightly different modes of substrate conversion of both enzymes. The absence of significant abnormalities in QC knock-out mice suggests the presence of a therapeutic window for suppression of QC activity in current drug development. PMID:21330373
NASA Astrophysics Data System (ADS)
Urlep, Žiga; Lorbek, Gregor; Perše, Martina; Jeruc, Jera; Juvan, Peter; Matz-Soja, Madlen; Gebhardt, Rolf; Björkhem, Ingemar; Hall, Jason A.; Bonneau, Richard; Littman, Dan R.; Rozman, Damjana
2017-01-01
Development of mice with hepatocyte knockout of lanosterol 14α-demethylase (HCyp51-/-) from cholesterol synthesis is characterized by the progressive onset of liver injury with ductular reaction and fibrosis. These changes begin during puberty and are generally more aggravated in the knockout females. However, a subgroup of (pre)pubertal knockout mice (runts) exhibits a pronounced male prevalent liver dysfunction characterized by downregulated amino acid metabolism and elevated Casp12. RORC transcriptional activity is diminished in livers of all runt mice, in correlation with the depletion of potential RORC ligands subsequent to CYP51 disruption. Further evidence for this comes from the global analysis that identified a crucial overlap between hepatic Cyp51-/- and Rorc-/- expression profiles. Additionally, the reduction in RORA and RORC transcriptional activity was greater in adult HCyp51-/- females than males, which correlates well with their downregulated amino and fatty acid metabolism. Overall, we identify a global and sex-dependent transcriptional de-regulation due to the block in cholesterol synthesis during development of the Cyp51 knockout mice and provide in vivo evidence that sterol intermediates downstream of lanosterol may regulate the hepatic RORC activity.
Yuskaitis, Christopher J.; Beurel, Eleonore; Jope, Richard S.
2010-01-01
Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is one of the few known genetic causes of autism. FXS results from the loss of Fmr1 gene function, thus Fmr1 knockout mice provide a model to study impairments associated with FXS and autism and to test potential therapeutic interventions. The inhibitory serine-phosphorylation of glycogen synthase kinase-3 (GSK3) is lower in brain regions of Fmr1 knockout mice than wild-type mice and the GSK3 inhibitor lithium rescues several behavioral impairments in Fmr1 knockout mice. Therefore, we examined if the serine-phosphorylation of GSK3 in Fmr1 knockout mice also was altered outside the brain and if administration of lithium ameliorated the macroorchidism phenotype. Additionally, since GSK3 regulates numerous functions of the immune system and immune alterations have been associated with autism, we tested if immune function is altered in Fmr1 knockout mice. The inhibitory serine-phosphorylation of GSK3 was significantly lower in the testis and liver of Fmr1 knockout mice than wild-type mice, and chronic lithium treatment reduced macroorchidism in Fmr1 knockout mice. No alterations in peripheral immune function were identified in Fmr1 knockout mice. However, examination of glia, the immune cells of the brain, revealed reactive astrocytes in several brain regions of Fmr1 knockout mice and treatment with lithium reduced this in the striatum and cerebellum. These results provide further evidence of the involvement of dysregulated GSK3 in FXS, and demonstrate that lithium administration reduces macroorchidism and reactive astrocytes in Fmr1 knockout mice. PMID:20600866
Hook, Vivian Y. H.; Kindy, Mark; Reinheckel, Thomas; Peters, Christoph; Hook, Gregory
2009-01-01
Neurotoxic β-amyloid (Aβ) peptides participate in Alzheimer’s disease (AD); therefore, reduction of Aβ generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Aβ may identify targets for reducing Aβ. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decrease of Aβ40 and Aβ42 by 67% in brain, and decreases levels of the C-terminal β-secretase fragment (CTFβ) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Aβ. The difference in reduction of Aβ in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Aβ in AD. PMID:19501042
Knockout of Foxp2 disrupts vocal development in mice.
Castellucci, Gregg A; McGinley, Matthew J; McCormick, David A
2016-03-16
The FOXP2 gene is important for the development of proper speech motor control in humans. However, the role of the gene in general vocal behavior in other mammals, including mice, is unclear. Here, we track the vocal development of Foxp2 heterozygous knockout (Foxp2+/-) mice and their wildtype (WT) littermates from juvenile to adult ages, and observe severe abnormalities in the courtship song of Foxp2+/- mice. In comparison to their WT littermates, Foxp2+/- mice vocalized less, produced shorter syllable sequences, and possessed an abnormal syllable inventory. In addition, Foxp2+/- song also exhibited irregular rhythmic structure, and its development did not follow the consistent trajectories observed in WT vocalizations. These results demonstrate that the Foxp2 gene is critical for normal vocal behavior in juvenile and adult mice, and that Foxp2 mutant mice may provide a tractable model system for the study of the gene's role in general vocal motor control.
Reduced osteoblast activity in the mice lacking TR4 nuclear receptor leads to osteoporosis.
Lin, Shin-Jen; Ho, Hsin-Chiu; Lee, Yi-Fen; Liu, Ning-Chun; Liu, Su; Li, Gonghui; Shyr, Chih-Rong; Chang, Chawnshang
2012-06-07
Early studies suggested that TR4 nuclear receptor might play important roles in the skeletal development, yet its detailed mechanism remains unclear. We generated TR4 knockout mice and compared skeletal development with their wild type littermates. Primary bone marrow cells were cultured and we assayed bone differentiation by alkaline phosphatase and alizarin red staining. Primary calvaria were cultured and osteoblastic marker genes were detected by quantitative PCR. Luciferase reporter assays, chromatin immunoprecipitation (ChIP) assays, and electrophoretic mobility shift assays (EMSA) were performed to demonstrate TR4 can directly regulate bone differentiation marker osteocalcin. We first found mice lacking TR4 might develop osteoporosis. We then found that osteoblast progenitor cells isolated from bone marrow of TR4 knockout mice displayed reduced osteoblast differentiation capacity and calcification. Osteoblast primary cultures from TR4 knockout mice calvaria also showed higher proliferation rates indicating lower osteoblast differentiation ability in mice after loss of TR4. Mechanism dissection found the expression of osteoblast markers genes, such as ALP, type I collagen alpha 1, osteocalcin, PTH, and PTHR was dramatically reduced in osteoblasts from TR4 knockout mice as compared to those from TR4 wild type mice. In vitro cell line studies with luciferase reporter assay, ChIP assay, and EMSA further demonstrated TR4 could bind directly to the promoter region of osteocalcin gene and induce its gene expression at the transcriptional level in a dose dependent manner. Together, these results demonstrate TR4 may function as a novel transcriptional factor to play pathophysiological roles in maintaining normal osteoblast activity during the bone development and remodeling, and disruption of TR4 function may result in multiple skeletal abnormalities.
2000-01-01
various organs and to sites of inflammation. They may have additional functions. For example analysis of CXCR4 knockout mice show that CXCR4, which...SDF-1 knockout mice had similar phenotypes (195). Homozygous knockout of CXCR4 or SDF-1 results in embyonic lethality. Though CCR5 appears to be...dispensable, other chemokine receptors have vital functions. CXCR5 knockout mice have B-cell homing defects (118), and CXCR2 knockout mice
Iron misregulation and neurodegenerative disease in mouse models that lack iron regulatory proteins
Ghosh, Manik C.; Zhang, De-Liang; Rouault, Tracey A.
2015-01-01
Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are two cytosolic proteins that maintain cellular iron homeostasis by binding to RNA stem loops known as iron responsive elements (IREs) that are found in the untranslated regions of target mRNAs that encode proteins involved in iron metabolism. IRPs modify expression of iron metabolism genes, and global and tissue-specific knockout mice have been made to evaluate the physiological significance of these iron regulatory proteins (Irps). Here, we will discuss the results of the studies that have been performed with mice engineered to lack expression of one or both Irps, and made in different strains using different methodologies. Both Irp1 and Irp2 knockout mice are viable, but the double knockout (Irp1−/−Irp2−/−) mice die before birth, indicating that these Irps play a crucial role in maintaining iron homeostasis. Irp1−/− mice develop polycythemia and pulmonary hypertension, and when these mice are challenged with a low iron diet, they die early of abdominal hemorrhages, suggesting that Irp1 plays an essential role in erythropoiesis and in the pulmonary and cardiovascular systems. Irp2−/− mice develop microcytic anemia, erythropoietic protoporphyria and a progressive neurological disorder, indicating that Irp2 has important functions in the nervous system and erythropoietic homeostasis. Several excellent review articles have recently been published on Irp knockout mice that mainly focus on Irp1−/− mice (referenced in the introduction). In this review, we will briefly describe the phenotypes and physiological implications of Irp1−/− mice, and will discuss the phenotypes observed for Irp2−/− mice in detail with a particular emphasis on the neurological problems of these mice. PMID:25771171
Siuciak, J A; McCarthy, S A; Chapin, D S; Reed, T M; Vorhees, C V; Repaske, D R
2007-07-01
PDE1B is a calcium-dependent cyclic nucleotide phosphodiesterase that is highly expressed in the striatum. In order to investigate the physiological role of PDE1B in the central nervous system, PDE1B knockout mice (C57BL/6N background) were assessed in behavioral tests and their brains were assayed for monoamine content. In a variety of well-characterized behavioral tasks, including the elevated plus maze (anxiety-like behavior), forced swim test (depression-like behavior), hot plate (nociception) and two cognition models (passive avoidance and acquisition of conditioned avoidance responding), PDE1B knockout mice performed similarly to wild-type mice. PDE1B knockout mice showed increased baseline exploratory activity when compared to wild-type mice. When challenged with amphetamine (AMPH) and methamphetamine (METH), male and female PDE1B knockout mice showed an exaggerated locomotor response. Male PDE1B knockout mice also showed increased locomotor responses to higher doses of phencyclidine (PCP) and MK-801; however, this effect was not consistently observed in female knockout mice. In the striatum, increased dopamine turnover (DOPAC/DA and HVA/DA ratios) was found in both male and female PDE1B knockout mice. Striatal serotonin (5-HT) levels were also decreased in PDE1B knockout mice, although levels of the metabolite, 5HIAA, were unchanged. The present studies demonstrate increased striatal dopamine turnover in PDE1B knockout mice associated with increased baseline motor activity and an exaggerated locomotor response to dopaminergic stimulants such as methamphetamine and amphetamine. These data further support a role for PDE1B in striatal function.
Sengupta, Aniruddha; Lichti, Ulrike F.; Carlson, Bradley A.; Cataisson, Christophe; Ryscavage, Andrew O.; Mikulec, Carol; Conrad, Marcus; Fischer, Susan M.; Hatfield, Dolph L.; Yuspa, Stuart H.
2013-01-01
Selenoproteins are essential molecules for the mammalian antioxidant network. We previously demonstrated that targeted loss of all selenoproteins in mouse epidermis disrupted skin and hair development and caused premature death. In the current study we targeted specific selenoproteins for epidermal deletion to determine whether similar phenotypes developed. Keratinocyte-specific knockout mice lacking either the glutathione peroxidase 4 (GPx4) or thioredoxin reductase 1 (TR1) gene were generated by cre-lox technology using K14-cre. TR1 knockout mice had a normal phenotype in resting skin while GPx4 loss in epidermis caused epidermal hyperplasia, dermal inflammatory infiltrate, dysmorphic hair follicles and alopecia in perinatal mice. Unlike epidermal ablation of all selenoproteins, mice ablated for GPx4 recovered after 5 weeks and had a normal lifespan. GPx1 and TR1 were upregulated in the skin and keratinocytes of GPx4 knockout mice. GPx4 deletion reduces keratinocyte adhesion in culture and increases lipid peroxidation and COX-2 levels in cultured keratinocytes and whole skin. Feeding a COX-2 inhibitor to nursing mothers partially prevents development of the abnormal skin phenotype in knockout pups. These data link the activity of cutaneous GPx4 to the regulation of COX-2 and hair follicle morphogenesis and provide insight into the function of individual selenoprotein activity in maintaining cutaneous homeostasis. PMID:23364477
Li, Ju-Pi; Yang, Chia-Yu; Chuang, Huai-Chia; Lan, Joung-Liang; Chen, Der-Yuan; Chen, Yi-Ming; Wang, Xiaohong; Chen, Alice J; Belmont, John W; Tan, Tse-Hua
2014-04-09
JNK pathway-associated phosphatase (JKAP, also known as DUSP22 or JSP-1) is a JNK activator. The in vivo role of JKAP in immune regulation remains unclear. Here we report that JKAP directly inactivates Lck by dephosphorylating tyrosine-394 residue during T-cell receptor (TCR) signalling. JKAP-knockout T cells display enhanced cell proliferation and cytokine production. JKAP-knockout mice show enhanced T-cell-mediated immune responses and are more susceptible to experimental autoimmune encephalomyelitis (EAE). In addition, the recipient mice that are adoptively transferred with JKAP-knockout T cells show exacerbated EAE symptoms. Aged JKAP-knockout mice spontaneously develop inflammation and autoimmunity. Thus, our results indicate that JKAP is an important phosphatase that inactivates Lck in the TCR signalling turn-off stage, leading to suppression of T-cell-mediated immunity and autoimmunity.
Absence of Wip1 partially rescues Atm deficiency phenotypes in mice
Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.
2011-01-01
Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465
Uetake, Yuzaburo; Ikeda, Hitoshi; Irie, Rie; Tejima, Kazuaki; Matsui, Hiromitsu; Ogura, Sayoko; Wang, Hong; Mu, ShengYu; Hirohama, Daigoro; Ando, Katsuyuki; Sawamura, Tatsuya; Yatomi, Yutaka; Fujita, Toshiro; Shimosawa, Tatsuo
2015-02-13
It is widely known that salt is an accelerating factor for the progression of metabolic syndrome and causes cardiovascular diseases, most likely due to its pro-oxidant properties. We hypothesized that excessive salt intake also facilitates the development of nonalcoholic steatohepatitis (NASH), which is frequently associated with metabolic syndrome. We examined the exacerbating effect of high-salt diet on high-fat diet-induced liver injury in a susceptible model to oxidative stress, apoE knockout and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) transgenic mice. High-salt diet led to NASH in high-fat diet-fed LOX-1 transgenic/apoE knockout mice without affecting high-fat diet-induced dyslipidemia or hepatic triglyceride accumulation. Additionally, a high-salt and high-fat diet stimulated oxidative stress production and inflammatory reaction to a greater extent than did a high-fat diet in the liver of LOX-1 transgenic/apoE knockout mice. We demonstrated that high-salt diet exacerbated NASH in high-fat diet-fed LOX-1 transgenic /apoE knockout mice and that this effect was associated with the stimulation of oxidative and inflammatory processes; this is the first study to suggest the important role of excessive salt intake in the development of NASH.
Cheng, Qianqian; Zhang, Qingfeng; Xu, Xindong; Yin, Lan; Sun, Lin; Lin, Xin; Dong, Chen; Pan, Weiqing
2014-04-15
Cell-mediated immunity plays a crucial role in the development of host resistance to asexual blood-stage malaria infection. However, little is known of the regulatory factors involved in this process. In this study, we investigated the impact of MAPK phosphotase 5 (MKP5) on protective immunity against a lethal Plasmodium yoelii 17XL blood-stage infection using MKP5 knockout C57BL/6 mice. Compared with wild-type control mice, MKP5 knockout mice developed significantly lower parasite burdens with prolonged survival times. We found that this phenomenon correlated with a rapid and strong IFN-γ-dependent cellular immune response during the acute phase of infection. Inactivation of IFN-γ by the administration of a neutralizing Ab significantly reduced the protective effects in MKP5 knockout mice. By analyzing IFN-γ production in innate and adaptive lymphocyte subsets, we observed that MKP5 deficiency specifically enhanced the IFN-γ response mediated by CD4+ T cells, which was attributable to the increased stimulatory capacity of splenic CD11c+ dendritic cells. Furthermore, following vaccination with whole blood-stage soluble plasmodial Ag, MKP5 knockout mice acquired strongly enhanced Ag-specific immune responses and a higher level of protection against subsequent P. yoelii 17XL challenge. Finally, we found the enhanced response mediated by MKP5 deficiency resulted in a lethal consequence in mice when infected with nonlethal P. yoelii 17XNL. Thus, our data indicate that MKP5 is a potential regulator of immune resistance against Plasmodium infection in mice, and that an understanding of the role of MKP5 in manipulating anti-malaria immunity may provide valuable information on the development of better control strategies for human malaria.
Mouse model of fragile X syndrome: behavioral and hormonal response to stressors.
Nielsen, Darci M; Evans, Jeffrey J; Derber, William J; Johnston, Kenzie A; Laudenslager, Mark L; Crnic, Linda S; Maclean, Kenneth N
2009-06-01
Fragile X syndrome, a form of mental retardation caused by inadequate levels of fragile X mental retardation protein (FMRP), is characterized by extreme sensitivity to sensory stimuli and increased behavioral and hormonal reactivity to stressors. Fmr1 knockout mice lack FMRP and exhibit abnormal responses to auditory stimuli. This study sought to determine whether Fmr1 knockout mice on an F1 hybrid background are normal in their response to footshock. Knockout mice were also examined for signs of hyperexcitation across an extended trial range, and serum corticosterone levels were evaluated in response to various stressors. The ability to acquire conditioned taste aversion was also assessed. Knockout mice exhibited no impairment in associative aversive learning or memory, since they successfully expressed conditioned taste aversion. Footshock-sensitivity, freezing behavior, and corticosterone response to various stressors did not differ between knockout and wild-type mice. However, knockout mice exhibited significantly increased responses during the extended test. The knockout mice's increased responsiveness to footshock in the extended test may be an indication of increased vulnerability to stress or enhanced emotional reactivity. Copyright (c) 2009 APA, all rights reserved.
Janusonis, Skirmantas; Anderson, George M; Shifrovich, Ilya; Rakic, Pasko
2006-11-01
The most consistent neurochemical finding in autism has been elevated group mean levels of blood platelet 5-hydroxytryptamine (5-HT, serotonin). The origin and significance of this platelet hyperserotonemia remain poorly understood. The 5-HT(1A) receptor plays important roles in the developing brain and is also expressed in the gut, the main source of platelet 5-HT. Post-natal tissue levels of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) and tryptophan were examined in the brain, duodenum and blood of 5-HT(1A) receptor-knockout and wild-type mice. At 3 days after birth, the knockout mice had lower mean brain 5-HT levels and normal mean platelet 5-HT levels. Also, at 3 days after birth, the mean tryptophan levels in the brain, duodenum and blood of the knockout mice were around 30% lower than those of the wild-type mice. By 2 weeks after birth, the mean brain 5-HT levels of the knockout mice normalized, but their mean platelet 5-HT levels became 24% higher than normal. The possible causes of these dynamic shifts were explored by examining correlations between central and peripheral levels of 5-HT, 5-HIAA and tryptophan. The results are discussed in relation to the possible role of 5-HT in the ontogeny of autism.
Survival and Injury Outcome After TBI: Influence of Pre- and Post-Exposure to Caffeine
2012-10-01
A1Rs. This notion is supported by findings that TBI in A1R knockout mice led to lethal status epilepticus (SE) (Kochanek et al., 2006). Likewise, A1R...G.E., Dixon, C.E., Schnermann, J., Jackson, E.K., 2006. Adenosine A1 receptor knockout mice develop lethal status epilepti- cus after experimental
NASA Astrophysics Data System (ADS)
Harpel, Kaitlin; Leung, Sarah; Faith Rice, Photini; Jones, Mykella; Barton, Jennifer K.; Bommireddy, Ramireddy
2016-02-01
The development of colorectal cancer in the azoxymethane-induced mouse model can be observed by using a miniaturized optical coherence tomography (OCT) imaging system. This system is uniquely capable of tracking disease development over time, allowing for the monitoring of morphological changes in the distal colon due to tumor development and the presence of lymphoid aggregates. By using genetically engineered mouse models deficient in Interleukin 6 (IL-6) and Smad family member 3 (Smad3), the role of inflammation on tumor development and the immune system can be elucidated. Smad3 knockout mice develop inflammatory response, wasting, and colitis associated cancer while deficiency of proinflammatory cytokine IL-6 confers resistance to tumorigenesis. We present pilot data showing that the Smad3 knockout group had the highest tumor burden, highest spleen weight, and lowest thymus weight. The IL-6 deficiency in Smad3 knockout mice prevented tumor development, splenomegaly, and thymic atrophy. This finding suggests that agents that inhibit IL-6 (e.g. anti-IL-6 antibody, non-steroidal anti-inflammatory drugs [NSAIDs], etc.) could be used as novel therapeutic agents to prevent disease progression and increase the efficacy of anti-cancer agents. OCT can also be useful for initiating early therapy and assessing the benefit of combination therapy targeting inflammation.
Effect of mCOUP-TF1 deficiency on the glossopharyngeal and vagal sensory ganglia.
Ichikawa, H; Lin, S-C; Tsai, S Y; Tsai, M-J; Sugimoto, T
2004-07-16
Immunohistochemistry for calcitonin gene-related peptide (CGRP), tyrosine hydroxylase and calbindin D-28k was performed on the glossopharyngeal and vagal ganglia in mCOUP-TFI knockout mice to know the effect of its deficiency on different types of primary sensory neurons. In wild type and heterozygous mice, the glossopharyngeal and vagal ganglia contained abundant CGRP-, tyrosine hydroxylase- and calbindin D-28k-immunoreactive (IR) neurons. In the ganglia of mCOUP-TFI knockout mice, a 38% decrease of CGRP-IR neurons was detected. However, the number of tyrosine hydroxylase- or calbindin D-28k-neurons was not altered by the mCOUP-TFI deficiency. In the tongue of knockout mice, the number of CGRP-IR nerve fibers decreased compared to wild-type and heterozygous mice. The development of CGRP-IR petrosal neurons, which supply innervation of the tongue, may depend on mCOUP-TFI.
Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Allen, Matthew R; Econs, Michael J
2011-12-01
Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis.
Austin, Anthony M.; Gray, Amie K.; Allen, Matthew R.; Econs, Michael J.
2011-01-01
Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis. PMID:22009723
Knockout of Foxp2 disrupts vocal development in mice
Castellucci, Gregg A.; McGinley, Matthew J.; McCormick, David A.
2016-01-01
The FOXP2 gene is important for the development of proper speech motor control in humans. However, the role of the gene in general vocal behavior in other mammals, including mice, is unclear. Here, we track the vocal development of Foxp2 heterozygous knockout (Foxp2+/−) mice and their wildtype (WT) littermates from juvenile to adult ages, and observe severe abnormalities in the courtship song of Foxp2+/− mice. In comparison to their WT littermates, Foxp2+/− mice vocalized less, produced shorter syllable sequences, and possessed an abnormal syllable inventory. In addition, Foxp2+/− song also exhibited irregular rhythmic structure, and its development did not follow the consistent trajectories observed in WT vocalizations. These results demonstrate that the Foxp2 gene is critical for normal vocal behavior in juvenile and adult mice, and that Foxp2 mutant mice may provide a tractable model system for the study of the gene’s role in general vocal motor control. PMID:26980647
INDUCTION OF MAMMARY GLAND DEVELOPMENT IN ESTROGEN RECEPTOR-ALPHA KNOCKOUT MICE
Mammary glands from the estrogen receptor knockout ( ERKO) mouse do not undergo ductal morphogenesis or alveolar development. Disrupted Er signaling may result in reduced estrogen-responsive gene products in the mammary gland or reduced mammotropic hormones that contribute t...
Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.
2016-01-01
Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556
Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C
2016-01-01
Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.
O'Brien, Lyn M; Stokes, Margaret G; Lonsdale, Stephen G; Maslowski, David R; Smither, Sophie J; Lever, Mark S; Laws, Thomas R; Perkins, Stuart D
2014-03-01
The resistance of adult immunocompetent mice to infection with ebolaviruses has led to the development of alternative small animal models that utilise immunodeficient mice, for example the interferon α/β receptor knock-out mouse (IFNR(-/-)). IFNR(-/-) mice have been shown to be susceptible to infection with ebolaviruses by multiple routes but it is not known if this murine model is suitable for testing therapeutics that rely on the generation of an immune response for efficacy. We have tested recombinant adenovirus vectors for their ability to protect IFNR(-/-) mice from challenge with Ebola virus and have analysed the humoral response generated after immunisation. The recombinant vaccines elicited good levels of protection in the knock-out mouse and the antibody response in IFNR(-/-) mice was similar to that observed in vaccinated wild-type mice. These results indicate that the IFNR(-/-) mouse is a relevant small animal model for studying ebolavirus-specific therapeutics. Copyright © 2014. Published by Elsevier Inc.
Most, D; Efron, D T; Shi, H P; Tantry, U S; Barbul, A
2001-10-01
Inducible nitric oxide synthase (iNOS) and its product, nitric oxide, have been shown to play important roles in wound biology. The present study was performed to investigate the role of iNOS in modulating the cytokine cascade during the complex process of skin graft wound healing.Fifteen iNOS-knockout mice and 15 wild-type C57BL/6J mice were subjected to autogenous 1-cm2 intrascapular full-thickness skin grafts. Three animals in each group were killed on postoperative days 3, 5, 7, 10, and 14. Specimens were then analyzed using nonisotopic in situ hybridization versus mRNA of tumor growth factor-beta1, vascular endothelial growth factor, iNOS, endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha, and basic fibroblast growth factor, as well as positive and negative control probes. Positive cells in both grafts and wound beds were counted using a Leica microgrid. Scar thickness was measured with a Leica micrometer. Data were analyzed using the unpaired Student's t test. Expression of iNOS was 2- to 4-fold higher in knockout mice than in wild-type mice on postoperative days 5, 7, and 14. Expression of eNOS was 2- to 2.5-fold higher in knockout mice than in wild-type mice on postoperative days 5 and 7. Tumor necrosis factor-alpha expression was 2- to 7-fold higher in knockout mice than in wild-type mice on all postoperative days. In contrast, expression levels of angiogenic/fibrogenic cytokines (vascular endothelial growth factor, basis fibroblast growth factor, and tumor growth factor-beta1) were 2.5- to 4-fold higher in wild-type mice than in knockout mice. Scars were 1.5- to 2.5-fold thicker in knockout mice than in wild-type mice at all time points. All of the above results represent statistically significant differences (p < 0.05). Significantly different patterns of cytokine expression were seen in knockout and wild-type mice. Although the scar layer was thicker in knockout mice, it showed much greater infiltration with inflammatory cells. These data further delineate the modulatory effect of iNOS and nitric oxide in healing skin grafts.
2000-01-01
to sites of inflammation. They may have additional functions. For example analysis of CXCR4 knockout mice show that CXCR4, which is chemotactic for... mice had similar phenotypes (195). Homozygous knockout of CXCR4 or SDF-1 results in embyonic lethality. Though CCR5 appears to be dispensable, other...chemokine receptors have vital functions. CXCR5 knockout mice have B-cell homing defects (118), and CXCR2 knockout mice overproduce B-cells and
Spiekerkoetter, U; Tokunaga, C; Wendel, U; Mayatepek, E; Exil, V; Duran, M; Wijburg, F A; Wanders, R J A; Strauss, A W
2004-03-01
In humans with deficiency of the very long-chain acyl-CoA dehydrogenase (VLCAD), C14-C18 acylcarnitines accumulate. In this paper we have used the VLCAD knockout mouse as a model to study changes in blood carnitine and acylcarnitine profiles under stress. VLCAD knockout mice exhibit stress-induced hypoglycaemia and skeletal myopathy; symptoms resembling human VLCADD. To study the extent of biochemical derangement in response to different stressors, we determined blood carnitine and acylcarnitine profiles after exercise on a treadmill, fasting, or exposure to cold. Even in a nonstressed, well-fed state, knockout mice presented twofold higher C14-C18 acylcarnitines and a lower free carnitine of 72% as compared to wild-type littermates. After 1 h of intense exercise, the C14-C18 acylcarnitines in blood significantly increased, but free carnitine remained unchanged. After 8 h of fasting at 4 degrees C, the long-chain acylcarnitines were elevated 5-fold in knockout mice in comparison with concentrations in unstressed wild-type mice (P < 0.05), and four out of 12 knockout mice died. Free carnitine decreased to 44% as compared with unstressed wild-type mice. An increase in C14-C18 acylcarnitines and a decrease of free carnitine were also observed in fasted heterozygous and wild-type mice. Long-chain acylcarnitines in blood increase in knockout mice in response to different stressors and concentrations correlate with the clinical condition. A decrease in blood free carnitine in response to severe stress is observed in knockout mice but also in wild-type littermates. Monitoring blood acylcarnitine profiles in response to different stressors may allow systematic analysis of therapeutic interventions in VLCAD knockout mice.
Critical period plasticity is disrupted in the barrel cortex of Fmr1 knockout mice
Harlow, Emily G.; Till, Sally M.; Russell, Theron A.; Wijetunge, Lasani S.; Kind, Peter; Contractor, Anis
2010-01-01
Summary Alterations in sensory processing constitute prominent symptoms of Fragile X syndrome; however, little is known about how disrupted synaptic and circuit development in sensory cortex contributes to these deficits. To investigate how the loss of fragile X mental retardation protein (FMRP) impacts the development of cortical synapses, we examined excitatory thalamocortical synapses in somatosensory cortex during the perinatal critical period in Fmr1 knockout mice. FMRP ablation resulted in dysregulation of glutamatergic signaling maturation. The fraction of silent synapses persisting to later developmental times was increased, there was a temporal delay in the window for synaptic plasticity, while other forms of developmental plasticity were not altered in Fmr1 knockout mice. Our results indicate that FMRP is required for the normal developmental progression of synaptic maturation, and loss of this important RNA binding protein impacts the timing of the critical period for layer IV synaptic plasticity. PMID:20159451
[Protocadherin α gene cluster is required for myelination and oligodendrocyte development].
Yu, Yu; Suo, Lun; Wu, Qiang
2012-08-01
This work used Immunohistochemistry to examine the expression of myelin basic protein and accumulation of oligodendrocytes in Pchdα knockout and control littermate mice. Data showed that in Pchdα knockout mice, Myelin proteins decrease in the central nervous system and mature oligodendrocytes in the cerebellum also decrease. Furthermore, deletion of the Pcdhα cluster does not cause any change to the axons and astrocytes in quantification of relative marker proteins. These findings suggest that the Pcdhα cluster may be required for myelination and oligodendrite development of the brain in mice, and that Pcdhα cluster may play a key role in the development of the central nervous system.
Li, Guangming; Montgomery, Stephanie A.; Montgomery, Nathan D.; Su, Lishan; Pagano, Joseph S.
2015-01-01
ABSTRACT BPLF1 of Epstein-Barr virus (EBV) is classified as a late lytic cycle protein but is also found in the viral tegument, suggesting its potential involvement at both initial and late stages of viral infection. BPLF1 possesses both deubiquitinating and deneddylating activity located in its N-terminal domain and is involved in processes that affect viral infectivity, viral DNA replication, DNA repair, and immune evasion. A recently constructed EBV BPLF1-knockout (KO) virus was used in conjunction with a humanized mouse model that can be infected with EBV, enabling the first characterization of BPLF1 function in vivo. Results demonstrate that the BPLF1-knockout virus is approximately 90% less infectious than wild-type (WT) virus. Transformation of human B cells, a hallmark of EBV infection, was delayed and reduced with BPLF1-knockout virus. Humanized mice infected with EBV BPLF1-knockout virus showed less weight loss and survived longer than mice infected with equivalent infectious units of WT virus. Additionally, splenic tumors formed in 100% of mice infected with WT EBV but in only 25% of mice infected with BPLF1-KO virus. Morphological features of spleens containing tumors were similar to those in EBV-induced posttransplant lymphoproliferative disease (PTLD) and were almost identical to cases seen in human diffuse large B-cell lymphoma. The presence of EBV genomes was detected in all mice that developed tumors. The results implicate BPLF1 in human B-cell transformation and tumor formation in humanized mice. PMID:26489865
Epistatic interaction between the lipase-encoding genes Pnpla2 and Lipe causes liposarcoma in mice
Wang, Shu Pei; Yang, Hao; Ji, Bo; Gladdy, Rebecca; Andelfinger, Gregor; Mitchell, Grant A.
2017-01-01
Liposarcoma is an often fatal cancer of fat cells. Mechanisms of liposarcoma development are incompletely understood. The cleavage of fatty acids from acylglycerols (lipolysis) has been implicated in cancer. We generated mice with adipose tissue deficiency of two major enzymes of lipolysis, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), encoded respectively by Pnpla2 and Lipe. Adipocytes from double adipose knockout (DAKO) mice, deficient in both ATGL and HSL, showed near-complete deficiency of lipolysis. All DAKO mice developed liposarcoma between 11 and 14 months of age. No tumors occurred in single knockout or control mice. The transcriptome of DAKO adipose tissue showed marked differences from single knockout and normal controls as early as 3 months. Gpnmb and G0s2 were among the most highly dysregulated genes in premalignant and malignant DAKO adipose tissue, suggesting a potential utility as early markers of the disease. Similar changes of GPNMB and G0S2 expression were present in a human liposarcoma database. These results show that a previously-unknown, fully penetrant epistatic interaction between Pnpla2 and Lipe can cause liposarcoma in mice. DAKO mice provide a promising model for studying early premalignant changes that lead to late-onset malignant disease. PMID:28459858
NASA Technical Reports Server (NTRS)
Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.
2002-01-01
We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.
TAM receptor knockout mice are susceptible to retinal autoimmune induction.
Ye, Fei; Li, Qiutang; Ke, Yan; Lu, Qingjun; Han, Lixia; Kaplan, Henry J; Shao, Hui; Lu, Qingxian
2011-06-16
TAM receptors are expressed mainly by dendritic cells and macrophages in the immune system, and mice lacking TAM receptors develop systemic autoimmune diseases because of inefficient negative control of the cytokine signaling in those cells. This study aims to test the susceptibility of the TAM triple knockout (tko) mice to the retina-specific autoantigen to develop experimental autoimmune uveoretinitis (EAU). TAM tko mice that were or were not immunized with interphotoreceptor retinoid-binding protein (IRBP) peptides were evaluated for retinal infiltration of the macrophages and CD3(+) T cells by immunohistochemistry, spontaneous activation of CD4(+) T cells, and memory T cells by flow cytometry and proliferation of IRBP-specific CD4(+) T cells by [(3)H]thymidine incorporation assay. Ocular inflammation induced by IRBP peptide immunization and specific T cell transfer were observed clinically by funduscopy and confirmed by histology. Tko mice were found to have less naive, but more activated, memory T cells, among which were exhibited high sensitivity to ocular IRBP autoantigens. Immunization with a low dose of IRBP and adoptive transfer of small numbers of IRBP-specific T cells from immunized tko mice caused the infiltration of lymphocytes, including CD3(+) T cells, into the tko retina. Mice without TAM receptor spontaneously develop IRBP-specific CD4(+) T cells and are more susceptible to retinal autoantigen immunization. This TAM knockout mouse line provides an animal model with which to study the role of antigen-presenting cells in the development of T cell-mediated uveitis.
CCN3 Protein Participates in Bone Regeneration as an Inhibitory Factor*
Matsushita, Yuki; Sakamoto, Kei; Tamamura, Yoshihiro; Shibata, Yasuaki; Minamizato, Tokutaro; Kihara, Tasuku; Ito, Masako; Katsube, Ken-ichi; Hiraoka, Shuichi; Koseki, Haruhiko; Harada, Kiyoshi; Yamaguchi, Akira
2013-01-01
CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy. PMID:23653360
Dorighello, Gabriel G; Rovani, Juliana C; Luhman, Christopher J F; Paim, Bruno A; Raposo, Helena F; Vercesi, Anibal E; Oliveira, Helena C F
2014-03-28
Different regimens of food restriction have been associated with protection against obesity, diabetes and CVD. In the present study, we hypothesised that food restriction would bring benefits to atherosclerosis- and diabetes-prone hypercholesterolaemic LDL-receptor knockout mice. For this purpose, 2-month-old mice were submitted to an intermittent fasting (IF) regimen (fasting every other day) over a 3-month period, which resulted in an overall 20 % reduction in food intake. Contrary to our expectation, epididymal and carcass fat depots and adipocyte size were significantly enlarged by 15, 72 and 68 %, respectively, in the IF mice compared with the ad libitum-fed mice. Accordingly, plasma levels of leptin were 50 % higher in the IF mice than in the ad libitum-fed mice. In addition, the IF mice showed increased plasma levels of total cholesterol (37 %), VLDL-cholesterol (195 %) and LDL-cholesterol (50 %). As expected, in wild-type mice, the IF regimen decreased plasma cholesterol levels and epididymal fat mass. Glucose homeostasis was also disturbed by the IF regimen in LDL-receptor knockout mice. Elevated levels of glycaemia (40 %), insulinaemia (50 %), glucose intolerance and insulin resistance were observed in the IF mice. Systemic inflammatory markers, TNF-α and C-reactive protein, were significantly increased and spontaneous atherosclerosis development were markedly increased (3-fold) in the IF mice. In conclusion, the IF regimen induced obesity and diabetes and worsened the development of spontaneous atherosclerosis in LDL-receptor knockout mice. Although being efficient in a wild-type background, this type of food restriction is not beneficial in the context of genetic hypercholesterolaemia.
Park, Sang Won; He, Zhi; Shen, Xine; Roman, Richard J; Ma, Tangeng
2012-06-01
Extensive anatomical and functional interactions exist between central dopaminergic and opioidergic systems and both systems are proposed to be targets for amphetamine-like drugs. We have previously reported that μ-opioid receptor (μ-OR) knockout mice are resistant to the loss of dopamine in the striatum and the development of behavioral sensitization induced by repeated methamphetamine (METH) treatment. The present study assessed whether METH-treated μ-OR knockout mice exhibit a differential response of the expression of dopamine transporter and tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis and maintaining dopamine levels. Mice daily received intraperitoneal injection of METH (0, 0.6, 2.5, or 10 mg/kg) for 7 days and sacrificed on day 11 (4 days after the last injection). The expression of TH protein in the striatum and the levels of TH mRNA and number of TH positive neurons in the substantia nigra were reduced in wild-type mice treated with METH (2.5 and 10 mg/kg), but not in the μ-OR knockout mice. In contrast, METH exposure at the highest dose (10 mg/kg) reduced dopamine transporter levels in both strains of mice. These results suggest that the μ-OR contributes to METH-induced loss of dopamine and behavioral sensitization by decreasing the expression of TH.
Lei, Tianluo; Zhou, Lei; Layton, Anita T.; Zhou, Hong; Zhao, Xuejian; Bankir, Lise
2011-01-01
Urea transporters UT-A2 and UT-B are expressed in epithelia of thin descending limb of Henle's loop and in descending vasa recta, respectively. To study their role and possible interaction in the context of the urine concentration mechanism, a UT-A2 and UT-B double knockout (UT-A2/B knockout) mouse model was generated by targeted deletion of the UT-A2 promoter in embryonic stem cells with UT-B gene knockout. The UT-A2/B knockout mice lacked detectable UT-A2 and UT-B transcripts and proteins and showed normal survival and growth. Daily urine output was significantly higher in UT-A2/B knockout mice than that in wild-type mice and lower than that in UT-B knockout mice. Urine osmolality in UT-A2/B knockout mice was intermediate between that in UT-B knockout and wild-type mice. The changes in urine osmolality and flow rate, plasma and urine urea concentration, as well as non-urea solute concentration after an acute urea load or chronic changes in protein intake suggested that UT-A2 plays a role in the progressive accumulation of urea in the inner medulla. These results suggest that in wild-type mice UT-A2 facilitates urea absorption by urea efflux from the thin descending limb of short loops of Henle. Moreover, UT-A2 deletion in UT-B knockout mice partially remedies the urine concentrating defect caused by UT-B deletion, by reducing urea loss from the descending limbs to the peripheral circulation; instead, urea is returned to the inner medulla through the loops of Henle and the collecting ducts. PMID:21849488
Lei, Tianluo; Zhou, Lei; Layton, Anita T; Zhou, Hong; Zhao, Xuejian; Bankir, Lise; Yang, Baoxue
2011-12-01
Urea transporters UT-A2 and UT-B are expressed in epithelia of thin descending limb of Henle's loop and in descending vasa recta, respectively. To study their role and possible interaction in the context of the urine concentration mechanism, a UT-A2 and UT-B double knockout (UT-A2/B knockout) mouse model was generated by targeted deletion of the UT-A2 promoter in embryonic stem cells with UT-B gene knockout. The UT-A2/B knockout mice lacked detectable UT-A2 and UT-B transcripts and proteins and showed normal survival and growth. Daily urine output was significantly higher in UT-A2/B knockout mice than that in wild-type mice and lower than that in UT-B knockout mice. Urine osmolality in UT-A2/B knockout mice was intermediate between that in UT-B knockout and wild-type mice. The changes in urine osmolality and flow rate, plasma and urine urea concentration, as well as non-urea solute concentration after an acute urea load or chronic changes in protein intake suggested that UT-A2 plays a role in the progressive accumulation of urea in the inner medulla. These results suggest that in wild-type mice UT-A2 facilitates urea absorption by urea efflux from the thin descending limb of short loops of Henle. Moreover, UT-A2 deletion in UT-B knockout mice partially remedies the urine concentrating defect caused by UT-B deletion, by reducing urea loss from the descending limbs to the peripheral circulation; instead, urea is returned to the inner medulla through the loops of Henle and the collecting ducts.
Erythropoiesis and Blood Pressure Are Regulated via AT1 Receptor by Distinctive Pathways.
Kato, Hideki; Ishida, Junji; Matsusaka, Taiji; Ishimaru, Tomohiro; Tanimoto, Keiji; Sugiyama, Fumihiro; Yagami, Ken-Ichi; Nangaku, Masaomi; Fukamizu, Akiyoshi
2015-01-01
The renin-angiotensin system (RAS) plays a central role in blood pressure regulation. Although clinical and experimental studies have suggested that inhibition of RAS is associated with progression of anemia, little evidence is available to support this claim. Here we report that knockout mice that lack angiotensin II, including angiotensinogen and renin knockout mice, exhibit anemia. The anemia of angiotensinogen knockout mice was rescued by angiotensin II infusion, and rescue was completely blocked by simultaneous administration of AT1 receptor blocker. To genetically determine the responsible receptor subtype, we examined AT1a, AT1b, and AT2 knockout mice, but did not observe anemia in any of them. To investigate whether pharmacological AT1 receptor inhibition recapitulates the anemic phenotype, we administered AT1 receptor antagonist in hypotensive AT1a receptor knockout mice to inhibit the remaining AT1b receptor. In these animals, hematocrit levels barely decreased, but blood pressure further decreased to the level observed in angiotensinogen knockout mice. We then generated AT1a and AT1b double-knockout mice to completely ablate the AT1 receptors; the mice finally exhibited the anemic phenotype. These results provide clear evidence that although erythropoiesis and blood pressure are negatively controlled through the AT1 receptor inhibition in vivo, the pathways involved are complex and distinct, because erythropoiesis is more resistant to AT1 receptor inhibition than blood pressure control.
Fischer, Hanspeter S; Zernig, Gerald; Hauser, Kurt F; Gerard, Craig; Hersh, Louis B; Saria, Alois
2002-01-01
Neutral endopeptidase (EC3.4.24.11, NEP, enkephalinase) is a zinc-metalloendopeptidase, cleaving a variety of substrates like enkephalins, substance P, and bradykinin. In the brain, NEP is a key enzyme in the degradation of enkephalins. Pharmacological inhibition of NEP-activity causes analgesia resulting from enhanced extracellular enkephalin concentrations. Recently, transgenic mice lacking the enzyme NEP have been developed (Lu, 1995). The present study was designed to investigate the nociceptive behavior of these NEP-knockout mice. Interestingly, NEP-deficient mice did not respond with decreased pain perception, but exhibited hyperalgesia in the hot-plate jump, warm-water tail-withdrawal, and mostnotablyin theacetic-acid writhing test. Inhibition of aminopeptidase N by bestatin reduced writhing in both strains, whereas NEP-inhibition by thiorphan reduced writhing selectively in wild-type mice. Naloxone increased writhing in wild-type but not in knockouts, whereas the bradykinin B2-receptor antagonist HOE140 reduced writhing selectively in NEP-knockouts. Similarly, the nitric oxide synthase inhibitor L-NAME reduced writhing in NEP-knockouts. These results indicate that genetic elimination of NEP, in contrast to pharmacological inhibition, leads to bradykinin-induced hyperalgesia instead of enkephalin-mediated analgesia. Nitric oxide (NO) is suggested to be involved in this process.
Sakurai, Takeshi; Ramoz, Nicolas; Barreto, Marta; Gazdoiu, Mihaela; Takahashi, Nagahide; Gertner, Michael; Dorr, Nathan; Gama Sosa, Miguel A; De Gasperi, Rita; Perez, Gissel; Schmeidler, James; Mitropoulou, Vivian; Le, H Carl; Lupu, Mihaela; Hof, Patrick R; Elder, Gregory A; Buxbaum, Joseph D
2010-05-01
SLC25A12, a susceptibility gene for autism spectrum disorders that is mutated in a neurodevelopmental syndrome, encodes a mitochondrial aspartate-glutamate carrier (aspartate-glutamate carrier isoform 1 [AGC1]). AGC1 is an important component of the malate/aspartate shuttle, a crucial system supporting oxidative phosphorylation and adenosine triphosphate production. We characterized mice with a disruption of the Slc25a12 gene, followed by confirmatory in vitro studies. Slc25a12-knockout mice, which showed no AGC1 by immunoblotting, were born normally but displayed delayed development and died around 3 weeks after birth. In postnatal day 13 to 14 knockout brains, the brains were smaller with no obvious alteration in gross structure. However, we found a reduction in myelin basic protein (MBP)-positive fibers, consistent with a previous report. Furthermore, the neocortex of knockout mice contained abnormal neurofilamentous accumulations in neurons, suggesting defective axonal transport and/or neurodegeneration. Slice cultures prepared from knockout mice also showed a myelination defect, and reduction of Slc25a12 in rat primary oligodendrocytes led to a cell-autonomous reduction in MBP expression. Myelin deficits in slice cultures from knockout mice could be reversed by administration of pyruvate, indicating that reduction in AGC1 activity leads to reduced production of aspartate/N-acetylaspartate and/or alterations in the dihydronicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide(+) ratio, resulting in myelin defects. Our data implicate AGC1 activity in myelination and in neuronal structure and indicate that while loss of AGC1 leads to hypomyelination and neuronal changes, subtle alterations in AGC1 expression could affect brain development, contributing to increased autism susceptibility. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Mitsui, Shinichi; Osako, Yoji; Yokoi, Fumiaki; Dang, Mai T.; Yuri, Kazunari; Li, Yuqing; Yamaguchi, Nozomi
2010-01-01
Motopsin is a mosaic serine protease secreted from neuronal cells in various brain regions including the hippocampus. The loss of motopsin function causes nonsyndromic mental retardation in humans and impairs long-term memory formation in Drosophila. To understand motopsin’s function in the mammalian brain, motopsin knockout mice were generated. Motopsin knockout mice did not have significant deficit in memory formation, as was tested using in the Morris water maze, passive avoidance, and Y-maze tests. A social recognition test showed that the motopsin knockout mice had the ability to recognize two stimulator mice, suggesting normal social memory. In a social novelty test, motopsin knockout mice spent a longer time investigating a familiar mouse than wild-type mice did. In a resident-intruder test, motopsin knockout mice showed prolonged social interaction compared to wild-type mice. Consistent with the behavioral deficit, spine density was significantly decreased on apical dendrites, but not on basal dendrites, of hippocampal pyramidal neurons of motopsin knockout mice. In contrast, pyramidal neurons at the cingulate cortex showed normal spine density. Spatial learning and social interaction induced the phosphorylation of cAMP responsive element binding protein (CREB) in hippocampal neurons of wild-type mice, whereas the phosphorylation of CREB was markedly decreased in mutant mouse brains. Our results indicate that an extracellular protease, motopsin, preferentially affects social behaviors, and modulates the functions of hippocampal neurons. PMID:20092579
Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.
Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka
2017-05-01
Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Immunological Development and Cardiovascular Function Are Normal in Annexin VI Null Mutant Mice
Hawkins, Tim E.; Roes, Jürgen; Rees, Daryl; Monkhouse, Jayne; Moss, Stephen E.
1999-01-01
Annexins are calcium-binding proteins of unknown function but which are implicated in important cellular processes, including anticoagulation, ion flux regulation, calcium homeostasis, and endocytosis. To gain insight into the function of annexin VI, we performed targeted disruption of its gene in mice. Matings between heterozygous mice produced offspring with a normal Mendelian pattern of inheritance, indicating that the loss of annexin VI did not interfere with viability in utero. Mice lacking annexin VI reached sexual maturity at the same age as their normal littermates, and both males and females were fertile. Because of interest in the role of annexin VI in cardiovascular function, we examined heart rate and blood pressure in knockout and wild-type mice and found these to be identical in the two groups. Similarly, the cardiovascular responses of both sets of mice to septic shock were indistinguishable. We also examined components of the immune system and found no differences in thymic, splenic, or bone marrow lymphocyte levels between knockout and wild-type mice. This is the first study of annexin knockout mice, and the lack of a clear phenotype has broad implications for current views of annexin function. PMID:10567528
Reduced Extinction of Hippocampal-Dependent Memories in CPEB Knockout Mice
ERIC Educational Resources Information Center
Zearfoss, N. Ruth; Richter, Joel D.; Berger-Sweeney, Joanne
2006-01-01
CPEB is a sequence-specific RNA binding protein that regulates translation at synapses. In neurons of CPEB knockout mice, synaptic efficacy is reduced. Here, we have performed a battery of behavioral tests and find that relative to wild-type animals, CPEB knockout mice, although similar on many baseline behaviors, have reduced extinction of…
Höfling, Corinna; Kulesskaya, Natalia; Jaako, Külli; Peltonen, Iida; Männistö, Pekka T; Nurmi, Antti; Vartiainen, Nina; Morawski, Markus; Zharkovsky, Alexander; Võikar, Vootele; Roßner, Steffen; García-Horsman, J Arturo
2016-06-01
Prolyl oligopeptidase (PREP) has been implicated in neurodegeneration and neuroinflammation and has been considered a drug target to enhance memory in dementia. However, the true physiological role of PREP is not yet understood. In this paper, we report the phenotyping of a mouse line where the PREP gene has been knocked out. This work indicates that the lack of PREP in mice causes reduced anxiety but also hyperactivity. The cortical volumes of PREP knockout mice were smaller than those of wild type littermates. Additionally, we found increased expression of diazepam binding inhibitor protein in the cortex and of the somatostatin receptor-2 in the hippocampus of PREP knockout mice. Furthermore, immunohistochemistry and tail suspension test revealed lack of response of PREP knockout mice to lipopolysaccharide insult. Further analysis revealed significantly increased levels of polysialylated-neural cell adhesion molecule in PREP deficient mice. These findings might be explained as possible alteration in brain plasticity caused by PREP deficiency, which in turn affect behaviour and brain development. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
[Upregulation of P2X3 receptors in dorsal root ganglion of TRPV1 knockout female mice].
Fang, Xiao; Shi, Xiao-Han; Huang, Li-Bin; Rong, Wei-Fang; Ma, Bei
2014-08-25
The study was aimed to investigate the changes in mechanical pain threshold in the condition of chronic inflammatory pain after transient receptor potential vanilloid 1 (TRPV1) gene was knockout. Hind-paw intraplantar injection of complete freund's adjuvant (CFA, 20 μL) produced peripheral inflammation in wild-type and TRPV1 knockout female mice. The mechanical pain thresholds were measured during the 8 days after injection and pre-injection by using Von-Frey hair. Nine days after injection, mice were killed and the differences of expression of c-Fos and P2X3 receptor in the dorsal root ganglia (DRG) and spinal cord dorsal horn were examined by Western blotting between the two groups. Compared with that in wild-type mice, the mechanical pain threshold was increased significantly in TRPV1 knockout mice (P < 0.05); 3 days after CFA injection, the baseline mechanical pain threshold in the TRPV1 knockout mice group was significantly higher than that in the wild-type mice group (P < 0.05); The result of Western blotting showed that the expression of c-Fos protein both in DRG and spinal cord dorsal horn of TRPV1 knockout mice group was decreased significantly compared with that in wild-type mice group (P < 0.01, P < 0.05), while the expression of P2X3 receptor in DRG of TRPV1 knockout mice group was increased significantly compared with that in wild-type mice group (P < 0.05). Our findings indicate that TRPV1 may influence the peripheral mechanical pain threshold by mediating the expression of c-Fos protein both in DRG and spinal cord dorsal horn and changing the expression of P2X3 receptor in DRG.
Genetic deletion of CB1 receptors improves non-associative learning.
Degroot, Aldemar; Salhoff, Craig; Davis, Richard J; Nomikos, George G
2005-07-01
Habituation (a form of non-associative learning) was measured by assessing locomotion in novel activity monitors in CB1 receptor knockout mice and juxtaposed to habituation measured in muscarinic M2, M4, and double M2/M4 receptor knockout mice. M2 and M2/M4, but not M4, receptor knockout mice appeared to have an impaired ability to habituate, whereas CB1 receptor knockout mice showed enhanced habituation compared to wild-type animals. We conclude that CB1 receptor gene invalidation improves habituation tentatively through an increase in cholinergic neurotransmission.
Liu, Xiaoyu; Kwak, Dongmin; Lu, Zhongbing; Xu, Xin; Fassett, John; Wang, Huan; Wei, Yidong; Cavener, Douglas R; Hu, Xinli; Hall, Jennifer; Bache, Robert J; Chen, Yingjie
2014-10-01
Studies have reported that development of congestive heart failure is associated with increased endoplasmic reticulum stress. Double stranded RNA-activated protein kinase R-like endoplasmic reticulum kinase (PERK) is a major transducer of the endoplasmic reticulum stress response and directly phosphorylates eukaryotic initiation factor 2α, resulting in translational attenuation. However, the physiological effect of PERK on congestive heart failure development is unknown. To study the effect of PERK on ventricular structure and function, we generated inducible cardiac-specific PERK knockout mice. Under unstressed conditions, cardiac PERK knockout had no effect on left ventricular mass, or its ratio to body weight, cardiomyocyte size, fibrosis, or left ventricular function. However, in response to chronic transverse aortic constriction, PERK knockout mice exhibited decreased ejection fraction, increased left ventricular fibrosis, enhanced cardiomyocyte apoptosis, and exacerbated lung remodeling in comparison with wild-type mice. PERK knockout also dramatically attenuated cardiac sarcoplasmic reticulum Ca(2+)-ATPase expression in response to aortic constriction. Our findings suggest that PERK is required to protect the heart from pressure overload-induced congestive heart failure. © 2014 American Heart Association, Inc.
Özdemir, Evrim Dursun; Hanikoglu, Aysegul; Cort, Aysegul; Ozben, Beste; Suleymanlar, Gultekin; Ozben, Tomris
2017-07-01
Atherosclerosis and atherosclerosis-related complications are the main cause of death in the world. Vascular injury in response to inflammation and enhanced oxidant stress promotes endothelial dysfunction and leads to atherosclerotic lesions. Low-dose treatment with darbepoetin-α may be a potential therapeutic tool for endothelial injury and atherosclerosis. In order to study the effect of darbepoetin-α on endothelial injury and atherosclerosis, we used ApoE-/- mice as the atherosclerotic mice model. We monitored atherosclerosis and plaque formation histochemically in ApoE knockout mice at early and late stages of atherosclerosis. Darbepoetin-α was injected intraperitoneally at a dose of 0.1 μg/kg to ApoE-/- mice. The results of 2 ApoE-/- mice groups injected with darbepoetin-α (early and late stages of atherosclerosis) were compared to the results of the corresponding saline injected ApoE-/- mice groups and the control (C57BL/6) mice. Lipid profile (total cholesterol, triglyceride), inflammation (CRP, IL-6, histamine), endothelial injury (ICAM-1, selectin) and oxidative stress markers (lipid peroxidation, protein oxidation) were significantly increased in 4 atherosclerotic groups compared to the control group. Short-term darbepoetin-α had no marked effects on indicators of inflammation and endothelial injury in the ApoE knockout mice groups compared to the ApoE knockout mice not treated with darbepoetin-α, however, darbepoetin-α significantly decreased 8-isoprostane and protein carbonyl content. Long term darbepoetin-α treatment reduced oxidative stress in ApoE-/- mice. This study contributes to understanding and elucidating the biochemical changes occurring during early and late stages of atherosclerosis development regarding lipid profile, inflammation, endothelial injury and oxidative stress markers.
Ventura, R; Pascucci, T; Catania, M V; Musumeci, S A; Puglisi-Allegra, S
2004-09-01
Fragile X syndrome is an X-linked form of mental retardation including, among others, symptoms such as stereotypic behaviour, hyperactivity, hyperarousal, and cognitive deficits. We hypothesized that hyperactivity and/or compromised attentional, cognitive functions may lead to impaired performance in cognitive tasks in Fmr1 knockout mice, the most widely used animal model of fragile X syndrome, and suggested that psychostimulant treatment may improve performance by acting on one or both components. Since hyperactivity and cognitive functions have been suggested to depend on striatal and prefrontal cortex dopaminergic dysfunction, we assessed whether amphetamine produced beneficial, positive effects by acting on dopaminergic corticostriatal systems. Our results show that Fmr1 knockout mice are not able to discriminate between a familiar object and a novel one in the object recognition test, thus showing a clear-cut cognitive impairment that, to date, has been difficult to demonstrate in other cognitive tasks. Amphetamine improved performance of Fmr1 knockout mice, leading to enhanced ability to discriminate novel versus familiar objects, without significantly affecting locomotor activity. In agreement with behavioural data, amphetamine produced a greater increase in dopamine release in the prefrontal cortex of Fmr1 knockout compared with the wild-type mice, while a weak striatal dopaminergic response was observed in Fmr1 knockout mice. Our data support the view that the psychostimulant ameliorates performance in Fmr1 knockout mice by improving merely cognitive functions through its action on prefrontal cortical dopamine, irrespective of its action on motor hyperactivity. These results indicate that prefrontal cortical dopamine plays a major role in cognitive impairments characterizing Fmr1 knockout mice, thus pointing to an important aetiological factor in the fragile X syndrome.
Zivcec, Marko; Safronetz, David; Scott, Dana; Robertson, Shelly; Ebihara, Hideki; Feldmann, Heinz
2013-06-15
Crimean-Congo hemorrhagic fever (CCHF) is a widely distributed viral hemorrhagic fever characterized by rapid onset of flu-like symptoms often followed by hemorrhagic manifestations. CCHF virus (CCHFV), a bunyavirus in the Nairovirus genus, is capable of infecting a wide range of mammalian hosts in nature but so far only causes disease in humans. Recently, immunocompromised mice have been reported as CCHF disease models, but detailed characterization is lacking. Here, we closely followed infection and disease progression in CCHFV-infected interferon α/β receptor knockout (IFNAR(-/-)) mice and age-matched wild-type (WT) mice. WT mice quickly clear CCHFV without developing any disease signs. In contrast, CCHFV infected IFNAR(-/-) mice develop an acute fulminant disease with high viral loads leading to organ pathology (liver and lymphoid tissues), marked proinflammatory host responses, severe thrombocytopenia, coagulopathy, and death. Disease progression closely mimics hallmarks of human CCHF disease, making IFNAR(-/-) mice an excellent choice to assess medical countermeasures.
Jiang, Kai; Li, Wen; Li, Wei; Jiao, Sen; Castel, Laurie; Van Wagoner, David R; Yu, Xin
2015-11-01
The aim of this study was to develop a rapid, multislice cardiac T1 mapping method in mice and to apply the method to quantify manganese (Mn(2+)) uptake in a mouse model with altered Ca(2+) channel activity. An electrocardiography-triggered multislice saturation-recovery Look-Locker method was developed and validated both in vitro and in vivo. A two-dose study was performed to investigate the kinetics of T1 shortening, Mn(2+) relaxivity in myocardium, and the impact of Mn(2+) on cardiac function. The sensitivity of Mn(2+)-enhanced MRI in detecting subtle changes in altered Ca(2+) channel activity was evaluated in a mouse model with α-dystrobrevin knockout. Validation studies showed strong agreement between the current method and an established method. High Mn(2+) dose led to significantly accelerated T1 shortening. Heart rate decreased during Mn(2+) infusion, while ejection ratio increased slightly at the end of imaging protocol. No statistical difference in cardiac function was detected between the two dose groups. Mice with α-dystrobrevin knockout showed enhanced Mn(2+) uptake in vivo. In vitro patch-clamp study showed increased Ca(2+) channel activity. The saturation recovery method provides rapid T1 mapping in mouse hearts, which allowed sensitive detection of subtle changes in Mn(2+) uptake in α-dystrobrevin knockout mice. © 2014 Wiley Periodicals, Inc.
Expression of microRNA-122 contributes to apoptosis in H9C2 myocytes
Huang, Xiaoyan; Huang, Fang; Yang, Deye; Dong, Fengquan; Shi, Xiangxiang; Wang, Hongyu; Zhou, Xi; Wang, Suyun; Dai, Shengchuan
2012-01-01
The microRNAs (miRNAs) can post-transcriptionally regulate gene expression and heart development. The Pax-8 gene knockout mice have apparent heart abnormalities. This study investigated the role of miRNAs in regulation of cardiac apoptosis and development in the knockout mice. MicroRNA microarrays demonstrated differential expression of microRNAs between Pax-8−/− and Pax-8+/− mice, confirmed by real-time PCR. The miR-122 was up-regulated by 1.92 folds in Pax-8−/− mice. There were ventricular septum defects in Pax-8−/− mice, and increased numbers of apoptotic cells in the left ventricular wall and interventricular septum in Pax-8−/− mice. In H9C2 myocytes, treatment with miR-122 mimics or miR-122 inhibitor affects the expression of CCK-8 and activity of Caspase-3. The miR-122 is up-regulated in the myocytes of Pax-8−/− mice and may participate in the apoptotic gene expression and pathogenesis of heart development defect. PMID:22453009
Hüttemann, Maik; Lee, Icksoo; Gao, Xiufeng; Pecina, Petr; Pecinova, Alena; Liu, Jenney; Aras, Siddhesh; Sommer, Natascha; Sanderson, Thomas H.; Tost, Monica; Neff, Frauke; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Naton, Beatrix; Rathkolb, Birgit; Rozman, Jan; Favor, Jack; Hans, Wolfgang; Prehn, Cornelia; Puk, Oliver; Schrewe, Anja; Sun, Minxuan; Höfler, Heinz; Adamski, Jerzy; Bekeredjian, Raffi; Graw, Jochen; Adler, Thure; Busch, Dirk H.; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Weissmann, Norbert; Doan, Jeffrey W.; Bassett, David J. P.; Grossman, Lawrence I.
2012-01-01
Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain. The purpose of this study was to analyze the function of lung-specific cytochrome c oxidase subunit 4 isoform 2 (COX4i2) in vitro and in COX4i2-knockout mice in vivo. COX was isolated from cow lung and liver as control and functionally analyzed. COX4i2-knockout mice were generated and the effect of the gene knockout was determined, including COX activity, tissue energy levels, noninvasive and invasive lung function, and lung pathology. These studies were complemented by a comprehensive functional screen performed at the German Mouse Clinic (Neuherberg, Germany). We show that isolated cow lung COX containing COX4i2 is about twice as active (88 and 102% increased activity in the presence of allosteric activator ADP and inhibitor ATP, respectively) as liver COX, which lacks COX4i2. In COX4i2-knockout mice, lung COX activity and cellular ATP levels were significantly reduced (−50 and −29%, respectively). Knockout mice showed decreased airway responsiveness (60% reduced Penh and 58% reduced airway resistance upon challenge with 25 and 100 mg methacholine, respectively), and they developed a lung pathology deteriorating with age that included the appearance of Charcot-Leyden crystals. In addition, there was an interesting sex-specific phenotype, in which the knockout females showed reduced lean mass (−12%), reduced total oxygen consumption rate (−8%), improved glucose tolerance, and reduced grip force (−14%) compared to wild-type females. Our data suggest that high activity lung COX is a central determinant of airway function and is required for maximal airway responsiveness and healthy lung function. Since airway constriction requires energy, we propose a model in which reduced tissue ATP levels explain protection from airway hyperresponsiveness, i.e., absence of COX4i2 leads to reduced lung COX activity and ATP levels, which results in impaired airway constriction and thus reduced airway responsiveness; long-term lung pathology develops in the knockout mice due to impairment of energy-costly lung maintenance processes; and therefore, we propose mitochondrial oxidative phosphorylation as a novel target for the treatment of respiratory diseases, such as asthma.—Hüttemann, M., Lee, I., Gao, X., Pecina, P., Pecinova, A., Liu, J., Aras, S., Sommer, N., Sanderson, T. H., Tost, M., Neff, F., Aguilar-Pimentel, J. A., Becker, L., Naton, B., Rathkolb, B., Rozman, J., Favor, J., Hans, W., Prehn, C., Puk, O., Schrewe, A., Sun, M., Höfler, H., Adamski, J., Bekeredjian, R., Graw, J., Adler, T., Busch, D. H., Klingenspor, M., Klopstock, T., Ollert, M., Wolf, E., Fuchs, H., Gailus-Durner, V., Hrabě de Angelis, M., Weissmann, N., Doan, J. W., Bassett, D. J. P., Grossman, L. I. Cytochrome c oxidase subunit 4 isoform 2-knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. PMID:22730437
Deficiency of eNOS exacerbates early-stage NAFLD pathogenesis by changing the fat distribution.
Nozaki, Yuichi; Fujita, Koji; Wada, Koichiro; Yoneda, Masato; Shinohara, Yoshiyasu; Imajo, Kento; Ogawa, Yuji; Kessoku, Takaomi; Nakamuta, Makoto; Saito, Satoru; Masaki, Naohiko; Nagashima, Yoji; Terauchi, Yasuo; Nakajima, Atsushi
2015-12-17
Although many factors and molecules that are closely associated with non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) have been reported, the role of endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) in the pathogenesis of NAFLD/NASH remains unclear. We therefore investigated the role of eNOS-derived NO in NAFLD pathogenesis using systemic eNOS-knockout mice fed a high-fat diet. eNOS-knockout and wild-type mice were fed a basal diet or a high-fat diet for 12 weeks. Lipid accumulation and inflammation were evaluated in the liver, and various factors that are closely associated with NAFLD/NASH and hepatic tissue blood flow were analyzed. Lipid accumulation and inflammation were more extensive in the liver and lipid accumulation was less extensive in the visceral fat tissue in eNOS-knockout mice, compared with wild-type mice, after 12 weeks of being fed a high-fat diet. While systemic insulin resistance was comparable between the eNOS-knockout and wild-type mice fed a high-fat diet, hepatic tissue blood flow was significantly suppressed in the eNOS-knockout mice, compared with the wild-type mice, in mice fed a high-fat diet. The microsomal triglyceride transfer protein activity was down-regulated in eNOS-knockout mice, compared with wild-type mice, in mice fed a high-fat diet. A deficiency of eNOS-derived NO may exacerbate the early-stage of NASH pathogenesis by changing the fat distribution in a mouse model via the regulation of hepatic tissue blood flow.
Global Nav1.7 Knockout Mice Recapitulate the Phenotype of Human Congenital Indifference to Pain
Gingras, Jacinthe; Smith, Sarah; Matson, David J.; Johnson, Danielle; Nye, Kim; Couture, Lauren; Feric, Elma; Yin, Ruoyuan; Moyer, Bryan D.; Peterson, Matthew L.; Rottman, James B.; Beiler, Rudolph J.; Malmberg, Annika B.; McDonough, Stefan I.
2014-01-01
Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knockouts were anatomically normal, reached adulthood, and had phenotype wholly analogous to human congenital indifference to pain (CIP): compared to littermates, knockouts showed no defects in mechanical sensitivity or overall movement yet were completely insensitive to painful tactile, thermal, and chemical stimuli and were anosmic. Knockouts also showed no painful behaviors resulting from peripheral injection of nonselective sodium channel activators, did not develop complete Freund’s adjuvant-induced thermal hyperalgesia, and were insensitive to intra-dermal histamine injection. Tetrodotoxin-sensitive sodium current recorded from cell bodies of isolated sensory neurons and the mechanically-evoked spiking of C-fibers in a skin-nerve preparation each were reduced but not eliminated in tissue from knockouts compared to littermates. Results support a role for Nav1.7 that is conserved between rodents and humans and suggest several possibly translatable biomarkers for the study of Nav1.7-targeted therapeutics. Results further suggest that Nav1.7 may retain its key role in persistent as well as acute forms of pain. PMID:25188265
UHRF2 regulates local 5-methylcytosine and suppresses spontaneous seizures
Liu, Yidan; Zhang, Bin; Meng, Xiaoyu; Korn, Matthew J.; Parent, Jack M.; Lu, Lin-Yu; Yu, Xiaochun
2017-01-01
ABSTRACT The 5-methylcytosine (5mC) modification regulates multiple cellular processes and is faithfully maintained following DNA replication. In addition to DNA methyltransferase (DNMT) family proteins, ubiquitin-like PHD and ring finger domain-containing protein 1 (UHRF1) plays an important role in the maintenance of 5mC levels. Loss of UHRF1 abolishes 5mC in cells and leads to embryonic lethality in mice. Interestingly, UHRF1 has a paralog, UHRF2, that has similar sequence and domain architecture, but its biologic function is not clear. Here, we have generated Uhrf2 knockout mice and characterized the role of UHRF2 in vivo. Uhrf2 knockout mice are viable, but the adult mice develop frequent spontaneous seizures and display abnormal electrical activities in brain. Despite no global DNA methylation changes, 5mC levels are decreased at certain genomic loci in the brains of Uhrf2 knockout mice. Therefore, our study has revealed a unique role of UHRF2 in the maintenance of local 5mC levels in brain that is distinct from that of its paralog UHRF1. PMID:28402695
Walentiny, D Matthew; Vann, Robert E; Wiley, Jenny L
2015-06-01
A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ(9)-tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with similar THC dose-response curves between groups. Anandamide fully substituted for THC in FAAH knockout, but not wildtype, mice. Conversely, the metabolically stable anandamide analog O-1812 fully substituted in both groups, but was more potent in knockouts. The CB1 receptor antagonist rimonabant dose-dependently attenuated THC generalization in both groups and anandamide substitution in FAAH knockouts. Pharmacological inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), with JZL184 resulted in full substitution for THC in FAAH knockout mice and nearly full substitution in wildtypes. Quantification of brain endocannabinoid levels revealed expected elevations in anandamide in FAAH knockout mice compared to wildtypes and equipotent dose-dependent elevations in 2-AG following JZL184 administration. Dual inhibition of FAAH and MAGL with JZL195 resulted in roughly equipotent increases in THC-appropriate responding in both groups. While the notable similarity in THC's discriminative stimulus effects across genotype suggests that the increased baseline brain anandamide levels (as seen in FAAH knockout mice) do not alter THC's subjective effects, FAAH knockout mice are more sensitive to the THC-like effects of pharmacologically induced increases in anandamide and MAGL inhibition (e.g., JZL184). Copyright © 2015 Elsevier Ltd. All rights reserved.
Sinning, Anne; Radionov, Nikita; Trepiccione, Francesco; López-Cayuqueo, Karen I.; Jayat, Maximilien; Baron, Stéphanie; Cornière, Nicolas; Alexander, R. Todd; Hadchouel, Juliette; Eladari, Dominique; Hübner, Christian A.
2017-01-01
We recently described a novel thiazide–sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl−/HCO3− exchanger pendrin and the Na+–driven Cl−/2HCO3− exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na+ balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na+ balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na+ homeostasis and provide evidence that the Na+/Cl− cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double–knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K+ concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca2+–activated K+ channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K+ concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients. PMID:27151921
Sinning, Anne; Radionov, Nikita; Trepiccione, Francesco; López-Cayuqueo, Karen I; Jayat, Maximilien; Baron, Stéphanie; Cornière, Nicolas; Alexander, R Todd; Hadchouel, Juliette; Eladari, Dominique; Hübner, Christian A; Chambrey, Régine
2017-01-01
We recently described a novel thiazide-sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl - /HCO 3 - exchanger pendrin and the Na + -driven Cl - /2HCO 3 - exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na + balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na + balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na + homeostasis and provide evidence that the Na + /Cl - cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double-knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K + concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca 2+ -activated K + channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K + concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients. Copyright © 2016 by the American Society of Nephrology.
Weinstock, P H; Bisgaier, C L; Aalto-Setälä, K; Radner, H; Ramakrishnan, R; Levak-Frank, S; Essenburg, A D; Zechner, R; Breslow, J L
1995-01-01
Lipoprotein lipase (LPL)-deficient mice have been created by gene targeting in embryonic stem cells. At birth, homozygous knockout pups have threefold higher triglycerides and sevenfold higher VLDL cholesterol levels than controls. When permitted to suckle, LPL-deficient mice become pale, then cyanotic, and finally die at approximately 18 h of age. Before death, triglyceride levels are severely elevated (15,087 +/- 3,805 vs 188 +/- 71 mg/dl in controls). Capillaries in tissues of homozygous knockout mice are engorged with chylomicrons. This is especially significant in the lung where marginated chylomicrons prevent red cell contact with the endothelium, a phenomenon which is presumably the cause of cyanosis and death in these mice. Homozygous knockout mice also have diminished adipose tissue stores as well as decreased intracellular fat droplets. By crossbreeding with transgenic mice expressing human LPL driven by a muscle-specific promoter, mouse lines were generated that express LPL exclusively in muscle but not in any other tissue. This tissue-specific LPL expression rescued the LPL knockout mice and normalized their lipoprotein pattern. This supports the contention that hypertriglyceridemia caused the death of these mice and that LPL expression in a single tissue was sufficient for rescue. Heterozygous LPL knockout mice survive to adulthood and have mild hypertriglyceridemia, with 1.5-2-fold elevated triglyceride levels compared with controls in both the fed and fasted states on chow, Western-type, or 10% sucrose diets. In vivo turnover studies revealed that heterozygous knockout mice had impaired VLDL clearance (fractional catabolic rate) but no increase in transport rate. In summary, total LPL deficiency in the mouse prevents triglyceride removal from plasma, causing death in the neonatal period, and expression of LPL in a single tissue alleviates this problem. Furthermore, half-normal levels of LPL cause a decrease in VLDL fractional catabolic rate and mild hypertriglyceridemia, implying that partial LPL deficiency has physiological consequences. Images PMID:8675619
Fukada, So-ichiro; Yamaguchi, Masahiko; Kokubo, Hiroki; Ogawa, Ryo; Uezumi, Akiyoshi; Yoneda, Tomohiro; Matev, Miroslav M.; Motohashi, Norio; Ito, Takahito; Zolkiewska, Anna; Johnson, Randy L.; Saga, Yumiko; Miyagoe-Suzuki, Yuko; Tsujikawa, Kazutake; Takeda, Shin’ichi; Yamamoto, Hiroshi
2011-01-01
Satellite cells, which are skeletal muscle stem cells, divide to provide new myonuclei to growing muscle fibers during postnatal development, and then are maintained in an undifferentiated quiescent state in adult skeletal muscle. This state is considered to be essential for the maintenance of satellite cells, but their molecular regulation is unknown. We show that Hesr1 (Hey1) and Hesr3 (Heyl) (which are known Notch target genes) are expressed simultaneously in skeletal muscle only in satellite cells. In Hesr1 and Hesr3 single-knockout mice, no obvious abnormalities of satellite cells or muscle regenerative potentials are observed. However, the generation of undifferentiated quiescent satellite cells is impaired during postnatal development in Hesr1/3 double-knockout mice. As a result, myogenic (MyoD and myogenin) and proliferative (Ki67) proteins are expressed in adult satellite cells. Consistent with the in vivo results, Hesr1/3-null myoblasts generate very few Pax7+ MyoD– undifferentiated cells in vitro. Furthermore, the satellite cell number gradually decreases in Hesr1/3 double-knockout mice even after it has stabilized in control mice, and an age-dependent regeneration defect is observed. In vivo results suggest that premature differentiation, but not cell death, is the reason for the reduced number of satellite cells in Hesr1/3 double-knockout mice. These results indicate that Hesr1 and Hesr3 are essential for the generation of adult satellite cells and for the maintenance of skeletal muscle homeostasis. PMID:21989910
Embryonic ablation of neuronal VGF increases energy expenditure and reduces body weight
Jiang, Cheng; Lin, Wei-Jye; Sadahiro, Masato; Shin, Andrew C.; Buettner, Christoph; Salton, Stephen R.
2016-01-01
Germline ablation of VGF, a secreted neuronal, neuroendocrine, and endocrine peptide precursor, results in lean, hypermetabolic, and infertile adult mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes (Hahm et al., 1999, 2002). To assess whether this phenotype is predominantly driven by reduced VGF expression in developing and/or adult neurons, or in peripheral endocrine and neuroendocrine tissues, we generated and analyzed conditional VGF knockout mice, obtained by mating loxP-flanked (floxed) Vgf mice with either pan-neuronal Synapsin-Cre- or forebrain alpha-CaMKII-Cre-recombinase-expressing transgenic mice. Adult male and female mice, with conditional ablation of the Vgf gene in embryonic neurons had significantly reduced body weight, increased energy expenditure, and were resistant to diet-induced obesity. Conditional forebrain postnatal ablation of VGF in male mice, primarily in adult excitatory neurons, had no measurable effect on body weight nor on energy expenditure, but led to a modest increase in adiposity, partially overlapping the effect of AAV-Cre-mediated targeted ablation of VGF in the adult ventromedial hypothalamus and arcuate nucleus of floxed Vgf mice (Foglesong et al., 2016), and also consistent with results of icv delivery of the VGF-derived peptide TLQP-21 to adult mice, which resulted in increased energy expenditure and reduced adiposity (Bartolomucci et al., 2006). Because the lean, hypermetabolic phenotype of germline VGF knockout mice is to a great extent recapitulated in Syn-Cre+/−,Vgfflpflox/flpflox mice, we conclude that the metabolic profile of germline VGF knockout mice is largely the result of VGF ablation in embryonic CNS neurons, rather than peripheral endocrine and/or neuroendocrine cells, and that in forebrain structures such as hypothalamus, VGF and/or VGF-derived peptides play uniquely different roles in the developing and adult nervous system. PMID:28024880
MONOAMINE OXIDASE: From Genes to Behavior
Shih, J. C.; Chen, K.; Ridd, M. J.
2010-01-01
Cloning of MAO (monoamine oxidase) A and B has demonstrated unequivocally that these enzymes are made up of different polypeptides, and our understanding of MAO structure, regulation, and function has been significantly advanced by studies using their cDNA. MAO A and B genes are located on the X-chromosome (Xp11.23) and comprise 15 exons with identical intron-exon organization, which suggests that they are derived from the same ancestral gene. MAO A and B knockout mice exhibit distinct differences in neurotransmitter metabolism and behavior. MAO A knock-out mice have elevated brain levels of serotonin, norephinephrine, and dopamine and manifest aggressive behavior similar to human males with a deletion of MAO A. In contrast, MAO B knock-out mice do not exhibit aggression and only levels of phenylethylamine are increased. Mice lacking MAO B are resistant to the Parkinsongenic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine. Both MAO A and B knock-out mice show increased reactivity to stress. These knock-out mice are valuable models for investigating the role of monoamines in psychoses and neurodegenerative and stress-related disorders. PMID:10202537
Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of Dcx
Wang, Yu; Yin, Xiuyin; Rosen, Glenn; Gabel, Lisa; Guadiana, Sarah M.; Sarkisian, Matthew R; Galaburda, Albert M.; LoTurco, Joseph J.
2011-01-01
The dyslexia-associated gene DCDC2 is a member of the DCX family of genes known to play roles in neurogenesis, neuronal migration and differentiation. Here we report the first phenotypic analysis of a Dcdc2 knockout mouse. Comparisons between Dcdc2 knockout mice and wild type littermates revealed no significant differences in neuronal migration, neocortical lamination, neuronal cilliogenesis or dendritic differentiation. Considering previous studies showing genetic interactions and potential functional redundancy among members of the DCX family, we tested whether decreasing Dcx expression by RNAi would differentially impair neurodevelopment in Dcdc2 knockouts and wild type mice. Consistent with this hypothesis, we found that deficits in neuronal migration, and dendritic growth caused by RNAi of Dcx were more severe in Dcdc2 knockouts than in wild type mice with the same transfection. These results indicate that Dcdc2 is not required for neurogenesis, neuronal migration or differentiation in mice, but may have partial functional redundancy with Dcx. PMID:21689730
Haloperidol inhibits the development of atherosclerotic lesions in LDL receptor knockout mice.
van der Sluis, Ronald J; Nahon, Joya E; Reuwer, Anne Q; Van Eck, Miranda; Hoekstra, Menno
2015-05-01
Antipsychotic drugs have been shown to modulate the expression of ATP-binding cassette transporter A1 (ABCA1), a key factor in the anti-atherogenic reverse cholesterol transport process, in vitro. Here we evaluated the potential of the typical antipsychotic drug haloperidol to modulate the cholesterol efflux function of macrophages in vitro and their susceptibility to atherosclerosis in vivo. Thioglycollate-elicited peritoneal macrophages were used for in vitro studies. Hyperlipidaemic low-density lipoprotein (LDL) receptor knockout mice were implanted with a haloperidol-containing pellet and subsequently fed a Western-type diet for 5 weeks to induce the development of atherosclerotic lesions in vivo. Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in peritoneal macrophages. This coincided with a 30% decrease in the capacity of macrophages to efflux cholesterol to apolipoprotein A1. Haloperidol treatment stimulated the expression of ABCA1 (+51%) and other genes involved in reverse cholesterol transport, that is, CYP7A1 (+98%) in livers of LDL receptor knockout mice. No change in splenic ABCA1 expression was noted. However, the average size of the atherosclerotic size was significantly smaller (-31%) in the context of a mildly more atherogenic metabolic phenotype upon haloperidol treatment. More importantly, haloperidol markedly lowered MCP-1 expression (-70%) and secretion (-28%) by peritoneal macrophages. Haloperidol treatment lowered the susceptibility of hyperlipidaemic LDL receptor knockout mice to develop atherosclerotic lesions. Our findings suggest that the beneficial effect of haloperidol on atherosclerosis susceptibility can be attributed to its ability to inhibit macrophage chemotaxis. © 2015 The British Pharmacological Society.
Generation and phenotypic analysis of mice lacking all urea transporters.
Jiang, Tao; Li, Yingjie; Layton, Anita T; Wang, Weiling; Sun, Yi; Li, Min; Zhou, Hong; Yang, Baoxue
2017-02-01
Urea transporters (UT) are a family of transmembrane urea-selective channel proteins expressed in multiple tissues and play an important role in the urine concentrating mechanism of the mammalian kidney. UT inhibitors have diuretic activity and could be developed as novel diuretics. To determine if functional deficiency of all UTs in all tissues causes physiological abnormality, we established a novel mouse model in which all UTs were knocked out by deleting an 87 kb of DNA fragment containing most parts of Slc14a1 and Slc14a2 genes. Western blot analysis and immunofluorescence confirmed that there is no expression of urea transporter in these all-UT-knockout mice. Daily urine output was nearly 3.5-fold higher, with significantly lower urine osmolality in all-UT-knockout mice than that in wild-type mice. All-UT-knockout mice were not able to increase urinary urea concentration and osmolality after water deprivation, acute urea loading, or high protein intake. A computational model that simulated UT-knockout mouse models identified the individual contribution of each UT in urine concentrating mechanism. Knocking out all UTs also decreased the blood pressure and promoted the maturation of the male reproductive system. Thus, functional deficiency of all UTs caused a urea-selective urine-concentrating defect with little physiological abnormality in extrarenal organs. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Generation and phenotypic analysis of mice lacking all urea transporters
Jiang, Tao; Li, Yingjie; Layton, Anita T.; Wang, Weiling; Sun, Yi; Li, Min; Zhou, Hong; Yang, Baoxue
2017-01-01
Urea transporters (UT) are a family of transmembrane urea-selective channel proteins expressed in multiple tissues and play an important role in the urine concentrating mechanism of the mammalian kidney. UT inhibitors have been identified to have diuretic activity and might be developed as novel diuretics. To determine if functional deficiency of all UTs in all tissues causes physiological abnormality, we established a novel mouse model in which all UTs were knocked out by deleting an 87 kb of DNA fragment containing most parts of Slc14a1 and Slc14a2 genes. Western blot analysis and immunofluorescence confirmed that there is no expression of urea transporter in all-UT-knockout mice. Daily urine output was nearly 3.5-fold higher, with significantly lower urine osmolality, in all-UT-knockout-mice than that in wild-type mice, and urine osmolality was significantly lower. All-UT-knockout mice were not able to increase urinary urea concentration and osmolality after water deprivation, acute urea loading or high protein intake. A computational model that simulated UT knockout mouse models identified the individual contribution of each UT in urine concentrating mechanism. Knocking out all UTs also decreased the blood pressure and promoted the maturation of the male reproductive system. These results revealed that functional deficiency of all UTs caused urea selective urine concentrating defect with little physiological abnormality in extrarenal organs. PMID:27914708
Olivocochlear neuron central anatomy is normal in alpha 9 knockout mice.
Brown, M Christian; Vetter, Douglas E
2009-03-01
Olivocochlear (OC) neurons were studied in a transgenic mouse with deletion of the alpha 9 nicotinic acetylcholine receptor subunit. In this alpha 9 knockout mouse, the peripheral effects of OC stimulation are lacking and the peripheral terminals of OC neurons under outer hair cells have abnormal morphology. To account for this mouse's apparently normal hearing, it has been proposed to have central compensation via collateral branches to the cochlear nucleus. We tested this idea by staining OC neurons for acetylcholinesterase and examining their morphology in knockout mice, wild-type mice of the same background strain, and CBA/CaJ mice. Knockout mice had normal OC systems in terms of numbers of OC neurons, dendritic patterns, and numbers of branches to the cochlear nucleus. The branch terminations were mainly to edge regions and to a lesser extent the core of the cochlear nucleus, and were similar among the strains in terms of the distribution and staining density. These data demonstrate that there are no obvious changes in the central morphology of the OC neurons in alpha 9 knockout mice and make less attractive the idea that there is central compensation for deletion of the peripheral receptor in these mice.
McEwen, Hayden J. L.; Inglis, Megan A.; Quennell, Janette H.; Grattan, David R.
2016-01-01
The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. SIGNIFICANCE STATEMENT Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the brain responds as if there were low levels of leptin, leading to increased appetite and suppressed fertility. Here we show that leptin resistant infertility is caused in part by the leptin signaling molecule SOCS3. Deletion of SOCS3 from brain neurons delays the onset of diet-induced infertility. PMID:27383590
McEwen, Hayden J L; Inglis, Megan A; Quennell, Janette H; Grattan, David R; Anderson, Greg M
2016-07-06
The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the brain responds as if there were low levels of leptin, leading to increased appetite and suppressed fertility. Here we show that leptin resistant infertility is caused in part by the leptin signaling molecule SOCS3. Deletion of SOCS3 from brain neurons delays the onset of diet-induced infertility. Copyright © 2016 the authors 0270-6474/16/367142-12$15.00/0.
Siuciak, Judith A; McCarthy, Sheryl A; Chapin, Douglas S; Martin, Ashley N; Harms, John F; Schmidt, Christopher J
2008-02-01
The phenotype of genetically modified animals is strongly influenced by both the genetic background of the animal as well as environmental factors. We have previously reported the behavioral and neurochemical characterization of PDE10A knockout mice maintained on a DBA1LacJ (PDE10A(DBA)) genetic background. The aim of the present studies was to assess the behavioral and neurochemical phenotype of PDE10A knockout mice on an alternative congenic C57BL/6N (PDE10A(C57)) genetic background. Consistent with our previous results, PDE10A(C57) knockout mice showed a decrease in exploratory locomotor activity and a delay in the acquisition of conditioned avoidance responding. Also consistent with previous studies, the elimination of PDE10A did not alter basal levels of striatal cGMP or cAMP or affect behavior in several other well-characterized behavioral assays. PDE10A(C57) knockout mice showed a blunted response to MK-801, although to a lesser degree than previously observed in the PDE10A(DBA) knockout mice, and no differences were observed following a PCP challenge. PDE10A(C57) knockout mice showed a significant change in striatal dopamine turnover, which was accompanied by an enhanced locomotor response to AMPH, These studies demonstrate that while many of the behavioral effects of the PDE10A gene deletion appear to be independent of genetic background, the impact of the deletion on behavior can vary in magnitude. Furthermore, the effects on the dopaminergic system appear to be background-dependent, with significant effects observed only in knockout mice on the C57BL6N genetic background.
Alqudah, Safa; Chertoff, Mark; Durham, Dianne; Moskovitz, Jackob; Staecker, Hinrich; Peppi, Marcello
2018-06-21
Methionine sulfoxide reductases (MsrA and MsrB) protect the biological activity of proteins from oxidative modifications to methionine residues and are important for protecting against the pathological effects of neurodegenerative diseases. In the current study, we characterized the auditory phenotype of the MsrA knockout mouse. Young MsrA knockout mice showed small high-frequency threshold elevations for auditory brainstem response and distortion product otoacoustic emission compared to those of wild-type mice, which progressively worsened in older MsrA knockout mice. MsrA knockout mice showed an increased sensitivity to noise at young and older ages, suggesting that MsrA is part of a mechanism that protects the cochlea from acoustic damage. MsrA mRNA in the cochlea was increased following acoustic stimulation. Finally, expression of mRNA MsrB1 was compromised at 6 months old, but not in younger MsrA knockout mice (compared to controls). The identification of MsrA in the cochlea as a protective mediator from both early onset hearing loss and acoustic trauma expands our understanding of the pathways that may induce protection from acoustic trauma and foster further studies on how to prevent the damaging effect of noise exposure through Msr-based therapy. © 2018 S. Karger AG, Basel.
Windpassinger, Christian; Piard, Juliette; Bonnard, Carine; Alfadhel, Majid; Lim, Shuhui; Bisteau, Xavier; Blouin, Stéphane; Ali, Nur'Ain B; Ng, Alvin Yu Jin; Lu, Hao; Tohari, Sumanty; Talib, S Zakiah A; van Hul, Noémi; Caldez, Matias J; Van Maldergem, Lionel; Yigit, Gökhan; Kayserili, Hülya; Youssef, Sameh A; Coppola, Vincenzo; de Bruin, Alain; Tessarollo, Lino; Choi, Hyungwon; Rupp, Verena; Roetzer, Katharina; Roschger, Paul; Klaushofer, Klaus; Altmüller, Janine; Roy, Sudipto; Venkatesh, Byrappa; Ganger, Rudolf; Grill, Franz; Ben Chehida, Farid; Wollnik, Bernd; Altunoglu, Umut; Al Kaissi, Ali; Reversade, Bruno; Kaldis, Philipp
2017-09-07
In five separate families, we identified nine individuals affected by a previously unidentified syndrome characterized by growth retardation, spine malformation, facial dysmorphisms, and developmental delays. Using homozygosity mapping, array CGH, and exome sequencing, we uncovered bi-allelic loss-of-function CDK10 mutations segregating with this disease. CDK10 is a protein kinase that partners with cyclin M to phosphorylate substrates such as ETS2 and PKN2 in order to modulate cellular growth. To validate and model the pathogenicity of these CDK10 germline mutations, we generated conditional-knockout mice. Homozygous Cdk10-knockout mice died postnatally with severe growth retardation, skeletal defects, and kidney and lung abnormalities, symptoms that partly resemble the disease's effect in humans. Fibroblasts derived from affected individuals and Cdk10-knockout mouse embryonic fibroblasts (MEFs) proliferated normally; however, Cdk10-knockout MEFs developed longer cilia. Comparative transcriptomic analysis of mutant and wild-type mouse organs revealed lipid metabolic changes consistent with growth impairment and altered ciliogenesis in the absence of CDK10. Our results document the CDK10 loss-of-function phenotype and point to a function for CDK10 in transducing signals received at the primary cilia to sustain embryonic and postnatal development. Copyright © 2017 American Society of Human Genetics. All rights reserved.
Chutkow, William A; Birkenfeld, Andreas L; Brown, Jonathan D; Lee, Hui-Young; Frederick, David W; Yoshioka, Jun; Patwari, Parth; Kursawe, Romy; Cushman, Samuel W; Plutzky, Jorge; Shulman, Gerald I; Samuel, Varman T; Lee, Richard T
2010-06-01
Thioredoxin interacting protein (Txnip), a regulator of cellular oxidative stress, is induced by hyperglycemia and inhibits glucose uptake into fat and muscle, suggesting a role for Txnip in type 2 diabetes pathogenesis. Here, we tested the hypothesis that Txnip-null (knockout) mice are protected from insulin resistance induced by a high-fat diet. Txnip gene-deleted (knockout) mice and age-matched wild-type littermate control mice were maintained on a standard chow diet or subjected to 4 weeks of high-fat feeding. Mice were assessed for body composition, fat development, energy balance, and insulin responsiveness. Adipogenesis was measured from ex vivo fat preparations, and in mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes after forced manipulation of Txnip expression. Txnip knockout mice gained significantly more adipose mass than controls due to a primary increase in both calorie consumption and adipogenesis. Despite increased fat mass, Txnip knockout mice were markedly more insulin sensitive than controls, and augmented glucose transport was identified in both adipose and skeletal muscle. RNA interference gene-silenced preadipocytes and Txnip(-/-) MEFs were markedly adipogenic, whereas Txnip overexpression impaired adipocyte differentiation. As increased adipogenesis and insulin sensitivity suggested aspects of augmented peroxisome proliferator-activated receptor-gamma (PPARgamma) response, we investigated Txnip's regulation of PPARgamma function; manipulation of Txnip expression directly regulated PPARgamma expression and activity. Txnip deletion promotes adiposity in the face of high-fat caloric excess; however, loss of this alpha-arrestin protein simultaneously enhances insulin responsiveness in fat and skeletal muscle, revealing Txnip as a novel mediator of insulin resistance and a regulator of adipogenesis.
Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.
Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise
2015-08-01
We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Hepatic changes in metabolic gene expression in old ghrelin and ghrelin receptor knockout mice
USDA-ARS?s Scientific Manuscript database
Ghrelin knockout (GKO) and ghrelin receptor (growth hormone secretagogue receptor) knockout (GHSRKO) mice exhibit enhanced insulin sensitivity, but the mechanism is unclear. Insulin sensitivity declines with age and is inversely associated with accumulation of lipid in liver, a key glucoregulatory ...
Park, Una; Vastani, Nisha; Guan, Yun; Raja, Srinivasa N.; Koltzenburg, Martin; Caterina, Michael J.
2011-01-01
TRPV2 is a nonselective cation channel expressed prominently in medium- to large-diameter sensory neurons that can be activated by extreme heat (>52°C). These features suggest that TRPV2 might be a transducer of noxious heat in vivo. TRPV2 can also be activated by hypoosmolarity or cell stretch, suggesting potential roles in mechanotransduction. To address the physiological functions of TRPV2 in somatosensation, we generated TRPV2 knockout mice and examined their behavioral and electrophysiological responses to heat and mechanical stimuli. TRPV2 knockout mice showed reduced embryonic weight and perinatal viability. As adults, surviving knockout mice also exhibited a slightly reduced body weight. TRPV2 knockout mice showed normal behavioral responses to noxious heat over a broad range of temperatures and normal responses to punctate mechanical stimuli, both in the basal state and under hyperalgesic conditions such as peripheral inflammation and L5 spinal nerve ligation. Moreover, behavioral assays of TRPV1/TRPV2 double knockout mice or of TRPV2 knockout mice treated with resiniferatoxin to desensitize TRPV1-expressing afferents revealed no thermosensory consequences of TRPV2 absence. In line with behavioral findings, electrophysiological recordings from skin afferents showed that C-fiber responses to heat and C- and Aδ-fiber responses to noxious mechanical stimuli were unimpaired in the absence of TRPV2. The prevalence of thermosensitive Aδ-fibers was too low to permit comparison between genotypes. Thus, TRPV2 is important for perinatal viability but is not essential for heat or mechanical nociception or hypersensitivity in the adult mouse. PMID:21832173
Male and Female Mice Lacking Neuroligin-3 Modify the Behavior of Their Wild-Type Littermates.
Kalbassi, Shireene; Bachmann, Sven O; Cross, Ellen; Roberton, Victoria H; Baudouin, Stéphane J
2017-01-01
In most mammals, including humans, the postnatal acquisition of normal social and nonsocial behavior critically depends on interactions with peers. Here we explore the possibility that mixed-group housing of mice carrying a deletion of Nlgn3 , a gene associated with autism spectrum disorders, and their wild-type littermates induces changes in each other's behavior. We have found that, when raised together, male Nlgn3 knockout mice and their wild-type littermates displayed deficits in sociability. Moreover, social submission in adult male Nlgn3 knockout mice correlated with an increase in their anxiety. Re-expression of Nlgn3 in parvalbumin-expressing cells in transgenic animals rescued their social behavior and alleviated the phenotype of their wild-type littermates, further indicating that the social behavior of Nlgn3 knockout mice has a direct and measurable impact on wild-type animals' behavior. Finally, we showed that, unlike male mice, female mice lacking Nlgn3 were insensitive to their peers' behavior but modified the social behavior of their littermates. Altogether, our findings show that the environment is a critical factor in the development of behavioral phenotypes in transgenic and wild-type mice. In addition, these results reveal that the social environment has a sexually dimorphic effect on the behavior of mice lacking Nlgn3 , being more influential in males than females.
Male and Female Mice Lacking Neuroligin-3 Modify the Behavior of Their Wild-Type Littermates
Kalbassi, Shireene; Cross, Ellen
2017-01-01
Abstract In most mammals, including humans, the postnatal acquisition of normal social and nonsocial behavior critically depends on interactions with peers. Here we explore the possibility that mixed-group housing of mice carrying a deletion of Nlgn3, a gene associated with autism spectrum disorders, and their wild-type littermates induces changes in each other’s behavior. We have found that, when raised together, male Nlgn3 knockout mice and their wild-type littermates displayed deficits in sociability. Moreover, social submission in adult male Nlgn3 knockout mice correlated with an increase in their anxiety. Re-expression of Nlgn3 in parvalbumin-expressing cells in transgenic animals rescued their social behavior and alleviated the phenotype of their wild-type littermates, further indicating that the social behavior of Nlgn3 knockout mice has a direct and measurable impact on wild-type animals’ behavior. Finally, we showed that, unlike male mice, female mice lacking Nlgn3 were insensitive to their peers’ behavior but modified the social behavior of their littermates. Altogether, our findings show that the environment is a critical factor in the development of behavioral phenotypes in transgenic and wild-type mice. In addition, these results reveal that the social environment has a sexually dimorphic effect on the behavior of mice lacking Nlgn3, being more influential in males than females. PMID:28795135
p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrand, Jerome; Xu, Beibei; Morrissy, Steve
2011-11-15
Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significantmore » changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.« less
Adenosine A3 receptors regulate heart rate, motor activity and body temperature
Yang, Jiangning; Wang, Yingqing; Garcia-Roves, Pablo; Björnholm, Marie; Fredholm, Bertil B.
2010-01-01
Aim We wanted to examine the phenotype of mice that lack the adenosine A3 receptor (A3R). Methods We examined the heart rate, body temperature and locomotion continuously by telemetry over several days. In addition the effect of the adenosine analogue R - N6- phenylisopropyl-adenosine (R-PIA) was examined. In addition, we examined heat production and food intake. Results We found that the marked diurnal variation in activity, heart rate and body temperature, with markedly higher values at night than during day time, was reduced in the A3R knockout mice. Surprisingly, the reduction in heart rate, activity and body temperature seen after injection of R-PIA in wild type mice was virtually eliminated in the A3R knock-out mice. The marked reduction in activity was associated with a decreased heat production, as expected. However, the A3R knock-out mice, surprisingly, had a higher food intake but no difference in body weight compared to wild type mice. Conclusions The mice lacking adenosine A3 receptors exhibit a surprisingly clear phenotype with changes in e.g. diurnal rhythm and temperature regulation. Whether these effects are due to a physiological role of A3 receptors in these processes or if they represent a role in development remains to be elucidated. PMID:20121716
Reduced extinction of hippocampal-dependent memories in CPEB knockout mice.
Berger-Sweeney, Joanne; Zearfoss, N Ruth; Richter, Joel D
2006-01-01
CPEB is a sequence-specific RNA binding protein that regulates translation at synapses. In neurons of CPEB knockout mice, synaptic efficacy is reduced. Here, we have performed a battery of behavioral tests and find that relative to wild-type animals, CPEB knockout mice, although similar on many baseline behaviors, have reduced extinction of memories on two hippocampal-dependent tasks. A corresponding microarray analysis reveals that about 0.14% of hippocampal genes have an altered expression in the CPEB knockout mouse. These data suggest that CPEB-dependent local protein synthesis may be an important cellular mechanism underlying extinction of hippocampal-dependent memories.
Enhanced serotonin response in the hippocampus of Galphaz protein knock-out mice.
Oleskevich, Sharon; Leck, Kwong-Joo; Matthaei, Klaus; Hendry, Ian A
2005-06-21
The serotonin-1A [5-hydroxytryptamine 1A (5HT1A)] receptor is important for emotional and homeostatic processes in the central nervous system. In the hippocampus, the 5HT1A receptor couples to inhibitory Gi/o proteins to decrease pyramidal cell excitability. Here we investigate the 5HT1A receptor in a mouse deficient in the alpha-subunit of Gz protein (Galphaz knock-out). Behavioural tests showed heightened anxiety and depression-like behaviour in the Galphaz knock-out mice. Whole-cell recording in CA1 pyramidal neurons showed a significantly greater 5HT1A receptor-mediated potassium current in Galphaz knock-out mice. The effect was independent of 5HT4 receptors as the slow after-hyperpolarization was unaffected and a slow depolarization was absent in the Galphaz knock-out mice. Other receptors linked to Gi/o proteins [gamma-aminobutyric acid type B receptor (GABAB), adenosine A1 and muscarinic acetylcholine receptors] were not affected in Galphaz knock-out mice. These results suggest that the 5HT1A receptor may be linked to Galphaz protein, as reported previously in cell culture but shown here in an intact neural network.
Momtazi, Moein; Ding, Jie; Kwan, Peter; Anderson, Colin C; Honardoust, Dariush; Goekjian, Serge; Tredget, Edward E
2015-12-01
Proliferative scars in nude mice have demonstrated morphologic and histologic similarities to human hypertrophic scar. Gene knockout technology provides the opportunity to study the effect of deleting immune cells in various disease processes. The authors' objective was to test whether grafting human skin onto T-cell receptor (TCR) αβ-/-γδ-/-, recombination activating gene (RAG)-1-/-, and RAG-2γ-/-c-/- mice results in proliferative scars consistent with human hypertrophic scar and to characterize the morphologic, histologic, and cellular changes that occur after removing immune cells. Nude TCRαβ-/-γδ-/-, RAG-1-/-, and RAG-2-/-γc-/- mice (n = 20 per strain) were grafted with human skin and euthanized at 30, 60, 120, and 180 days. Controls (n = 5 per strain) were autografted with mouse skin. Scars and normal skin were harvested at each time point. Sections were stained with hematoxylin and eosin, Masson's trichrome, and immunohistochemistry for anti-human leukocyte antigen-ABC, α-smooth muscle actin, decorin, and biglycan. TCRαβ-/-γδ-/-, RAG-1-/-, and RAG-2-/-γc-/- mice grafted with human skin developed firm, elevated scars with histologic and immunohistochemical similarities to human hypertrophic scar. Autografted controls showed no evidence of pathologic scarring. Knockout animals demonstrated a capacity for scar remodeling not observed in nude mice where reductions in α-smooth muscle actin staining pattern and scar thickness occurred over time. Human skin transplanted onto TCRαβ-/-γδ-/-, RAG-1-/-, and RAG-2-/-γc-/- mice results in proliferative scars with morphologic and histologic features of human hypertrophic scar. Remodeling of proliferative scars generated in knockout animals is analogous to changes in human hypertrophic scar. These animal models may better represent the natural history of human hypertrophic scar.
O'Neal, Christine M.; Harriman, Gregory R.; Conner, Margaret E.
2000-01-01
Immunoglobulin A (IgA) is the primary immune response induced in the intestine by rotavirus infection, but vaccination with virus-like particles induces predominantly IgG, not IgA. To definitively assess the role of IgA in protection from rotavirus infection, IgA knockout mice, which are devoid of serum and secretory IgA, were infected and then rechallenged with murine rotavirus at either 6 weeks or 10 months. Following primary rotavirus infection, IgA knockout mice cleared virus as effectively as IgA normal control mice. Rotavirus-infected IgA knockout mice produced no serum or fecal IgA but did have high levels of antirotavirus serum IgG and IgM and fecal IgG, whereas IgA normal control mice made both serum IgA and IgG and fecal IgA. Both IgA normal and IgA knockout mice were totally protected from rotavirus challenge at 42 days. Ten months following a primary infection, both IgA normal and knockout mice still had high levels of serum and fecal antirotavirus antibody and were totally protected from rotavirus challenge. To determine if compensatory mechanisms other than IgG were responsible for protection from rotavirus infection in IgA knockout mice, mice were depleted of CD4+ T cells or CD8+ T cells. No changes in the level of protection were seen in depleted mice. These data show that fecal or systemic IgA is not essential for protection from rotavirus infection and suggest that in the absence of IgA, IgG may play a significant role in protection from mucosal pathogens. PMID:10756022
Zivcec, Marko; Safronetz, David; Scott, Dana; Robertson, Shelly; Ebihara, Hideki; Feldmann, Heinz
2013-01-01
Crimean-Congo hemorrhagic fever (CCHF) is a widely distributed viral hemorrhagic fever characterized by rapid onset of flu-like symptoms often followed by hemorrhagic manifestations. CCHF virus (CCHFV), a bunyavirus in the Nairovirus genus, is capable of infecting a wide range of mammalian hosts in nature but so far only causes disease in humans. Recently, immunocompromised mice have been reported as CCHF disease models, but detailed characterization is lacking. Here, we closely followed infection and disease progression in CCHFV-infected interferon α/β receptor knockout (IFNAR−/−) mice and age-matched wild-type (WT) mice. WT mice quickly clear CCHFV without developing any disease signs. In contrast, CCHFV infected IFNAR−/− mice develop an acute fulminant disease with high viral loads leading to organ pathology (liver and lymphoid tissues), marked proinflammatory host responses, severe thrombocytopenia, coagulopathy, and death. Disease progression closely mimics hallmarks of human CCHF disease, making IFNAR−/− mice an excellent choice to assess medical countermeasures. PMID:23417661
Interleukin 10 is an essential modulator of mucoid metaplasia in a mouse otitis media model
Tsuchiya, Katsuyuki; Komori, Masahiro; Zheng, Qing Yin; Ferrieri, Patricia; Lin, Jizhen
2009-01-01
Inflammatory cytokines are involved in the development of mucus cell metaplasia/hyperplasia (MCM) in otitis media (OM). However, which cytokines play an essential role in MCM OM is not clear at the moment. In this study, we hypothesized that interleukin-10 (IL-10) played an indispensable role in MCM of bacterial OM and used IL-10 knockout mice to test this hypothesis. In wild-type mice, both S. pneumoniae and H. influenzae triggered the development of MCM in the middle ear mucosa. In IL-10 knockout mice, the number of goblet cells and mucin-producing cells in the middle ear was significantly reduced after bacterial middle ear infection compared with that in wild-type mice. We, therefore, concluded that IL-10 plays an essential role in MCM of bacterial OM. IL-10 is a potential target for the treatment of MCM in OM. PMID:18771082
Translating human genetics into mouse: the impact of ultra-rapid in vivo genome editing.
Aida, Tomomi; Imahashi, Risa; Tanaka, Kohichi
2014-01-01
Gene-targeted mutant animals, such as knockout or knockin mice, have dramatically improved our understanding of the functions of genes in vivo and the genetic diversity that characterizes health and disease. However, the generation of targeted mice relies on gene targeting in embryonic stem (ES) cells, which is a time-consuming, laborious, and expensive process. The recent groundbreaking development of several genome editing technologies has enabled the targeted alteration of almost any sequence in any cell or organism. These technologies have now been applied to mouse zygotes (in vivo genome editing), thereby providing new avenues for simple, convenient, and ultra-rapid production of knockout or knockin mice without the need for ES cells. Here, we review recent achievements in the production of gene-targeted mice by in vivo genome editing. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Liljevald, Maria; Rehnberg, Maria; Söderberg, Magnus; Ramnegård, Marie; Börjesson, Jenny; Luciani, Donatella; Krutrök, Nina; Brändén, Lena; Johansson, Camilla; Xu, Xiufeng; Bjursell, Mikael; Sjögren, Anna-Karin; Hornberg, Jorrit; Andersson, Ulf; Keeling, David; Jirholt, Johan
2016-11-01
RORγ is a nuclear hormone receptor which controls polarization of naive CD4 + T-cells into proinflammatory Th17 cells. Pharmacological antagonism of RORγ has therapeutic potential for autoimmune diseases; however, this mechanism may potentially carry target-related safety risks, as mice deficient in Rorc, the gene encoding RORγ, develop T-cell lymphoma with 50% frequency. Due to the requirement of RORγ during development, the Rorc knockout (KO) animals lack secondary lymphoid organs and have a dysregulation in the generation of CD4+ and CD8+ T cells. We wanted to extend the evaluation of RORγ deficiency to address the question whether lymphomas, similar to those observed in the Rorc KO, would develop in an animal with an otherwise intact adult immune system. Accordingly, we designed a conditional RORγ knockout mouse (Rorc CKO) where the Rorc locus could be deleted in adult animals. Based on these studies we can confirm that these animals also develop lymphoma in a similar time frame as embryonic Rorc knockouts. This study also suggests that in animals where the gene deletion is incomplete, the thymus undergoes a rapid selection process replacing Rorc deficient cells with remnant thymocytes carrying a functional Rorc locus and that subsequently, these animals do not develop lymphoblastic lymphoma. Copyright © 2016 Elsevier B.V. All rights reserved.
Eisener-Dorman, Amy F.; Lawrence, David A.; Bolivar, Valerie J.
2010-01-01
The development of gene targeting technologies has enabled research with immune system-related knockout mouse strains to advance our understanding of how cytokines and their receptors interact and influence a number of body systems, including the central nervous system. A critical issue when we are interpreting phenotypic data from these knockout strains is the potential role of genes other than the targeted one. Although many of the knockout strains have been made congenic on a C57BL/6 (B6) genetic background, there remains a certain amount of genetic material from the129 substrain that was used in the development of these strains. This genetic material could result in phenotypes incorrectly attributed to the targeted gene. We recently reported low activity behavior in Il10−/− mice that was linked to this genetic material rather than the targeted gene itself. In the current study we confirm the generalizability of those earlier findings, by assessing behavior in Il18−/− and Il18r1−/− knockout mice. We identified low activity and high anxiety-like behaviors in Il18r1−/− mice, whereas Il18−/− mice displayed little anxiety-like behavior. Although Il18r1−/− mice are considered a congenic strain, we have identified substantial regions of 129P2-derived genetic material not only flanking the ablated Il18r1 on Chromosome 1, but also on Chromosomes 4, 5, 8, 10, and 14. Our studies suggest that residual 129-derived gene(s), rather than the targeted Il18r1 gene, is/are responsible for the low level of activity seen in the Il18r1−/− mice. Mapping studies are necessary to identify the gene or genes contributing to the low activity phenotype. PMID:20580925
Whitehurst, Christopher B; Li, Guangming; Montgomery, Stephanie A; Montgomery, Nathan D; Su, Lishan; Pagano, Joseph S
2015-10-20
BPLF1 of Epstein-Barr virus (EBV) is classified as a late lytic cycle protein but is also found in the viral tegument, suggesting its potential involvement at both initial and late stages of viral infection. BPLF1 possesses both deubiquitinating and deneddylating activity located in its N-terminal domain and is involved in processes that affect viral infectivity, viral DNA replication, DNA repair, and immune evasion. A recently constructed EBV BPLF1-knockout (KO) virus was used in conjunction with a humanized mouse model that can be infected with EBV, enabling the first characterization of BPLF1 function in vivo. Results demonstrate that the BPLF1-knockout virus is approximately 90% less infectious than wild-type (WT) virus. Transformation of human B cells, a hallmark of EBV infection, was delayed and reduced with BPLF1-knockout virus. Humanized mice infected with EBV BPLF1-knockout virus showed less weight loss and survived longer than mice infected with equivalent infectious units of WT virus. Additionally, splenic tumors formed in 100% of mice infected with WT EBV but in only 25% of mice infected with BPLF1-KO virus. Morphological features of spleens containing tumors were similar to those in EBV-induced posttransplant lymphoproliferative disease (PTLD) and were almost identical to cases seen in human diffuse large B-cell lymphoma. The presence of EBV genomes was detected in all mice that developed tumors. The results implicate BPLF1 in human B-cell transformation and tumor formation in humanized mice. Epstein-Barr virus infects approximately 90% of the world's population and is the causative agent of infectious mononucleosis. EBV also causes aggressive lymphomas in individuals with acquired and innate immune disorders and is strongly associated with diffuse large B-cell lymphomas, classical Hodgkin lymphoma, Burkitt lymphoma, and nasopharyngeal carcinoma (NPC). Typically, EBV initially infects epithelial cells in the oropharynx, followed by a lifelong persistent latent infection in B-cells, which may develop into lymphomas in immunocompromised individuals. This work is the first of its kind in evaluating the effects of EBV's BPLF1 in terms of pathogenesis and lymphomagenesis in humanized mice and implicates BPLF1 in B-cell transformation and tumor development. Currently, there is no efficacious treatment for EBV, and therapeutic targeting of BPLF1 may lead to a new path to treatment for immunocompromised individuals or transplant recipients infected with EBV. Copyright © 2015 Whitehurst et al.
Kim, Hyung-Wook; Choi, Won-Seok; Sorscher, Noah; Park, Hyung Joon; Tronche, François; Palmiter, Richard D; Xia, Zhengui
2015-09-01
Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron death during aging nor does it contribute to dopamine neuron toxicity in the MPTP model of Parkinson's disease. These findings suggest the existence of alternative mechanisms of dopaminergic neuron death independent of mitochondrial complex I inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.
A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo.
Oi, Katsuyuki; Sohara, Eisei; Rai, Tatemitsu; Misawa, Moko; Chiga, Motoko; Alessi, Dario R; Sasaki, Sei; Uchida, Shinichi
2012-02-15
Mutations in WNK1 and WNK4 kinase genes have been shown to cause a human hereditary hypertensive disease, pseudohypoaldosteronism type II (PHAII). We previously discovered that WNK kinases phosphorylate and activate OSR1/SPAK kinases that regulate renal SLC12A family transporters such as NKCC2 and NCC, and clarified that the constitutive activation of this cascade causes PHAII. WNK3, another member of the WNK kinase family, was reported to be a strong activator of NCC/NKCC2 when assayed in Xenopus oocytes, suggesting that WNK3 also plays a major role in regulating blood pressure and sodium reabsorption in the kidney. However, it remains to be determined whether WNK3 is in fact involved in the regulation of these transporters in vivo. To clarify this issue, we generated and analyzed WNK3 knockout mice. Surprisingly, phosphorylation and expression of OSR1, SPAK, NKCC2 and NCC did not decrease in knockout mouse kidney under normal and low-salt diets. Similarly, expression of epithelial Na channel and Na/H exchanger 3 were not affected in knockout mice. Na(+) and K(+) excretion in urine in WNK3 knockout mice was not affected under different salt diets. Blood pressure in WNK3 knockout mice was not lower under normal diet. However, lower blood pressure was observed in WNK3 knockout mice fed low-salt diet. WNK4 and WNK1 expression was slightly elevated in the knockout mice under low-salt diet, suggesting compensation for WNK3 knockout by these WNKs. Thus, WNK3 may have some role in the WNK-OSR1/SPAK-NCC/NKCC2 signal cascade in the kidney, but its contribution to total WNK kinase activity may be minimal.
Yu, Shengqiang; Yeh, Chiuan-Ren; Niu, Yuanjie; Chang, Hong-Chiang; Tsai, Yu-Chieh; Moses, Harold L; Shyr, Chih-Rong; Chang, Chawnshang; Yeh, Shuyuan
2012-03-01
Androgens and the androgen receptor (AR) play important roles in the development of male urogenital organs. We previously found that mice with total AR knockout (ARKO) and epithelial ARKO failed to develop normal prostate with loss of differentiation. We have recently knocked out AR gene in smooth muscle cells and found the reduced luminal infolding and IGF-1 production in the mouse prostate. However, AR roles of stromal fibroblasts in prostate development remain unclear. To further probe the stromal fibroblast AR roles in prostate development, we generated tissue-selective knockout mice with the AR gene deleted in stromal fibroblasts (FSP-ARKO). We also used primary culture stromal cells to confirm the in vivo data and investigate mechanisms related to prostate development. The results showed cellular alterations in the FSP-ARKO mouse prostate with decreased epithelial proliferation, increased apoptosis, and decreased collagen composition. Further mechanistic studies demonstrated that FSP-ARKO mice have defects in the expression of prostate stromal growth factors. To further confirm these in vivo findings, we prepared primary cultured mouse prostate stromal cells and found knocking down the stromal AR could result in growth retardation of prostate stromal cells and co-cultured prostate epithelial cells, as well as decrease of some stromal growth factors. Our FSP-ARKO mice not only provide the first in vivo evidence in Cre-loxP knockout system for the requirement of stromal fibroblast AR to maintain the normal development of the prostate, but may also suggest the selective knockdown of stromal AR might become a potential therapeutic approach to battle prostate hyperplasia and cancer. Copyright © 2011 Wiley Periodicals, Inc.
Role of melanopsin in circadian responses to light.
Ruby, Norman F; Brennan, Thomas J; Xie, Xinmin; Cao, Vinh; Franken, Paul; Heller, H Craig; O'Hara, Bruce F
2002-12-13
Melanopsin has been proposed as an important photoreceptive molecule for the mammalian circadian system. Its importance in this role was tested in melanopsin knockout mice. These mice entrained to a light/dark cycle, phase-shifted after a light pulse, and increased circadian period when light intensity increased. Induction of the immediate-early gene c-fos was observed after a nighttime light pulse in both wild-type and knockout mice. However, the magnitude of these behavioral responses in knockout mice was 40% lower than in wild-type mice. Although melanopsin is not essential for the circadian clock to receive photic input, it contributes significantly to the magnitude of photic responses.
Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.
2015-01-01
Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. PMID:25618404
Lisboa, Sabrina F; Gomes, Felipe V; Silva, Andréia L; Uliana, Daniela L; Camargo, Laura H A; Guimarães, Francisco S; Cunha, Fernando Q; Joca, Sâmia R L; Resstel, Leonardo B M
2015-01-24
Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Xie, Fang; Xi, Yin; Pascual, Juan M.; Muzik, Otto; Peng, Fangyu
2017-01-01
Copper is a nutritional metal required for brain development and function. Wilson’s disease (WD), or hepatolenticular degeneration, is an inherited human copper metabolism disorder caused by mutation of ATP7B gene. Many WD patients present with variable neurological and psychiatric symptoms, which may be related to neurodegeneration secondary to copper metabolism imbalance. The objective of this study is to explore feasibility and use of copper-64 chloride ([64C]CuCl2) as a tracer for noninvasive assessment of age-dependence changes of cerebral copper metabolism in WD using an Atp7b−/− knockout mouse model of WD and a positron emission tomography/computed tomography (PET/CT) scanner. Continuing from recent study of biodistribution and radiation dosimetry of [64C]CuCl2 in Atp7b−/− knockout mice, PET quantitative analysis revealed low 64Cu radioactivity in the brains of Atp7b−/− knockout mice at 7th week of age, compared with the 64Cu radioactivity in the brains of age and gender-matched wild type C57BL/6 mice, at 24 hour (h) post intravenous injection of [64C]CuCl2 as a tracer. Furthermore, age-dependent increase of 64Cu radioactivity was detected in the brains of Atp7b−/− knockout mice from 13th to 21th week of age, using the data derived from a longitudinal [64C]CuCl2-PET/CT study of Atp7b−/− knockout mice with orally administered [64Cu]CuCl2 as a tracer. The findings of this study support the use of [64Cu]CuCl2-PET/CT as a tool for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD patients presenting with variable neurological and psychiatric symptoms. PMID:28130615
Xie, Fang; Xi, Yin; Pascual, Juan M; Muzik, Otto; Peng, Fangyu
2017-06-01
Copper is a nutritional metal required for brain development and function. Wilson's disease (WD), or hepatolenticular degeneration, is an inherited human copper metabolism disorder caused by a mutation of the ATP7B gene. Many WD patients present with variable neurological and psychiatric symptoms, which may be related to neurodegeneration secondary to copper metabolism imbalance. The objective of this study was to explore the feasibility and use of copper-64 chloride ([ 64 C]CuCl 2 ) as a tracer for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD using an Atp7b -/- knockout mouse model of WD and positron emission tomography/computed tomography (PET/CT) imaging. Continuing from our recent study of biodistribution and radiation dosimetry of [ 64 C]CuCl 2 in Atp7b -/- knockout mice, PET quantitative analysis revealed low 64 Cu radioactivity in the brains of Atp7b -/- knockout mice at 7th weeks of age, compared with 64 Cu radioactivity in the brains of age- and gender-matched wild type C57BL/6 mice, at 24 h (h) post intravenous injection of [ 64 C]CuCl 2 as a tracer. Furthermore, age-dependent increase of 64 Cu radioactivity was detected in the brains of Atp7b -/- knockout mice from the 13th to 21th weeks of age, based on the data derived from a longitudinal [ 64 C]CuCl 2 -PET/CT study of Atp7b -/- knockout mice with orally administered [ 64 Cu]CuCl 2 as a tracer. The findings of this study support clinical use of [ 64 Cu]CuCl 2 -PET/CT imaging as a tool for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD patients presenting with variable neurological and psychiatric symptoms.
Ostlund, Sean B.; Kosheleff, Alisa; Maidment, Nigel T.; Murphy, Niall P.
2013-01-01
Summary Rationale Evidence suggests that the palatability of food (i.e., the hedonic impact produced by its sensory features) can promote feeding and may underlie compulsive eating, leading to obesity. Pharmacological studies implicate opioid transmission in the hedonic control of feeding, though these studies often rely on agents lacking specificity for particular opioid receptors. Objectives Here, we investigated the role of mu opioid receptors (MORs) specifically in determining hedonic responses to palatable sweet stimuli. Methods In Experiment 1, licking microstructure when consuming sucrose solution (2 to 20 %) was compared in MOR knockout and wildtype mice as a function of sucrose concentration and level of food deprivation. In Experiment 2, a similar examination was conducted using the palatable but calorie-free stimulus sucralose (0.001 to 1%), allowing study of licking behavior independent of homeostatic variables. Results In Experiment 1, MOR knockout mice exhibited several alterations in sucrose licking. Although wildtype mice exhibited a two-fold increase in the burst length when food deprived, relative to the nondeprived test, this aspect of sucrose licking was generally insensitive to manipulations of food deprivation for MOR knockout mice. Furthermore, during concentration testing, their rate of sucrose licking was less than half that of wildtype mice. During sucralose testing (Experiment 2), MOR knockout mice licked at approximately half the wildtype rate, providing more direct evidence that MOR knockout mice were impaired in processing stimulus palatability. Conclusions These results suggest that transmission through MORs mediates hedonic responses to palatable stimuli, and therefore likely contributes to normal and pathological eating. PMID:23568577
BLASCHKO, SARAH D.; MAHAWONG, PHITSANU; FERRETTI, MAX; CUNHA, TRISTAN J.; SINCLAIR, ADRIANE; WANG, HONG; SCHLOMER, BRUCE J.; RISBRIDGER, GAIL; BASKIN, LAURENCE S.; CUNHA, GERALD R.
2013-01-01
Because both androgens and estrogens have been implicated in penile morphogenesis, we evaluated penile morphology in transgenic mice with known imbalance of androgen and estrogen signaling using scanning electron microscopy (SEM), histology, and immunohistochemistry of androgen and estrogen receptors α/β. Penises of adult wild-type, estrogen receptor-α knockout (αERKO), estrogen receptor-β knockout (βERKO), aromatase knockout (Arom-KO), and aromatase overexpression (Arom+) mice were evaluated, as well as adult mice treated with diethylstilbestrol (DES) from birth to day 10. Adult penises were examined because the adult pattern is the endpoint of development. The urethral orifice is formed by fusion of the MUMP (male urogenital mating protuberance) with the MUMP ridge, which consists of several processes fused to each other and to the MUMP. Similarly, the internal prepuce is completed ventrally by fusion of a ventral cleft. In adult murine penises the stromal processes that form the MUMP ridge are separated from their neighbors by clefts. αERKO, βERKO, and Arom-KO mice have penises with a MUMP ridge clefting pattern similar to that of wild-type mice. In contrast, Arom+ mice and neonatally DES-treated mice exhibit profound malformations of the MUMP, MUMP ridge clefting pattern, and internal prepuce. Abnormalities observed in Arom+ and neonatally DES-treated mice correlate with the expression of estrogen receptor-beta (ERβ) in the affected structures. This study demonstrates that formation of the urethal orifice and internal prepuce is due to fusion of separate epithelial-surfaced mesenchymal elements, a process dependent upon both androgen and estrogen signaling, in which ERβ signaling is strongly implicated. PMID:23653160
McCranor, Bryan J.; Langdon, Jacqueline M.; Prince, Olivier D.; Femnou, Laurette K.; Berger, Alan E.; Cheadle, Chris; Civin, Curt I.; Kim, Airie; Rivera, Seth; Ganz, Tomas; Vaulont, Sophie; Xue, Qian-Li; Walston, Jeremy D.; Roy, Cindy N.
2013-01-01
Anemia is common in older adults and associated with adverse health outcomes in epidemiological studies. A thorough understanding of the complex pathophysiological mechanisms driving anemia in the elderly is lacking; but inflammation, iron restriction, and impaired erythroid maturation are thought to influence the phenotype. We hypothesized that interleukin-6 contributes to this anemia, given its pro-inflammatory activities, its ability to induce hepcidin antimicrobial peptide, and its negative impact on several tissues in older adults. We tested this hypothesis by comparing changes in indices of inflammation, iron metabolism and erythropoiesis in aged C57BL/6 mice to aged mice with targeted deletions of interleukin-6 or hepcidin antimicrobial peptide. Circulating neutrophil and monocyte numbers and inflammatory cytokines increased with age. Decline in hemoglobin concentration and red blood cell number indicated that C57BL/6, interleukin-6 knockout mice, and hepcidin antimicrobial peptide knockout mice all demonstrated impaired erythropoiesis by 24 months. However, the interleukin-6 knock out genotype and the hepcidin antimicrobial peptide knock out genotype resulted in improved erythropoiesis in aged mice. Increased erythropoietic activity in the spleen suggested that the erythroid compartment was stressed in aged C57BL/6 mice compared to aged interleukin-6 knockout mice. Our data suggest C57BL/6 mice are an appropriate mammalian model for the study of anemia with age. Furthermore, although interleukin-6 and hepcidin antimicrobial peptide are not required, they can participate in the development of anemia in aging mice, and could be targeted, pre-clinically, with existing interventions to determine the feasibility of such agents for the treatment of anemia in older adults. PMID:23996485
Transcriptional and phenotypic comparisons of Ppara knockout and siRNA knockdown mice
De Souza, Angus T.; Dai, Xudong; Spencer, Andrew G.; Reppen, Tom; Menzie, Ann; Roesch, Paula L.; He, Yudong; Caguyong, Michelle J.; Bloomer, Sherri; Herweijer, Hans; Wolff, Jon A.; Hagstrom, James E.; Lewis, David L.; Linsley, Peter S.; Ulrich, Roger G.
2006-01-01
RNA interference (RNAi) has great potential as a tool for studying gene function in mammals. However, the specificity and magnitude of the in vivo response to RNAi remains to be fully characterized. A molecular and phenotypic comparison of a genetic knockout mouse and the corresponding knockdown version would help clarify the utility of the RNAi approach. Here, we used hydrodynamic delivery of small interfering RNA (siRNA) to knockdown peroxisome proliferator activated receptor alpha (Ppara), a gene that is central to the regulation of fatty acid metabolism. We found that Ppara knockdown in the liver results in a transcript profile and metabolic phenotype that is comparable to those of Ppara−/− mice. Combining the profiles from mice treated with the PPARα agonist fenofibrate, we confirmed the specificity of the RNAi response and identified candidate genes proximal to PPARα regulation. Ppara knockdown animals developed hypoglycemia and hypertriglyceridemia, phenotypes observed in Ppara−/− mice. In contrast to Ppara−/− mice, fasting was not required to uncover these phenotypes. Together, these data validate the utility of the RNAi approach and suggest that siRNA can be used as a complement to classical knockout technology in gene function studies. PMID:16945951
Martin, Bronwen; Shin, Yu-Kyong; White, Caitlin M; Ji, Sunggoan; Kim, Wook; Carlson, Olga D; Napora, Joshua K; Chadwick, Wayne; Chapter, Megan; Waschek, James A; Mattson, Mark P; Maudsley, Stuart; Egan, Josephine M
2010-05-01
It is becoming apparent that there is a strong link between taste perception and energy homeostasis. Recent evidence implicates gut-related hormones in taste perception, including glucagon-like peptide 1 and vasoactive intestinal peptide (VIP). We used VIP knockout mice to investigate VIP's specific role in taste perception and connection to energy regulation. Body weight, food intake, and plasma levels of multiple energy-regulating hormones were measured and pancreatic morphology was determined. In addition, the immunocytochemical profile of taste cells and gustatory behavior were examined in wild-type and VIP knockout mice. VIP knockout mice demonstrate elevated plasma glucose, insulin, and leptin levels, with no islet beta-cell number/topography alteration. VIP and its receptors (VPAC1, VPAC2) were identified in type II taste cells of the taste bud, and VIP knockout mice exhibit enhanced taste preference to sweet tastants. VIP knockout mouse taste cells show a significant decrease in leptin receptor expression and elevated expression of glucagon-like peptide 1, which may explain sweet taste preference of VIP knockout mice. This study suggests that the tongue can play a direct role in modulating energy intake to correct peripheral glycemic imbalances. In this way, we could view the tongue as a sensory mechanism that is bidirectionally regulated and thus forms a bridge between available foodstuffs and the intricate hormonal balance in the animal itself.
A Mutation in the Dmp1 Gene Alters Phosphate Responsiveness in Mice
Gerard-O'Riley, Rita L.; Acton, Dena; McQueen, Amie K.; Strobel, Isabel E.; Witcher, Phillip C.; Feng, Jian Q.; Econs, Michael J.
2017-01-01
Mutations in the dentin matrix protein 1 (DMP1) gene cause autosomal recessive hypophosphatemic rickets (ARHR). Hypophosphatemia in ARHR results from increased circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Similarly, elevated FGF23, caused by mutations in the PHEX gene, is responsible for the hypophosphatemia in X-linked hypophosphatemic rickets (XLH). Previously, we demonstrated that a Phex mutation in mice creates a lower set point for extracellular phosphate, where an increment in phosphorus further stimulates Fgf23 production to maintain low serum phosphorus levels. To test the presence of the similar set point defect in ARHR, we generated 4- and 12-week-old Dmp1/Galnt3 double knockout mice and controls, including Dmp1 knockout mice (a murine model of ARHR), Galnt3 knockout mice (a murine model of familial tumoral calcinosis), and phenotypically normal double heterozygous mice. Galnt3 knockout mice had increased proteolytic cleavage of Fgf23, leading to low circulating intact Fgf23 levels with consequent hyperphosphatemia. In contrast, Dmp1 knockout mice had little Fgf23 cleavage and increased femoral Fgf23 expression, resulting in hypophosphatemia and low femoral bone mineral density (BMD). However, introduction of the Galnt3 null allele to Dmp1 knockout mice resulted in a significant increase in serum phosphorus and normalization of BMD. This increased serum phosphorus was accompanied by markedly elevated Fgf23 expression and circulating Fgf23 levels, an attempt to reduce serum phosphorus in the face of improving phosphorus levels. These data indicate that a Dmp1 mutation creates a lower set point for extracellular phosphate and maintains it through the regulation of Fgf23 cleavage and expression. PMID:28005411
A Mutation in the Dmp1 Gene Alters Phosphate Responsiveness in Mice.
Ichikawa, Shoji; Gerard-O'Riley, Rita L; Acton, Dena; McQueen, Amie K; Strobel, Isabel E; Witcher, Phillip C; Feng, Jian Q; Econs, Michael J
2017-03-01
Mutations in the dentin matrix protein 1 (DMP1) gene cause autosomal recessive hypophosphatemic rickets (ARHR). Hypophosphatemia in ARHR results from increased circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Similarly, elevated FGF23, caused by mutations in the PHEX gene, is responsible for the hypophosphatemia in X-linked hypophosphatemic rickets (XLH). Previously, we demonstrated that a Phex mutation in mice creates a lower set point for extracellular phosphate, where an increment in phosphorus further stimulates Fgf23 production to maintain low serum phosphorus levels. To test the presence of the similar set point defect in ARHR, we generated 4- and 12-week-old Dmp1/Galnt3 double knockout mice and controls, including Dmp1 knockout mice (a murine model of ARHR), Galnt3 knockout mice (a murine model of familial tumoral calcinosis), and phenotypically normal double heterozygous mice. Galnt3 knockout mice had increased proteolytic cleavage of Fgf23, leading to low circulating intact Fgf23 levels with consequent hyperphosphatemia. In contrast, Dmp1 knockout mice had little Fgf23 cleavage and increased femoral Fgf23 expression, resulting in hypophosphatemia and low femoral bone mineral density (BMD). However, introduction of the Galnt3 null allele to Dmp1 knockout mice resulted in a significant increase in serum phosphorus and normalization of BMD. This increased serum phosphorus was accompanied by markedly elevated Fgf23 expression and circulating Fgf23 levels, an attempt to reduce serum phosphorus in the face of improving phosphorus levels. These data indicate that a Dmp1 mutation creates a lower set point for extracellular phosphate and maintains it through the regulation of Fgf23 cleavage and expression. Copyright © 2017 by the Endocrine Society.
Chen, Xi; Sun, Weiwen; Pan, Ying; Yang, Quan; Cao, Kaiyi; Zhang, Jin; Zhang, Yizhi; Chen, Mincong; Chen, Feidi; Huang, Yueling; Dai, Lijun; Chen, Shengqiang
2013-10-01
To investigate whether lithium modifies open-field and elevated plus maze behavior, and brain phospho-glycogen synthase kinase 3 (P-GSK3beta) expression in Fmr1 knockout mice. One hundred and eighty FVB mice, including knockout and wild type, with an age of 30 days were used. An open-field and elevated plus maze was utilized to test behavior, while western blot was used to measure the P-GSK3beta expression. Six groups were formed: control (saline), lithium chloride 30, 60, 90, 120, and 200 mg/kg. The experiments were carried out in the Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China between January and June 2012. Lithium significantly decreased total distance, crossing, central area time, and center entry in the open-field test (p<0.05), and significantly reduced open-arm tracking, open-arm entry, and open-arm time in the elevated plus maze (p<0.05) in knockout mice. In wild type mice, significant changes were observed in both behavior tests in some treatment groups. Lithium ameliorated P-GSK3beta expression in the hippocampus of all the treatment groups in knockout mice (p<0.05). However, lithium did not modify either GSK3beta expression in tissues of knockout mice, or P-GSK3beta or GSK3beta expression in tissues of wild type mice. Lithium ameliorated open-field and elevated plus maze behaviors of Fmr1 knockout mice. This effect may be related to its enhancement of P-GSK3beta expression. Our findings suggest that lithium might have a therapeutic effect in fragile X syndrome.
Transferrin Receptor 1 in Chronic Hypoxia-Induced Pulmonary Vascular Remodeling.
Naito, Yoshiro; Hosokawa, Manami; Sawada, Hisashi; Oboshi, Makiko; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Nishimura, Koichi; Soyama, Yuko; Fujii, Kenichi; Mano, Toshiaki; Ishihara, Masaharu; Tsujino, Takeshi; Masuyama, Tohru
2016-06-01
Iron is associated with the pathophysiology of several cardiovascular diseases, including pulmonary hypertension (PH). In addition, disrupted pulmonary iron homeostasis has been reported in several chronic lung diseases. Transferrin receptor 1 (TfR1) plays a key role in cellular iron transport. However, the role of TfR1 in the pathophysiology of PH has not been well characterized. In this study, we investigate the role of TfR1 in the development of hypoxia-induced pulmonary vascular remodeling. PH was induced by exposing wild-type (WT) mice and TfR1 hetero knockout mice to hypoxia for 4 weeks and evaluated via assessment of pulmonary vascular remodeling, right ventricular (RV) systolic pressure, and RV hypertrophy. In addition, we assessed the functional role of TfR1 in pulmonary artery smooth muscle cells in vitro. The morphology of pulmonary arteries did not differ between WT mice and TfR1 hetero knockout mice under normoxic conditions. In contrast, TfR1 hetero knockout mice exposed to 4 weeks hypoxia showed attenuated pulmonary vascular remodeling, RV systolic pressure, and RV hypertrophy compared with WT mice. In addition, the depletion of TfR1 by RNA interference attenuated human pulmonary artery smooth muscle cells proliferation induced by platelet-derived growth factor-BB (PDGF-BB) in vitro. These results suggest that TfR1 plays an important role in the development of hypoxia-induced pulmonary vascular remodeling. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ishikawa, Tokiro; Okada, Tetsuya; Ishikawa-Fujiwara, Tomoko; Todo, Takeshi; Kamei, Yasuhiro; Shigenobu, Shuji; Tanaka, Minoru; Saito, Taro L.; Yoshimura, Jun; Morishita, Shinichi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Taniguchi, Yoshihito; Takeda, Shunichi; Mori, Kazutoshi
2013-01-01
ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra. PMID:23447699
Ishikawa, Tokiro; Okada, Tetsuya; Ishikawa-Fujiwara, Tomoko; Todo, Takeshi; Kamei, Yasuhiro; Shigenobu, Shuji; Tanaka, Minoru; Saito, Taro L; Yoshimura, Jun; Morishita, Shinichi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Taniguchi, Yoshihito; Takeda, Shunichi; Mori, Kazutoshi
2013-05-01
ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra.
Trpc2 Depletion Protects RBC from Oxidative Stress-Induced Hemolysis
Hirschler-Laszkiewicz, Iwona; Zhang, Wenyi; Keefer, Kerry; Conrad, Kathleen; Tong, Qin; Chen, Shu-jen; Bronson, Sarah; Cheung, Joseph Y.; Miller, Barbara A.
2011-01-01
Transient receptor potential channels Trpc2 and Trpc3 are expressed on normal murine erythroid precursors, and erythropoietin stimulates an increase in intracellular calcium ([Ca2+]i) through TRPC2 and TRPC3. Because modulation of [Ca2+]i is an important signaling pathway in erythroid proliferation and differentiation, Trpc2, Trpc3, and Trpc2/Trpc3 double knockout mice were utilized to explore the roles of these channels in erythropoiesis. Trpc2, Trpc3, and Trpc2/Trpc3 double knockout mice were not anemic, and had similar red blood cell counts, hemoglobins, and reticulocyte counts as wild type littermate controls. Although the erythropoietin induced increase in [Ca2+]i was reduced, these knockout mice showed no defects in red cell production. The major phenotypic difference at steady state was that the mean corpuscular volume, mean corpuscular hemoglobin, and hematocrit of red cells were significantly greater in Trpc2 and Trpc2/Trpc3 double knockout mice, and mean corpuscular hemoglobin concentration was significantly reduced. All hematological parameters in Trpc3 knockout mice were similar to controls. When exposed to phenyhydrazine, unlike the Trpc3 knockouts, Trpc2 and Trpc2/Trpc3 double knockout mice showed significant resistance to hemolysis. This was associated with significant reduction in hydrogen peroxide-induced calcium influx in erythroblasts. While erythropoietin induced calcium influx through TRPC2 or TRPC3 is not critical for erythroid production, these data demonstrate that TRPC2 plays an important role in oxidative stress-induced hemolysis which may be related to reduced calcium entry in red cells in the presence of Trpc2 depletion. PMID:21924222
Haloperidol inhibits the development of atherosclerotic lesions in LDL receptor knockout mice
van der Sluis, Ronald J; Nahon, Joya E; Reuwer, Anne Q; Van Eck, Miranda; Hoekstra, Menno
2015-01-01
Background and Purpose Antipsychotic drugs have been shown to modulate the expression of ATP-binding cassette transporter A1 (ABCA1), a key factor in the anti-atherogenic reverse cholesterol transport process, in vitro. Here we evaluated the potential of the typical antipsychotic drug haloperidol to modulate the cholesterol efflux function of macrophages in vitro and their susceptibility to atherosclerosis in vivo. Experimental Approach Thioglycollate-elicited peritoneal macrophages were used for in vitro studies. Hyperlipidaemic low-density lipoprotein (LDL) receptor knockout mice were implanted with a haloperidol-containing pellet and subsequently fed a Western-type diet for 5 weeks to induce the development of atherosclerotic lesions in vivo. Key Results Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in peritoneal macrophages. This coincided with a 30% decrease in the capacity of macrophages to efflux cholesterol to apolipoprotein A1. Haloperidol treatment stimulated the expression of ABCA1 (+51%) and other genes involved in reverse cholesterol transport, that is, CYP7A1 (+98%) in livers of LDL receptor knockout mice. No change in splenic ABCA1 expression was noted. However, the average size of the atherosclerotic size was significantly smaller (−31%) in the context of a mildly more atherogenic metabolic phenotype upon haloperidol treatment. More importantly, haloperidol markedly lowered MCP-1 expression (−70%) and secretion (−28%) by peritoneal macrophages. Conclusions and Implications Haloperidol treatment lowered the susceptibility of hyperlipidaemic LDL receptor knockout mice to develop atherosclerotic lesions. Our findings suggest that the beneficial effect of haloperidol on atherosclerosis susceptibility can be attributed to its ability to inhibit macrophage chemotaxis. PMID:25572138
Byon, Chang Hyun; Han, Tieyan; Wu, Judy; Hui, Simon T
2015-08-01
Inflammation of vascular smooth muscle cells (VSMC) is intimately linked to atherosclerosis and other vascular inflammatory disease. Thioredoxin interacting protein (Txnip) is a key regulator of cellular sulfhydryl redox and a mediator of inflammasome activation. The goals of the present study were to examine the impact of Txnip ablation on inflammatory response to oxidative stress in VSMC and to determine the effect of Txnip ablation on atherosclerosis in vivo. Using cultured VSMC, we showed that ablation of Txnip reduced cellular oxidative stress and increased protection from oxidative stress when challenged with oxidized phospholipids and hydrogen peroxide. Correspondingly, expression of inflammatory markers and adhesion molecules were diminished in both VSMC and macrophages from Txnip knockout mice. The blunted inflammatory response was associated with a decrease in NF-ĸB nuclear translocation. Loss of Txnip in VSMC also led to a dramatic reduction in macrophage adhesion to VSMC. In vivo data from Txnip-ApoE double knockout mice showed that Txnip ablation led to 49% reduction in atherosclerotic lesion in the aortic root and 71% reduction in the abdominal aorta, compared to control ApoE knockout mice. Our data show that Txnip plays an important role in oxidative inflammatory response and atherosclerotic lesion development in mice. The atheroprotective effect of Txnip ablation implicates that modulation of Txnip expression may serve as a potential target for intervention of atherosclerosis and inflammatory vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Bowick, Gavin C; Airo, Adriana M; Bente, Dennis A
2012-06-19
Crimean Congo hemorrhagic fever (CCHF) is a tick-borne hemorrhagic zoonosis associated with high mortality. Pathogenesis studies and the development of vaccines and antivirals against CCHF have been severely hampered by the lack of suitable animal model. We recently developed and characterized a mature mouse model for CCHF using mice carrying STAT1 knockout (KO). Given the importance of interferons in controlling viral infections, we investigated the expression of interferon pathway-associated genes in KO and wild-type (WT) mice challenged with CCHF virus. We expected that the absence of the STAT1 protein would result in minimal expression of IFN-related genes. Surprisingly, the KO mice showed high levels of IFN-stimulated gene expression, beginning on day 2 post-infection, while in WT mice challenged with virus the same genes were expressed at similar levels on day 1. We conclude that CCHF virus induces similar type I IFN responses in STAT1 KO and WT mice, but the delayed response in the KO mice permits rapid viral dissemination and fatal illness.
Gruss, M; Braun, K
2001-01-01
The Fragile X syndrome, a common form of mental retardation in humans, is caused by silencing the fragile X mental retardation (FMR1) gene leading to the absence of the encoded fragile X mental retardation protein 1 (FMRP). We describe morphological and behavioral abnormalities for both affected humans and Fmr1 knockout mice, a putative animal model for the human Fragile X syndrome. The aim of the present study was to identify possible neurochemical abnormalities in Fmr1 knockout mice, with particular focus on neurotransmission. Significant region-specific differences of basal neurotransmitter and metabolite levels were found between wildtype and Fmr1 knockout animals, predominantly in juveniles (post-natal days 28 to 31). Adults (postnatal days 209 to 221) showed only few abnormalities as compared with the wildtype. In juvenile knockout mice, aspartate and taurine were especially increased in cortical regions, striatum, hippocampus, cerebellum, and brainstem. In addition, juveniles showed an altered balance between excitatory and inhibitory amino acids in the caudal cortex, hippocampus, and brainstem. We detected very few differences in monoamine turnover in both age stages. The results presented here provide the first evidence that lack of FMRP expression in FMRP knockout mice is accompanied by age-dependent, region-specific alterations in neurotransmission.
BOOT-HANDFORD, R. P.; MICHAELIDIS, T. M.; HILLARBY, M. C.; ZAMBELLI, A.; DENTON, J.; HOYLAND, J. A.; FREEMONT, A. J.; GRANT, M. E.; WALLIS, G. A.
1998-01-01
Histological examination of long bones from 1-day-old bcl-2 knockout and age-matched control mice revealed no obvious differences in length of bone, growth plate architecture or stage of endochondral ossification. In 35-day-old bcl-2 knockout mice that are growth retarded or ‘dwarfed’, the proliferative zone of the growth plate appeared slightly thinner and the secondary centres of ossification less well developed than their age-matched wild-type controls. The most marked histological effects of bcl-2 ablation were on osteoblasts and bone. 35-day-old knockout mouse bones exhibited far greater numbers of osteoblasts than controls and the osteoblasts had a cuboidal phenotype in comparison with the normal flattened cell appearance. In addition, the collagen deposited by the osteoblasts in the bcl-2 knockout mouse bone was disorganized in comparison with control tissue and had a pseudo-woven appearance. The results suggest an important role for Bcl-2 in controlling osteoblast phenotype and bone deposition in vivo. PMID:10193316
Nakagawa, Yoshiko; Sakuma, Tetsushi; Nishimichi, Norihisa; Yokosaki, Yasuyuki; Yanaka, Noriyuki; Takeo, Toru; Nakagata, Naomi; Yamamoto, Takashi
2016-08-15
Current advances in producing genetically modified mice using genome-editing technologies have indicated the need for improvement of limiting factors including zygote collection for microinjection and their cryopreservation. Recently, we developed a novel superovulation technique using inhibin antiserum and equine chorionic gonadotropin to promote follicle growth. This method enabled the increased production of fertilized oocytes via in vitro fertilization compared with the conventional superovulation method. Here, we verify that the ultra-superovulation technique can be used for the efficient generation of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated knockout mice by microinjection of plasmid vector or ribonucleoprotein into zygotes. We also investigated whether single-amino-acid-substituted mice and conditional knockout mice could be generated. Founder mice bearing base substitutions were generated more efficiently by co-microinjection of Cas9 protein, a guide RNA and single-stranded oligodeoxynucleotide (ssODN) than by plasmid microinjection with ssODN. The conditional allele was successfully introduced by the one-step insertion of an ssODN designed to carry an exon flanked by two loxP sequences and homology arms using a double-cut CRISPR-Cas9 strategy. Our study presents a useful method for the CRISPR-Cas9-based generation of genetically modified mice from the viewpoints of animal welfare and work efficiency. © 2016. Published by The Company of Biologists Ltd.
Long non-coding RNAs regulate effects of β-crystallin B2 on mouse ovary development.
Gao, Qian; Ren, Hanxiao; Chen, Mingkun; Niu, Ziguang; Tao, Haibo; Jia, Yin; Zhang, Jianrong; Li, Wenjie
2016-11-01
β-crystallin B2 (CRYBB2) knockout mice exhibit morphological and functional abnormalities in the ovary. Long non‑coding RNAs (lncRNAs) regulate gene transcription and translation, and epigenetic modification of genomic DNA. The present study investigated the role of lncRNAs in mediating the effects of CRYBB2 in the regulation of ovary development in mice. In the current study, ovary tissues from wild‑type (WT) and CRYBB2 knockout mice were subjected to lncRNA and mRNA microarray profiling. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to group the differentially expressed lncRNAs into regulated gene pathways and functions. The correlation matrix method was used to establish a network of lncRNA and mRNA co‑expression. Quantitative reverse transcription-polymerase chain reaction (RT‑qPCR) was used to verify expression of a number of these differentially expressed lncRNAs and mRNAs. There were 157 differentially expressed lncRNAs and 1,085 differentially expressed mRNAs between ovary tissues from WT and CRYBB2 knockout mice. The GO and KEGG analyses indicated that these differentially expressed lncRNAs and mRNAs were important in Ca2+ signaling and ligand and receptor interactions. The correlation matrix method established an lncRNA and mRNA co‑expression network, consisting of 53 lncRNAs and 45 mRNAs with 98 nodes and 75 connections. RT‑qPCR confirmed downregulation of lncRNA A‑30‑P01019163 expression, which further downregulated its downstream gene purinergic receptor P2X, ligand‑gated ion channel, 7 (P2rx7) expression in ovary tissues from CRYBB2 knockout mice. In conclusion, CRYBB2 regulates expression of different lncRNAs to influence ovary development. lncRNA A‑30‑P01019163 may affect ovarian cell cycle and proliferation by regulating P2rx7 expression in the ovary.
The arcuate nucleus and NPY contribute to the antitumorigenic effect of calorie restriction
Minor, Robin K.; López, Miguel; Younts, Caitlin M.; Jones, Bruce; Pearson, Kevin J.; Anson, R. Michael; Diéguez, Carlos; de Cabo, Rafael
2011-01-01
Summary Calorie restriction (CR) is known to have profound effects on tumor incidence. A typical consequence of CR is hunger, and we hypothesized that the neuroendocrine response to CR might in part mediate CR's antitumor effects. We tested CR under appetite suppression using two models: neuropeptide Y (NPY) knockout mice and monosodium glutamate (MSG)-injected mice. While CR was protective in control mice challenged with a two-stage skin carcinogenesis model, papilloma development was neither delayed nor reduced by CR in the MSG-treated and NPY knockout mice. Adiponectin levels were also not increased by CR in the appetite-suppressed mice. We propose that some of CR’s beneficial effects cannot be separated from those imposed on appetite, and that NPY neurons in the arcuate nucleus of the hypothalamus (ARC) are involved in the translation of reduced intake to downstream physiological and functional benefits. PMID:21385308
IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion.
Wueest, Stephan; Laesser, Céline I; Böni-Schnetzler, Marianne; Item, Flurin; Lucchini, Fabrizio C; Borsigova, Marcela; Müller, Werner; Donath, Marc Y; Konrad, Daniel
2018-01-01
We recently showed that interleukin (IL)-6-type cytokine signaling in adipocytes induces free fatty acid release from visceral adipocytes, thereby promoting obesity-induced hepatic insulin resistance and steatosis. In addition, IL-6-type cytokines may increase the release of leptin from adipocytes and by those means induce glucagon-like peptide 1 (GLP-1) secretion. We thus hypothesized that IL-6-type cytokine signaling in adipocytes may regulate insulin secretion. To this end, mice with adipocyte-specific knockout of gp130, the signal transducer protein of IL-6, were fed a high-fat diet for 12 weeks. Compared with control littermates, knockout mice showed impaired glucose tolerance and circulating leptin, GLP-1, and insulin levels were reduced. In line, leptin release from isolated adipocytes was reduced, and intestinal proprotein convertase subtilisin/kexin type 1 ( Pcsk1 ) expression, the gene encoding PC1/3, which controls GLP-1 production, was decreased in knockout mice. Importantly, treatment with the GLP-1 receptor antagonist exendin 9-39 abolished the observed difference in glucose tolerance between control and knockout mice. Ex vivo, supernatant collected from isolated adipocytes of gp130 knockout mice blunted Pcsk1 expression and GLP-1 release from GLUTag cells. In contrast, glucose- and GLP-1-stimulated insulin secretion was not affected in islets of knockout mice. In conclusion, adipocyte-specific IL-6 signaling induces intestinal GLP-1 release to enhance insulin secretion, thereby counteracting insulin resistance in obesity. © 2017 by the American Diabetes Association.
MitoNEET in Perivascular Adipose Tissue Blunts Atherosclerosis under Mild Cold Condition in Mice
Xiong, Wenhao; Zhao, Xiangjie; Garcia-Barrio, Minerva T.; Zhang, Jifeng; Lin, Jiandie; Chen, Y. Eugene; Jiang, Zhisheng; Chang, Lin
2017-01-01
Background: Perivascular adipose tissue (PVAT), which surrounds most vessels, is de facto a distinct functional vascular layer actively contributing to vascular function and dysfunction. PVAT contributes to aortic remodeling by producing and releasing a large number of undetermined or less characterized factors that could target endothelial cells and vascular smooth muscle cells, and herein contribute to the maintenance of vessel homeostasis. Loss of PVAT in mice enhances atherosclerosis, but a causal relationship between PVAT and atherosclerosis and the possible underlying mechanisms remain to be addressed. The CDGSH iron sulfur domain 1 protein (referred to as mitoNEET), a mitochondrial outer membrane protein, regulates oxidative capacity and adipose tissue browning. The roles of mitoNEET in PVAT, especially in the development of atherosclerosis, are unknown. Methods: The brown adipocyte-specific mitoNEET transgenic mice were subjected to cold environmental stimulus. The metabolic rates and PVAT-dependent thermogenesis were investigated. Additionally, the brown adipocyte-specific mitoNEET transgenic mice were cross-bred with ApoE knockout mice. The ensuing mice were subsequently subjected to cold environmental stimulus and high cholesterol diet challenge for 3 months. The development of atherosclerosis was investigated. Results: Our data show that mitoNEET mRNA was downregulated in PVAT of both peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α)- and beta (Pgc1β)-knockout mice which are sensitive to cold. MitoNEET expression was higher in PVAT of wild type mice and increased upon cold stimulus. Transgenic mice with overexpression of mitoNEET in PVAT were cold resistant, and showed increased expression of thermogenic genes. ApoE knockout mice with mitoNEET overexpression in PVAT showed significant downregulation of inflammatory genes and showed reduced atherosclerosis development upon high fat diet feeding when kept in a 16°C environment. Conclusion: mitoNEET in PVAT is associated with PVAT-dependent thermogenesis and prevents atherosclerosis development. The results of this study provide new insights on PVAT and mitoNEET biology and atherosclerosis in cardiovascular diseases. PMID:29311966
Bracht, Thilo; Hagemann, Sascha; Loscha, Marius; Megger, Dominik A; Padden, Juliet; Eisenacher, Martin; Kuhlmann, Katja; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara
2014-06-06
The Baculoviral IAP repeat-containing protein 5 (BIRC5), also known as inhibitor of apoptosis protein survivin, is a member of the chromosomal passenger complex and a key player in mitosis. To investigate the function of BIRC5 in liver regeneration, we analyzed a hepatocyte-specific BIRC5-knockout mouse model using a quantitative label-free proteomics approach. Here, we present the analyses of the proteome changes in hepatocyte-specific BIRC5-knockout mice compared to wildtype mice, as well as proteome changes during liver regeneration induced by partial hepatectomy in wildtype mice and mice lacking hepatic BIRC5, respectively. The BIRC5-knockout mice showed an extensive overexpression of proteins related to cellular maintenance, organization and protein synthesis. Key regulators of cell growth, transcription and translation MTOR and STAT1/STAT2 were found to be overexpressed. During liver regeneration proteome changes representing a response to the mitotic stimulus were detected in wildtype mice. Mainly proteins corresponding to proliferation, cell cycle and cytokinesis were up-regulated. The hepatocyte-specific BIRC5-knockout mice showed impaired liver regeneration, which had severe consequences on the proteome level. However, several proteins with function in mitosis were found to be up-regulated upon the proliferative stimulus. Our results show that the E3 ubiquitin-protein ligase UHRF1 is strongly up-regulated during liver regeneration independently of BIRC5.
Chen, Yanyan; Xu, Yuanyuan; Zheng, Hongzhi; Fu, Jingqi; Hou, Yongyong; Wang, Huihui; Zhang, Qiang; Yamamoto, Masayuki; Pi, Jingbo
2016-09-09
Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-double knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. Copyright © 2016 Elsevier Inc. All rights reserved.
A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting
Lindeman, Geoffrey J.; Dagnino, Lina; Gaubatz, Stefan; Xu, Yuhui; Bronson, Roderick T.; Warren, Henry B.; Livingston, David M.
1998-01-01
Homozygous E2F-5 knockout embryos and mice have been generated. Although embryonic development appeared normal, newborn mice developed nonobstructive hydrocephalus, suggesting excessive cerebrospinal fluid (CSF) production. Although the CSF-producing choroid plexus displayed normal cellular organization, it contained abundant electron-lucent epithelial cells, consistent with excessive CSF secretory activity. Moreover, E2F-5 CNS expression in normal animals was largely confined to the choroid plexus. Cell cycle kinetics were not perturbed in homozygous knockout embryo fibroblasts. Thus, E2F-5 is not essential for cell proliferation. Rather, it affects the secretory behavior of a differentiated neural tissue. PMID:9553039
Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing
2018-05-18
Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues CONCLUSIONS: We found chronic ethanol feeding plus an acute binge to reduce hepatic expression of the transcription factor TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect liver from ethanol-induced damage. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Toll-Like Receptor 3 Is Critical for Coxsackievirus B4-Induced Type 1 Diabetes in Female NOD Mice
Thuma, Jean R.; Courreges, Maria C.; Benencia, Fabian; James, Calvin B.L.; Malgor, Ramiro; Kantake, Noriko; Mudd, William; Denlinger, Nathan; Nolan, Bret; Wen, Li; Schwartz, Frank L.
2015-01-01
Group B coxsackieviruses (CVBs) are involved in triggering some cases of type 1 diabetes mellitus (T1DM). However, the molecular mechanism(s) responsible for this remain elusive. Toll-like receptor 3 (TLR3), a receptor that recognizes viral double-stranded RNA, is hypothesized to play a role in virus-induced T1DM, although this hypothesis is yet to be substantiated. The objective of this study was to directly investigate the role of TLR3 in CVB-triggered T1DM in nonobese diabetic (NOD) mice, a mouse model of human T1DM that is widely used to study both spontaneous autoimmune and viral-induced T1DM. As such, we infected female wild-type (TLR3+/+) and TLR3 knockout (TLR3−/−) NOD mice with CVB4 and compared the incidence of diabetes in CVB4-infected mice with that of uninfected counterparts. We also evaluated the islets of uninfected and CVB4-infected wild-type and TLR3 knockout NOD mice by immunohistochemistry and insulitis scoring. TLR3 knockout mice were markedly protected from CVB4-induced diabetes compared with CVB4-infected wild-type mice. CVB4-induced T-lymphocyte-mediated insulitis was also significantly less severe in TLR3 knockout mice compared with wild-type mice. No differences in insulitis were observed between uninfected animals, either wild-type or TLR3 knockout mice. These data demonstrate for the first time that TLR3 is 1) critical for CVB4-induced T1DM, and 2) modulates CVB4-induced insulitis in genetically prone NOD mice. PMID:25422874
Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Jørgensen, Henrik Løvendahl
2018-04-01
The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness. Copyright © 2018 Elsevier Ltd. All rights reserved.
Embryonic ablation of neuronal VGF increases energy expenditure and reduces body weight.
Jiang, Cheng; Lin, Wei-Jye; Sadahiro, Masato; Shin, Andrew C; Buettner, Christoph; Salton, Stephen R
2017-08-01
Germline ablation of VGF, a secreted neuronal, neuroendocrine, and endocrine peptide precursor, results in lean, hypermetabolic, and infertile adult mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes (Hahm et al., 1999, 2002). To assess whether this phenotype is predominantly driven by reduced VGF expression in developing and/or adult neurons, or in peripheral endocrine and neuroendocrine tissues, we generated and analyzed conditional VGF knockout mice, obtained by mating loxP-flanked (floxed) Vgf mice with either pan-neuronal Synapsin-Cre- or forebrain alpha-CaMKII-Cre-recombinase-expressing transgenic mice. Adult male and female mice, with conditional ablation of the Vgf gene in embryonic neurons had significantly reduced body weight, increased energy expenditure, and were resistant to diet-induced obesity. Conditional forebrain postnatal ablation of VGF in male mice, primarily in adult excitatory neurons, had no measurable effect on body weight nor on energy expenditure, but led to a modest increase in adiposity, partially overlapping the effect of AAV-Cre-mediated targeted ablation of VGF in the adult ventromedial hypothalamus and arcuate nucleus of floxed Vgf mice (Foglesong et al., 2016), and also consistent with results of icv delivery of the VGF-derived peptide TLQP-21 to adult mice, which resulted in increased energy expenditure and reduced adiposity (Bartolomucci et al., 2006). Because the lean, hypermetabolic phenotype of germline VGF knockout mice is to a great extent recapitulated in Syn-Cre +/- ,Vgf flpflox/flpflox mice, we conclude that the metabolic profile of germline VGF knockout mice is largely the result of VGF ablation in embryonic CNS neurons, rather than peripheral endocrine and/or neuroendocrine cells, and that in forebrain structures such as hypothalamus, VGF and/or VGF-derived peptides play uniquely different roles in the developing and adult nervous system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Requirement of Smad4 from Ocular Surface Ectoderm for Retinal Development.
Li, Jing; Wang, Shusheng; Anderson, Chastain; Zhao, Fangkun; Qin, Yu; Wu, Di; Wu, Xinwei; Liu, Jia; He, Xuefei; Zhao, Jiangyue; Zhang, Jinsong
2016-01-01
Microphthalmia is characterized by abnormally small eyes and usually retinal dysplasia, accounting for up to 11% of the blindness in children. Right now there is no effective treatment for the disease, and the underlying mechanisms, especially how retinal dysplasia develops from microphthalmia and whether it depends on the signals from lens ectoderm are still unclear. Mutations in genes of the TGF-β superfamily have been noted in patients with microphthalmia. Using conditional knockout mice, here we address the question that whether ocular surface ectoderm-derived Smad4 modulates retinal development. We found that loss of Smad4 specifically on surface lens ectoderm leads to microphthalmia and dysplasia of retina. Retinal dysplasia in the knockout mice is caused by the delayed or failed differentiation and apoptosis of retinal cells. Microarray analyses revealed that members of Hedgehog and Wnt signaling pathways are affected in the knockout retinas, suggesting that ocular surface ectoderm-derived Smad4 can regulate Hedgehog and Wnt signaling in the retina. Our studies suggest that defective of ocular surface ectoderm may affect retinal development.
Requirement of Smad4 from Ocular Surface Ectoderm for Retinal Development
Li, Jing; Wang, Shusheng; Anderson, Chastain; Zhao, Fangkun; Qin, Yu; Wu, Di; Wu, Xinwei; Liu, Jia; He, Xuefei; Zhao, Jiangyue; Zhang, Jinsong
2016-01-01
Microphthalmia is characterized by abnormally small eyes and usually retinal dysplasia, accounting for up to 11% of the blindness in children. Right now there is no effective treatment for the disease, and the underlying mechanisms, especially how retinal dysplasia develops from microphthalmia and whether it depends on the signals from lens ectoderm are still unclear. Mutations in genes of the TGF-β superfamily have been noted in patients with microphthalmia. Using conditional knockout mice, here we address the question that whether ocular surface ectoderm-derived Smad4 modulates retinal development. We found that loss of Smad4 specifically on surface lens ectoderm leads to microphthalmia and dysplasia of retina. Retinal dysplasia in the knockout mice is caused by the delayed or failed differentiation and apoptosis of retinal cells. Microarray analyses revealed that members of Hedgehog and Wnt signaling pathways are affected in the knockout retinas, suggesting that ocular surface ectoderm-derived Smad4 can regulate Hedgehog and Wnt signaling in the retina. Our studies suggest that defective of ocular surface ectoderm may affect retinal development. PMID:27494603
2013-01-01
Background Studies in animals showed that PCSK9 is involved in HDL metabolism. We investigated the molecular mechanism by which PCSK9 regulates HDL cholesterol concentration and also whether Pcsk9 inactivation might affect cholesterol efflux capacity of serum and atherosclerotic fatty streak volume. Methods Mass spectrometry and western blot were used to analyze the level of apolipoprotein E (APOE) and A1 (APOA1). A mouse model overexpressing human LDLR was used to test the effect of high levels of liver LDLR on the concentration of HDL cholesterol and APOE-containing HDL subfractions. Pcsk9 knockout males lacking LDLR and APOE were used to test whether LDLR and APOE are necessary for PCSK9-mediated HDL cholesterol regulation. We also investigated the effects of Pcsk9 inactivation on cholesterol efflux capacity of serum using THP-1 and J774.A1 macrophage foam cells and atherosclerotic fatty streak volume in the aortic sinus of Pcsk9 knockout males fed an atherogenic diet. Results APOE and APOA1 were reduced in the same HDL subfractions of Pcsk9 knockout and human LDLR transgenic male mice. In Pcsk9/Ldlr double-knockout mice, HDL cholesterol concentration was lower than in Ldlr knockout mice and higher than in wild-type controls. In Pcsk9/Apoe double-knockout mice, HDL cholesterol concentration was similar to that of Apoe knockout males. In Pcsk9 knockout males, THP-1 macrophage cholesterol efflux capacity of serum was reduced and the fatty streak lesion volume was similar to wild-type controls. Conclusions In mice, LDLR and APOE are important factors for PCSK9-mediated HDL regulation. Our data suggest that, although LDLR plays a major role in PCSK9-mediated regulation of HDL cholesterol concentration, it is not the only mechanism and that, regardless of mechanism, APOE is essential. Pcsk9 inactivation decreases the HDL cholesterol concentration and cholesterol efflux capacity in serum, but does not increase atherosclerotic fatty streak volume. PMID:23883163
D’Souza, Cheryl A.; Zhao, Fei Linda; Li, Xujian; Xu, Yan; Dunn, Shannon E.; Zhang, Li
2016-01-01
Ovarian cancer G protein-coupled receptor 1 (OGR1) is a proton-sensing molecule that can detect decreases in extracellular pH that occur during inflammation. Although OGR1 has been shown to have pro-inflammatory functions in various diseases, its role in autoimmunity has not been examined. We therefore sought to determine whether OGR1 has a role in the development of T cell autoimmunity by contrasting the development of experimental autoimmune encephalomyelitis between wild type and OGR1-knockout mice. OGR1-knockout mice showed a drastically attenuated clinical course of disease that was associated with a profound reduction in the expansion of myelin oligodendrocyte glycoprotein 35-55-reactive T helper 1 (Th1) and Th17 cells in the periphery and a reduced accumulation of Th1 and Th17 effectors in the central nervous system. We determined that these impaired T cell responses in OGR1-knockout mice associated with a reduced frequency and number of dendritic cells in draining lymph nodes during EAE and a higher production of nitric oxide by macrophages. Our studies suggest that OGR1 plays a key role in regulating T cell responses during autoimmunity. PMID:26828924
Impaired fear extinction learning in adult heterozygous BDNF knock-out mice.
Psotta, Laura; Lessmann, Volkmar; Endres, Thomas
2013-07-01
Brain-derived neurotrophic factor (BDNF) is a crucial regulator of neuroplasticity, which underlies learning and memory processes in different brain areas. To investigate the role of BDNF in the extinction of amygdala-dependent cued fear memories, we analyzed fear extinction learning in heterozygous BDNF knock-out mice, which possess a reduction of endogenous BDNF protein levels to ~50% of wild-type animals. Since BDNF expression has been shown to decline with aging of animals, we tested the performance in extinction learning of these mice at 2 months (young adults) and 7 months (older adults) of age. The present study shows that older adult heterozygous BDNF knock-out mice, which have a chronic 50% lack of BDNF, also possess a deficit in the acquisition of extinction memory, while extinction learning remains unaffected in young adult heterozygous BDNF knock-out mice. This deficit in extinction learning is accompanied by a reduction of BDNF protein in the hippocampus, amygdala and the prefrontal cortex. Copyright © 2013 Elsevier Inc. All rights reserved.
LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys.
Burghardt, Tillmann; Kastner, Jürgen; Suleiman, Hani; Rivera-Milla, Eric; Stepanova, Natalya; Lottaz, Claudio; Kubitza, Marion; Böger, Carsten A; Schmidt, Sarah; Gorski, Mathias; de Vries, Uwe; Schmidt, Helga; Hertting, Irmgard; Kopp, Jeffrey; Rascle, Anne; Moser, Markus; Heid, Iris M; Warth, Richard; Spang, Rainer; Wegener, Joachim; Mierke, Claudia T; Englert, Christoph; Witzgall, Ralph
2013-11-01
Mutations of the LMX1B gene cause nail-patella syndrome, a rare autosomal-dominant disorder affecting the development of the limbs, eyes, brain, and kidneys. The characterization of conventional Lmx1b knockout mice has shown that LMX1B regulates the development of podocyte foot processes and slit diaphragms, but studies using podocyte-specific Lmx1b knockout mice have yielded conflicting results regarding the importance of LMX1B for maintaining podocyte structures. In order to address this question, we generated inducible podocyte-specific Lmx1b knockout mice. One week of Lmx1b inactivation in adult mice resulted in proteinuria with only minimal foot process effacement. Notably, expression levels of slit diaphragm and basement membrane proteins remained stable at this time point, and basement membrane charge properties also did not change, suggesting that alternative mechanisms mediate the development of proteinuria in these mice. Cell biological and biophysical experiments with primary podocytes isolated after 1 week of Lmx1b inactivation indicated dysregulation of actin cytoskeleton organization, and time-resolved DNA microarray analysis identified the genes encoding actin cytoskeleton-associated proteins, including Abra and Arl4c, as putative LMX1B targets. Chromatin immunoprecipitation experiments in conditionally immortalized human podocytes and gel shift assays showed that LMX1B recognizes AT-rich binding sites (FLAT elements) in the promoter regions of ABRA and ARL4C, and knockdown experiments in zebrafish support a model in which LMX1B and ABRA act in a common pathway during pronephros development. Our report establishes the importance of LMX1B in fully differentiated podocytes and argues that LMX1B is essential for the maintenance of an appropriately structured actin cytoskeleton in podocytes.
Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.
2001-01-01
Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807
Importance of GluA1 Subunit-Containing AMPA Glutamate Receptors for Morphine State-Dependency
Aitta-aho, Teemu; Möykkynen, Tommi P.; Panhelainen, Anne E.; Vekovischeva, Olga Yu.; Bäckström, Pia; Korpi, Esa R.
2012-01-01
In state-dependency, information retrieval is most efficient when the animal is in the same state as it was during the information acquisition. State-dependency has been implicated in a variety of learning and memory processes, but its mechanisms remain to be resolved. Here, mice deficient in AMPA-type glutamate receptor GluA1 subunits were first conditioned to morphine (10 or 20 mg/kg s.c. during eight sessions over four days) using an unbiased procedure, followed by testing for conditioned place preference at morphine states that were the same as or different from the one the mice were conditioned to. In GluA1 wildtype littermate mice the same-state morphine dose produced the greatest expression of place preference, while in the knockout mice no place preference was then detected. Both wildtype and knockout mice expressed moderate morphine-induced place preference when not at the morphine state (saline treatment at the test); in this case, place preference was weaker than that in the same-state test in wildtype mice. No correlation between place preference scores and locomotor activity during testing was found. Additionally, as compared to the controls, the knockout mice showed unchanged sensitization to morphine, morphine drug discrimination and brain regional μ-opioid receptor signal transduction at the G-protein level. However, the knockout mice failed to show increased AMPA/NMDA receptor current ratios in the ventral tegmental area dopamine neurons of midbrain slices after a single injection of morphine (10 mg/kg, s.c., sliced prepared 24 h afterwards), in contrast to the wildtype mice. The results indicate impaired drug-induced state-dependency in GluA1 knockout mice, correlating with impaired opioid-induced glutamate receptor neuroplasticity. PMID:22675452
Genetic loss of diazepam binding inhibitor in mice impairs social interest.
Ujjainwala, A L; Courtney, C D; Rhoads, S G; Rhodes, J S; Christian, C A
2018-06-01
Neuropsychiatric disorders in which reduced social interest is a common symptom, such as autism, depression, and anxiety, are frequently associated with genetic mutations affecting γ-aminobutyric acid (GABA)ergic transmission. Benzodiazepine treatment, acting via GABA type-A receptors, improves social interaction in male mouse models with autism-like features. The protein diazepam binding inhibitor (DBI) can act as an endogenous benzodiazepine, but a role for DBI in social behavior has not been described. Here, we investigated the role of DBI in the social interest and recognition behavior of mice. The responses of DBI wild-type and knockout male and female mice to ovariectomized female wild-type mice (a neutral social stimulus) were evaluated in a habituation/dishabituation task. Both male and female knockout mice exhibited reduced social interest, and DBI knockout mice lacked the sex difference in social interest levels observed in wild-type mice, in which males showed higher social interest levels than females. The ability to discriminate between familiar and novel stimulus mice (social recognition) was not impaired in DBI-deficient mice of either sex. DBI knockouts could learn a rotarod motor task, and could discriminate between social and nonsocial odors. Both sexes of DBI knockout mice showed increased repetitive grooming behavior, but not in a manner that would account for the decrease in social investigation time. Genetic loss of DBI did not alter seminal vesicle weight, indicating that the social interest phenotype of males lacking DBI is not due to reduced circulating testosterone. Together, these studies show a novel role of DBI in driving social interest and motivation. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Horii, Takuro; Arai, Yuji; Yamazaki, Miho; Morita, Sumiyo; Kimura, Mika; Itoh, Masahiro; Abe, Yumiko; Hatada, Izuho
2014-03-28
The CRISPR/Cas system, in which the Cas9 endonuclease and a guide RNA complementary to the target are sufficient for RNA-guided cleavage of the target DNA, is a powerful new approach recently developed for targeted gene disruption in various animal models. However, there is little verification of microinjection methods for generating knockout mice using this approach. Here, we report the verification of microinjection methods of the CRISPR/Cas system. We compared three methods for injection: (1) injection of DNA into the pronucleus, (2) injection of RNA into the pronucleus, and (3) injection of RNA into the cytoplasm. We found that injection of RNA into the cytoplasm was the most efficient method in terms of the numbers of viable blastocyst stage embryos and full-term pups generated. This method also showed the best overall knockout efficiency.
Morphological study of tooth development in podoplanin-deficient mice.
Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko
2017-01-01
Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.
Induction of periimplantitis in dental implants.
Becker, Stephan T; Föge, Marc; Beck-Broichsitter, Benedicta E; Gavrilova, Olga; Bolte, Hendrik; Rosenstiel, Philipp; Wiltfang, Jörg
2013-01-01
Development, progression, and therapy of periimplantitis are nonresolved emerging problems. The aim of this pilot study was to establish a model for periimplantitis in mice to have a base for tests with immune-deficient knockout organisms to improve the knowledge about development and progression of periimplantitis and to develop further therapeutic options.In 8 mice, titanium implants were inserted in the median of the palate. Four of these implants had ligatures (periimplantitis group). After 2 weeks, the animals received a special diet enriched with sugar and flavor. After 9 weeks, micro-computed tomography (micro-CT) examinations to evaluate the periimplant tissue and histologies were performed.Dental implant insertions within the oral cavity are possible in living mice. Implants with ligatures showed significantly larger periimplant bone defects than controls. The radiologic findings were confirmed by histology. At the end of the observation period, the portion of implants lost was higher in the ligature group.This is the first publication to describe the insertion of dental implants in living mice. In addition, it is the first time that periimplant infection could be induced in that species. This model will pave the way to study knockout mice with reduced or even enhanced resistance to periimplantitis.
Novel In Vivo Model for Combinatorial Fluorescence Labeling in Mouse Prostate
Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J. Mark; Balaji, K.C.
2015-01-01
BACKGROUND The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. METHODS We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-RasG12D knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. RESULTS In vivo XFP signals were observed in prostate of PKD1 knock-out, K-RasG12D knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. CONCLUSIONS The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. PMID:25753731
Novel In Vivo model for combinatorial fluorescence labeling in mouse prostate.
Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J Mark; Balaji, K C
2015-06-15
The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-Ras(G) (12) (D) knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. In vivo XFP signals were observed in prostate of PKD1 knock-out, K-Ras(G) (12) (D) knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. © 2015 Wiley Periodicals, Inc.
Cao, Yunshan; Tao, Lichan; Shen, Shutong; Xiao, Junjie; Wu, Hang; Li, Beibei; Wu, Xiangqi; Luo, Wen; Xiao, Qi; Hu, Xiaoshan; Liu, Hailang; Nie, Junwei; Lu, Shuangshuang; Yuan, Baiyin; Han, Zhonglin; Xiao, Bo; Yang, Zhongzhou; Li, Xinli
2013-01-01
Ras homologue enriched in brain 1 (Rheb1) plays an important role in a variety of cellular processes. In this study, we investigate the role of Rheb1 in the post-natal heart. We found that deletion of the gene responsible for production of Rheb1 from cardiomyocytes of post-natal mice resulted in malignant arrhythmias, heart failure, and premature death of these mice. In addition, heart growth impairment, aberrant metabolism relative gene expression, and increased cardiomyocyte apoptosis were observed in Rheb1-knockout mice prior to the development of heart failure and arrhythmias. Also, protein kinase B (PKB/Akt) signaling was enhanced in Rheb1-knockout mice, and removal of phosphatase and tensin homolog (Pten) significantly prolonged the survival of Rheb1-knockouts. Furthermore, signaling via the mammalian target of rapamycin complex 1 (mTORC1) was abolished and C/EBP homologous protein (CHOP) and phosphorylation levels of c-Jun N-terminal kinase (JNK) were increased in Rheb1 mutant mice. In conclusion, this study demonstrates that Rheb1 is important for maintaining cardiac function in post-natal mice via regulation of mTORC1 activity and stress on the endoplasmic reticulum. Moreover, activation of Akt signaling helps to improve the survival of mice with advanced heart failure. Thus, this study provides direct evidence that Rheb1 performs multiple important functions in the heart of the post-natal mouse. Enhancing Akt activity improves the survival of infant mice with advanced heart failure. PMID:24351823
Armc5 deletion causes developmental defects and compromises T-cell immune responses
Hu, Yan; Lao, Linjiang; Mao, Jianning; Jin, Wei; Luo, Hongyu; Charpentier, Tania; Qi, Shijie; Peng, Junzheng; Hu, Bing; Marcinkiewicz, Mieczyslaw Martin; Lamarre, Alain; Wu, Jiangping
2017-01-01
Armadillo repeat containing 5 (ARMC5) is a cytosolic protein with no enzymatic activities. Little is known about its function and mechanisms of action, except that gene mutations are associated with risks of primary macronodular adrenal gland hyperplasia. Here we map Armc5 expression by in situ hybridization, and generate Armc5 knockout mice, which are small in body size. Armc5 knockout mice have compromised T-cell proliferation and differentiation into Th1 and Th17 cells, increased T-cell apoptosis, reduced severity of experimental autoimmune encephalitis, and defective immune responses to lymphocytic choriomeningitis virus infection. These mice also develop adrenal gland hyperplasia in old age. Yeast 2-hybrid assays identify 16 ARMC5-binding partners. Together these data indicate that ARMC5 is crucial in fetal development, T-cell function and adrenal gland growth homeostasis, and that the functions of ARMC5 probably depend on interaction with multiple signalling pathways. PMID:28169274
USDA-ARS?s Scientific Manuscript database
To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male wild type 129/SvJ mice, and glutathione S-transferase A4-4 null (GSTA4-/-) mice for 40 d. GSTA4-/- mice were also crossed with peroxisome proliferator-activated ...
Roles of HAUSP-mediated p53 regulation in central nervous system development.
Kon, N; Zhong, J; Kobayashi, Y; Li, M; Szabolcs, M; Ludwig, T; Canoll, P D; Gu, W
2011-08-01
The deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also called USP7) has a critical role in regulating the p53-Mdm2 (murine double minute 2) pathway. By using the conventional knockout approach, we previously showed that hausp inactivation leads to early embryonic lethality. To fully understand the physiological functions of hausp, we have generated mice lacking hausp specifically in the brain and examined the impacts of this manipulation on brain development. We found that deletion of hausp in neural cells resulted in neonatal lethality. The brains from these mice displayed hypoplasia and deficiencies in development, which were mainly caused by p53-mediated apoptosis. Detailed analysis also showed an increase of both p53 levels and p53-dependent transcriptional activation in hausp knockout brains. Notably, neural cell survival and brain development of hausp-mutant mice can largely be restored in the p53-null background. Nevertheless, in contrast to the case of mdm2- and mdm4 (murine double minute 4)-mutant mice, inactivation of p53 failed to completely rescue the neonatal lethality of these hausp-mutant mice. These results indicate that HAUSP-mediated p53 regulation is crucial for brain development, and also suggest that both the p53-dependent and the p53-independent functions of HAUSP contribute to the neonatal lethality of hausp-mutant mice.
A comparative study of the characterization of miR-155 in knockout mice
Zhang, Dong; Cui, Yongchun; Li, Bin; Luo, Xiaokang; Li, Bo; Tang, Yue
2017-01-01
miR-155 is one of the most important miRNAs and plays a very important role in numerous biological processes. However, few studies have characterized this miRNA in mice under normal physiological conditions. We aimed to characterize miR-155 in vivo by using a comparative analysis. In our study, we compared miR-155 knockout (KO) mice with C57BL/6 wild type (WT) mice in order to characterize miR-155 in mice under normal physiological conditions using many evaluation methods, including a reproductive performance analysis, growth curve, ultrasonic estimation, haematological examination, and histopathological analysis. These analyses showed no significant differences between groups in the main evaluation indices. The growth and development were nearly normal for all mice and did not differ between the control and model groups. Using a comparative analysis and a summary of related studies published in recent years, we found that miR-155 was not essential for normal physiological processes in 8-week-old mice. miR-155 deficiency did not affect the development and growth of naturally ageing mice during the 42 days after birth. Thus, studying the complex biological functions of miR-155 requires the further use of KO mouse models. PMID:28278287
Gruss, Michael; Braun, Katharina
2004-07-01
The Fragile X syndrome, a common form of mental retardation in humans, originates from the loss of expression of the Fragile X mental retardation gene leading to the absence of the encoded Fragile X mental retardation protein 1 (FMRP). A broad pattern of morphological and behavioral abnormalities is well described for affected humans as well as Fmr1 knock-out mice, a transgenic animal model for the human Fragile X syndrome. In the present study, we examined neurochemical differences between female Fmr1 knock-out and wildtype mice with particular focus on neurotransmission. Significant age- and region-specific differences of basal tissue neurotransmitter and metabolite levels measured by high performance liquid chromatography were found. Those differences were more numerous in juvenile animals (postnatal day (PND) 28-31) compared to adults (postnatal day 209-221). In juvenile female knock-out mice, especially aspartate and taurine were increased in cortical regions, striatum, cerebellum, and brainstem. Furthermore, compared to the wildtype animals, the juvenile knock-out mice displayed an increased level of neuronal inhibition in the hippocampus and brainstem reflected by decreased ratios of (aspartate + glutamate)/(taurine + GABA), as well as an increased dopamine (DA) turnover in cortical regions, striatum, and hippocampus. These results provide the first evidence that the lack of FMRP expression in female Fmr1 knock-out mice is accompanied by age-dependent, region-specific alterations in brain amino acids, and monoamine turnover, which might be related to the reported synaptical and behavioural alterations in these animals.
Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S.; Sun, Baodong
2016-01-01
A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. PMID:27358407
Parathyroid hormone-related protein is required for tooth eruption
Philbrick, William M.; Dreyer, Barbara E.; Nakchbandi, Inaam A.; Karaplis, Andrew C.
1998-01-01
Parathyroid hormone (PTH)-related protein (PTHrP)-knockout mice die at birth with a chondrodystrophic phenotype characterized by premature chondrocyte differentiation and accelerated bone formation, whereas overexpression of PTHrP in the chondrocytes of transgenic mice produces a delay in chondrocyte maturation and endochondral ossification. Replacement of PTHrP expression in the chondrocytes of PTHrP-knockout mice using a procollagen II-driven transgene results in the correction of the lethal skeletal abnormalities and generates animals that are effectively PTHrP-null in all sites other than cartilage. These rescued PTHrP-knockout mice survive to at least 6 months of age but are small in stature and display a number of developmental defects, including cranial chondrodystrophy and a failure of tooth eruption. Teeth appear to develop normally but become trapped by the surrounding bone and undergo progressive impaction. Localization of PTHrP mRNA during normal tooth development by in situ hybridization reveals increasing levels of expression in the enamel epithelium before the formation of the eruption pathway. The type I PTH/PTHrP receptor is expressed in both the adjacent dental mesenchyme and in the alveolar bone. The replacement of PTHrP expression in the enamel epithelium with a keratin 14-driven transgene corrects the defect in bone resorption and restores the normal program of tooth eruption. PTHrP therefore represents an essential signal in the formation of the eruption pathway. PMID:9751753
Xu, X; Ren, J
2015-03-01
Macrophage migration inhibitory factor (MIF) has a role in the development of obesity and diabetes. However, whether MIF has a role in fat diet-induced obesity and associated cardiac anomalies still remains unknown. The aim of this study was to examine the impact of MIF knockout on high-fat diet-induced obesity, obesity-associated cardiac anomalies and the underlying mechanisms involved with a focus on Akt-mediated autophagy. Adult male wild-type (WT) and MIF knockout (MIF(-/-)) mice were placed on 45% high-fat diet for 5 months. Oxygen consumption, CO2 production, respiratory exchange ratio, locomotor activity and heat generation were measured using energy calorimeter. Echocardiographic, cardiomyocyte mechanical and intracellular Ca2+ properties were assessed. Apoptosis was examined using terminal dUTP nick end labeling staining and western blot analysis. Akt signaling pathway and autophagy markers were evaluated. Cardiomyocytes isolated from WT and MIF(-/-) mice were treated with recombinant mouse MIF (rmMIF). High-fat diet feeding elicited increased body weight gain, insulin resistance and caloric disturbance in WT and MIF(-/-) mice. High-fat diet induced unfavorable geometric, contractile and histological changes in the heart, the effects of which were alleviated by MIF knockout. In addition, fat diet-induced cardiac anomalies were associated with Akt activation and autophagy suppression, which were nullified by MIF deficiency. In cardiomyocytes from WT mice, autophagy was inhibited by exogenous rmMIF through Akt activation. In addition, MIF knockout rescued palmitic acid-induced suppression of cardiomyocyte autophagy, the effect of which was nullified by rmMIF. These results indicate that MIF knockout preserved obesity-associated cardiac anomalies without affecting fat diet-induced obesity, probably through restoring myocardial autophagy in an Akt-dependent manner. Our findings provide new insights for the role of MIF in obesity and associated cardiac anomalies.
Microarray expression profiling identifies genes with altered expression in HDL-deficient mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.
2000-05-05
Based on the assumption that severe alterations in the expression of genes known to be involved in HDL metabolism may affect the expression of other genes we screened an array of over 5000 mouse expressed sequence tags (ESTs) for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apo AI) knockout mice, Scavenger Receptor BI (SR-BI) transgenic mice and control mice were co-hybridized to microarrays. Two-sample t-statistics were used to identify genes with altered expression levels in the knockout or transgenic mice compared withmore » the control mice. In the SR-BI group we found 9 array elements representing at least 5 genes to be significantly altered on the basis of an adjusted p value of less than 0.05. In the apo AI knockout group 8 array elements representing 4 genes were altered compared with the control group (p < 0.05). Several of the genes identified in the SR-BI transgenic suggest altered sterol metabolism and oxidative processes. These studies illustrate the use of multiple-testing methods for the identification of genes with altered expression in replicated microarray experiments of apo AI knockout and SR-BI transgenic mice.« less
Beinfeld, Margery C; Blum, Alissa; Vishnuvardhan, Daesety; Fanous, Sanya; Marchand, James E
2005-11-18
Prohormone convertase 2 is widely co-localized with cholecystokinin in rodent brain. To examine its role in cholecystokinin processing, cholecystokinin levels were measured in dissected brain regions from prohormone convertase 2 knock-out mice. Cholecystokinin levels were lower in hippocampus, septum, thalamus, mesencephalon, and pons in knock-out mice than wild-type mice. In cerebral cortex, cortex-related structures and olfactory bulb, cholecystokinin levels were higher than wild type. Female mice were more affected by the loss of prohormone convertase 2 than male mice. The decrease in cholecystokinin levels in these brain regions shows that prohormone convertase 2 is important for cholecystokinin processing. Quantitative polymerase chain reaction measurements were performed to examine the relationship between peptide levels and cholecystokinin and enzyme expression. They revealed that cholecystokinin and prohormone convertase 1 mRNA levels in cerebral cortex and olfactory bulb were actually lower in knock-out than wild type, whereas their expression in other brain regions of knock-out mouse brain was the same as wild type. Female mice frequently had higher expression of cholecystokinin and prohormone convertase 1, 2, and 5 mRNA than male mice. The loss of prohormone convertase 2 alters CCK processing in specific brain regions. This loss also appears to trigger compensatory mechanisms in cerebral cortex and olfactory bulb that produce elevated levels of cholecystokinin but do not involve increased expression of cholecystokinin, prohormone convertase 1 or 5 mRNA.
Kambur, Oleg; Männistö, Pekka T; Viljakka, Kaarin; Reenilä, Ilkka; Lemberg, Kim; Kontinen, Vesa K; Karayiorgou, Maria; Gogos, Joseph A; Kalso, Eija
2008-10-01
Catechol-O-methyltransferase (COMT) polymorphisms modulate pain and opioid analgesia in human beings. It is not clear how the effects of COMT are mediated and only few relevant animal studies have been performed. Here, we used old male Comt gene knock-out mice as an animal model to study the effects of COMT deficiency on nociception that was assessed by the hot plate and tail flick tests. Stress-induced analgesia was achieved by forced swim. Morphine antinociception was measured after 10 mg/kg of morphine subcutaneously. Morphine tolerance was produced with subcutaneous morphine pellets and withdrawal provoked with subcutaneous naloxone. In the hot plate test, morphine-induced antinociception was significantly greater in the COMT knock-out mice, compared to the wild-type mice. This may be due to increased availability of opioid receptors as suggested by previous human studies. In the tail flick test, opioid-mediated stress-induced analgesia was absent and morphine-induced analgesia was decreased in COMT knock-out mice. In the hot plate test, stress-induced analgesia developed to all mice regardless of the COMT genotype. There were no differences between the genotypes in the baseline nociceptive thresholds, morphine tolerance and withdrawal. Our findings show, for the first time, the importance of COMT activity in stress- and morphine-induced analgesia in mice. COMT activity seems to take part in the modulation of nociception not only in the brain, as suggested earlier, but also at the spinal/peripheral level.
Tsuchiya, Shunsuke; Higashide, Tomomi; Toida, Kazunori; Sugiyama, Kazuhisa
2017-07-01
To investigate whether the elimination of β1- and β2-adrenergic receptors alters the diurnal intraocular pressure (IOP) rhythm in mice. β1-/β2-adrenergic receptor double-knockout and C57BL/6J mice were anesthetized intraperitoneally, with their IOPs measured via microneedle method. After entrainment to a 12-h light-dark (LD) cycle (light phase 6:00-18:00), IOPs were measured every 3 h from 9:00 to 24:00 (group 1, β1-/β2-adrenergic receptor double-knockout mice, n = 11; C57BL/6J, n = 15). The IOP measurements at 15:00 and 24:00 under a 12-h LD cycle and in the constant darkness (1 day and 8 days after exposure to darkness, respectively) were performed in another group of β1-/β2-adrenergic receptor double-knockout mice (group 2, n = 12). IOP variance throughout the day and mean IOP differences among time points were evaluated using a linear mixed model. β1-/β2-adrenergic receptor double-knockout and C57BL/6J mice showed biphasic IOP curves, low during the light phase and high during the dark phase; the fluctuation was significant (P < 0.001). The peak IOP (18.7 ± 1.4 mmHg) occurred at 24:00 and the trough IOP (13.5 ± 1.5 mmHg) occurred at 15:00 in β1-/β2-adrenergic receptor double-knockout mice group. IOP curves of β1-/β2-adrenergic receptor double-knockout and C57BL/6J were nearly parallel, and the IOPs of β1-/β2-adrenergic receptor double-knockout mice were significantly higher than those of C57BL/6J mice (P < 0.001). Under constant dark (DD) conditions, IOP at 24:00 (18.1 ± 1.5 mmHg) was significantly higher than that at 15:00 (13.3 ± 1.2 mmHg) (P < 0.001). The transition from the LD cycle to DD environment produced no significant change in IOP (P = 0.728). Elimination of both β1- and β2-adrenergic receptors did not disturb the biphasic diurnal IOP rhythm in mice.
Effects of blueberries in prevention of atherosclerosis in apoe knockout mice
USDA-ARS?s Scientific Manuscript database
ApoE knockout (ApoE-/-) mice were fed AIN-93G diet (CD) or CD formulated to contain 1% freeze-dried whole wild blueberries (CD1% BB). Mice were sacrificed after 20 weeks on the specified diet. Atherosclerotic lesions in aortic sinus were determined by staining cryosections (10 µm) with Oil Red O. Th...
Liu, Mingna; Wang, Lupeng; Cang, Jianhua
2014-01-01
Visual neurons in the superior colliculus (SC) respond to both bright (On) and dark (Off) stimuli in their receptive fields. This receptive field property is due to proper convergence of On- and Off-centered retinal ganglion cells to their target cells in the SC. In this study, we have compared the receptive field structure of individual SC neurons in two lines of mutant mice that are deficient in retinotopic mapping: the ephrin-A knockouts that lack important retinocollicular axonal guidance cues and the nAChR-β2 knockouts that have altered activity-dependent refinement of retinocollicular projections. We find that even though the receptive fields are much larger in the ephrin-A knockouts, their On-Off overlap remains unchanged. These neurons also display normal level of selectivity for stimulus direction and orientation. In contrast, the On-Off overlap is disrupted in the β2 knockouts. Together with the previous finding of disrupted direction and orientation selectivity in the β2 knockout mice, our results indicate that molecular guidance cues and activity-dependent processes play different roles in the development of receptive field properties in the SC.
Li, Yong; Kim, Jimok
2016-01-01
Neurocognitive effects of cannabinoids have been extensively studied with a focus on CB1 cannabinoid receptors because CB1 receptors have been considered the major cannabinoid receptor in the nervous system. However, recent discoveries of CB2 cannabinoid receptors in the brain demand accurate determination of whether and how CB2 receptors are involved in the cognitive effects of cannabinoids. CB2 cannabinoid receptors are primarily involved in immune functions, but also implicated in psychiatric disorders such as schizophrenia and depression. Here, we examined the effects of CB2 receptor knockout in mice on memory to determine the roles of CB2 receptors in modulating cognitive function. Behavioral assays revealed that hippocampus-dependent, long-term contextual fear memory was impaired whereas hippocampus-independent, cued fear memory was normal in CB2 receptor knockout mice. These mice also displayed enhanced spatial working memory when tested in a Y-maze. Motor activity and anxiety of CB2 receptor knockout mice were intact when assessed in an open field arena and an elevated zero maze. In contrast to the knockout of CB2 receptors, acute blockade of CB2 receptors by AM603 in C57BL/6J mice had no effect on memory, motor activity, or anxiety. Our results suggest that CB2 cannabinoid receptors play diverse roles in regulating memory depending on memory types and/or brain areas. PMID:26819779
Pest, Michael Andrew; Pest, Courtney Alice; Bellini, Melina Rodrigues; Feng, Qingping; Beier, Frank
2015-01-01
Background Osteoarthritis (OA) is a degenerative joint disease with poorly understood etiology and pathobiology. Mitogen activated protein kinases (MAPKs) including ERK and p38 play important roles in the mediation of downstream pathways involved in cartilage degenerative processes. Dual specificity phosphatase 1 (DUSP1) dephosphorylates the threonine/serine and tyrosine sites on ERK and p38, causing deactivation of downstream signalling. In this study we examined the role of DUSP1 in spontaneous OA development at 21 months of age using a genetically modified mouse model deficient in Dusp1 (DUSP1 knockout mouse). Results Utilizing histochemical stains of paraffin embedded knee joint sections in DUSP1 knockout and wild type female and male mice, we showed similar structural progression of cartilage degeneration associated with OA at 21 months of age. A semi-quantitative cartilage degeneration scoring system also demonstrated similar scores in the various aspects of the knee joint articular cartilage in DUSP1 knockout and control mice. Examination of overall articular cartilage thickness in the knee joint demonstrated similar results between DUSP1 knockout and wild type mice. Immunostaining for cartilage neoepitopes DIPEN, TEGE and C1,2C was similar in the cartilage lesion sites and chondrocyte pericellular matrix of both experimental groups. Likewise, immunostaining for phosphoERK and MMP13 showed similar intensity and localization between groups. SOX9 immunostaining demonstrated a decreased number of positive cells in DUSP1 knockout mice, with correspondingly decreased staining intensity. Analysis of animal walking patterns (gait) did not show a discernable difference between groups. Conclusion Loss of DUSP1 does not cause changes in cartilage degeneration and gait in a mouse model of spontaneous OA at 21 months of age. Altered staining was observed in SOX9 immunostaining which may prove promising for future studies examining the role of DUSPs in cartilage and OA, as well as models of post-traumatic OA. PMID:26562438
A Quantitative Increase in Regulatory T Cells Controls Development of Vitiligo
Chatterjee, Shilpak; Eby, Jonathan; Al-Khami, Amir A.; Soloshchenko, Myroslawa; Kang, Hee-Kap; Kaur, Navtej; Naga, Osama; Murali, Anuradha; Nishimura, Michael I.; Le Poole, I. Caroline; Mehrotra, Shikhar
2014-01-01
T cell cytolytic activity targeting epidermal melanocyte is shown to cause progressive depigmentation and autoimmune vitiligo. Using the recently developed transgenic mice h3TA2 that carry T cell with a HLA-A2 restricted human tyrosinase reactive TCR and develop spontaneous vitiligo from an early age, we addressed the mechanism regulating autoimmune vitiligo. Depigmentation was significantly impaired only in IFN-γ knockout h3TA2 mice but not in TNF-α or perforin knockout h3TA2 mouse strains, confirming a central role for IFN-γ in vitiligo development. Additionally, the regulatory T cells (Treg) were relatively abundant in h3TA2-IFN-γ−/− mice, and depletion of Treg employing anti-CD25 antibody fully restored the depigmentation phenotype in h3TA2-IFN-γ−/− mice mediated in part through upregulation of pro-inflammatory cytokines as IL-17and IL-22. Further therapeutic potential of Treg abundance in preventing progressive depigmentation was evaluated by adoptively transferring purified Treg or using rapamycin. Both adoptive transfer of Treg and rapamycin induced lasting remission of vitiligo in mice treated at the onset of disease, or in mice with established disease. This leads us to conclude that reduced regulatory responses are pivotal to the development of vitiligo in disease-prone mice, and that a quantitative increase in the Treg population may be therapeutic for vitiligo patients with active disease. PMID:24366614
Sun, Chengsan; Hummler, Edith; Hill, David L
2017-01-18
Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. Copyright © 2017 the authors 0270-6474/17/370660-13$15.00/0.
Sun, Chengsan; Hummler, Edith
2017-01-01
Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. PMID:28100747
Fertility: purinergic receptors and the male contraceptive pill.
Dunn, P M
2000-04-20
Knockout mice lacking the P2X(1) receptor appear normal, but fail to breed. Analysis of these mutant mice clearly shows that purinergic co-transmission has a physiological role in the was deferens. These findings also raise the possibility of developing non-hormonal ways of regulating male fertility.
Cathepsin K knockout alleviates aging-induced cardiac dysfunction
Hua, Yinan; Robinson, Timothy J; Cao, Yongtao; Shi, Guo-Ping; Ren, Jun; Nair, Sreejayan
2015-01-01
Aging is a major risk factor for cardiovascular disease. It has previously been shown that protein levels of cathepsin K, a lysosomal cysteine protease, are elevated in the failing heart and that genetic ablation of cathepsin K protects against pressure overload-induced cardiac hypertrophy and contractile dysfunction. Here we test the hypothesis that cathepsin K knockout alleviates age-dependent decline in cardiac function. Cardiac geometry, contractile function, intracellular Ca2+ properties, and cardiomyocyte apoptosis were evaluated using echocardiography, fura-2 technique, immunohistochemistry, Western blot and TUNEL staining, respectively. Aged (24-month-old) mice exhibited significant cardiac remodeling (enlarged chamber size, wall thickness, myocyte cross-sectional area, and fibrosis), decreased cardiac contractility, prolonged relengthening along with compromised intracellular Ca2+ release compared to young (6-month-old) mice, which were attenuated in the cathepsin K knockout mice. Cellular markers of senescence, including cardiac lipofuscin, p21 and p16, were lower in the aged-cathepsin K knockout mice compared to their wild-type counterpart. Mechanistically, cathepsin K knockout mice attenuated an age-induced increase in cardiomyocyte apoptosis and nuclear translocation of mitochondrial apoptosis-inducing factor (AIF). In cultured H9c2 cells, doxorubicin stimulated premature senescence and apoptosis. Silencing of cathepsin K blocked the doxorubicin-induced translocation of AIF from the mitochondria to the nuclei. Collectively, these results suggest that cathepsin K knockout attenuates age-related decline in cardiac function via suppressing caspase-dependent and caspase-independent apoptosis. PMID:25692548
Hyun, Teresa S.; Li, Lina; Oravecz-Wilson, Katherine I.; Bradley, Sarah V.; Provot, Melissa M.; Munaco, Anthony J.; Mizukami, Ikuko F.; Sun, Hanshi; Ross, Theodora S.
2004-01-01
In mice and humans, there are two known members of the Huntingtin interacting protein 1 (HIP1) family, HIP1 and HIP1-related (HIP1r). Based on structural and functional data, these proteins participate in the clathrin trafficking network. The inactivation of Hip1 in mice leads to spinal, hematopoietic, and testicular defects. To investigate the biological function of HIP1r, we generated a Hip1r mutant allele in mice. Hip1r homozygous mutant mice are viable and fertile without obvious morphological abnormalities. In addition, embryonic fibroblasts derived from these mice do not have gross abnormalities in survival, proliferation, or clathrin trafficking pathways. Altogether, this demonstrates that HIP1r is not necessary for normal development of the embryo or for normal adulthood and suggests that HIP1 or other functionally related members of the clathrin trafficking network can compensate for HIP1r absence. To test the latter, we generated mice deficient in both HIP1 and HIP1r. These mice have accelerated development of abnormalities seen in Hip1 -deficient mice, including kypholordosis and growth defects. The severity of the Hip1r/Hip1 double-knockout phenotype compared to the Hip1 knockout indicates that HIP1r partially compensates for HIP1 function in the absence of HIP1 expression, providing strong evidence that HIP1 and HIP1r have overlapping roles in vivo. PMID:15121852
Hyun, Teresa S; Li, Lina; Oravecz-Wilson, Katherine I; Bradley, Sarah V; Provot, Melissa M; Munaco, Anthony J; Mizukami, Ikuko F; Sun, Hanshi; Ross, Theodora S
2004-05-01
In mice and humans, there are two known members of the Huntingtin interacting protein 1 (HIP1) family, HIP1 and HIP1-related (HIP1r). Based on structural and functional data, these proteins participate in the clathrin trafficking network. The inactivation of Hip1 in mice leads to spinal, hematopoietic, and testicular defects. To investigate the biological function of HIP1r, we generated a Hip1r mutant allele in mice. Hip1r homozygous mutant mice are viable and fertile without obvious morphological abnormalities. In addition, embryonic fibroblasts derived from these mice do not have gross abnormalities in survival, proliferation, or clathrin trafficking pathways. Altogether, this demonstrates that HIP1r is not necessary for normal development of the embryo or for normal adulthood and suggests that HIP1 or other functionally related members of the clathrin trafficking network can compensate for HIP1r absence. To test the latter, we generated mice deficient in both HIP1 and HIP1r. These mice have accelerated development of abnormalities seen in Hip1 -deficient mice, including kypholordosis and growth defects. The severity of the Hip1r/Hip1 double-knockout phenotype compared to the Hip1 knockout indicates that HIP1r partially compensates for HIP1 function in the absence of HIP1 expression, providing strong evidence that HIP1 and HIP1r have overlapping roles in vivo.
Failure of Pelvic Organ Support in Mice Deficient In Fibulin-3
Rahn, David D.; Acevedo, Jesús F.; Roshanravan, Shayzreen; Keller, Patrick W.; Davis, Elaine C.; Marmorstein, Lihua Y.; Word, R. Ann
2009-01-01
Fibulin-5 is crucial for normal elastic fiber synthesis in the vaginal wall; more than 90% of fibulin-5-knockout mice develop pelvic organ prolapse by 20 weeks of age. In contrast, fibulin-1 and -2 deficiencies do not result in similar pathologies, and fibulin-4-knockout mice die shortly after birth. EFEMP1 encodes fibulin-3, an extracellular matrix protein important in the maintenance of abdominal fascia. Herein, we evaluated the role of fibulin-3 in pelvic organ support. Pelvic organ support was impaired significantly in female Efemp1 knockout mice (Fbln3−[supi]/−), and overt vaginal, perineal, and rectal prolapse occurred in 26.9% of animals. Prolapse severity increased with age but not parity. Fibulin-5 was up-regulated in vaginal tissues from Fbln3−[supi]/− mice regardless of prolapse. Despite increased expression of fibulin-5 in the vaginal wall, pelvic organ support failure occurred in Fbln3−[supi]/− animals, suggesting that factors related to aging led to prolapse. Elastic fiber abnormalities in vaginal tissues from young Fbln3−[supi]/− mice progressed to severe elastic fiber disruption with age, and vaginal matrix metalloprotease activity was increased significantly in Fbln3−[supi]/− animals with prolapse compared with Fbln3−[supi]/− mice without prolapse. Overall, these results indicate that both fibulin-3 and -5 are important in maintaining pelvic organ support in mice. We suggest that increased vaginal protease activity and abnormal elastic fibers in the vaginal wall are important components in the pathogenesis of pelvic organ prolapse. PMID:19095964
Proteomic Analyses of NF1-Interacting Proteins in Keratinocytes
2015-04-01
and knockout mice further confirmed the interactions suggested by the proteomic analyses. In relation to the development of psoriasis -like symptoms...in the NF1 null epidermis, we analyzed NF1 expression in a mouse model of psoriasis (imiquimod-induced psoriasis -like skin inflammation) and...knockout of epidermal NF1 to elucidate the molecular underpinnings of psoriasis . 15. SUBJECT TERMS neurofibromin-1 (NF1), psoriasis , inflammation
Deletion of Panx3 Prevents the Development of Surgically Induced Osteoarthritis
Moon, Paxton M.; Penuela, Silvia; Barr, Kevin; Khan, Sami; Pin, Christopher L.; Welch, Ian; Attur, Mukundan; Abramson, Steven B.
2015-01-01
Osteoarthritis (OA) is a highly prevalent, disabling joint disease with no existing therapies to slow or halt its progression. Cartilage degeneration hallmarks OA pathogenesis, and pannexin 3 (Panx3), a member of a novel family of channel proteins, is upregulated during this process. The function of Panx3 remains poorly understood, but we consistently observed a strong increase in Panx3 immunostaining in OA lesions in both mice and humans. Here, we developed and characterized the first global and conditional Panx3 knockout mice to investigate the role of Panx3 in OA. Interestingly, global Panx3 deletion produced no overt phenotype and had no obvious effect on early skeletal development. Mice lacking Panx3 specifically in the cartilage and global Panx3 knockout mice were markedly resistant to the development of OA following destabilization of medial meniscus surgery. These data indicate a specific catabolic role of Panx3 in articular cartilage and identify Panx3 as a potential therapeutic target for OA. Lastly, while Panx1 has been linked to over a dozen human pathologies, this is the first in vivo evidence for a role of Panx3 in disease. PMID:26138248
Zhao, Juanjuan; Urakawa, Susumu; Matsumoto, Jumpei; Li, Ruixi; Ishii, Yoko; Sasahara, Masakiyo; Peng, Yuwen; Ono, Taketoshi; Nishijo, Hisao
2013-01-01
The superior colliculus (SC), a relay nucleus in the subcortical visual pathways, is implicated in socioemotional behaviors. Homeoprotein Otx2 and β subunit of receptors of platelet-derived growth factor (PDGFR- β ) have been suggested to play an important role in development of the visual system and development and maturation of GABAergic neurons. Although PDGFR- β -knockout (KO) mice displayed socio-emotional deficits associated with parvalbumin (PV-)immunoreactive (IR) neurons, their anatomical bases in the SC were unknown. In the present study, Otx2 and PV-immunolabeling in the adult mouse SC were investigated in the PDGFR- β KO mice. Although there were no differences in distribution patterns of Otx2 and PV-IR cells between the wild type and PDGFR- β KO mice, the mean numbers of both of the Otx2- and PV-IR cells were significantly reduced in the PDGFR- β KO mice. Furthermore, average diameters of Otx2- and PV-IR cells were significantly reduced in the PDGFR- β KO mice. These findings suggest that PDGFR- β plays a critical role in the functional development of the SC through its effects on Otx2- and PV-IR cells, provided specific roles of Otx2 protein and PV-IR cells in the development of SC neurons and visual information processing, respectively.
Jain, Neeraj; Lim, Lee Wei; Tan, Wei Ting; George, Bhawana; Makeyev, Eugene; Thanabalu, Thirumaran
2014-04-01
Cerebrospinal fluid (CSF) is produced by the choroid plexus and moved by multi-ciliated ependymal cells through the ventricular system of the vertebrate brain. Defects in the ependymal layer functionality are a common cause of hydrocephalus. N-WASP (Neural-Wiskott Aldrich Syndrome Protein) is a brain-enriched regulator of actin cytoskeleton and N-WASP knockout caused embryonic lethality in mice with neural tube and cardiac abnormalities. To shed light on the role of N-WASP in mouse brain development, we generated N-WASP conditional knockout mouse model N-WASP(fl/fl); Nestin-Cre (NKO-Nes). NKO-Nes mice were born with Mendelian ratios but exhibited reduced growth characteristics compared to their littermates containing functional N-WASP alleles. Importantly, all NKO-Nes mice developed cranial deformities due to excessive CSF accumulation and did not survive past weaning. Coronal brain sections of these animals revealed dilated lateral ventricles, defects in ciliogenesis, loss of ependymal layer integrity, reduced thickness of cerebral cortex and aqueductal stenosis. Immunostaining for N-cadherin suggests that ependymal integrity in NKO-Nes mice is lost as compared to normal morphology in the wild-type controls. Moreover, scanning electron microscopy and immunofluorescence analyses of coronal brain sections with anti-acetylated tubulin antibodies revealed the absence of cilia in ventricular walls of NKO-Nes mice indicative of ciliogenesis defects. N-WASP deficiency does not lead to altered expression of N-WASP regulatory proteins, Fyn and Cdc42, which have been previously implicated in hydrocephalus pathology. Taken together, our results suggest that N-WASP plays a critical role in normal brain development and implicate actin cytoskeleton regulation as a vulnerable axis frequently deregulated in hydrocephalus. Copyright © 2014 Elsevier Inc. All rights reserved.
Kv4.2 Knockout Mice Have Hippocampal-Dependent Learning and Memory Deficits
ERIC Educational Resources Information Center
Lugo, Joaquin N.; Brewster, Amy L.; Spencer, Corinne M.; Anderson, Anne E.
2012-01-01
Kv4.2 channels contribute to the transient, outward K[superscript +] current (A-type current) in hippocampal dendrites, and modulation of this current substantially alters dendritic excitability. Using Kv4.2 knockout (KO) mice, we examined the role of Kv4.2 in hippocampal-dependent learning and memory. We found that Kv4.2 KO mice showed a deficit…
2012-01-01
Mutations in the LRRK2 gene are the most common cause of genetic Parkinson’s disease. Although the mechanisms behind the pathogenic effects of LRRK2 mutations are still not clear, data emerging from in vitro and in vivo models suggests roles in regulating neuronal polarity, neurotransmission, membrane and cytoskeletal dynamics and protein degradation. We created mice lacking exon 41 that encodes the activation hinge of the kinase domain of LRRK2. We have performed a comprehensive analysis of these mice up to 20 months of age, including evaluation of dopamine storage, release, uptake and synthesis, behavioral testing, dendritic spine and proliferation/neurogenesis analysis. Our results show that the dopaminergic system was not functionally comprised in LRRK2 knockout mice. However, LRRK2 knockout mice displayed abnormal exploratory activity in the open-field test. Moreover, LRRK2 knockout mice stayed longer than their wild type littermates on the accelerated rod during rotarod testing. Finally, we confirm that loss of LRRK2 caused degeneration in the kidney, accompanied by a progressive enhancement of autophagic activity and accumulation of autofluorescent material, but without evidence of biphasic changes. PMID:22647713
Sauvage, M; Brabet, P; Holsboer, F; Bockaert, J; Steckler, T
2000-12-08
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor subtype 1 (PAC1) have been suggested to play a role in the modulation of learning and memory. However, behavioral evidence for altered mnemonic function due to altered PAC1 activity is missing. Therefore, the role of PAC1 in learning and memory was studied in mouse mutants lacking this receptor (PAC1 knock-out mice), tested in water maze two-choice spatial discrimination, one-trial contextual and cued fear conditioning, and multiple-session contextual discrimination. Water maze spatial discrimination was unaffected in PAC1 mutants, while a mild deficit was observed in multiple session contextual discrimination in PAC1 knock-out mice. Furthermore, PAC1 knock-out mice were able to learn the association between context and shock in one-trial contextual conditioning, but showed faster return to baseline than wild-type mice. Thus, the effects of PAC1 knock-out on modulating performance in these tasks were subtle and suggest that PAC1 only plays a limited role in learning and memory.
Of Men and Mice: Modeling the Fragile X Syndrome
Dahlhaus, Regina
2018-01-01
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research. PMID:29599705
Cremer, J N; Amunts, K; Schleicher, A; Palomero-Gallagher, N; Piel, M; Rösch, F; Zilles, K
2015-12-17
Parkinson's disease (PD) is a well-characterized neurological disorder with regard to its neuropathological and symptomatic appearance. At the genetic level, mutations of particular genes, e.g. Parkin and DJ-1, were found in human hereditary PD with early onset. Neurotransmitter receptors constitute decisive elements in neural signal transduction. Furthermore, since they are often altered in neurological and psychiatric diseases, receptors have been successful targets for pharmacological agents. However, the consequences of PD-associated gene mutations on the expression of transmitter receptors are largely unknown. Therefore, we studied the expression of 16 different receptor binding sites of the neurotransmitters glutamate, GABA, acetylcholine, adrenaline, serotonin, dopamine and adenosine by means of quantitative receptor autoradiography in Parkin and DJ-1 knockout mice. These knockout mice exhibit electrophysiological and behavioral deficits, but do not show the typical dopaminergic cell loss. We demonstrated differential changes of binding site densities in eleven brain regions. Most prominently, we found an up-regulation of GABA(B) and kainate receptor densities in numerous cortical areas of Parkin and DJ-1 knockout mice, as well as increased NMDA but decreased AMPA receptor densities in different brain regions of the Parkin knockout mice. The alterations of three different glutamate receptor types may indicate the potential relevance of the glutamatergic system in the pathogenesis of PD. Furthermore, the cholinergic M1, M2 and nicotinic receptors as well as the adrenergic α2 and the adenosine A(2A) receptors showed differentially increased densities in Parkin and DJ-1 knockout mice. Taken together, knockout of the PD-associated genes Parkin or DJ-1 results in differential changes of neurotransmitter receptor densities, highlighting a possible role of altered non-dopaminergic, and in particular of glutamatergic neurotransmission in PD pathogenesis. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Parkin Knockout Inhibits Neuronal Development via Regulation of Proteasomal Degradation of p21
Park, Mi Hee; Lee, Hwa-Jeong; Lee, Hye Lim; Son, Dong Ju; Ju, Jung Hoon; Hyun, Byung Kook; Jung, Sung Hee; Song, Ju-Kyoung; Lee, Dong Hun; Hwang, Chul Ju; Han, Sang Bae; Kim, Sanghyeon; Hong, Jin Tae
2017-01-01
PARK2 encodes for the E3 ubiquitin ligase parkin and is implicated in the development of Parkinson's disease (PD). Although the neuroprotective role of parkin is well known, the mechanism of PARK2's function in neural stem differentiation has not yet been thoroughly studied. Co-expressions network analysis showed that synaptosomal-associated protein 25 (SNAP-25) and brain-derived neurotrophic factor (BDNF) were positively correlated with parkin, but negatively correlated with p21 in human patient brain. We investigated a link between the ubiquitin E3 ligase parkin and proteasomal degradation of p21 for the control of neural stem cell differentiation. We found that the neurogenesis was lowered in PARK2 knockout (KO) mice compared with non-tg mice. Expression of the marker protein for neural cell differentiation such as class III beta tubulin (TUBBIII), glial fibrillary acidic protein (GFAP) and neurofilament, as well as SNAP25 and BDNF, was down regulated in PARK2 KO mice. Associated with the loss of differentiation function, p21 protein was highly accumulated in the neural stem cells of PARK2 KO mice. We discovered that p21 directly binds with parkin and is ubiquitinated by parkin which resulted in the loss of cell differentiation ability. Introduction of p21 shRNA in PARK2 KO mice significantly rescued the differentiation efficacy as well as SNAP25 and BDNF expression. c-Jun N-terminal kinase (JNK) pathway is implicated in neurogenesis and p21 degradation. We also defined the decreased p21 ubiquitination and differentiation ability were reversed after treatment with JNK inhibitor, SP600125 in PARK2 KO mice derived neural stem cells. Thus, the present study indicated that parkin knockout inhibits neural stem cell differentiation by JNK-dependent proteasomal degradation of p21. PMID:28656059
Parkin Knockout Inhibits Neuronal Development via Regulation of Proteasomal Degradation of p21.
Park, Mi Hee; Lee, Hwa-Jeong; Lee, Hye Lim; Son, Dong Ju; Ju, Jung Hoon; Hyun, Byung Kook; Jung, Sung Hee; Song, Ju-Kyoung; Lee, Dong Hun; Hwang, Chul Ju; Han, Sang Bae; Kim, Sanghyeon; Hong, Jin Tae
2017-01-01
PARK2 encodes for the E3 ubiquitin ligase parkin and is implicated in the development of Parkinson's disease (PD). Although the neuroprotective role of parkin is well known, the mechanism of PARK2's function in neural stem differentiation has not yet been thoroughly studied. Co-expressions network analysis showed that synaptosomal-associated protein 25 (SNAP-25) and brain-derived neurotrophic factor (BDNF) were positively correlated with parkin, but negatively correlated with p21 in human patient brain. We investigated a link between the ubiquitin E3 ligase parkin and proteasomal degradation of p21 for the control of neural stem cell differentiation. We found that the neurogenesis was lowered in PARK2 knockout (KO) mice compared with non-tg mice. Expression of the marker protein for neural cell differentiation such as class III beta tubulin (TUBBIII), glial fibrillary acidic protein (GFAP) and neurofilament, as well as SNAP25 and BDNF, was down regulated in PARK2 KO mice. Associated with the loss of differentiation function, p21 protein was highly accumulated in the neural stem cells of PARK2 KO mice. We discovered that p21 directly binds with parkin and is ubiquitinated by parkin which resulted in the loss of cell differentiation ability. Introduction of p21 shRNA in PARK2 KO mice significantly rescued the differentiation efficacy as well as SNAP25 and BDNF expression. c-Jun N-terminal kinase (JNK) pathway is implicated in neurogenesis and p21 degradation. We also defined the decreased p21 ubiquitination and differentiation ability were reversed after treatment with JNK inhibitor, SP600125 in PARK2 KO mice derived neural stem cells. Thus, the present study indicated that parkin knockout inhibits neural stem cell differentiation by JNK-dependent proteasomal degradation of p21.
Toib, Amir; Zhang, Chen; Borghetti, Giulia; Zhang, Xiaoxiao; Wallner, Markus; Yang, Yijun; Troupes, Constantine D; Kubo, Hajime; Sharp, Thomas E; Feldsott, Eric; Berretta, Remus M; Zalavadia, Neil; Trappanese, Danielle M; Harper, Shavonn; Gross, Polina; Chen, Xiongwen; Mohsin, Sadia; Houser, Steven R
2017-09-01
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na + and Ca 2+ in the development of HCM, but the role of repolarizing K + currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K + currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K + currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K + channel subunits. In conclusion, decrease in repolarizing K + currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility. NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K + currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy. Copyright © 2017 the American Physiological Society.
Gupta, Subhash C; Yadav, Roopali; Pavuluri, Ratnamala; Morley, Barbara J; Stairs, Dustin J; Dravid, Shashank M
2015-06-01
The glutamate delta-1 (GluD1) receptor is highly expressed in the forebrain. We have previously shown that loss of GluD1 leads to social and cognitive deficits in mice, however, its role in synaptic development and neurotransmission remains poorly understood. Here we report that GluD1 is enriched in the medial prefrontal cortex (mPFC) and GluD1 knockout mice exhibit a higher dendritic spine number, greater excitatory neurotransmission as well as higher number of synapses in mPFC. In addition abnormalities in the LIMK1-cofilin signaling, which regulates spine dynamics, and a lower ratio of GluN2A/GluN2B expression was observed in the mPFC in GluD1 knockout mice. Analysis of the GluD1 knockout CA1 hippocampus similarly indicated the presence of higher spine number and synapses and altered LIMK1-cofilin signaling. We found that systemic administration of an N-methyl-d-aspartate (NMDA) receptor partial agonist d-cycloserine (DCS) at a high-dose, but not at a low-dose, and a GluN2B-selective inhibitor Ro-25-6981 partially normalized the abnormalities in LIMK1-cofilin signaling and reduced excess spine number in mPFC and hippocampus. The molecular effects of high-dose DCS and GluN2B inhibitor correlated with their ability to reduce the higher stereotyped behavior and depression-like behavior in GluD1 knockout mice. Together these findings demonstrate a critical requirement for GluD1 in normal spine development in the cortex and hippocampus. Moreover, these results identify inhibition of GluN2B-containing receptors as a mechanism for reducing excess dendritic spines and stereotyped behavior which may have therapeutic value in certain neurodevelopmental disorders such as autism. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S; Sun, Baodong
2016-08-05
A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Eto, Tsugio; Miyake, Keisuke; Nosho, Katsuhiko; Ohmuraya, Masaki; Imamura, Yu; Arima, Kota; Kanno, Shinichi; Fu, Lingfeng; Kiyozumi, Yuki; Izumi, Daisuke; Sugihara, Hidetaka; Hiyoshi, Yukiharu; Miyamoto, Yuji; Sawayama, Hiroshi; Iwatsuki, Masaaki; Baba, Yoshifumi; Yoshida, Naoya; Furukawa, Toru; Araki, Kimi; Baba, Hideo; Ishimoto, Takatsugu
2018-05-13
RNF43 mutations are frequently detected in colorectal cancer cells and lead to a loss of function of the ubiquitin E3 ligase. Here, we investigated the clinical significance of RNF43 mutations in a large Japanese cohort and the role of RNF43 at various stages of colorectal cancer development and progression. Mutation analysis of the RNF43 gene locus using pyrosequencing technology detected RNF43 hotspot mutations in 1 (0.88%) of 113 colorectal polyp cases and 30 (6.45%) of 465 colorectal cancer cases. Moreover, patients with colorectal cancer harboring mutated RNF43 experienced a higher recurrence rate than those harboring non-mutated RNF43. In addition, the growth of RNF43 wild-type colorectal cancer cell lines was significantly increased by RNF43 silencing. We generated Rnf43 knock-out mice in a C57BL/6N background using the CRISPR-Cas9 system. Although intestinal organoids from the Rnf43 knock-out mice did not show continuous growth compared with those from the wild-type mice in the absence of R-spondin, an azoxymethane (AOM)/dextran sodium sulfate (DSS) mouse model demonstrated that the tumors were markedly larger in the Rnf43 knock-out mice than in the wild-type mice. These findings provide evidence that Wnt signaling activation by RNF43 mutations during the tumorigenic stage enhances tumor growth and promotes a high recurrence rate in colorectal cancer patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma.
Del Mare, Sara; Husanie, Hussam; Iancu, Ortal; Abu-Odeh, Mohammad; Evangelou, Konstantinos; Lovat, Francesca; Volinia, Stefano; Gordon, Jonathan; Amir, Gail; Stein, Janet; Stein, Gary S; Croce, Carlo M; Gorgoulis, Vassilis; Lian, Jane B; Aqeilan, Rami I
2016-10-15
Osteosarcoma is a highly metastatic form of bone cancer in adolescents and young adults that is resistant to existing treatments. Development of an effective therapy has been hindered by very limited understanding of the mechanisms of osteosarcomagenesis. Here, we used genetically engineered mice to investigate the effects of deleting the tumor suppressor Wwox selectively in either osteoblast progenitors or mature osteoblasts. Mice with conditional deletion of Wwox in preosteoblasts (Wwox Δosx1 ) displayed a severe inhibition of osteogenesis accompanied by p53 upregulation, effects that were not observed in mice lacking Wwox in mature osteoblasts. Deletion of p53 in Wwox Δosx1 mice rescued the osteogenic defect. In addition, the Wwox;p53 Δosx1 double knockout mice developed poorly differentiated osteosarcomas that resemble human osteosarcoma in histology, location, metastatic behavior, and gene expression. Strikingly, the development of osteosarcomas in these mice was greatly accelerated compared with mice lacking p53 only. In contrast, combined WWOX and p53 inactivation in mature osteoblasts did not accelerate osteosarcomagenesis compared with p53 inactivation alone. These findings provide evidence that a WWOX-p53 network regulates normal bone formation and that disruption of this network in osteoprogenitors results in accelerated osteosarcoma. The Wwox;p53 Δosx1 double knockout establishes a new osteosarcoma model with significant advancement over existing models. Cancer Res; 76(20); 6107-17. ©2016 AACR. ©2016 American Association for Cancer Research.
Rendall, Amanda R; Tarkar, Aarti; Contreras-Mora, Hector M; LoTurco, Joseph J; Fitch, R Holly
2017-09-01
Dyslexia is a learning disability characterized by difficulty learning to read and write. The underlying biological and genetic etiology remains poorly understood. One candidate gene, dyslexia susceptibility 1 candidate 1 (DYX1C1), has been shown to be associated with deficits in short-term memory in dyslexic populations. The purpose of the current study was to examine the behavioral phenotype of a mouse model with a homozygous conditional (forebrain) knockout of the rodent homolog Dyx1c1. Twelve Dyx1c1 conditional homozygous knockouts, 7 Dyx1c1 conditional heterozygous knockouts and 6 wild-type controls were behaviorally assessed. Mice with the homozygous Dyx1c1 knockout showed deficits on memory and learning, but not on auditory or motor tasks. These findings affirm existing evidence that DYX1C1 may play an underlying role in the development of neural systems important to learning and memory, and disruption of this function could contribute to the learning deficits seen in individuals with dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanyan; The Hamner Institutes for Health Sciences, Research Triangle Park, NC; Xu, Yuanyuan, E-mail: yyxu@cmu.edu.cn
Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-doublemore » knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. - Highlights: • Nrf2/Ucp2 deficiency leads to alteration of glutathione homeostasis. • Nrf2 regulates expression of genes in glutathione generation and utilization. • Ucp2 affects glutathione metabolism by regulating hepatic efflux of glutathione. • Nrf2 deficiency may not aggravate oxidative stress in Ucp2-deficient mice.« less
Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P.
Sturiale, S; Barbara, G; Qiu, B; Figini, M; Geppetti, P; Gerard, N; Gerard, C; Grady, E F; Bunnett, N W; Collins, S M
1999-09-28
Neurogenic inflammation is regulated by sensory nerves and characterized by extravasation of plasma proteins and infiltration of neutrophils from post-capillary venules and arteriolar vasodilatation. Although it is well established that substance P (SP) interacts with the neurokinin 1 receptor (NK1R) to initiate neurogenic inflammation, the mechanisms that terminate inflammation are unknown. We examined whether neutral endopeptidase (NEP), a cell-surface enzyme that degrades SP in the extracellular fluid, terminates neurogenic inflammation in the colon. In NEP knockout mice, the SP concentration in the colon was approximately 2.5-fold higher than in wild-type mice, suggesting increased bioavailability of SP. The extravasation of Evans blue-labeled plasma proteins in the colon of knockout mice under basal conditions was approximately 4-fold higher than in wild-type mice. This elevated plasma leak was attenuated by recombinant NEP or the NK1R antagonist SR140333, and is thus caused by diminished degradation of SP. To determine whether deletion of NEP predisposes mice to uncontrolled inflammation, we compared dinitrobenzene sulfonic acid-induced colitis in wild-type and knockout mice. The severity of colitis, determined by macroscopic and histologic scoring and by myeloperoxidase activity, was markedly worse in knockout than wild-type mice after 3 and 7 days. The exacerbated inflammation in knockout mice was prevented by recombinant NEP and SR140333. Thus, NEP maintains low levels of SP in the extracellular fluid under basal conditions and terminates its proinflammatory effects. Because we have previously shown that intestinal inflammation results in down-regulation of NEP and diminished degradation of SP, our present results suggest that defects in NEP expression contribute to uncontrolled inflammation.
Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P
Sturiale, S.; Barbara, G.; Qiu, B.; Figini, M.; Geppetti, P.; Gerard, N.; Gerard, C.; Grady, E. F.; Bunnett, N. W.; Collins, S. M.
1999-01-01
Neurogenic inflammation is regulated by sensory nerves and characterized by extravasation of plasma proteins and infiltration of neutrophils from post-capillary venules and arteriolar vasodilatation. Although it is well established that substance P (SP) interacts with the neurokinin 1 receptor (NK1R) to initiate neurogenic inflammation, the mechanisms that terminate inflammation are unknown. We examined whether neutral endopeptidase (NEP), a cell-surface enzyme that degrades SP in the extracellular fluid, terminates neurogenic inflammation in the colon. In NEP knockout mice, the SP concentration in the colon was ≈2.5-fold higher than in wild-type mice, suggesting increased bioavailability of SP. The extravasation of Evans blue-labeled plasma proteins in the colon of knockout mice under basal conditions was ≈4-fold higher than in wild-type mice. This elevated plasma leak was attenuated by recombinant NEP or the NK1R antagonist SR140333, and is thus caused by diminished degradation of SP. To determine whether deletion of NEP predisposes mice to uncontrolled inflammation, we compared dinitrobenzene sulfonic acid-induced colitis in wild-type and knockout mice. The severity of colitis, determined by macroscopic and histologic scoring and by myeloperoxidase activity, was markedly worse in knockout than wild-type mice after 3 and 7 days. The exacerbated inflammation in knockout mice was prevented by recombinant NEP and SR140333. Thus, NEP maintains low levels of SP in the extracellular fluid under basal conditions and terminates its proinflammatory effects. Because we have previously shown that intestinal inflammation results in down-regulation of NEP and diminished degradation of SP, our present results suggest that defects in NEP expression contribute to uncontrolled inflammation. PMID:10500232
Preaxial Polydactyly in Sost/Sostdc1 Double Knockouts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, C M; Collette, N M; Loots, G G
2011-07-29
In the United States, {approx}5% are born with congenital birth defects due to abnormal function of cellular processes and interactions. Sclerosteosis, a rare autosomal recessive disease, causes hyperostosis of the axial and appendicular skeleton, and patients present radial deviation, digit syndactyly, nail dysplasia, and overall high bone mineral density. Sclerosteosis is due to a loss of function of sclerostin (Sost). Sost is a Wnt (abbrev.) antagonist; when mutated, nonfunctional Sost results in hyperactive osteoblast activity which leads to abnormal high bone mass. Previous studies have shown that Sost overexpression in transgenic mice causes reduced bone mineral density and a varietymore » of limb phenotypes ranging from lost, fused, and split phalanges. Consistent with clinical manifestations of Sclerosteosis, Sost knockout mice exhibit increased generalized bone mineral density and syndactyly of the digits. Sostdc1 is a paralog of Sost that has also been described as an antagonist of Wnt signaling, in developing tooth buds. Unlike Sost knockouts, Sostdc1 null mice do not display any limb abnormalities. To determine if Sost and Sostdc1 have redundant functions during limb patterning, we examined Sost; Sostdc1 mice determined that they exhibit a novel preaxial polydactyly phenotype with a low penetrance. LacZ staining, skeletal preparations, and in situ hybridization experiments were used to help characterize this novel phenotype and understand how this phenotype develops. We find Sost and Sostdc1 to have complementary expression patterns during limb development, and the loss of their expression alters the transcription of several key limb regulators, such as Fgf8, Shh and Grem.« less
Christoph, Thomas; Kögel, Babette; Schiene, Klaus; Peters, Thomas; Schröder, Wolfgang
2018-06-02
N-ethyl-N-nitrosourea (ENU) random mutagenesis was used to generate a mouse model for the analysis of the transient receptor potential vanilloid 1 (TRPV1) cation channel. A transversion from T→A in exon 4 led to a Leu206Stop mutation generating a loss-of-function mutant. The TRPV1 agonist capsaicin was used to analyze functional and nociceptive parameters in vitro and in vivo in TRPV1 Leu206Stop mice and congenic C3HeB/FeJ controls. Capsaicin-induced [Ca 2+ ] i changes in small diameter DRG neurons were significantly diminished in TRPV1 Leu206Stop mice and administration of capsaicin induced neither hypothermia nor nocifensive behaviour in vivo. TRPV1 Leu206Stop mice were tested in the spinal nerve ligation of mononeuropathic pain and developed mechanical hypersensitivity two weeks after nerve injury. In the open field test, a significant increase in spontaneous locomotion was detected in TRPV1 Leu206Stop mice as compared to wildtype controls. TRPV1 knockout mice have been reported to carry a similar phenotype regarding capsaicin-evoked responses in vitro and in vivo. However, in contrast to TRPV1 Leu206Stop mice, TRPV1 knockout mice did not differ in spontaneous locomotion as compared to congenic C57BL/6 mice, suggesting subtle ENU-dependent or independent strain differences between TRPV1 Leu206Stop mice and their wildtype controls. In summary, these data revealed a target-related (i.e. capsaicin-evoked) phenotype of TRPV1 Leu206Stop mice closely resembling that of published TRPV1 knockout mice. However, since ENU-mutant mice are congenic with the mouse strain initially used in random mutagenesis, direct phenotypic comparison with the respective wildtype controls is possible, and the time-consuming backcrossing in lines with targeted mutations is avoided. Copyright © 2018 Elsevier Inc. All rights reserved.
Luhmann, Ulrich F O; Lin, Jihong; Acar, Niyazi; Lammel, Stefanie; Feil, Silke; Grimm, Christian; Seeliger, Mathias W; Hammes, Hans-Peter; Berger, Wolfgang
2005-09-01
To characterize developmental defects and the time course of Norrie disease in retinal and hyaloid vasculature during retinal development and to identify underlying molecular angiogenic pathways that may be affected in Norrie disease, exudative vitreoretinopathy, retinopathy of prematurity, and Coats' disease. Norrie disease pseudoglioma homologue (Ndph)-knockout mice were studied during retinal development at early postnatal (p) stages (p5, p10, p15, and p21). Histologic techniques, quantitative RT-PCR, ELISA, and Western blot analyses provided molecular data, and scanning laser ophthalmoscopy (SLO) angiography and electroretinography (ERG) were used to obtain in vivo data. The data showed that regression of the hyaloid vasculature of Ndph-knockout mice occurred but was drastically delayed. The development of the superficial retinal vasculature was strongly delayed, whereas the deep retinal vasculature did not form because of the blockage of vessel outgrowth into the deep retinal layers. Subsequently, microaneurysm-like lesions formed. Several angiogenic factors were differentially transcribed during retinal development. Increased levels of hypoxia inducible factor-1alpha (HIF1alpha) and VEGFA, as well as a characteristic ERG pattern, confirmed hypoxic conditions in the inner retina of the Ndph-knockout mouse. These data provide evidence for a crucial role of Norrin in hyaloid vessel regression and in sprouting angiogenesis during retinal vascular development, especially in the development of the deep retinal capillary networks. They also suggest an early and a late phase of Norrie disease and may provide an explanation for similar phenotypic features of allelic retinal diseases in mice and patients as secondary consequences of pathologic hypoxia.
Hao, Xiao-Xia; Chen, Su-Ren; Tang, Ji-Xin; Li, Jian; Cheng, Jin-Mei; Jin, Cheng; Wang, Xiu-Xia; Liu, Yi-Xun
2016-07-01
SMAD4 is the central component of canonical signaling in the transforming growth factor beta (TGFβ) superfamily. Loss of Smad4 in Sertoli cells affects the expansion of the fetal testis cords, whereas selective deletion of Smad4 in Leydig cells alone does not appreciably alter fetal or adult testis development. Loss of Smad4 in Sertoli and Leydig cells, on the other hand, leads to testicular dysgenesis, and tumor formation in mice. Within the murine testes, Smad4 is also expressed in germ cells of the seminiferous tubules. We therefore, crossed Ngn3-Cre or Stra8-Cre transgenic mice with Smad4-flox mice to generate conditional knockout animals in which Smad4 was specifically deleted in postnatal germ cells to further uncover cell type-specific requirement of Smad4. Unexpectedly, these germ-cell-knockout mice were fertile and did not exhibit any detectable abnormalities in spermatogenesis, indicating that Smad4 is not required for the production of sperm; instead, these data indicate a cell type-specific requirement of Smad4 primarily during testis development. Mol. Reprod. Dev. 83: 615-623, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Robo1/2 regulate follicle atresia through manipulating granulosa cell apoptosis in mice
Li, Jiangchao; Ye, Yuxiang; Zhang, Renli; Zhang, Lili; Hu, Xiwen; Han, Dong; Chen, Jiayuan; He, Xiaodong; Wang, Guang; Yang, Xuesong; Wang, Lijing
2015-01-01
Secreted Slit proteins and their Roundabout (Robo) receptors act as a repulsive cue to preventaxons from migrating to inappropriate locations during the development of the nervous system. Slit/Robo has also been implicated in reproductive system development, but the molecular mechanism of the Slit/Robo pathway in the reproductive system remains poorly understood. Using a transgenic mouse model, we investigated the function of the Slit/Robo pathway on ovarian follicle development and atresia. We first demonstrated that more offspring were born to mice with a partial knockout of the Robo1/2 genes in mice. We next showed that Robo1 and Robo2 are strongly expressed in ovarian granulosacells. Apoptosis in granulosa cells was reduced when Robo1/2 were partially knocked out, and this observation was further verified by in vitro Robo1/2 knockout experiments in mouse and human granulosa cells. We also found that ovarian angiogenesis wasenhanced by a partial lack of Robo1/2 genes. In summary, our data suggest that the Slit/Robo pathway can impact follicle development and atresia by influencinggranulosa cell apoptosis. PMID:25988316
Zou, Yunlong; Li, Zhiyuan; Zou, Yunjing; Hao, Haiyang; Li, Ning; Li, Qiuyan
2018-04-15
The regulatory function of Fbxo40 has been well characterized in mice. As a key component of the SCF-E3 ubiquitin ligase complex, Fbxo40 induces IRS1 ubiquitination, thus inactivating the IGF1/Akt pathway. The expression of Fbxo40 is restricted to muscle, and mice with an Fbxo40 null mutation exhibit muscle hypertrophy. However, the function of FBXO40 has not been elucidated in pigs, and it is not known whether FBXO40 mutations affect their health. We therefore generated FBXO40 knockout pigs using somatic cell nuclear transfer (SCNT) technology. CRISPR/Cas9 technology was combined with G418 selection, making it possible to generate donor cells at an efficiency of 75.86%. In muscle from FBXO40 knockout pigs, IRS1 levels were higher, and the IGF1/Akt pathway was stimulated. Mutant animals also had approximately 4% more muscle mass compared to WT controls. The knockout pigs developed normally and no pathological changes were found in major organs. These results demonstrate that FBXO40 is a promising candidate gene for improving production traits in agricultural livestock and for developing therapeutic interventions for muscle diseases. Copyright © 2018. Published by Elsevier Inc.
Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte; Ostachowicz, Beata; Nowak, Gabriel
2014-10-31
Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors. In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected to the forced swim test, as measured by Western-blot analysis. In this study, GPR39 knockout mice showed an increased immobility time in both the forced swim test and tail suspension test, indicating depressive-like behavior and displayed anxiety-like phenotype. GPR39 knockout mice had lower CREB and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex. There were no changes in the GPR39 knockout mice in comparison with the wild-type control mice, which does not support a role of GPR39 in hypothalamus-pituitary-adrenal axis regulation. The results of this study indicate the involvement of the GPR39 Zn(2+)-sensing receptor in the pathophysiology of depression with component of anxiety. © The Author 2015. Published by Oxford University Press on behalf of CINP.
He, Qionger; Arroyo, Erica D; Smukowski, Samuel N; Xu, Jian; Piochon, Claire; Savas, Jeffrey N; Portera-Cailliau, Carlos; Contractor, Anis
2018-04-27
Sensory perturbations in visual, auditory and tactile perception are core problems in fragile X syndrome (FXS). In the Fmr1 knockout mouse model of FXS, the maturation of synapses and circuits during critical period (CP) development in the somatosensory cortex is delayed, but it is unclear how this contributes to altered tactile sensory processing in the mature CNS. Here we demonstrate that inhibiting the juvenile chloride co-transporter NKCC1, which contributes to altered chloride homeostasis in developing cortical neurons of FXS mice, rectifies the chloride imbalance in layer IV somatosensory cortex neurons and corrects the development of thalamocortical excitatory synapses during the CP. Comparison of protein abundances demonstrated that NKCC1 inhibition during early development caused a broad remodeling of the proteome in the barrel cortex. In addition, the abnormally large size of whisker-evoked cortical maps in adult Fmr1 knockout mice was corrected by rectifying the chloride imbalance during the early CP. These data demonstrate that correcting the disrupted driving force through GABA A receptors during the CP in cortical neurons restores their synaptic development, has an unexpectedly large effect on differentially expressed proteins, and produces a long-lasting correction of somatosensory circuit function in FXS mice.
2016-04-07
Objective: We evaluated the risk of cardiovascular disease in both control and proatherosclerotic mice consuming diets high in coconut oil. Methods...The mice were weighed and randomly assigned to receive a custom diet with either coconut oil or milk fat. Both diets were formulated to have the...significant differences were seen between knockout and wildtype mice in aorta score regardless of diet, and in liver score with coconut oil diet
Influence of the CCR-5/MIP-1 α Axis in the Pathogenesis of Rocio Virus Encephalitis in a Mouse Model
Chávez, Juliana H.; França, Rafael F. O.; Oliveira, Carlo J. F.; de Aquino, Maria T. P.; Farias, Kleber J. S.; Machado, Paula R. L.; de Oliveira, Thelma F. M.; Yokosawa, Jonny; Soares, Edson G.; da Silva, João S.; da Fonseca, Benedito A. L.; Figueiredo, Luiz T. M.
2013-01-01
Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5−/− mice, while MIP-1 α−/− mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection. PMID:24080631
Brooks, Andrew I; Chattopadhyay, Subrata; Mitchison, Hannah M; Nussbaum, Robert L; Pearce, David A
2003-01-01
Juvenile neuronal ceroid lipofuscinosis (JNCL or Batten Disease) is the most common progressive neurodegenerative disorder of childhood. The disease is inherited in an autosomal recessive manner and is the result of mutations in the CLN3 gene. One brain region severely affected in Batten disease is the cerebellum. Using a mouse model for Batten disease which shares pathological similarities to the disease in humans we have used oligonucleotide arrays to profile approximately 19000 mRNAs in the cerebellum. We have identified reproducible changes of twofold or more in the expression of 756 gene products in the cerebellum of 10-week-old Cln3-knockout mice as compared to wild-type controls. We have subsequently divided these genes with altered expression into 14 functional categories. We report a significant alteration in expression of genes associated with neurotransmission, neuronal cell structure and development, immune response and inflammation, and lipid metabolism. An apparent shift in metabolism toward gluconeogenesis is also evident in Cln3-knockout mice. Further experimentation will be necessary to understand the contribution of these changes in expression to a disease state. Detailed analysis of the functional consequences of altered expression of genes in the cerebellum of the Cln3-knockout mice may provide valuable clues in understanding the molecular basis of the pathological mechanisms underlying Batten disease.
Wong, Wen Mai; Durakoglugil, Murat S.; Wasser, Catherine R.; Jiang, Shan; Xian, Xunde
2016-01-01
Alzheimer's disease (AD) is the most common form of dementia in individuals over the age of 65 years. The most prevalent genetic risk factor for AD is the ε4 allele of apolipoprotein E (ApoE4), and novel AD treatments that target ApoE are being considered. One unresolved question in ApoE biology is whether ApoE is necessary for healthy brain function. ApoE knock-out (KO) mice have synaptic loss and cognitive dysfunction; however, these findings are complicated by the fact that ApoE knock-out mice have highly elevated plasma lipid levels, which may independently affect brain function. To bypass the effect of ApoE loss on plasma lipids, we generated a novel mouse model that expresses ApoE normally in peripheral tissues, but has severely reduced ApoE in the brain, allowing us to study brain ApoE loss in the context of a normal plasma lipid profile. We found that these brain ApoE knock-out (bEKO) mice had synaptic loss and dysfunction similar to that of ApoE KO mice; however, the bEKO mice did not have the learning and memory impairment observed in ApoE KO mice. Moreover, we found that the memory deficit in the ApoE KO mice was specific to female mice and was fully rescued in female bEKO mice. Furthermore, while the AMPA/NMDA ratio was reduced in ApoE KO mice, it was unchanged in bEKO mice compared with controls. These findings suggest that plasma lipid levels can influence cognition and synaptic function independent of ApoE expression in the brain. SIGNIFICANCE STATEMENT One proposed treatment strategy for Alzheimer's disease (AD) is the reduction of ApoE, whose ε4 isoform is the most common genetic risk factor for the disease. A major concern of this strategy is that an animal model of ApoE deficiency, the ApoE knock-out (KO) mouse, has reduced synapses and cognitive impairment; however, these mice also develop dyslipidemia and severe atherosclerosis. Here, we have shown that genetic restoration of plasma ApoE to wild-type levels normalizes plasma lipids in ApoE KO mice. While this does not rescue synaptic loss, it does completely restore learning and memory in the mice, suggesting that both CNS and plasma ApoE are independent parameters that affect brain health. PMID:27683909
Comprehensive phenotypic analysis of knockout mice deficient in cyclin G1 and cyclin G2
Ohno, Shouichi; Ikeda, Jun-ichiro; Naito, Yoko; Okuzaki, Daisuke; Sasakura, Towa; Fukushima, Kohshiro; Nishikawa, Yukihiro; Ota, Kaori; Kato, Yorika; Wang, Mian; Torigata, Kosuke; Kasama, Takashi; Uchihashi, Toshihiro; Miura, Daisaku; Yabuta, Norikazu; Morii, Eiichi; Nojima, Hiroshi
2016-01-01
Cyclin G1 (CycG1) and Cyclin G2 (CycG2) play similar roles during the DNA damage response (DDR), but their detailed roles remain elusive. To investigate their distinct roles, we generated knockout mice deficient in CycG1 (G1KO) or CycG2 (G2KO), as well as double knockout mice (DKO) deficient in both proteins. All knockouts developed normally and were fertile. Generation of mouse embryonic fibroblasts (MEFs) from these mice revealed that G2KO MEFs, but not G1KO or DKO MEFs, were resistant to DNA damage insults caused by camptothecin and ionizing radiation (IR) and underwent cell cycle arrest. CycG2, but not CycG1, co-localized with γH2AX foci in the nucleus after γ-IR, and γH2AX-mediated DNA repair and dephosphorylation of CHK2 were delayed in G2KO MEFs. H2AX associated with CycG1, CycG2, and protein phosphatase 2A (PP2A), suggesting that γH2AX affects the function of PP2A via direct interaction with its B’γ subunit. Furthermore, expression of CycG2, but not CycG1, was abnormal in various cancer cell lines. Kaplan–Meier curves based on TCGA data disclosed that head and neck cancer patients with reduced CycG2 expression have poorer clinical prognoses. Taken together, our data suggest that reduced CycG2 expression could be useful as a novel prognostic marker of cancer. PMID:27982046
Wang, Dong; Yang, Liguo; Su, Jingjing; Niu, Yan; Lei, Xiaoping; Xiong, Juan; Cao, Xiaohua; Hu, Yinghe; Mei, Bing; Hu, Jin-Feng
2011-07-01
The M1/M4-preferring muscarinic agonist xanomeline was found to have some benefit in the treatment of the memory impairment of Alzheimer's disease (AD), but side effects precluded further development. EUK1001, a fluorinated derivative of xanomeline, because of greater affinity for M1 muscarinic receptors, is likely to have a significantly better side effect profile than xanomeline. We have now studied the effects of 3-month chronic administration of EUK1001 and xanomeline (0.5mg/kg/day) in AD-like presenilin 1/presenilin 2 conditional double knockout (PS cDKO) mice. Only EUK1001 was found to significantly ameliorate the deficit in recognition memory. Histological analysis demonstrated partial attenuation of the brain atrophy in EUK1001-treated PS cDKO mice and minimal effect in the xanomeline-treated mice. Both compounds effectively suppressed the elevation of brain tau phosphorylation in the PS cDKO mice, but neither inhibited the increased inflammatory responses. These results indicate that EUK1001 showed superiority to xanomeline with regard to attenuation of several AD-like neurodegenerative phenotypes in PS cDKO mice. These results suggest further investigation of the development of EUK1001 for the treatment of AD is indicated. Copyright © 2011 Elsevier Inc. All rights reserved.
Blueberries reduce lipid peroxidation and boost antioxidant enzymes in apoe knockout mice
USDA-ARS?s Scientific Manuscript database
ApoE knockout (ApoE-/-) mice fed AIN-93G diet (CD) formulated to contain 1 % freeze-dried whole wild blueberries (CD1 percent BB) were found to have significantly less atherosclerotic lesions in aorta. Biomarkers of lipid peroxidation, including F2-isoprostanes, hydroxyoctadecadienoic acids (HODEs) ...
Atochina-Vasserman, Elena N.; Massa, Christopher B.; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.
2015-01-01
Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd−/−) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd−/− mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd−/− mice. These changes were reduced in DiNOS, and compared with Sftpd−/− mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd−/−. Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces. PMID:26320150
Jiang, Jinjin; Yu, Pengxin; Zhang, Guofu; Zhang, Guanghui; Liu, Xiaoting
2017-01-01
Background: Green tea polyphenol (GTP) is a polyphenol source from green tea that has drawn wide attention owing to epidemiological evidence of its beneficial effects in the prevention of cardiovascular disease; the underlying molecular mechanisms of these effects are not well understood. This study aimed to investigate the effects of GTP treatment on autophagy regulation in the vessel wall and lipid metabolism of HFD-fed male ApoE-knockout mice. Methods: Adult male ApoE-knockout mice (n = 30) fed with a high-fat diet (HFD) were treated with either vehicle or GTP (3.2 or 6.4 g/L) administered via drinking water for 15 weeks, and C57BL/6J mice fed with standard chow diet (STD) were used as the control group. Metabolic parameters, expression of key mRNAs and proteins of hepatic lipid metabolism and autophagy in the vessel wall of mice were determined after the 15-week treatment. Results: A HFD induced atherosclerosis formation and lipid metabolism disorders as well as reduced autophagy expression in the vessel wall of ApoE-knockout mice, but GTP treatment alleviated the lipid metabolism disorders, decreased the oxLDL levels in serum, and increased the mRNA and protein expressions of hepatic PPARα and autophagy markers (LC3, Beclin1 and p62) in the vessel wall of ApoE-knockout mice. Conclusions: Our findings suggest that GTP supplementation showed marked suppression of atherogenesis through improved lipid metabolism as well as through a direct impact on oxLDL and autophagy flux in the vessel wall. PMID:28777810
Al Rajabi, Ala; Castro, Gabriela S F; da Silva, Robin P; Nelson, Randy C; Thiesen, Aducio; Vannucchi, Helio; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Curtis, Jonathan M; Jacobs, René L
2014-03-01
Dietary choline is required for proper structure and dynamics of cell membranes, lipoprotein synthesis, and methyl-group metabolism. In mammals, choline is synthesized via phosphatidylethanolamine N-methyltransferase (Pemt), which converts phosphatidylethanolamine to phosphatidylcholine. Pemt(-/-) mice have impaired VLDL secretion and developed fatty liver when fed a high-fat (HF) diet. Because of the reduction in plasma lipids, Pemt(-/-)/low-density lipoprotein receptor knockout (Ldlr(-/-)) mice are protected from atherosclerosis. The goal of this study was to investigate the importance of dietary choline in the metabolic phenotype of Pemt(-/-)/Ldlr(-/-) male mice. At 10-12 wk of age, Pemt(+/+)/Ldlr(-/-) (HF(+/+)) and half of the Pemt(-/-)/Ldlr(-/-) (HF(-/-)) mice were fed an HF diet with normal (1.3 g/kg) choline. The remaining Pemt(-/-)/Ldlr(-/-) mice were fed an HF diet supplemented (5 g/kg) with choline (HFCS(-/-) mice). The HF diet contained 60% of calories from fat and 1% cholesterol, and the mice were fed for 16 d. HF(-/-) mice lost weight and developed hepatomegaly, steatohepatitis, and liver damage. Hepatic concentrations of free cholesterol, cholesterol-esters, and triglyceride (TG) were elevated by 30%, 1.1-fold and 3.1-fold, respectively, in HF(-/-) compared with HF(+/+) mice. Choline supplementation normalized hepatic cholesterol, but not TG, and dramatically improved liver function. The expression of genes involved in cholesterol transport and esterification increased by 50% to 5.6-fold in HF(-/-) mice when compared with HF(+/+) mice. Markers of macrophages, oxidative stress, and fibrosis were elevated in the HF(-/-) mice. Choline supplementation normalized the expression of these genes. In conclusion, HF(-/-) mice develop liver failure associated with altered cholesterol metabolism when fed an HF/normal choline diet. Choline supplementation normalized cholesterol metabolism, which was sufficient to prevent nonalcoholic steatohepatitis development and improve liver function. Our data suggest that choline can promote liver health by maintaining cholesterol homeostasis.
Impairments in the Initiation of Maternal Behavior in Oxytocin Receptor Knockout Mice
Rich, Megan E.; deCárdenas, Emily J.; Lee, Heon-Jin; Caldwell, Heather K.
2014-01-01
Oxytocin (Oxt) acting through its single receptor subtype, the Oxtr, is important for the coordination of physiology and behavior associated with parturition and maternal care. Knockout mouse models have been helpful in exploring the contributions of Oxt to maternal behavior, including total body Oxt knockout (Oxt −/−) mice, forebrain conditional Oxtr knockout (Oxtr FB/FB) mice, and total body Oxtr knockout (Oxtr −/−) mice. Since Oxtr −/− mice are unable to lactate, maternal behavior has only been examined in virgin females, or in dams within a few hours of parturition, and there have been no studies that have examined their anxiety-like and depression-like behavior following parturition. To improve our understanding of how the absence of Oxt signaling affects maternal behavior, mood and anxiety, we designed a study using Oxtr −/− mice that separated nursing behavior from other aspects of maternal care, such as licking and grooming by thelectomizing (i.e. removing the nipples) of Oxtr +/+ mice and sham-thelectomizing Oxtr −/− mice, and pairing both genotypes with a wet nurse. We then measured pup abandonment, maternal behavior, and postpartum anxiety-like and depression-like behaviors. We hypothesized that genetic disruption of the Oxtr would impact maternal care, mood and anxiety. Specifically, we predicted that Oxtr −/− dams would have impaired maternal care and increased anxiety-like and depression-like behaviors in the postpartum period. We found that Oxtr −/− dams had significantly higher levels of pup abandonment compared to controls, which is consistent with previous work in Oxtr FB/FB mice. Interestingly, Oxtr −/− dams that initiated maternal care did not differ from wildtype controls in measures of maternal behavior. We also did not find any evidence of altered anxiety-like or depressive-like behavior in the postpartum period of Oxtr −/− dams. Thus, our data suggest that Oxt lowers the threshold for the initiation of maternal behavior. PMID:24892749
Henderson, Christina; Wijetunge, Lasani; Kinoshita, Mika Nakamoto; Shumway, Matthew; Hammond, Rebecca S; Postma, Friso R; Brynczka, Christopher; Rush, Roger; Thomas, Alexia; Paylor, Richard; Warren, Stephen T; Vanderklish, Peter W; Kind, Peter C; Carpenter, Randall L; Bear, Mark F; Healy, Aileen M
2012-09-19
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism, results from the transcriptional silencing of FMR1 and loss of the mRNA translational repressor protein fragile X mental retardation protein (FMRP). Patients with FXS exhibit changes in neuronal dendritic spine morphology, a pathology associated with altered synaptic function. Studies in the mouse model of fragile X have shown that loss of FMRP causes excessive synaptic protein synthesis, which results in synaptic dysfunction and altered spine morphology. We tested whether the pharmacologic activation of the γ-aminobutyric acid type B (GABA(B)) receptor could correct or reverse these phenotypes in Fmr1-knockout mice. Basal protein synthesis, which is elevated in the hippocampus of Fmr1-knockout mice, was corrected by the in vitro application of the selective GABA(B) receptor agonist STX209 (arbaclofen, R-baclofen). STX209 also reduced to wild-type values the elevated AMPA receptor internalization in Fmr1-knockout cultured neurons, a known functional consequence of increased protein synthesis. Acute administration of STX209 in vivo, at doses that modify behavior, decreased mRNA translation in the cortex of Fmr1-knockout mice. Finally, the chronic administration of STX209 in juvenile mice corrected the increased spine density in Fmr1-knockout mice without affecting spine density in wild-type mice. Thus, activation of the GABA(B) receptor with STX209 corrected synaptic abnormalities considered central to fragile X pathophysiology, a finding that suggests that STX209 may be a potentially effective therapy to treat the core symptoms of FXS.
Advanced age-related denervation and fiber-type grouping in skeletal muscle of SOD1 knockout mice.
Kostrominova, Tatiana Y
2010-11-30
In this study skeletal muscles from 1.5- and 10-month-old Cu/Zn superoxide dismutase (SOD1) homozygous knockout (JLSod1(-/-)) mice obtained from The Jackson Laboratory (C57Bl6/129SvEv background) were compared with muscles from age- and sex-matched heterozygous (JLSod1(+/-)) littermates. The results of this study were compared with previously published data on two different strains of Sod1(-/-) mice: one from Dr. Epstein's laboratory (ELSod1(-/-); C57Bl6 background) and the other from Cephalon, Inc. (CSod1(-/-); 129/CD-1 background). Grouping of succinate dehydrogenase-positive fibers characterized muscles of Sod1(-/-) mice from all three strains. The 10-month-old Sod1(-/-)C and JL mice displayed pronounced denervation of the gastrocnemius muscle, whereas the ELSod1(-/-) mice displayed a small degree of denervation at this age, but developed accelerated age-related denervation later on. Denervation markers were up-regulated in skeletal muscle of 10-month-old JLSod1(-/-) mice. This study is the first to show that metallothionein mRNA and protein expression was up-regulated in the skeletal muscle of 10-month-old JLSod1(-/-) mice and was mostly localized to the small atrophic muscle fibers. In conclusion, all three strains of Sod1(-/-) mice develop accelerated age-related muscle denervation, but the genetic background has significant influence on the progress of denervation. Copyright © 2010 Elsevier Inc. All rights reserved.
Wen, Teresa H; Afroz, Sonia; Reinhard, Sarah M; Palacios, Arnold R; Tapia, Kendal; Binder, Devin K; Razak, Khaleel A; Ethell, Iryna M
2017-10-13
Abnormal sensory responses associated with Fragile X Syndrome (FXS) and autism spectrum disorders include hypersensitivity and impaired habituation to repeated stimuli. Similar sensory deficits are also observed in adult Fmr1 knock-out (KO) mice and are reversed by genetic deletion of Matrix Metalloproteinase-9 (MMP-9) through yet unknown mechanisms. Here we present new evidence that impaired development of parvalbumin (PV)-expressing inhibitory interneurons may underlie hyper-responsiveness in auditory cortex of Fmr1 KO mice via MMP-9-dependent regulation of perineuronal nets (PNNs). First, we found that PV cell development and PNN formation around GABAergic interneurons were impaired in developing auditory cortex of Fmr1 KO mice. Second, MMP-9 levels were elevated in P12-P18 auditory cortex of Fmr1 KO mice and genetic reduction of MMP-9 to WT levels restored the formation of PNNs around PV cells. Third, in vivo single-unit recordings from auditory cortex neurons showed enhanced spontaneous and sound-driven responses in developing Fmr1 KO mice, which were normalized following genetic reduction of MMP-9. These findings indicate that elevated MMP-9 levels contribute to the development of sensory hypersensitivity by influencing formation of PNNs around PV interneurons suggesting MMP-9 as a new therapeutic target to reduce sensory deficits in FXS and potentially other autism spectrum disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Urea transporter knockout mice and their renal phenotypes.
Fenton, Robert A; Yang, Baoxue
2014-01-01
Urea transporter gene knockout mice have been created for the study of the urine-concentrating mechanism. The major findings in studies of the renal phenotype of these mice are as follows: (1) Urea accumulation in the inner medullary interstitium is dependent on intrarenal urea recycling mediated by urea transporters; (2) urea transporters are essential for preventing urea-induced osmotic diuresis and thus for water conservation; (3) NaCl concentration in the inner medullary interstitium is not significantly affected by the absence of IMCD, descending limb of Henle and descending vasa recta urea transporters. Studies in urea transporter knockout mouse models have highlighted the essential role of urea for producing maximally concentrated urine.
Angiopoietin-1 deficiency increases tumor metastasis in mice.
Michael, Iacovos P; Orebrand, Martina; Lima, Marta; Pereira, Beatriz; Volpert, Olga; Quaggin, Susan E; Jeansson, Marie
2017-08-11
Angipoietin-1 activation of the tyrosine kinase receptor Tek expressed mainly on endothelial cells leads to survival and stabilization of endothelial cells. Studies have shown that Angiopoietin-1 counteracts permeability induced by a number of stimuli. Here, we test the hypothesis that loss of Angiopoietin-1/Tek signaling in the vasculature would increase metastasis. Angiopoietin-1 was deleted in mice just before birth using floxed Angiopoietin-1 and Tek mice crossed to doxycycline-inducible bitransgenic ROSA-rtTA/tetO-Cre mice. By crossing Angiopoietin-1 knockout mice to the MMTV-PyMT autochthonous mouse breast cancer model, we investigated primary tumor growth and metastasis to the lung. Furthermore, we utilized B16F10 melanoma cells subcutaneous and experimental lung metastasis models in Angiopoietin-1 and Tek knockout mice. We found that primary tumor growth in MMTV-PyMT mice was unaffected, while metastasis to the lung was significantly increased in Angiopoietin-1 knockout MMTV-PyMT mice. In addition, angiopoietin-1 deficient mice exhibited a significant increase in lung metastasis of B16F10 melanoma cells, compared to wild type mice 3 weeks after injection. Additional experiments showed that this was likely an early event due to increased attachment or extravasation of tumor cells, since seeding of tumor cells was significantly increased 4 and 24 h post tail vein injection. Finally, using inducible Tek knockout mice, we showed a significant increase in tumor cell seeding to the lung, suggesting that Angiopoietin-1/Tek signaling is important for vascular integrity to limit metastasis. This study show that loss of the Angiopoietin-1/Tek vascular growth factor system leads to increased metastasis without affecting primary tumor growth.
Tillerson, Jennifer L; Caudle, W Michael; Parent, Jack M; Gong, C; Schallert, Timothy; Miller, Gary W
2006-09-15
Previous pharmacological studies have implicated dopamine as a modulator of olfactory bulb processing. Several disorders characterized by altered dopamine homeostasis in olfaction-related brain regions display olfactory deficits. To further characterize the role of dopamine in olfactory processing, we subjected dopamine transporter knockout mice (DAT -/-) and dopamine receptor 2 knockout mice (D2 -/-) to a battery of olfactory tests. In addition to behavioral characterization, several neurochemical markers of olfactory bulb integrity and function were examined. DAT -/- mice displayed an olfactory discrimination deficit, but did not differ detectably from DAT wildtype (DAT +/+) mice in odor habituation, olfactory sensitivity, or odor recognition memory. Neurochemically, DAT -/- mice have decreased D2 receptor staining in the periglomerular layer of the olfactory bulb and increased tyrosine hydroxylase immunoreactivity compared to DAT +/+ controls. D2 -/- mice exhibited the same olfactory deficit as the DAT -/- mice, further supporting the role of dopamine at the D2 synapse in olfactory discrimination processing. The findings presented in this paper reinforce the functional significance of dopamine and more specifically the D2 receptor in olfactory discrimination and may help explain the behavioral phenotype in the DAT and D2 knockout mice.
Autio, Kaija J; Schmitz, Werner; Nair, Remya R; Selkälä, Eija M; Sormunen, Raija T; Miinalainen, Ilkka J; Crick, Peter J; Wang, Yuqin; Griffiths, William J; Reddy, Janardan K; Baes, Myriam; Hiltunen, J Kalervo
2014-07-01
Cholesterol is catabolized to bile acids by peroxisomal β-oxidation in which the side chain of C27-bile acid intermediates is shortened by three carbon atoms to form mature C24-bile acids. Knockout mouse models deficient in AMACR (α-methylacyl-CoA racemase) or MFE-2 (peroxisomal multifunctional enzyme type 2), in which this β-oxidation pathway is prevented, display a residual C24-bile acid pool which, although greatly reduced, implies the existence of alternative pathways of bile acid synthesis. One alternative pathway could involve Mfe-1 (peroxisomal multifunctional enzyme type 1) either with or without Amacr. To test this hypothesis, we generated a double knockout mouse model lacking both Amacr and Mfe-1 activities and studied the bile acid profiles in wild-type, Mfe-1 and Amacr single knockout mouse line and Mfe-1 and Amacr double knockout mouse lines. The total bile acid pool was decreased in Mfe-1-/- mice compared with wild-type and the levels of mature C24-bile acids were reduced in the double knockout mice when compared with Amacr-deficient mice. These results indicate that Mfe-1 can contribute to the synthesis of mature bile acids in both Amacr-dependent and Amacr-independent pathways.
Multimodal nonlinear optical imaging of cartilage development in mouse model
NASA Astrophysics Data System (ADS)
He, Sicong; Xue, Wenqian; Sun, Qiqi; Li, Xuesong; Huang, Jiandong; Qu, Jianan Y.
2017-02-01
Kinesin-1 is a kind of motor protein responsible for intracellular transportation and has been studied in a variety of tissues. However, its roles in cartilage development are not clear. In this study, a kinesin-1 heavy chain (Kif5b) knockout mouse model is used to study the functions of kinesin-1 in the cartilage development. We developed a multimodal nonlinear optical (NLO) microscope system integrating stimulated Raman scattering (SRS), second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) to investigate the morphological and biomedical characteristics of fresh tibial cartilage from normal and mutant mice at different developmental stages. The combined forward and backward SHG imaging resolved the fine structure of collagen fibrils in the extracellular matrix of cartilage. Meanwhile, the chondrocyte morphology in different zones of cartilage was visualized by label-free SRS and TPEF images. The results show that the fibrillar collagen in the superficial zone of cartilage in postnatal day 10 and 15 (P10 and P15) knockout mice was significantly less than that of control mice. Moreover, we observed distorted morphology and disorganization of columnar arrangement of chondrocytes in the growth plate cartilage of mutant mice. This study reveals the significant roles of kinesin-1 in collagen formation and chondrocyte morphogenesis.
Zhou, Libin; Chen, Tingting; Li, Guoxi; Wu, Chaoming; Wang, Conghui; Li, Lin; Sha, Sha; Chen, Lei; Liu, George; Chen, Ling
2016-01-27
A characteristic phenotype of congenital generalized lipodystrophy 2 (CGL2) that is caused by loss-of-function of seipin gene is mental retardation. Here, we show that seipin deficiency in hippocampal CA1 pyramidal cells caused the reduction of peroxisome proliferator-activated receptor gamma (PPARγ). Twelve-week-old systemic seipin knock-out mice and neuronal seipin knock-out (seipin-nKO) mice, but not adipose seipin knock-out mice, exhibited spatial cognitive deficits as assessed by the Morris water maze and Y-maze, which were ameliorated by the treatment with the PPARγ agonist rosiglitazone (rosi). In addition, seipin-nKO mice showed the synaptic dysfunction and the impairment of NMDA receptor-dependent LTP in hippocampal CA1 regions. The density of AMPA-induced current (IAMPA) in CA1 pyramidal cells and GluR1/GluR2 expression were significantly reduced in seipin-nKO mice, whereas the NMDA-induced current (INMDA) and NR1/NR2 expression were not altered. Rosi treatment in seipin-nKO mice could correct the decrease in expression and activity of AMPA receptor (AMPAR) and was accompanied by recovered synaptic function and LTP induction. Furthermore, hippocampal ERK2 and CREB phosphorylation in seipin-nKO mice were reduced and this could be rescued by rosi treatment. Rosi treatment in seipin-nKO mice elevated BDNF concentration. The MEK inhibitor U0126 blocked rosi-restored AMPAR expression and LTP induction in seipin-nKO mice, but the Trk family inhibitor K252a did not. These findings indicate that the neuronal seipin deficiency selectively suppresses AMPAR expression through reducing ERK-CREB activities, leading to the impairment of LTP and spatial memory, which can be rescued by PPARγ activation. Congenital generalized lipodystrophy 2 (CGL2), caused by loss-of-function mutation of seipin gene, is characterized by mental retardation. By the generation of systemic or neuronal seipin knock-out mice, the present study provides in vivo evidence that neuronal seipin deficiency causes deficits in spatial memory and hippocampal LTP induction. Neuronal seipin deficiency selectively suppresses AMPA receptor expression, ERK-CREB phosphorylation with the decline of PPARγ. The PPARγ agonist rosiglitazone can ameliorate spatial cognitive deficits and rescue the LTP induction in seipin knock-out mice by restoring AMPA receptor expression and ERK-CREB activities. Copyright © 2016 the authors 0270-6474/16/361242-12$15.00/0.
Robinson, Stephen D.; Frenette, Paul S.; Rayburn, Helen; Cummiskey, Marge; Ullman-Culleré, Mollie; Wagner, Denisa D.; Hynes, Richard O.
1999-01-01
We extend our previous analyses of mice deficient in selectins by describing the generation and comparative phenotype of mice lacking one, two, or three selectins after sequential ablation of the murine genes encoding P-, E-, and L-selectins. All mice deficient in selectins are viable and fertile as homozygotes. However, mice missing both P- and E-selectins (PE−/−), and mice missing all three selectins (ELP−/−) develop mucocutaneous infections that eventually lead to death. Mice deficient in multiple selectins display varying degrees of leukocytosis, resulting in part from alterations in leukocyte rolling and recruitment. PE−/− mice, ELP−/− mice, and mice missing both P- and L-selectins (PL−/−) show drastic reductions in leukocyte rolling and in extravasation of neutrophils in thioglycollate-induced peritonitis. In a separate inflammatory model (ragweed-induced peritoneal eosinophilia), we demonstrate P-selectin to be both necessary and sufficient for the recruitment of eosinophils. The phenotype of mice missing both E- and L-selectins (EL−/−) is less severe than those seen in the other double knockouts. Comparisons among the double knockouts suggest that P-selectin normally cooperates with both E- and L-selectins. Our results indicate a preeminent role for P-selectin in regulating leukocyte behavior in mice. Data from the ELP−/− mice indicate, however, that all three selectins are important to leukocyte homeostasis and efficient neutrophil recruitment. PMID:10500197
Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier
2013-05-01
PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ER(T) under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors.
Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier
2013-01-01
SUMMARY PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ERT under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors. PMID:23471917
Shi, Zhaoling; Wu, Huajie; Luo, Jianfeng; Sun, Xin
2017-03-01
STARS (STriated muscle Activator of Rho Signaling) is a sarcomeric protein, which expressed early in cardiac development and involved in pathological remodeling. Abundant evidence indicated that STARS could regulate cell proliferation, but it's exact function remains unclear. In this study, we aimed to investigate the role of STARS in the proliferation of pulmonary arterial smooth muscle cells (PASMC) and the potential effect on the progression of pulmonary arterial hypertension (PAH). In this study, we established a PAH mouse model through chronic hypoxia exposure as reflected by the increased RVSP and RVHI. Western blot and RT-qPCR detected the increased STARS protein and mRNA levels in PAH mice. Next, we cultured the primary PASMC from PAH mice. After STARS overexpression in PASMC, STARS, SRF and Egr-1 were up-regulated significantly. The MTT assay revealed an increase in cell proliferation. Flow cytometry showed a marked inhibition of cell apoptosis. However, STARS silence in PASMC exerted opposite effects with STARS overexpression. SRF siRNA transfection blocked the effects of STARS overexpression in PASMC. In order to further confirm the role of STARS in PAH mice in vivo, we exposed STARS knockout mice to hypoxia and found lower RVSP and RVHI in knockout mice as compared with controls. Our results not only suggest that STARS plays a crucial role in the development of PAH by increasing the proliferation of PASMC through activation of the SRF/Egr-1 pathway, but also provides a new mechanism for hypoxia-induced PAH. In addition, STARS may represent a potential treatment target. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Desai, Urvi; Lee, E-Chiang; Chung, Kyu; Gao, Cuihua; Gay, Jason; Key, Billie; Hansen, Gwenn; Machajewski, Dennis; Platt, Kenneth A.; Sands, Arthur T.; Schneider, Matthias; Van Sligtenhorst, Isaac; Suwanichkul, Adisak; Vogel, Peter; Wilganowski, Nat; Wingert, June; Zambrowicz, Brian P.; Landes, Greg; Powell, David R.
2007-01-01
We used gene knockout mice to explore the role of Angiopoietin-like-4 (Angptl4) in lipid metabolism as well as to generate anti-Angptl4 mAbs with pharmacological activity. Angptl4 −/− mice had lower triglyceride (TG) levels resulting both from increased very low-density lipoprotein (VLDL) clearance and decreased VLDL production and had modestly lower cholesterol levels. Also, both Angptl4 −/− suckling mice and adult mice fed a high-fat diet showed reduced viability associated with lipogranulomatous lesions of the intestines and their draining lymphatics and mesenteric lymph nodes. Treating C57BL/6J, ApoE −/−, LDLr −/−, and db/db mice with the anti-Angptl4 mAb 14D12 recapitulated the lipid and histopathologic phenotypes noted in Angptl4 −/− mice. This demonstrates that the knockout phenotype reflects not only the physiologic function of the Angptl4 gene but also predicts the pharmacologic consequences of Angptl4 protein inhibition with a neutralizing antibody in relevant models of human disease. PMID:17609370
The role of system Xc- in methamphetamine-induced dopaminergic neurotoxicity in mice.
Dang, Duy-Khanh; Shin, Eun-Joo; Tran, Hai-Quyen; Kim, Dae-Joong; Jeong, Ji Hoon; Jang, Choon-Gon; Nah, Seung-Yeol; Sato, Hideyo; Nabeshima, Toshitaka; Yoneda, Yukio; Kim, Hyoung-Chun
2017-09-01
The cystine/glutamate antiporter (system Xc - , Sxc) transports cystine into cell in exchange for glutamate. Since xCT is a specific subunit of Sxc, we employed xCT knockout mice and investigated whether this antiporter affected methamphetamine (MA)-induced dopaminergic neurotoxicity. MA treatment significantly increased striatal oxidative burdens in wild type mice. xCT inhibitor [i.e., S-4-carboxy-phenylglycine (CPG), sulfasalazine] or an xCT knockout significantly protected against these oxidative burdens. MA-induced increases in Iba-1 expression and Iba-1-labeled microglial immunoreactivity (Iba-1-IR) were significantly attenuated by CPG or sulfasalazine administration or xCT knockout. CPG or sulfasalazine significantly attenuated MA-induced TUNEL-positive cell populations in the striatum of Taconic ICR mice. The decrease in excitatory amino acid transporter-2 (or glutamate transporter-1) expression and increase in glutamate release were attenuated by CPG, sulfasalazine or xCT knockout. In addition, CPG, sulfasalazine or xCT knockout significantly protected against dopaminergic loss (i.e., decreases in tyrosine hydroxylase expression and immunoreactivity, and an increase in dopamine turnover rate) induced by MA. However, CPG, sulfasalazine or xCT knockout did not significantly affect the impaired glutathione system [i.e., decrease in reduced glutathione (GSH) and increase in oxidized glutathione (GSSG)] induced by MA. Our results suggest that Sxc mediates MA-induced neurotoxicity via facilitating oxidative stress, microgliosis, proapoptosis, and glutamate-related toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schlüter, O M; Fornai, F; Alessandrí, M G; Takamori, S; Geppert, M; Jahn, R; Südhof, T C
2003-01-01
In humans, mutations in the alpha-synuclein gene or exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produce Parkinson's disease with loss of dopaminergic neurons and depletion of nigrostriatal dopamine. alpha-Synuclein is a vertebrate-specific component of presynaptic nerve terminals that may function in modulating synaptic transmission. To test whether MPTP toxicity involves alpha-synuclein, we generated alpha-synuclein-deficient mice by homologous recombination, and analyzed the effect of deleting alpha-synuclein on MPTP toxicity using these knockout mice. In addition, we examined commercially available mice that contain a spontaneous loss of the alpha-synuclein gene. As described previously, deletion of alpha-synuclein had no significant effects on brain structure or composition. In particular, the levels of synaptic proteins were not altered, and the concentrations of dopamine, dopamine metabolites, and dopaminergic proteins were unchanged. Upon acute MPTP challenge, alpha-synuclein knockout mice were partly protected from chronic depletion of nigrostriatal dopamine when compared with littermates of the same genetic background, whereas mice carrying the spontaneous deletion of the alpha-synuclein gene exhibited no protection. Furthermore, alpha-synuclein knockout mice but not the mice with the alpha-synuclein gene deletion were slightly more sensitive to methamphetamine than littermate control mice. These results demonstrate that alpha-synuclein is not obligatorily coupled to MPTP sensitivity, but can influence MPTP toxicity on some genetic backgrounds, and illustrate the need for extensive controls in studies aimed at describing the effects of mouse knockouts on MPTP sensitivity.
CBX7 gene expression plays a negative role in adipocyte cell growth and differentiation
Forzati, Floriana; Federico, Antonella; Pallante, Pierlorenzo; Colamaio, Marianna; Esposito, Francesco; Sepe, Romina; Gargiulo, Sara; Luciano, Antonio; Arra, Claudio; Palma, Giuseppe; Bon, Giulia; Bucher, Stefania; Falcioni, Rita; Brunetti, Arturo; Battista, Sabrina; Fedele, Monica; Fusco, Alfredo
2014-01-01
ABSTRACT We have recently generated knockout mice for the Cbx7 gene, coding for a polycomb group protein that is downregulated in human malignant neoplasias. These mice develop liver and lung adenomas and carcinomas, which confirms a tumour suppressor role for CBX7. The CBX7 ability to downregulate CCNE1 expression likely accounts for the phenotype of the Cbx7-null mice. Unexpectedly, Cbx7-knockout mice had a higher fat tissue mass than wild-type, suggesting a role of CBX7 in adipogenesis. Consistently, we demonstrate that Cbx7-null mouse embryonic fibroblasts go towards adipocyte differentiation more efficiently than their wild-type counterparts, and this effect is Cbx7 dose-dependent. Similar results were obtained when Cbx7-null embryonic stem cells were induced to differentiate into adipocytes. Conversely, mouse embryonic fibroblasts and human adipose-derived stem cells overexpressing CBX7 show an opposite behaviour. These findings support a negative role of CBX7 in the control of adipocyte cell growth and differentiation. PMID:25190058
SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS
SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS. L.F. Strader*, S.D. Perreault, J.C. Luft*, and D.J. Dix*. US EPA/ORD, Reproductive Toxicology Div., Research Triangle Park, NC
Heat shock proteins (HSPs) protect cells from environm...
ABBOTT, B. D., LEFFLER, K.E. AND BUCKALEW, A.R, Reproductive Toxicology Division, NHEERL, ORD, US EPA, Research Triangle Park, North Carolina. Retinoic acid induction of cleft palate (CP) in EGF and TGF knockout mice: Stage specific influences of growth factor expression.
<...
Roncal-Jimenez, Carlos A.; Lanaspa-Garcia, Miguel A.; Oppelt, Sarah A.; Kuwabara, Masanari; Jensen, Thomas; Milagres, Tamara; Andres-Hernando, Ana; Ishimoto, Takuji; Garcia, Gabriela E.; Johnson, Ginger; MacLean, Paul S.; Sanchez-Lozada, Laura-Gabriela; Tolan, Dean R.; Johnson, Richard J.
2016-01-01
Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. NEW & NOTEWORTHY This study increases our understanding of the mechanisms leading to vasopressin release under conditions of water restriction (acute dehydration). Specifically, these studies suggest that the aldose reductase-fructokinase pathways may be involved in vasopressin synthesis in the hypothalamus and secretion by the pituitary in response to acute dehydration. Nevertheless, mice undergoing water restriction remain capable of maintaining sufficient vasopressin (copeptin) levels to allow normal urinary concentration. Further studies of the aldose reductase-fructokinase system in vasopressin regulation appear indicated. PMID:27852737
Song 宋志林, Zhilin; Roncal-Jimenez, Carlos A; Lanaspa-Garcia, Miguel A; Oppelt, Sarah A; Kuwabara, Masanari; Jensen, Thomas; Milagres, Tamara; Andres-Hernando, Ana; Ishimoto, Takuji; Garcia, Gabriela E; Johnson, Ginger; MacLean, Paul S; Sanchez-Lozada, Laura-Gabriela; Tolan, Dean R; Johnson, Richard J
2017-02-01
Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. This study increases our understanding of the mechanisms leading to vasopressin release under conditions of water restriction (acute dehydration). Specifically, these studies suggest that the aldose reductase-fructokinase pathways may be involved in vasopressin synthesis in the hypothalamus and secretion by the pituitary in response to acute dehydration. Nevertheless, mice undergoing water restriction remain capable of maintaining sufficient vasopressin (copeptin) levels to allow normal urinary concentration. Further studies of the aldose reductase-fructokinase system in vasopressin regulation appear indicated. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, Takayo; Yoshida, Yuichi; Kiso, Shinichi, E-mail: kiso@gh.med.osaka-u.ac.jp
Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibroticmore » livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis.« less
Somatostatin Signaling in Neuronal Cilia Is Criticalfor Object Recognition Memory
Einstein, Emily B.; Patterson, Carlyn A.; Hon, Beverly J.; Regan, Kathleen A.; Reddi, Jyoti; Melnikoff, David E.; Mateer, Marcus J.; Schulz, Stefan; Johnson, Brian N.
2010-01-01
Most neurons possess a single, nonmotile cilium that projects out from the cell surface. These microtubule-based organelles are important in brain development and neurogenesis; however, their function in mature neurons is unknown. Cilia express a complement of proteins distinct from other neuronal compartments, one of which is the somatostatin receptor subtype SST3. We show here that SST3 is critical for object recognition memory in mice. sst3 knock-out mice are severely impaired in discriminating novel objects, whereas they retain normal memory for object location. Further, systemic injection of an SST3 antagonist (ACQ090) disrupts recall of familiar objects in wild-type mice. To examine mechanisms of SST3, we tested synaptic plasticity in CA1 hippocampus. Electrically evoked long-term potentiation (LTP) was normal in sst3 knock-out mice, while adenylyl cyclase/cAMP-mediated LTP was impaired. The SST3 antagonist also disrupted cAMP-mediated LTP. Basal cAMP levels in hippocampal lysate were reduced in sst3 knock-out mice compared with wild-type mice, while the forskolin-induced increase in cAMP levels was normal. The SST3 antagonist inhibited forskolin-stimulated cAMP increases, whereas the SST3 agonist L-796,778 increased basal cAMP levels in hippocampal slices but not hippocampal lysate. Our results show that somatostatin signaling in neuronal cilia is critical for recognition memory and suggest that the cAMP pathway is a conserved signaling motif in cilia. Neuronal cilia therefore represent a novel nonsynaptic compartment crucial for signaling involved in a specific form of synaptic plasticity and in novelty detection. PMID:20335466
Zou, Junhuang; Zheng, Tihua; Ren, Chongyu; Askew, Charles; Liu, Xiao-Ping; Pan, Bifeng; Holt, Jeffrey R; Wang, Yong; Yang, Jun
2014-05-01
Usher syndrome type 2 (USH2) is the predominant form of USH, a leading genetic cause of combined deafness and blindness. PDZD7, a paralog of two USH causative genes, USH1C and USH2D (WHRN), was recently reported to be implicated in USH2 and non-syndromic deafness. It encodes a protein with multiple PDZ domains. To understand the biological function of PDZD7 and the pathogenic mechanism caused by PDZD7 mutations, we generated and thoroughly characterized a Pdzd7 knockout mouse model. The Pdzd7 knockout mice exhibit congenital profound deafness, as assessed by auditory brainstem response, distortion product otoacoustic emission and cochlear microphonics tests, and normal vestibular function, as assessed by their behaviors. Lack of PDZD7 leads to the disorganization of stereocilia bundles and a reduction in mechanotransduction currents and sensitivity in cochlear outer hair cells. At the molecular level, PDZD7 determines the localization of the USH2 protein complex, composed of USH2A, GPR98 and WHRN, to ankle links in developing cochlear hair cells, likely through its direct interactions with these three proteins. The localization of PDZD7 to the ankle links of cochlear hair bundles also relies on USH2 proteins. In photoreceptors of Pdzd7 knockout mice, the three USH2 proteins largely remain unchanged at the periciliary membrane complex. The electroretinogram responses of both rod and cone photoreceptors are normal in knockout mice at 1 month of age. Therefore, although the organization of the USH2 complex appears different in photoreceptors, it is clear that PDZD7 plays an essential role in organizing the USH2 complex at ankle links in developing cochlear hair cells. GenBank accession numbers: KF041446, KF041447, KF041448, KF041449, KF041450, KF041451.
Patterson, Michael; Seregin, Alexey; Huang, Cheng; Kolokoltsova, Olga; Smith, Jennifer; Miller, Milagros; Smith, Jeanon; Yun, Nadezhda; Poussard, Allison; Grant, Ashley; Tigabu, Bersabeh; Walker, Aida; Paessler, Slobodan
2014-02-01
Machupo virus (MACV) is the etiological agent of Bolivian hemorrhagic fever (BHF), a reemerging and neglected tropical disease associated with high mortality. The prototypical strain of MACV, Carvallo, was isolated from a human patient in 1963, but minimal in vitro and in vivo characterization has been reported. To this end, we utilized reverse genetics to rescue a pathogenic MACV from cloned cDNAs. The recombinant MACV (rMACV) had in vitro growth properties similar to those of the parental MACV. Both viruses caused similar disease development in alpha/beta and gamma interferon receptor knockout mice, including neurological disease development and high mortality. In addition, we have identified a novel murine model with mortality and neurological disease similar to BHF disease reported in humans and nonhuman primates.
Zhang, Kun; Li, Yu-Jiao; Guo, Yanyan; Zheng, Kai-Yin; Yang, Qi; Yang, Le; Wang, Xin-Shang; Song, Qian; Chen, Tao; Zhuo, Min; Zhao, Ming-Gao
2017-12-01
Fragile X syndrome is an inheritable form of intellectual disability caused by loss of fragile X mental retardation protein (FMRP, encoded by the FMR1 gene). Absence of FMRP caused overexpression of progranulin (PGRN, encoded by GRN), a putative tumour necrosis factor receptor ligand. In the present study, we found that progranulin mRNA and protein were upregulated in the medial prefrontal cortex of Fmr1 knock-out mice. In Fmr1 knock-out mice, elevated progranulin caused insufficient dendritic spine pruning and late-phase long-term potentiation in the medial prefrontal cortex of Fmr1 knock-out mice. Partial progranulin knock-down restored spine morphology and reversed behavioural deficits, including impaired fear memory, hyperactivity, and motor inflexibility in Fmr1 knock-out mice. Progranulin increased levels of phosphorylated glutamate ionotropic receptor GluA1 and nuclear factor kappa B in cultured wild-type neurons. Tumour necrosis factor receptor 2 antibody perfusion blocked the effects of progranulin on GluA1 phosphorylation; this result indicates that tumour necrosis factor receptor 2 is required for progranulin-mediated GluA1 phosphorylation and late-phase long-term potentiation expression. However, high basal level of progranulin in Fmr1 knock-out mice prevented further facilitation of synaptic plasticity by exogenous progranulin. Partial downregulation of progranulin or tumour necrosis factor receptor 2/nuclear factor kappa B signalling restored synaptic plasticity and memory deficits in Fmr1 knock-out mice. These findings suggest that elevated PGRN is linked to cognitive deficits of fragile X syndrome, and the progranulin/tumour necrosis factor receptor 2 signalling pathway may be a putative therapeutic target for improving cognitive deficits in fragile X syndrome. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ferdaus, Mohammed Z.; Barber, Karl W.; López‐Cayuqueo, Karen I.; Terker, Andrew S.; Argaiz, Eduardo R.; Gassaway, Brandon M.; Chambrey, Régine; Gamba, Gerardo; Rinehart, Jesse
2016-01-01
Key points STE20 (Sterile 20)/SPS‐1 related proline/alanine‐rich kinase (SPAK) and oxidative stress‐response kinase‐1 (OSR1) phosphorylate and activate the renal Na+–K+–2Cl− cotransporter 2 (NKCC2) and Na+Cl− cotransporter (NCC).Mouse models suggest that OSR1 mainly activates NKCC2‐mediated sodium transport along the thick ascending limb, while SPAK mainly activates NCC along the distal convoluted tubule, but the kinases may compensate for each other. We hypothesized that disruption of both kinases would lead to polyuria and severe salt‐wasting, and generated SPAK/OSR1 double knockout mice to test this.Despite a lack of SPAK and OSR1, phosphorylated NKCC2 abundance was still high, suggesting the existence of an alternative activating kinase.Compensatory changes in SPAK/OSR1‐independent phosphorylation sites on both NKCC2 and NCC and changes in sodium transport along the collecting duct were also observed.Potassium restriction revealed that SPAK and OSR1 play essential roles in the emerging model that NCC activation is central to sensing changes in plasma [K+]. Abstract STE20 (Sterile 20)/SPS‐1 related proline/alanine‐rich kinase (SPAK) and oxidative stress‐response kinase‐1 (OSR1) activate the renal cation cotransporters Na+–K+–2Cl− cotransporter (NKCC2) and Na+–Cl− cotransporter (NCC) via phosphorylation. Knockout mouse models suggest that OSR1 mainly activates NKCC2, while SPAK mainly activates NCC, with possible cross‐compensation. We tested the hypothesis that disrupting both kinases causes severe polyuria and salt‐wasting by generating SPAK/OSR1 double knockout (DKO) mice. DKO mice displayed lower systolic blood pressure compared with SPAK knockout (SPAK‐KO) mice, but displayed no severe phenotype even after dietary salt restriction. Phosphorylation of NKCC2 at SPAK/OSR1‐dependent sites was lower than in SPAK‐KO mice, but still significantly greater than in wild type mice. In the renal medulla, there was significant phosphorylation of NKCC2 at SPAK/OSR1‐dependent sites despite a complete absence of SPAK and OSR1, suggesting the existence of an alternative activating kinase. The distal convoluted tubule has been proposed to sense plasma [K+], with NCC activation serving as the primary effector pathway that modulates K+ secretion, by metering sodium delivery to the collecting duct. Abundance of phosphorylated NCC (pNCC) is dramatically lower in SPAK‐KO mice than in wild type mice, and the additional disruption of OSR1 further reduced pNCC. SPAK‐KO and kidney‐specific OSR1 single knockout mice maintained plasma [K+] following dietary potassium restriction, but DKO mice developed severe hypokalaemia. Unlike mice lacking SPAK or OSR1 alone, DKO mice displayed an inability to phosphorylate NCC under these conditions. These data suggest that SPAK and OSR1 are essential components of the effector pathway that maintains plasma [K+]. PMID:27068441
Microarray analysis of retinal gene expression in Egr-1 knockout mice
Schippert, Ruth; Schaeffel, Frank
2009-01-01
Purpose We found earlier that 42 day-old Egr-1 knockout mice had longer eyes and a more myopic refractive error compared to their wild-types. To identify genes that could be responsible for the temporarily enhanced axial eye growth, a microarray analysis was performed in knockout and wild-type mice at the postnatal ages of 30 and 42 days. Methods The retinas of homozygous and wild-type Egr-1 knockout mice (Taconic, Ry, Denmark) were prepared for RNA isolation (RNeasy Mini Kit, Qiagen) at the age of 30 or 42 days, respectively (n=12 each). Three retinas were pooled and labeled cRNA was made. The samples were hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Hybridization signals were calculated using GC-RMA normalization. Genes were identified as differentially expressed if they showed a fold-change (FC) of at least 1.5 and a p-value <0.05. A false-discovery rate of 5% was applied. Ten genes with potential biologic relevance were examined further with semiquantitative real-time RT–PCR. Results Comparing mRNA expression levels between wild-type and homozygous Egr-1 knockout mice, we found 73 differentially expressed genes at the age of 30 days and 135 genes at the age of 42 days. Testing for differences in gene expression between the two ages (30 versus 42 days), 54 genes were differently expressed in wild-type mice and 215 genes in homozygous animals. Based on three networks proposed by Ingenuity pathway analysis software, nine differently expressed genes in the homozygous Egr-1 knockout mice were chosen for further validation by real-time RT–PCR, three genes in each network. In addition, the gene that was most prominently regulated in the knockout mice, compared to wild-type, at both 30 days and 42 days of age (protocadherin beta-9 [Pcdhb9]), was tested with real-time RT–PCR. Changes in four of the ten genes could be confirmed by real-time RT–PCR: nuclear prelamin A recognition factor (Narf), oxoglutarate dehydrogenase (Ogdh), selenium binding protein 1 (Selenbp1), and Pcdhb9. Except for Pcdhb9, the genes whose mRNA expression levels were validated were listed in one of the networks proposed by Ingenuity pathway analysis software. In addition to these genes, the software proposed several key-regulators which did not change in our study: retinoic acid, vascular endothelial growth factor A (VEGF-A), FBJ murine osteosarcoma viral oncogene homolog (cFos), and others. Conclusions Identification of genes that are differentially regulated during the development period between postnatal day 30 (when both homozygous and wild-type mice still have the same axial length) and day 42 (where the difference in eye length is apparent) could improve the understanding of mechanisms for the control of axial eye growth and may lead to potential targets for pharmacological intervention. With the aid of pathway-analysis software, a coarse picture of possible biochemical pathways could be generated. Although the mRNA expression levels of proteins proposed by the software, like VEGF, FOS, retinoic acid (RA) receptors, or cellular RA binding protein, did not show any changes in our experiment, these molecules have previously been implicated in the signaling cascades controlling axial eye growth. According to the pathway-analysis software, they represent links between several proteins whose mRNA expression was changed in our study. PMID:20019881
Microarray analysis of retinal gene expression in Egr-1 knockout mice.
Schippert, Ruth; Schaeffel, Frank; Feldkaemper, Marita Pauline
2009-12-10
We found earlier that 42 day-old Egr-1 knockout mice had longer eyes and a more myopic refractive error compared to their wild-types. To identify genes that could be responsible for the temporarily enhanced axial eye growth, a microarray analysis was performed in knockout and wild-type mice at the postnatal ages of 30 and 42 days. The retinas of homozygous and wild-type Egr-1 knockout mice (Taconic, Ry, Denmark) were prepared for RNA isolation (RNeasy Mini Kit, Qiagen) at the age of 30 or 42 days, respectively (n=12 each). Three retinas were pooled and labeled cRNA was made. The samples were hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Hybridization signals were calculated using GC-RMA normalization. Genes were identified as differentially expressed if they showed a fold-change (FC) of at least 1.5 and a p-value <0.05. A false-discovery rate of 5% was applied. Ten genes with potential biologic relevance were examined further with semiquantitative real-time RT-PCR. Comparing mRNA expression levels between wild-type and homozygous Egr-1 knockout mice, we found 73 differentially expressed genes at the age of 30 days and 135 genes at the age of 42 days. Testing for differences in gene expression between the two ages (30 versus 42 days), 54 genes were differently expressed in wild-type mice and 215 genes in homozygous animals. Based on three networks proposed by Ingenuity pathway analysis software, nine differently expressed genes in the homozygous Egr-1 knockout mice were chosen for further validation by real-time RT-PCR, three genes in each network. In addition, the gene that was most prominently regulated in the knockout mice, compared to wild-type, at both 30 days and 42 days of age (protocadherin beta-9 [Pcdhb9]), was tested with real-time RT-PCR. Changes in four of the ten genes could be confirmed by real-time RT-PCR: nuclear prelamin A recognition factor (Narf), oxoglutarate dehydrogenase (Ogdh), selenium binding protein 1 (Selenbp1), and Pcdhb9. Except for Pcdhb9, the genes whose mRNA expression levels were validated were listed in one of the networks proposed by Ingenuity pathway analysis software. In addition to these genes, the software proposed several key-regulators which did not change in our study: retinoic acid, vascular endothelial growth factor A (VEGF-A), FBJ murine osteosarcoma viral oncogene homolog (cFos), and others. Identification of genes that are differentially regulated during the development period between postnatal day 30 (when both homozygous and wild-type mice still have the same axial length) and day 42 (where the difference in eye length is apparent) could improve the understanding of mechanisms for the control of axial eye growth and may lead to potential targets for pharmacological intervention. With the aid of pathway-analysis software, a coarse picture of possible biochemical pathways could be generated. Although the mRNA expression levels of proteins proposed by the software, like VEGF, FOS, retinoic acid (RA) receptors, or cellular RA binding protein, did not show any changes in our experiment, these molecules have previously been implicated in the signaling cascades controlling axial eye growth. According to the pathway-analysis software, they represent links between several proteins whose mRNA expression was changed in our study.
Sensorimotor development in neonatal progesterone receptor knockout mice.
Willing, Jari; Wagner, Christine K
2014-01-01
Early exposure to steroid hormones can permanently and dramatically alter neural development. This is best understood in the organizational effects of hormones during development of brain regions involved in reproductive behaviors or neuroendocrine function. However, recent evidence strongly suggests that steroid hormones play a vital role in shaping brain regions involved in cognitive behavior such as the cerebral cortex. The most abundantly expressed steroid hormone receptor in the developing rodent cortex is the progesterone receptor (PR). In the rat, PR is initially expressed in the developmentally-critical subplate at E18, and subsequently in laminas V and II/III through the first three postnatal weeks (Quadros et al. [2007] J Comp Neurol 504:42-56; Lopez & Wagner [2009]: J Comp Neurol 512:124-139), coinciding with significant periods of dendritic maturation, the arrival of afferents and synaptogenesis. In the present study, we investigated PR expression in the neonatal mouse somatosensory cortex. Additionally, to investigate the potential role of PR in developing cortex, we examined sensorimotor function in the first two postnatal weeks in PR knockout mice and their wildtype (WT) and heterozygous (HZ) counterparts. While the three genotypes were similar in most regards, PRKO and HZ mice lost the rooting reflex 2-3 days earlier than WT mice. These studies represent the first developmental behavioral assessment of PRKO mice and suggest PR expression may play an important role in the maturation of cortical connectivity and sensorimotor integration. Copyright © 2013 Wiley Periodicals, Inc.
Sortilin 1 knockout alters basal adipose glucose metabolism but not diet-induced obesity in mice.
Li, Jibiao; Matye, David J; Wang, Yifeng; Li, Tiangang
2017-04-01
Sortilin 1 (Sort1) is a trafficking receptor that has been implicated in the regulation of plasma cholesterol in humans and mice. Here, we use metabolomics and hyperinsulinemic-euglycemic clamp approaches to obtain further understanding of the in vivo effects of Sort1 deletion on diet-induced obesity as well as on adipose lipid and glucose metabolism. Results show that Sort1 knockout (KO) does not affect Western diet-induced obesity nor adipose fatty acid and ceramide concentrations. Under the basal fasting state, chow-fed Sort1 KO mice have decreased adipose glycolytic metabolites, but Sort1 deletion does not affect insulin-stimulated tissue glucose uptake during the insulin clamp. These results suggest that Sort1 loss-of-function in vivo does not affect obesity development, but differentially modulates adipose glucose metabolism under fasting and insulin-stimulated states. © 2017 Federation of European Biochemical Societies.
Mouse Models of Gastric Cancer
Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.
2013-01-01
Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700
Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice.
Renkema, Kirsten Y; Nijenhuis, Tom; van der Eerden, Bram C J; van der Kemp, Annemiete W C M; Weinans, Harrie; van Leeuwen, Johannes P T M; Bindels, René J M; Hoenderop, Joost G J
2005-11-01
Vitamin D plays an important role in Ca(2+) homeostasis by controlling Ca(2+) (re)absorption in intestine, kidney, and bone. The epithelial Ca(2+) channel TRPV5 mediates the Ca(2+) entry step in active Ca(2+) reabsorption. TRPV5 knockout (TRPV5(-/-)) mice show impaired Ca(2+) reabsorption, hypercalciuria, hypervitaminosis D, and intestinal hyperabsorption of Ca(2+). Moreover, these mice demonstrate upregulation of intestinal TRPV6 and calbindin-D(9K) expression compared with wild-type mice. For addressing the role of the observed hypervitaminosis D in the maintenance of Ca(2+) homeostasis and the regulation of expression levels of the Ca(2+) transport proteins in kidney and intestine, TRPV5/25-hydroxyvitamin-D(3)-1alpha-hydroxylase double knockout (TRPV5(-/-)/1alpha-OHase(-/-)) mice, which show undetectable serum 1,25(OH)(2)D(3) levels, were generated. TRPV5(-/-)/1alpha-OHase(-/-) mice displayed a significant hypocalcemia compared with wild-type mice (1.10 +/- 0.02 and 2.54 +/- 0.01 mM, respectively; P < 0.05). mRNA levels of renal calbindin-D(28K) (7 +/- 2%), calbindin-D(9K) (32 +/- 4%), Na(+)/Ca(2+) exchanger (12 +/- 2%), and intestinal TRPV6 (40 +/- 8%) and calbindin-D(9K) (26 +/- 4%) expression levels were decreased compared with wild-type mice. Hyperparathyroidism and rickets were present in TRPV5(-/-)/1alpha-OHase(-/-) mice, more pronounced than observed in single TRPV5 or 1alpha-OHase knockout mice. It is interesting that a renal Ca(2+) leak, as demonstrated in TRPV5(-/-) mice, persisted in TRPV5(-/-)/1alpha-OHase(-/-) mice, but a compensatory upregulation of intestinal Ca(2+) transporters was abolished. In conclusion, the elevation of serum 1,25(OH)(2)D(3) levels in TRPV5(-/-) mice is responsible for the upregulation of intestinal Ca(2+) transporters and Ca(2+) hyperabsorption. Hypervitaminosis D, therefore, is of crucial importance to maintain normocalcemia in impaired Ca(2+) reabsorption in TRPV5(-/-) mice.
Roper, J A; Craighead, M; O’Carroll, A-M; Lolait, S J
2010-01-01
Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. PMID:20846299
Roper, J A; Craighead, M; O'Carroll, A-M; Lolait, S J
2010-11-01
Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. © 2010 The Authors. Journal of Neuroendocrinology © 2010 Blackwell Publishing Ltd.
Watson, Elizabeth; Fargali, Samira; Okamoto, Haruka; Sadahiro, Masato; Gordon, Ronald E; Chakraborty, Tandra; Sleeman, Mark W; Salton, Stephen R
2009-10-28
Previous studies of mixed background mice have demonstrated that targeted deletion of Vgf produces a lean, hypermetabolic mouse that is resistant to diet-, lesion-, and genetically-induced obesity. To investigate potential mechanism(s) and site(s) of action of VGF, a neuronal and endocrine secreted protein and neuropeptide precursor, we further analyzed the metabolic phenotypes of two independent VGF knockout lines on C57Bl6 backgrounds. Unlike hyperactive VGF knockout mice on a mixed C57Bl6-129/SvJ background, homozygous mutant mice on a C57Bl6 background were hypermetabolic with similar locomotor activity levels to Vgf+/Vgf+ mice, during day and night cycles, indicating that mechanism(s) other than hyperactivity were responsible for their increased energy expenditure. In Vgf-/Vgf- knockout mice, morphological analysis of brown and white adipose tissues (BAT and WAT) indicated decreased fat storage in both tissues, and decreased adipocyte perimeter and area in WAT. Changes in gene expression measured by real-time RT-PCR were consistent with increased fatty acid oxidation and uptake in BAT, and increased lipolysis, decreased lipogenesis, and brown adipocyte differentiation in WAT, suggesting that increased sympathetic nervous system activity in Vgf-/Vgf- mice may be associated with or responsible for alterations in energy expenditure and fat storage. In addition, uncoupling protein 1 (UCP1) and UCP2 protein levels, mitochondrial number, and mitochondrial cristae density were upregulated in Vgf-/Vgf- BAT. Using immunohistochemical and histochemical techniques, we detected VGF in nerve fibers innervating BAT and Vgf promoter-driven reporter expression in cervical and thoracic spinal ganglia that project to and innervate the chest wall and tissues including BAT. Moreover, VGF peptide levels were quantified by radioimmunoassay in BAT, and were found to be down-regulated by a high fat diet. Lastly, despite being hypermetabolic, VGF knockout mice were cold intolerant. We propose that VGF and/or VGF-derived peptides modulate sympathetic outflow pathways to regulate fat storage and energy expenditure.
Chen, Lin; Lin, Shao-xia; Amin, Sanober; Overbergh, Lut; Maggiolino, Giacomo; Chan, Lawrence S
2010-01-01
We investigated the functions of critical adhesion molecules ICAM-1 and VCAM-1 in a keratin-14 IL-4-transgenic (Tg) mouse model of atopic dermatitis, the skin lesions of which are characterized by prominent inflammatory cell infiltration, significantly increased mRNAs and proteins of ICAM-1, VCAM-1, E-selectin, P-selectin, L-selectin, and PSGL-1, and significantly increased numbers of dermal vessels expressing these adhesion molecules. We tested the hypotheses that deletion or blockade of these molecules may impede the inflammation by examining the disease progresses in the Tg mice crossed with ICAM-1-knockout mice and Tg mice received anti-VCAM-1-neutralizing antibody. Although the findings of the ICAM-1-knockout Tg mice (Tg/ICAM-1(-/-)) developed skin lesions similar to wide-type ICAM-1 Tg mice (Tg/ICAM-1(+/+)) were surprising, a compensatory mechanism may account for it: the frequency of VCAM-1 ligand, CD49d, on CD3(+) T cells in the lesional skin significantly increased in the Tg/ICAM-1(-/-) mouse, compared with the Tg/ICAM-1(+/+) mice. In contrast, anti-VCAM-1-treated Tg/ICAM-1(-/-) or Tg/ICAM-1(+/+) mice had significantly delayed onset of skin inflammation compared with isotype antibody-treated groups. Moreover, anti-VCAM-1 significantly reduced the skin inflammation severity in Tg/ICAM-1(+/+) mice, accompanied with reduction of mast cell, eosinophil, and CD3(+) T cell infiltration. VCAM-1 is more critical in developing skin inflammation in this model.
Ascl1 (Mash1) Knockout Perturbs Differentiation of Nonneuronal Cells in Olfactory Epithelium
Jang, Woochan; Wildner, Hendrik; Schwob, James E.
2012-01-01
The embryonic olfactory epithelium (OE) generates only a very few olfactory sensory neurons when the basic helix-loop-helix transcription factor, ASCL1 (previously known as MASH1) is eliminated by gene mutation. We have closely examined the structure and composition of the OE of knockout mice and found that the absence of neurons dramatically affects the differentiation of multiple other epithelial cell types as well. The most prominent effect is observed within the two known populations of stem and progenitor cells of the epithelium. The emergence of horizontal basal cells, a multipotent progenitor population in the adult epithelium, is anomalous in the Ascl1 knockout mice. The differentiation of globose basal cells, another multipotent progenitor population in the adult OE, is also aberrant. All of the persisting globose basal cells are marked by SOX2 expression, suggesting a prominent role for SOX2 in progenitors upstream of Ascl1. However, NOTCH1-expressing basal cells are absent from the knockout; since NOTCH1 signaling normally acts to suppress Ascl1 via HES1 and drives sustentacular (Sus) cell differentiation during adult epithelial regeneration, its absence suggests reciprocity between neurogenesis and the differentiation of Sus cells. Indeed, the Sus cells of the mutant mice express a markedly lower level of HES1, strengthening that notion of reciprocity. Duct/gland development appears normal. Finally, the expression of cKIT by basal cells is also undetectable, except in those small patches where neurogenesis escapes the effects of Ascl1 knockout and neurons are born. Thus, persistent neurogenic failure distorts the differentiation of multiple other cell types in the olfactory epithelium. PMID:23284756
Crist, Richard C; Roth, Jacquelyn J; Lisanti, Michael P; Siracusa, Linda D; Buchberg, Arthur M
2011-04-01
Colorectal cancer is a heterogeneous disease resulting from a combination of genetic and environmental factors. The C57BL/6J (B6) Apc (Min/+) mouse develops polyps throughout the gastrointestinal tract and has been a valuable model for understanding the genetic basis of intestinal tumorigenesis. Apc (Min/+) mice have been used to study known oncogenes and tumor suppressor genes on a controlled genetic background. These studies often utilize congenic knockout alleles, which can carry an unknown amount of residual donor DNA. The Apc (Min) model has also been used to identify modifer loci, known as Modifier of Min (Mom) loci, which alter Apc (Min) -mediated intestinal tumorigenesis. B6 mice carrying a knockout allele generated in WW6 embryonic stem cells were crossed to B6 Apc (Min/+) mice to determine the effect on polyp multiplicity. The newly generated colony developed significantly more intestinal polyps than Apc (Min/+) controls. Polyp multiplicity did not correlate with inheritance of the knockout allele, suggesting the presence of one or more modifier loci segregating in the colony. Genotyping of simple sequence length polymorphism (SSLP) markers revealed residual 129X1/SvJ genomic DNA within the congenic region of the parental knockout line. An analysis of polyp multiplicity data and SSLP genotyping indicated the presence of two Mom loci in the colony: 1) Mom12, a dominant modifier linked to the congenic region on chromosome 6, and 2) Mom13, which is unlinked to the congenic region and whose effect is masked by Mom12. The identification of Mom12 and Mom13 demonstrates the potential problems resulting from residual heterozygosity present in congenic lines.
Horvat, Simon; McWhir, Jim; Rozman, Damjana
2011-02-01
This review describes the mouse knockout models of cholesterol synthesis, together with human malformations and drugs that target cholesterogenic enzymes. Generally, the sooner a gene acts in cholesterol synthesis, the earlier the phenotype occurs. Humans with loss of function of early cholesterogenic enzymes have not yet been described, and in the mouse, loss of Hmgcr is preimplantation lethal. Together, these results indicate that the widely prescribed cholesterol-lowering statins are potentially teratogenic. The Mvk knockout is early embryonic lethal in the mouse, the absence of Fdft1 is lethal at E9.5-12.5 dpc, while the Cyp51 knockouts die at 15.0 dpc. Fungal CYP51 inhibitor azoles are teratogenic in humans, potentially leading to symptoms of Antley-Bixler syndrome. The X-linked mutations in Nsdhl and Ebp are embryonic lethal in male mice, while heterozygous females are also affected. Consequently, the anticancer drugs, tamoxifen and toremifene, inhibiting human EBP, may be harmful in early pregnancy. The Dhcr7 and Dhcr24 knockout mice die shortly after birth, while humans survive with Smith-Lemli-Opitz syndrome or desmosterolosis. Since cholesterol is essential for hedgehog signaling, disturbance of this pathway by antipsychotics and -depressants explains some drug side effects. In conclusion, defects in cholesterol synthesis are generally lethal in mice, while humans with impaired later steps of the pathway can survive with severe malformations. Evidence shows that drugs targeting or, by coincidence, inhibiting human cholesterol synthesis are better avoided in early pregnancy. Since some drugs with teratogenic potential still stay on the market, this should be avoided in new cholesterol-related drug development.
Nozaki, Yuichi; Fujita, Koji; Wada, Koichiro; Yoneda, Masato; Kessoku, Takaomi; Shinohara, Yoshiyasu; Imajo, Kento; Ogawa, Yuji; Nakamuta, Makoto; Saito, Satoru; Masaki, Naohiko; Nagashima, Yoji; Terauchi, Yasuo; Nakajima, Atsushi
2015-04-01
Although many of the factors and molecules closely associated with non-alcoholic steatohepatitis (NASH) have been reported, the role of inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) on the progression of NASH remains unclear. We therefore investigated the role of iNOS-derived NO in NASH pathogenesis with a long-term follow-up study using systemic iNOS-knockout mice under high-fat diet (HFD) conditions. iNOS-knockout and wild-type mice were fed a basal or HFD for 10 or 48 weeks. Lipid accumulation, fibrosis, and inflammation were evaluated, and various factors and molecules closely associated with NASH were analyzed. Marked fibrosis and inflammation (indicators of NASH) were observed in the livers of iNOS-knockout mice compared to wild-type mice after 48 weeks of a HFD; however, lipid accumulation in iNOS-knockout mice livers was less than in the wild-type. Increased expressions of various cytokines that are transcriptionally controlled by NF-kB in iNOS-deficient mice livers were observed during HFD conditions. iNOS-derived NO may play a protective role against the progression to NASH during an HFD by preventing fibrosis and inflammation, which are mediated by NF-kB activation in Kupffer cells. A lack of iNOS-derived NO accelerates progression to NASH without excessive lipid accumulation.
Thomsen, Morgane; Caine, Simon Barak
2016-04-05
Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Hitachi, Keisuke; Tsuchida, Kunihiro
2017-01-01
Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle. PMID:27992376
Hitachi, Keisuke; Tsuchida, Kunihiro
2017-01-24
Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle.
Schröter, David; Matthews, Helen C.; Bogani, Debora; Moir, Lee; Long, Anna; Church, Christopher; Hugill, Alison; Anstee, Quentin M.; Goldin, Rob; Thursz, Mark; Hollfelder, Florian; Cox, Roger D.
2013-01-01
We employed a random mutagenesis approach to identify novel monogenic determinants of type 2 diabetes. Here we show that haplo-insufficiency of the histone methyltransferase myeloid-lineage leukemia (Mll2/Wbp7) gene causes type 2 diabetes in the mouse. We have shown that mice heterozygous for two separate mutations in the SET domain of Mll2 or heterozygous Mll2 knockout mice were hyperglycaemic, hyperinsulinaemic and developed non-alcoholic fatty liver disease. Consistent with previous Mll2 knockout studies, mice homozygous for either ENU mutation (or compound heterozygotes) died during embryonic development at 9.5–14.5 days post coitum. Heterozygous deletion of Mll2 induced in the adult mouse results in a normal phenotype suggesting that changes in chromatin methylation during development result in the adult phenotype. Mll2 has been shown to regulate a small subset of genes, a number of which Neurod1, Enpp1, Slc27a2, and Plcxd1 are downregulated in adult mutant mice. Our results demonstrate that histone H3K4 methyltransferase Mll2 is a component of the genetic regulation necessary for glucose homeostasis, resulting in a specific disease pattern linking chromatin modification with causes and progression of type 2 diabetes, providing a basis for its further understanding at the molecular level. PMID:23826075
The metabolism of primaquine to its active metabolite is dependent on CYP 2D6.
Pybus, Brandon S; Marcsisin, Sean R; Jin, Xiannu; Deye, Gregory; Sousa, Jason C; Li, Qigui; Caridha, Diana; Zeng, Qiang; Reichard, Gregory A; Ockenhouse, Christian; Bennett, Jason; Walker, Larry A; Ohrt, Colin; Melendez, Victor
2013-06-20
The efficacy of the 8-aminoquinoline (8AQ) drug primaquine (PQ) has been historically linked to CYP-mediated metabolism. Although to date no clear evidence exists in the literature that unambiguously assigns the metabolic pathway or specific metabolites necessary for activity, recent literature suggests a role for CYP 2D6 in the generation of redox active metabolites. In the present study, the specific CYP 2D6 inhibitor paroxetine was used to assess its effects on the production of specific phenolic metabolites thought to be involved in PQ efficacy. Further, PQ causal prophylactic (developing liver stage) efficacy against Plasmodium berghei in CYP 2D knockout mice was assessed in comparison with a normal C57 background and with humanized CYP 2D6 mice to determine the direct effects of CYP 2D6 metabolism on PQ activity. PQ exhibited no activity at 20 or 40 mg/kg in CYP 2D knockout mice, compared to 5/5 cures in normal mice at 20 mg/kg. The activity against developing liver stages was partially restored in humanized CYP 2D6 mice. These results unambiguously demonstrate that metabolism of PQ by CYP 2D6 is essential for anti-malarial causal prophylaxis efficacy.
Zhao, Liping; Kim, Ki Woo; Ikeda, Yayoi; Anderson, Kimberly K; Beck, Laurel; Chase, Stephanie; Tobet, Stuart A; Parker, Keith L
2008-06-01
Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.
USDA-ARS?s Scientific Manuscript database
Zinc transporter 7 (Znt7, Slc30a7) knockout (KO) mice display abnormalities in body weight gain and body adiposity. Regulation of body weight and fatness is complex, involving multiple genetic and environmental factors. To understand how zinc homeostasis influences body weight gain and fat deposit a...
Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.
Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J
2010-02-01
Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.
Zhou, X; Paulsson, G; Stemme, S; Hansson, G K
1998-01-01
Atherosclerosis is an inflammatory-fibrotic response to accumulation of cholesterol in the artery wall. In hypercholesterolemia, low density lipoproteins (LDL) accumulate and are oxidized to proinflammatory compounds in the arterial intima, leading to activation of endothelial cells, macrophages, and T lymphocytes. We have studied immune cell activation and the autoimmune response to oxidized LDL in atherosclerotic apo E-knockout mice. Autoantibodies to oxidized LDL exhibited subclass specificities indicative of T cell help, and the increase in antibody titers in peripheral blood was associated with increased numbers of cytokine-expressing T cells in the spleen. In addition to T cell-dependent antibodies, IgM antibodies to oxidized LDL were also increased in apo E-knockout mice. This suggests that both T cell-dependent and T cell-independent epitopes may be present on oxidized LDL. In moderate hypercholesterolemia, IgG antibodies were largely of the IgG2a isotype, suggesting that T cell help was provided by proinflammatory T helper (Th) 1 cells, which are prominent components of atherosclerotic lesions. In severe hypercholesterolemia induced by cholesterol feeding of apo E-knockout mice, a switch to Th2-dependent help was evident. It was associated with a loss of IFN-gamma-producing Th1 cells in the spleen, whereas IL-4-producing Th2 cells were more resistant to hypercholesterolemia. IFN-gamma but not IL-4 mRNA was detected in atherosclerotic lesions of moderately hypercholesterolemic apo E-knockout mice, but IL-4 mRNA appeared in the lesions when mice were made severely hypercholesterolemic by cholesterol feeding. These data show that IFN-gamma-producing Th1 cells infiltrate atherosclerotic lesions and provide T cell help for autoimmune responses to oxidized LDL in apo E-knockout mice. However, severe hypercholesterolemia is associated with a switch from Th1 to Th2, which results not only in the formation of IgG1 autoantibodies to oxidized LDL, but also in the appearance of Th2-type cytokines in the atherosclerotic lesions. Since the two subsets of T cells counteract each other, this switch may have important consequences for the inflammatory/immune process in atherosclerosis. PMID:9541503
PFOA is developmentally toxic, reducing in utero and neonatal survival, and altering development and growth in mice. PFOA activates PPARα and studies in PPARα knockout mice showed that PPARα signaling is required to produce these effects. This study examines the expression of PPA...
Toll-like receptors 2 and 4 contribute to sepsis-induced depletion of spleen dendritic cells.
Pène, Frédéric; Courtine, Emilie; Ouaaz, Fatah; Zuber, Benjamin; Sauneuf, Bertrand; Sirgo, Gonzalo; Rousseau, Christophe; Toubiana, Julie; Balloy, Viviane; Chignard, Michel; Mira, Jean-Paul; Chiche, Jean-Daniel
2009-12-01
Depletion of dendritic cells (DC) in secondary lymphoid organs is a hallmark of sepsis-induced immune dysfunction. In this setting, we investigated if Toll-like receptor (TLR)-dependent signaling might modulate the maturation process and the survival of DC. Using a model of sublethal polymicrobial sepsis induced by cecal ligation and puncture, we investigated the quantitative and functional features of spleen DC in wild-type, TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. By 24 h, a decrease in the relative percentage of CD11c(high) spleen DC occurred in wild-type mice but was prevented in TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. In wild-type mice, sepsis dramatically affected both CD11c(+) CD8alpha(+) and CD11c(+) CD8alpha(-) subsets. In all three types of knockout mice studied, the CD11c(+) CD8alpha(+) subset followed a depletion pattern similar to that for wild-type mice. In contrast, the loss of CD11c(+) CD8alpha(-) cells was attenuated in TLR2(-/-) and TLR4(-/-) mice and completely prevented in TLR2(-/-) TLR4(-/-) mice. Accordingly, apoptosis of spleen DC was increased in septic wild-type mice and inhibited in knockout mice. In addition we characterized the functional features of spleen DC obtained from septic mice. As shown by increased expression of major histocompatibility complex class II and CD86, polymicrobial sepsis induced maturation of DC, with subsequent increased capacity to prime T lymphocytes, similarly in wild-type and knockout mice. In response to CpG DNA stimulation, production of interleukin-12 was equally impaired in DC obtained from wild-type and knockout septic mice. In conclusion, although dispensable for the DC maturation process, TLR2 and TLR4 are involved in the mechanisms leading to depletion of spleen DC following polymicrobial sepsis.
Loss of MAP3K1 enhances proliferation and apoptosis during retinal development
Mongan, Maureen; Wang, Jingcai; Liu, Hongshan; Fan, Yunxia; Jin, Chang; Kao, Winston Y.-W.; Xia, Ying
2011-01-01
Precise coordination of progenitor cell proliferation and differentiation is essential for proper organ morphogenesis and function during mammalian development. The mitogen-activated protein kinase kinase kinase 1 (MAP3K1) has a well-established role in anterior eyelid development, as Map3k1-knockout mice have defective embryonic eyelid closure and an `eye-open at birth' (EOB) phenotype. Here, we show that MAP3K1 is highly expressed in the posterior of the developing eye and is required for retina development. The MAP3K1-deficient mice exhibit increased proliferation and apoptosis, and Müller glial cell overproduction in the developing retinas. Consequently, the retinas of these mice show localized rosette-like arrangements in the outer nuclear layer, and develop abnormal vascularization, broken down retinal pigment epithelium, photoreceptor loss and early onset of retinal degeneration. Although the retinal defect is associated with increased cyclin D1 and CDK4/6 expression, and RB phosphorylation and E2F-target gene upregulation, it is independent of the EOB phenotype and of JNK. The retinal developmental defect still occurs in knockout mice that have undergone tarsorrhaphy, but is absent in compound mutant Map3k1+/ΔKDJnk1–/– and Map3k1+/ΔKDJnk+/–Jnk2+/– mice that have EOB and reduced JNK signaling. Our results unveil a novel role for MAP3K1 in which it crosstalks with the cell cycle regulatory pathways in the prevention of retina malformation and degeneration. PMID:21862560
Relative axial myopia in Egr-1 (ZENK) knockout mice.
Schippert, Ruth; Burkhardt, Eva; Feldkaemper, Marita; Schaeffel, Frank
2007-01-01
Experiments in chickens have implicated the transcription factor ZENK (also known as Egr-1, NGFI-A, zif268, tis8, cef5, and Krox24) in the feedback mechanisms for visual control of axial eye growth and myopia development. ZENK is upregulated in retinal glucagon amacrine cells when axial eye growth is inhibited by positive spectacle lens wear and is downregulated when it is enhanced by negative spectacle lens wear, suggesting that ZENK may be linked to an inhibitory signal for axial eye growth. This study was undertaken to determine whether a Egr-1(-/-) knockout mouse mutant, lacking ZENK completely, has longer eyes and more myopic refraction, than do Egr-1(+/)(-) heterozygous and Egr-1(+/+) wild-type mice with near-identical genetic backgrounds. Eye growth and refractive development were tracked from day P28 to P98. Corneal radius of curvature was measured with infrared photokeratometry, refractive state with infrared photoretinoscopy, and ocular dimensions with low-coherence interferometry. As a functional vision test, grating acuity was determined in an automated optomotor task. The abundance of ZENK protein in the retina was quantified by immunohistochemistry. Egr-1 knockout mice had longer eyes and a relative myopic shift in refraction, with additional minor effects on anterior chamber depth and corneal radius of curvature. Paraxial schematic eye modeling suggested changes in the optics of the crystalline lens as well. With increasing age, the differences between mutant and wild-type mice declined, although the differences in refraction persisted over the observation period. Grating acuity was not affected by the lack of the Egr-1 protein during development. Although it has been shown that different mouse strains may have differently large eyes, the present study shows that a specific gene knockout can produce relative myopia, compared with the wild-type with near-identical genetic background. Further experiments are needed to determine whether the observed effects of Egr-1 deletion are due to changes in function within the retina or other ocular tissues or to changes of function in other systems that may affect ocular growth from outside the eye.
Liao, Jiawei; Guo, Xin; Wang, Mengyu; Dong, Chengyan; Gao, Mingming; Wang, Huan; Kayoumu, Abudurexiti; Shen, Qiang; Wang, Yuhui; Wang, Fan; Liu, George
2017-01-01
Aim: Atherosclerosis-prone apolipoprotein E (apoE) or low-density lipoprotein receptor (LDL-R) knockout (KO) mice are generally resistant to developing coronary atherosclerosis (CA) and ischemic heart disease (IHD). However, studies have demonstrated the occurrence of spontaneous CA and IHD in scavenger receptor class B type 1 (SR-BI)/apoE double KO (dKO) mice, which suggests that SR-BI could be a potential target for the prevention and therapy of CA and IHD. This possibility was later investigated in SR-BI/LDL-R dKO mice, but no signs of CA or IHD was identified when mice were fed a normal western-type diet. Here we explored whether SR-BI deletion could result in CA and IHD in LDL-R KO mice when fed a modified western-type diet containing higher (0.5%) cholesterol. Methods: Cardiac functions were detected by electrocardiography, single photon emission computed tomography (SPECT), echocardiography (Echo) and 2,3,5-triphenyltetrazolium chloride staining. CA was visualized by hematoxylin-eosin staining. Results: After 12 weeks on the modified diet, SR-BI/LDL-R dKO mice developed cardiac ischemia/infarction, together with systolic dysfunction and left ventricular dilatation. CA was most severe at the aortic sinus level to an extent that no dKO mice survived to 20 weeks on the modified diet. None of control mice, however, developed CA or IHD. Conclusions: SR-BI deletion led to CA and IHD in LDL-R KO mice when fed the modified western-type diet. We established SR-BI/LDL-R dKO mice as a diet-induced murine model of human IHD and developed detection methods, using a combination of SPECT and Echo, for effective in vivo evaluation of cardiac functions. PMID:27373983
Histone Deacetylase 3 Is Necessary for Proper Brain Development*
Norwood, Jordan; Franklin, Jade M.; Sharma, Dharmendra; D'Mello, Santosh R.
2014-01-01
The functional role of histone deacetylase 3 (HDAC3) in the developing brain has yet to be elucidated. We show that mice lacking HDAC3 in neurons and glia of the central nervous system, Nes-Cre/HDAC3 conditional KO mice, show major abnormalities in the cytoarchitecture of the neocortex and cerebellum and die within 24 h of birth. Later-born neurons do not localize properly in the cortex. A similar mislocalization is observed with cerebellar Purkinje neurons. Although the proportion of astrocytes is higher than normal, the numbers of oligodendrocytes are reduced. In contrast, conditional knockout of HDAC3 in neurons of the forebrain and certain other brain regions, using Thy1-Cre and calcium/calmodulin dependent protein kinase II α-Cre for ablation, produces no overt abnormalities in the organization of cells within the cortex or of cerebellar Purkinje neurons at birth. However, both lines of conditional knockout mice suffer from progressive hind limb paralysis and ataxia and die around 6 weeks after birth. The mice display an increase in overall numbers of cells, higher numbers of astrocytes, and Purkinje neuron degeneration. Taken together, our results demonstrate that HDAC3 plays an essential role in regulating brain development, with effects on both neurons and glia in different brain regions. PMID:25339172
Regeneration of the Exocrine Pancreas Is Delayed in Telomere-Dysfunctional Mice
von Figura, Guido; Wagner, Martin; Nalapareddy, Kodandaramireddy; Hartmann, Daniel; Kleger, Alexander; Guachalla, Luis Miguel; Rolyan, Harshvardhan; Adler, Guido; Rudolph, Karl Lenhard
2011-01-01
Introduction Telomere shortening is a cell-intrinsic mechanism that limits cell proliferation by induction of DNA damage responses resulting either in apoptosis or cellular senescence. Shortening of telomeres has been shown to occur during human aging and in chronic diseases that accelerate cell turnover, such as chronic hepatitis. Telomere shortening can limit organ homeostasis and regeneration in response to injury. Whether the same holds true for pancreas regeneration in response to injury is not known. Methods In the present study, pancreatic regeneration after acute cerulein-induced pancreatitis was studied in late generation telomerase knockout mice with short telomeres compared to telomerase wild-type mice with long telomeres. Results Late generation telomerase knockout mice exhibited impaired exocrine pancreatic regeneration after acute pancreatitis as seen by persistence of metaplastic acinar cells and markedly reduced proliferation. The expression levels of p53 and p21 were not significantly increased in regenerating pancreas of late generation telomerase knockout mice compared to wild-type mice. Conclusion Our results indicate that pancreatic regeneration is limited in the context of telomere dysfunction without evidence for p53 checkpoint activation. PMID:21364961
Core features of frontotemporal dementia recapitulated in progranulin knockout mice
Ghoshal, N.; Dearborn, J.T.; Wozniak, D.F.; Cairns, N.J.
2011-01-01
Frontotemporal dementia (FTD) is typified by behavioral and cognitive changes manifested as altered social comportment and impaired memory performance. To investigate the neurodegenerative consequences of progranulin gene (GRN) mutations, which cause an inherited form of FTD, we used previously generated progranulin knockout mice (Grn-/-). Specifically, we characterized two cohorts of early and later middle-age wild type and knockout mice using a battery of tests to assess neurological integrity and behavioral phenotypes analogous to FTD. The Grn-/- mice exhibited reduced social engagement and learning and memory deficits. Immunohistochemical approaches were used to demonstrate the presence of lesions characteristic of frontotemporal lobar degeneration (FTLD) with GRN mutation including ubiquitination, microgliosis, and reactive astrocytosis, the pathological substrate of FTD. Importantly, Grn-/- mice also have decreased overall survival compared to Grn+/+ mice. These data suggest that the Grn-/- mouse reproduces some core features of FTD with respect to behavior, pathology, and survival. This murine model may serve as a valuable in vivo model of FTLD with GRN mutation through which molecular mechanisms underlying the disease can be further dissected. PMID:21933710
Msx homeobox gene family and craniofacial development.
Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping
2003-12-01
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.
ADAM10 is essential for cranial neural crest-derived maxillofacial bone development.
Tan, Yu; Fu, Runqing; Liu, Jiaqiang; Wu, Yong; Wang, Bo; Jiang, Ning; Nie, Ping; Cao, Haifeng; Yang, Zhi; Fang, Bing
2016-07-08
Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of the craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development. Copyright © 2016 Elsevier Inc. All rights reserved.
Hoenderop, Joost G J; Chon, Helena; Gkika, Dimitra; Bluyssen, Hans A R; Holstege, Frank C P; St-Arnaud, Rene; Braam, Branko; Bindels, Rene J M
2004-02-01
Pseudovitamin D deficiency rickets (PDDR) is an autosomal disease, characterized by undetectable levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), rickets and secondary hyperparathyroidism. Mice in which the 25-hydroxyvitamin D3-1 alpha-hydroxylase (1 alpha-OHase) gene was inactivated, presented the same clinical phenotype as patients with PDDR. cDNA Microarray technology was used on kidneys of 1 alpha-OHase knockout mice to study the expression profile of renal genes in this Ca2+-related disorder. Genome wide molecular events that occur during the rescue of these mice by high dietary Ca2+ intake were studied by the use of 15K cDNA microarray chips. 1 alpha-OHase knockout mice fed a normal Ca2+ diet developed severe hypocalcemia, rickets and died with an average life span of 12 +/- 2 weeks. Intriguingly, 1 alpha-OHase-/- mice supplemented with an enriched Ca2+ diet were normocalcemic and not significantly different from wild-type mice. Inactivation of the 1 alpha-OHase gene resulted in a significant regulation of +/- 1000 genes, whereas dietary Ca2+ supplementation of the 1 alpha-OHase-/- mice revealed +/- 2000 controlled genes. Interestingly, 557 transcripts were regulated in both situations implicating the involvement in the dietary Ca2+-mediated rescue mechanism of the 1 alpha-OHase-/- mice. Conspicuous regulated genes encoded for signaling molecules like the PDZ-domain containing protein channel interacting protein, FK binding protein type 4, kinases, and importantly Ca2+ transporting proteins including the Na+-Ca2+ exchanger, calbindin-D28K and the Ca2+ sensor calmodulin. Dietary Ca2+ intake normalized disturbances in the Ca2+ homeostasis due to vitamin D deficiency that were accompanied by the regulation of a subset of renal genes, including well-known renal Ca2+ transport protein genes, but also genes not previously identified as playing a role in renal Ca2+ handling.
Wu, W J; Zhang, X K; Zheng, X F; Yang, Y H; Jiang, S D; Jiang, L S
2013-01-01
Hypoxia-inducible factor-1alpha (HIF-1 alpha) has been reported to have an important role in the metabolism and synthesis of extracellular matrix of the nucleus pulposus cells (NPCs) and was assumed to be involved in the process of intervertebral disc degeneration. The objective of this study was to investigate the role of HIF-1alpha in disc degeneration in vivo using a conditional HIF-1alpha knockout (KO) mouse model. ShhCre transgenic mice were mated with HIF-1 alpha fl/fl mice to generate conditional HIF-1alpha KO mice (HIF-1alpha fl/fl-ShhCre+). Three mice of each genotype (Wide-type and HIF-1alpha KO) at the age of 3 days, 6, and 12 weeks were sacrificed after genotyping. Five lumbar disc samples were harvested from each mouse, with a total of 45 disc samples for each genotype. In situ hybridization and immunohistochemical analysis were used to check the efficacy of HIF-1alpha knockout. Histological grading of the disc degeneration was performed according to the classification system proposed by Boos et al. Picro-sirius red staining, Safranine O/fast green staining and immunohistochemical study were used to evaluate the expression of aggrecan, type-II collagen and vascular endothelial growth factor (VEGF). Histologic analysis revealed more NPC deaths and signs of degeneration in HIF-1alpha KO mice and the degeneration scores of HIF-1alpha KO mice were significantly higher than those of the Wide-type mice at the age of 6 weeks and 12 weeks. There were less expressions of aggrecan, type-II collagen and VEGF in the intervertebral discs of HIF1-alpha KO mice than in those of wild-type mice. Taken together, the results of our study indicated that HIF-1alpha is a pivotal contributor to NPC survival and the homeotasis of extracellular matrix through the HIF-1alpha/VEGF signaling pathway, and plays an important role in the development of disc degeneration.
Lereim, Ragnhild Reehorst; Oveland, Eystein; Xiao, Yichuan; Torkildsen, Øivind; Wergeland, Stig; Myhr, Kjell-Morten; Sun, Shao-Cong; Berven, Frode S
2016-09-01
The ubiquitin ligase Peli1 has previously been suggested as a potential treatment target in multiple sclerosis. In the multiple sclerosis disease model, experimental autoimmune encephalomyelitis, Peli1 knock-out led to less activated microglia and less inflammation in the central nervous system. Despite being important in microglia, Peli1 expression has also been detected in glial and neuronal cells. In the present study the overall brain proteomes of Peli1 knock-out mice and wild-type mice were compared prior to experimental autoimmune encephalomyelitis induction, at onset of the disease and at disease peak. Brain samples from the frontal hemisphere, peripheral from the extensive inflammatory foci, were analyzed using TMT-labeling of sample pools, and the discovered proteins were verified in individual mice using label-free proteomics. The greatest proteomic differences between Peli1 knock-out and wild-type mice were observed at the disease peak. In Peli1 knock-out a higher degree of antigen presentation, increased activity of adaptive and innate immune cells and alterations to proteins involved in iron metabolism were observed during experimental autoimmune encephalomyelitis. These results unravel global effects to the brain proteome when abrogating Peli1 expression, underlining the importance of Peli1 as a regulator of the immune response also peripheral to inflammatory foci during experimental autoimmune encephalomyelitis. The proteomics data is available in PRIDE with accession PXD003710.
Ohnishi, Tetsuo; Yamada, Kazuo; Watanabe, Akiko; Ohba, Hisako; Sakaguchi, Toru; Honma, Yota; Iwayama, Yoshimi; Toyota, Tomoko; Maekawa, Motoko; Watanabe, Kazutada; Detera-Wadleigh, Sevilla D.; Wakana, Shigeharu; Yoshikawa, Takeo
2011-01-01
Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as “the Japan Mouse Clinic”. No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum γ-glutamyl transpeptidase (GGT), a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs) located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-γ-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-γ-glutamyl transpeptidasemia and schizophrenia. PMID:22242126
Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice
Yang, Hao; Wang, Shu Pei; Mitchell, Grant A.
2017-01-01
Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency. PMID:29232702
Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.
Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei
2017-12-01
Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.
Kirsch, Richard; Clarkson, Vivian; Verdonk, Robert C; Marais, Adrian D; Shephard, Enid G; Ryffel, Bernard; de la M Hall, Pauline
2006-01-01
Intestinal endotoxin (lipopolysaccharide) is thought to contribute to liver injury in both alcoholic and nonalcoholic steatohepatitis (NASH). Tumor necrosis factor alpha (TNFalpha) is an important mediator of this process and is considered central to the inflammatory response in NASH. This study aimed to investigate the effects of lipopolysaccharide on liver injury in the methionine choline deficient (MCD) nutritional model of NASH, and to determine if TNFalpha is required for the development of steatohepatitis in this model. Male C57/BL6 mice received a MCD diet for 4 weeks, whilst a control group received an identical diet supplemented with 0.2% choline bitartrate and 0.3% methionine. At 4 weeks, mice received either an intraperitoneal injection of lipopolysaccharide (0.5 microg/g body mass) or sterile saline, and were killed 24 h thereafter. In a separate study, TNFalpha knockout and wild type C57BL/6 mice received either MCD or control diets for 4 weeks. Serum transaminase levels, liver histology (steatosis, inflammation and apoptosis), hepatic triglyceride concentration and hepatic lipid peroxidation products (conjugated dienes, lipid hydroperoxides and thiobarbituric reactive substances, free and total) were evaluated. Intraperitoneal administration of lipopolysaccharide augmented serum alanine aminotransferase (ALT) levels (P<0.02), hepatic inflammation (P<0.025), apoptosis (P<0.01) and free thiobarbituric acid reactive substances (P<0.025) in MCD mice. TNFalpha knockout mice fed the MCD diet developed steatohepatitis with histological and biochemical changes similar to those seen in wild type counterparts. Lipopolysaccharide augments liver injury in MCD mice, and TNFalpha is not required for the development of steatohepatitis in MCD mice.
ADAM10 is essential for cranial neural crest-derived maxillofacial bone development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Yu, E-mail: tanyu2048@163.com; Fu, Runqing, E-mail: furunqing@sjtu.edu.cn; Liu, Jiaqiang, E-mail: liujqmj@163.com
Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of themore » craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development. -- Highlights: •We firstly reported that ADAM10 was essentially involved in maxillofacial bone development. •ADAM10 cKO mice present craniofacial dysmorphia and bone defects. •Impaired osteoblast differentiation,proliferation and apoptosis underlie the bone deformity.« less
Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H
2015-05-01
The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis. © The Author(s) 2014.
Impact of chocolate liquor on vascular lesions in apoE-knockout mice.
Yazdekhasti, Narges; Brandsch, Corinna; Hirche, Frank; Kühn, Julia; Schloesser, Anke; Esatbeyoglu, Tuba; Huebbe, Patricia; Wolffram, Siegfried; Rimbach, Gerald; Stangl, Gabriele I
2017-10-15
Cocoa polyphenols are thought to reduce the risk of cardiovascular diseases. Thus, cocoa-containing foods may have significant health benefits. Here, we studied the impact of chocolate liquor on vascular lesion development and plaque composition in a mouse model of atherosclerosis. Apolipoprotein E (apoE)-knockout mice were assigned to two groups and fed a Western diet that contained 250 g/kg of either chocolate liquor or a polyphenol-free isoenergetic control paste for 16 weeks. In addition to fat, protein, and fibers, the chocolate liquor contained 2 g/kg of polyphenols. Compared with the control group, mice fed the chocolate liquor had larger plaque areas in the descending aorta and aortic root, which were attributed to a higher mass of vascular smooth muscle cells (VSMCs) and collagen. Vascular lipid deposits and calcification areas did not differ between the two groups. The aortic tissue level of interleukin-6 (IL-6) mRNA was 5-fold higher in the mice fed chocolate liquor than in the control mice. Chocolate-fed mice exhibited an increased hepatic saturated to polyunsaturated fatty acid ratio than the controls. Although the chocolate liquor contained 14 µg/kg of vitamin D 2 , the chocolate liquor-fed mice did not have measurable 25-hydroxyvitamin D 2 in the serum. These mice even showed a 25% reduction in the level of 25-hydroxyvitamin D 3 compared with the control mice. Overall, present data may contribute to our understanding how chocolate constituents can impact vascular lesion development. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C
2015-01-01
Abstract Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca2+ transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. Key points Acute inhibition of purinergic receptors with a selective P2X3 antagonist prevents transmission of information from taste buds to sensory nerves. The P2X3 antagonist has no effect on taste-evoked release of ATP, confirming the effect is postsynaptic. The results confirm previous results with P2X2/3 double knockout mice that ATP is required for transmission of all taste qualities, including sour and salty. Previously, ATP was confirmed to be required for bitter, sweet and umami tastes, but was questioned for salty and sour tastes due to pleomorphic deficits in the double knockout mice. The geniculate ganglion in mouse contains two populations of ganglion cells with different subunit composition of P2X2 and P2X3 receptors making them differently susceptible to pharmacological block and, presumably, desensitization. PMID:25524179
Zuo, Erwei; Cai, Yi-Jun; Li, Kui; Wei, Yu; Wang, Bang-An; Sun, Yidi; Liu, Zhen; Liu, Jiwei; Hu, Xinde; Wei, Wei; Huo, Xiaona; Shi, Linyu; Tang, Cheng; Liang, Dan; Wang, Yan; Nie, Yan-Hong; Zhang, Chen-Chen; Yao, Xuan; Wang, Xing; Zhou, Changyang; Ying, Wenqin; Wang, Qifang; Chen, Ren-Chao; Shen, Qi; Xu, Guo-Liang; Li, Jinsong; Sun, Qiang; Xiong, Zhi-Qi; Yang, Hui
2017-07-01
The CRISPR/Cas9 system is an efficient gene-editing method, but the majority of gene-edited animals showed mosaicism, with editing occurring only in a portion of cells. Here we show that single gene or multiple genes can be completely knocked out in mouse and monkey embryos by zygotic injection of Cas9 mRNA and multiple adjacent single-guide RNAs (spaced 10-200 bp apart) that target only a single key exon of each gene. Phenotypic analysis of F0 mice following targeted deletion of eight genes on the Y chromosome individually demonstrated the robustness of this approach in generating knockout mice. Importantly, this approach delivers complete gene knockout at high efficiencies (100% on Arntl and 91% on Prrt2) in monkey embryos. Finally, we could generate a complete Prrt2 knockout monkey in a single step, demonstrating the usefulness of this approach in rapidly establishing gene-edited monkey models.
Warth, R; Garcia Alzamora, M; Kim, J K; Zdebik, A; Nitschke, R; Bleich, M; Gerlach, U; Barhanin, J; Kim, S J
2002-03-01
KCNE1 (IsK, minK) co-assembles with KCNQ1 (KvLQT1) to form voltage-dependent K(+) channels. Both KCNQ1 and KCNE1 are expressed in epithelial cells of gut and exocrine pancreas. We examined the role of KCNQ1/KCNE1 in Cl(-) secretion in small and large intestine and exocrine pancreas using the KCNE1 knockout mouse. Immunofluorescence revealed a similar basolateral localization of KCNQ1 in jejunum and colon of KCNE1 wild-type and knockout mice. Electrogenic Cl(-) secretion in the colon was not affected by gene disruption of KCNE1; in jejunum forskolin-induced short-circuit current was some 40% smaller but without being significantly different. Inhibition of KCNQ1 channels by 293B (IC(50) 1 micromol l(-1)) and by IKS224 (IC(50) 14 nmol l(-1)) strongly diminished intestinal Cl(-) secretion. In exocrine pancreas of wild-type mice, KCNQ1 was predominantly located at the basolateral membrane. In KCNE1 knockout mice, however, the basolateral staining was less pronounced and the distribution of secretory granules was irregular. A slowly activating and 293B-sensitive K(+) current was activated via cholinergic stimulation in pancreatic acinar cells of wild-type mice. In KCNE1 knockout mice this K(+) current was strongly reduced. In conclusion intestinal Cl(-) secretion is independent from KCNE1 but requires KCNQ1. In mouse pancreatic acini KCNQ1 probably co-assembled with KCNE1 leads to a voltage-dependent K(+) current that might be of importance for electrolyte and enzyme secretion.
Effects of vitamin D receptor knockout on cornea epithelium gap junctions.
Lu, Xiaowen; Watsky, Mitchell A
2014-05-06
Gap junctions are present in all corneal cell types and have been shown to have a critical role in cell phenotype determination. Vitamin D has been shown to influence cell differentiation, and recent work demonstrates the presence of vitamin D in the ocular anterior segment. This study measured and compared gap junction diffusion coefficients among different cornea epithelium phenotypes and in keratocytes using a noninvasive technique, fluorescence recovery after photobleaching (FRAP), and examined the influence of vitamin D receptor (VDR) knockout on epithelial gap junction communication in intact corneas. Previous gap junction studies in cornea epithelium and keratocytes were performed using cultured cells or ex vivo invasive techniques. These invasive techniques were unable to measure diffusion coefficients and likely were disruptive to normal cell physiology. Corneas from VDR knockout and control mice were stained with 5(6)-carboxyfluorescein diacetate (CFDA). Gap junction diffusion coefficients of the corneal epithelium phenotypes and of keratocytes, residing in intact corneas, were detected using FRAP. Diffusion coefficients equaled 18.7, 9.8, 5.6, and 4.2 μm(2)/s for superficial squamous cells, middle wing cells, basal cells, and keratocytes, respectively. Corneal thickness, superficial cell size, and the superficial squamous cell diffusion coefficient of 10-week-old VDR knockout mice were significantly lower than those of control mice (P < 0.01). The superficial cell diffusion coefficient of heterozygous mice was significantly lower than control mice (P < 0.05). Our results demonstrate differences in gap junction dye spread among the epithelial cell phenotypes, mirroring the epithelial developmental axis. The VDR knockout influences previously unreported cell-to-cell communication in superficial epithelium.
Luhmann, Ulrich F O; Neidhardt, John; Kloeckener-Gruissem, Barbara; Schäfer, Nikolaus F; Glaus, Esther; Feil, Silke; Berger, Wolfgang
2008-05-01
X-linked Norrie disease, familial exudative vitreoretinopathy (FEVR), Coat's disease and retinopathy of prematurity are severe human eye diseases and can all be caused by mutations in the Norrie disease pseudoglioma gene. They all show vascular defects and characteristic features of retinal hypoxia. Only Norrie disease displays additional neurological symptoms, which are sensorineural hearing loss and mental retardation. In the present study, we analysed transcript levels of the ligand Norrin (Ndph) and its two receptors Frizzled-4 (Fzd4) and LDL-related protein receptor 5 (Lrp5) in six different brain regions (cerebellum, cortex, hippocampus, olfactory bulb, pituitary and brain stem) of 6- to 8-month-old wild-type and Ndph knockout mice by quantitative real-time PCR. No effect of the Ndph knockout allele on Fzd4 or Lrp5 receptor expression was found. Furthermore, no alterations of the transcript levels of three hypoxia-regulated angiogenic factors (Vegfa, Itgrb3 and Tie1) were observed in the absence of Norrin. Interestingly, we identified significant differences in Ndph, Fzd4 and Lrp5 transcript levels in brain regions of wild-type mice and observed highest expression of Norrin and frizzled-4 in cerebellum. Transcript analyses were correlated with morphological data obtained from cerebellum and immunohistochemical studies of blood vessels in different brain regions. Vessel density was reduced in the cerebellum of Ndph knockout mice but the number of Purkinje and granular cells was not altered. This provides the first description of a brain phenotype in Ndph knockout mice, which will help to elucidate the role of Norrin in the brain.
Menegola, Milena; Clark, Eliana; Trimmer, James S
2012-06-01
To gain insights into the phenotype of voltage-gated potassium (Kv)1.1 and Kv4.2 knockout mice, we used immunohistochemistry to analyze the expression of component principal or α subunits and auxiliary subunits of neuronal Kv channels in knockout mouse brains. Genetic ablation of the Kv1.1 α subunit did not result in compensatory changes in the expression levels or subcellular distribution of related ion channel subunits in hippocampal medial perforant path and mossy fiber nerve terminals, where high levels of Kv1.1 are normally expressed. Genetic ablation of the Kv4.2 α subunit did not result in altered neuronal cytoarchitecture of the hippocampus. Although Kv4.2 knockout mice did not exhibit compensatory changes in the expression levels or subcellular distribution of the related Kv4.3 α subunit, we found dramatic decreases in the cellular and subcellular expression of specific Kv channel interacting proteins (KChIPs) that reflected their degree of association and colocalization with Kv4.2 in wild-type mouse and rat brains. These studies highlight the insights that can be gained by performing detailed immunohistochemical analyses of Kv channel knockout mouse brains. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
Effects of heat and bromochloroacetic acid on male reproduction in heat shock factor-1 gene knockout mice.
Luft JC1, IJ Benjamin2, JB Garges1 and DJ Dix1. 1Reproductive Toxicology Division, USEPA, RTP, NC, 27711 and 2Dept of Internal Medicine, Univ.of Texas Southwestern Med C...
Yuskaitis, Christopher J; Mines, Marjelo A; King, Margaret K; Sweatt, J David; Miller, Courtney A; Jope, Richard S
2010-02-15
Fragile X syndrome (FXS), the most common form of inherited mental retardation and a genetic cause of autism, results from mutated fragile X mental retardation-1 (Fmr1). This study examined the effects on glycogen synthase kinase-3 (GSK3) of treatment with a metabotropic glutamate receptor (mGluR) antagonist, MPEP, and the GSK3 inhibitor, lithium, in C57Bl/6 Fmr1 knockout mice. Increased mGluR signaling may contribute to the pathology of FXS, and the mGluR5 antagonist MPEP increased inhibitory serine-phosphorylation of brain GSK3 selectively in Fmr1 knockout mice but not in wild-type mice. Inhibitory serine-phosphorylation of GSK3 was lower in Fmr1 knockout, than wild-type, mouse brain regions and was increased by acute or chronic lithium treatment, which also increased hippocampal brain-derived neurotrophic factor levels. Fmr1 knockout mice displayed alterations in open-field activity, elevated plus-maze, and passive avoidance, and these differences were ameliorated by chronic lithium treatment. These findings support the hypothesis that impaired inhibition of GSK3 contributes to the pathogenesis of FXS and support GSK3 as a potential therapeutic target.
Bentzon, Jacob F; Weile, Charlotte; Sondergaard, Claus S; Hindkjaer, Johnny; Kassem, Moustapha; Falk, Erling
2006-12-01
Recent studies of bone marrow (BM)-transplanted apoE knockout (apoE-/-) mice have concluded that a substantial fraction of smooth muscle cells (SMCs) in atherosclerosis arise from circulating progenitor cells of hematopoietic origin. This pathway, however, remains controversial. In the present study, we reexamined the origin of plaque SMCs in apoE-/- mice by a series of BM transplantations and in a novel model of atherosclerosis induced in surgically transferred arterial segments. We analyzed plaques in lethally irradiated apoE-/- mice reconstituted with sex-mismatched BM cells from eGFP+ apoE-/- mice, which ubiquitously express enhanced green fluorescent protein (eGFP), but did not find a single SMC of donor BM origin among approximately 10,000 SMC profiles analyzed. We then transplanted arterial segments between eGFP+ apoE-/- and apoE-/- mice (isotransplantation except for the eGFP transgene) and induced atherosclerosis focally within the graft by a recently invented collar technique. No eGFP+ SMCs were found in plaques that developed in apoE-/- artery segments grafted into eGFP+ apoE-/- mice. Concordantly, 96% of SMCs were eGFP+ in plaques induced in eGFP+ apoE-/- artery segments grafted into apoE-/- mice. These experiments show that SMCs in atherosclerotic plaques are exclusively derived from the local vessel wall in apoE-/- mice.
Liu, Jing; Hernandez-Ono, Antonio; Graham, Mark J; Galton, Valerie Anne; Ginsberg, Henry N
2016-07-01
Plasma levels of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (ApoA-I) are reduced in individuals with defective insulin signaling. Initial studies using liver-specific insulin receptor (InsR) knockout mice identified reduced expression of type 1 deiodinase (Dio1) as a potentially novel link between defective hepatic insulin signaling and reduced expression of the ApoA-I gene. Our objective was to examine the regulation of ApoA-I expression by Dio1. Acute inactivation of InsR by adenoviral delivery of Cre recombinase to InsR floxed mice reduced HDL-C and expression of both ApoA-I and Dio1. Overexpression of Dio1 in InsR knockout mice restored HDL-C and ApoA-I levels and increased the expression of ApoA-I. Dio1 knockout mice had low expression of ApoA-I and reduced serum levels of HDL-C and ApoA-I. Treatment of C57BL/6J mice with antisense to Dio1 reduced ApoA-I mRNA, HDL-C, and serum ApoA-I. Hepatic 3,5,3'-triiodothyronine content was normal or elevated in InsR knockout mice or Dio1 knockout mice. Knockdown of either InsR or Dio1 by siRNA in HepG2 cells decreased the expression of ApoA-I and ApoA-I synthesis and secretion. siRNA knockdown of InsR or Dio1 decreased activity of a region of the ApoA-I promoter lacking thyroid hormone response elements (region B). Electrophoretic mobility shift assay demonstrated that reduced Dio1 expression decreased the binding of nuclear proteins to region B. Reductions in Dio1 expression reduce the expression of ApoA-I in a 3,5,3'-triiodothyronine-/thyroid hormone response element-independent manner. © 2016 American Heart Association, Inc.
Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C
2015-03-01
Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Learning and memory depend on fibroblast growth factor receptor 2 functioning in hippocampus.
Stevens, Hanna E; Jiang, Ginger Y; Schwartz, Michael L; Vaccarino, Flora M
2012-06-15
Fibroblast growth factor (FGF) signaling controls self-renewal of neural stem cells during embryonic telencephalic development. FGF receptor 2 (FGFR2) has a significant role in the production of cortical neurons during embryogenesis, but its role in the hippocampus during development and in adulthood has not been described. Here we dissociate the role of FGFR2 in the hippocampus during development and during adulthood with the use of embryonic knockout and inducible knockout mice. Embryonic knockout of FGFR2 causes a reduction of hippocampal volume and impairment in adult spatial memory in mice. Spatial reference memory, as assessed by performance on the water maze probe trial, was correlated with reduced hippocampal parvalbumin+ cells, whereas short-term learning was correlated with reduction in immature neurons in the dentate gyrus. Furthermore, short-term learning and newly generated neurons in the dentate gyrus were deficient even when FGFR2 was lacking only in adulthood. Taken together, these findings support a dual role for FGFR2 in hippocampal short-term learning and long-term reference memory, which appear to depend on the abundance of two separate cellular components, parvalbumin interneurons and newly generated granule cells in the hippocampus. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Abnormal Sleep/Wake Dynamics in Orexin Knockout Mice
Diniz Behn, Cecilia G.; Klerman, Elizabeth B.; Mochizuki, Takatoshi; Lin, Shih-Chieh; Scammell, Thomas E.
2010-01-01
Study Objectives: Narcolepsy with cataplexy is caused by a loss of orexin (hypocretin) signaling, but the physiologic mechanisms that result in poor maintenance of wakefulness and fragmented sleep remain unknown. Conventional scoring of sleep cannot reveal much about the process of transitioning between states or the variations within states. We developed an EEG spectral analysis technique to determine whether the state instability in a mouse model of narcolepsy reflects abnormal sleep or wake states, faster movements between states, or abnormal transitions between states. Design: We analyzed sleep recordings in orexin knockout (OXKO) mice and wild type (WT) littermates using a state space analysis technique. This non-categorical approach allows quantitative and unbiased examination of sleep/wake states and state transitions. Measurements and Results: OXKO mice spent less time in deep, delta-rich NREM sleep and in active, theta-rich wake and instead spent more time near the transition zones between states. In addition, while in the midst of what should be stable wake, OXKO mice initiated rapid changes into NREM sleep with high velocities normally seen only in transition regions. Consequently, state transitions were much more frequent and rapid even though the EEG progressions during state transitions were normal. Conclusions: State space analysis enables visualization of the boundaries between sleep and wake and shows that narcoleptic mice have less distinct and more labile states of sleep and wakefulness. These observations provide new perspectives on the abnormal state dynamics resulting from disrupted orexin signaling and highlight the usefulness of state space analysis in understanding narcolepsy and other sleep disorders. Citation: Diniz Behn CG; Klerman EB; Mochizuki T; Lin S; Scammell TE. Abnormal sleep/wake dynamics in orexin knockout mice. SLEEP 2010;33(3):297-306. PMID:20337187
Arranz, Amaia M.; Perkins, Katherine L.; Irie, Fumitoshi; Lewis, David P.; Hrabe, Jan; Xiao, Fanrong; Itano, Naoki; Kimata, Koji
2014-01-01
Hyaluronan (HA), a large anionic polysaccharide (glycosaminoglycan), is a major constituent of the extracellular matrix of the adult brain. To address its function, we examined the neurophysiology of knock-out mice deficient in hyaluronan synthase (Has) genes. Here we report that these Has mutant mice are prone to epileptic seizures, and that in Has3−/− mice, this phenotype is likely derived from a reduction in the size of the brain extracellular space (ECS). Among the three Has knock-out models, namely Has3−/−, Has1−/−, and Has2CKO, the seizures were most prevalent in Has3−/− mice, which also showed the greatest HA reduction in the hippocampus. Electrophysiology in Has3−/− brain slices demonstrated spontaneous epileptiform activity in CA1 pyramidal neurons, while histological analysis revealed an increase in cell packing in the CA1 stratum pyramidale. Imaging of the diffusion of a fluorescent marker revealed that the transit of molecules through the ECS of this layer was reduced. Quantitative analysis of ECS by the real-time iontophoretic method demonstrated that ECS volume was selectively reduced in the stratum pyramidale by ∼40% in Has3−/− mice. Finally, osmotic manipulation experiments in brain slices from Has3−/− and wild-type mice provided evidence for a causal link between ECS volume and epileptiform activity. Our results provide the first direct evidence for the physiological role of HA in the regulation of ECS volume, and suggest that HA-based preservation of ECS volume may offer a novel avenue for development of antiepileptogenic treatments. PMID:24790187
Su, Shengan; Lu, Yunbi; Zhang, Weiping
2013-05-01
To investigate the effects of aquaporin-4 (AQP4) gene knockout on the behavior changes and cerebral morphology during aging in mice,and to compare that of young and aged mice between AQP4 knockout mice (AQP4(-/-)) and wild type mice (AQP4(+/+)). Fifty-eight CD-1 mice were divided into four groups: young (2-3 months old) AQP4(-/-), aged (17-19 months old) AQP4(-/-), young AQP4(+/+) and aged AQP4(+/+). The activity levels and exploring behavior of mice were tested in open field. The neurons were stained with toluidine blue and NeuN, the astrocytes and microglia were stained with GFAP and Iba-1, respectively. The morphological changes of neuron, astrocyte and microglia were then analyzed. Compared with young mice, the total walking distance in open field of aged AQP4(+/+) mice and aged AQP4(-/-) mice decreased 41.2% and 44.1%, respectively (P<0.05); while there was no difference in the ratio of distance and retention time in the central area of open field. The density of neuron in cortex of aged AQP4(+/+) mice and aged AQP4(-/-) mice decreased 19.6% and 15.8%, respectively (P<0.05), while there was no difference in the thickness of neuron cell body in hippocampus CA1 region. The density of astrocyte in hippocampus CA3 region of aged AQP4(+/+) mice and aged AQP4(-/-) mice increased 57.7% and 64.3%, respectively (P<0.001), while there was no difference in the area of astrocyte. The area of microglia in hippocampus CA3 region of aged AQP4(+/+) mice and aged AQP4(-/-) mice increased 46.9% and 52.0%, respectively (P<0.01), while there was no difference in the density of microglia. Compared with AQP4(+/+) mice, the young and aged AQP4(-/-) mice showed smaller area of astrocyte in hippocampus CA3 region, reduced 18.0% in young mice and 23.6% in aged mice. There was no difference between AQP4(+/+) mice and AQP4(-/-) mice for other observed indexes. AQP4 may be involved in change of astrocyte and astrocyte-related behaviors during aging. AQP4 gene knockout may have limited effects on the change of neuron, microglia and most neuronal behaviors in aging process.
Loke, Wai Mun; Proudfoot, Julie M; Hodgson, Jonathan M; McKinley, Allan J; Hime, Neil; Magat, Maria; Stocker, Roland; Croft, Kevin D
2010-04-01
Animal and clinical studies have suggested that polyphenols in fruits, red wine, and tea may delay the development of atherosclerosis through their antioxidant and anti-inflammatory properties. We investigated whether individual dietary polyphenols representing different polyphenolic classes, namely quercetin (flavonol), (-)-epicatechin (flavan-3-ol), theaflavin (dimeric catechin), sesamin (lignan), or chlorogenic acid (phenolic acid), reduce atherosclerotic lesion formation in the apolipoprotein E (ApoE)(-/-) gene-knockout mouse. Quercetin and theaflavin (64-mg/kg body mass daily) significantly attenuated atherosclerotic lesion size in the aortic sinus and thoracic aorta (P<0.05 versus ApoE(-/-) control mice). Quercetin significantly reduced aortic F(2)-isoprostane, vascular superoxide, vascular leukotriene B(4), and plasma-sP-selectin concentrations; and augmented vascular endothelial NO synthase activity, heme oxygenase-1 protein, and urinary nitrate excretion (P<0.05 versus control ApoE(-/-) mice). Theaflavin showed similar, although less extensive, significant effects. Although (-)-epicatechin significantly reduced F(2)-isoprostane, superoxide, and endothelin-1 production (P<0.05 versus control ApoE(-/-) mice), it had no significant effect on lesion size. Sesamin and chlorogenic acid treatments exerted no significant effects. Quercetin, but not (-)-epicatechin, significantly increased the expression of heme oxygenase-1 protein in lesions versus ApoE(-/-) controls. Specific dietary polyphenols, in particular quercetin and theaflavin, may attenuate atherosclerosis in ApoE(-/-) gene-knockout mice by alleviating inflammation, improving NO bioavailability, and inducing heme oxygenase-1. These data suggest that the cardiovascular protection associated with diets rich in fruits, vegetables, and some beverages may in part be the result of flavonoids, such as quercetin.
2017-01-09
death, astrogliosis, microgliosis, scattered necrotic cellular debris, and inflammatory cell infiltrates. This model of ZIKV pathogenesis will be...these models is they utilize immunodeficient knockout mice lacking key compo- nents of the innate antiviral response. We describe the use of a lethal...murine model for ZIKV where the innate response of immunocompetent mice is suppressed only at the time of infection. We show that the mice develop
Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A.; Gatley, J.; Gifford, A.
The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with amore » half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.« less
Trigo, José Manuel; Renoir, Thibault; Lanfumey, Laurence; Hamon, Michel; Lesch, Klaus-Peter; Robledo, Patricia; Maldonado, Rafael
2007-09-15
The neurobiological mechanism underlying the reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) remains unclear. The aim of the present study was to determine the contribution of the serotonin transporter (SERT) in MDMA self-administration behavior by using knockout (KO) mice deficient in SERT. Knockout mice and wild-type (WT) littermates were trained to acquire intravenous self-administration of MDMA (0, .03, .06, .125, and .25 mg/kg/infusion) on a fixed ratio 1 (FR1) schedule of reinforcement. Additional groups of mice were trained to obtain food and water to rule out operant responding impairments. Microdialysis studies were performed to evaluate dopamine (DA) and serotonin (5-HT) extracellular levels in the nucleus accumbens (NAC) and prefrontal cortex (PFC), respectively, after acute MDMA (10 mg/kg). None of the MDMA doses tested maintained intravenous self-administration in KO animals, whereas WT mice acquired responding for MDMA. Acquisition of operant responding for food and water was delayed in KO mice, but no differences between genotypes were observed on the last day of training. MDMA increased DA extracellular levels to a similar extent in the NAC of WT and KO mice. Conversely, extracellular concentrations of 5-HT in the PFC were increased following MDMA only in WT mice. These findings provide evidence for the specific involvement of SERT in MDMA reinforcing properties.
Yu, Xiaochun; Cui, Changxiang; Yang, Zhaokun; Shi, Hong; Jing, Xianghong; Zhu, Bing
2016-01-01
Acupuncture at homotopic acupoints or heterotopic acupoints is known to either inhibit or facilitate gastrointestinal motility, depending on the acupoint location. However, little effort has been made to investigate the roles of specific receptors (such as adrenergic and muscarinic acetylcholine receptors) in mediating the effects of acupuncture at heterotopic and homotopic acupoints. Different adrenergic receptor subtypes or cholinergic receptor subtypes are predominantly expressed in various sections of the gut, resulting in variations between the effects of acupuncture at heterotopic or homotopic acupoints on gastrointestinal motility. Here, we investigated the role of β1/β2 receptors and M2/M3 receptors in gastrointestinal motility regulated by acupuncture at ST37, a heterotopic acupoint, and ST25, a homotopic acupoint, by simultaneously recording intraluminal pressures in the distal colon and stomach or jejunum and examining fecal phenol red excretion in β1/2 receptor-knockout mice and M2/3 receptor-knockout mice. We found that knockout of the M2/3 receptor significantly inhibited ST37 acupuncture-induced enhancement of gastric motility, jejunal motility, and colonic motility. Additionally, knocking out of the β1/2 receptor significantly diminished the ST25 acupuncture-induced inhibition of gastric motility and jejunal motility without significantly altering the enhancement of colonic motility induced by acupuncture at ST25. Acupuncture at ST37 significantly accelerated gastrointestinal transition in β1/2 receptor-knockout mice and their wild-type littermates. However, this acceleration of gastrointestinal transition was markedly diminished in M2/3 receptor-knockout mice relative to their wild-type littermates. Acupuncture at ST25 significantly increased gastrointestinal transition in β1/2 receptor-knockout mice and significantly decreased gastrointestinal transition in M2/3 receptor-knockout mice without altering gastrointestinal transition in wild-type littermates of either. Our study revealed that M2/3 receptors are required for the gastrointestinal motility associated with whole gastrointestinal transition enhanced by acupuncture at heterotopic acupoints, whereas β1/2 receptors are required for the same gastrointestinal motility processes inhibited by acupuncture at homotopic acupoints. Therefore, our findings reveal important biological mechanisms underlying acupuncture treatment of disorders involving gastrointestinal motility dysfunction. PMID:27978539
Steidl, Stephan; Lee, Esther; Wasserman, David; Yeomans, John S
2013-09-01
Lesions of the pedunculopontine tegmental nucleus (PPT), one of two sources of cholinergic input to the ventral tegmental area (VTA), block conditioned place preference (CPP) for morphine in drug-naïve rats. M5 muscarinic cholinergic receptors, expressed by midbrain dopamine neurons, are critical for the ability of morphine to increase nucleus accumbens dopamine levels and locomotion, and for morphine CPP. This suggests that M5-mediated PPT cholinergic inputs to VTA dopamine neurons critically contribute to morphine-induced dopamine activation, reward and locomotion. In the current study we tested whether food deprivation, which reduces PPT contribution to morphine CPP in rats, could also reduce M5 contributions to morphine-induced locomotion in mice. Acute 18-h food deprivation reversed the phenotypic differences usually seen between non-deprived wild-type and M5 knockout mice. That is, food deprivation increased morphine-induced locomotion in M5 knockout mice but reduced morphine-induced locomotion in wild-type mice. Food deprivation increased saline-induced locomotion equally in wild-type and M5 knockout mice. Based on these findings, we suggest that food deprivation reduces the contribution of M5-mediated PPT cholinergic inputs to the VTA in morphine-induced locomotion and increases the contribution of a PPT-independent pathway. The contributions of cholinergic, dopaminergic and GABAergic neurons to the effects of acute food deprivation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong
2016-01-01
Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice ( n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD.
Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong
2016-01-01
Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice (n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD. PMID:28217289
Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema
NASA Astrophysics Data System (ADS)
Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.
2009-04-01
Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.
Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Fmr1 Knockout Mice
Rotschafer, Sarah E.
2017-01-01
Abstract Fragile X syndrome (FXS), the most common monogenic cause of autism, is often associated with hypersensitivity to sound. Several studies have shown abnormalities in the auditory brainstem in FXS; however, the emergence of these auditory phenotypes during development has not been described. Here, we investigated the development of phenotypes in FXS model [Fmr1 knockout (KO)] mice in the ventral cochlear nucleus (VCN), medial nucleus of the trapezoid body (MNTB), and lateral superior olive (LSO). We studied features of the brainstem known to be altered in FXS or Fmr1 KO mice, including cell size and expression of markers for excitatory (VGLUT) and inhibitory (VGAT) synapses. We found that cell size was reduced in the nuclei with different time courses. VCN cell size is normal until after hearing onset, while MNTB and LSO show decreases earlier. VGAT expression was elevated relative to VGLUT in the Fmr1 KO mouse MNTB by P6, before hearing onset. Because glial cells influence development and are altered in FXS, we investigated their emergence in the developing Fmr1 KO brainstem. The number of microglia developed normally in all three nuclei in Fmr1 KO mice, but we found elevated numbers of astrocytes in Fmr1 KO in VCN and LSO at P14. The results indicate that some phenotypes are evident before spontaneous or auditory activity, while others emerge later, and suggest that Fmr1 acts at multiple sites and time points in auditory system development. PMID:29291238
McDonald, S A; Palmen, M J; Van Rees, E P; MacDonald, T T
1997-01-01
One of the major advances in the understanding of inflammatory bowel disease has been the observation that mice with immunoregulatory defects, such as interleukin-2 knockout (IL-2 -/-) mice, develop spontaneous gut inflammation. Here we have characterized the immune response in the ileum, caecum and colon of these mice before and after the onset of colitis by examining the cellular infiltrate, the cytokines produced by these cells and the mucosal vascular addressin MAdCAM-1. IL-2 -/- mice developed colitis after 35 days of age and before this the mice were apparently healthy. IL-2 -/- mice aged over 35 days with colitis had large numbers of CD4+, CD8+, alpha beta T-cell receptor (TCR)+ and gamma delta TCR+ T cells, macrophages, dendritic cells and MAdCAM-1+ endothelial cells in the caecum and colon. This was associated with an increase in the number of interferon-gamma (IFN-gamma), IL-1 and tumour necrosis factor-alpha (TNF-alpha) transcripts and a decrease in IL-4 and IL-10 transcripts. Treatment of IL-2 -/- mice with cyclosporin A significantly delayed mortality. Interestingly, IL-2 -/- mice under 35 days, although healthy, did show some subtle immunological signs of preclinical disease. There was a significant increase in the number of macrophages and dendritic cells in the colonic lamina propria and increased mRNA for IL-1 and TNF-alpha. There were also increased numbers of MAdCAM-1+ endothelial cells, but IFN-gamma transcripts were not elevated. These results suggest that T-cell-mediated colitis in IL-2 -/- mice may be secondary to an initial non-specific inflammation. Images Figure 2 Figure 5 PMID:9203968
Bakker, Elvira R M; Raghoebir, Lalini; Franken, Patrick F; Helvensteijn, Werner; van Gurp, Léon; Meijlink, Frits; van der Valk, Martin A; Rottier, Robbert J; Kuipers, Ernst J; van Veelen, Wendy; Smits, Ron
2012-09-01
Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages. Copyright © 2012 Elsevier Inc. All rights reserved.
Griffin, Michael T; Matsui, Minoru; Ostrom, Rennolds S; Ehlert, Frederick J
2009-10-01
We explored whether the M(2) muscarinic receptor in the guinea pig ileum elicits a highly potent, direct-contractile response, like that from the M(3) muscarinic receptor knockout mouse. First, we characterized the irreversible receptor-blocking activity of 4-DAMP mustard in ileum from muscarinic receptor knockout mice to verify its M(3) selectivity. Then, we used 4-DAMP mustard to inactivate M(3) responses in the guinea pig ileum to attempt to reveal direct, M(2) receptor-mediated contractions. The muscarinic agonist, oxotremorine-M, elicited potent contractions in ileum from wild-type, M(2) receptor knockout, and M(3) receptor knockout mice characterized by negative log EC(50) (pEC (50)) values +/- SEM of 6.75 +/- 0.03, 6.26 +/- 0.05, and 6.99 +/- 0.08, respectively. The corresponding E (max) values in wild-type and M(2) receptor knockout mice were approximately the same, but that in the M(3) receptor knockout mouse was only 36% of wild type. Following 4-DAMP mustard treatment, the concentration-response curve of oxotremorine-M in wild-type ileum resembled that of the M(3) knockout mouse in terms of its pEC (50), E (max), and inhibition by selective muscarinic antagonists. Thus, 4-DAMP mustard treatment appears to inactivate M(3) responses selectively and renders the muscarinic contractile behavior of the wild-type ileum similar to that of the M(3) knockout mouse. Following 4-DAMP mustard treatment, the contractile response of the guinea pig ileum to oxotremorine-M exhibited low potency and a competitive-antagonism profile consistent with an M(3) response. The guinea pig ileum, therefore, lacks a direct, highly potent, M(2)-contractile component but may have a direct, lower potency M(2) component.
Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min
2013-01-01
ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840
Rossi, Claudia; Marzano, Valeria; Consalvo, Ada; Zucchelli, Mirco; Levi Mortera, Stefano; Casagrande, Viviana; Mavilio, Maria; Sacchetta, Paolo; Federici, Massimo; Menghini, Rossella; Urbani, Andrea; Ciavardelli, Domenico
2018-02-01
The tissue inhibitor of metalloproteinase TIMP3 is a stromal protein that restrains the activity of both protease and receptor in the extracellular matrix and has been found to be down-regulated in diabetic nephropathy (DN), the leading cause of end-stage renal disease in developed countries. In order to gain deeper insights on the association of loss of TIMP3 and DN, we performed differential proteomic analysis of kidney and blood metabolic profiling of wild-type and Timp3-knockout mice before and after streptozotocin (STZ) treatment, widely used to induce insulin deficiency and hyperglycemia. Kidney proteomic data and blood metabolic profiles suggest significant alterations of peroxisomal and mitochondrial fatty acids β-oxidation in Timp3-knockout mice compared to wild-type mice under basal condition. These alterations were exacerbated in response to STZ treatment. Proteomic and metabolomic approaches showed that loss of TIMP3 alone or in combination with STZ treatment results in significant alterations of kidney lipid metabolism and peripheral acylcarnitine levels, supporting the idea that loss of TIMP3 may generate a phenotype more prone to DN.
Fatal breathing dysfunction in a mouse model of Leigh syndrome.
Quintana, Albert; Zanella, Sebastien; Koch, Henner; Kruse, Shane E; Lee, Donghoon; Ramirez, Jan M; Palmiter, Richard D
2012-07-01
Leigh syndrome (LS) is a subacute necrotizing encephalomyelopathy with gliosis in several brain regions that usually results in infantile death. Loss of murine Ndufs4, which encodes NADH dehydrogenase (ubiquinone) iron-sulfur protein 4, results in compromised activity of mitochondrial complex I as well as progressive neurodegenerative and behavioral changes that resemble LS. Here, we report the development of breathing abnormalities in a murine model of LS. Magnetic resonance imaging revealed hyperintense bilateral lesions in the dorsal brain stem vestibular nucleus (VN) and cerebellum of severely affected mice. The mutant mice manifested a progressive increase in apnea and had aberrant responses to hypoxia. Electrophysiological recordings within the ventral brain stem pre-Bötzinger respiratory complex were also abnormal. Selective inactivation of Ndufs4 in the VN, one of the principle sites of gliosis, also led to breathing abnormalities and premature death. Conversely, Ndufs4 restoration in the VN corrected breathing deficits and prolonged the life span of knockout mice. These data demonstrate that mitochondrial dysfunction within the VN results in aberrant regulation of respiration and contributes to the lethality of Ndufs4-knockout mice.
The Essential Role of Mbd5 in the Regulation of Somatic Growth and Glucose Homeostasis in Mice
Du, Yarui; Liu, Bo; Guo, Fan; Xu, Guifang; Ding, Yuqiang; Liu, Yong; Sun, Xin; Xu, Guoliang
2012-01-01
Methyl-CpG binding domain protein 5 (MBD5) belongs to the MBD family proteins, which play central roles in transcriptional regulation and development. The significance of MBD5 function is highlighted by recent studies implicating it as a candidate gene involved in human 2q23.1 microdeletion syndrome. To investigate the physiological role of Mbd5, we generated knockout mice. The Mbd5-deficient mice showed growth retardation, wasting and pre-weaning lethality. The observed growth retardation was associated with the impairment of GH/IGF-1 axis in Mbd5-null pups. Conditional knockout of Mbd5 in the brain resulted in the similar phenotypes as whole body deletion, indicating that Mbd5 functions in the nervous system to regulate postnatal growth. Moreover, the mutant mice also displayed enhanced glucose tolerance and elevated insulin sensitivity as a result of increased insulin signaling, ultimately resulting in disturbed glucose homeostasis and hypoglycemia. These results indicate Mbd5 as an essential factor for mouse postnatal growth and maintenance of glucose homeostasis. PMID:23077600
The essential role of Mbd5 in the regulation of somatic growth and glucose homeostasis in mice.
Du, Yarui; Liu, Bo; Guo, Fan; Xu, Guifang; Ding, Yuqiang; Liu, Yong; Sun, Xin; Xu, Guoliang
2012-01-01
Methyl-CpG binding domain protein 5 (MBD5) belongs to the MBD family proteins, which play central roles in transcriptional regulation and development. The significance of MBD5 function is highlighted by recent studies implicating it as a candidate gene involved in human 2q23.1 microdeletion syndrome. To investigate the physiological role of Mbd5, we generated knockout mice. The Mbd5-deficient mice showed growth retardation, wasting and pre-weaning lethality. The observed growth retardation was associated with the impairment of GH/IGF-1 axis in Mbd5-null pups. Conditional knockout of Mbd5 in the brain resulted in the similar phenotypes as whole body deletion, indicating that Mbd5 functions in the nervous system to regulate postnatal growth. Moreover, the mutant mice also displayed enhanced glucose tolerance and elevated insulin sensitivity as a result of increased insulin signaling, ultimately resulting in disturbed glucose homeostasis and hypoglycemia. These results indicate Mbd5 as an essential factor for mouse postnatal growth and maintenance of glucose homeostasis.
Zhao, Liangliang; Li, Yafeng; Song, Delu; Song, Ying; Theurl, Milan; Wang, Chenguang; Cwanger, Alyssa; Su, Guanfang; Dunaief, Joshua L.
2015-01-01
The retina can be shielded by the blood-retinal barrier. Because photoreceptors are damaged by excess iron, it is important to understand whether the blood-retinal barrier protects against high serum iron levels. Bone morphogenic protein 6 (Bmp6) knockout mice have serum iron overload. Herein, we tested whether the previously documented retinal iron accumulation in Bmp6 knockout mice might result from the high serum iron levels or, alternatively, low levels of retinal hepcidin, an iron regulatory hormone whose transcription can be up-regulated by Bmp6. Furthermore, to determine whether increases in serum iron can elevate retinal iron levels, we i.v. injected iron into wild-type mice. Retinas were analyzed by real-time quantitative PCR and immunofluorescence to assess the levels of iron-regulated genes/proteins and oxidative stress. Retinal hepcidin mRNA levels in Bmp6 knockout retinas were the same as, or greater than, those in age-matched wild-type retinas, indicating that Bmp6 knockout does not cause retinal hepcidin deficiency. Changes in mRNA levels of L ferritin and transferrin receptor indicated increased retinal iron levels in i.v. iron-injected wild-type mice. Oxidative stress markers were elevated in photoreceptors of mice receiving i.v. iron. These findings suggest that elevated serum iron levels can overwhelm local retinal iron regulatory mechanisms. PMID:25174877
Mice Expressing RHAG and RHD Human Blood Group Genes
Goossens, Dominique; da Silva, Nelly; Metral, Sylvain; Cortes, Ulrich; Callebaut, Isabelle; Picot, Julien; Mouro-Chanteloup, Isabelle; Cartron, Jean-Pierre
2013-01-01
Anti-RhD prophylaxis of haemolytic disease of the fetus and newborn (HDFN) is highly effective, but as the suppressive mechanism remains uncertain, a mouse model would be of interest. Here we have generated transgenic mice expressing human RhAG and RhD erythrocyte membrane proteins in the presence and, for human RhAG, in the absence, of mouse Rhag. Human RhAG associates with mouse Rh but not mouse Rhag on red blood cells. In Rhag knockout mice transgenic for human RHAG, the mouse Rh protein is “rescued” (re-expressed), and co-immunoprecipitates with human RhAG, indicating the presence of hetero-complexes which associate mouse and human proteins. RhD antigen was expressed from a human RHD gene on a BAC or from RHD cDNA under control of β-globin regulatory elements. RhD was never observed alone, strongly indicative that its expression absolutely depends on the presence of transgenic human RhAG. This first expression of RhD in mice is an important step in the creation of a mouse model of RhD allo-immunisation and HDFN, in conjunction with the Rh-Rhag knockout mice we have developed previously. PMID:24260394
Proteasome function is not impaired in healthy aging of the lung.
Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke
2015-10-01
Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging.
Takahashi, Hiroshi; Hirai, Yukihiko; Migita, Makoto; Seino, Yoshihiko; Fukuda, Yuh; Sakuraba, Hitoshi; Kase, Ryoichi; Kobayashi, Toshihide; Hashimoto, Yasuhiro; Shimada, Takashi
2002-01-01
Fabry disease is a systemic disease caused by genetic deficiency of a lysosomal enzyme, α-galactosidase A (α-gal A), and is thought to be an important target for enzyme replacement therapy. We studied the feasibility of gene-mediated enzyme replacement for Fabry disease. The adeno-associated virus (AAV) vector containing the α-gal A gene was injected into the right quadriceps muscles of Fabry knockout mice. A time course study showed that α-gal A activity in plasma was increased to ≈25% of normal mice and that this elevated activity persisted for up to at least 30 weeks without development of anti-α-gal A antibodies. The α-gal A activity in various organs of treated Fabry mice remained 5–20% of those observed in normal mice. Accumulated globotriaosylceramide in these organs was completely cleared by 25 weeks after vector injection. Reduction of globotriaosylceramide levels was also confirmed by immunohistochemical and electronmicroscopic analyses. Echocardiographic examination of treated mice demonstrated structural improvement of cardiac hypertrophy 25 weeks after the treatment. AAV vector-mediated muscle-directed gene transfer provides an efficient and practical therapeutic approach for Fabry disease. PMID:12370426
Ismail, Mohd Nazri; Stone, Erica L; Panico, Maria; Lee, Seung Ho; Luu, Ying; Ramirez, Kevin; Ho, Samuel B; Fukuda, Minoru; Marth, Jamey D; Haslam, Stuart M; Dell, Anne
2011-01-01
Core 2 β1,6-N-acetylglucosaminyltransferase (C2GnT), which exists in three isoforms, C2GnT1, C2GnT2 and C2GnT3, is one of the key enzymes in the O-glycan biosynthetic pathway. These isoenzymes produce core 2 O-glycans and have been correlated with the biosynthesis of core 4 O-glycans and I-branches. Previously, we have reported mice with single and multiple deficiencies of C2GnT isoenzyme(s) and have evaluated the biological and structural consequences of the loss of core 2 function. We now present more comprehensive O-glycomic analyses of neutral and sialylated glycans expressed in the colon, small intestine, stomach, kidney, thyroid/trachea and thymus of wild-type, C2GnT2 and C2GnT3 single knockouts and the C2GnT1–3 triple knockout mice. Very high-quality data have emerged from our mass spectrometry techniques with the capability of detecting O-glycans up to at least 3500 Da. We were able to unambiguously elucidate the types of O-glycan core, branching location and residue linkages, which allowed us to exhaustively characterize structural changes in the knockout tissues. The C2GnT2 knockout mice suffered a major loss of core 2 O-glycans as well as glycans with I-branches on core 1 antennae especially in the stomach and the colon. In contrast, core 2 O-glycans still dominated the O-glycomic profile of most tissues in the C2GnT3 knockout mice. Analysis of the C2GnT triple knockout mice revealed a complete loss of both core 2 O-glycans and branched core 1 antennae, confirming that the three known isoenzymes are entirely responsible for producing these structures. Unexpectedly, O-linked mannosyl glycans are upregulated in the triple deficient stomach. In addition, our studies have revealed an interesting terminal structure detected on O-glycans of the colon tissues that is similar to the RM2 antigen from glycolipids. PMID:20855471
Short- and long-term effects of LRRK2 on axon and dendrite growth.
Sepulveda, Bryan; Mesias, Roxana; Li, Xianting; Yue, Zhenyu; Benson, Deanna L
2013-01-01
Mutations in leucine-rich repeat kinase 2 (LRRK2) underlie an autosomal-dominant form of Parkinson's disease (PD) that is clinically indistinguishable from idiopathic PD. The function of LRRK2 is not well understood, but it has become widely accepted that LRRK2 levels or its kinase activity, which is increased by the most commonly observed mutation (G2019S), regulate neurite growth. However, growth has not been measured; it is not known whether mean differences in length correspond to altered rates of growth or retraction, whether axons or dendrites are impacted differentially or whether effects observed are transient or sustained. To address these questions, we compared several developmental milestones in neurons cultured from mice expressing bacterial artificial chromosome transgenes encoding mouse wildtype-LRRK2 or mutant LRRK2-G2019S, Lrrk2 knockout mice and non-transgenic mice. Over the course of three weeks of development on laminin, the data show a sustained, negative effect of LRRK2-G2019S on dendritic growth and arborization, but counter to expectation, dendrites from Lrrk2 knockout mice do not elaborate more rapidly. In contrast, young neurons cultured on a slower growth substrate, poly-L-lysine, show significantly reduced axonal and dendritic motility in Lrrk2 transgenic neurons and significantly increased motility in Lrrk2 knockout neurons with no significant changes in length. Our findings support that LRRK2 can regulate patterns of axonal and dendritic growth, but they also show that effects vary depending on growth substrate and stage of development. Such predictable changes in motility can be exploited in LRRK2 bioassays and guide exploration of LRRK2 function in vivo.
Lee, Seung-Min; Loguinov, Alexandre; Fleming, Robert E; Vulpe, Christopher D
2015-01-01
Hereditary hemochromatosis is an iron overload disorder most commonly caused by a defect in the HFE gene. While the genetic defect is highly prevalent, the majority of individuals do not develop clinically significant iron overload, suggesting the importance of genetic modifiers. Murine hfe knockout models have demonstrated that strain background has a strong effect on the severity of iron loading. We noted that hepatic iron loading in hfe-/- mice occurs primarily over the first postnatal weeks (loading phase) followed by a timeframe of relatively static iron concentrations (plateau phase). We thus evaluated the effects of background strain and of age on hepatic gene expression in Hfe knockout mice (hfe-/-). Hepatic gene expression profiles were examined using cDNA microarrays in 4- and 8-week-old hfe-/- and wild-type mice on two different genetic backgrounds, C57BL/6J (C57) and AKR/J (AKR). Genes differentially regulated in all hfe-/- mice groups, compared with wild-type mice, including those involved in cell survival, stress and damage responses and lipid metabolism. AKR strain-specific changes in lipid metabolism genes and C57 strain-specific changes in cell adhesion and extracellular matrix protein genes were detected in hfe-/- mice. Mouse strain and age are each significantly associated with hepatic gene expression profiles in hfe-/- mice. These affects may underlie or reflect differences in iron loading in these mice.
Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor alpha2.
Rossi, Jari; Herzig, Karl-Heinz; Võikar, Vootele; Hiltunen, Païvi H; Segerstråle, Mikael; Airaksinen, Matti S
2003-09-01
Subsets of parasympathetic and enteric neurons require neurturin signaling via glial cell line-derived neurotrophic factor family receptor alpha2 (GFRalpha2) for development and target innervation. Why GFRalpha2-deficient (Gfra2-/-) mice grow poorly has remained unclear. Here, we analyzed several factors that could contribute to the growth retardation. Neurturin mRNA was localized in the gut circular muscle. GFRalpha2 protein was expressed in most substance P-containing myenteric neurons, in most intrapancreatic neurons, and in surrounding glial cells. In the Gfra2-/- mice, density of substance P-containing myenteric ganglion cells and nerve bundles in the myenteric ganglion cell layer was significantly reduced, and transit of test material through small intestine was 25% slower compared to wild-type mice. Importantly, the knockout mice had approximately 80% fewer intrapancreatic neurons, severely impaired cholinergic innervation of the exocrine but not the endocrine pancreas, and increased fecal fat content. Vagally mediated stimulation of pancreatic secretion by 2-deoxy-glucose in vivo was virtually abolished. Retarded growth of the Gfra2-/- mice was accompanied by reduced fat mass and elevated basal metabolic rate. Moreover, the knockout mice drank more water than wild-type controls, and wet-mash feeding resulted in partial growth rescue. Taken together, the results suggest that the growth retardation in mice lacking GFRalpha2 is largely due to impaired salivary and pancreatic secretion and intestinal dysmotility.
Bouleftour, Wafa; Boudiffa, Maya; Wade-Gueye, Ndeye Marième; Bouët, Guénaëlle; Cardelli, Marco; Laroche, Norbert; Vanden-Bossche, Arnaud; Thomas, Mireille; Bonnelye, Edith; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie Hélène; Malaval, Luc
2014-01-01
Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing primary mineralization.
van den Buuse, Maarten; Ruimschotel, Emma; Martin, Sally; Risbrough, Victoria B; Halberstadt, Adam L
2011-01-01
Serotonin-1A (5-HT(1A)) receptors may play a role in schizophrenia and the effects of certain antipsychotic drugs. However, the mechanism of interaction of 5-HT(1A) receptors with brain systems involved in schizophrenia, remains unclear. Here we show that 5-HT(1A) receptor knockout mice display enhanced locomotor hyperactivity to acute treatment with amphetamine, a widely used animal model of hyperdopaminergic mechanisms in psychosis. In contrast, the effect of MK-801 on locomotor activity, modeling NMDA receptor hypoactivity, was unchanged in the knockouts. The effect of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) was markedly reduced in 5-HT(1A) receptor knockout mice. There were no changes in apomorphine-induced disruption of PPI, a model of sensory gating deficits seen in schizophrenia. Similarly, there were no major changes in density of dopamine transporters (DAT) or dopamine D(1) or D(2) receptors which could explain the behavioural changes observed in 5-HT(1A) receptor knockout mice. These results extend our insight into the possible role of these receptors in aspects of schizophrenia. As also suggested by previous studies using agonist and antagonist drugs, 5-HT(1A) receptors may play an important role in hallucinations and to modulate dopaminergic activity in the brain. Copyright © 2011 Elsevier Ltd. All rights reserved.
Suppression of Autophagy in Osteocytes Mimics Skeletal Aging*
Onal, Melda; Piemontese, Marilina; Xiong, Jinhu; Wang, Yiying; Han, Li; Ye, Shiqiao; Komatsu, Masaaki; Selig, Martin; Weinstein, Robert S.; Zhao, Haibo; Jilka, Robert L.; Almeida, Maria; Manolagas, Stavros C.; O'Brien, Charles A.
2013-01-01
Bone mass declines with age but the mechanisms responsible remain unclear. Here we demonstrate that deletion of a conditional allele for Atg7, a gene essential for autophagy, from osteocytes caused low bone mass in 6-month-old male and female mice. Cancellous bone volume and cortical thickness were decreased, and cortical porosity increased, in conditional knock-out mice compared with control littermates. These changes were associated with low osteoclast number, osteoblast number, bone formation rate, and wall width in the cancellous bone of conditional knock-out mice. In addition, oxidative stress was higher in the bones of conditional knock-out mice as measured by reactive oxygen species levels in the bone marrow and by p66shc phosphorylation in L6 vertebra. Each of these changes has been previously demonstrated in the bones of old versus young adult mice. Thus, these results demonstrate that suppression of autophagy in osteocytes mimics, in many aspects, the impact of aging on the skeleton and suggest that a decline in autophagy with age may contribute to the low bone mass associated with aging. PMID:23645674
Watson, Elizabeth; Fargali, Samira; Okamoto, Haruka; Sadahiro, Masato; Gordon, Ronald E; Chakraborty, Tandra; Sleeman, Mark W; Salton, Stephen R
2009-01-01
Background Previous studies of mixed background mice have demonstrated that targeted deletion of Vgf produces a lean, hypermetabolic mouse that is resistant to diet-, lesion-, and genetically-induced obesity. To investigate potential mechanism(s) and site(s) of action of VGF, a neuronal and endocrine secreted protein and neuropeptide precursor, we further analyzed the metabolic phenotypes of two independent VGF knockout lines on C57Bl6 backgrounds. Results Unlike hyperactive VGF knockout mice on a mixed C57Bl6-129/SvJ background, homozygous mutant mice on a C57Bl6 background were hypermetabolic with similar locomotor activity levels to Vgf+/Vgf+ mice, during day and night cycles, indicating that mechanism(s) other than hyperactivity were responsible for their increased energy expenditure. In Vgf-/Vgf- knockout mice, morphological analysis of brown and white adipose tissues (BAT and WAT) indicated decreased fat storage in both tissues, and decreased adipocyte perimeter and area in WAT. Changes in gene expression measured by real-time RT-PCR were consistent with increased fatty acid oxidation and uptake in BAT, and increased lipolysis, decreased lipogenesis, and brown adipocyte differentiation in WAT, suggesting that increased sympathetic nervous system activity in Vgf-/Vgf- mice may be associated with or responsible for alterations in energy expenditure and fat storage. In addition, uncoupling protein 1 (UCP1) and UCP2 protein levels, mitochondrial number, and mitochondrial cristae density were upregulated in Vgf-/Vgf- BAT. Using immunohistochemical and histochemical techniques, we detected VGF in nerve fibers innervating BAT and Vgf promoter-driven reporter expression in cervical and thoracic spinal ganglia that project to and innervate the chest wall and tissues including BAT. Moreover, VGF peptide levels were quantified by radioimmunoassay in BAT, and were found to be down-regulated by a high fat diet. Lastly, despite being hypermetabolic, VGF knockout mice were cold intolerant. Conclusion We propose that VGF and/or VGF-derived peptides modulate sympathetic outflow pathways to regulate fat storage and energy expenditure. PMID:19863797
Fang, Hong; Wang, Ze-Hua; Bu, Ying-Jiang; Yuan, Zhi-Jun; Wang, Guo-Qiang; Guo, Yan; Cheng, Xiao-Yun; Qiu, Wen-Jie
2018-01-01
General anesthesia is widely used in pediatric surgery, although the influence of general anesthesia on cerebellar information transmission and motor function is unclear. In the present study, neonatal mice received repeated inhalation of sevoflurane, and electrophysiological alterations in Purkinje cells (PCs) and the development of motor functions were detected. In addition, γ‑aminobutyric acidA receptor ε (GABAA‑R ε) subunit knockout mice were used to investigate the mechanism of action of sevoflurane on cerebellar function. In the neonatal mice, the field potential response of PCs induced by sensory stimulation and the motor function indices were markedly inhibited by sevoflurane, and the inhibitory effect was positively associated with the number of repetitions of anesthesia. In additional the GABAA‑R ε subunit level of PCs was promoted by sevoflurane in a dose‑dependent manner, and the inhibitory effects of sevoflurane on PC field potential response and motor function were alleviated in GABAA‑R ε subunit knockout mice. The GABAA‑R ε subunit was activated by sevoflurane, leading to inhibition of sensory information transmission in the cerebellar cortex, field potential responses of PCs and the development of cerebellar motor function. The present study provided experimental evidence for the safe usage of sevoflurane in clinical anesthesia, and suggested that GABAA‑R ε subunit antagonists may be considered for combined application with general anesthesia with repeated inhalation of sevoflurane, for adverse effect prevention in the clinic.
Zink, M; Schmitt, A; Henn, F A; Gass, P
2004-12-01
Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates glutamatergic neurotransmission and induces the expression of glutamate transporters EAAT1 and EAAT2 in newborn mouse astroglial cell cultures. Since nanomolar concentrations of PACAP exert this effect, signal transduction via the high affinity PACAP-type I-receptor PAC1 was assumed. To test this hypothesis and to assess the importance of PAC1-signalling in vivo, we analyzed glutamate transporter expression in mice with a PAC1 knockout. EAAT1 and EAAT2 expression was investigated in the hippocampus and the cerebral cortex of PAC1 mutant mice and wildtype littermates by semiquantitative in-situ-hybridization. PAC1-knockout mice show a subtle but significant reduction of EAAT1 expression in the dentate gyrus. In contrast, reduced expression levels of EAAT1 in the cerebral cortex did not reach statistical significance and EAAT2 expression was unchanged in CA3 and cerebral cortex of PAC1 mutant mice. Our data confirm the previously reported in-vitro-regulation of EAAT1 in the adult nervous system in vivo. EAAT2 expression, however, is unchanged in PAC1 knockout mice, most likely due to counterbalancing factors.
Kuwahara, Go; Hashimoto, Takuya; Tsuneki, Masayuki; Yamamoto, Kota; Assi, Roland; Foster, Trenton R; Hanisch, Jesse J; Bai, Hualong; Hu, Haidi; Protack, Clinton D; Hall, Michael R; Schardt, John S; Jay, Steven M; Madri, Joseph A; Kodama, Shohta; Dardik, Alan
2017-06-01
Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix components, promotes wall thickening and extracellular matrix deposition during AVF maturation. AVF were created via needle puncture in wild-type C57BL/6J and CD44 knockout mice. CD44 mRNA and protein expression was increased in wild-type AVF. CD44 knockout mice showed no increase in AVF wall thickness (8.9 versus 26.8 μm; P =0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared with control AVF. CD44 knockout mice also showed no increase in vascular cell adhesion molecule-1 expression, intercellular adhesion molecule-1 expression, and monocyte chemoattractant protein-1 expression in the AVF compared with controls; there were also no increased M2 macrophage markers (transglutaminase-2: 81.5-fold, P =0.0015; interleukin-10: 7.6-fold, P =0.0450) in CD44 knockout mice. Delivery of monocyte chemoattractant protein-1 to CD44 knockout mice rescued the phenotype with thicker AVF walls (27.2 versus 14.7 μm; P =0.0306), increased collagen density (2.4-fold; P =0.0432), and increased number of M2 macrophages (2.1-fold; P =0.0335). CD44 promotes accumulation of M2 macrophages, extracellular matrix deposition, and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation. © 2017 American Heart Association, Inc.
Lawson, Kevin A; Teteak, Colin J; Zou, Junhui; Hacquebord, Jacques; Ghatan, Andrew; Zielinska-Kwiatkowska, Anna; Fernandes, Russell J; Chansky, Howard A; Yang, Liu
2013-11-08
The exact molecular mechanisms governing articular chondrocytes remain unknown in skeletal biology. In this study, we have found that ESET (an ERG-associated protein with a SET domain, also called SETDB1) histone methyltransferase is expressed in articular cartilage. To test whether ESET regulates articular chondrocytes, we carried out mesenchyme-specific deletion of the ESET gene in mice. ESET knock-out did not affect generation of articular chondrocytes during embryonic development. Two weeks after birth, there was minimal qualitative difference at the knee joints between wild-type and ESET knock-out animals. At 1 month, ectopic hypertrophy, proliferation, and apoptosis of articular chondrocytes were seen in the articular cartilage of ESET-null animals. At 3 months, additional signs of terminal differentiation such as increased alkaline phosphatase activity and an elevated level of matrix metalloproteinase (MMP)-13 were found in ESET-null cartilage. Staining for type II collagen and proteoglycan revealed that cartilage degeneration became progressively worse from 2 weeks to 12 months at the knee joints of ESET knock-out mutants. Analysis of over 14 pairs of age- and sex-matched wild-type and knock-out mice indicated that the articular chondrocyte phenotype in ESET-null mutants is 100% penetrant. Our results demonstrate that expression of ESET plays an essential role in the maintenance of articular cartilage by preventing articular chondrocytes from terminal differentiation and may have implications in joint diseases such as osteoarthritis.
Jain, Neeraj; Kalailingam, Pazhanichamy; Tan, Kai Wei; Tan, Hui Bing; Sng, Ming Keat; Chan, Jeremy Soon Kiat; Tan, Nguan Soon; Thanabalu, Thirumaran
2016-01-01
Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice. PMID:27909303
Wieslander, Cecilia K.; Rahn, David D.; McIntire, Donald D.; Acevedo, Jesús F.; Drewes, Peter G.; Yanagisawa, Hiromi; Word, R. Ann
2008-01-01
Two mouse models of pelvic organ prolapse have been generated recently, both of which have null mutations in genes involved in elastic fiber synthesis and assembly (fibulin 5 and lysyl oxidase-like 1). Interestingly, although these mice exhibit elastinopathies early in life, pelvic organ prolapse does not develop until later in life. In this investigation we developed and validated a tool to quantify the severity of pelvic organ prolapse in mice, and we used this tool prospectively to study the role of fibulin 5, aging, and vaginal proteases in the development of pelvic organ prolapse. The results indicate that >90% of Fbln5−/− mice develop prolapse by 6 mo of age, even in the absence of vaginal delivery, and that increased vaginal protease activity precedes the development of prolapse. PMID:18987327
Zhang, Yang; Wang, Jing-Hao; Zhang, Yi-Yuan; Wang, Ying-Zhe; Wang, Jin; Zhao, Yue; Jin, Xue-Xin; Xue, Gen-Long; Li, Peng-Hui; Sun, Yi-Lin; Huang, Qi-He; Song, Xiao-Tong; Zhang, Zhi-Ren; Gao, Xu; Yang, Bao-Feng; Du, Zhi-Min; Pan, Zhen-Wei
2016-03-14
Interleukin 6 (IL-6) has been shown to be an important regulator of cardiac interstitial fibrosis. In this study, we explored the role of interleukin-6 in the development of diabetic cardiomyopathy and the underlying mechanisms. Cardiac function of IL-6 knockout mice was significantly improved and interstitial fibrosis was apparently alleviated in comparison with wildtype (WT) diabetic mice induced by streptozotocin (STZ). Treatment with IL-6 significantly promoted the proliferation and collagen production of cultured cardiac fibroblasts (CFs). High glucose treatment increased collagen production, which were mitigated in CFs from IL-6 KO mice. Moreover, IL-6 knockout alleviated the up-regulation of TGFβ1 in diabetic hearts of mice and cultured CFs treated with high glucose or IL-6. Furthermore, the expression of miR-29 reduced upon IL-6 treatment, while increased in IL-6 KO hearts. Overexpression of miR-29 blocked the pro-fibrotic effects of IL-6 on cultured CFs. In summary, deletion of IL-6 is able to mitigate myocardial fibrosis and improve cardiac function of diabetic mice. The mechanism involves the regulation of IL-6 on TGFβ1 and miR-29 pathway. This study indicates the therapeutic potential of IL-6 suppression on diabetic cardiomyopathy disease associated with fibrosis.
A role for B cells in the development of T cell helper function in a malaria infection in mice
Langhorne, Jean; Cross, Caroline; Seixas, Elsa; Li, Ching; von der Weid, Thierry
1998-01-01
B cell knockout mice are unable to clear a primary erythrocytic infection of Plasmodium chabaudi chabaudi. However, the early acute infection is controlled to some extent, giving rise to a chronic relapsing parasitemia that can be reduced either by drug treatment or by adoptive transfer of B cells. Similar to mice rendered B-cell deficient by lifelong treatment with anti-μ antibodies, B cell knockout mice (μMT) retain a predominant CD4+ Th1-like response to malarial antigens throughout a primary infection. This contrasts with the response seen in control C57BL/6 mice in which the CD4+ T-cell response has switched to that characteristic of Th2 cells at the later stages of infection, manifesting efficient help for specific antibodies in vitro and interleukin 4 production. Both chloroquine and adoptive transfer of immune B cells reduced parasite load. However, the adoptive transfer of B cells resulted in a Th2 response in recipient μMT mice, as indicated by a relative increase in the precursor frequency of helper cells for antibody production. These data support the idea that B cells play a role in the regulation of CD4+ T subset responses. PMID:9465085
Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling
Luhmann, Ulrich F. O.; Lange, Clemens A.; Robbie, Scott; Munro, Peter M. G.; Cowing, Jill A.; Armer, Hannah E. J.; Luong, Vy; Carvalho, Livia S.; MacLaren, Robert E.; Fitzke, Frederick W.; Bainbridge, James W. B.; Ali, Robin R.
2012-01-01
Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2−/−/Crb1Rd8/RD8, Cx3cr1−/−/Crb1Rd8/RD8 and CCl2−/−/Cx3cr1−/−/Crb1Rd8/RD8 mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings indicate that CCDKO mice are not a model of AMD, but a model for an inherited retinal degeneration that is differentially modulated by Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling. PMID:22545116
Salphati, Laurent; Lee, Leslie B; Pang, Jodie; Plise, Emile G; Zhang, Xiaolin
2010-09-01
2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of the phosphatidylinositol 3-kinase (PI3K) pathway currently evaluated in the clinic as an anticancer agent. The objectives of this study were to determine in vitro whether GDC-0941 was a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) and to investigate the impact of these transporters on the pharmacokinetics, brain penetration, and activity of GDC-0941 in FVBn mice (wild-type) and Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)/Bcrp1(-/-) knockout mice. Studies with Madin-Darby canine kidney cells transfected with P-gp or Bcrp1 established that this compound was a substrate of both transporters. After administrations to mice, GDC-0941 brain-to-plasma ratio ranged from 0.02 to 0.06 in the wild-type and Bcrp1(-/-) mice and was modestly higher in the Mdr1a/b(-/-) mice, ranging from 0.08 to 0.11. In contrast, GDC-0941 brain-to-plasma ratio in Mdr1a/b(-/-)/Bcrp1(-/-) triple knockout mice was 30-fold higher than in the wild-type mice. The plasma clearance of GDC-0941 was similar in wild-type and all knockout mice, ranging from 15 to 25 ml/(min . kg) in the wild-type mice and from 18 to 35 ml/(min . kg) in the knockout mice. Exposure after oral administration was comparable in the four strains of mice. The PI3K pathway was markedly inhibited in the brain of Mdr1a/b(-/-)/Bcrp1(-/-) mice for up to 6 h postdose, as evidenced by a 60% suppression of the phosphorylated Akt signal, whereas no inhibition was detected in the brain of wild-type mice. The concerted effects of P-gp and Bcrp1 in restricting GDC-0941 access and pathway modulation in mouse brain may have implications for the treatment of patients with brain tumors.
Growth hormone resistance exacerbates cholestasis-induced murine liver fibrosis
Stiedl, Patricia; McMahon, Robert; Blaas, Leander; Stanek, Victoria; Svinka, Jasmin; Grabner, Beatrice; Zollner, Gernot; Kessler, Sonja M.; Claudel, Thierry; Müller, Mathias; Mikulits, Wolfgang; Bilban, Martin; Esterbauer, Harald; Eferl, Robert; Haybaeck, Johannes; Trauner, Michael; Casanova, Emilio
2016-01-01
Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the Growth hormone receptor gene (Ghr-/-, a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2-/-), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr-/-;Mdr2-/- mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation and increased collagen deposition relative to Mdr2 -/- mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr-/-;Mdr2-/- mice had a pronounced down-regulation of hepato-protective genes Hnf6, Egfr and Igf-1, and significantly increased levels of ROS and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr-/-) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis and bile infarcts compared to their wildtype littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr-/-;Mdr2-/- mice displayed a significant decrease in tumour incidence compared to Mdr2-/- mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. Conclusion Our findings suggest that GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments. PMID:25179284
Duan, Sheng Zhong; Ivashchenko, Christine Y.; Whitesall, Steven E.; D’Alecy, Louis G.; Duquaine, Damon C.; Brosius, Frank C.; Gonzalez, Frank J.; Vinson, Charles; Pierre, Melissa A.; Milstone, David S.; Mortensen, Richard M.
2007-01-01
We rescued the embryonic lethality of global PPARγ knockout by breeding Mox2-Cre (MORE) mice with floxed PPARγ mice to inactivate PPARγ in the embryo but not in trophoblasts and created a generalized PPARγ knockout mouse model, MORE-PPARγ knockout (MORE-PGKO) mice. PPARγ inactivation caused severe lipodystrophy and insulin resistance; surprisingly, it also caused hypotension. Paradoxically, PPARγ agonists had the same effect. We showed that another mouse model of lipodystrophy was hypertensive, ruling out the lipodystrophy as a cause. Further, high salt loading did not correct the hypotension in MORE-PGKO mice. In vitro studies showed that the vasculature from MORE-PGKO mice was more sensitive to endothelial-dependent relaxation caused by muscarinic stimulation, but was not associated with changes in eNOS expression or phosphorylation. In addition, vascular smooth muscle had impaired contraction in response to α-adrenergic agents. The renin-angiotensin-aldosterone system was mildly activated, consistent with increased vascular capacitance or decreased volume. These effects are likely mechanisms contributing to the hypotension. Our results demonstrated that PPARγ is required to maintain normal adiposity and insulin sensitivity in adult mice. Surprisingly, genetic loss of PPARγ function, like activation by agonists, lowered blood pressure, likely through a mechanism involving increased vascular relaxation. PMID:17304352
Miranda, Carlos J.; Makui, Hortence; Andrews, Nancy C.; Santos, Manuela M.
2010-01-01
Genetic causes of hereditary hemochromatosis (HH) include mutations in the HFE gene, coding for a β2-microglobulin (β2m)–associated major histocompatibility complex class I-like protein. However, iron accumulation in patients with HH can be highly variable. Previously, analysis of β2mRag1−/− double-deficient mice, lacking all β2m-dependent molecules and lymphocytes, demonstrated increased iron accumulation in the pancreas and heart compared with β2m single knock-out mice. To evaluate whether the observed phenotype in β2mRag1−/− mice was due solely to the absence of Hfe or to other β2m-dependent molecules, we generated HfeRag1−/− double-deficient mice. Our studies revealed that introduction of Rag1 deficiency in Hfe knock-out mice leads to heightened iron overload, mainly in the liver, whereas the heart and pancreas are relatively spared compared with β2mRag1−/− mice. These results suggest that other β2m-interacting protein(s) may be involved in iron regulation and that in the absence of functional Hfe molecules lymphocyte numbers may influence iron overload severity. PMID:14656877
PLAG1 deficiency impairs spermatogenesis and sperm motility in mice.
Juma, Almas R; Grommen, Sylvia V H; O'Bryan, Moira K; O'Connor, Anne E; Merriner, D Jo; Hall, Nathan E; Doyle, Stephen R; Damdimopoulou, Pauliina E; Barriga, Daniel; Hart, Adam H; Van de Ven, Wim J M; De Groef, Bert
2017-07-13
Deficiency in pleomorphic adenoma gene 1 (PLAG1) leads to reduced fertility in male mice, but the mechanism by which PLAG1 contributes to reproduction is unknown. To investigate the involvement of PLAG1 in testicular function, we determined (i) the spatial distribution of PLAG1 in the testis using X-gal staining; (ii) transcriptomic consequences of PLAG1 deficiency in knock-out and heterozygous mice compared to wild-type mice using RNA-seq; and (iii) morphological and functional consequences of PLAG1 deficiency by determining testicular histology, daily sperm production and sperm motility in knock-out and wild-type mice. PLAG1 was sparsely expressed in germ cells and in Sertoli cells. Genes known to be involved in spermatogenesis were downregulated in the testes of knock-out mice, as well as Hsd17b3, which encodes a key enzyme in androgen biosynthesis. In the absence of Plag1, a number of genes involved in immune processes and epididymis-specific genes were upregulated in the testes. Finally, loss of PLAG1 resulted in significantly lowered daily sperm production, in reduced sperm motility, and in several animals, in sloughing of the germinal epithelium. Our results demonstrate that the subfertility seen in male PLAG1-deficient mice is, at least in part, the result of significantly reduced sperm output and sperm motility.
Orlandi, A; Oliva, F; Taurisano, G; Candi, E; Di Lascio, A; Melino, G; Spagnoli, L G; Tarantino, U
2009-04-01
Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodeling. Transglutaminases catalyze a calcium-dependent transamidation reaction that produces covalent cross-linking of available substrate glutamine residues and modifies the extracellular matrix. Increased transglutaminases-mediated activity is reported in osteoarthritis, but the relative contribution of transglutaminases-2 (TG2) is uncertain. We describe TG2 expression in human femoral osteoarthritis and in wild-type and homozygous TG2 knockout mice after surgically-induced knee joint instability. Increased TG2 levels were observed in human and wild-type murine osteoarthritic cartilage compared to the respective controls. Histomorphometrical but not X-ray investigation documented in osteoarthritic TG2 knockout mice reduced cartilage destruction and an increased osteophyte formation compared to wild-type mice. These differences were associated with increased TGFbeta-1 expression. In addition to confirming its important role in osteoarthritis development, our results demonstrated that TG2 expression differently influences cartilage destruction and bone remodeling, suggesting new targeted TG2-related therapeutic strategies.
Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Periera-Simon, Simone; Xia, Xiaomei; Korach, Ken; Berho, Mariana; Elliot, Sharon J.; Karl, Michael
2016-01-01
Podocyte damage and apoptosis are thought to be important if not essential in the development of glomerulosclerosis. Female estrogen receptor knockout mice develop glomerulosclerosis at 9 months of age due to excessive ovarian testosterone production and secretion. Here, we studied the pathogenesis of glomerulosclerosis in this mouse model to determine whether testosterone and/or 17β-estradiol directly affect the function and survival of podocytes. Glomerulosclerosis in these mice was associated with the expression of desmin and the loss of nephrin, markers of podocyte damage and apoptosis. Ovariectomy preserved the function and survival of podocytes by eliminating the source of endogenous testosterone production. In contrast, testosterone supplementation induced podocyte apoptosis in ovariectomized wild-type mice. Importantly, podocytes express functional androgen and estrogen receptors, which, upon stimulation by their respective ligands, have opposing effects. Testosterone induced podocyte apoptosis in vitro by androgen receptor activation, but independent of the TGF-β1 signaling pathway. Pretreatment with 17β-estradiol prevented testosterone-induced podocyte apoptosis, an estrogen receptor-dependent effect mediated by activation of the ERK signaling pathway, and protected podocytes from TGF-β1- or TNF-α-induced apoptosis. Thus, podocytes are target cells for testosterone and 17β-estradiol. These hormones modulate podocyte damage and apoptosis. PMID:20962747
Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Periera-Simon, Simone; Xia, Xiaomei; Korach, Ken; Berho, Mariana; Elliot, Sharon J; Karl, Michael
2011-02-01
Podocyte damage and apoptosis are thought to be important if not essential in the development of glomerulosclerosis. Female estrogen receptor knockout mice develop glomerulosclerosis at 9 months of age due to excessive ovarian testosterone production and secretion. Here, we studied the pathogenesis of glomerulosclerosis in this mouse model to determine whether testosterone and/or 17β-estradiol directly affect the function and survival of podocytes. Glomerulosclerosis in these mice was associated with the expression of desmin and the loss of nephrin, markers of podocyte damage and apoptosis. Ovariectomy preserved the function and survival of podocytes by eliminating the source of endogenous testosterone production. In contrast, testosterone supplementation induced podocyte apoptosis in ovariectomized wild-type mice. Importantly, podocytes express functional androgen and estrogen receptors, which, upon stimulation by their respective ligands, have opposing effects. Testosterone induced podocyte apoptosis in vitro by androgen receptor activation, but independent of the TGF-β1 signaling pathway. Pretreatment with 17β-estradiol prevented testosterone-induced podocyte apoptosis, an estrogen receptor-dependent effect mediated by activation of the ERK signaling pathway, and protected podocytes from TGF-β1- or TNF-α-induced apoptosis. Thus, podocytes are target cells for testosterone and 17β-estradiol. These hormones modulate podocyte damage and apoptosis.
Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis
Ramos, Emilio; Ruchala, Piotr; Goodnough, Julia B.; Kautz, Léon; Preza, Gloria C.; Nemeth, Elizabeta
2012-01-01
The deficiency of hepcidin, the hormone that controls iron absorption and its tissue distribution, is the cause of iron overload in nearly all forms of hereditary hemochromatosis and in untransfused iron-loading anemias. In a recent study, we reported the development of minihepcidins, small drug-like hepcidin agonists. Here we explore the feasibility of using minihepcidins for the prevention and treatment of iron overload in hepcidin-deficient mice. An optimized minihepcidin (PR65) was developed that had superior potency and duration of action compared with natural hepcidin or other minihepcidins, and favorable cost of synthesis. PR65 was administered by subcutaneous injection daily for 2 weeks to iron-depleted or iron-loaded hepcidin knockout mice. PR65 administration to iron-depleted mice prevented liver iron loading, decreased heart iron levels, and caused the expected iron retention in the spleen and duodenum. At high doses, PR65 treatment also caused anemia because of profound iron restriction. PR65 administration to hepcidin knockout mice with pre-existing iron overload had a more moderate effect and caused partial redistribution of iron from the liver to the spleen. Our study demonstrates that minihepcidins could be beneficial in iron overload disorders either used alone for prevention or possibly as adjunctive therapy with phlebotomy or chelation. PMID:22990014
Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu
2016-03-30
In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization-MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research.
Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu
2016-01-01
In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization–MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research. PMID:27026287
Nishida, Kazuhiko; Yamaguchi, Osamu; Hirotani, Shinichi; Hikoso, Shungo; Higuchi, Yoshiharu; Watanabe, Tetsuya; Takeda, Toshihiro; Osuka, Soh; Morita, Takashi; Kondoh, Gen; Uno, Yoshihiro; Kashiwase, Kazunori; Taniike, Masayuki; Nakai, Atsuko; Matsumura, Yasushi; Miyazaki, Jun-ichi; Sudo, Tatsuhiko; Hongo, Kenichi; Kusakari, Yoichiro; Kurihara, Satoshi; Chien, Kenneth R.; Takeda, Junji; Hori, Masatsugu; Otsu, Kinya
2004-01-01
The molecular mechanism for the transition from cardiac hypertrophy, an adaptive response to biomechanical stress, to heart failure is poorly understood. The mitogen-activated protein kinase p38α is a key component of stress response pathways in various types of cells. In this study, we attempted to explore the in vivo physiological functions of p38α in hearts. First, we generated mice with floxed p38α alleles and crossbred them with mice expressing the Cre recombinase under the control of the α-myosin heavy-chain promoter to obtain cardiac-specific p38α knockout mice. These cardiac-specific p38α knockout mice were born normally, developed to adulthood, were fertile, exhibited a normal life span, and displayed normal global cardiac structure and function. In response to pressure overload to the left ventricle, they developed significant levels of cardiac hypertrophy, as seen in controls, but also developed cardiac dysfunction and heart dilatation. This abnormal response to pressure overload was accompanied by massive cardiac fibrosis and the appearance of apoptotic cardiomyocytes. These results demonstrate that p38α plays a critical role in the cardiomyocyte survival pathway in response to pressure overload, while cardiac hypertrophic growth is unaffected despite its dramatic down-regulation. PMID:15572667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Suvarthi; Kumar, Ashutosh; Seth, Ratanesh Kumar
Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation,more » protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver. - Highlights: ► BDCM acute exposure sensitizes liver to increased free radical stress in obesity. ► BDCM-induced higher leptin contributes to early steatohepatitic lesions. ► Increased leptin mediates protein radical and 3-nitrotyrosine formation. ► BDCM exposure in obesity activates Kupffer cells and NADPH oxidase. ► BDCM/leptin synergy promotes necrotic cell-death and augments steatohepatitis.« less
Ohnishi, Mutsuko; Kato, Shigeko; Razzaque, M. Shawkat
2013-01-01
Objective The adverse effects of metabolic disorders in obesity have been extensively studied; however, the pathologic effects of hyperphosphatemia or phosphate toxicity in obesity have not been studied in similar depth and detail, chiefly because such an association is thought to be uncommon. Studies have established that the incidence of obesity-associated nephropathy is increasing. Because hyperphosphatemia is a major consequence of renal impairment, this study determines the in vivo effects of hyperphosphatemia in obesity. Methods and results We genetically induced hyperphosphatemia in leptin-deficient obese (ob/ob) mice by generating ob/ob and klotho double knockout [ob/ob-klotho−/−] mice. As a control, we made ob/ob mice with hypophosphatemia by generating ob/ob and 1-alpha hydroxylase double knockout [ob/ob-1α(OH)ase−/−] mice. Compared to the wild-type mice, all three obese background mice, namely ob/ob, ob/ob-klotho−/−, and ob/ob-1α(OH)ase−/− mice developed hypercholesterolemia. In addition, the hyperphosphatemic, ob/ob-klotho−/− genetic background induced generalized tissue atrophy and widespread soft-tissue and vascular calcifications, which led to a shorter lifespan; no such changes were observed in the hypophosphatemic, ob/ob-1α(OH)ase−/− mice. Significantly, in contrast to the reduced survival of the ob/ob-klotho−/− mice, lowering serum phosphate levels in ob/ob-1α(OH)ase−/− mice showed no such compromised survival, despite both mice being hypercholesterolemic. Conclusion These genetic manipulation studies suggest phosphate toxicity is an important risk factor in obesity that can adversely affect survival. PMID:22037453
Ohnishi, Mutsuko; Kato, Shigeko; Razzaque, M Shawkat
2011-11-25
The adverse effects of metabolic disorders in obesity have been extensively studied; however, the pathologic effects of hyperphosphatemia or phosphate toxicity in obesity have not been studied in similar depth and detail, chiefly because such an association is thought to be uncommon. Studies have established that the incidence of obesity-associated nephropathy is increasing. Because hyperphosphatemia is a major consequence of renal impairment, this study determines the in vivo effects of hyperphosphatemia in obesity. We genetically induced hyperphosphatemia in leptin-deficient obese (ob/ob) mice by generating ob/ob and klotho double knockout [ob/ob-klotho(-/-)] mice. As a control, we made ob/ob mice with hypophosphatemia by generating ob/ob and 1-alpha hydroxylase double knockout [ob/ob-1α(OH)ase(-/-)] mice. Compared to the wild-type mice, all three obese background mice, namely ob/ob, ob/ob-klotho(-/-), and ob/ob-1α(OH)ase(-/-) mice developed hypercholesterolemia. In addition, the hyperphosphatemic, ob/ob-klotho(-/-) genetic background induced generalized tissue atrophy and widespread soft-tissue and vascular calcifications, which led to a shorter lifespan; no such changes were observed in the hypophosphatemic, ob/ob-1α(OH)ase(-/-) mice. Significantly, in contrast to the reduced survival of the ob/ob-klotho(-/-) mice, lowering serum phosphate levels in ob/ob-1α(OH)ase(-/-) mice showed no such compromised survival, despite both mice being hypercholesterolemic. These genetic manipulation studies suggest phosphate toxicity is an important risk factor in obesity that can adversely affect survival. Copyright © 2011 Elsevier Inc. All rights reserved.
Wu, Pei-Jung; Hung, Yun-Fen; Liu, Hsin-Yu; Hsueh, Yi-Ping
2017-01-01
Inflammation is clearly associated with Alzheimer disease (AD). Knockout of Nlrp3, a gene encoding an inflammasome sensor, has been shown to ameliorate AD pathology in a mouse model. Because AIM2 is the most dominant inflammasome sensor expressed in mouse brains, here we investigate whether Aim2 deletion also influences the phenotype of a 5XFAD AD mouse model. Quantitative RT-PCR, immunostaining, immunoblotting, and behavioral analyses were applied to compare wild-type, Aim2-/-, 5XFAD, and Aim2-/-;5XFAD mice. We found that Aim2 knockout mitigates Aβ deposition in the cerebral cortex and hippocampus of 5XFAD mice. The activation of microglial cells is also reduced in Aim2-/-;5XFAD brains compared with 5XFAD brains. However, Aim2 knockout does not improve memory and anxiety phenotypes of 5XFAD mice in an open field, cued Y-maze, or Barnes maze. Compared with 5XFAD mice, Il-1 expression levels are not reduced in Aim2-/-;5XFAD mice. Unexpectedly, Il-6 and Il-18 expression levels in 5XFAD brains were further increased when Aim2 was deleted. Thus, inflammatory cytokine expression in 5XFAD brains is upregulated by Aim2 deletion through an unknown mechanism. Although Aim2 knockout mitigates Aβ deposition and microglial activation, Aim2 deletion does not have a beneficial effect on the spatial memory or cytokine expression of 5XFAD mice. Our findings suggest that Aβ aggregation and microglial activation may not always be correlated with the expression of inflammatory cytokines or cognitive function of 5XFAD mice. Our study also implies that different inflammasomes likely perform distinct roles in different physiological and/or pathological events. © 2017 S. Karger AG, Basel.
What have we learned about GPER function in physiology and disease from knockout mice?
Prossnitz, Eric R.; Hathaway, Helen J.
2015-01-01
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and patho-physiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also revealed roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer. PMID:26189910
Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice.
Mabe, Abigail M; Hoover, Donald B
2009-04-01
Previous work provided indirect evidence that the neurotrophic factor neurturin (NRTN) is required for normal cholinergic innervation of the heart. This study used nrtn knockout (KO) and wild-type (WT) mice to determine the effect of nrtn deletion on cardiac cholinergic innervation and function in the adult heart. Immunohistochemistry, confocal microscopy, and quantitative image analysis were used to directly evaluate intrinsic cardiac neuronal development. Atrial acetylcholine (ACh) levels were determined as an indirect index of cholinergic innervation. Cholinergic function was evaluated by measuring negative chronotropic responses to right vagal nerve stimulation in anaesthetized mice and responses of isolated atria to muscarinic agonists. KO hearts contained only 35% the normal number of cholinergic neurons, and the residual cholinergic neurons were 15% smaller than in WT. Cholinergic nerve density at the sinoatrial node was reduced by 87% in KOs, but noradrenergic nerve density was unaffected. Atrial ACh levels were substantially lower in KO mice (0.013 +/- 0.004 vs. 0.050 +/- 0.011 pmol/microg protein; P < 0.02) as expected from cholinergic neuron and nerve fibre deficits. Maximum bradycardia evoked by vagal stimulation was reduced in KO mice (38 +/- 6% vs. 69 +/- 3% decrease at 20 Hz; P < 0.001), and chronotropic responses took longer to develop and fade. In contrast to these deficits, isolated atria from KO mice had normal post-junctional sensitivity to carbachol and bethanechol. These findings demonstrate that NRTN is essential for normal cardiac cholinergic innervation and cholinergic control of heart rate. The presence of residual cardiac cholinergic neurons and vagal bradycardia in KO mice suggests that additional neurotrophic factors may influence this system.
Distribution of Nidogen in the Murine Eye and Ocular Phenotype of the Nidogen-1 Knockout Mouse
May, Christian Albrecht
2012-01-01
Distribution and lack of nidogen-1, part of numerous basement membranes, were studied in the mouse eye. For that purpose, eyes of C57BL/6 and nidogen-1 knockout mice were stained immunohistochemically for nidogen-1, and intraocular pressure measurements and light- and electron microscopy were used to study the nidogen-1 knockout animals. In normal mice, nidogen-1 was present in many basement membranes, but showed irregularities underneath the corneal epithelium, in Bruch's membrane and in the iris. Homozygous knockout of nidogen-1 in the mouse showed only mild pathological changes. In the anterior eye segment, small interruptions were noted in the nonpigmented ciliary epithelium without further consequences. In the posterior eye segment, interruptions of the inner limiting membrane led to small retinal ectopias and subsequent changes in the optic nerve. In summary, the knockout of nidogen-1 showed mild but significant morphological changes pointing to the importance of this protein which can in part, but not completely; be replaced by nidogen-2. PMID:24555126
Cardiomyopathy and response to enzyme replacement therapy in a male mouse model for Fabry disease.
Nguyen Dinh Cat, Aurelie; Escoubet, Brigitte; Agrapart, Vincent; Griol-Charhbili, Violaine; Schoeb, Trenton; Feng, Wenguang; Jaimes, Edgar; Warnock, David G; Jaisser, Frederic
2012-01-01
Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, (predominately globotriaosylceramide; GL-3) in lysosomes, as well as other cellular compartments and the extracellular space. Our aim was to characterize the cardiac phenotype of male knock-out mice that are deficient in alpha-galactosidase A activity, as a model for Fabry disease and test the efficacy of Enzyme Replacement Therapy with agalsidase-beta. Male mice (3-4 months of age) were characterized with awake blood pressure and heart rate measurements, cardiac echocardiography and electrocardiography measurements under light anesthesia, histological studies and molecular studies with real-time polymerase chain reaction. The Fabry knock-out mouse has bradycardia and lower blood pressure than control wild type (CB7BL/6J) mice. In Fabry knock-out mice, the cardiomyopathy associated mild hypertrophy at echography with normal systolic LV function and mild diastolic dysfunction. Premature atrial contractions were more frequent in without conduction defect. Heart weight normalized to tibial length was increased in Fabry knock-out mice. Ascending aorta dilatation was observed. Molecular studies were consistent with early stages of cardiac remodeling. A single dose of agalsidase-beta (3 mg/kg) did not affect the LV hypertrophy, function or heart rate, but did improve the mRNA signals of early cardiac remodeling. In conclusion, the alpha-galactosidase A deficient mice at 3 to 4 months of age have cardiac and vascular alterations similar to that described in early clinical stage of Fabry disease in children and adolescents. Enzyme replacement therapy affects cardiac molecular remodeling after a single dose.
TASK channel deletion reduces sensitivity to local anesthetic-induced seizures
Du, Guizhi; Chen, Xiangdong; Todorovic, Marko S.; Shu, Shaofang; Kapur, Jaideep; Bayliss, Douglas A.
2011-01-01
Background Local anesthetics (LAs) are typically used for regional anesthesia but can be given systemically to mitigate postoperative pain, supplement general anesthesia or prevent cardiac arrhythmias. However, systemic application or inadvertent intravenous injection can be associated with substantial toxicity, including seizure induction. The molecular basis for this toxic action remains unclear. Methods We characterized effects of different LAs on homomeric and heteromeric K+ channels containing TASK-1 (K2P3.1, KCNK3) and TASK-3 (K2P9.1, KCNK9) subunits in a mammalian expression system. In addition, we used TASK-1/TASK-3 knockout mice to test the possibility that TASK channels contribute to LA-evoked seizures. Results LAs inhibited homomeric and heteromeric TASK channels in a range relevant for seizure induction; channels containing TASK-1 subunits were most sensitive and IC50 values indicated a rank order potency of bupivacaine > ropivacaine ⟫ lidocaine. LAs induced tonic-clonic seizures in mice with the same rank order potency, but higher LA doses were required to evoke seizures in TASK knockout mice. For bupivacaine, which produced the longest seizure times, seizure duration was significantly shorter in TASK knockout mice; bupivacaine-induced seizures were associated with an increase in electroencephalogram power at frequencies <5 Hz in both wild type and TASK knockout mice. Conclusions These data suggest that increased neuronal excitability associated with TASK channel inhibition by LAs contributes to seizure induction. Since all LAs were capable of evoking seizures in TASK channel deleted mice, albeit at higher doses, the results imply that other molecular targets must also be involved in this toxic action. PMID:21946151
Fabp4-Cre-mediated Sirt6 deletion impairs adipose tissue function and metabolic homeostasis in mice.
Xiong, Xiwen; Zhang, Cuicui; Zhang, Yang; Fan, Rui; Qian, Xinlai; Dong, X Charlie
2017-06-01
SIRT6 is a member of sirtuin family of deacetylases involved in diverse processes including genome stability, metabolic homeostasis and anti-inflammation. However, its function in the adipose tissue is not well understood. To examine the metabolic function of SIRT6 in the adipose tissue, we generated two mouse models that are deficient in Sirt6 using the Cre-lox approach. Two commonly used Cre lines that are driven by either the mouse Fabp4 or Adipoq gene promoter were chosen for this study. The Sirt6- knockout mice generated by the Fabp4-Cre line ( Sirt6 f/f : Fabp4-Cre) had a significant increase in both body weight and fat mass and exhibited glucose intolerance and insulin resistance as compared with the control wild-type mice. At the molecular levels, the Sirt6 f/f :Fabp4-Cre-knockout mice had increased expression of inflammatory genes including F4/80, TNFα, IL-6 and MCP-1 in both white and brown adipose tissues. Moreover, the knockout mice showed decreased expression of the adiponectin gene in the white adipose tissue and UCP1 in the brown adipose tissue, respectively. In contrast, the Sirt6 knockout mice generated by the Adipoq-Cre line ( Sirt6 f/f :Adipoq-Cre) only had modest insulin resistance. In conclusion, our data suggest that the function of SIRT6 in the Fabp4-Cre-expressing cells in addition to mature adipocytes plays a critical role in body weight maintenance and metabolic homeostasis. © 2017 Society for Endocrinology.
Kaniuka, O P; Filiak, Ie Z; Kulachkovs'kyĭ, O R; Osyp, Iu L; Sybirna, N O
2014-01-01
A pttg gene knockout affects the functional state of erythron in mice which could be associated with structural changes in the structure of erythrocyte membranes. The pttg gene knockout causes a significant modification of fatty acids composition of erythrocyte membrane lipids by reducing the content of palmitic acid and increasing of polyunsaturated fatty acids amount by 18%. Analyzing the erythrocyte surface architectonics of mice under pttg gene knockout, it was found that on the background of reduction of the functionally complete biconcave discs population one could observe an increase of the number of transformed cells at different degeneration stages. Researches have shown that in mice with a pttg gene knockout compared with a control group of animals cytoskeletal protein--beta-spectrin was reduced by 17.03%. However, there is a reduction of membrane protein band 3 by 33.04%, simultaneously the content of anion transport protein band 4.5 increases by 35.2% and protein band 4.2 by 32.1%. The lectin blot analysis has helped to reveal changes in the structure of the carbohydrate determinants of erythrocyte membrane glycoproteins under conditions of directed pttg gene inactivation, accompanied by changes in the type of communication, which joins the terminal residue in carbohydrate determinant of glycoproteins. Thus, a significant redistribution of protein and fatty acids contents in erythrocyte membranes that manifested in the increase of the deformed shape of red blood cells is observed underpttg gene knockout.
Characterization of nasal potential difference in cftr knockout and F508del-CFTR mice.
Saussereau, Emilie Lyne; Roussel, Delphine; Diallo, Siradiou; Debarbieux, Laurent; Edelman, Aleksander; Sermet-Gaudelus, Isabelle
2013-01-01
Treatments designed to correct cystic fibrosis transmembrane conductance regulator (CFTR) defects must first be evaluated in preclinical experiments in the mouse model of cystic fibrosis (CF). Mice nasal mucosa mimics the bioelectric defect seen in humans. The use of nasal potential difference (V(TE)) to assess ionic transport is a powerful test evaluating the restoration of CFTR function. Nasal V(TE) in CF mice must be well characterized for correct interpretation. We performed V(TE) measurements in large-scale studies of two mouse models of CF--B6;129 cftr knockout and FVB F508del-CFTR--and their respective wild-type (WT) littermates. We assessed the repeatability of the test for cftr knockout mice and defined cutoff points distinguishing between WT and F508del-CFTR mice. We determined the typical V(TE) values for CF and WT mice and demonstrated the existence of residual CFTR activity in F508del-CFTR mice. We characterized intra-animal variability in B6;129 mice and defined the cutoff points for F508del-CFTR chloride secretion rescue. Hyperpolarization of more than -2.15 mV after perfusion with a low-concentration Cl(-) solution was considered to indicate a normal response. These data will make it possible to interpret changes in nasal V(TE) in mouse models of CF, in future preclinical studies.
Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice.
Chen, Tian; Jia, Guang; Wei, Yongjie; Li, Jiucun
2013-11-25
Air pollution is associated with significant adverse health effects including increased cardiovascular morbidity and mortality. However research on the cardiovascular effect of "real-world" exposure to ambient particulate matter (PM) in susceptible animal model is very limited. In this study, we aimed to investigate the association between Beijing ambient particle exposure and the atherosclerosis development in the apolipoprotein E knockout mice (ApoE(-/-) mice). Two parallel exposure chambers were used for whole body exposure among ApoE knockout mice. One of the chambers was supplied with untreated ambient air (PM group) and the other chamber was treated with ambient air filtered by high-efficiency particulate air (HEPA) filter (FA group). Twenty mice were divided into two groups and exposed to ambient PM (n=10 for PM group) or filtered air (n=10 for FA group) for two months from January 18th to March 18th, 2010. During the exposure, the mass concentrations of PM2.5 and PM10 in the two chambers were continuously monitored. Additionally, a receptor source apportionment model of chemical mass balance using 19 organic tracers was applied to determine the contributions of sources on the PM2.5 in terms of natural gas, diesel vehicle, gasoline vehicle, coal burning, vegetable debris, biomass burning and cooking. At the end of the two-month exposure, biomarkers of oxidative stress, inflammation and lipid metabolism in bronchoalveolar lavage fluid (BAL) and blood samples were determined and the plaque area on the aortic endothelium was quantified. In the experiment, the concentrations of PM10 and PM2.5 in PM chamber were 99.45μg/m(3) and 61.0μg/m(3) respectively, while PM2.5 in FA chamber was 17.6μg/m(3). Source apportionment analysis by organic tracers showed that gasoline vehicle (39.9%) and coal burning (24.3%) emission were the two major sources contributing to the mass concentration of PM2.5 in Beijing. Among the ApoE knockout mice, the PM group were significantly higher than the FA group in terms of serum total cholesterol, low-density lipoprotein, tumor necrosis factor-alpha (TNF-alpha) and C-reactive protein as well as TNF-alpha and interleukin-6 in BAL. Also the total antioxidant capacity and oxidized low-density lipoprotein were significantly different between the two groups. In addition, pathological analysis of aortic arch reveals that the plaques area in the PM group increased significantly compared to the FA group. Our results demonstrated that ambient PM exposure could induce considerable oxidative stress and systemic inflammation in ApoE knockout mice and contribute to the progression of atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Sanders, Anne M; Stehle, John R; Blanks, Michael J; Riedlinger, Gregory; Kim-Shapiro, Jung W; Monjazeb, Arta M; Adams, Jonathan M; Willingham, Mark C; Cui, Zheng
2010-03-31
Spontaneous Regression/Complete Resistant (SR/CR) mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-), superoxide (Cybb-/), or inducible nitric oxide (Nos2-/). SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180). Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required for cancer-resistance in SR/CR mice. The resistance was functional when any one of these effector mechanisms was completely absent, except some noticeably reduced penetrance, but not abolishment, of the phenotype in the male background in comparison to female background. These results also indicate that some other effector mechanism(s) of granulocytes may be involved in the killing of cancer cells in SR/CR mice.
Dong, Z; Yan, L; Huang, G; Zhang, L; Mei, B; Meng, B
2014-06-13
Ibuprofen is a widely used nonsteroidal anti-inflammatory drug that reportedly reduces the risk of Alzheimer's disease (AD) development. The anti-inflammatory effect of ibuprofen occurred via inhibition of cyclooxygenases and anti-amyloidogenesis through modulation of γ-secretase. Presenilin 1 and 2 conditional double-knockout (cDKO) mice exhibited age-dependent memory impairment and forebrain degeneration without elevation of amyloid β deposition. Therefore, cDKO mice can be an ideal animal model on which to independently test the effects of ibuprofen anti-inflammatory properties on the prevention of AD. Three- and six-month-old cDKO mice were fed diet containing 375 ppm ibuprofen for six months. After multiple, well-validated behavioral tests, treatment with ibuprofen improved cognition-related behavioral performance, and drug efficacy was correlated with the timing of administration. Ibuprofen was more effective on six-month-old than on three-month-old cDKO mice. Biochemical analysis demonstrated that the effects of ibuprofen on glial fibrillary acidic protein and CD68 expression levels were uneven in different brain regions of cDKO mice and that age also influenced such effects. Tau hyperphosphorylation and the cleavage of caspase-3 decreased after ibuprofen treatment, and this effect was more significant in the older than the younger group of mice, which was consistent with the results of behavioral tests. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Protective cellular responses to Burkholderia mallei infection.
Rowland, Caroline A; Lever, M Stephen; Griffin, Kate F; Bancroft, Gregory J; Lukaszewski, Roman A
2010-10-01
Burkholderia mallei is a Gram-negative bacillus causing the disease glanders in humans. During intraperitoneal infection, BALB/c mice develop a chronic disease characterised by abscess formation where mice normally die up to 70 days post-infection. Although cytokine responses have been investigated, cellular immune responses to B. mallei infection have not previously been characterised. Therefore, the influx and activation status of splenic neutrophils, macrophages and T cells was examined during infection. Gr-1+ neutrophils and F4/80+ macrophages infiltrated the spleen 5 h post-infection and an increase in activated macrophages, neutrophils and T cells occurred by 24 h post-infection. Mice depleted of Gr-1+ cells were acutely susceptible to B. mallei infection, succumbing to the infection 5 days post-infection. Mice depleted of both CD4 and CD8 T cells did not succumb to the infection until 14 days post-infection. Infected μMT (B cell) and CD28 knockout mice did not differ from wildtype mice whereas iNOS-2 knockout mice began to succumb to the infection 30 days post-infection. The data presented suggests that Gr-1+ cells, activated early in B. mallei infection, are essential for controlling the early, innate response to B. mallei infection and T cells or nitric oxide are important during the later stages of infection. Crown Copyright © 2010. Published by Elsevier SAS. All rights reserved.
Resistance of R-Ras knockout mice to skin tumour induction
May, Ulrike; Prince, Stuart; Vähätupa, Maria; Laitinen, Anni M.; Nieminen, Katriina; Uusitalo-Järvinen, Hannele; Järvinen, Tero A. H.
2015-01-01
The R-ras gene encodes a small GTPase that is a member of the Ras family. Despite close sequence similarities, R-Ras is functionally distinct from the prototypic Ras proteins; no transformative activity and no activating mutations of R-Ras in human malignancies have been reported for it. R-Ras activity appears inhibitory towards tumour proliferation and invasion, and to promote cellular quiescence. Contrary to this, using mice with a deletion of the R-ras gene, we found that R-Ras facilitates DMBA/TPA-induced skin tumour induction. The tumours appeared in wild-type (WT) mice on average 6 weeks earlier than in R-Ras knockout (R-Ras KO) mice. WT mice developed almost 6 times more tumours than R-Ras KO mice. Despite strong R-Ras protein expression in the dermal blood vessels, no R-Ras could be detected in the epidermis from where the tumours arose. The DMBA/TPA skin tumourigenesis-model is highly dependent upon inflammation, and we found a greatly attenuated skin inflammatory response to DMBA/TPA-treatment in the R-Ras KO mice in the context of leukocyte infiltration and proinflammatory cytokine expression. Thus, these data suggest that despite its characterised role in promoting cellular quiescence, R-Ras is pro-tumourigenic in the DMBA/TPA tumour model and important for the inflammatory response to DMBA/TPA treatment. PMID:26133397
Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Pengpeng; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leadsmore » to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.« less
Wu, Melissa P; Doyle, Jamie R; Barry, Brenda; Beauvais, Ariane; Rozkalne, Anete; Piao, Xianhua; Lawlor, Michael W; Kopin, Alan S; Walsh, Christopher A; Gussoni, Emanuela
2013-12-01
Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities. © 2013 FEBS.
Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory
Sanderson, David J.; Hindley, Emma; Smeaton, Emily; Denny, Nick; Taylor, Amy; Barkus, Chris; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.
2011-01-01
Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual–retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes. PMID:21378100
Knocking-out matrix metalloproteinase-13 exacerbates rotator cuff muscle fatty infiltration.
Liu, Xuhui; Ravishankar, Bharat; Ning, Anne; Liu, Mengyao; Kim, Hubert T; Feeley, Brian T
2017-01-01
Rotator cuff (RC) tears are common tendon injuries. Clinically, both muscle atrophy and fatty infiltration have generally been attributed to poor functional outcomes. Matrix metalloproteinase-13 plays a crucial role in extracellular matrix remodeling in many physiological and pathological processes. Nevertheless, its role in rotator cuff muscle atrophy and fatty infiltration remains unknown. The purpose of this study is to define the functional role of MMP-13 in rotator cuff muscle atrophy and fatty infiltration using a mouse RC tears model. Unilateral complete supraspinatus and infraspinatus tendon transection and suprascapular nerve transection was performed on nine of MMP-13 (-/-) knockout and nine of MMP-13 (+/+) wildtype mice at 3 months old. Mice were sacrificed 6 weeks after surgery. Supraspinatus (SS) and infraspinatus (IS) muscles were harvested for histology and gene expression analysis with RT-PCR. Six weeks after RC surgery, no significant difference in muscle atrophy and fibrosis between MMP-13 knockout and wild type mice was observed. However, there was a significant increase in the amount of fatty infiltration in MMP-13 knockout mice compared to the wild types. Muscles from MMP-13 knockout mice have significantly higher expression of fatty infiltration related genes. Results from this study suggest that MMP-13 plays a crucial role in rotator cuff muscle fatty degeneration. This novel finding suggests a new molecular mechanism that governs RC muscle FI and MMP-13 may serve as a target for therapeutics to treat muscle FI after RC tears.
Lee, Ji Yeon; Kwak, Minseok; Lee, Peter C W
2015-03-15
The Uba6-Use1 ubiquitin enzyme cascade is a poorly understood arm of the ubiquitin-proteasome system required for mouse development. Recently, we reported that Uba6 brain-specific knockout (termed NKO) mice display abnormal social behavior and neuronal development due to a decreased spine density and accumulation of Ube3a and Shank3. To better characterize a potential role for NKO mice in autism spectrum disorders (ASDs), we performed a comprehensive behavioral characterization of the social behavior and communication of NKO mice. Our behavioral results confirmed that NKO mice display social impairments, as indicated by fewer vocalizations and decreased social interaction. We conclude that UBA6 NKO mice represent a novel ASD mouse model of anti-social and less verbal behavioral symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.
Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A.; Mains, Richard E.
2014-01-01
Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. PMID:25014196
2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD)-Mediated Oxidative Stress in Female CYP1A2 Knockout (CYP1A2-/-) Mice
Deborah Burgin1, Janet Diliberto2, Linda Birnbaum2
1UNC Toxicology; 2USEPA/ORD/NHEERL, RTP, NC
Most of the effects due to TCDD exposure are mediated via...
Beta-arrestin-1 protein represses diet-induced obesity.
Zhuang, Le-nan; Hu, Wen-xiang; Zhang, Ming-liang; Xin, Shun-mei; Jia, Wei-ping; Zhao, Jian; Pei, Gang
2011-08-12
Diet-related obesity is a major metabolic disorder. Excessive fat mass is associated with type 2 diabetes, hepatic steatosis, and arteriosclerosis. Dysregulation of lipid metabolism and adipose tissue function contributes to diet-induced obesity. Here, we report that β-arrestin-1 knock-out mice are susceptible to diet-induced obesity. Knock-out of the gene encoding β-arrestin-1 caused increased fat mass accumulation and decreased whole-body insulin sensitivity in mice fed a high-fat diet. In β-arrestin-1 knock-out mice, we observed disrupted food intake and energy expenditure and increased macrophage infiltration in white adipose tissue. At the molecular level, β-arrestin-1 deficiency affected the expression of many lipid metabolic genes and inflammatory genes in adipose tissue. Consistently, transgenic overexpression of β-arrestin-1 repressed diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Thus, our findings reveal that β-arrestin-1 plays a role in metabolism regulation.
ROLE OF ESTROGEN RECEPTOR-α ON FOOD DEMAND ELASTICITY
Minervini, Vanessa; Rowland, Neil E.; Robertson, Kimberly L.; Foster, Thomas C.
2016-01-01
Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426
SF-1 a key player in the development and differentiation of steroidogenic tissues
Val, Pierre; Lefrançois-Martinez, Anne-Marie; Veyssière, Georges; Martinez, Antoine
2003-01-01
Since its discovery in the early 1990s, the orphan nuclear receptor SF-1 has been attributed a central role in the development and differentiation of steroidogenic tissues. SF-1 controls the expression of all the steroidogenic enzymes and cholesterol transporters required for steroidogenesis as well as the expression of steroidogenesis-stimulating hormones and their cognate receptors. SF-1 is also an essential regulator of genes involved in the sex determination cascade. The study of SF-1 null mice and of human mutants has been of great value to demonstrate the essential role of this factor in vivo, although the complete adrenal and gonadal agenesis in knock-out animals has impeded studies of its function as a transcriptional regulator. In particular, the role of SF-1 in the hormonal responsiveness of steroidogenic genes promoters is still a subject of debate. This extensive review takes into account recent data obtained from SF-1 haploinsufficient mice, pituitary-specific knock-outs and from transgenic mice experiments carried out with SF-1 target gene promoters. It also summarizes the pros and cons regarding the presumed role of SF-1 in cAMP signalling. PMID:14594453
Zhang, Shanshan; Zou, Jun; Li, Peiyang; Zheng, Xiumei; Feng, Dan
2018-01-17
Toll-like receptor 4 (TLR4) has been reported to play a critical role in the pathogenesis of atherosclerosis, the current study aimed to investigate whether curcumin suppresses atherosclerosis development in ApoE-knockout (ApoE -/- ) mice by inhibiting TLR4 expression. ApoE -/- mice were fed a high-fat diet supplemented with or without curcumin (0.1% w/w) for 16 weeks. Curcumin supplementation significantly reduced TLR4 expression and macrophage infiltration in atherosclerotic plaques. Curcumin also reduced aortic interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression, nuclear factor-κB (NF-κB) activity, and plasma IL-1β, TNF-α, soluble VCAM-1 and ICAM-1 levels. In addition, aortic sinus sections revealed that curcumin treatment reduced the extent of atherosclerotic lesions and inhibited atherosclerosis development. In vitro, curcumin inhibited NF-κB activation in macrophages and reduced TLR4 expression induced by lipopolysaccharide. Our results indicate that curcumin protects against atherosclerosis at least partially by inhibiting TLR4 expression and its related inflammatory reaction.
Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons.
Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C
2016-08-05
Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca(2+) entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca(2+) buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca(2+)-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca(2+) elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. © 2016 The Authors.
Zhang, Le; Dasuri, Kalavathi; Fernandez-Kim, Sun-Ok; Bruce-Keller, Annadora J; Keller, Jeffrey N
2016-01-01
Nuclear factor E2-related factor 2 (NRF2) is a well-known master controller of the cellular adaptive antioxidant and detoxification response. Recent studies demonstrated altered glucose, lipid and energy metabolism in mice with a global Nrf2 knockout. In the present study, we aim to determine the effects of an adipose-specific ablation of Nrf2 (ASAN) on diet-induced obesity (DIO) in male mice. The 6-week-old adipose-specific Nrf2 knockout (NK) and its Nrf2 control (NC) mice were fed with either control diet (CD) or high-fat diet (HFD) for 14 weeks. NK mice exhibited transiently delayed body weight (BW) growth from week 5 to week 11 of HFD feeding, higher daily physical activity levels and preferential use of fat over carbohydrates as a source of energy at week 8 of the CD-feeding period. After 14 weeks of feeding, NK mice showed comparable results with NC mice with respect to the overall BW and body fat content, but exhibited reduced blood glucose, reduced number but increased size of adipocytes, accompanied with elevated expression of many genes and proteins in the visceral fat related to glucose, lipid and energy metabolism (e.g. Fgf21 , Pgc1a ). These results indicated that NRF2 is an important mediator for glucose, lipid and energy metabolism in adipose tissue, and ASAN could have beneficial effect for prevention of DIO during the early development of mice.
Miyamoto, Satoshi; Shikata, Kenichi; Miyasaka, Kyoko; Okada, Shinichi; Sasaki, Motofumi; Kodera, Ryo; Hirota, Daisho; Kajitani, Nobuo; Takatsuka, Tetsuharu; Kataoka, Hitomi Usui; Nishishita, Shingo; Sato, Chikage; Funakoshi, Akihiro; Nishimori, Hisakazu; Uchida, Haruhito Adam; Ogawa, Daisuke; Makino, Hirofumi
2012-01-01
Inflammatory process is involved in the pathogenesis of diabetic nephropathy. In this article, we show that cholecystokinin (CCK) is expressed in the kidney and exerts renoprotective effects through its anti-inflammatory actions. DNA microarray showed that CCK was upregulated in the kidney of diabetic wild-type (WT) mice but not in diabetic intracellular adhesion molecule-1 knockout mice. We induced diabetes in CCK-1 receptor (CCK-1R) and CCK-2R double-knockout (CCK-1R−/−,-2R−/−) mice, and furthermore, we performed a bone marrow transplantation study using CCK-1R−/− mice to determine the role of CCK-1R on macrophages in the diabetic kidney. Diabetic CCK-1R−/−,-2R−/− mice revealed enhanced albuminuria and inflammation in the kidney compared with diabetic WT mice. In addition, diabetic WT mice with CCK-1R−/− bone marrow–derived cells developed more albuminuria than diabetic CCK-1R−/− mice with WT bone marrow–derived cells. Administration of sulfated cholecystokinin octapeptide (CCK-8S) ameliorated albuminuria, podocyte loss, expression of proinflammatory genes, and infiltration of macrophages in the kidneys of diabetic rats. Furthermore, CCK-8S inhibited both expression of tumor necrosis factor-α and chemotaxis in cultured THP-1 cells. These results suggest that CCK suppresses the activation of macrophage and expression of proinflammatory genes in diabetic kidney. Our findings may provide a novel strategy of therapy for the early stage of diabetic nephropathy. PMID:22357963
Souza, Ana Carolina P.; Bocharov, Alexander V.; Baranova, Irina; Vishnyakova, Tatyana; Huang, Yuning G.; Wilkins, Kenneth J.; Hu, Xuzhen; Street, Jonathan M.; Alvarez-Prats, Alejandro; Mullick, Adam E.; Patterson, Amy P.; Remaley, Alan; Eggerman, Thomas L.; Yuen, Peter S.T.; Star, Robert A.
2016-01-01
Scavenger receptor CD36 participates in lipid metabolism and inflammatory pathways important for cardiovascular disease and chronic kidney disease (CKD). Few pharmacological agents are available to slow the progression of CKD. However, apolipoprotein AI-mimetic peptide 5A antagonizes CD36 in vitro. To test the efficacy of 5A, and to test the role of CD36 during CKD, we compared wild type to CD36 knockout mice and wild type mice treated with 5A, in a progressive CKD model that resembles human disease. Knockout and 5A-treated wild type mice were protected from CKD progression without changes in blood pressure and had reductions in cardiovascular risk surrogate markers that are associated with CKD. Treatment with 5A did not further protect CD36 knockout mice from CKD progression, implicating CD36 as its main site of action. In a separate model of kidney fibrosis, 5A-treated wild type mice had less macrophage infiltration and interstitial fibrosis. Peptide 5A exerted anti-inflammatory effects in the kidney and decreases renal expression of inflammasome genes. Thus, CD36 is a new therapeutic target for CKD and its associated cardiovascular risk factors. Peptide 5A may be a promising new agent to slow CKD progression. PMID:26994575
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie
2013-10-15
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expressionmore » of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular development are observed in AHR-KO mouse, but not rat. • Renal pathology is observed in AHR-KO rat, but not mouse.« less
Loeffler, Ivonne; Liebisch, Marita; Allert, Stefanie; Kunisch, Elke; Kinne, Raimund W; Wolf, Gunter
2018-04-01
Extracellular matrix deposition during tubulointerstitial fibrosis (TIF), a central pathological process in patients with diabetic nephropathy (DN), is driven by locally activated, disease-relevant myofibroblasts. Myofibroblasts can arise from various cellular sources, e.g., tubular epithelial cells via a process named epithelial-to-mesenchymal transition (EMT). Transforming growth factor beta 1 (TGF-β1) and its downstream Smad signaling play a critical role in both TIF and EMT. Whereas Smad3 is one central mediator, the role of the other prominently expressed variant, Smad2, is not completely understood. In this study, we sought to analyze the role of renal Smad2 in the development of TIF and EMT during streptozotocin-induced DN by using a fibroblast-specific protein 1 (FSP1)-promotor-driven SMAD2 knockout mouse model with decreased tubular, endothelial, and interstitial Smad2 expression. In contrast to wild-type diabetic mice, diabetic SMAD2 knockout mice showed the following features: (1) significantly reduced DN and TIF (shown by KIM1 expression; periodic acid Schiff staining; collagen I and III, fibronectin, and connective tissue growth factor deposition); (2) significantly reduced tubular EMT-like changes (e.g., altered Snail1, E-cadherin, matrix metalloproteinase 2, and vimentin deposition); and (3) significantly decreased expression of myofibroblast markers (α-smooth muscle actin, FSP1). As one mechanism for the protection against diabetes-induced TIF and EMT, decreased Smad3 protein levels and, as a possible consequence, reduced TGF-β1 levels were observed in diabetic SMAD2 knockout mice. Our findings thus support the important role of Smad2 for pro-fibrotic TGF-β/Smad3 signaling in experimental DN.
Park, So Young; Jang, So Young; Shin, Yoon Kyoung; Jung, Dong Keun; Yoon, Byeol A; Kim, Jong Kook; Jo, Young Rae; Lee, Hye Jeong
2017-01-01
The vertebrate neuromuscular junction (NMJ) is considered as a “tripartite synapse” consisting of a motor axon terminal, a muscle endplate, and terminal Schwann cells that envelope the motor axon terminal. The neuregulin 1 (NRG1)-ErbB2 signaling pathway plays an important role in the development of the NMJ. We previously showed that Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling, is required for NRG1-induced peripheral nerve myelination. Here, we determined the role of Gab1 in the development of the NMJ using muscle-specific conditional Gab1 knockout mice. The mutant mice showed delayed postnatal maturation of the NMJ. Furthermore, the selective loss of the gab1 gene in terminal Schwann cells produced delayed synaptic elimination with abnormal morphology of the motor endplate, suggesting that Gab1 in both muscles and terminal Schwann cells is required for proper NMJ development. Gab1 in terminal Schwann cells appeared to regulate the number and process elongation of terminal Schwann cells during synaptic elimination. However, Gab2 knockout mice did not show any defects in the development of the NMJ. Considering the role of Gab1 in postnatal peripheral nerve myelination, our findings suggest that Gab1 is a pleiotropic and important component of NRG1 signals during postnatal development of the peripheral neuromuscular system. PMID:28680299
Park, So Young; Jang, So Young; Shin, Yoon Kyoung; Jung, Dong Keun; Yoon, Byeol A; Kim, Jong Kook; Jo, Young Rae; Lee, Hye Jeong; Park, Hwan Tae
2017-06-01
The vertebrate neuromuscular junction (NMJ) is considered as a "tripartite synapse" consisting of a motor axon terminal, a muscle endplate, and terminal Schwann cells that envelope the motor axon terminal. The neuregulin 1 (NRG1)-ErbB2 signaling pathway plays an important role in the development of the NMJ. We previously showed that Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling, is required for NRG1-induced peripheral nerve myelination. Here, we determined the role of Gab1 in the development of the NMJ using muscle-specific conditional Gab1 knockout mice. The mutant mice showed delayed postnatal maturation of the NMJ. Furthermore, the selective loss of the gab1 gene in terminal Schwann cells produced delayed synaptic elimination with abnormal morphology of the motor endplate, suggesting that Gab1 in both muscles and terminal Schwann cells is required for proper NMJ development. Gab1 in terminal Schwann cells appeared to regulate the number and process elongation of terminal Schwann cells during synaptic elimination. However, Gab2 knockout mice did not show any defects in the development of the NMJ. Considering the role of Gab1 in postnatal peripheral nerve myelination, our findings suggest that Gab1 is a pleiotropic and important component of NRG1 signals during postnatal development of the peripheral neuromuscular system.
Alongkronrusmee, Doungkamol; Chiang, Terrance; van Rijn, Richard M
2016-10-01
As a legal drug, alcohol is commonly abused and it is estimated that 17 million adults in the United States suffer from alcohol use disorder. Heavy alcoholics can experience withdrawal symptoms including anxiety and mechanical allodynia that can facilitate relapse. The molecular mechanisms underlying this phenomenon are not well understood, which stifles development of new therapeutics. Here we investigate whether delta opioid receptors (DORs) play an active role in alcohol withdrawal-induced mechanical allodynia (AWiMA) and if DOR agonists may provide analgesic relief from AWiMA. To study AWiMA, adult male wild-type and DOR knockout C57BL/6 mice were exposed to alcohol by a voluntary drinking model or oral gavage exposure model, which we developed and validated here. We also used the DOR-selective agonist TAN-67 and antagonist naltrindole to examine the involvement of DORs in AWiMA, which was measured using a von Frey model of mechanical allodynia. We created a robust model of alcohol withdrawal-induced anxiety and mechanical allodynia by orally gavaging mice with 3g/kg alcohol for three weeks. AWiMA was exacerbated and prolonged in DOR knockout mice as well as by pharmacological blockade of DORs compared to control mice. However, analgesia induced by TAN-67 was attenuated during withdrawal in alcohol-gavaged mice. DORs appear to play a protective role in the establishment of AWiMA. Our current results indicate that DORs could be targeted to prevent or reduce the development of AWiMA during alcohol use; however, DORs may be a less suitable target to treat AWiMA during active withdrawal. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Arap1 Deficiency Causes Photoreceptor Degeneration in Mice.
Moshiri, Ala; Humpal, Devin; Leonard, Brian C; Imai, Denise M; Tham, Addy; Bower, Lynette; Clary, Dave; Glaser, Thomas M; Lloyd, K C Kent; Murphy, Christopher J
2017-03-01
Small guanosine triphosphatase (GTPase) ADP-ribosylation factors (Arfs) regulate membrane traffic and actin reorganization under the control of GTPase-activating proteins (GAPs). Arap1 is an Arf-directed GAP that inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome, but the diversity of its functions is incompletely understood. The aim of this study was to determine the role of Arap1 in the mammalian retina. Genetically engineered Arap1 knockout mice were screened for ocular abnormalities in the National Institutes of Health Knockout Mouse Production and Phenotyping (KOMP2) Project. Arap1 knockout and wild-type eyes were imaged using optical coherence tomography and fundus photography, and analyzed by immunohistochemistry. Arap1-/- mice develop a normal appearing retina, but undergo photoreceptor degeneration starting at 4 weeks postnatal age. The fundus appearance of mutants is notable for pigmentary changes, optic nerve pallor, vascular attenuation, and outer retinal thinning, reminiscent of retinitis pigmentosa in humans. Immunohistochemical studies suggest the cell death is predominantly in the outer nuclear layer. Functional evaluation of the retina by electroretinography reveals amplitudes are reduced. Arap1 is detected most notably in Müller glia, and not in photoreceptors, implicating a role for Müller glia in photoreceptor survival. Arap1 is necessary for normal photoreceptor survival in mice, and may be a novel gene relevant to human retinal degenerative processes, although its mechanism is unknown. Further studies in this mouse model of retinal degeneration will give insights into the cellular functions and signaling pathways in which Arap1 participates.
Martel, Guillaume; Hevi, Charles; Wong, Alexandra; Zushida, Ko; Uchida, Shusaku; Shumyatsky, Gleb P.
2012-01-01
Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction. PMID:22312434
Rapanelli, M; Frick, L; Pogorelov, V; Ohtsu, H; Bito, H; Pittenger, C
2017-01-01
Tic disorders affect ~5% of the population and are frequently comorbid with obsessive-compulsive disorder, autism, and attention deficit disorder. Histamine dysregulation has been identified as a rare genetic cause of tic disorders; mice with a knockout of the histidine decarboxylase (Hdc) gene represent a promising pathophysiologically grounded model. How alterations in the histamine system lead to tics and other neuropsychiatric pathology, however, remains unclear. We found elevated expression of the histamine H3 receptor in the striatum of Hdc knockout mice. The H3 receptor has significant basal activity even in the absence of ligand and thus may modulate striatal function in this knockout model. We probed H3R function using specific agonists. The H3 agonists R-aminomethylhistamine (RAMH) and immepip produced behavioral stereotypies in KO mice, but not in controls. H3 agonist treatment elevated intra-striatal dopamine in KO mice, but not in controls. This was associated with elevations in phosphorylation of rpS6, a sensitive marker of neural activity, in the dorsal striatum. We used a novel chemogenetic strategy to demonstrate that this dorsal striatal activity is necessary and sufficient for the development of stereotypy: when RAMH-activated cells in the dorsal striatum were chemogenetically activated (in the absence of RAMH), stereotypy was recapitulated in KO animals, and when they were silenced the ability of RAMH to produce stereotypy was blocked. These results identify the H3 receptor in the dorsal striatum as a contributor to repetitive behavioral pathology. PMID:28117842
Single allele Lmbrd1 knockout results in cardiac hypertrophy.
Tseng, Linda Tzu-Ling; Lin, Chieh-Liang; Pan, Kuei-Hsiang; Tzen, Kai-Yuan; Su, Ming-Jai; Tsai, Chia-Ti; Li, Yi-Han; Li, Pai-Chi; Chiang, Fu-Tien; Chang, Shin C; Chang, Ming-Fu
2018-06-01
LMBD1 protein, a type IV-B plasma membrane protein possessing nine putative trans-membrane domains, was previously demonstrated at cellular level to play a critical part in the signaling cascade of insulin receptor through its involvement in regulating clathrin-mediated endocytosis. However, at physiological level, the significance of LMBD1 protein in cardiac development remains unclear. To understand the role of Lmbrd1 gene involved in the cardiac function, heterozygous knockout mice were used as an animal model system. The pathological outcomes were analyzed by micro-positron emission tomography, ECG acquisition, cardiac ultrasound, and immunohistochemistry. By studying the heterozygous knockout of Lmbrd1 (Lmbrd1 +/- ), we discovered that lack of Lmbrd1 not only resulted in the increase of cardiac-glucose uptake, pathological consequences were also observed. Here, we have distinguished that Lmbrd1 +/- is sufficient in causing cardiac diseases through a pathway independent of the recessive vitamin B 12 cblF cobalamin transport defect. Lmbrd1 +/- mice exhibited an increase in myocardial glucose uptake and insulin receptor signaling that is insensitive to the administration of additional insulin. Pathological symptoms such as cardiac hypertrophy, ventricular tissue fibrosis, along with the increase of heart rate and cardiac muscle contractility were observed. As Lmbrd1 +/- mice aged, the decrease in ejection fraction and fraction shortening showed signs of ventricular function deterioration. The results suggested that Lmbrd1 gene not only plays a significant role in mediating the energy homeostasis in cardiac tissue, it may also be a key factor in the regulation of cardiac function in mice. Copyright © 2017. Published by Elsevier B.V.
Martel, Guillaume; Hevi, Charles; Wong, Alexandra; Zushida, Ko; Uchida, Shusaku; Shumyatsky, Gleb P
2012-01-01
Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction.
Manzini, S; Pinna, C; Busnelli, M; Cinquanta, P; Rigamonti, E; Ganzetti, G S; Dellera, F; Sala, A; Calabresi, L; Franceschini, G; Parolini, C; Chiesa, G
2015-11-01
Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcat(wt)) and LCAT knockout (Lcat(KO)) mice exposed to noradrenaline showed reduced contractility in Lcat(KO) mice (P<0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in Lcat(KO) mice (P<0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in Lcat(KO) mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcat(wt) and Lcat(KO) mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. Copyright © 2015. Published by Elsevier Inc.
Manzini, S.; Pinna, C.; Busnelli, M.; Cinquanta, P.; Rigamonti, E.; Ganzetti, G.S.; Dellera, F.; Sala, A.; Calabresi, L.; Franceschini, G.; Parolini, C.; Chiesa, G.
2015-01-01
Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcatwt) and LCAT knockout (LcatKO) mice exposed to noradrenaline showed reduced contractility in LcatKO mice (P < 0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in LcatKO mice (P < 0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in LcatKO mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcatwt and LcatKO mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. PMID:26254103
Memon, Mushtaq A.; Anway, Matthew D.; Covert, Trevor R.; Uzumcu, Mehmet; Skinner, Michael K.
2008-01-01
The role transforming growth factor beta (TGFb) isoforms TGFb1, TGFb2 and TGFb3 have in the regulation of embryonic gonadal development was investigated with the use of null-mutant (i.e. knockout) mice for each of the TGFb isoforms. Late embryonic gonadal development was investigated because homozygote TGFb null-mutant mice generally die around birth, with some embryonic loss as well. In the testis, the TGFb1 null-mutant mice had a decrease in the number of germ cells at birth, postnatal day 0 (P0). In the testis, the TGFb2 null-mutant mice had a decrease in the number of seminiferous cords at embryonic day 15 (E15). In the ovary, the TGFb2 null-mutant mice had an increase in the number of germ cells at P0. TGFb isoforms appear to have a role in gonadal development, but interactions between the isoforms is speculated to compensate in the different TGFb isoform null-mutant mice. PMID:18790002
Nakamura, E; Kadomatsu, K; Yuasa, S; Muramatsu, H; Mamiya, T; Nabeshima, T; Fan, Q W; Ishiguro, K; Igakura, T; Matsubara, S; Kaname, T; Horiba, M; Saito, H; Muramatsu, T
1998-12-01
Midkine (MK) is a growth factor implicated in the development and repair of various tissues, especially neural tissues. However, its in vivo function has not been clarified. Knockout mice lacking the MK gene (Mdk) showed no gross abnormalities. We closely analysed postnatal brain development in Mdk(-/-) mice using calcium binding proteins as markers to distinguish neuronal subpopulations. Intense and prolonged calretinin expression was found in the dentate gyrus granule cell layer of the hippocampus of infant Mdk(-/-) mice. In infant Mdk(+/+) mice, calretinin expression in the granule cell layer was weaker, and had disappeared by 4 weeks after birth, when calretinin expression still persisted in Mdk(-/-) mice. Furthermore, 4 weeks after birth, Mdk(-/-) mice showed a deficit in their working memory, as revealed by a Y-maze test, and had an increased anxiety, as demonstrated by the elevated plus-maze test. Midkine plays an important role in the regulation of postnatal development of the hippocampus.
Dmp1 Null Mice Develop a Unique Osteoarthritis-like Phenotype
Zhang, Qi; Lin, Shuxian; Liu, Ying; Yuan, Baozhi; Harris, Steph E; Feng, Jian Q.
2016-01-01
Patients with hypophosphatemia rickets (including DMP1 mutations) develop severe osteoarthritis (OA), although the mechanism is largely unknown. In this study, we first identified the expression of DMP1 in hypertrophic chondrocytes using immunohistochemistry (IHC) and X-gal analysis of Dmp1-knockout-lacZ-knockin heterozygous mice. Next, we characterized the OA-like phenotype in Dmp1 null mice from 7-week-old to one-year-old using multiple techniques, including X-ray, micro-CT, H&E staining, Goldner staining, scanning electronic microscopy, IHC assays, etc. We found a classical OA-like phenotype in Dmp1 null mice such as articular cartilage degradation, osteophyte formation, and subchondral osteosclerosis. These Dmp1 null mice also developed unique pathological changes, including a biphasic change in their articular cartilage from the initial expansion of hypertrophic chondrocytes at the age of 1-month to a quick diminished articular cartilage layer at the age of 3-months. Further, these null mice displayed severe enlarged knees and poorly formed bone with an expanded osteoid area. To address whether DMP1 plays a direct role in the articular cartilage, we deleted Dmp1 specifically in hypertrophic chondrocytes by crossing the Dmp1-loxP mice with Col X Cre mice. Interestingly, these conditional knockout mice didn't display notable defects in either the articular cartilage or the growth plate. Because of the hypophosphatemia remained in the entire life span of the Dmp1 null mice, we also investigated whether a high phosphate diet would improve the OA-like phenotype. A 8-week treatment of a high phosphate diet significantly rescued the OA-like defect in Dmp1 null mice, supporting the critical role of phosphate homeostasis in maintaining the healthy joint morphology and function. Taken together, this study demonstrates a unique OA-like phenotype in Dmp1 null mice, but a lack of the direct impact of DMP1 on chondrogenesis. Instead, the regulation of phosphate homeostasis by DMP1 via the axis of “FGF23-renal phosphorus reabsorption” is vital for maintaining a healthy joint. PMID:27766035
Xu, Jing; Molday, Laurie L; Molday, Robert S; Sarunic, Marinko V
2009-06-01
The purpose of this study was to investigate Fourier domain optical coherence tomography (FD OCT) as a noninvasive tool for retinal imaging in the Rs1h-knockout mouse (model for X-linked juvenile retinoschisis). A prototype spectrometer-based FD OCT system was used in combination with a custom optical beam-scanning platform. Images of the retinas from wild-type and Rs1h-knockout mice were acquired noninvasively with FD OCT with the specimen anesthetized. At the completion of the noninvasive FD OCT imaging, invasive retinal cross-sectional images (histology) were acquired from a nearby region for comparison to the FD OCT images. The retinal layers were identifiable in the FD OCT images, permitting delineation and thickness measurement of the outer nuclear layer (ONL). During FD OCT in vivo imaging of the Rs1h-knockout mouse, holes were observed in the inner nuclear layer (INL), and retinal cell disorganization was observed as a change in the backscattering intensity profile. Comparison of the ONL measurements acquired noninvasively with FD OCT to measurements taken using histology at nearby locations showed a degeneration of roughly 30% of the ONL by the age of 2 months in Rs1h-knockout mice relative to wild-type. FD OCT was demonstrated to be effective for noninvasive imaging of retinal degeneration and observation of retinal holes in Rs1h-knockout mice.
Tribull, Tiffany E; Bruner, Richard H; Bain, Lisa J
2003-04-30
We examined the ability of the multidrug resistance-associated protein 1 (MRP1/ABCC1) to transport pesticides, as this transporter mediates the cellular efflux of a variety of xenobiotics, typically as glucuronide, sulfate, or glutathione conjugates. NIH3T3 cells stably expressing MRP1 were 3.37-fold more resistant to the toxicity of fenitrothion, 3.12-fold more resistant to chlorpropham, and 2.5-fold more resistant to methoxychlor, a pesticide with estrogenic and anti-androgenic metabolites. The cells expressing MRP1 also eliminated methoxychlor two times more rapidly than their mock-transfected counterparts. We then examined whether mrp1 expression could alter the toxicity of methoxychlor in vivo using male FVB/mrp1 knockout mice (FVB/mrp1-/-). Both control and knockout mice were fed 25 mg/kg methoxychlor in honey for 39 days, and its effects on testicular morphology were examined. Methoxychlor treatment did not significantly affect testicular morphology in the FVB mice, but markedly reduced the number of developing spermatocytes in the FVB/mrp1-/- mice. These results suggest that MRPI may play a role in protecting the seminiferous tubules from methoxychlor-induced damage.
Phenotype detection in morphological mutant mice using deformation features.
Roy, Sharmili; Liang, Xi; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Brown, Michael S
2013-01-01
Large-scale global efforts are underway to knockout each of the approximately 25,000 mouse genes and interpret their roles in shaping the mammalian embryo. Given the tremendous amount of data generated by imaging mutated prenatal mice, high-throughput image analysis systems are inevitable to characterize mammalian development and diseases. Current state-of-the-art computational systems offer only differential volumetric analysis of pre-defined anatomical structures between various gene-knockout mice strains. For subtle anatomical phenotypes, embryo phenotyping still relies on the laborious histological techniques that are clearly unsuitable in such big data environment. This paper presents a system that automatically detects known phenotypes and assists in discovering novel phenotypes in muCT images of mutant mice. Deformation features obtained from non-linear registration of mutant embryo to a normal consensus average image are extracted and analyzed to compute phenotypic and candidate phenotypic areas. The presented system is evaluated using C57BL/10 embryo images. All cases of ventricular septum defect and polydactyly, well-known to be present in this strain, are successfully detected. The system predicts potential phenotypic areas in the liver that are under active histological evaluation for possible phenotype of this mouse line.
Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane
2012-08-14
The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema.
Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.
Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert T; Liu, Xuhui
2014-01-01
extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.
Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.
Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert; Liu, Xuhui
2014-07-01
extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.
Sawaki, Daigo; Hou, Lianguo; Tomida, Shota; Sun, Junqing; Zhan, Hong; Aizawa, Kenichi; Son, Bo-Kyung; Kariya, Taro; Takimoto, Eiki; Otsu, Kinya; Conway, Simon J.; Manabe, Ichiro; Komuro, Issei; Friedman, Scott L.; Nagai, Ryozo; Suzuki, Toru
2015-01-01
Aims Krüppel-like factors (KLFs) are a family of transcription factors which play important roles in the heart under pathological and developmental conditions. We previously identified and cloned Klf6 whose homozygous mutation in mice results in embryonic lethality suggesting a role in cardiovascular development. Effects of KLF6 on pathological regulation of the heart were investigated in the present study. Methods and results Mice heterozygous for Klf6 resulted in significantly diminished levels of cardiac fibrosis in response to angiotensin II infusion. Intriguingly, a similar phenotype was seen in cardiomyocyte-specific Klf6 knockout mice, but not in cardiac fibroblast-specific knockout mice. Microarray analysis revealed increased levels of the extracellular matrix factor, thrombospondin 4 (TSP4), in the Klf6-ablated heart. Mechanistically, KLF6 directly suppressed Tsp4 expression levels, and cardiac TSP4 regulated the activation of cardiac fibroblasts to regulate cardiac fibrosis. Conclusion Our present studies on the cardiac function of KLF6 show a new mechanism whereby cardiomyocytes regulate cardiac fibrosis through transcriptional control of the extracellular matrix factor, TSP4, which, in turn, modulates activation of cardiac fibroblasts. PMID:25987545
Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E.; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane
2012-01-01
The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema. PMID:22847418
Role of the ectonucleotidase NTPDase2 in taste bud function
Vandenbeuch, Aurelie; Anderson, Catherine B.; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C.; Finger, Thomas E.; Kinnamon, Sue C.
2013-01-01
Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses. PMID:23959882
Laramy, Janice K; Kim, Minjee; Parrish, Karen E; Sarkaria, Jann N; Elmquist, William F
2018-05-01
A compartmental blood-brain barrier (BBB) model describing drug transport across the BBB was implemented to evaluate the influence of efflux transporters on the rate and extent of the multikinase inhibitor ponatinib penetration across the BBB. In vivo pharmacokinetic studies in wild-type and transporter knockout mice showed that two major BBB efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), cooperate to modulate the brain exposure of ponatinib. The total and unbound (free) brain-to-plasma ratios were approximately 15-fold higher in the triple knockout mice lacking both P-gp and Bcrp [ Mdr1a/b(-/-)Bcrp1(-/-) ] compared with the wild-type mice. The triple knockout mice had a greater than an additive increase in the brain exposure of ponatinib when compared with single knockout mice [ Bcrp1(-/-) or Mdr1a/b(-/-) ], suggesting functional compensation of transporter-mediated drug efflux. Based on the BBB model characterizing the observed brain and plasma concentration-time profiles, the brain exit rate constant and clearance out of the brain were approximately 15-fold higher in the wild-type compared with Mdr1a/b(-/-)Bcrp1(-/-) mice, resulting in a significant increase in the mean transit time (the average time spent by ponatinib in the brain in a single passage) in the absence of efflux transporters (P-gp and Bcrp). This study characterized transporter-mediated drug efflux from the brain, a process that reduces the duration and extent of ponatinib exposure in the brain and has critical implications for the use of targeted drug delivery for brain tumors. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Divanovic, Senad; Dalli, Jesmond; Jorge-Nebert, Lucia F; Flick, Leah M; Gálvez-Peralta, Marina; Boespflug, Nicholas D; Stankiewicz, Traci E; Fitzgerald, Jonathan M; Somarathna, Maheshika; Karp, Christopher L; Serhan, Charles N; Nebert, Daniel W
2013-09-15
All three cytochrome P450 1 (CYP1) monooxygenases are believed to participate in lipid mediator biosynthesis and/or their local inactivation; however, distinct metabolic steps are unknown. We used multiple-reaction monitoring and liquid chromatography-UV coupled with tandem mass spectrometry-based lipid-mediator metabololipidomics to identify and quantify three lipid-mediator metabolomes in basal peritoneal and zymosan-stimulated inflammatory exudates, comparing Cyp1a1/1a2/1b1(⁻/⁻) C57BL/6J-background triple-knockout mice with C57BL/6J wild-type mice. Significant differences between untreated triple-knockout and wild-type mice were not found for peritoneal cell number or type or for basal CYP1 activities involving 11 identified metabolic steps. Following zymosan-initiated inflammation, 18 lipid mediators were identified, including members of the eicosanoids and specialized proresolving mediators (i.e., resolvins and protectins). Compared with wild-type mice, Cyp1 triple-knockout mice exhibited increased neutrophil recruitment in zymosan-treated peritoneal exudates. Zymosan stimulation was associated with eight statistically significantly altered metabolic steps: increased arachidonic acid-derived leukotriene B₄ (LTB₄) and decreased 5S-hydroxyeicosatetraenoic acid; decreased docosahexaenoic acid-derived neuroprotectin D1/protectin D1, 17S-hydroxydocosahexaenoic acid, and 14S-hydroxydocosahexaenoic acid; and decreased eicosapentaenoic acid-derived 18R-hydroxyeicosapentaenoic acid (HEPE), 15S-HEPE, and 12S-HEPE. In neutrophils analyzed ex vivo, elevated LTB₄ levels were shown to parallel increased neutrophil numbers, and 20-hydroxy-LTB₄ formation was found to be deficient in Cyp1 triple-knockout mice. Together, these results demonstrate novel contributions of CYP1 enzymes to the local metabolite profile of lipid mediators that regulate neutrophilic inflammation.
Role of the ectonucleotidase NTPDase2 in taste bud function.
Vandenbeuch, Aurelie; Anderson, Catherine B; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C; Finger, Thomas E; Kinnamon, Sue C
2013-09-03
Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses.
Cardiomyopathy and Response to Enzyme Replacement Therapy in a Male Mouse Model for Fabry Disease
Nguyen Dinh Cat, Aurelie; Escoubet, Brigitte; Agrapart, Vincent; Griol-Charhbili, Violaine; Schoeb, Trenton; Feng, Wenguang; Jaimes, Edgar; Warnock, David G.; Jaisser, Frederic
2012-01-01
Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, (predominately globotriaosylceramide; GL-3) in lysosomes, as well as other cellular compartments and the extracellular space. Our aim was to characterize the cardiac phenotype of male knock-out mice that are deficient in alpha-galactosidase A activity, as a model for Fabry disease and test the efficacy of Enzyme Replacement Therapy with agalsidase-beta. Male mice (3–4 months of age) were characterized with awake blood pressure and heart rate measurements, cardiac echocardiography and electrocardiography measurements under light anesthesia, histological studies and molecular studies with real-time polymerase chain reaction. The Fabry knock-out mouse has bradycardia and lower blood pressure than control wild type (CB7BL/6J) mice. In Fabry knock-out mice, the cardiomyopathy associated mild hypertrophy at echography with normal systolic LV function and mild diastolic dysfunction. Premature atrial contractions were more frequent in without conduction defect. Heart weight normalized to tibial length was increased in Fabry knock-out mice. Ascending aorta dilatation was observed. Molecular studies were consistent with early stages of cardiac remodeling. A single dose of agalsidase-beta (3 mg/kg) did not affect the LV hypertrophy, function or heart rate, but did improve the mRNA signals of early cardiac remodeling. In conclusion, the alpha-galactosidase A deficient mice at 3 to 4 months of age have cardiac and vascular alterations similar to that described in early clinical stage of Fabry disease in children and adolescents. Enzyme replacement therapy affects cardiac molecular remodeling after a single dose. PMID:22574107
Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B
2017-06-01
The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3 -/- ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3 flox/flox ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017. © 2017 Wiley Periodicals, Inc.
Severe combined immunodeficiency in Sting V154M/WT mice.
Bouis, Delphine; Kirstetter, Peggy; Arbogast, Florent; Lamon, Delphine; Delgado, Virginia; Jung, Sophie; Ebel, Claudine; Jacobs, Hugues; Knapp, Anne-Marie; Jeremiah, Nadia; Belot, Alexandre; Martin, Thierry; Crow, Yanick J; André-Schmutz, Isabelle; Korganow, Anne-Sophie; Rieux-Laucat, Frédéric; Soulas-Sprauel, Pauline
2018-05-23
Autosomal dominant gain-of-function (GOF) mutations in human STING (Stimulator of Interferon Genes) lead to a severe autoinflammatory disease called SAVI (STING Associated Vasculopathy with onset in Infancy), associated with enhanced expression of interferon (IFN) stimulated gene (ISG) transcripts. The goal of this study was to analyze the phenotype of a new mouse model of Sting hyperactivation, and the role of type I IFN in this system. We generated a knock-in model carrying an amino acid substitution (V154M) in mouse Sting, corresponding to a recurrent mutation seen in human patients with SAVI. Hematopoietic development and tissue histology were analyzed. Lymphocyte activation and proliferation were assessed in vitro. Sting V154M/WT mice were crossed to IFNAR (IFNα/β Receptor) knock-out mice in order to evaluate the type I IFN-dependence of the mutant Sting phenotype recorded. In Sting V154M/WT mice we detected variable expression of inflammatory infiltrates in the lungs and kidneys. These mice showed a marked decrease in survival and developed a severe combined immunodeficiency disease (SCID) affecting B, T and NK cells, with an almost complete lack of antibodies and a significant expansion of monocytes and granulocytes. The blockade in B and T cell development was present from early immature stages in bone marrow and thymus. In addition, in vitro experiments revealed an intrinsic proliferative defect of mature T cells. Whilst the V154M/WT mutant demonstrated increased expression of ISGs, the SCID phenotype was not reversed in Sting V154M/WT IFNAR knock-out mice. However, the anti-proliferative defect in T cells was partially rescued by IFNAR deficiency. Sting GOF mice developed an IFN-independent SCID phenotype with a T, B and NK cell developmental defect and hypogammaglobulinemia, associated with signs of inflammation in lungs and kidneys. Only the intrinsic proliferative defect of T cells was, partially, IFN-dependent. Copyright © 2018. Published by Elsevier Inc.
Mechanistic Links between PARP, NAD, and Brain Inflammation after TBI
2014-10-01
metabolite which we have in prior studies shown to also suppress poly(ADP-ribose) polymerase activity and inflammatory responses) and ketogenic diet . CtBP1/2...knockout mice will be generated to test a specific mechanisms by which ketogenic diet can have anti-inflammatory effects. For all studies, outcome...inflammatory responses. (3) Ketogenic diet , begun 12 hours after TBI. CtBP1/2 knockout mice will be generated to test a specific mechanisms by which
The Role of mDia1 in the Aberrant Innate Immune Signaling in del(5q) Myelodysplastic Syndromes
2016-10-01
Myeloproliferative Neoplasms The goal of this project will be to identify transcriptional pathways that are dysregulated in PMF megakaryocytes and... myeloproliferative phenotype, as previously reported in miR-146 knockout mice. Here we propose that the mDia1/miR-146a double knockout mice phenocopy...ineffective erythropoiesis and represent a model of anemia that is commonly seen MDS. However, the possibility of a myeloproliferative phenotype cannot be
Comparison of Overall Metabolism of 2,3,7,8-TCDD
in CYP1A2 (-/-) Knockout and C57BL/6N Parental Strains of Mice
Heldur Hakk* and Janet J. Diliberto**
* USDA-ARS Biosciences Research Laboratory, P.O. Box 5674, Fargo, ND, USA
** US-EPA ORD, National Health Eff...
Tennant, Gail M; Wadsworth, Roger M; Kennedy, Simon
2008-05-01
Activation of PAR-2 in the vasculature affects vascular tone and adhesion of leukocytes to the endothelium. Since adhesion of leukocytes is increased following vascular injury and is important in determining the extent of neointima formation, we hypothesised that mice lacking PAR-2 may have reduced neointima formation following vascular injury. PAR-2 activating peptides and trypsin induced endothelium-dependent relaxation of mouse carotid artery which was absent in the knockout mouse. Lack of a PAR-2 receptor did not affect lymphocyte adhesion under basal conditions, but reduced the contractile response produced by lymphocytes. Twenty-eight days after denuding injury, vessel contraction to lymphocytes was reduced in both strains while lymphocyte adhesion was significantly greater in PAR-2(+/+) mice compared to the PAR-2 knockout mice. Neointimal area was markedly reduced in the PAR-2 knockout mouse. Our data show that PAR-2 modulates inflammatory cell adhesion when stimulated and in mice lacking the PAR-2 receptor, adhesion to injured vessels is reduced with a consequent reduction in neointima formation.
Grande, M Teresa; Fuentes-Calvo, Isabel; Arévalo, Miguel; Heredia, Fabiana; Santos, Eugenio; Martínez-Salgado, Carlos; Rodríguez-Puyol, Diego; Nieto, M Angela; López-Novoa, José M
2010-03-01
Tubulointerstitial fibrosis is characterized by the presence of myofibroblasts that contribute to extracellular matrix accumulation. These cells may originate from resident fibroblasts, bone-marrow-derived cells, or renal epithelial cells converting to a mesenchymal phenotype. Ras GTPases are activated during renal fibrosis and play crucial roles in regulating both cell proliferation and TGF-beta-induced epithelial-mesenchymal transition. Here we set out to assess the contribution of Ras to experimental renal fibrosis using the well-established model of unilateral ureteral obstruction. Fifteen days after obstruction, both fibroblast proliferation and inducers of epithelial-mesenchymal transition were lower in obstructed kidneys of H-ras knockout mice and in fibroblast cell lines derived from these mice. Interestingly, fibronectin, collagen I accumulation, overall interstitial fibrosis, and the myofibroblast population were also lower in the knockout than in the wild-type mice. As expected, we found lower levels of activated Akt in the kidneys and cultured fibroblasts of the knockout. Whether Ras inhibition will turn out to prevent progression of renal fibrosis will require more direct studies.
Hagino, Yoko; Kasai, Shinya; Han, Wenhua; Yamamoto, Hideko; Nabeshima, Toshitaka; Mishina, Masayoshi; Ikeda, Kazutaka
2010-01-01
Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, increases locomotor activity in rodents and causes schizophrenia-like symptoms in humans. Although activation of the dopamine (DA) pathway is hypothesized to mediate these effects of PCP, the precise mechanisms by which PCP induces its effects remain to be elucidated. The present study investigated the effect of PCP on extracellular levels of DA (DAex) in the striatum and prefrontal cortex (PFC) using in vivo microdialysis in mice lacking the NMDA receptor channel ε1 or ε4 subunit (GluRε1 [GluN2A] or GluRε4 [GluN2D]) and locomotor activity. PCP significantly increased DAex in wildtype and GluRε1 knockout mice, but not in GluRε4 knockout mice, in the striatum and PFC. Acute and repeated administration of PCP did not increase locomotor activity in GluRε4 knockout mice. The present results suggest that PCP enhances dopaminergic transmission and increases locomotor activity by acting at GluRε4. PMID:21060893
Reduced cortical BDNF expression and aberrant memory in Carf knockout mice
McDowell, Kelli A.; Hutchinson, Ashley N.; Wong-Goodrich, Sarah J.E.; Presby, Matthew M.; Su, Dan; Rodriguiz, Ramona M.; Law, Krystal C.; Williams, Christina L.; Wetsel, William C.; West, Anne E.
2010-01-01
Transcription factors are a key point of convergence between the cell-intrinsic and extracellular signals that guide synaptic development and brain plasticity. Calcium-Response Factor (CaRF) is a unique transcription factor first identified as a binding protein for a calcium-response element in the gene encoding Brain-Derived Neurotrophic Factor (Bdnf). We have now generated Carf knockout (KO) mice to characterize the function of this factor in vivo. Intriguingly, Carf KO mice have selectively reduced expression of Bdnf exon IV-containing mRNA transcripts and BDNF protein in the cerebral cortex while BDNF levels in the hippocampus and striatum remain unchanged, implicating CaRF as a brain region-selective regulator of BDNF expression. At the cellular level, Carf KO mice show altered expression of GABAergic proteins at striatal synapses, raising the possibility that CaRF may contribute to aspects of inhibitory synapse development. Carf KO mice show normal spatial learning in the Morris water maze and normal context-dependent fear conditioning. However they have an enhanced ability to find a new platform location on the first day of reversal training in the water maze and they extinguish conditioned fear more slowly than their wildtype (WT) littermates. Finally, Carf KO mice show normal short-term and long-term memory in a novel object recognition task, but exhibit impairments during the remote memory phase of testing. Taken together these data reveal novel roles for CaRF in the organization and/or function of neural circuits that underlie essential aspects of learning and memory. PMID:20519520
Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L
2007-06-01
Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.
Genotype identification of Math1/LacZ knockout mice based on real-time PCR with SYBR Green I dye.
Krizhanovsky, Valery; Golenser, Esther; Ben-Arie, Nissim
2004-07-30
Knockout mice are widely used in all fields of biomedical research. Determining the genotype of every newborn mouse is a tedious task, usually performed by Southern blot hybridization or Polymerase Chain Reaction (PCR). We describe here a quick and simple genotype identification assay based on real-time PCR and SYBR Green I dye, without using fluorescent primers. The discrimination between the wild type and targeted alleles is based on a PCR design that leads to a different melting temperature for each product. The identification of the genotype is obvious immediately after amplification, and no post-PCR manipulations are needed, reducing cost and time. Therefore, while the real-time PCR amplification increases the sensitivity, the fact that the reactions tubes are never opened after amplification, reduces the risk of contamination and eliminates errors, which are common during the repeated handling of dozens of samples from the same mouse line. The protocol we provide was tested on Math1 knockout mice, but is general, and may be utilized for any knockout line and real-time thermocycler, without any further modification, accessories or special reagents. Copyright 2004 Elsevier B.V.
Pan, Zhen-Guo; An, Xu-Sheng
2018-04-06
SARM1 (Sterile alpha and armadillo motif-containing protein 1) is the recently identified TIR domain-containing cytosolic protein, which is involved in toll-like receptors (TLRs) signaling transduction. In the present study, the role of SARM1 in high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) progression was explored. We found that SARM1 was expressed highly in fatty liver. And SARM1-knockout (KO) reduced steatohepatitis and metabolic disorders induced by HFD. SARM1-deletion decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in HFD-fed mice. Additionally, inflammatory response caused by HFD was alleviated by SARM1-deletion through inactivating TLR4/7/9 and nuclear factor kappa B (NF-κB) pathways. Of note, SARM1-deletion also reduced the expressions of inflammation-associated molecules in hypothalamus of HFD-fed mice. Furthermore, HFD administration led to oxidative stress in liver of mice, while being decreased in SARM1-KO mice. Moreover, SARM1-ablation improved lipid dyslipidemia by suppressing the mRNA levels of genes, linked to glycolysis, lipogenesis and transcriptional regulation. Insulin resistance was also attenuated by SARM1-deficiency through enhancing the activation of liver Akt/glycogen synthase kinase-3β (GSK3β) and insulin receptor substrate-1 (IRS1)/FOXO1 pathways in HFD-fed mice. Also, SARM1-knockout improved neuropeptide Y (NPY), Pro-Opiomelanocortins (POMC), Agouti-related Protein (AGRP) and Cocaine-and-Amphetamine Responsive Transcript 1 (CART1) expressions in hypothalamus of mice after HFD administration. In vitro, we found that the reduction of inflammatory response, oxidative stress and dyslipidemia induced by SARM1-knockout in primary hepatocytes after fructose stimulation was largely attributed to its suppression to TLR4/7/9. Together, the findings demonstrated that SARM1 might be an effective target for developing effective therapeutic strategies against NAFLD. Copyright © 2018. Published by Elsevier Inc.
Maeta, Kazuhiro; Hattori, Satoko; Ikutomo, Junji; Edamatsu, Hironori; Bilasy, Shymaa E; Miyakawa, Tsuyoshi; Kataoka, Tohru
2018-05-10
Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap small GTPases, characterized by the possession of the Ras/Rap-associating domain. Previous genomic analyses suggested their possible involvement in the etiology of schizophrenia. We recently demonstrated the development of an ectopic cortical mass (ECM), which resembles the human subcortical band heterotopia, in the dorsal telencephalon-specific Rapgef2 conditional knockout (Rapgef2-cKO) brains. Additional knockout of Rapgef6 in Rapgef2-cKO mice resulted in gross enlargement of the ECM whereas knockout of Rapgef6 alone (Rapgef6-KO) had no discernible effect on the brain morphology. Here, we performed a battery of behavioral tests to examine the effects of Rapgef2 or Rapgef6 deficiency on higher brain functions. Rapgef2-cKO mice exhibited hyperlocomotion phenotypes. They showed decreased anxiety-like behavior in the elevated plus maze and the open-field tests as well as increased depression-like behavior in the Porsolt forced swim and tail suspension tests. They also exhibited increased sociability especially in novel environments. They showed defects in cognitive function as evidenced by reduced learning ability in the Barnes circular maze test and by impaired working memory in the T maze tests. In contrast, although Rapgef6 and Rapgef2 share similarities in biochemical roles, Rapgef6-KO mice exhibited mild behavioral abnormalities detected with a number of behavioral tests, such as hyperlocomotion phenotype in the open-field test and the social interaction test with a novel environment and working-memory defects in the T-maze test. In conclusion, although there were differences in their brain morphology and the magnitude of the behavioral abnormalities, Rapgef2-cKO mice and Rapgef6-KO mice exhibited hyperlocomotion phenotype and working-memory defect, both of which could be recognized as schizophrenia-like behavior.
Endothelium-dependent relaxation evoked by ATP and UTP in the aorta of P2Y2-deficient mice
Guns, Pieter-Jan D F; Van Assche, Tim; Fransen, Paul; Robaye, Bernard; Boeynaems, Jean-Marie; Bult, Hidde
2006-01-01
Based on pharmacological criteria, we previously suggested that in the mouse aorta, endothelium-dependent relaxation by nucleotides is mediated by P2Y1 (adenosine diphosphate (ADP)), P2Y2 (adenosine triphosphate (ATP)) and P2Y6 (uridine diphosphate (UDP)) receptors. For UTP, it was unclear whether P2Y2, P2Y6 or yet another subtype was involved. Therefore, in view of the lack of selective purinergic agonists and antagonists, we used P2Y2-deficient mice to clarify the action of UTP. Thoracic aorta segments (width 2 mm) of P2Y2-deficient and wild-type (WT) mice were mounted in organ baths to measure isometric force development and intracellular calcium signalling. Relaxations evoked by ADP, UDP and acetylcholine were identical in knockout and WT mice, indicating that the receptors for these agonists function normally. P2Y2-deficient mice showed impaired ATP- and adenosine 5′[γ-thio] triphosphate (ATPγS)-evoked relaxation, suggesting that in WT mice, ATP and ATPγS activate predominantly the P2Y2 subtype. The ATP/ATPγS-evoked relaxation and calcium signals in the knockout mice were partially rescued by P2Y1, as they were sensitive to 2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate (MRS2179), a P2Y1-selective antagonist. In contrast to ATP, the UTP-evoked relaxation was not different between knockout and WT mice. Moreover, the action of UTP was not sensitive to MRS2179. Therefore, the action of UTP is probably mediated mainly by a P2Y6(like) receptor subtype. In conclusion, we demonstrated that ATP-evoked relaxation of the murine aorta is mainly mediated by P2Y2. But this P2Y2 receptor has apparently no major role in UTP-evoked relaxation. The vasodilator effect of UTP is probably mediated mainly by a P2Y6(like) receptor. PMID:16415908
What have we learned about GPER function in physiology and disease from knockout mice?
Prossnitz, Eric R; Hathaway, Helen J
2015-09-01
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and pathophysiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also demonstrated roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer. Copyright © 2015. Published by Elsevier Ltd.
Kong, Bo; Luyendyk, James P; Tawfik, Ossama; Guo, Grace L
2009-01-01
Nonalcoholic steatohepatitis (NASH) comprises dysregulation of lipid metabolism and inflammation. Identification of the various genetic and environmental susceptibility factors for NASH may provide novel treatments to limit inflammation and fibrosis in patients. This study utilized a mouse model of hypercholesterolemia, low-density lipoprotein receptor knockout (LDLr(-/-)) mice fed a high-fat diet for 5 months, to test the hypothesis that farnesoid X receptor (FXR) deficiency contributed to NASH development. Either the high-fat diet or FXR deficiency increased serum alanine aminotransferase activity, whereas only FXR deficiency increased bile acid and alkaline phosphatase levels. FXR deficiency and high-fat feeding increased serum cholesterol and triglycerides. Although high fat led to macrosteatosis and hepatocyte ballooning in livers of mice regardless of genotype, no inflammatory infiltrate was observed in the livers of LDLr(-/-) mice. In contrast, in the livers of LDLr(-/-)/FXR(-/-) mice, foci of inflammatory cells were observed occasionally when fed the control diet and were greatly increased when fed the high-fat diet. Consistent with enhanced inflammatory cells, hepatic levels of tumor necrosis factor alpha and intercellular adhesion molecule-1 mRNA were increased by the high-fat diet in LDLr(-/-)/FXR(-/-) mice. In agreement with elevated levels of procollagen 1 alpha 1 and TGF-beta mRNA, type 1 collagen protein levels were increased in livers of LDLr(-/-)/FXR(-/-) mice fed a high-fat diet. In conclusion, FXR deficiency induces pathologic manifestations required for NASH diagnosis in a mouse model of hypercholesterolemia, including macrosteatosis, hepatocyte ballooning, and inflammation, which suggest a combination of FXR deficiency and high-fat diet is a risk factor for NASH development, and activation of FXR may be a therapeutic intervention in the treatment of NASH.
New animal models of cystic fibrosis: what are they teaching us?
Keiser, Nicholas W.; Engelhardt, John F.
2013-01-01
Purpose of review Cystic fibrosis is the first human genetic disease to benefit from the directed engineering of three different species of animal models (mice, pigs, and ferrets). Recent studies on the cystic fibrosis pig and ferret models are providing new information about the pathophysiology of cystic fibrosis in various organ systems. Additionally, new conditional cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice are teaching unexpected lessons about CFTR function in surprising cellular locations. Comparisons between these animal models and the human condition are key to dissecting the complexities of disease pathophysiology in cystic fibrosis. Recent findings Cystic fibrosis pigs and ferrets have provided new models to study the spontaneous development of disease in the lung and pancreas, two organs that are largely spared overt spontaneous disease in cystic fibrosis mice. New cystic fibrosis mouse models are now interrogating CFTR functions involved in growth and inflammation at an organ-based level using conditional knockout technology. Together, these models are providing new insights on the human condition. Summary Basic and clinical cystic fibrosis research will benefit greatly from the comparative pathophysiology of cystic fibrosis mice, pigs, and ferrets. Both similarities and differences between these three cystic fibrosis models will inform pathophysiologically important mechanisms of CFTR function in humans and aid in the development of both organ-specific and general therapies for cystic fibrosis. PMID:21857224
Ge, Shufan; Gao, Song; Yin, Taijun; Hu, Ming
2015-03-25
Chrysin, a flavone found in many plants, is also available as a dietary supplement because of its reported anticancer activities. However, its bioavailability is very poor due to extensive phase II metabolism. The purpose of this study was to develop an UPLC-MS/MS method to simultaneously quantify chrysin and its phase II metabolites, and to determine its pharmacokinetics in FVB wild-type and Bcrp knockout (Bcrp1 -/-) mice. In addition, the role of BCRP in chrysin phase II disposition was further investigated in Caco-2 cells. The results showed that our sensitive and reproducible UPLC-MS/MS method was successfully applied to the pharmacokinetic study of chrysin in wild-type and Bcrp1 (-/-) FVB mice after oral administration (20 mg/kg). Although there was no significant change in systemic exposure of chrysin and its metabolites, it was found that the Tmax for chrysin glucuronide was significantly shorter (p < 0.01) in Bcrp1-deficient mice. Furthermore, it was shown that inhibition of BCRP by Ko143 significantly reduced the efflux of chrysin sulfate in Caco-2 cells. In conclusion, BCRP had significant but less than expected impact on pharmacokinetics of chrysin and its conjugates, which were determined using a newly developed and validated LC-MS/MS method.
Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong
2015-07-01
Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. © 2015 International Society for Neurochemistry.
Smooth muscle cell-specific knockout of androgen receptor: a new model for prostatic disease.
Welsh, Michelle; Moffat, Lindsey; McNeilly, Alan; Brownstein, David; Saunders, Philippa T K; Sharpe, Richard M; Smith, Lee B
2011-09-01
Androgen-driven stromal-epithelial interactions play a key role in normal prostate development and function as well as in the progression of common prostatic diseases such as benign prostatic hyperplasia and prostate cancer. However, exactly how, and via which cell type, androgens mediate their effects in the adult prostate remains unclear. This study investigated the role for smooth muscle (SM) androgen signaling in normal adult prostate homeostasis and function using mice in which androgen receptor was selectively ablated from prostatic SM cells. In adulthood the knockout (KO) mice displayed a 44% reduction in prostate weight and exhibited histological abnormalities such as hyperplasia, inflammation, fibrosis, and reduced expression of epithelial, SM, and stem cell identify markers (e.g. p63 reduced by 27% and Pten by 31%). These changes emerged beyond puberty and were not explained by changes in serum hormones. Furthermore, in response to exogenous estradiol, adult KO mice displayed an 8.5-fold greater increase in prostate weight than controls and developed urinary retention. KO mice also demonstrated a reduced response to castration compared with controls. Together these results demonstrate that prostate SM cells are vital in mediating androgen-driven stromal-epithelial interactions in adult mouse prostates, determining cell identity and function and limiting hormone-dependent epithelial cell proliferation. This novel mouse model provides new insight into the possible role for SM androgen action in prostate disease.
Knocking-out matrix metalloproteinase-13 exacerbates rotator cuff muscle fatty infiltration
Liu, Xuhui; Ravishankar, Bharat; Ning, Anne; Liu, Mengyao; Kim, Hubert T.; Feeley, Brian T.
2017-01-01
Summary Introduction Rotator cuff (RC) tears are common tendon injuries. Clinically, both muscle atrophy and fatty infiltration have generally been attributed to poor functional outcomes. Matrix metalloproteinase-13 plays a crucial role in extracellular matrix remodeling in many physiological and pathological processes. Nevertheless, its role in rotator cuff muscle atrophy and fatty infiltration remains unknown. The purpose of this study is to define the functional role of MMP-13 in rotator cuff muscle atrophy and fatty infiltration using a mouse RC tears model. Materials and methods Unilateral complete supraspinatus and infraspinatus tendon transection and suprascapular nerve transection was performed on nine of MMP-13 (−/−) knockout and nine of MMP-13 (+/+) wildtype mice at 3 months old. Mice were sacrificed 6 weeks after surgery. Supraspinatus (SS) and infraspinatus (IS) muscles were harvested for histology and gene expression analysis with RT-PCR. Results Six weeks after RC surgery, no significant difference in muscle atrophy and fibrosis between MMP-13 knockout and wild type mice was observed. However, there was a significant increase in the amount of fatty infiltration in MMP-13 knockout mice compared to the wild types. Muscles from MMP-13 knockout mice have significantly higher expression of fatty infiltration related genes. Discussion Results from this study suggest that MMP-13 plays a crucial role in rotator cuff muscle fatty degeneration. This novel finding suggests a new molecular mechanism that governs RC muscle FI and MMP-13 may serve as a target for therapeutics to treat muscle FI after RC tears. PMID:29264329
The β3-adrenergic receptor is dispensable for browning of adipose tissues.
de Jong, Jasper M A; Wouters, René T F; Boulet, Nathalie; Cannon, Barbara; Nedergaard, Jan; Petrovic, Natasa
2017-06-01
Brown and brite/beige adipocytes are attractive therapeutic targets to treat metabolic diseases. To maximally utilize their functional potential, further understanding is required about their identities and their functional differences. Recent studies with β 3 -adrenergic receptor knockout mice reported that brite/beige adipocytes, but not classical brown adipocytes, require the β 3 -adrenergic receptor for cold-induced transcriptional activation of thermogenic genes. We aimed to further characterize this requirement of the β 3 -adrenergic receptor as a functional distinction between classical brown and brite/beige adipocytes. However, when comparing wild-type and β 3 -adrenergic receptor knockout mice, we observed no differences in cold-induced thermogenic gene expression ( Ucp1 , Pgc1a , Dio2 , and Cidea ) in brown or white (brite/beige) adipose tissues. Irrespective of the duration of the cold exposure or the sex of the mice, we observed no effect of the absence of the β 3 -adrenergic receptor. Experiments with the β 3 -adrenergic receptor agonist CL-316,243 verified the functional absence of β 3 -adrenergic signaling in these knockout mice. The β 3 -adrenergic receptor knockout model in the present study was maintained on a FVB/N background, whereas earlier reports used C57BL/6 and 129Sv mice. Thus our data imply background-dependent differences in adrenergic signaling mechanisms in response to cold exposure. Nonetheless, the present data indicate that the β 3 -adrenergic receptor is dispensable for cold-induced transcriptional activation in both classical brown and, as opposed to earlier studies, brite/beige cells. Copyright © 2017 the American Physiological Society.
Yokoi, Fumiaki; Dang, Mai Tu; Li, Jianyong; Standaert, David G.; Li, Yuqing
2011-01-01
DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit. PMID:21931745
Rawson, Randi L.
2017-01-01
Neural circuits balance excitatory and inhibitory activity and disruptions in this balance are commonly found in neurodevelopmental disorders. Mice lacking the intellectual disability and autism-associated gene Kirrel3 have an excitation-inhibition imbalance in the hippocampus but the precise synaptic changes underlying this functional defect are unknown. Kirrel3 is a homophilic adhesion molecule expressed in dentate gyrus (DG) and GABA neurons. It was suggested that the excitation-inhibition imbalance of hippocampal neurons in Kirrel3 knockout mice is due to loss of mossy fiber (MF) filopodia, which are DG axon protrusions thought to excite GABA neurons and thereby provide feed-forward inhibition to CA3 pyramidal neurons. Fewer filopodial structures were observed in Kirrel3 knockout mice but neither filopodial synapses nor DG en passant synapses, which also excite GABA neurons, were examined. Here, we used serial block-face scanning electron microscopy (SBEM) with 3D reconstruction to define the precise connectivity of MF filopodia and elucidate synaptic changes induced by Kirrel3 loss. Surprisingly, we discovered wildtype MF filopodia do not synapse exclusively onto GABA neurons as previously thought, but instead synapse with similar frequency onto GABA neurons and CA3 neurons. Moreover, Kirrel3 loss selectively reduces MF filopodial synapses onto GABA neurons but not those made onto CA3 neurons or en passant synapses. In sum, the selective loss of MF filopodial synapses with GABA neurons likely underlies the hippocampal activity imbalance observed in Kirrel3 knockout mice and may impact neural function in patients with Kirrel3-dependent neurodevelopmental disorders. PMID:28670619
Shen, Yu; Ward, Natalie C; Hodgson, Jonathan M; Puddey, Ian B; Wang, Yutang; Zhang, Di; Maghzal, Ghassan J; Stocker, Roland; Croft, Kevin D
2013-12-01
Several lines of evidence indicate that quercetin, a polyphenol derived in the diet from fruit and vegetables, contributes to cardiovascular health. We aimed to investigate the effects of dietary quercetin on endothelial function and atherosclerosis in mice fed a high-fat diet. Wild-type C57BL/6 (WT) and apolipoprotein E gene knockout (ApoE(-/-)) mice were fed: (i) a high-fat diet (HFD) or (ii) a HFD supplemented with 0.05% w/w quercetin (HFD+Q), for 14 weeks. Compared with animals fed HFD, HFD+Q attenuated atherosclerosis in ApoE(-/-) mice. Treatment with the HFD+Q significantly improved endothelium-dependent relaxation of aortic rings isolated from WT but not ApoE(-/-) mice and attenuated hypochlorous acid-induced endothelial dysfunction in aortic rings of both WT and ApoE(-/-) mice. Mechanistic studies revealed that HFD+Q significantly improved plasma F2-isoprostanes, 24h urinary nitrite, and endothelial nitric oxide synthase activity, and increased heme oxygenase-1 (HO-1) protein expression in the aortas of both WT and ApoE(-/-) mice (P<0.05). HFD+Q also resulted in small changes in plasma cholesterol (P<0.05 in WT) and plasma triacylglycerols (P<0.05 in ApoE (-/-)mice). In a separate experiment, quercetin did not protect against hypochlorite-induced endothelial dysfunction in arteries obtained from heterozygous HO-1 gene knockout mice with low expression of HO-1 protein. Quercetin protects mice fed a HFD against oxidant-induced endothelial dysfunction and ApoE(-/-) mice against atherosclerosis. These effects are associated with improvements in nitric oxide bioavailability and are critically related to arterial induction of HO-1. © 2013 Elsevier Inc. All rights reserved.
Progressive hearing loss and degeneration of hair cell stereocilia in taperin gene knockout mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mo; Wang, Qin; Zhu, Gang-Hua
The TPRN gene encodes taperin, which is prominently present at the taper region of hair cell stereocilia. Mutations in TPRN have been reported to cause autosomal recessive nonsyndromic deafness 79(DFNB 79). To investigate the role of taperin in pathogenesis of hearing loss, we generated TPRN knockout mice using TALEN technique. Sanger sequencing confirmed an 11 bp deletion at nucleotide 177–187 in exon 1 of TPRN, which results in a truncated form of taperin protein. Heterozygous TPRN{sup +/−} mice showed apparently normal auditory phenotypes to their wide-type (WT) littermates. Homozygous TPRN{sup −/−} mice exhibited progressive sensorineural hearing loss as reflected bymore » auditory brainstem response to both click and tone burst stimuli at postnatal days 15 (P15), 30 (P30), and 60 (P60). Alex Fluor-594 phalloidin labeling showed no obvious difference in hair cell numbers in the cochlea between TPRN{sup −/−} mice and WT mice under light microscope. However, scanning electronic microscopy revealed progressive degeneration of inner hair cell stereocilia, from apparently normal at postnatal days 3 (P3) to scattered absence at P15 and further to substantial loss at P30. The outer hair cell stereocilia also showed progressive degeneration, though much less severe, Collectively, we conclude that taperin plays an important role in maintenance of hair cell stereocilia. Establishment of TPRN knockout mice enables further investigation into the function of this gene. - Highlights: • TPRN{sup −/−} mice were generated using TALEN technique. • TPRN{sup −/−} mice presented progressive hearing loss. • WT and TPRN{sup −/−} mice showed no difference in hair cell numbers. • TPRN{sup −/−} mice showed progressive degeneration of hair cell stereocilia.« less
Running Promotes Wakefulness and Increases Cataplexy in Orexin Knockout Mice
España, Rodrigo A.; McCormack, Sarah L.; Mochizuki, Takatoshi; Scammell, Thomas E.
2007-01-01
Study Objective: People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. Design: We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Measurements and Results: Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Conclusions: Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy. Citation: España RA; McCormack SL; Mochizuki T; Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. SLEEP 2007;30(11):1417-1425. PMID:18041476
A STAT-1 Knockout Mouse Model for Machupo Virus Pathogenesis
2011-06-14
hemorrhagic fever viruses, including Ebola, Marburg, Junín, and Crimean - Congo Hemorrhagic Fever viruses [11-14...Akerstrom S, Klingstrom J, Mirazimi A: Crimean - Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice. J...Shieh WJ, Camus G, Stroher U, Zaki S, Jones SM: Pathogenesis and immune response of Crimean - Congo hemorrhagic fever virus in a STAT-1 knockout
Archambeault, Denise R.; Yao, Humphrey Hung-Chang
2014-01-01
ABSTRACT As the central component of canonical TGFbeta superfamily signaling, SMAD4 is a critical regulator of organ development, patterning, tumorigenesis, and many other biological processes. Because numerous TGFbeta superfamily ligands are expressed in developing testes, there may exist specific requirements for SMAD4 in individual testicular cell types. Previously, we reported that expansion of the fetal testis cords requires expression of SMAD4 by the Sertoli cell lineage. To further uncover the role of Smad4 in murine testes, we produced conditional knockout mice lacking Smad4 in either Leydig cells or in both Sertoli and Leydig cells simultaneously. Loss of Smad4 concomitantly in Sertoli and Leydig cells led to underdevelopment of the testis cords during fetal life and mild testicular dysgenesis in young adulthood (decreased testis size, partially dysgenic seminiferous tubules, and low sperm production). When the Sertoli/Leydig cell Smad4 conditional knockout mice aged (56- to 62-wk old), the testis phenotypes became exacerbated with the appearance of hemorrhagic tumors, Leydig cell adenomas, and a complete loss of spermatogenesis. In contrast, loss of Smad4 in Leydig cells alone did not appreciably alter fetal and adult testis development. Our findings support a cell type-specific requirement of Smad4 in testis development and suppression of testicular tumors. PMID:24501173
Sánchez-Andrade, G; Kendrick, K M
2011-01-01
Establishing clear effects of gender and natural hormonal changes during female ovarian cycles on cognitive function has often proved difficult. Here we have investigated such effects on the formation and long-term (24 h) maintenance of social recognition memory in mice together with the respective involvement of α- and β-estrogen receptors using α- and β-estrogen receptor knockout mice and wildtype controls. Results in wildtype animals showed that while females successfully formed a memory in the context of a habituation/dishabituation paradigm at all stages of their ovarian cycle, only when learning occurred during proestrus (when estrogen levels are highest) was it retained after 24 h. In α-receptor knockout mice (which showed no ovarian cycles) both formation and maintenance of this social recognition memory were impaired, whereas β-receptor knockouts showed no significant deficits and exhibited the same proestrus-dependent retention of memory at 24 h. To investigate possible sex differences, male α- and β-estrogen receptor knockout mice were also tested and showed similar effects to females excepting that α-receptor knockouts had normal memory formation and only exhibited a 24 h retention deficit. This indicates a greater dependence in females on α-receptor expression for memory formation in this task. Since non-specific motivational and attentional aspects of the task were unaffected, our findings suggest a general α-receptor dependent facilitation of memory formation by estrogen as well as an enhanced long-term retention during proestrus. Results are discussed in terms of the differential roles of the two estrogen receptors, the neural substrates involved and putative interactions with oxytocin. Copyright © 2010 Elsevier Inc. All rights reserved.
Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability.
Pedrozo, Zully; Criollo, Alfredo; Battiprolu, Pavan K; Morales, Cyndi R; Contreras-Ferrat, Ariel; Fernández, Carolina; Jiang, Nan; Luo, Xiang; Caplan, Michael J; Somlo, Stefan; Rothermel, Beverly A; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A
2015-06-16
L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. We subjected neonatal rat ventricular myocytes to mechanical stretch by exposing them to hypo-osmotic medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on L-type calcium channel activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Overexpression of a C-terminal fragment of PC-1 was sufficient to trigger neonatal rat ventricular myocyte hypertrophy. Exposing neonatal rat ventricular myocytes to hypo-osmotic medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 knockout) and subjected them to mechanical stress in vivo (transverse aortic constriction). At baseline, PC-1 knockout mice manifested decreased cardiac function relative to littermate controls, and α1C L-type calcium channel protein levels were significantly lower in PC-1 knockout hearts. Whereas control mice manifested robust transverse aortic constriction-induced increases in cardiac mass, PC-1 knockout mice showed no significant growth. Likewise, transverse aortic constriction-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals PC-1 is a cardiomyocyte mechanosensor that is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein. © 2015 American Heart Association, Inc.
Kimura, Wataru; Machii, Masashi; Xue, XiaoDong; Sultana, Nishat; Hikosaka, Keisuke; Sharkar, Mohammad T K; Uezato, Tadayoshi; Matsuda, Masashi; Koseki, Haruhiko; Miura, Naoyuki
2011-01-01
Irxl1 (Iroquois-related homeobox like-1) is a newly identified three amino-acid loop extension (TALE) homeobox gene, which is expressed in various mesoderm-derived tissues, particularly in the progenitors of the musculoskeletal system. To analyze the roles of Irxl1 during embryonic development, we generated mice carrying a null allele of Irxl1. Mice homozygous for the targeted allele were viable, fertile, and showed reduced tendon differentiation. Skeletal morphology and skeletal muscle weight in Irxl1-knockout mice appeared normal. Expression patterns of several marker genes for cartilage, tendon, and muscle progenitors in homozygous mutant embryos were unchanged. These results suggest that Irxl1 is required for the tendon differentiation but dispensable for the patterning of the musculoskeletal system in development. Copyright © 2010 Wiley-Liss, Inc.
Nakao, Akito; Miyazaki, Naoyuki; Ohira, Koji; Hagihara, Hideo; Takagi, Tsuyoshi; Usuda, Nobuteru; Ishii, Shunsuke; Murata, Kazuyoshi; Miyakawa, Tsuyoshi
2017-12-12
Accumulating evidence suggests that subcellular-scale structures such as dendritic spine and mitochondria may be involved in the pathogenesis/pathophysiology of schizophrenia and intellectual disability. Previously, we proposed mice lacking Schnurri-2 (Shn2; also called major histocompatibility complex [MHC]-binding protein 2 [MBP-2], or human immunodeficiency virus type I enhancer binding protein 2 [HIVEP2]) as a schizophrenia and intellectual disability model with mild chronic inflammation. In the mutants' brains, there are increases in C4b and C1q genes, which are considered to mediate synapse elimination during postnatal development. However, morphological properties of subcellular-scale structures such as dendritic spine in Shn2 knockout (KO) mice remain unknown. In this study, we conducted three-dimensional morphological analyses in subcellular-scale structures in dentate gyrus granule cells of Shn2 KO mice by serial block-face scanning electron microscopy. Shn2 KO mice showed immature dendritic spine morphology characterized by increases in spine length and decreases in spine diameter. There was a non-significant tendency toward decrease in spine density of Shn2 KO mice over wild-type mice, and spine volume was indistinguishable between genotypes. Shn2 KO mice exhibited a significant reduction in GluR1 expression and a nominally significant decrease in SV2 expression, while PSD95 expression had a non-significant tendency to decrease in Shn2 KO mice. There were significant decreases in dendrite diameter, nuclear volume, and the number of constricted mitochondria in the mutants. Additionally, neuronal density was elevated in Shn2 KO mice. These results suggest that Shn2 KO mice serve as a unique tool for investigating morphological abnormalities of subcellular-scale structures in schizophrenia, intellectual disability, and its related disorders.
Sakellariou, Giorgos K; McDonagh, Brian; Porter, Helen; Giakoumaki, Ifigeneia I; Earl, Kate E; Nye, Gareth A; Vasilaki, Aphrodite; Brooks, Susan V; Richardson, Arlan; Van Remmen, Holly; McArdle, Anne; Jackson, Malcolm J
2018-02-01
Lack of Cu,Zn-superoxide dismutase (CuZnSOD) in homozygous knockout mice (Sod1 -/- ) leads to accelerated age-related muscle loss and weakness, but specific deletion of CuZnSOD in skeletal muscle (mSod1KO mice) or neurons (nSod1KO mice) resulted in only mild muscle functional deficits and failed to recapitulate the loss of mass and function observed in Sod1 -/- mice. To dissect any underlying cross-talk between motor neurons and skeletal muscle in the degeneration in Sod1 -/- mice, we characterized neuromuscular changes in the Sod1 -/- model compared with mSod1KO mice and examined degenerative molecular mechanisms and pathways in peripheral nerve and skeletal muscle. In contrast to mSod1KO mice, myofiber atrophy in Sod1 -/- mice was associated with increased muscle oxidative damage, neuromuscular junction degeneration, denervation, nerve demyelination, and upregulation of proteins involved in maintenance of myelin sheaths. Proteomic analyses confirmed increased proteasomal activity and adaptive stress responses in muscle of Sod1 -/- mice that were absent in mSod1KO mice. Peripheral nerve from neither Sod1 -/- nor mSod1KO mice showed increased oxidative damage or molecular responses to increased oxidation compared with wild type mice. Differential cysteine (Cys) labeling revealed a specific redox shift in the catalytic Cys residue of peroxiredoxin 6 (Cys47) in the peripheral nerve from Sod1 -/- mice. Innovation and Conclusion: These findings demonstrate that neuromuscular integrity, redox mechanisms, and pathways are differentially altered in nerve and muscle of Sod1 -/- and mSod1KO mice. Results support the concept that impaired redox signaling, rather than oxidative damage, in peripheral nerve plays a key role in muscle loss in Sod1 -/- mice and potentially sarcopenia during aging. Antioxid. Redox Signal. 28, 275-295.
Zhu, Chunfang; Lee, Suk Hyung; Ye, Ding-Wei; Luong, Richard; Sun, Zijie
2013-01-01
The PTEN tumor suppressor gene is frequently inactivated in human prostate cancer. Using Osr1 (odd skipped related 1)-Cre mice, we generated a novel conditional Pten knockout mouse strain, PtenLoxP:Osr1-Cre. Conditional biallelic and monoallelic Pten knockout mice were viable. Deletion of Pten expression was detected in the prostate of PtenLoxP/LoxP:Osr1-Cre mice as early as 2 weeks of age. Intriguingly, PtenLoxP/LoxP:Osr1-Cre mice develop high-grade prostatic intraepithelial neoplasms (PINs) with high penetrance as early as one-month of age, and locally invasive prostatic tumors after 12-months of age. PtenLoxP/+:Osr1-Cre mice show only mild oncogenic changes after 8-weeks of age. Castration of PtenLoxP/LoxP:Osr1-Cre mice shows no significant regression of prostate tumors, although a shift of androgen receptor (AR) staining from the nuclei to cytoplasm is observed in Pten null tumor cells of castrated mice. Enhanced Akt activity is observed in Pten null tumor cells of castrated PtenLoxP/LoxP:Osr1-Cre. This study provides a novel mouse model that can be used to investigate a primary role of Pten in initiating oncogenic transformation in the prostate and to examine other genetic and epigenetic changes that are required for tumor progression in the mouse prostate. PMID:23308230
Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A; Mains, Richard E
2014-07-01
Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. Copyright © 2014 Elsevier Inc. All rights reserved.
Neurolastin, a dynamin family GTPase, regulates excitatory synapses and spine density
Madan Lomash, Richa; Gu, Xinglong; Youle, Richard J.; Lu, Wei; Roche, Katherine W.
2015-01-01
SUMMARY Membrane trafficking and spinogenesis contribute significantly to changes in synaptic strength during development and in various paradigms of synaptic plasticity. GTPases of the dynamin family are key players regulating membrane trafficking. Here, we identify a brain-specific dynamin family GTPase, neurolastin (RNF112/Znf179), with closest homology to atlastin. We demonstrate that neurolastin has functional GTPase and RING domains, making it a unique protein identified with this multi-enzymatic domain organization. We also show that neurolastin is a peripheral membrane protein, which localizes to endosomes and affects endosomal membrane dynamics via its RING domain. In addition, neurolastin knockout mice have fewer dendritic spines, and rescue of the wildtype phenotype requires both the GTPase and RING domains. Furthermore, we find fewer functional synapses and reduced paired pulse facilitation in neurolastin knockout mice. Thus, we identify neurolastin as a dynamin family GTPase that affects endosome size and spine density. PMID:26212327
The preproghrelin gene is required for the normal integration of thermoregulation and sleep in mice
Szentirmai, Éva; Kapás, Levente; Sun, Yuxiang; Smith, Roy G.; Krueger, James M.
2009-01-01
Peptidergic mechanisms controlling feeding, metabolism, thermoregulation, and sleep overlap in the hypothalamus. Low ambient temperatures and food restriction induce hypothermic (torpor) bouts and characteristic metabolic and sleep changes in mice. We report that mice lacking the preproghrelin gene, but not those lacking the ghrelin receptor, have impaired abilities to manifest and integrate normal sleep and thermoregulatory responses to metabolic challenges. In response to fasting at 17 °C (a subthermoneutral ambient temperature), preproghrelin knockout mice enter hypothermic bouts associated with reduced sleep, culminating in a marked drop in body temperature to near-ambient levels. Prior treatment with obestatin, another preproghrelin gene product, attenuates the hypothermic response of preproghrelin knockout mice. Results suggest that obestatin is a component in the coordinated regulation of metabolism and sleep during torpor. PMID:19666521
Shvarev, Yuri; Berner, Jonas; Bilkei-Gorzo, Andras; Lagercrantz, Hugo; Wickström, Ronny
2010-01-01
Search for physiological mechanisms which could antagonize the opioid-induced respiratory depression is of important clinical value. In this study, we investigated the acute effects of morphine on respiratory activity in genetically modified newborn (P2) mice with target deletion of the (Tac1 -/-) gene lacking substance P (SP) and neurokinin A (NKA). In vivo, as shown with whole-body flow barometric plethysmography technique, morphine induced significantly attenuated minute ventilation during intermittent hypoxia in control animals. In contrast, knockout mice revealed significant increase in minute ventilation. In vitro, in brainstem preparation, knockout mice demonstrated greater changes in burst frequency during intermittent anoxia challenge. The data suggest that hereditary deficiency in tachykinins, SP and NKA results in more robust hypoxic response in newborn Tac1-/- mice during respiratory depression induced by morphine.
COMPARISON OF OVERALL METABOLISM OF 1,2,3,7,8-PeCDD
IN CYP1A2 (-/-) KNOCKOUT AND C57BL/6N PARENTAL
STRAINS OF MICE
Heldur Hakk1 and Janet J. Diliberto2
1 USDA-ARS, Biosciences Research Laboratory, P.O. Box 5674, Fargo, ND, USA
2 US EPA, ORD, National Heal...
USE OF CYP1A2 (-/-) KNOCKOUT AND CYP1A2 (+/+) C57BL/6N PARENTAL STRAINS OF MICE TO COMPARE METABOLISM OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD). J J Diliberto1 and H Hakk2. 1USEPA ORD, NHEERL, ETD, PKB, Research Triangle Park, NC, USA; 2USDA-ARS, BRL, Fargo, ND, USA. Spons...
A novel behavioral paradigm for assessing concept of nests in mice
Kuang, Hui; Mei, Bing; Cui, Zhenzhong; Lin, Longnian; Tsien, Joe Z.
2013-01-01
Abstract concepts in the brain enable humans to efficiently and correctly recognize and categorize a seemingly infinite amount of objects and daily events. Such abstract generalization abilities are traditionally considered to be unique to humans and perhaps non-human primates. However, emerging neurophysiological recordings indicate the existence of neural correlates for the abstract concept of nests in the mouse brain. To facilitate the molecular and genetic analyses of concepts in the mouse model, we have developed a nest generalization test based on mice’s natural behavior. We show that inducible and forebrain-specific NMDA receptor knockout results in pronounced impairment in this test. Interestingly, this generalization deficit could be gradually compensated for over time by repeated experiences even in face of the continued deficit in object recognition memory. On the contrast, the forebrain-specific presenilin-1 knockout mice, which have subtle phenotypes, were normal in performing this test. Therefore, our study not only establishes a quantitative method for assessing the nest concept in mice, but also demonstrates its great potential in combining powerful mouse genetics for dissecting the molecular basis of concept formation in the brain. PMID:20350568
Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice.
Yau, Suk Yu; Chiu, Christine; Vetrici, Mariana; Christie, Brian R
2016-10-01
Fragile X syndrome (FXS) is caused by a mutation in the Fmr1 gene that leads to silencing of the gene and a loss of its gene product, Fragile X mental retardation protein (FMRP). Some of the key behavioral phenotypes for FXS include abnormal social anxiety and sociability. Here we show that Fmr1 knock-out (KO) mice exhibit impaired social recognition when presented with a novel mouse, and they display normal social interactions in other sociability tests. Administering minocycline to Fmr1 KO mice throughout critical stages of neural development improved social recognition memory in the novel mouse recognition task. To determine if synaptic changes in the prefrontal cortex (PFC) could have played a role in this improvement, we examined PSD-95, a member of the membrane-associated guanylate kinase family, and signaling molecules (ERK1/2, and Akt) linked to synaptic plasticity in the PFC. Our analyses indicated that while minocycline treatment can enhance behavioral performance, it does not enhance expression of PSD-95, ERK1/2 or Akt in the PFC. Copyright © 2016 Elsevier B.V. All rights reserved.
Qi, Li; Tang, Yong-Gang; Wang, Lin; He, Wei; Pan, Hong-Hua; Nie, Rong-Rong; Can, Yan
2016-11-15
The present study aims to elucidate the role of Rho-mediated ROCK-Semaphorin3A signaling pathway in the pathogenesis of Parkinson's disease (PD) in a mouse model. One-hundred twelve eight-week male C57BL/6 mice were selected. The mouse model of PD was constructed by intraperitoneal injection of MPTP. All mice were divided into four groups (28 mice in each group): Blank group, Model group, Rho knockout (Rho+/-) group and ROCK knockout (ROCK+/-) group. Changes of behavior of the mice were studied through automatic moving test and rotarod test. Immunohistochemistry (IHC) was used to detect the expressions of TH, CD11b and GFAP. High performance liquid chromatograph (HPLC) was performed for detection of dopamine and its metabolic product. The mRNA and protein expressions of Rho, ROCK, Sema3A, PlexinA and NRP-1 were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Rho and ROCK knockout improved the damage caused by MPTP on the behavior of mice and protected dopaminergic neurons from injury, along with the increases of dopamine and its metabolic product. The mRNA and protein expressions of Rho, ROCK, Sema3A, PlexinA and NRP-1 were increased in PD mice in the Model group compared with those in the Blank group. Compared to the Model group, the mRNA and protein expressions of Rho, ROCK, Sema3A, PlexinA and NRP-1 were reduced in the Rho+/- and ROCK+/- groups. These findings indicate that Rho and ROCK knockout may improve the behavior of mice and prevent MPTP-induced dopaminergic neurons damage by regulating Sema3A, PlexinA and NRP-1 in a mouse model of PD. Copyright © 2016 Elsevier B.V. All rights reserved.
Generating double knockout mice to model genetic intervention for diabetic cardiomyopathy in humans.
Chavali, Vishalakshi; Nandi, Shyam Sundar; Singh, Shree Ram; Mishra, Paras Kumar
2014-01-01
Diabetes is a rapidly increasing disease that enhances the chances of heart failure twofold to fourfold (as compared to age and sex matched nondiabetics) and becomes a leading cause of morbidity and mortality. There are two broad classifications of diabetes: type1 diabetes (T1D) and type2 diabetes (T2D). Several mice models mimic both T1D and T2D in humans. However, the genetic intervention to ameliorate diabetic cardiomyopathy in these mice often requires creating double knockout (DKO). In order to assess the therapeutic potential of a gene, that specific gene is either overexpressed (transgenic expression) or abrogated (knockout) in the diabetic mice. If the genetic mice model for diabetes is used, it is necessary to create DKO with transgenic/knockout of the target gene to investigate the specific role of that gene in pathological cardiac remodeling in diabetics. One of the important genes involved in extracellular matrix (ECM) remodeling in diabetes is matrix metalloproteinase-9 (Mmp9). Mmp9 is a collagenase that remains latent in healthy hearts but induced in diabetic hearts. Activated Mmp9 degrades extracellular matrix (ECM) and increases matrix turnover causing cardiac fibrosis that leads to heart failure. Insulin2 mutant (Ins2+/-) Akita is a genetic model for T1D that becomes diabetic spontaneously at the age of 3-4 weeks and show robust hyperglycemia at the age of 10-12 weeks. It is a chronic model of T1D. In Ins2+/- Akita, Mmp9 is induced. To investigate the specific role of Mmp9 in diabetic hearts, it is necessary to create diabetic mice where Mmp9 gene is deleted. Here, we describe the method to generate Ins2+/-/Mmp9-/- (DKO) mice to determine whether the abrogation of Mmp9 ameliorates diabetic cardiomyopathy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baroukh, Nadine N.; Bauge, Eric; Akiyama, Jennifer
2003-08-15
Both the apolipoprotein A5 and C3 genes have repeatedly been shown to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered Both the apolipoprotein A5 and C3 genes have repeatedly been shownmore » to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered triglycerides. To overcome these confounding factors and address their relationship, we generated independent lines of mice that either over-expressed (''double transgenic'') or completely lacked (''double knockout'') both apolipoprotein genes. We report that both ''double transgenic'' and ''double knockout'' mice display intermedia tetriglyceride concentrations compared to over-expression or deletion of either gene alone. Furthermore, we find that human ApoAV plasma protein levels in the ''double transgenic'' mice are approximately 500-fold lower than human ApoCIII levels, supporting ApoAV is a potent triglyceride modulator despite its low concentration. Together, these data indicate that APOA5 and APOC3 independently influence plasma triglyceride concentrations but in an opposing manner.« less
Yan, C; Wang, P; DeMayo, J; DeMayo, F J; Elvin, J A; Carino, C; Prasad, S V; Skinner, S S; Dunbar, B S; Dube, J L; Celeste, A J; Matzuk, M M
2001-06-01
Knockout mouse technology has been used over the last decade to define the essential roles of ovarian-expressed genes and uncover genetic interactions. In particular, we have used this technology to study the function of multiple members of the transforming growth factor-beta superfamily including inhibins, activins, and growth differentiation factor 9 (GDF-9 or Gdf9). Knockout mice lacking GDF-9 are infertile due to a block in folliculogenesis at the primary follicle stage. In addition, recombinant GDF-9 regulates multiple cumulus granulosa cell functions in the periovulatory period including hyaluronic acid synthesis and cumulus expansion. We have also cloned an oocyte-specific homolog of GDF-9 from mice and humans, which is termed bone morphogenetic protein 15 (BMP-15 or Bmp15). To define the function of BMP-15 in mice, we generated embryonic stem cells and knockout mice, which have a null mutation in this X-linked gene. Male chimeric and Bmp15 null mice are normal and fertile. In contrast to Bmp15 null males and Gdf9 knockout females, Bmp15 null females (Bmp15(-/-)) are subfertile and usually have minimal ovarian histopathological defects, but demonstrate decreased ovulation and fertilization rates. To further decipher possible direct or indirect genetic interactions between GDF-9 and BMP-15, we have generated double mutant mice lacking one or both alleles of these related homologs. Double homozygote females (Bmp15(-/-)Gdf9(-/-)) display oocyte loss and cysts and resemble Gdf9(-/-) mutants. In contrast, Bmp15(-/-)Gdf9(+/-) female mice have more severe fertility defects than Bmp15(-/-) females, which appear to be due to abnormalities in ovarian folliculogenesis, cumulus cell physiology, and fertilization. Thus, the dosage of intact Bmp15 and Gdf9 alleles directly influences the destiny of the oocyte during folliculogenesis and in the periovulatory period. These studies have important implications for human fertility control and the maintenance of fertility and normal ovarian physiology.
Impairment of osteoclastic bone resorption in rapidly growing female p47phox knockout mice
USDA-ARS?s Scientific Manuscript database
Bone formation is dependent on the activity and differentiation of osteoblasts; whereas resorption of preexisting mineralized bone matrix by osteoclasts is necessary not only for bone development but also for regeneration and remodeling. Bone remodeling is a process in which osteoblasts and osteocla...
To, Alvina W M; Ribe, Elena M; Chuang, Tsu Tshen; Schroeder, Joern E; Lovestone, Simon
2011-02-10
Impaired insulin signalling is increasingly thought to contribute to Alzheimer's disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment. Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle. All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone.
Loomis, Kari D.; Zhu, Songyun; Yoon, Kyungsil; Johnson, Peter F.; Smart, Robert C.
2013-01-01
CCAAT/enhancer binding protein y (C/EBPα) is a basic leucine zipper transcription factor that inhibits cell cycle progression and regulates differentiation in various cell types. C/EBPα is inactivated by mutation in acute myeloid leukemia (AML) and is considered a human tumor suppressor in AML. Although C/EBPα mutations have not been observed in malignancies other than AML, greatly diminished expression of C/EBPα occurs in numerous human epithelial cancers including lung, liver, endometrial, skin, and breast, suggesting a possible tumor suppressor function. However, direct evidence for C/EBPα as an epithelial tumor suppressor is lacking due to the absence of C/EBPα mutations in epithelial tumors and the lethal effect of C/EBPα deletion in mouse model systems. To examine the function of C/EBPα in epithelial tumor development, an epidermal-specific C/EBPα knockout mouse was generated. The epidermal-specific C/EBPα knockout mice survived and displayed no detectable abnormalities in epidermal keratinocyte proliferation, differentiation, or apoptosis, showing that C/EBPα is dispensable for normal epidermal homeostasis. In spite of this, the epidermal-specific C/EBPα knockout mice were highly susceptible to skin tumor development involving oncogenic Ras. These mice displayed decreased tumor latency and striking increases in tumor incidence, multiplicity, growth rate, and the rate of malignant progression. Mice hemizygous for C/EBPα displayed an intermediate-enhanced tumor phenotype. Our results suggest that decreased expression of C/EBPα contributes to deregulation of tumor cell proliferation. C/EBPα had been proposed to block cell cycle progression through inhibition of E2F activity. We observed that C/EBPα blocked Ras-induced and epidermal growth factor-induced E2F activity in keratinocytes and also blocked Ras-induced cell transformation and cell cycle progression. Our study shows that C/EBPα is dispensable for epidermal homeostasis and provides genetic evidence that C/EBPα is a suppressor of epithelial tumorigenesis. PMID:17638888
Loss of polyubiquitin gene Ubb leads to metabolic and sleep abnormalities in mice
Ryu, K.-Y.; Fujiki, N.; Kazantzis, M.; Garza, J. C.; Bouley, D. M.; Stahl, A.; Lu, X.-Y.; Nishino, S.; Kopito, R. R.
2010-01-01
Aims Ubiquitin performs essential roles in a myriad of signalling pathways required for cellular function and survival. Recently, we reported that disruption of the stress-inducible ubiquitin-encoding gene Ubb reduces ubiquitin content in the hypothalamus and leads to adult-onset obesity coupled with a loss of arcuate nucleus neurones and disrupted energy homeostasis in mice. Neuropeptides expressed in the hypothalamus control both metabolic and sleep behaviours. In order to demonstrate that the loss of Ubb results in broad hypothalamic abnormalities, we attempted to determine whether metabolic and sleep behaviours were altered in Ubb knockout mice. Methods Metabolic rate and energy expenditure were measured in a metabolic chamber, and sleep stage was monitored via electroencephalographic/electromyographic recording. The presence of neurodegeneration and increased reactive gliosis in the hypothalamus were also evaluated. Results We found that Ubb disruption leads to early-onset reduced activity and metabolic rate. Additionally, we have demonstrated that sleep behaviour is altered and sleep homeostasis is disrupted in Ubb knockout mice. These early metabolic and sleep abnormalities are accompanied by persistent reactive gliosis and the loss of arcuate nucleus neurones, but are independent of neurodegeneration in the lateral hypothalamus. Conclusions Ubb knockout mice exhibit phenotypes consistent with hypothalamic dysfunction. Our data also indicate that Ubb is essential for the maintenance of the ubiquitin levels required for proper regulation of metabolic and sleep behaviours in mice. PMID:20002312
Involvement of prostaglandins and histamine in nickel wire-induced acute inflammation in mice.
Hirasawa, Noriyasu; Goi, Yoshiaki; Tanaka, Rina; Ishihara, Kenji; Ohtsu, Hiroshi; Ohuchi, Kazuo
2010-06-15
The irritancy of Nickel (Ni) ions has been well documented clinically. However, the chemical mediators involved in the acute inflammation induced by solid Ni are not fully understood. We used the Ni wire-implantation model in mice and examined roles of prostaglandins and histamine in plasma leakage in the acute phase. The subcutaneous implantation of a Ni wire into the back of mice induced plasma leakage from 8 to 24 h and tissue necrosis around the wire at 3 days, whereas the implantation of an aluminum wire induced no such inflammatory responses. An increase in the mRNA for cyclooxygenase (COX)-2 and HDC in cells around the Ni wire was detected 4 h after the implantation. The leakage of plasma at 8 h was inhibited by indomethacin in a dose-dependent manner. Dexamethasone and the p38 MAP kinase inhibitor SB203580 also inhibited the exudation of plasma consistent with the inhibition of the expression of COX-2 mRNA. Furthermore, plasma leakage was partially but siginificantly reduced in histamine H1 receptor knockout mice and histidine decarboxylase (HDC) knockout mice but not in H2 receptor knockout mice. These results suggested that the Ni ions released from the wire induced the expression of COX-2 and HDC, resulting in an increase in vascular permeability during the acute phase of inflammation. (c) 2009 Wiley Periodicals, Inc.
Notch3 orchestrates epithelial and inflammatory responses to promote acute kidney injury.
Kavvadas, Panagiotis; Keuylian, Zela; Prakoura, Niki; Placier, Sandrine; Dorison, Aude; Chadjichristos, Christos E; Dussaule, Jean-Claude; Chatziantoniou, Christos
2018-07-01
Acute kidney injury is a major risk factor for subsequent chronic renal and/or cardiovascular complications. Previous studies have shown that Notch3 was de novo expressed in the injured renal epithelium in the early phases of chronic kidney disease. Here we examined whether Notch3 is involved in the inflammatory response and the epithelial cell damage that typifies ischemic kidneys using Notch3 knockout mice and mice with short-term activated Notch3 signaling (N3ICD) in renal epithelial cells. After ischemia/reperfusion, N3ICD mice showed exacerbated infiltration of inflammatory cells and severe tubular damage compared to control mice. Inversely, Notch3 knockout mice were protected against ischemia/reperfusion injury. Renal macrophages derived from Notch3 knockout mice failed to activate proinflammatory cytokines. Chromatin immunoprecipitation analysis of the Notch3 promoter identified NF-κB as the principal inducer of Notch3 in ischemia/reperfusion. Thus, Notch3 induced by NF-κB in the injured epithelium sustains a proinflammatory environment attracting activated macrophages to the site of injury leading to a rapid deterioration of renal function and structure. Hence, targeting Notch3 may provide a novel therapeutic strategy against ischemia/reperfusion and acute kidney injury by preservation of epithelial structure and disruption of proinflammatory signaling. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
MRI of Retinal Free Radical Production With Laminar Resolution In Vivo
Berkowitz, Bruce A.; Lewin, Alfred S.; Biswal, Manas R.; Bredell, Bryce X.; Davis, Christopher; Roberts, Robin
2016-01-01
Purpose Recent studies have suggested the hypothesis that quench-assisted 1/T1 magnetic resonance imaging (MRI) measures free radical production with laminar resolution in vivo without the need of a contrast agent. Here, we test this hypothesis further by examining the spatial and detection sensitivity of quench-assisted 1/T1 MRI to strain, age, or retinal cell layer-specific genetic manipulations. Methods We studied: adult wild-type mice; mice at postnatal day 7 (P7); cre dependent retinal pigment epithelium (RPE)-specific MnSOD knockout mice; doxycycline-treated Sod2flox/flox mice lacking the cre transgene; and α-transducin knockout (Gnat1−/−) mice on a C57Bl/6 background. Transretinal 1/T1 profiles were mapped in vivo in the dark without or with antioxidant treatment, or followed by light exposure. We calibrated profiles spatially using optical coherence tomography. Results Dark-adapted RPE-specific MnSOD knockout mice had greater than normal 1/T1 in the RPE and outer nuclear layers that was corrected to wild-type levels by antioxidant treatment. Dark and light Gnat1−/− mice also had greater than normal outer retinal 1/T1 values. In adult wild-type mice, dark values of 1/T1 in the ellipsoid region and in the outer segment were suppressed by 13 minutes of light. By 29 minutes of light, 1/T1 reduction extended to the outer nuclear layer. Gnat1−/− mice demonstrated a faster light-evoked suppression of 1/T1 values in the outer retina. In P7 mice, transretinal 1/T1 profiles were the same in dark and light. Conclusions Quench-assisted MRI has the laminar resolution and detection sensitivity to evaluate normal and pathologic production of free radicals in vivo. PMID:26886890
[Genes in the development of female genital tract].
Chen, Na; Zhu, Lan; Lang, Jing-he
2013-12-01
Female genital tract, which includes oviduct, uterus, and vagina, is critical for female reproduction. In recent years, animal experiments using knockout mice and genetic studies on patients with female genital malformations have contributed substantially to our understanding of the molecular mechanisms in the female genital tract development. Here we review genes that are involved in various stages of female genital tract formation and development.
Norepinephrine Transporter Heterozygous Knockout Mice Exhibit Altered Transport and Behavior
Fentress, HM; Klar, R; Krueger, JK; Sabb, T; Redmon, SN; Wallace, NM; Shirey-Rice, JK; Hahn, MK
2013-01-01
The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically-driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET+/−), demonstrating that they display an ~50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity, assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface-resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET+/− mouse establishes an activated state of existing, surface NET proteins. NET+/− mice exhibit increased anxiety in the open field and light-dark box and display deficits in reversal learning in the Morris Water Maze. These data suggest recovery of near basal activity in NET+/− mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET+/− mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders. PMID:24102798
Lack of Neuropathy-Related Phenotypes in Hint1 Knockout Mice
Seburn, Kevin L.; Morelli, Kathryn H.; Jordanova, Albena; Burgess, Robert W.
2014-01-01
Mutations in HINT1, the gene encoding histidine triad nucleotide-binding protein 1 (HINT1), cause a recessively inherited peripheral neuropathy that involves primarily motor dysfunction and is usually associated with neuromyotonia, i.e. prolonged muscle contraction resulting from hyperexcitability of the peripheral nerve. Because these mutations are hypothesized to cause loss of function, we analyzed Hint1 knockout mice for their relevance as a disease model. Mice lacking Hint1 were normal in appearance and in behavioral tests or motor performance, although they moved slower and for a smaller fraction of time than wild-type (WT) mice in an open field arena. Muscles, neuromuscular junctions, and nodes of Ranvier are anatomically normal and did not show evidence of degeneration or regeneration. Axon numbers and myelination in peripheral nerves were normal at 4 and 13 months of age. Axons were slightly smaller than those in WT mice at 4 months of age, but this did not cause a decrease in conduction velocity, and no differences in axon diameters were detected at 13 months. Using electromyography, we were unable to detect neuromyotonia, even using supra-physiological stimuli and stressors such as reduced temperature or 3,4 diaminopyridine to block potassium channels. Therefore, we conclude that Hint1 knockout mice may be useful for studying the biochemical activities of HINT1, but these mice do not provide a disease model or a means for investigating the basis of HINT1-associated neuropathy and neuromyotonia. PMID:24918641
Phelan, Kevin D.; Shwe, U Thaung; Abramowitz, Joel; Wu, Hong; Rhee, Sung W.; Howell, Matthew D.; Gottschall, Paul E.; Freichel, Marc; Flockerzi, Veit; Birnbaumer, Lutz
2013-01-01
Seizures are the manifestation of highly synchronized burst firing of a large population of cortical neurons. Epileptiform bursts with an underlying plateau potential in neurons are a cellular correlate of seizures. Emerging evidence suggests that the plateau potential is mediated by neuronal canonical transient receptor potential (TRPC) channels composed of members of the TRPC1/4/5 subgroup. We previously showed that TRPC1/4 double-knockout (DKO) mice lack epileptiform bursting in lateral septal neurons and exhibit reduced seizure-induced neuronal cell death, but surprisingly have unaltered pilocarpine-induced seizures. Here, we report that TRPC5 knockout (KO) mice exhibit both significantly reduced seizures and minimal seizure-induced neuronal cell death in the hippocampus. Interestingly, epileptiform bursting induced by agonists for metabotropic glutamate receptors in the hippocampal CA1 area is unaltered in TRPC5 KO mice, but is abolished in TRPC1 KO and TRPC1/4 DKO mice. In contrast, long-term potentiation is greatly reduced in TRPC5 KO mice, but is normal in TRPC1 KO and TRPC1/4 DKO mice. The distinct changes from these knockouts suggest that TRPC5 and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Furthermore, the reduced seizure and excitotoxicity and normal spatial learning exhibited in TRPC5 KO mice suggest that TRPC5 is a promising novel molecular target for new therapy. PMID:23188715
Phelan, Kevin D; Shwe, U Thaung; Abramowitz, Joel; Wu, Hong; Rhee, Sung W; Howell, Matthew D; Gottschall, Paul E; Freichel, Marc; Flockerzi, Veit; Birnbaumer, Lutz; Zheng, Fang
2013-02-01
Seizures are the manifestation of highly synchronized burst firing of a large population of cortical neurons. Epileptiform bursts with an underlying plateau potential in neurons are a cellular correlate of seizures. Emerging evidence suggests that the plateau potential is mediated by neuronal canonical transient receptor potential (TRPC) channels composed of members of the TRPC1/4/5 subgroup. We previously showed that TRPC1/4 double-knockout (DKO) mice lack epileptiform bursting in lateral septal neurons and exhibit reduced seizure-induced neuronal cell death, but surprisingly have unaltered pilocarpine-induced seizures. Here, we report that TRPC5 knockout (KO) mice exhibit both significantly reduced seizures and minimal seizure-induced neuronal cell death in the hippocampus. Interestingly, epileptiform bursting induced by agonists for metabotropic glutamate receptors in the hippocampal CA1 area is unaltered in TRPC5 KO mice, but is abolished in TRPC1 KO and TRPC1/4 DKO mice. In contrast, long-term potentiation is greatly reduced in TRPC5 KO mice, but is normal in TRPC1 KO and TRPC1/4 DKO mice. The distinct changes from these knockouts suggest that TRPC5 and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Furthermore, the reduced seizure and excitotoxicity and normal spatial learning exhibited in TRPC5 KO mice suggest that TRPC5 is a promising novel molecular target for new therapy.
Nakamura, Yuka; Fujita, Yuki; Ueno, Masaki; Takai, Toshiyuki; Yamashita, Toshihide
2011-01-21
Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PIR-B). As per previous reports, corticospinal tract (CST) regeneration is not enhanced in NgR-knock-out mice after spinal cord injury. Therefore, we assessed CST regeneration in PIR-B-knock-out mice. We found that hindlimb motor function, as assessed using the Basso mouse scale, footprint test, inclined plane test, and beam walking test, did not differ between the PIR-B-knock-out and wild-type mice after dorsal hemisection of the spinal cord. Further, tracing of the CST fibers after injury did not reveal enhanced axonal regeneration or sprouting in the CST of the PIR-B-knock-out mice. Systemic administration of NEP1-40, a NgR antagonist, to PIR-B knock-out mice did not enhance the regenerative response. These results indicate that PIR-B knock-out is not sufficient to induce extensive axonal regeneration after spinal cord injury.
Solca, Curzio; Tint, G. Stephen; Patel, Shailendra B.
2013-01-01
The investigation of the human disease sitosterolemia (MIM 210250) has shed light not only on the pathways by which dietary sterols may traffic but also on how the mammalian body rids itself of cholesterol and defends against xenosterols. Two genes, ABCG5 and ABCG8, located at the sitosterolemia locus, each encodes a membrane-bound ABC half-transporter and constitutes a functional unit whose activity has now been shown to account for biliary and intestinal sterol excretion. Knockout mice deficient in Abcg5 or Abcg8 recapitulate many of the phenotypic features of sitosterolemia. During the course of our studies to characterize these knockout mice, we noted that these mice, raised on normal rodent chow, exhibited infertility as well as loss of abdominal fat. We show that, although sitosterolemia does not lead to any structural defects or to any overt endocrine defects, fertility could be restored if xenosterols are specifically blocked from entry and that the loss of fat is also reversed by a variety of maneuvers that limit xenosterol accumulation. These studies show that xenosterols may have a significant biological impact on normal mammalian physiology and that the Abcg5 or Abcg8 knockout mouse model may prove useful in investigating the role of xenosterols on mammalian physiology. PMID:23180829
Litwak, Sara A.; Loh, Kim; Stanley, William J.; Pappas, Evan G.; Wali, Jibran A.; Selck, Claudia; Strasser, Andreas; Thomas, Helen E.; Gurzov, Esteban N.
2016-01-01
BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14–17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity. PMID:27033313