Science.gov

Sample records for knoevenagel condensation kinetic

  1. Chitosan as a reusable solid base catalyst for Knoevenagel condensation reaction.

    PubMed

    Sakthivel, Balasubramanian; Dhakshinamoorthy, Amarajothi

    2017-01-01

    In the present work, the commercially available chitosan is reported as a heterogeneous solid base catalyst for Knoevenagel condensation reaction of carbonyl compounds with malononitrile under mild reaction conditions. Chitosan is characterized by powder XRD, IR and elemental analysis. The catalytic activity of chitosan is evaluated in Knoevenagel condensation reaction of benzaldehyde and malononitrile as model substrates and the optimized reaction conditions are further used to expand its activity with various substrates. In addition, the catalyst stability is also examined by performing reusability, leaching experiments and it is observed that the catalyst can be reused for four times with no significant drop in its activity.

  2. Diastereoselective Synthesis of a Highly Substituted cis-Decahydroquinoline via a Knoevenagel Condensation

    PubMed Central

    Huang, Junfeng; Bergmeier, Stephen C.

    2008-01-01

    A diastereoselective approach to 3,7,8-trisubstituted cis-decahydroquinolines is described. This ring system forms the core of rings B and E of the norditerpenoid alkaloid methyllycaconitine. This approach starts with a known disubsituted cyclohexene. The remaining carbons are attached via a Knoevenagel condensation followed by an intramolecular lactam formation. The stereochemistry of the substituents is controlled by the cis-substitution of the starting cyclohexene ring. PMID:19572008

  3. Domino Knoevenagel condensation/intramolecular aldol cyclization route to diverse indolizines with densely functionalized pyridine units.

    PubMed

    Kim, Myungock; Jung, Youngeun; Kim, Ikyon

    2013-10-18

    A highly efficient [4 + 2] annulation route to polysubstituted indolizines is described employing a domino Knoevenagel condensation/intramolecular aldol cyclization process as a key step. Construction of pyridine rings in indolizine skeleton was rapidly achieved from several pyrrole-2-carboxaldehydes in good to excellent yields, leading to indolizines with various substituents at the 5, 6, and 7 positions depending on the reacting active methylene partners.

  4. Microwave-assisted and efficient solvent-free knoevenagel condensation. A sustainable protocol using porous calcium hydroxyapatite as catalyst.

    PubMed

    Mallouk, Siham; Bougrin, Khalid; Laghzizil, Abdelaziz; Benhida, Rachid

    2010-02-04

    A sustainable Knoevenagel condensation of a series of aldehydes with malononitrile and ethyl cyanoacetate is described. The process is based on the combination of microwave activation and hydroxyapatite catalysis under solvent-free conditions. Products are obtained in and high yields after short reaction times. The effects of the specific surface of porous calcium hydroxyapatite and microwave activation are discussed.

  5. ATR-IR spectroscopy of pendant NH2 groups on silica involved in the Knoevenagel condensation.

    PubMed

    Wirz, Ronny; Ferri, Davide; Baiker, Alfons

    2006-04-11

    The liquid-phase Knoevenagel condensation between benzaldehyde and ethyl cyanoacetate catalyzed by aminopropyl-modified silica has been investigated using in situ attenuated total reflection infrared (ATR-IR) spectroscopy. The aim of the work was to demonstrate the different levels of information on the reaction mechanism that can be achieved by operating the spectroscopic cell in the absence and in the presence of a solvent, in flow-through and stop-flow modes and in combination with concentration modulation spectroscopy. The reaction mechanism involves the formation of an imine intermediate whose existence has been verified in situ by combining in one experiment continuous and stop-flow operations. Identical information has been gained more elegantly using concentration modulation spectroscopy, which additionally provided information on the possible origin of the solvent effect observed in the Knoevenagel reaction. Faster production and consumption of the imine intermediate was observed in cyclohexane solvent than in toluene. Identification of other species evolving on the catalyst surface and monitoring of the effluents of the spectroscopic cell provided some insight in possible catalyst deactivation.

  6. Classical Keggin Intercalated into Layered Double Hydroxides: Facile Preparation and Catalytic Efficiency in Knoevenagel Condensation Reactions.

    PubMed

    Jia, Yueqing; Fang, Yanjun; Zhang, Yingkui; Miras, Haralampos N; Song, Yu-Fei

    2015-10-12

    The family of polyoxometalate (POM) intercalated layered double hydroxide (LDH) composite materials has shown great promise for the design of functional materials with numerous applications. It is known that intercalation of the classical Keggin polyoxometalate (POM) of [PW12 O40 ](3-) (PW12 ) into layered double hydroxides (LDHs) is very unlikely to take place by conventional ion exchange methods due to spatial and geometrical restrictions. In this paper, such an intercalated compound of Mg0.73 Al0.22 (OH)2 [PW12 O40 ]0.04 ⋅0.98 H2 O (Mg3 Al-PW12 ) has been successfully obtained by applying a spontaneous flocculation method. The Mg3 Al-PW12 has been fully characterized by using a wide range of methods (XRD, SEM, TEM, XPS, EDX, XPS, FT-IR, NMR, BET). XRD patterns of Mg3 Al-PW12 exhibit no impurity phase usually observed next to the (003) diffraction peak. Subsequent application of the Mg3 Al-PW12 as catalyst in Knoevenagel condensation reactions of various aldehydes and ketones with Z-CH2 -Z' type substrates (ethyl cyanoacetate and malononitrile) at 60 °C in mixed solvents (V2-propanol :Vwater =2:1) demonstrated highly efficient catalytic activity. The synergistic effect between the acidic and basic sites of the Mg3 Al-PW12 composite proved to be crucial for the efficiency of the condensation reactions. Additionally, the Mg3 Al-PW12 -catalyzed Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate demonstrated the highest turnover number (TON) of 47 980 reported so far for this reaction.

  7. Apatite phosphates containing heterovalent cations and their application in Knoevenagel condensation

    SciTech Connect

    Priya, K.; Buvaneswari, G.

    2009-06-03

    Apatite structure type ortho phosphates of the formula NaLaCa{sub 3}(PO{sub 4}){sub 3}OH and NaLaSr{sub 3}(PO{sub 4}){sub 3}OH have been synthesized via a simple solution route. The compounds are isostructural with calcium hydroxyapatite. The phases are characterized by powder X-ray diffraction method and infrared spectroscopy. The unit cell parameters are: for NaLaCa{sub 3}(PO{sub 4}){sub 3}OH, a = 9.457(3) and c = 6.90(1) A and for NaLaSr{sub 3}(PO{sub 4}){sub 3}OH, a = 9.720(3) and c = 7.23(3) A, respectively. Knoevenagel condensation of selected aldehydes and molecules with activated methylene group is carried out using the phosphates as solid supports. Both phases facilitated the condensation reaction at room temperature in the absence of a solvent. An increase in the yield of the products is noticed when the supports are used with water.

  8. Tandem one-pot synthesis of flavans by recyclable silica-HClO4 catalyzed Knoevenagel condensation and [4 + 2]-Diels-Alder cycloaddition.

    PubMed

    Bharate, Sandip B; Mudududdla, Ramesh; Bharate, Jaideep B; Battini, Narsaiah; Battula, Satyanarayana; Yadav, Rammohan R; Singh, Baldev; Vishwakarma, Ram A

    2012-07-14

    An efficient one-pot multi-component synthesis of flavans using perchloric acid supported on silica as a recyclable heterogeneous catalyst has been described. This is the first report of direct one-step construction of a flavan skeleton from a phenolic precursor. The method involves a Knoevenagel-type condensation leading to in situ formation of transient O-quinone methide which further undergoes [4 + 2]-Diels-Alder cycloaddition with styrene to yield a flavan skeleton. The method provides easy access to a wide range of bio-active natural products viz. flavonoids, anthocyanins and catechins.

  9. Superparamagnetic mesoporous Mg-Fe bi-metal oxides as efficient magnetic solid-base catalysts for Knoevenagel condensations.

    PubMed

    Gao, Zhe; Zhou, Jian; Cui, Fangming; Zhu, Yan; Hua, Zile; Shi, Jianlin

    2010-12-14

    Superparamagnetic mesoporous Mg-Fe bi-metal oxides with varied Mg-Fe atomic ratios have been successfully synthesized as solid base catalysts. The M2F-400 catalyst with Mg/Fe atomic ratio = 2 showed extraordinarily high activities for Knoevenagel reactions even at room temperature. It could be magnetically separated, recycled, and reused for at least five cycles.

  10. Lasing the DNA fragments through β-diketimine framed Knoevenagel condensed Cu(II) and Zn(II) complexes - An in vitro and in vivo approach

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Pravin, Narayanaperumal

    2014-01-01

    The syntheses, structures and spectroscopic properties of Cu(II) and Zn(II) complexes having Knoevenagel condensate β-diketimine Schiff base ligands have been investigated in this paper. Characterization of these complexes was carried out using FTIR, NMR, UV-Vis, elemental analysis, mass and EPR techniques. Absorption titration, electrochemical analyses and viscosity measurements have also been carried out to determine the mode of binding. The shift in ΔEp, E1/2 and Ipc values explores the interaction of CT DNA with the above metal complexes. Interaction of ligands and their complexes with DNA revealed an intercalative mode of binding between them. Antimicrobial studies showed an effective antimicrobial activity of the metal ions after coordination with the ligands. The antioxidant properties of the Schiff base ligands and their complexes were evaluated in a series of in vitro tests by using 1,1-diphenyl-2-picrylhydrazyl (DPPHrad ) and H2O2 free radical scavengers. In vivo and in vitro antitumor functions of the complexes against Ehrlich ascites carcinoma tumor model have also been investigated. All the results support that β-diketone derived Knoevenagel condensate Schiff base complexes may act as novel antitumor drugs and suggest that their potent cell life inhibition may contribute to their anti-cancer efficacy.

  11. A novel nickel metal-organic framework with fluorite-like structure: gas adsorption properties and catalytic activity in Knoevenagel condensation.

    PubMed

    Almáši, Miroslav; Zeleňák, Vladimír; Opanasenko, Maksym; Cejka, Jíří

    2014-03-07

    A new non-interpenetrating 3D metal-organic framework {[Ni4(μ6-MTB)2(μ2-H2O)4(H2O)4]·10DMF·11H2O}n (DMF = N,N'-dimethylformamide) built from nickel(ii) ions as connectors and methanetetrabenzoate ligands (MTB(4-)) as linkers has been synthesized and characterized. The single crystal X-ray diffraction showed that complex exhibits CaF2-like fluorite structure topology and four types of 3D channels with sizes about 12.6 × 9.4 Å(2), 9.4 × 8.0 Å(2), 12.6 × 11.7 Å(2) and 14.9 × 14.9 Å(2), which are filled with guest molecules. Conditions of the activation of the compound have been studied and optimized by powder X-ray diffraction during in situ heating, thermogravimetric analysis and infrared spectroscopy. Nitrogen and carbon dioxide adsorption showed that the activated sample exhibits a BET specific surface area of 700 m(2) g(-1) and a carbon dioxide uptake of 12.36 wt% at 0 °C, which are the highest values reported for the compounds of the MTB(4-) series. The complex was tested in Knoevenagel condensation of aldehydes and active methylene compounds. Straightforward dependence of the substrate conversion on the size of used aldehyde was established. A possible mechanism of Knoevenagel condensation over a MTB(4-) containing a metal-organic framework was proposed.

  12. Lasing the DNA fragments through β-diketimine framed Knoevenagel condensed Cu(II) and Zn(II) complexes--an in vitro and in vivo approach.

    PubMed

    Raman, Natarajan; Pravin, Narayanaperumal

    2014-01-24

    The syntheses, structures and spectroscopic properties of Cu(II) and Zn(II) complexes having Knoevenagel condensate β-diketimine Schiff base ligands have been investigated in this paper. Characterization of these complexes was carried out using FTIR, NMR, UV-Vis, elemental analysis, mass and EPR techniques. Absorption titration, electrochemical analyses and viscosity measurements have also been carried out to determine the mode of binding. The shift in ΔEp, E1/2 and Ipc values explores the interaction of CT DNA with the above metal complexes. Interaction of ligands and their complexes with DNA revealed an intercalative mode of binding between them. Antimicrobial studies showed an effective antimicrobial activity of the metal ions after coordination with the ligands. The antioxidant properties of the Schiff base ligands and their complexes were evaluated in a series of in vitro tests by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and H2O2 free radical scavengers. In vivo and in vitro antitumor functions of the complexes against Ehrlich ascites carcinoma tumor model have also been investigated. All the results support that β-diketone derived Knoevenagel condensate Schiff base complexes may act as novel antitumor drugs and suggest that their potent cell life inhibition may contribute to their anti-cancer efficacy.

  13. Preparation of neuroprotective condensed 1,4-benzoxazepines by regio- and diastereoselective domino Knoevenagel-[1,5]-hydride shift cyclization reaction.

    PubMed

    Tóth, László; Fu, Yan; Zhang, Hai Yan; Mándi, Attila; Kövér, Katalin E; Illyés, Tünde-Zita; Kiss-Szikszai, Attila; Balogh, Balázs; Kurtán, Tibor; Antus, Sándor; Mátyus, Péter

    2014-01-01

    Condensed O,N-heterocycles containing tetrahydro-1,4-benzoxazepine and tetrahydroquinoline moieties were prepared by a regio- and diastereoselective domino Knoevenagel-[1,5]-hydride shift cyclization reaction of a 4-aryl-2-phenyl-1,4-benzoxazepine derivative obtained from flavanone. The relative configuration of products were determined by the correlation of (3) J H,H coupling data with the geometry of major conformers accessed by DFT conformational analysis. Separated enantiomers of the products were characterized by HPLC-ECD data, which allowed their configurational assignment on the basis of TDDFT-ECD calculation of the solution conformers. Two compounds showed neuroprotective activities against hydrogen peroxide (H2O2) or β-amyloid25-35 (Aβ25-35)-induced cellular injuries in human neuroblastoma SH-SY5Y cells in the range of those of positive controls.

  14. Catalytic Performance of a New 1D Cu(II) Coordination Polymer {Cu(NO₃)(H₂O)}(HTae)(4,4'-Bpy) for Knoevenagel Condensation.

    PubMed

    Larrea, Edurne S; Fernández de Luis, Roberto; Arriortua, María I

    2016-12-01

    The {Cu(NO₃)(H₂O)}(HTae)(4,4'-Bpy) (H₂Tae = 1,1,2,2-tetraacetylethane, 4,4'-Bpy = 4,4'-Dipyridyl) 1D coordination polymer has been obtained by slow evaporation. The crystal structure consists of parallel and oblique {Cu(HTae)(4,4'-Bpy)} zig-zag metal-organic chains stacked along the [100] crystallographic direction. Copper(II) ions are in octahedral coordination environment linked to two nitrogen atoms of two bridging 4,4'-Bpy and to two oxygen atoms of one HTae molecule in the equatorial plane. The occupation of the axial positions varies from one copper atom to another, with different combinations of water molecules and nitrate anions, giving rise to a commensurate super-structure. By means of the thermal removal of water molecules, copper coordinatively unsaturated centres are obtained. These open metal sites could act as Lewis acid active sites in several heterogeneous catalytic reactions. The dehydrated compound, CuHTaeBpy_HT, has been tested as a heterogeneous recoverable catalyst for Knoevenagel condensation reactions. The catalyst is active and heterogeneous for the condensation of aldehydes with malononitrile at 60 °C using a molar ratio catalyst:substrate of 3 % and toluene as solvent. The catalyst suffers a partial loss of activity when reusing it, but can be reused at least four times.

  15. New Difluoro Knoevenagel Condensates of Curcumin, Their Schiff Bases and Copper Complexes as Proteasome Inhibitors and Apoptosis Inducers in Cancer Cells

    PubMed Central

    Padhye, Subhash; Yang, Huanjie; Jamadar, Abeda; Cui, Qiuzhi Cindy; Chavan, Deepak; Dominiak, Kristin; McKinney, Jaclyn; Banerjee, Sanjeev; Dou, Q. Ping; Sarkar, Fazlul H.

    2013-01-01

    Purpose Emerging evidence clearly suggests the potential chemopreventive and anti-tumor activity of a well known “natural agent” curcumin. However, studies have shown that curcumin is not readily bioavailable, and thus the tissue bioavailability of curcumin is also poor except for gastrointestinal track. Because of the potential biological activity of curcumin, many studies have attempted for making a better analog of cucumin that is equally effective or better with increased bioavailability, which was the purpose of our current study. Methods We have designed and synthesized new difluoro Knoevenagel condensates of curcumin and Schiff bases along with their copper (II) complexes and evaluated their biological activities with respect to the inhibitory effects on purified rabbit 26S proteasome, and growth inhibition and induction of apoptosis in colon and pancreatic cancer cell lines. Results All copper complexes possess distorted square planar geometries with 1:1 metal to ligand stoichiometry with reversible copper redox couple. The difluoro compound CDF exhibited inhibitory effects on purified rabbit 20S proteasome or cellular 26S proteasome, and caused both growth inhibition of cancer cell lines and induced apoptotic cell death in our preliminary assessment. Conclusion Our results suggest that our newly synthesized classes of curcumin analogs could be useful as chemopreventive and/or therapeutic agents against cancers. PMID:19421843

  16. DNA incision evaluation, binding investigation and biocidal screening of novel metallonucleases of 1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione based Knoevenagel condensate having methionine: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Pravin, Narayanaperumal; Raman, Natarajan

    2015-02-01

    Four new metallonucleases of the composition [MLCl] (where M = Cu(II), Ni(II), Zn(II) and Co(II); L = Knoevenagel condensate Schiff base, obtained by the condensation reaction of 1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione with p-nitrobenzaldehyde and methionine amino acid) have been synthesised and characterized thoroughly by microanalytical data, magnetic susceptibility, molar conductivity, UV-Vis., IR, 1H NMR, 13C NMR and EPR spectral techniques. Their geometry is investigated and established to have square planar geometry. Electronic absorption spectroscopy, cyclic voltammetry and viscosity measurements reveal that the complexes strongly bind to calf thymus DNA via an intercalation mechanism. DNA cleavage efficiency of these complexes is explored by gel electrophoresis, and they are found to endorse the cleavage of pBR322 DNA in presence of oxidant H2O2. These results reveal that all the complexes show better nuclease activity. Moreover, the biological screening against few pathogens reveals that that the complexes have potent biocidal activity than the free ligand.

  17. Nonequilibrium kinetic theory for trapped binary condensates

    NASA Astrophysics Data System (ADS)

    Edmonds, M. J.; Lee, K. L.; Proukakis, N. P.

    2015-12-01

    We derive a nonequilibrium finite-temperature kinetic theory for a binary mixture of two interacting atomic Bose-Einstein condensates and use it to explore the degree of hydrodynamicity attainable in realistic experimental geometries. Based on the standard separation-of-time-scales argument of kinetic theory, the dynamics of the condensates of the multicomponent system are shown to be described by dissipative Gross-Pitaevskii equations self-consistently coupled to corresponding quantum Boltzmann equations for the noncondensate atoms: On top of the usual mean-field contributions, our scheme identifies a total of eight distinct collisional processes, whose dynamical interplay is expected to be responsible for the system's equilibration. In order to provide their first characterization, we perform a detailed numerical analysis of the role of trap frequency and geometry on collisional rates for experimentally accessible mixtures of 87Rb-41K and 87Rb-85Rb , discussing the extent to which the system may approach the hydrodynamic regime with regard to some of those processes as a guide for future experimental investigations of ultracold Bose gas mixtures.

  18. Microporous polyurethane material for size selective heterogeneous catalysis of the Knoevenagel reaction.

    PubMed

    Dey, Sandeep Kumar; de Sousa Amadeu, Nader; Janiak, Christoph

    2016-06-14

    The first polyurethane material which is microporous (BET surface area of 312 m(2) g(-1)) is prepared by solvothermal synthesis and acts as highly efficient and recyclable heterogeneous catalyst in the Knoevenagel condensation showing size selectivity, and in the Henry reaction showing substrate selectivity under mild reaction conditions.

  19. Knoevenagel Reaction of Unprotected Sugars

    NASA Astrophysics Data System (ADS)

    Scherrmann, Marie-Christine

    The Knoevenagel reaction of unprotected sugars was investigated in the 1950s using zinc chloride as promoter. The so-called Garcia Gonzalez reaction had been almost forgotten for 50 years, until the emergence of new water tolerant catalysts having Lewis acid behavior. The reaction was thus reinvestigated and optimal conditions have been found to prepare trihydroxylated furan derivatives from pentose or β-tetrahydrofuranylfuran from hexoses with non-cyclic β-keto ester or β-diketones. Other valuable compounds such as β-linked tetrahydrobenzofuranyl glycosides or hydroxyalkyl-3,3,6,6,-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione can be obtained using cyclic β-dicarbonylic derivatives. Apart from one report in the 1950s, the Knoevenagel reaction of unprotected carbohydrate in basic condition has been studied only in the mid-1980s to prepare C-glycosyl barbiturates from barbituric acids and, later on, from non-cyclic β-diketones, β-C-glycosidic ketones. The efficient method exploited to prepare such compounds has found an industrial development in cosmetics.

  20. Kinetic approach to a relativistic Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Meistrenko, Alex; van Hees, Hendrik; Zhou, Kai; Greiner, Carsten

    2016-03-01

    We apply a Boltzmann approach to the kinetic regime of a relativistic Bose-Einstein condensate of scalar bosons by decomposing the one-particle distribution function in a condensate part and a nonzero momentum part of excited modes, leading to a coupled set of evolution equations which are then solved efficiently with an adaptive higher order Runge-Kutta scheme. We compare our results to the partonic cascade Monte Carlo simulation BAMPS for a critical but far from equilibrium case of massless bosons. Motivated by the color glass condensate initial conditions in QCD with a strongly overpopulated initial glasma state, we also discuss the time evolution starting from an overpopulated initial distribution function of massive scalar bosons. In this system a self-similar evolution of the particle cascade with a nonrelativistic turbulent scaling in the infrared sector is observed as well as a relativistic exponent for the direct energy cascade, confirming a weak wave turbulence in the ultraviolet region.

  1. Kinetic approach to a relativistic Bose-Einstein condensate.

    PubMed

    Meistrenko, Alex; van Hees, Hendrik; Zhou, Kai; Greiner, Carsten

    2016-03-01

    We apply a Boltzmann approach to the kinetic regime of a relativistic Bose-Einstein condensate of scalar bosons by decomposing the one-particle distribution function in a condensate part and a nonzero momentum part of excited modes, leading to a coupled set of evolution equations which are then solved efficiently with an adaptive higher order Runge-Kutta scheme. We compare our results to the partonic cascade Monte Carlo simulation BAMPS for a critical but far from equilibrium case of massless bosons. Motivated by the color glass condensate initial conditions in QCD with a strongly overpopulated initial glasma state, we also discuss the time evolution starting from an overpopulated initial distribution function of massive scalar bosons. In this system a self-similar evolution of the particle cascade with a nonrelativistic turbulent scaling in the infrared sector is observed as well as a relativistic exponent for the direct energy cascade, confirming a weak wave turbulence in the ultraviolet region.

  2. Phase ordering kinetics of a nonequilibrium exciton-polariton condensate

    NASA Astrophysics Data System (ADS)

    Kulczykowski, Michał; Matuszewski, Michał

    2017-02-01

    We investigate the process of coarsening via annihilation of vortex-antivortex pairs, following the quench to the condensate phase in a nonresonantly pumped polariton system. We find that the late-time dynamics is an example of universal phase-ordering kinetics, characterized by scaling of correlation functions in time. Depending on the parameters of the system, the evolution of the characteristic length scale L (t ) can be the same as for the two-dimensional X Y model, described by a power law with the dynamical exponent z ≈2 and a logarithmic correction, or z ≈1 which agrees with previous studies of conservative superfluids.

  3. Analytical solutions for coagulation and condensation kinetics of composite particles

    NASA Astrophysics Data System (ADS)

    Piskunov, Vladimir N.

    2013-04-01

    The processes of composite particles formation consisting of a mixture of different materials are essential for many practical problems: for analysis of the consequences of accidental releases in atmosphere; for simulation of precipitation formation in clouds; for description of multi-phase processes in chemical reactors and industrial facilities. Computer codes developed for numerical simulation of these processes require optimization of computational methods and verification of numerical programs. Kinetic equations of composite particle formation are given in this work in a concise form (impurity integrated). Coagulation, condensation and external sources associated with nucleation are taken into account. Analytical solutions were obtained in a number of model cases. The general laws for fraction redistribution of impurities were defined. The results can be applied to develop numerical algorithms considerably reducing the simulation effort, as well as to verify the numerical programs for calculation of the formation kinetics of composite particles in the problems of practical importance.

  4. Kinetics of mineral condensation in the solar nebula

    NASA Technical Reports Server (NTRS)

    Grove, T. L.

    1987-01-01

    A natural extension of the type of gas-mineral-melt condensation experiments is to study the gas-mineral-melt reaction process by controlling the reaction times of appropriate gas compositions with silicate materials. In a condensing and vaporizing gas-solid system, important processes that could influence the composition of and speciation in the gas phase are the kinetics of vaporization of components from silicate crystals and melts. The high vacuum attainable in the space station would provide an environment for studying these processes at gas pressures much lower than those obtainable in experimental devices operated at terrestrial conditions in which the gas phase and mineral or melt would be allowed to come to exchange equilibrium. Further experiments would be performed at variable gas flow rates to simulate disequilibrium vapor fractionation. In this type of experiment it is desirable to analyze directly the species in the gas phase in equilibrium with the condensed silicate material. This analytical method would provide a direct determination of the species present in the gas phase. Currently, the notion of gas speciation is based on calculations from thermodynamic data. The proposed experiments require similar furnace designs and use similar experimental starting compositions, pressures, and temperatures as those described by Mysen.

  5. Kinetic approach to the evaporation and condensation problem

    NASA Technical Reports Server (NTRS)

    Murakami, M.; Oshima, K.

    1974-01-01

    In the paper, the Boltzmann equation governing the evaporation and condensation phenomena is solved by the Monte Carlo method. Based on the kinetic theory of gas the role of the non-equilibrium Knudsen layer and the growth of the hydrodynamic region outside the layer as time proceeds are simulated. Results show two possible types of transient developments in the vapor phase. The effects of the molecular absorption coefficient of the phase surface are examined. Except in the case of very strong evaporation the kinematic effects of binary collisions among vapor molecules on the mass flux rate are not serious. The limiting case of the quasi-steady evaporation and the maximal value of the evaporation rate are obtained.

  6. Kinetic model of trapped finite-temperature binary condensates

    NASA Astrophysics Data System (ADS)

    Edmonds, M. J.; Lee, K. L.; Proukakis, N. P.

    2015-01-01

    We construct a nonequilibrium theory for the dynamics of two interacting finite-temperature atomic Bose-Einstein condensates and use it to numerically estimate the relative rates of the arising collisional processes near equilbrium. The condensates are described by dissipative Gross-Pitaevskii equations, coupled to quantum Boltzmann equations for the thermal atoms. The density-density interactions between atoms in different components facilitate a number of transport processes of relevance to sympathetic cooling: in particular, considering realistic miscible and immiscible trapped atomic 87Rb-41K and 87Rb-85Rb condensate mixtures, we highlight the dominance of an intercomponent scattering process associated with collisional "exchange" of condensed and thermal atoms between the components close to equilibrium.

  7. Slag condensation kinetics in the channel of an MHD generator: Explosive condensation

    SciTech Connect

    Zhukhovitskii, D.I.; Khrapak, A.G.; Yakubov, I.T.

    1983-09-01

    A study has been made of the bulk condensation of the inorganic part of combustion products in the channel of an MHD generator. An analytic solution has been obtained to the equations describing the process. A physical interpretation is given for the various stages. It is known that the condensation consists of several slightly overlapping stages. First there is the explosive formation of nuclei, which then grow rapidly, and a quasistationary stage of condensation sets in. A calculation is performed for particular conditions in an MHD generator.

  8. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle.

    PubMed

    Luo, Xisheng; Fan, Yu; Qin, Fenghua; Gui, Huaqiao; Liu, Jianguo

    2014-01-14

    A kinetic model is developed to describe the heterogeneous condensation of vapor on an insoluble spherical particle. This new model considers two mechanisms of cluster growth: direct addition of water molecules from the vapor and surface diffusion of adsorbed water molecules on the particle. The effect of line tension is also included in the model. For the first time, the exact expression of evaporation coefficient is derived for heterogeneous condensation of vapor on an insoluble spherical particle by using the detailed balance. The obtained expression of evaporation coefficient is proved to be also correct in the homogeneous condensation and the heterogeneous condensation on a planar solid surface. The contributions of the two mechanisms to heterogeneous condensation including the effect of line tension are evaluated and analysed. It is found that the cluster growth via surface diffusion of adsorbed water molecules on the particle is more important than the direct addition from the vapor. As an example of our model applications, the growth rate of the cap shaped droplet on the insoluble spherical particle is derived. Our evaluation shows that the growth rate of droplet in heterogeneous condensation is larger than that in homogeneous condensation. These results indicate that an explicit kinetic model is benefit to the study of heterogeneous condensation on an insoluble spherical particle.

  9. Criterion for condensation in kinetically constrained one-dimensional transport models

    NASA Astrophysics Data System (ADS)

    Miedema, D. M.; de Wijn, A. S.; Schall, P.

    2014-06-01

    We study condensation in one-dimensional transport models with a kinetic constraint. The kinetic constraint results in clustering of immobile vehicles; these clusters can grow to macroscopic condensates, indicating the onset of dynamic phase separation between free-flowing and arrested traffic. We investigate analytically the conditions under which this occurs and derive a necessary and sufficient criterion for phase separation. This criterion is applied to the well-known Nagel-Schreckenberg model of traffic flow to analytically investigate the existence of dynamic condensates. We find that true condensates occur only when acceleration out of jammed traffic happens in a single time step, in the limit of strong overbraking. Our predictions are further verified with simulation results on the growth of arrested clusters. These results provide analytic understanding of dynamic arrest and dynamic phase separation in one-dimensional traffic and transport models.

  10. The ZONMET thermodynamic and kinetic model of metal condensation

    NASA Astrophysics Data System (ADS)

    Petaev, Michail I.; Wood, John A.; Meibom, Anders; Krot, Alexander N.; Keil, Klaus

    2003-05-01

    The ZONMET model of metal condensation is a FORTRAN computer code that calculates condensation with partial isolation-type equilibrium partitioning of the 19 most abundant elements among 203 gaseous and 488 condensed phases and growth in the nebula of a zoned metal grain by condensation from the nebular gas accompanied by diffusional redistribution of Ni, Co, and Cr. Of five input parameters of the ZONMET model (chemical composition of the system expressed as the dust/gas [ D/ G] ratio, nebular pressure [ Ptot], isolation degree [ξ], cooling rate ( CR), and seed size), only two—the D/ G ratio and the CR of the nebular source region of a zoned Fe,Ni grain—are important in determining the grain radius and Ni, Co, and Cr zoning profiles. We found no evidence for the supercooling during condensation of Fe,Ni metal that is predicted by the homogeneous nucleation theory. The model allows estimates to be made of physicochemical parameters in the CH chondrite nebular source regions. Modeling growth and simultaneous diffusional redistribution of Ni, Co, and Cr in the zoned metal grains of CH chondrites reveals that the condensation zoning profiles were substantially modified by diffusion while the grains were growing in the nebula. This means that previous estimates of the physicochemical conditions in the nebular source regions of CH and CB chondrites, based on measured zoning profiles of Ni, Co, Cr, and platinum group elements in Fe,Ni metal grains, need to be corrected. The two zoned metal grains in the PAT 91456 and NWA 470 CH chondrites studied so far require nebular source regions with different chemical compositions ( D/ G = 1 and D/ G = 4, respectively) and thermal histories characterized by variable cooling rates ( CR = 0.011 + 0.0022 × Δ T K/h and CR = 0.05 + 0.0035 × Δ T K/h, respectively). It appears that the metal grains of the CH chondrites were formed in multiple nebular source regions or in different events within the same source region as the CB

  11. Kinetic nucleation model for free expanding water condensation plume simulations.

    PubMed

    Li, Zheng; Zhong, Jiaqiang; Levin, Deborah A; Garrison, Barbara J

    2009-05-07

    Recent direct simulation Monte Carlo (DSMC) simulations of homogeneous condensation in free expansion water plumes [Z. Li, J. Zhong, D. A. Levin, and B. Garrison, AIAA J. 47, 1241 (2009)] show that the nucleation rate is a key factor for accurately modeling condensation phenomenon. In this work, we use molecular dynamics (MD) simulations of a free expansion to explore the microscopic mechanisms of water dimer formation and develop collision models required by DSMC. Bimolecular and termolecular dimer cluster formation mechanisms are considered and the former is found to be the main mechanism in expanding flows to vacuum. MD simulations between two water molecules using the simple point charge intermolecular potential were performed to predict the bimolecular dimer formation probability and the probability was found to decrease with collision energy. The formation probabilities and postcollisional velocity and energy distributions were then integrated into DSMC simulations of a free expansion of an orifice condensation plume with different chamber stagnation temperatures and pressures. The dimer mole fraction was found to increase with distance from the orifice and become constant after a distance of about two orifice diameters. Similar to experiment, the terminal dimer mole fraction was found to decrease with chamber stagnation temperatures and increase linearly with chamber stagnation pressures which is consistent with a bimolecular nucleation mechanism.

  12. Thermalization kinetics of light: From laser dynamics to equilibrium condensation of photons

    NASA Astrophysics Data System (ADS)

    Schmitt, Julian; Damm, Tobias; Dung, David; Vewinger, Frank; Klaers, Jan; Weitz, Martin

    2015-07-01

    We report a time-resolved study of the thermalization dynamics and the lasing to photon Bose-Einstein condensation crossover by in situ monitoring the photon kinetics in a dye microcavity. When the equilibration of the light to the dye temperature by absorption and reemission is faster than photon loss in the cavity, the optical spectrum becomes Bose-Einstein distributed and photons accumulate at low-energy states, forming a Bose-Einstein condensate. The thermalization of the photon gas and its evolution from nonequilibrium initial distributions to condensation is monitored in real time. In contrast, if photons leave the cavity before they thermalize, the system operates as a laser.

  13. Quantum kinetic theory. VI. The growth of a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Lee, M. D.; Gardiner, C. W.

    2000-09-01

    A detailed analysis of the growth of a Bose-Einstein condensate is given, based on quantum kinetic theory, in which we take account of the evolution of the occupations of lower trap levels, and of the full Bose-Einstein formula for the occupations of higher trap levels, as well as the Bose-stimulated direct transfer of atoms to the condensate level introduced by Gardiner et al. [Phys. Rev. Lett. 79, 1793 (1997); 81, 5266 (1998)]. We find good agreement with experiment at higher temperatures, but at lower temperatures the experimentally observed growth rate is somewhat more rapid. We also confirm the picture of the ``kinetic'' region of evolution, introduced by Kagan, Svistunov, and Shlyapnikov (Zh. Eksp. Teor. Fiz. 101, 528 (1992) [Sov. Phys. JETP 75, 387 (1992)]), for the time up to the initiation of the condensate. The behavior after initiation essentially follows our original growth equation, but with a substantially increased rate coefficient. Our modeling of growth implicitly gives a model of the spatial shape of the density profile of the condensate-vapor system as the condensate grows, and thus provides an alternative to the present phenomenological fitting procedure, based on the sum of a zero-chemical potential vapor and a Thomas-Fermi-shaped condensate. Our method gives substantially different results for condensate numbers and temperatures obtained from phenomenological fits, but fits the published column density data very well.

  14. A Kinetic Approach to Bose-Einstein Condensates: Self-Phase Modulation and Bogoliubov Oscillations

    SciTech Connect

    Mendonca, J.T.; Bingham, R.; Shukla, P.K.

    2005-11-01

    A kinetic approach to Bose-Einstein condensates (BECs) is proposed based on the Wigner-Moyal equation (WME). In the semiclassical limit, the WME reduces to the particle-number conservation equation. Two examples of applications are (i) a self-phase modulation of a BE condensate beam, where we show that part of the beam is decelerated and eventually stops as a result of the gradient of the effective self-potential, and (ii) the derivation of a kinetic dispersion relation for sound waves in BECs, including collisionless Landau damping.

  15. A criterion for condensation in kinetically constrained one-dimensional transport models

    NASA Astrophysics Data System (ADS)

    Miedema, Daniel

    2014-03-01

    In transport, increasing the number of transporting particles not necessarily results in an increase of the throughput. When the density of a complex system increases, the current can decrease rapidly due to jamming effects. Jammed particles can form many clusters or one big cluster: a condensate in real space. We study condensation in one-dimensional transport models with a kinetic constraint. We find the conditions under which the arrested clusters can grow to a macroscopic condensate of arrested particles. We apply our finding to the well-known Nagel-Schreckenberg traffic flow model to analytically proof the existence of a condensate in a deterministic limit of this model, and verify this result with simulations. These results provide insight into dynamic arrest and dynamic phase separation in one-dimensional traffic and transport.

  16. Hydrolysis and condensation kinetics for liquid-phase tetraethylorthosilicate reactions in alkaline-alcohol solvents

    SciTech Connect

    Harris, M.T.; Byers, C.H.; Brunson, R.R.

    1987-01-01

    The hydrolysis and condensation kinetics for the Stober-Fink method of producing monodisperse silica particles have been studied by chemical analyses (i.e., gas chromatography and molybdate for determining monomeric silicic acid concentrations) and laser-light-scattering techniques. Studies have been conducted to determine the effects of temperature, reactant and catalyst concentrations, and solvent type (i.e., 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butyl alcohol, and tert-amyl alcohol) on the rate of hydrolysis, rate of condensation, and particle growth kinetics. The effects of hydrogen bonding and steric hinderance of the solvent on the reaction kinetics are discussed. An important aspect of this research is the chemical evidence that monodisperse silica particles are produced by controlled homogeneous precipitation. This study is of fundamental importance for understanding the chemistry and physics of producing small particles that will be used as precursor materials for ceramics and support material for chromatographic packing.

  17. Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethyorthosilicate

    SciTech Connect

    Chen, S.L.; Dong, P.; Yang, G.H.; Yang, J.J.

    1996-12-01

    Kinetic studies of the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) during the formation of uniform silica particles were performed through determining concentrations of TEOS and silicic acid by means of gas chromatography and a conductometer, respectively. It was shown that both hydrolysis of TEOS and condensation of Si(OH){sub 4} are first order with TEOS and Si(OH){sub 4}, respectively, and the relationships of the hydrolysis and condensation rate constants with reaction condition variables, such as temperature, NH{sub 3} concentration, and H{sub 2}O concentration, were determined. in addition, the particle growth rate was investigated with relation to the hydrolysis and condensation kinetics. Experiments showed that, during most of the reaction, the amount of formed particles is less than that of consumed TEOS, indicating that reaction intermediates exist during the process of silica formation. In the early stages of the Stoeber process, the reaction intermediates include silicic acid and subparticles, while in the case of seed growth experiments without the formation of new particles or after the early stages of Stoeber process, the reaction intermediates primarily consist of silicic acid and the growth rate of silica equals the rate of silicic acid condensation.

  18. Chemistry and kinetics of I2 loss in urine distillate and humidity condensate

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Wheeler, Richard R., Jr.; Olivadoti, J. T.; Sauer, Richard L.

    1992-01-01

    Time-resolved molecular absorption spectrophotometry of iodinated ersatz humidity condensates and iodinated ersatz urine distillates across the UV and visible spectral regions are used to investigate the chemistry and kinetics of I2 loss in urine distillate and humidity condensate. Single contaminant systems at equivalent concentrations are also employed to study rates of iodine. Pseudo-first order rate constants are identified for ersatz contaminant model mixtures and for individual reactive constituents. The second order bimolecular reaction of elemental iodine with formic acid, producing carbon dioxide and iodine anion, is identified as the primary mechanism underlying the decay of residual I2 in ersatz humidity concentrate.

  19. Chemistry and kinetics of I2 loss in urine distillate and humidity condensate

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Wheeler, Richard R., Jr.; Olivadoti, J. T.; Sauer, Richard L.

    1992-01-01

    Time-resolved molecular absorption spectrophotometry of iodinated ersatz humidity condensates and iodinated ersatz urine distillates across the UV and visible spectral regions are used to investigate the chemistry and kinetics of I2 loss in urine distillate and humidity condensate. Single contaminant systems at equivalent concentrations are also employed to study rates of iodine. Pseudo-first order rate constants are identified for ersatz contaminant model mixtures and for individual reactive constituents. The second order bimolecular reaction of elemental iodine with formic acid, producing carbon dioxide and iodine anion, is identified as the primary mechanism underlying the decay of residual I2 in ersatz humidity concentrate.

  20. Kinetic description of Bose-Einstein condensation with test particle simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Xu, Zhe; Zhuang, Pengfei; Greiner, Carsten

    2017-07-01

    We present a kinetic description of Bose-Einstein condensation for particle systems being out of thermal equilibrium, which may happen for gluons produced in the early stage of ultrarelativistic heavy-ion collisions. The dynamics of bosons towards equilibrium is described by a Boltzmann equation including Bose factors. To solve the Boltzmann equation with the presence of a Bose-Einstein condensate we make further developments of the kinetic transport model BAMPS (Boltzmann approach of multiparton scatterings). In this work we demonstrate the correct numerical implementations by comparing the final numerical results to the expected solutions at thermal equilibrium for systems with and without the presence of Bose-Einstein condensate. In addition, the onset of the condensation in an overpopulated gluon system is studied in more details. We find that both expected power-law scalings denoted by the particle and energy cascade are observed in the calculated gluon distribution function at infrared and intermediate momentum regions, respectively. Also, the time evolution of the hard scale exhibits a power-law scaling in a time window, which indicates that the distribution function is approximately self-similar during that time.

  1. Toward a Kinetic Model of Silicon Carbide Condensation in Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Deneault, Ethan A. N.

    2017-01-01

    One of the most interesting types of dust grain extracted from terrestrial meteorites is the silicon carbide X-grain (SiC-X). These grains bear distinct isotopic signatures which classify them as supernova condensates, but their formation within the ejecta has not been well-studied. Using a kinetic chemistry network, we investigate possible pathways that lead to the formation of silicon carbide grains in the cooling outflows of type II supernovae.

  2. Mass accommodation of water: bridging the gap between molecular dynamics simulations and kinetic condensation models.

    PubMed

    Julin, Jan; Shiraiwa, Manabu; Miles, Rachael E H; Reid, Jonathan P; Pöschl, Ulrich; Riipinen, Ilona

    2013-01-17

    The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268-300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys. 2012, 12, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient

  3. Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models

    PubMed Central

    2012-01-01

    The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268–300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys.2012, 117, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation

  4. Kinetics of acid-catalyzed aldol condensation reactions of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Casale, Mia T.; Richman, Aviva R.; Elrod, Matthew J.; Garland, Rebecca M.; Beaver, Melinda R.; Tolbert, Margaret A.

    Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet-visible (UV-vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C 2-C 8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.

  5. Inhibition of α-Amylases by Condensed and Hydrolysable Tannins: Focus on Kinetics and Hypoglycemic Actions

    PubMed Central

    Kato, Camila Gabriel; Gonçalves, Geferson de Almeida; Peralta, Rosely Aparecida; Seixas, Flavio Augusto Vicente; de Sá-Nakanishi, Anacharis Babeto; Bracht, Lívia; Comar, Jurandir Fernando

    2017-01-01

    The aim of the present study was to compare the in vitro inhibitory effects on the salivary and pancreatic α-amylases and the in vivo hypoglycemic actions of the hydrolysable tannin from Chinese natural gall and the condensed tannin from Acacia mearnsii. The human salivary α-amylase was more strongly inhibited by the hydrolysable than by the condensed tannin, with the concentrations for 50% inhibition (IC50) being 47.0 and 285.4 μM, respectively. The inhibitory capacities of both tannins on the pancreatic α-amylase were also different, with IC50 values being 141.1 μM for the hydrolysable tannin and 248.1 μM for the condensed tannin. The kinetics of the inhibition presented complex patterns in that for both inhibitors more than one molecule can bind simultaneously to either the free enzyme of the substrate-complexed enzyme (parabolic mixed inhibition). Both tannins were able to inhibit the intestinal starch absorption. Inhibition by the hydrolysable tannin was concentration-dependent, with 53% inhibition at the dose of 58.8 μmol/kg and 88% inhibition at the dose of 294 μmol/kg. For the condensed tannin, inhibition was not substantially different for doses between 124.4 μmol/kg (49%) and 620 μmol/kg (57%). It can be concluded that both tannins, but especially the hydrolysable one, could be useful in controlling the postprandial glycemic levels in diabetes. PMID:28589038

  6. Reaction engineering of co-condensing (methyl)ethoxysilane mixtures: Kinetic characterization and modeling

    SciTech Connect

    RANKIN,STEPHEN E.; MCCORMICK,ALON V.

    2000-01-26

    Molecular homogeneity frequently plays a decisive role in the effective application of organically modified silicate copolymers. However, methods of directly characterizing copolymerization extent in siloxanes generated from mixed alkoxysilanes are not always available or convenient. The authors present an alternative tool for determining kinetic parameters for models of alkoxysilane hydrolytic copolycondensation. Rather than restricting attention to single step batch reactors, they use a semibatch reactor with varying time of injection of one component. They describe the fitting method and show that all necessary kinetic parameters can be determined from a series of ordinary {sup 29}Si NMR data in a straightforward case study: copolymerization of dimethyldiethoxy silane and trimethylethoxysilane. Under conditions providing no direct {sup 29}Si NMR signature of copolymerization, they find kinetic trends consistent with those previously reported. As further validation, the results of a new series of experiments (varying the ratio of mono-functional to difunctional monomer) are predicted by the semibatch copolymerization model and measured parameters. Based on these results, they are able to calculate the molecular homogeneity in the copolymer products investigated. Even for this relatively simple system, the optimal injection time is a complex function of residence time, but early injection of the faster-condensing monomer gives the best homogeneity at long residence times.

  7. Dissolution Condensation Mechanism of Stress Corrosion Cracking in Liquid Metals: Driving Force and Crack Kinetics

    NASA Astrophysics Data System (ADS)

    Glickman, Evgeny E.

    2011-02-01

    Stress corrosion cracking (SCC) in aqueous solution is driven by exothermic reactions of metal oxidation. This stimulus, as well as classical mechanisms of SCC, does not apply to SCC in liquid metals (LMs). In the framework of the dissolution-condensation mechanism (DCM), we analyzed the driving force and crack kinetics for this nonelectrochemical mode of SCC that is loosely called "liquid metal embrittlement" (LME). According to DCM, a stress-induced increase in chemical potential at the crack tip acts as the driving force for out-of-the-tip diffusion mass transfer that is fast because diffusion in LMs is very fast and surface energy at the solid-liquid interface is small. In this article, we review two versions of DCM mechanism, discuss the major physics behind them, and develop DCM further. The refined mechanism is applied then to the experimental data on crack velocity V vs stress intensity factor, the activation energy of LME, and alloying effects. It is concluded that DCM provides a good conceptual framework for analysis of a unified kinetic mechanism of LME and may also contribute to SCC in aqueous solutions.

  8. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-08-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  9. Adsorption kinetics and equilibrium studies for removal of acid azo dyes by aniline formaldehyde condensate

    NASA Astrophysics Data System (ADS)

    Terangpi, Praisy; Chakraborty, Saswati

    2016-12-01

    Adsorption of two acid dyes named Acid orange 8 (AO8) and Acid violet 7 (AV7) by amine based polymer aniline formaldehyde condensate (AFC) was studied. Adsorption of both dyes was favored at acidic pH. Electrostatic attraction between protonated amine group (NH3 +) of AFC and anionic sulfonate group (SO3 -) of dye molecule along with hydrogen bond formation and interaction between aromatic group of dye and AFC were responsible mechanisms for dye uptake. Isotherm of AO8 was Type I and followed Langmuir isotherm model. AV7 isotherm on AFC was of Type III and followed Freundlich model. Kinetics study showed that external mass transfer was the rate limiting step followed by intraparticle diffusion. Maximum adsorption capacities of AO8 and AV7 were observed as 164 and 68 mg/g. AO8 dye being smaller in molecular size was adsorbed more due to higher diffusion rate and higher dye: AFC ratio, which enhanced the interaction between dye and polymer.

  10. Kinetics of Acid-Catalyzed Aldol Condensation Reactions of Aliphatic Aldehydes

    NASA Astrophysics Data System (ADS)

    Elrod, M. J.; Casale, M. T.; Richman, A. R.; Beaver, M. R.; Garland, R. M.; Tolbert, M. A.

    2006-12-01

    While it is well established that organic compounds compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, ultraviolet-visible (UV-Vis) spectroscopy was used to monitor the kinetics of formation of the products of the aldol condensation reaction of a range of aliphatic aldehydes (C2-C8) The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature.

  11. A kinetic and mechanistic study of the amino acid catalyzed aldol condensation of acetaldehyde in aqueous and salt solutions.

    PubMed

    Nozière, Barbara; Córdova, Armando

    2008-04-03

    The amino acid catalyzed aldol condensation is of great interest in organic synthesis and natural environments such as atmospheric particles. However, kinetic and mechanistic information on these reactions is limited. In this work the kinetics of the aldol condensation of acetaldehyde in water and aqueous salt solutions (NaCl, CaCl2, Na2SO4, MgSO4) catalyzed by five amino acids (glycine, alanine, serine, arginine, and proline) at room temperature (295 +/- 2 K) has been studied. Monitoring the formation of three products, crotonaldehyde, 2,4-hexadienal, and 2,4,6-octatrienal, by UV-vis absorption over 200-1100 nm revealed two distinct kinetic regimes: at low amino acid concentrations (in all cases, below 0.1 M), the overall reaction was first-order with respect to acetaldehyde and kinetically limited by the formation of the enamine intermediate. At larger amino acid concentrations (at least 0.3 M), the kinetics was second order and controlled by the C-C bond-forming step. The first-order rate constants increased linearly with amino acid concentration consistent with the enamine formation. Inorganic salts further accelerated the enamine formation according to their pKb plausibly by facilitating the iminium or enamine formation. The rate constant of the C-C bond-forming step varied with the square of amino acid concentration suggesting the involvement of two amino acid molecules. Thus, the reaction proceeded via a Mannich pathway. However, the contribution of an aldol pathway, first-order in amino acid, could not be excluded. Our results show that the rate constant for the self-condensation of acetaldehyde in aqueous atmospheric aerosols (up to 10 mM of amino acids) is identical to that in sulfuric acid 10-15 M (kI approximately 10-7-10-6 s-1) clearly illustrating the potential importance of amino acid catalysis in natural environments. This work also demonstrates that under usual laboratory conditions and in natural environments aldol condensation is likely to be

  12. Quantitative surface-enhanced Raman spectroscopy for kinetic analysis of aldol condensation using Ag-Au core-shell nanocubes.

    PubMed

    Weatherston, Joshua D; Worstell, Nolan C; Wu, Hung-Jen

    2016-10-17

    Surface-enhanced Raman spectroscopy (SERS) is a powerful tool with high potential for multiplexed detection of dilute analytes. However, quantitative SERS of kinetic assays can be difficult due to the variation in enhancement factors caused by changing reaction conditions. We report a method for quantitative SERS kinetic analysis using colloidal Ag-Au core-shell nanocubes (Ag@AuNCs) as the SERS substrate. This substrate is mass producible, possesses large SERS enhancement, and is resistant to degradation in most environments. The SERS enhancement of the Ag@AuNCs was evaluated both experimentally and computationally. Quantitation was achieved by covalently attaching a non-reactive internal standard (IS) to substrate surfaces and normalizing SERS spectra to the IS signal. We demonstrated that IS normalization corrects for temporal variations in enhancement factor and particle concentration. Quantitation was demonstrated by monitoring the base-catalyzed aldol condensation of surface-bound 4-(methylthio)benzaldehyde with free acetone. The kinetic model of this reaction was fitted to IS normalized SERS data, resulting in kinetic parameters that agreed well with published values. This SERS platform is a robust and sensitive method for quantitative analysis of kinetic assays, with potential applications in many fields.

  13. Mechanism of Kinetically Controlled Capillary Condensation in Nanopores: A Combined Experimental and Monte Carlo Approach.

    PubMed

    Hiratsuka, Tatsumasa; Tanaka, Hideki; Miyahara, Minoru T

    2017-01-24

    We find the rule of capillary condensation from the metastable state in nanoscale pores based on the transition state theory. The conventional thermodynamic theories cannot achieve it because the metastable capillary condensation inherently includes an activated process. We thus compute argon adsorption isotherms on cylindrical pore models and atomistic silica pore models mimicking the MCM-41 materials by the grand canonical Monte Carlo and the gauge cell Monte Carlo methods and evaluate the rate constant for the capillary condensation by the transition state theory. The results reveal that the rate drastically increases with a small increase in the chemical potential of the system, and the metastable capillary condensation occurs for any mesopores when the rate constant reaches a universal critical value. Furthermore, a careful comparison between experimental adsorption isotherms and the simulated ones on the atomistic silica pore models reveals that the rate constant of the real system also has a universal value. With this finding, we can successfully estimate the experimental capillary condensation pressure over a wide range of temperatures and pore sizes by simply applying the critical rate constant.

  14. Kinetic boundary layers in gas mixtures: Systems described by nonlinearly coupled kinetic and hydrodynamic equations and applications to droplet condensation and evaporation

    SciTech Connect

    Widder, M.E.; Titulaer, U.M. )

    1993-03-01

    The authors consider a mixture of heavy vapor molecules and a light carrier gas surrounding a liquid droplet. The vapor is described by a variant of the Klein-Kramers equation; the gas is described by the Navier-Stokes equations; the droplet acts as a heat source due to the released heat of condensation. The exchange of momentum and energy between the constituents of the mixture is taken into account by force terms in the kinetic equation and source terms in the Navier-Stokes equations. These are chosen to obtain maximal agreement with the irreversible thermodynamics of a gas mixture. The structure of the kinetic boundary layer around the sphere is determined from the self-consistent solution of this set of coupled equations with appropriate boundary conditions at the surface of the sphere. The kinetic equation is rewritten as a set of coupled moment equations. A complete set of solutions of these moment equations is constructed by numerical integration inward from the region far away from the droplet, where the background inhomogeneities are small. A technique developed earlier is used to deal with the numerical instability of the moment equations. The solutions obtained for given temperature and pressure profiles in the gas are then combined linearly such that they obey the boundary conditions at the droplet surface; from this solution source terms for the Navier-Stokes equation of the gas are constructed and used to determine improved temperature and pressure profiles for the background gas. For not too large temperature differneces between the droplet and the gas at infinity, self-consistency is reached after a few iterations. The method is applied to the condensation of droplets from a supersaturated vapor as well as to strong evaporation of droplets under the influence of an external heat source, where corrections of up to 40% are obtained.

  15. Quantum kinetic theory. VII. The influence of vapor dynamics on condensate growth

    NASA Astrophysics Data System (ADS)

    Davis, M. J.; Gardiner, C. W.; Ballagh, R. J.

    2000-12-01

    We extend earlier models of the growth of a Bose-Einstein condensate c.w. [Gardiner et al., Phys. Rev. Lett. 79, 1793 (1997); e-print cond-mat/9801027; Phys. Rev. Lett. 81, 5266 (1998)] to include the full dynamical effects of the thermal cloud by numerically solving a modified quantum Boltzmann equation. We determine the regime in which the assumptions of the simple model of Gardiner et al. [Phys. Rev. Lett. 81, 5266 (1998)] are a reasonable approximation, and compare our results with those that were earlier compared with experimental data. We find good agreement with our earlier modeling, except at higher condensate fractions, for which a significant speedup is found. We also investigate the effect of the final temperature on condensate growth, and find that this has a surprisingly small effect. The particular discrepancy between theory and experiment found in our earlier model remains, since the speedup found in these computations does not occur in the parameter regime specified in the experiment.

  16. Light-absorbing aldol condensation products in acidic aerosols: Spectra, kinetics, and contribution to the absorption index

    NASA Astrophysics Data System (ADS)

    Nozière, Barbara; Esteve, William

    The radiative properties of aerosols that are transparent to light in the near-UV and visible, such as sulfate aerosols, can be dramatically modified when mixed with absorbing material such as soot. In a previous work we had shown that the aldol condensation of carbonyl compounds produces light-absorbing compounds in sulfuric acid solutions. In this work we report the spectroscopic and kinetic parameters necessary to estimate the effects of these reactions on the absorption index of sulfuric acid aerosols in the atmosphere. The absorption spectra obtained from the reactions of six different carbonyl compounds (acetaldehyde, acetone, propanal, butanal, 2-butanone, and trifluoroacetone) and their mixtures were compared over 190-1100 nm. The results indicated that most carbonyl compounds should be able to undergo aldol condensation. The products are oligomers absorbing light in the 300-500 nm region where few other compounds absorb, making them important for the radiative properties of aerosols. Kinetic experiments in 96-75 wt% H 2SO 4 solutions and between 273 and 314 K gave an activation energy for the rate constant of formation of the aldol products of acetaldehyde of -(70±15) kJ mol -1 in 96 wt% solution and showed that the effect of acid concentration was exponential. A complete expression for this rate constant is proposed where the absolute value in 96 wt% H 2SO 4 and at 298 K is scaled to the Henry's law coefficient for acetaldehyde and the absorption cross-section for the aldol products assumed in this work. The absorption index of stratospheric sulfuric acid aerosols after a 2-year residence time was estimated to 2×10 -4, optically equivalent to a content of 0.5% of soot and potentially significant for the radiative forcing of these aerosols and for satellite observations in channels where the aldol products absorb.

  17. The carbon-bond mechanism: a condensed kinetic mechanism for photochemical smog

    SciTech Connect

    Whitten, G.Z.; Hog, H.; Killus, J.P.

    1980-06-01

    Efforts to develop a model that can simulate photochemical smog with kinetic mechanisms are discussed. The carbon-bond mechanism is a set of generalized reactions that can be used to model photochemical oxidant formation. The theoretical framework of carbon-bond mechanism is outlined. Chemical variables that are incorporated into the carbon-bond mechanism model are described. Further work that is needed on the carbon-bond mechanism model is considered. (1 diagram, 13 graphs, 30 references, 2 tables)

  18. Two-stream Maxwellian kinetic theory of cloud droplet growth by condensation

    NASA Technical Reports Server (NTRS)

    Robinson, N. F.; Scott, W. T.

    1981-01-01

    A new growth rate formula (NGRF) is developed for the rate of growth of cloud droplets by condensation. The theory used is a modification of the Lees-Shankar theory in which the two-stream Maxwellian distribution function of Lees is used in Maxwell's method of moments to determine the transport of water vapor to and heat away from the droplet. Boundary conditions at the droplet are the usual conditions set in terms of accommodation coefficients, and the solution passes smoothly into diffusion flow in the far region. Comparisons are given between NGRF and the conventional formula showing close agreement (approximately 0.1%) for large radii with significant difference (approximately 5%) for small radii (not greater than 1 micron). Growth times for haze droplets in a Laktionov chamber are computed.

  19. Nonequilibrium fixed points in longitudinally expanding scalar theories: Infrared cascade, Bose condensation, and a challenge for kinetic theory

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Schlichting, S.; Venugopalan, R.

    2015-11-01

    In [Phys. Rev. Lett. 114, 061601 (2015)], we reported on a new universality class for longitudinally expanding systems, encompassing strongly correlated non-Abelian plasmas and N -component self-interacting scalar field theories. Using classical-statistical methods, we showed that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Here we significantly expand on our previous work and delineate two further self-similar regimes. One of these occurs in the deep infrared (IR) regime of very high occupancies, where the nonequilibrium dynamics leads to the formation of a Bose-Einstein condensate. The universal IR scaling exponents and the spectral index characterizing the isotropic IR distributions are described by an effective theory derived from a systematic large-N expansion at next-to-leading order. Remarkably, this effective theory can be cast as a vertex-resummed kinetic theory. The other novel self-similar regime occurs close to the hard physical scale of the theory, and sets in only at later times. We argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks.

  20. Nonequilibrium fixed points in longitudinally expanding scalar theories: Infrared cascade, Bose condensation and a challenge for kinetic theory

    DOE PAGES

    Berges, J.; Schlichting, S.; Boguslavski, K.; ...

    2015-11-05

    In [Phys. Rev. Lett. 114, 061601 (2015)], we reported on a new universality class for longitudinally expanding systems, encompassing strongly correlated non-Abelian plasmas and N-component self-interacting scalar field theories. Using classical-statistical methods, we showed that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Here we significantly expand on our previous work and delineate two further self-similar regimes. One of these occurs in the deep infrared (IR) regime of very high occupancies, where the nonequilibrium dynamics leads to the formation of amore » Bose-Einstein condensate. The universal IR scaling exponents and the spectral index characterizing the isotropic IR distributions are described by an effective theory derived from a systematic large-N expansion at next-to-leading order. Remarkably, this effective theory can be cast as a vertex-resummed kinetic theory. The other novel self-similar regime occurs close to the hard physical scale of the theory, and sets in only at later times. In this study, we argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks.« less

  1. Nonequilibrium fixed points in longitudinally expanding scalar theories: Infrared cascade, Bose condensation and a challenge for kinetic theory

    SciTech Connect

    Berges, J.; Schlichting, S.; Boguslavski, K.; Venugopalan, R.

    2015-11-05

    In [Phys. Rev. Lett. 114, 061601 (2015)], we reported on a new universality class for longitudinally expanding systems, encompassing strongly correlated non-Abelian plasmas and N-component self-interacting scalar field theories. Using classical-statistical methods, we showed that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Here we significantly expand on our previous work and delineate two further self-similar regimes. One of these occurs in the deep infrared (IR) regime of very high occupancies, where the nonequilibrium dynamics leads to the formation of a Bose-Einstein condensate. The universal IR scaling exponents and the spectral index characterizing the isotropic IR distributions are described by an effective theory derived from a systematic large-N expansion at next-to-leading order. Remarkably, this effective theory can be cast as a vertex-resummed kinetic theory. The other novel self-similar regime occurs close to the hard physical scale of the theory, and sets in only at later times. In this study, we argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks.

  2. Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2010-12-01

    This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry-generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we find that FHH adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFFH ~ 2.25 ± 0.75, BFFH ~ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.

  3. Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we found that FHH (Frenkel, Halsey and Hill) adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFHH ∼ 2.25 ± 0.75, BFHH ∼ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on a threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.

  4. A Knoevenagel Initiated Annulation Reaction Using Room Temperature or Microwave Conditions

    ERIC Educational Resources Information Center

    Cook, A. Gilbert

    2007-01-01

    An experiment is presented that has the student execute a Knoevenagel initiated annulation reaction. The reaction can be carried out either through use of a microwave reactor or by allowing the mixture to stand at room temperature for two days. The student is then challenged to identify the reaction product through a guided prelab exercise of the…

  5. A Knoevenagel Initiated Annulation Reaction Using Room Temperature or Microwave Conditions

    ERIC Educational Resources Information Center

    Cook, A. Gilbert

    2007-01-01

    An experiment is presented that has the student execute a Knoevenagel initiated annulation reaction. The reaction can be carried out either through use of a microwave reactor or by allowing the mixture to stand at room temperature for two days. The student is then challenged to identify the reaction product through a guided prelab exercise of the…

  6. A numerical method for integrating the kinetic equations of droplet spectra evolution by condensation/evaporation and by coalescence/breakup processes

    NASA Technical Reports Server (NTRS)

    Emukashvily, I. M.

    1982-01-01

    An extension of the method of moments is developed for the numerical integration of the kinetic equations of droplet spectra evolution by condensation/evaporation and by coalescence/breakup processes. The number density function n sub k (x,t) in each separate droplet packet between droplet mass grid points (x sub k, x sub k+1) is represented by an expansion in orthogonal polynomials with a given weighting function. In this way droplet number concentrations, liquid water contents and other moments in each droplet packet are conserved and the problem of solving the kinetic equations is replaced by one of solving a set of coupled differential equations for the number density function moments. The method is tested against analytic solutions of the corresponding kinetic equations. Numerical results are obtained for different coalescence/breakup and condensation/evaporation kernels and for different initial droplet spectra. Also droplet mass grid intervals, weighting functions, and time steps are varied.

  7. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: Uptake kinetics and condensed-phase products

    NASA Astrophysics Data System (ADS)

    George, I. J.; Vlasenko, A.; Slowik, J. G.; Abbatt, J. P. D.

    2007-05-01

    The kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl) sebacate (BES) particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS) and scanning mobility particle sizer (SMPS) was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of γ0 = 1.26 (±0.04), confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity.

  8. A Lumry-Eyring Nucleated-Polymerization (LENP) Model of Protein Aggregation Kinetics 2. Competing Growth via Condensation- and Chain-Polymerization

    PubMed Central

    Li, Yi; Roberts, Christopher J.

    2009-01-01

    The Lumry-Eyring with nucleated-polymerization (LENP) model from part 1 (Andrews and Roberts, J. Phys. Chem. B 2007, 111, 7897 7913) is expanded to explicitly account for kinetic contributions from aggregate-aggregate condensation polymerization. Experimentally accessible quantities described by the resulting model include monomer mass fraction (m), weight-average molecular weight (Mw), and ratio of Mw to number-average molecular weight (Mn) as a function of time (t). Analysis of global model behavior illustrates ways to identify which steps in the overall aggregation process are kinetically important, based on the qualitative behavior of m, Mw, and Mw/Mn vs. t, and based on whether bulk phase separation or precipitation occurs. For cases in which all aggregates remain soluble, moment equations are provided that permit straightforward numerical regression of experimental data to give separate time scales or inverse rate coefficients for nucleation and for growth by chain and condensation polymerization. Analysis of simulated data indicates that it may be possible to neglect condensation reactions if only early-time data are considered, and also highlights difficulties in conclusively distinguishing between alternative mechanisms of condensation even when kinetics are monitored with both m and wM. PMID:19368365

  9. Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (of low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on a threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  10. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    NASA Astrophysics Data System (ADS)

    Basilevsky, M. V.; Odinokov, A. V.; Titov, S. V.; Mitina, E. A.

    2013-12-01

    postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode/medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the present approach to the Marcus ET theory and to the quantum-statistical reaction rate theory [V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR, Ser. Fiz. Khim. 124, 213 (1959); J. Ulstrup, Charge Transfer in Condensed Media (Springer, Berlin, 1979); M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999)] underlying it is discussed and illustrated by the results of computations for practically important target systems.

  11. Golden rule kinetics of transfer reactions in condensed phase: the microscopic model of electron transfer reactions in disordered solid matrices.

    PubMed

    Basilevsky, M V; Odinokov, A V; Titov, S V; Mitina, E A

    2013-12-21

    postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode∕medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the present approach to the Marcus ET theory and to the quantum-statistical reaction rate theory [V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR, Ser. Fiz. Khim. 124, 213 (1959); J. Ulstrup, Charge Transfer in Condensed Media (Springer, Berlin, 1979); M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999)] underlying it is discussed and illustrated by the results of computations for practically important target systems.

  12. Knoevenagel reaction in water catalyzed by amine supported on silica gel.

    PubMed

    Isobe, Kohei; Hoshi, Takashi; Suzuki, Toshio; Hagiwara, Hisahiro

    2005-01-01

    An environmentally benign and sustainable Knoevenagel reaction of aldehyde with ethyl cyanoacetate has been achieved at ambient temperature in water employing 3-aminopropylated silica gel (NAP) as a catalyst. Wide applicability of the reaction is illustrated by the results that not only arylaldehydes of both electronic characters but also aliphatic aldehydes afforded the products. The reaction condition was so mild that aldehydes having acid- or base-sensitive substituents provided substituted alpha-cyano-alpha, beta-unsaturated esters. The catalyst has been efficiently recycled more than five times without any pre-treatment. Catalyst loading was successfully reduced to 0.0029 mmol% (TON = up to 9,226). This protocol was also applicable to the Knoevenagel reaction of malononitrile in good yields in water.

  13. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  14. Kinetic heterogeneity of F-actin polymers. Further evidence that the elongation reaction may occur through condensation of the actin filaments with small aggregates.

    PubMed Central

    Grazi, E; Magri, E

    1987-01-01

    We have shown that F-actin, polymerized in 50 mM-KCl at 20 degrees C and pH 8.0, can be resolved by centrifugation into two polymer populations, which differ morphologically as well as kinetically. The first population represents about 10% of the overall polymer and is composed of small amorphous aggregates. It rapidly exchanges the bound nucleotide with free ATP in the medium, either directly or through the monomers. The second population is composed of long actin filaments. These are labelled by free ATP in the medium only through condensation with labelled small amorphous aggregates. Images Fig. 1. PMID:3435480

  15. Kinetics and energy states of nanoclusters in the initial stage of homogeneous condensation at high supersaturation degrees

    SciTech Connect

    Vorontsov, A. G.; Gel'chinskii, B. R.; Korenchenko, A. E.

    2012-11-15

    The condensation of metal vapor in an inert gas is studied by the molecular dynamics method. Two condensation regimes are investigated: with maintenance of partial pressure of the metal vapor and with a fixed number of metal atoms in the system. The main focus is the study of the cluster energy distribution over the degrees of freedom and mechanisms of the establishment of thermal equilibrium. It is shown that the internal temperature of a cluster considerably exceeds the buffer gas temperature and the thermal balance is established for a time considerably exceeding the nucleation time. It is found that, when the metal vapor concentration exceeds 0.1 of the argon concentration, the growth of clusters with the highest possible internal energy occurs, the condensation rate being determined only by the rate of heat removal from clusters.

  16. Dropwise condensation

    PubMed Central

    Leach, R. N.; Stevens, F.; Langford, S. C.; Dickinson, J. T.

    2008-01-01

    Dropwise condensation of water vapor from a naturally cooling, hot water reservoir onto a hydrophobic polymer film and a silanized glass slide was studied by direct observation and simulations. The observed drop growth kinetics suggest that smallest drops grow principally by the diffusion of water adsorbed on the substrate to the drop perimeter, while drops larger than 50 μm in diameter grow principally by direct deposition from the vapor onto the drop surface. Drop coalescence plays a critical role in determining the drop size distribution, and stimulates the nucleation of new, small drops on the substrates. Simulations of drop growth incorporating these growth mechanisms provide a good description of the observed drop size distribution. Because of the large role played by coalescence, details of individual drop growth make little difference to the final drop size distribution. The rate of condensation per unit substrate area is especially high for the smallest drops, and may help account for the high heat transfer rates associated with dropwise condensation relative to filmwise condensation in heat exchange applications. PMID:17014129

  17. The kinetics of H2O vapor condensation and evaporation on different types of ice in the range 130-210 K.

    PubMed

    Pratte, Pascal; van den Bergh, Hubert; Rossi, Michel J

    2006-03-09

    The kinetics of condensation (kc) and the evaporation flux (J(ev)) of H2O on ice were studied in the range 130-210 K using pulsed-valve and steady-state techniques in a low-pressure flow reactor. The uptake coefficient gamma was measured for different types of ice, namely, condensed (C), bulk (B), single crystal (SC), snow (S), and cubic ice (K). The negative temperature dependence of gamma for C, B, SC, and S ice reveals a precursor-mediated adsorption/desorption process in agreement with the proposal of Davy and Somorjai.(1) The non-Arrhenius behavior of the rate of condensation, kc, manifests itself in a discontinuity in the range 170-190 K depending on the type of ice and is consistent with the precursor model. The average of the energy of sublimation DeltaH(S) degrees is (12.0 +/- 1.4) kcal/mol for C, B, S, and SC ice and is identical within experimental uncertainty between 136 and 210 K. The same is true for the entropy of sublimation DeltaS(S). In contrast, both gamma and the evaporative flux J(ev) are significantly different for different ices. In the range 130-210 K, J(ev) of H2O ice was significantly smaller than the maximum theoretically allowed value. This corroborates gamma values significantly smaller than unity in that T range. On the basis of the present kinetic parameters, the time to complete evaporation of a small ice particle of radius 1 mum is approximately a factor of 5 larger than that previously thought.

  18. Chitosan as a Renewable Heterogeneous Catalyst for the Knoevenagel Reaction in Ionic Liquid as Green Solvent

    PubMed Central

    Phan, Nam T. S.; Le, Ky K. A.; Nguyen, Thien V.; Le, Nhan T. H.

    2012-01-01

    The combination of chitosan as a renewable heterogeneous catalyst and ionic liquid as a “green” solvent was employed for the Knoevenagel reaction. The chitosan catalyst was characterized by various techniques, including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and elemental analysis. Excellent conversions were achieved under mild conditions without the need for an inert atmosphere. There was no contribution from leached active species, and conversion was only being possible in the presence of the solid catalyst. The chitosan catalyst as well as the ionic liquid solvent could be recovered in essentially pure form after being used in the reaction, and each of them could be reused several times without a significant degradation in efficiency. PMID:24052856

  19. The sum rule for dipolar absorptions and rotational kinetic energy of wate and some dipolar molecules in condensed phases

    NASA Astrophysics Data System (ADS)

    Ikawa, Shun-ichi; Yamazaki, Shuichi; Kimura, Masao

    1981-06-01

    Another form of the sum rule for dipolar absorptions has been derived by means of quantum statistics. The difference between this and usually used form results from a quantum effect on the molecular rotational motion. By the joint use of the two forms, average rotational kinetic energies of water molec in the liquid and solid phases and some dipolar molecules in solutions have been estimated. It has been shown that the average rotational kinetic energ larger than the value expected from the classical equipartition rule, with an increase in the hindering potential for the rotational motion of the mole The dipole moments of water molecules in liquid and solid water have been estimated. These are considerably smaller than the gas-phase value.

  20. The kinetics of the bimolecular A+B --> 0 reaction in condensed matter: Effects of non-equilibrium charge screening

    NASA Astrophysics Data System (ADS)

    Kuzovkov, V. N.; Kotomin, E. A.; von Niessen, W.

    1996-12-01

    The kinetics of the bimolecular A+B→0 reaction between charged reactants is studied in two dimensions, i.e., on a surface. The theory is based on the Kirkwood superposition approximation for three-particle densities and the self-consistent treatment of the electrostatic interactions defined by the non-uniform spatial distribution of similar and dissimilar reactants. Special attention is paid to pattern formation and many-particle effects arising from reaction-induced formation of loose domains containing similar reactants only. It is shown that the critical exponent α characterizing the algebraic concentration decay law, n(t)∝t-α, differs strongly between symmetric (DA=DB) and asymmetric (DA=0) reactant mobilities. This effect is abnormal from the point of view of standard chemical kinetics. It arises directly from the specific spatial distribution in the system as in ``raisins A in a dough B.'' At long reaction times the asymptotics of the interaction potentials is of non-equilibrium type at large relative distances. The accumulation kinetics in the presence of a permanent source is studied. Results of the microscopic formalism are compared with a previous mesoscopic theory.

  1. An Integrated Multi-QSAR Modeling Approach for Designing Knoevenagel-Type Indoles with Enhancing Cytotoxic Profiles.

    PubMed

    Amin, Sk Abdul; Adhikari, Nilanjan; Jha, Tarun; Gayen, Shovanlal

    2017-03-09

    Unconventional Knoevenagel-type indoles have been the topic of interest of many synthetic chemists because of its promising efficacy in different diseases including in cancer. To explore the structural requirements of Knoevenagel-type cytotoxic indoles for higher efficacy. Multi-QSAR modeling (MLR, ANN, SVM, Bayesian classification, HQSAR and Topomer CoMFA) was performed on these analogs. All these modeling techniques were validated individually and interpreted with the experimental SAR observations. Phenyl or p-methoxyphenyl substitution at 2nd position, electron withdrawing groups (such as sulphonyl, cyano etc.) at 3rd position and methoxy substation at 5th position of the indole scaffold may favour cytotoxicity. Eight new indole molecules were predicted from the developed QSAR models. These newly designed compounds may bind to the colchicine binding site of the tubulin protein as suggested by the molecular docking study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Post-modified acid-base bifunctional MIL-101(Cr) for one-pot deacetalization-Knoevenagel reaction

    NASA Astrophysics Data System (ADS)

    Mu, Manman; Yan, Xilong; Li, Yang; Chen, Ligong

    2017-04-01

    A novel and convenient approach for the construction of the bifunctional MIL-101 material bearing sulfonic acid and amino groups was established via the post-synthetic modification. This material possesses high BET surface area (1446 m2/g) and large pore volume (0.77 cm3/g). Significantly, this material could serve as a bifunctional heterogeneous catalyst and was initially employed for one-pot deacetalization-Knoevenagel reaction, exhibiting excellent catalytic performance (yield 99.74%). More importantly, it can be easily recovered and reused at least three times. Finally, our proposed catalytic mechanism indicated that amino and the sulfonic acid groups played a synergistic effect on this one-pot deacetalization-Knoevenagel reaction.

  3. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change

    NASA Astrophysics Data System (ADS)

    George, I. J.; Vlasenko, A.; Slowik, J. G.; Broekhuizen, K.; Abbatt, J. P. D.

    2007-08-01

    The kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl) sebacate (BES) particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS) and scanning mobility particle sizer (SMPS) was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of γ0=1.3 (±0.4), confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity.

  4. Non-enolisable Knoevenagel condensate appended Schiff bases-metal (II) complexes: Spectral characteristics, DNA-binding and nuclease activities

    NASA Astrophysics Data System (ADS)

    Gubendran, Ammavasi; Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Mitu, Liviu; Athappan, Periyakaruppan; Rajesh, Jegathalaprathaban

    2017-06-01

    New Schiff base complexes [Cu(L1)Cl] (1), [Ni(L1)Cl] (2), [Zn(L1)Cl] (3), and [Fe(L2)H2OCl] (4) {L1 = (4E)-3-(2-hydroxybenzylidene)-4-(2-hydroxyphenylimino)pentan-2-one, L2 = 2,2‧-(1E,1‧E)-(3-(2-hydroxybenzylidene)-pentane-2,4-diylidene)bis(azan-1-yl-1 idene)diphenol} have been synthesized and characterized by elemental analysis, UV-Vis, IR, FAB-mass, EPR, spectral studies and electrochemical studies, the ligands L1 &L2 were characterized by 1H and 13C NMR spectra. Complex 1 show a visible spectral d-d band near 600 nm and display cyclic voltammetric quasireversible response for the Cu(II)/Cu(I) couple vs Ag/AgCl in DMSO. The EPR spectrum of 1 show g‖ > g⊥ suggesting a square planar geometry around copper with dx2 - y2 as the ground state. The mass spectral results have confirmed the proposed structure for complexes 1-4. DNA binding properties of these complexes 1-4 have been investigated by absorption titrations, cyclic voltammetric studies and circular dichroism studies. On titration with DNA, the complexes 1-4 show hypochromism at the MLCT band (13-31%) with a red shift of 1-8 nm in the electronic spectrum and positive shift of voltammetric E1/2 in the CV studies are in favour of intercalative binding. CD spectra of 1 showed an increase in molar ellipticity (θ278) of the positive band with a minor red shift indicating the transition of B-form of DNA to A like form. DNA cleavage studies of complexes 1 and 4 with pUC18 DNA were studied by gel electrophoresis and complex 4 cleaves supercoiled pUC18 DNA in an oxidative manner in the presence of H2O2 and on photo irradiation at 312 nm.

  5. Organometallic NLO Polymers. 3. Copolymerization of Bridged Bis(ferrocenyl) and Bis(cyanoacetate) Monomers Via the Knoevenagel Condensation

    DTIC Science & Technology

    1992-05-10

    Organometallics 1990,9, 853. (b) Wright, M. E.; Toplikar, F_. G. in "Advances in New Materials , Contemporary Topics in Polymer Sicence ,", Salamone, J. C., Riffle...Lindsay and coworkers recently presented the synthesis of a new class of main-chain organic NLO polymers.4 For this new class of NLO materials the polymer...backbone will be aligned into a accordion shape.5 To date, this approach has not been used in the area of organometallic polymeric NLO materials .6

  6. Cloud Condensation Nuclei Activity, Droplet Growth Kinetics and Hygroscopicity of Biogenic and Anthropogenic Secondary Organic Aerosol (SOA)

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Buchholz, Angela; Kortner, Birthe; Schlag, Patrick; Rubach, Florian; Hendrik, Fucks; Kiendler-Scharr, Astrid; Tillmann, Ralf; Wahner, Andreas; Hallquist, Mattias; Flores, Michel; Rudich, Yinon; Glasius, Marianne; Kourtchev, Ivan; Kalberer, Markus; Mentel, Thomas

    2015-04-01

    Recent field data and model analysis show that secondary organic aerosol (SOA) formation is enhanced under anthropogenic influences (de Gouw et al. 2005, Spracklen et al. 2011). The interaction of biogenic VOCs (BVOCs) with anthropogenic emissions such as anthropogenic VOCs (AVOCs) could change the particle formation yields and the aerosol properties, as was recently demonstrated (Emanuelsson et al., 2013; Flores et al., 2014). However, the effect of the interaction of BVOCs with AVOCs on cloud condensation nuclei (CCN) activity and hygroscopicity of SOA remains elusive. Characterizing such changes is necessary in order to assess the indirect radiative forcing of biogenic aerosols that form under anthropogenic influence. In this study, we investigated the influence of AVOCs on CCN activation and hygroscopic growth of BSOA. SOA was formed from photooxidation of monoterpenes and aromatics as representatives of BVOCs and AVOCs, respectively. The hygroscopicity and CCN activation of BSOA were studied and compared with that of anthropogenic SOA (ASOA) and the mixture of ASOA and BSOA (ABSOA). We found that ASOA had a significantly higher hygroscopicity than BSOA at similar OH dose, which is attributed to a higher oxidation level of ASOA. While the ASOA fraction had an enhancing effect on the hygroscopicity of ABSOA compared to BSOA, the hygroscopicity of ABSOA cannot be explained by a linear combination of the pure ASOA and BSOA systems, indicating potentially additional non-linear effects such as oligomerization. However, in contrast to hygroscopicity, ASOA showed similar CCN activity as BSOA, in spite of its higher oxidation level. The ASOA fraction did not enhance the CCN activity of ABSOA. The discrepancy between hygroscopicity and CCN activity is discussed. In addition, BSOA, ABSOA and ASOA formed similar droplet size with ammonium sulfate in CCN at a given supersaturation, indicating none of these aerosols had a delay in the water uptake in the supersaturated

  7. Condensation of chondrules

    NASA Technical Reports Server (NTRS)

    Blander, M.

    1983-01-01

    Analysis of current experimental results concerned with the kinetic constraints on chondrule formation showed that the major physical properties of chondrules could have been produced by direct condensation of metastable liquid silicates droplets from a hot gas in the primordial nebula. It is argued that such a condensation process would have to be followed by crystallization, accretion, and partial comminution of the droplets. The chemical mechanisms driving this process are described, including: nucleation constraints on comminution and crystallization; slow transformations and chemical reactions in chain silicates; and the slow diffusion of ions. It is shown that the physical mechanisms for chondrule condensation are applicable to a broad spectrum of chondrule sources.

  8. Invited papers presented to a workshop on thermodynamics and kinetics of dust formation in the space medium. [condensation, nucleation, and interstellar dust

    NASA Technical Reports Server (NTRS)

    Robertson, P. C.

    1978-01-01

    Abstracts of 25 papers relating to condensation processes in the early solar system are presented. Special emphasis is given to the transition of an initial vapor phase in the space medium, the characterization of condensation environments, and condensation processes in the space medium. The question of whether some fraction of the solar system solids (particularly exemplified by meteoritic solids) may be interstellar grains that gathered in the region of the proto-sun, rather than being products of local condensation is addressed.

  9. Effects of pulling forces, osmotic pressure, condensing agents and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study.

    PubMed

    Petrov, Anton S; Douglas, Scott S; Harvey, Stephen C

    2013-03-20

    In this work, we report on simulations of double-stranded DNA (dsDNA) ejection from bacteriophage φ29 into a bacterial cell. The ejection was studied with a coarse-grained model, in which viral dsDNA was represented by beads on a torsion-less string. The bacteriophage's capsid and the bacterial cell were defined by sets of spherical constraints. To account for the effects of the viscous medium inside the bacterial cell, the simulations were carried out using a Langevin dynamics protocol. Our simplest simulations (involving constant viscosity and no external biasing forces) produced results compatible with the push-pull model of DNA ejection, with an ejection rate significantly higher in the first part of ejection than in the latter parts. Additionally, we performed more complicated simulations, in which we included additional factors such as external forces, osmotic pressure, condensing agents and ejection-dependent viscosity. The effects of these factors (independently and in combination) on the thermodynamics and kinetics of DNA ejection were studied. We found that, in general, the dependence of ejection forces and ejection rates on the amount of DNA ejected becomes more complex if the ejection is modeled with a broader, more realistic set of parameters and influences (such as variation in the solvent's viscosity and the application of an external force). However, certain combinations of factors and numerical parameters led to the opposition of some ejection-driving and ejection-inhibiting influences, ultimately causing an apparent simplification of the ejection profiles.

  10. Effects of pulling forces, osmotic pressure, condensing agents and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study

    NASA Astrophysics Data System (ADS)

    Petrov, Anton S.; Douglas, Scott S.; Harvey, Stephen C.

    2013-03-01

    In this work, we report on simulations of double-stranded DNA (dsDNA) ejection from bacteriophage ϕ29 into a bacterial cell. The ejection was studied with a coarse-grained model, in which viral dsDNA was represented by beads on a torsion-less string. The bacteriophage’s capsid and the bacterial cell were defined by sets of spherical constraints. To account for the effects of the viscous medium inside the bacterial cell, the simulations were carried out using a Langevin dynamics protocol. Our simplest simulations (involving constant viscosity and no external biasing forces) produced results compatible with the push-pull model of DNA ejection, with an ejection rate significantly higher in the first part of ejection than in the latter parts. Additionally, we performed more complicated simulations, in which we included additional factors such as external forces, osmotic pressure, condensing agents and ejection-dependent viscosity. The effects of these factors (independently and in combination) on the thermodynamics and kinetics of DNA ejection were studied. We found that, in general, the dependence of ejection forces and ejection rates on the amount of DNA ejected becomes more complex if the ejection is modeled with a broader, more realistic set of parameters and influences (such as variation in the solvent’s viscosity and the application of an external force). However, certain combinations of factors and numerical parameters led to the opposition of some ejection-driving and ejection-inhibiting influences, ultimately causing an apparent simplification of the ejection profiles.

  11. Effects of pulling forces, osmotic pressure, condensing agents, and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study

    PubMed Central

    Petrov, Anton S.; Douglas, Scott S.; Harvey, Stephen C.

    2013-01-01

    In the current work, we report on simulations of double-stranded DNA (dsDNA) ejection from bacteriophage φ29 into a bacterial cell. The ejection was studied with a coarse-grained model, in which viral dsDNA was represented by beads on a torsionless string. The bacteriophage’s capsid and the bacterial cell were defined by sets of spherical constraints. To account for the effects of the viscous medium inside the bacterial cell, the simulations were carried out using a Langevin Dynamics protocol. Our simplest simulations (involving constant viscosity and no external biasing forces) produced results compatible with the push-pull model of DNA ejection, with an ejection rate significantly higher in the first part of ejection than in the latter parts. Additionally, we performed more complicated simulations, in which we included additional factors such as external forces, osmotic pressure, condensing agents, and ejection-dependent viscosity. The effects of these factors (independently and in combination) on the thermodynamics and kinetics of DNA ejection were studied. We found that, in general, the dependency of ejection forces and ejection rates on the amount of DNA ejected becomes more complex if the ejection is modeled with a broader, more realistic set of parameters and influences (such as variation in the solvent’s viscosity and the application of an external force). However, certain combinations of factors and numerical parameters led to the opposition of some ejection-driving and ejection-inhibiting influences, ultimately causing an apparent simplification of the ejection profiles. PMID:23399864

  12. Kinetic appearance of first-order gas-liquid expanded and liquid expanded-liquid condensed phase transitions below the triple point.

    PubMed

    Hossain, Md Mufazzal; Suzuki, Toshiyuki; Iimura, Ken-ichi; Kato, Teiji

    2006-01-31

    Phase diagram of Gibbs monolayers of mixtures containing n-hexadecyl phosphate (n-HDP) and L-arginine (L-arg) at a molar ratio of 1:2 has been constructed by measuring surface-pressure-time (pi-t) isotherms with film balance and by observing monolayer morphology with Brewster angle microscopy (BAM). This phase diagram shows a triple point for gas (G), liquid expanded (LE), and liquid condensed (LC) phases at around 6.7 degrees C. Above this triple point, a first-order G-LE phase transition occurring at 0 surface pressure is followed by another first-order LE-LC phase transition taking place at a certain higher surface pressure that depends upon temperature. The BAM observation supports these results. Below the triple point, the pi-t measurements show only one first-order phase transition that should be G-LC. All of these findings are in agreement with the general phase diagram of the spread monolayers. However, the BAM observation at a temperature below the triple point shows that the thermodynamically allowed G-LC phase transition is, in fact, a combination of the G-LE and LE-LC phase transitions. The latter two-phase transitions are separated by time and not by the surface pressure, indicating that the G-LC phase transition is kinetically separated into these two-phase transitions. The position of the LE phase below the triple point in the phase diagram is along the phase boundary between the G and LC phases.

  13. Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation-Condensation Reactions.

    PubMed

    Wang, Jing-Si; Jin, Fa-Zheng; Ma, Hui-Chao; Li, Xiao-Bo; Liu, Ming-Yang; Kan, Jing-Lan; Chen, Gong-Jun; Dong, Yu-Bin

    2016-07-05

    A new composite Au@Cu(II)-MOF catalyst has been synthesized via solution impregnation and full characterized by HRTEM, SEM-EDS, XRD, gas adsorption-desorption, XPS, and ICP analysis. It has been shown here that the Cu(II)-framework can be a useful platform to stabilize and support gold nanoparticles (Au NPs). The obtained Au@Cu(II)-MOF exhibits a bifunctional catalytic behavior and is able to promote selective aerobic benzyl alcohol oxidation-Knoevenagel condensation in a stepwise way.

  14. CONDENSATION CAN

    DOEpatents

    Booth, E.T. Jr.; Pontius, R.B.; Jacobsohn, B.A.; Slade, C.B.

    1962-03-01

    An apparatus is designed for condensing a vapor to a solid at relatively low back pressures. The apparatus comprises a closed condensing chamber, a vapor inlet tube extending to the central region of the chamber, a co-axial tubular shield surrounding the inlet tube, means for heating the inlet tube at a point outside the condensing chamber, and means for refrigeratirg the said chamber. (AEC)

  15. Catalytic performance of Metal-Organic-Frameworks vs. extra-large pore zeolite UTL in condensation reactions

    PubMed Central

    Shamzhy, Mariya; Opanasenko, Maksym; Shvets, Oleksiy; Čejka, Jiří

    2013-01-01

    Catalytic behavior of isomorphously substituted B-, Al-, Ga-, and Fe-containing extra-large pore UTL zeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensation of 1-naphthol with ethylacetoacetate, and Prins reaction of β-pinene with formaldehyde and compared with large-pore aluminosilicate zeolite beta and representative Metal-Organic-Frameworks Cu3(BTC)2 and Fe(BTC). The yield of the target product over the investigated catalysts in Knoevenagel condensation increases in the following sequence: (Al)beta < (Al)UTL < (Ga)UTL < (Fe)UTL < Fe(BTC) < (B)UTL < Cu3(BTC)2 being mainly related to the improving selectivity with decreasing strength of active sites of the individual catalysts. The catalytic performance of Fe(BTC), containing the highest concentration of Lewis acid sites of the appropriate strength is superior over large-pore zeolite (Al)beta and B-, Al-, Ga-, Fe-substituted extra-large pore zeolites UTL in Prins reaction of β-pinene with formaldehyde and Pechmann condensation of 1-naphthol with ethylacetoacetate. PMID:24790940

  16. Catalytic performance of Metal-Organic-Frameworks vs. extra-large pore zeolite UTL in condensation reactions.

    PubMed

    Shamzhy, Mariya; Opanasenko, Maksym; Shvets, Oleksiy; Cejka, Jiří

    2013-01-01

    Catalytic behavior of isomorphously substituted B-, Al-, Ga-, and Fe-containing extra-large pore UTL zeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensation of 1-naphthol with ethylacetoacetate, and Prins reaction of β-pinene with formaldehyde and compared with large-pore aluminosilicate zeolite beta and representative Metal-Organic-Frameworks Cu3(BTC)2 and Fe(BTC). The yield of the target product over the investigated catalysts in Knoevenagel condensation increases in the following sequence: (Al)beta < (Al)UTL < (Ga)UTL < (Fe)UTL < Fe(BTC) < (B)UTL < Cu3(BTC)2 being mainly related to the improving selectivity with decreasing strength of active sites of the individual catalysts. The catalytic performance of Fe(BTC), containing the highest concentration of Lewis acid sites of the appropriate strength is superior over large-pore zeolite (Al)beta and B-, Al-, Ga-, Fe-substituted extra-large pore zeolites UTL in Prins reaction of β-pinene with formaldehyde and Pechmann condensation of 1-naphthol with ethylacetoacetate.

  17. Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction

    NASA Astrophysics Data System (ADS)

    Zhong, Lin; Anand, Chokkalingam; Lakhi, Kripal Singh; Lawrence, Geoffrey; Vinu, Ajayan

    2015-08-01

    Recently, mesoporous carbon nitride (MCN) has aroused extensive interest for its potential applications in organocatalysis, photo- and electrochemistry and CO2 capture. However, further surface functionalization of MCN for advanced nanomaterials and catalysis still remains very challenging. Here we show that acidic carboxyl groups can be smoothly introduced onto the surface of well-ordered MCN without annihilation between the introduced acid groups and MCN’s inherent basic groups through a facile UV light oxidation method. The functionalization generates a novel bifunctional nanocatalyst which offers an enzyme-like catalytic performance in the one-pot deacetalization-Knoevenagel reaction of benzaldehyde dimethylacetal and malononitrile with 100% conversion and more than 99% selectivity due to the cooperative catalysis between the acid and base groups separated on the surface of the catalyst. The results provide a general method to create multifunctional nanomaterials and open new opportunities for the development of high efficient catalyst for green organic synthesis.

  18. Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction.

    PubMed

    Zhong, Lin; Anand, Chokkalingam; Lakhi, Kripal Singh; Lawrence, Geoffrey; Vinu, Ajayan

    2015-08-05

    Recently, mesoporous carbon nitride (MCN) has aroused extensive interest for its potential applications in organocatalysis, photo- and electrochemistry and CO2 capture. However, further surface functionalization of MCN for advanced nanomaterials and catalysis still remains very challenging. Here we show that acidic carboxyl groups can be smoothly introduced onto the surface of well-ordered MCN without annihilation between the introduced acid groups and MCN's inherent basic groups through a facile UV light oxidation method. The functionalization generates a novel bifunctional nanocatalyst which offers an enzyme-like catalytic performance in the one-pot deacetalization-Knoevenagel reaction of benzaldehyde dimethylacetal and malononitrile with 100% conversion and more than 99% selectivity due to the cooperative catalysis between the acid and base groups separated on the surface of the catalyst. The results provide a general method to create multifunctional nanomaterials and open new opportunities for the development of high efficient catalyst for green organic synthesis.

  19. A domino Knoevenagel hetero-Diels-Alder reaction for the synthesis of polycyclic chromene derivatives and evaluation of their cytotoxicity.

    PubMed

    Reddy, B V Subba; Divya, Baddula; Swain, Manisha; Rao, T Prabhakar; Yadav, J S; Vishnu Vardhan, M V P S

    2012-03-01

    A novel octahydrochromeno[4,3-a]xanthen-1(2H)-one derivatives has been prepared using 10mol% dl-proline in ethanol via a domino Knoevenagel hetero-Diels-Alder reaction of alkene-tethered chromene-3-carboxaldehyde with cyclic 1,3-diketones. This is not only the first example on the preparation of highly diastereoselective pentacyclic chromene derivatives from alkene appended chromene-3-carboxaldehyde in one-pot process at ambient temperature but also preliminary evaluation of the cytotoxic activity of these chromene derivatives. Some of these compounds are found to exhibit potent cytotoxicity against two carcinoma cell lines A549 and B-16. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Cu/Fe-Cocatalyzed Formation of β-Ketophosphonates by a Domino Knoevenagel-Decarboxylation-Oxyphosphorylation Sequence from Aromatic Aldehydes and H-Phosphonates.

    PubMed

    Zhou, Mingxin; Zhou, Yao; Song, Qiuling

    2015-07-20

    A domino Knoevenagel-decarboxylation-alkene difunctionalization sequence has been developed for the conversion of benzaldehydes into β-ketophosphonates, catalyzed by a cooperative Cu/Fe system, whereby C-P and C=O bonds are formed simultaneously in a one-pot reaction. The reaction proceeds in good yields and with a broad substrate scope and environmentally benign conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Condensation polyimides

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1989-01-01

    Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.

  2. Highly efficient and recyclable basic mesoporous zeolite catalyzed condensation, hydroxylation, and cycloaddition reactions.

    PubMed

    Sarmah, Bhaskar; Satpati, Biswarup; Srivastava, Rajendra

    2017-05-01

    Crystalline mesoporous ZSM-5 zeolite was prepared in the presence of 1,4-diazabicyclo[2.2.2]octane derived multi-cationic structure directing agent. The calcined form of the mesoprous zeolite was treated with NH4OH to obtain basic mesoporous ZSM-5. Catalyst was characterized by the complementary combination of X-ray diffraction, N2-adsorption, electron microscopes, and temperature programme desorption techniques. Catalytic activity of the basic mesoporous ZSM-5 was systematically assessed using Knoevenagel condensation reaction for the synthesis a wide range of substituted styrene. Applications of the catalyst were investigated in the benzamide hydroxylation for the synthesis of carbinolamides and one-pot, multi-component condensation reaction for the synthesis of naphthopyrans. Finally, the catalyst was evaluated in the cycloaddition of CO2 to epoxide for the synthesis of cyclic carbonates. Recycling study shows that no significant decrease in the catalytic activity was observed after five recycles.

  3. Wave Condensation

    NASA Astrophysics Data System (ADS)

    Rica, Sergio

    In this article I will review some results, in collaboration with Colm Connaughton, Christophe Josserand, Antonio Picozzi, and Yves Pomeau [Phys. Rev. Lett. 95, 263901 (2005)], on the large-scale condensation of classical waves by considering the defocusing nonlinear Schrödinger equation as a representative model.

  4. Condensation from a vapor-gas mixture

    NASA Astrophysics Data System (ADS)

    Kryukov, A. P.; Levashov, V. Yu.; Pavlyukevich, N. V.

    2010-09-01

    A review of the possible approaches to calculation of vapor condensation from a binary vapor-gas mixture on a surface is presented. Emphasis is paid to justification of the application of molecular-kinetic theory methods for calculation of applied problems. Quantitative estimates for the parameters of the existence in principle of the regimes of one-dimensional stationary condensation are given.

  5. Gravity at a Quantum Condensate

    NASA Astrophysics Data System (ADS)

    Atanasov, Victor

    2017-07-01

    Provided a quantum superconducting condensate is allowed to occupy a curved hyper-plane of space-time, a geometric potential from the kinetic term arises. An energy conservation relation involving the geometric field at every material point in the superconductor can be demonstrated. The induced three-dimensional scalar curvature is directly related to the wavefunction/order parameter of the quantum condensate thus pointing the way to a possible experimental procedure to artificially induce curvature of space-time via change in the electric/probability current density.

  6. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    SciTech Connect

    Xu, Ling; Wang, Chunhua; Guan, Jingqi

    2014-05-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH{sub 2} containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH{sub 2} with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH{sub 2} within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH{sub 2} shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction.

  7. Synthesis of magnetically recyclable ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts and their catalytic performance for Knoevenagel reaction

    SciTech Connect

    Li, Qingyuan; Jiang, Sai; Ji, Shengfu Ammar, Muhammad; Zhang, Qingmin; Yan, Junlei

    2015-03-15

    Novel magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized by encapsulating magnetic SiO{sub 2}@Fe{sub 3}O{sub 4} nanoparticles into ZIF-8 through in situ method. The structures of the catalysts were characterized by TEM, SEM, XRD, FT-IR, VSM, N{sub 2} adsorption/desorption and CO{sub 2}-TPD technology. The catalytic activity and recovery properties of the catalysts for the Knoevenagel reaction of p-chlorobenzaldehyde with malononitrile were evaluated. The results showed that the magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts had the larger surface areas, the suitable superparamagnetism, and good catalytic activity for Knoevenagel reaction. The conversion of p-chlorobenzaldehyde can reach ~98% and the selectivity of the production can reach ~99% over35.8%ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} (MZC-5) catalyst under the reaction condition of 25 °C and 4 h. The magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts also had good substrates adaptation. After reaction, the catalyst can be easily separated from the reaction mixture by an external magnet. The recovery catalyst can be reused five times and the conversion of p-chlorobenzaldehyde can be kept over 90%. - Graphical abstract: Novel magnetically recyclable ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized by encapsulating magnetic SiO{sub 2}@Fe{sub 3}O{sub 4} nanoparticles into ZIF-8 and the as-synthesized catalysts exhibited a good catalytic activity for the Knoevenagel reaction. - Highlights: • A series of novel magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized. • The catalysts had the larger surface areas and the suitable superparamagnetism. • The catalysts exhibited good catalytic activity for the Knoevenagel reaction. • After reaction the catalyst can be easily separated by an external magnet. • The recovery catalyst can be reused five times and can keep its catalytic activity.

  8. Synthesis of magnetically recyclable ZIF-8@SiO2@Fe3O4 catalysts and their catalytic performance for Knoevenagel reaction

    NASA Astrophysics Data System (ADS)

    Li, Qingyuan; Jiang, Sai; Ji, Shengfu; Ammar, Muhammad; Zhang, Qingmin; Yan, Junlei

    2015-03-01

    Novel magnetic ZIF-8@SiO2@Fe3O4 catalysts were synthesized by encapsulating magnetic SiO2@Fe3O4 nanoparticles into ZIF-8 through in situ method. The structures of the catalysts were characterized by TEM, SEM, XRD, FT-IR, VSM, N2 adsorption/desorption and CO2-TPD technology. The catalytic activity and recovery properties of the catalysts for the Knoevenagel reaction of p-chlorobenzaldehyde with malononitrile were evaluated. The results showed that the magnetic ZIF-8@SiO2@Fe3O4 catalysts had the larger surface areas, the suitable superparamagnetism, and good catalytic activity for Knoevenagel reaction. The conversion of p-chlorobenzaldehyde can reach ~98% and the selectivity of the production can reach ~99% over35.8%ZIF-8@SiO2@Fe3O4 (MZC-5) catalyst under the reaction condition of 25 °C and 4 h. The magnetic ZIF-8@SiO2@Fe3O4 catalysts also had good substrates adaptation. After reaction, the catalyst can be easily separated from the reaction mixture by an external magnet. The recovery catalyst can be reused five times and the conversion of p-chlorobenzaldehyde can be kept over 90%.

  9. Direct olefination of benzaldehydes into hydroxy functionalized oligo (p-phenylenevinylene)s via Pd-catalyzed heterodomino Knoevenagel-decarboxylation-Heck sequence and its application for fluoride sensing pi-conjugated units.

    PubMed

    Sharma, Abhishek; Sharma, Naina; Kumar, Rakesh; Shard, Amit; Sinha, Arun K

    2010-05-21

    A new approach for one step olefination of benzaldehydes into hydroxy functionalized OPVs is achieved through the first domino Knoevenagel-decarboxylation-Heck sequence using a single catalyst system. The methodology also led to new oxygen based OPV scaffolds capable of selective and visible fluoride recognition in organic or aqueous medium.

  10. Condensation model for the ESBWR passive condensers

    SciTech Connect

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-07-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  11. The Complete Mechanism of an Aldol Condensation.

    PubMed

    Perrin, Charles L; Chang, Kuei-Lin

    2016-07-01

    Although aldol condensation is one of the most important organic reactions, capable of forming new C-C bonds, its mechanism has never been fully established. We now conclude that the rate-limiting step in the base-catalyzed aldol condensation of benzaldehydes with acetophenones, to produce chalcones, is the final loss of hydroxide and formation of the C═C bond. This conclusion is based on a study of the partitioning ratios of the intermediate ketols and on the solvent kinetic isotope effects, whereby the condensations are faster in D2O than in H2O, regardless of substitution.

  12. Acidic Condensation of BODIPYs with Aldehydes: A Quick and Versatile Route to Alkenyl-BODIPYs and C(sp(3) )-Connected DYEmers.

    PubMed

    Ahrens, Johannes; Cordes, Birte; Wicht, Richard; Wolfram, Benedikt; Bröring, Martin

    2016-07-18

    The condensation of aldehydes with BODIPY (boron dipyrrin) luminophores was investigated. Formaldehyde can be used to connect two BODIPYs at each of the three pyrrolic C positions (α-, β-, and β'-positions) in a quick and highly selective manner, yielding new DYEmers (di- and oligomeric BODIPY derivatives) with varied photophysical properties. Benzaldehydes form DYEmers only at the β- and the β'-positions. For aliphatic aldehydes the DYEmer formation competes with the elimination of water from a proposed alcohol intermediate, leading to the formation of α- and β-alkenyl-BODIPYs. 2-Phenylacetaldehyde and similar precursors exclusively yield elimination products. These acid-mediated transformations are valuable alternatives to the well-established, base-promoted Knoevenagel condensation protocol that is typically employed in the preparation of BODIPYs with near infrared (NIR)-shifted absorptions.

  13. Condensate Mixtures and Tunneling

    SciTech Connect

    Timmermans, E.

    1998-09-14

    The experimental study of condensate mixtures is a particularly exciting application of the recently developed atomic-trap Bose-Einstein condensate (BEC) technology: such multiple condensates represent the first laboratory systems of distinguishable boson superfluid mixtures. In addition, as the authors point out in this paper, the possibility of inter-condensate tunneling greatly enhances the richness of the condensate mixture physics. Not only does tunneling give rise to the oscillating particle currents between condensates of different chemical potentials, such as those studied extensively in the condensed matter Josephson junction experiments, it also affects the near-equilibrium dynamics and stability of the condensate mixtures. In particular, the stabilizing influence of tunneling with respect to spatial separation (phase separation) could be of considerable practical importance to the atomic trap systems. Furthermore, the creation of mixtures of atomic and molecular condensates could introduce a novel type of tunneling process, involving the conversion of a pair of atomic condensate bosons into a single molecular condensate boson. The static description of condensate mixtures with such type of pair tunneling suggests the possibility of observing dilute condensates with the liquid-like property of a self-determined density.

  14. Condensates in Jovian Atmospheres

    NASA Technical Reports Server (NTRS)

    West, R.

    1999-01-01

    Thermochemical equilibrium theory which starts with temperature/pressure profiles, compositional information and thermodynamic data for condensable species in the jovian planet atmospheres predicts layers of condensate clouds in the upper troposphere.

  15. Leptogenesis via Higgs condensate relaxation

    NASA Astrophysics Data System (ADS)

    Yang, Louis; Pearce, Lauren; Kusenko, Alexander

    2015-08-01

    An epoch of Higgs relaxation may occur in the early universe during or immediately following postinflationary reheating. It has recently been pointed out that leptogenesis may occur in minimal extensions of the standard model during this epoch [A. Kusenko, L. Pearce, and L. Yang, Phys. Rev. Lett. 114, 061302 (2015)]. We analyze Higgs relaxation taking into account the effects of perturbative and nonperturbative decays of the Higgs condensate, and we present a detailed derivation of the relevant kinetic equations and of the relevant particle interaction cross sections. We identify the parameter space in which a sufficiently large asymmetry is generated.

  16. Boundary conditions on the vapor liquid interface at strong condensation

    NASA Astrophysics Data System (ADS)

    Kryukov, A. P.; Levashov, V. Yu.

    2016-07-01

    The problem of the formulation of boundary conditions on the vapor-liquid interface is considered. The different approaches to this problem and their difficulties are discussed. Usually, a quasi-equilibrium scheme is used. At sufficiently large deviations from thermodynamic equilibrium, a molecular kinetics approach should be used for the description of the vapor flow at condensation. The formulation of the boundary conditions at the vapor liquid interface to solve the Boltzmann kinetic equation for the distribution of molecules by velocity is a sophisticated problem. It appears that molecular dynamics simulation (MDS) can be used to provide this solution at the interface. The specific problems occur in the realization of MDS on large time and space scales. Some of these problems, and a hierarchy of continuum, kinetic and molecular dynamic time scales, are discussed in the paper. A description of strong condensation at the kinetic level is presented for the steady one-dimensional problem. A formula is provided for the calculation of the limiting condensation coefficient. It is shown that as the condensation coefficient approaches the limiting value, the vapor pressure rises significantly. The results of the corresponding calculations for the Mach number and temperature at different vapor flows are demonstrated. As a result of the application of the molecular kinetics method and molecular dynamics simulation to the problem of the determination of argon condensation coefficients in the range of temperatures of vapor and liquid ratio 1.0-4.0, it is concluded that the condensation coefficient is close to unity.

  17. Disequilibrium condensation environments in space - A frontier in thermodynamics

    NASA Technical Reports Server (NTRS)

    De, B. R.

    1979-01-01

    The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.

  18. Disequilibrium condensation environments in space - A frontier in thermodynamics

    NASA Technical Reports Server (NTRS)

    De, B. R.

    1979-01-01

    The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.

  19. EPRI condensate polisher guidelines

    SciTech Connect

    Larkin, B.A.; Webb, L.C.; Sawochka, S.G.; Crits, G.J.; Pocock, F.J.; Wirth, L.

    1995-01-01

    Cycle chemistry is one of the most important contributors to the loss of availability of generating units. Condensate polishing can significantly improve cycle chemistry by improving cycle water quality and minimizing the transport of contaminants in the power cycle. The EPRI-funded project described in this paper developed comprehensive guidelines for condensate polishing based upon information gathered from utility surveys, equipment vendors, and resin suppliers. Existing literature was also surveyed for pertinent input. Comprehensive guidelines which outline guidance for design, operation, maintenance, surveillance, management, and retrofitting of condensate polishing systems were developed. Economics of condensate polishing were evaluated and a roadmap for economic evaluation for utilities to follow was produced.

  20. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  1. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  2. Comparative analysis of condensation models within DSMC

    SciTech Connect

    Bykov, Nikolay Y.; Gorbachev, Yuriy E.

    2014-12-09

    Two condensation process modeling approaches within DSMC methodology are compared. The first is based on the modified nucleation theory which correctly describes small clusters and the second on the kinetic theory and considers not only supercritical clusters, but clusters of all sizes including dimers. The relaxation of the size distribution function is calculated for the spatially homogeneous cases, where the monomer parameters are kept constant. As an example the vapour of Cu atoms is considered and importance of taking into account of the internal energies of clusters is shown. Peculiarities of the classical and kinetic approaches are discussed herein.

  3. SLAC synchronous condenser

    SciTech Connect

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90{degrees} in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC`s utility power is improved with the addition of the condenser. The inertia of the condenser`s 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ``scrubbing`` the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations.

  4. Sedimentary condensation and authigenesis

    NASA Astrophysics Data System (ADS)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin (< 1m) beds, which were accumulated during extremely long time periods (> 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and

  5. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  6. Tachyon condensation due to domain-wall annihilation in Bose-Einstein condensates.

    PubMed

    Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto

    2012-12-14

    We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into how the extra dimensions influence subspatial phase transition in higher-dimensional space.

  7. Polycondensation kinetics of furfuryl alcohol solutions

    NASA Astrophysics Data System (ADS)

    Zherebtsov, D. A.; Galimov, D. M.; Zagorul'ko, O. V.; Frolova, E. V.; Bol'shakov, O. I.; Zakharov, V. G.; Mikhailov, G. G.

    2016-01-01

    Changes in the viscosity, electrical conductivity, monomer concentration, and the size of growing molecules of polycondensed furfuryl alcohol are studied in solutions containing triethylene glycol and isooctylphenyldecaethylene glycol. The effect the solution compositions have on the condensation kinetics is considered.

  8. Sub-Equimolar Hydrolysis and Condensation of Organophosphates

    DOE PAGES

    Alam, Todd M.; Kinnan, Mark K.; Wilson, Brendan W.; ...

    2016-07-16

    We characterized the in-situ hydrolysis and subsequent condensation reaction of the chemical agent simulant diethyl chlorophosphate (DECP) by high-resolution 31P NMR spectroscopy following the addition of water in sub-equimolar concentrations. Moreover, the identification and quantification of the multiple pyrophosphate and larger polyphosphate chemical species formed through a series of self-condensation reactions are reported. Finally, the DECP hydrolysis kinetics and distribution of breakdown species was strongly influenced by the water concentration and reaction temperature.

  9. Electric-Field-Enhanced Jumping-Droplet Condensation

    NASA Astrophysics Data System (ADS)

    Miljkovic, Nenad; Preston, Daniel; Enright, Ryan; Limia, Alexander; Wang, Evelyn

    2013-11-01

    When condensed droplets coalesce on a superhydrophobic surface, the resulting droplet can jump due to the conversion of surface energy into kinetic energy. This frequent out-of-plane droplet jumping has the potential to enhance condensation heat and mass transfer. In this work, we demonstrated that these jumping droplets accumulate positive charge that can be used to further increase condensation heat transfer via electric fields. We studied droplet jumping dynamics on silanized nanostructured copper oxide surfaces. By characterizing the droplet trajectories under various applied external electric fields (0 - 50 V/cm), we show that condensation on superhydrophobic surfaces results in a buildup of negative surface charge (OH-) due to dissociated water ion adsorption on the superhydrophobic coating. Consequently, the opposite charge (H3O +) accumulates on the coalesced jumping droplet. Using this knowledge, we demonstrate electric-field-enhanced jumping droplet condensation whereby an external electric field opposes the droplet vapor flow entrainment towards the condensing surface to increase the droplet removal rate and overall surface heat transfer by 100% when compared to state-of-the-art dropwise condensing surfaces. This work not only shows significant condensation heat transfer enhancement through the passive charging of condensed droplets, but promises a low cost approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification.

  10. Key condenser failure mechanisms

    SciTech Connect

    Buecker, B.

    2009-04-15

    Eight practical lessons highlight many of the factors that can influence condenser tube corrosion at coal-fired utilities and the effects contaminant in-leakage can have on steam generating units. 1 ref., 4 figs.

  11. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  12. Molecular equilibrium with condensation

    NASA Astrophysics Data System (ADS)

    Sharp, C. M.; Huebner, W. F.

    1990-02-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated.

  13. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  14. Some aspects of condensation in clouds. [interstellar grain formation

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1979-01-01

    Several general features of nucleation characteristics of low-density cosmic clouds are discussed. These are: (1) tendency for metastable condensates to form; (2) nonoccurrence of nominal refractory molecules in the gas; (3) a strong temperature dependence of condensation at relatively low temperatures; and (4) significant vibrational disequilibrium in cosmic clouds. These support previous analyses which indicate that equilibrium calculations have restricted applicability. A kinetic treatment of condensation is required for cosmic grains, and the possibility of formulating such an analysis is pointed out.

  15. Analytical approach to relaxation dynamics of condensed Bose gases

    SciTech Connect

    Escobedo, Miguel; Pezzotti, Federica; Valle, Manuel

    2011-04-15

    Research Highlights: > Time evolution of perturbations from equilibrium in a condensed Bose gas is studied. > Just below the critical temperature the perturbations vanish algebraically. > Anisotropic perturbations are unstable. > At very low temperature perturbations decay exponentially. - Abstract: The temporal evolution of a perturbation of the equilibrium distribution of a condensed Bose gas is investigated using the kinetic equation which describes collision between condensate and noncondensate atoms. The dynamics is studied in the low momentum limit where an analytical treatment is feasible. Explicit results are given for the behavior at large times in different temperature regimes.

  16. Aerosol kinetic code "AERFORM": Model, validation and simulation results

    NASA Astrophysics Data System (ADS)

    Gainullin, K. G.; Golubev, A. I.; Petrov, A. M.; Piskunov, V. N.

    2016-06-01

    The aerosol kinetic code "AERFORM" is modified to simulate droplet and ice particle formation in mixed clouds. The splitting method is used to calculate condensation and coagulation simultaneously. The method is calibrated with analytic solutions of kinetic equations. Condensation kinetic model is based on cloud particle growth equation, mass and heat balance equations. The coagulation kinetic model includes Brownian, turbulent and precipitation effects. The real values are used for condensation and coagulation growth of water droplets and ice particles. The model and the simulation results for two full-scale cloud experiments are presented. The simulation model and code may be used autonomously or as an element of another code.

  17. Steam condensate leakage

    SciTech Connect

    Midlock, E.B.; Thuot, J.R.

    1996-07-01

    Argonne National Laboratory (ANL) is a multi-program research and development center owned by the United States Department of Energy and operated by the University of Chicago. The majority of the buildings on site use steam for heating and other purposes. Steam is generated from liquid water at the site`s central boiler house and distributed around the site by means of large pipes both above and below the ground. Steam comes into each building where it is converted to liquid condensate, giving off heat which can be used by the building. The condensate is then pumped back to the boiler house where it will be reheated to steam again. The process is continual but is not perfectly efficient. A substantial amount of condensate is being lost somewhere on site. The lost condensate has both economic and environmental significance. To compensate for lost condensate, makeup water must be added to the returned condensate at the boiler house. The water cost itself will become significant in the future when ANL begins purchasing Lake Michigan water. In addition to the water cost, there is also the cost of chemically treating the water to remove impurities, and there is the cost of energy required to heat the water, as it enters the boiler house 1000 F colder than the condensate return. It has been estimated that only approximately 60% of ANL`s steam is being returned as condensate, thus 40% is being wasted. This is quite costly to ANL and will become significantly more costly in the future when ANL begins purchasing water from Lake Michigan. This study locates where condensate loss is occurring and shows how much money would be saved by repairing the areas of loss. Shortly after completion of the study, one of the major areas of loss was repaired. This paper discusses the basis for the study, the areas where losses are occurring, the potential savings of repairing the losses, and a hypothesis as to where the unaccounted for loss is occurring.

  18. Orientation Dependence of Jumping Droplet Condensation

    NASA Astrophysics Data System (ADS)

    Berrier, Austin; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    On nanostructured superhydrophobic surfaces, microscopic condensate exhibits out-of-plane jumping that minimizes the average droplet size for maximal phase-change heat transfer. This jumping-droplet phenomenon occurs independently of gravity and is due to surface energy being partially converted to kinetic energy upon coalescence events. Although the initial departure of the jumping droplets is independent of gravity, the subsequent trajectories exhibit a dependence upon the orientation of the substrate. The drop size distribution of jumping-droplet condensation growing on a superhydrophobic substrate was characterized for both horizontal and vertical surface orientations. With the horizontal orientation, jumping condensate returns to the substrate by gravity. While this can result in chain reactions with other droplets to trigger further jumping events, eventually the rebounding droplets become too large to jump and are stuck on the surface. In contrast, droplets jumping off a vertically oriented surface do not return to the substrate. For this reason, the maximum droplet diameters during condensation growth were found to be significantly larger on the horizontally oriented superhydrophobic surface than on the vertical orientation.

  19. Vortices in condensate mixtures

    SciTech Connect

    Josserand, Christophe; Pomeau, Yves

    2005-08-15

    In a condensate made of two different atomic molecular species, Onsager's quantization condition implies that around a vortex, the velocity field cannot be the same for the two species. We explore some simple consequences of this observation. Thus, if the two condensates are in slow relative translation one over the other, the composite vortices are carried at a velocity that is a fraction of the single-species velocity. This property is valid for attractive interaction and below a critical velocity which corresponds to a saddle-node bifurcation.

  20. Keeping condensers clean

    SciTech Connect

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  1. Formation of Protein Condensed Phases: Nucleation Mechanisms.

    PubMed

    Vekilov, Peter G

    2012-04-04

    Proteins in solution form a number of condensed phases. Even omitting the amyloid structures formed after partial protein unfolding, these phases include crystals, polymers, and other solid aggregates, as well as dense liquids and gels. Some of these condensed phases underlie pathological conditions, others play a crucial role in the biological function of the respective protein or are an essential part of its laboratory or industrial processing. In this review, we summarize the fundamentals and recent findings on the kinetics of nucleation of dense liquid droplets and crystals. We define the transition from nucleation to spinodal decomposition for these two phase transitions. We review the two-step mechanism of protein crystal nucleation, in which mesoscopic metastable protein clusters serve as precursors to the ordered crystal nuclei. The concepts and mechanisms reviewed here provide powerful tools for control of the nucleation process by varying the solution thermodynamic parameters.

  2. Condensation of Silicon Carbide in Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Deneault, Ethan

    2017-07-01

    We present a kinetic model of the formation of silicon carbide (SiC) in the expanding and cooling outflows of Type II supernova ejecta. We assume an ejecta cloud composed of a mixture of Si, C, and O in the gas phase, with the initial temperature, density, and composition as tunable parameters. The condensation of diatomic SiC into (SiC)2 molecules provides the abundance of nucleation sites for the eventual condensation of larger SiC solids and dust grains. We find that the abundance of these nucleation sites, formed after the first 1700 days after the explosion, is strongly governed by the C/Si ratio, the density of the gas, and the rate of cooling in the ejecta.

  3. Enantioselective total synthesis of (+)-galbulin via organocatalytic domino Michael-Michael-aldol condensation.

    PubMed

    Hong, Bor-Cherng; Hsu, Che-Sheng; Lee, Gene-Hsiang

    2012-02-28

    A concise and practical enantioselective synthesis of (+)-galbulin has been achieved using organocatalytic domino Michael-Michael-aldol condensation and organocatalytic kinetic resolution as the key steps. This journal is © The Royal Society of Chemistry 2012

  4. Kinetics on cocondensation of phenol and urea

    Treesearch

    Bunichiro Tomita; Yasunori Yoshida; Chung-Yun. Hse

    1993-01-01

    The chemical kinetics on cocondensation between methylolphenols and urea under acidic condition were investigated using 2- and 4-hydroxybenzyl alcohols as well as 2,4,6-trimethylolphenol as model compounds. The reactivity of the cocondensation were compared between o- and p-methylol groups. Moreover, the kinetics on self-condensations of monomethylolphenols and...

  5. Simple Simulations of DNA Condensation

    SciTech Connect

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  6. Simple simulations of DNA condensation.

    PubMed Central

    Stevens, M J

    2001-01-01

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored coulombic structure is a charge-ordered state. Condensation is a generic phenomenon and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong. PMID:11159388

  7. Detail of Bright Angel stone vault, containing condenser, Hoffman condensation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of Bright Angel stone vault, containing condenser, Hoffman condensation pump, Jennings vacuum heating pump, and misc. pipes and valves. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  8. Modular invariant gaugino condensation

    SciTech Connect

    Gaillard, M.K.

    1991-05-09

    The construction of effective supergravity lagrangians for gaugino condensation is reviewed and recent results are presented that are consistent with modular invariance and yield a positive definite potential of the noscale type. Possible implications for phenomenology are briefly discussed. 29 refs.

  9. Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Marder, Michael P.

    2000-01-01

    A modern, unified treatment of condensed matter physics This new work presents for the first time in decades a sweeping review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching "not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, electron interference in nanometer-sized channels, and the quantum Hall effect." Six major areas are covered---atomic structure, electronic structure, mechanical properties, electron transport, optical properties, and magnetism. But rather than defining the field in terms of particular materials, the author focuses on the way condensed matter physicists approach physical problems, combining phenomenology and microscopic arguments with information from experiments. For graduate students and professionals, researchers and engineers, applied mathematicians and materials scientists, Condensed Matter Physics provides: * An exciting collection of new topics from the past two decades. * A thorough treatment of classic topics, including band theory, transport theory, and semiconductor physics. * Over 300 figures, incorporating many images from experiments. * Frequent comparison of theory and experiment, both when they agree and when problems are still unsolved. * More than 50 tables of data and a detailed index. * Ample end-of-chapter problems, including computational exercises. * Over 1000 references, both recent and historically significant.

  10. Condensate removal device

    DOEpatents

    Maddox, James W.; Berger, David D.

    1984-01-01

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  11. Coupled exciton-photon Bose condensate: Non-Markovian character of the open system

    NASA Astrophysics Data System (ADS)

    Elistratov, A. A.; Lozovik, Yu. E.

    2017-09-01

    For an nonequilibrium system, in the framework of the Keldysh formalism we explore the kinetics of the polariton condensate in a quantum well embedded in an optical microcavity taking into account pumping and leakage of excitons and photons. We make ab initio derivation of the quantum kinetic equations for the condensates and for reservoirs. We show that the real open polariton system has the non-Markovian character at times comparable to the Rabi oscillation period.

  12. Energy relaxation in one-dimensional polariton condensates

    SciTech Connect

    Wouters, M.; Liew, T. C. H.; Savona, V.

    2010-12-15

    We study the kinetics of polariton condensation accounting for the condensation process as well as the energy relaxation of condensed polaritons due to their scattering with phonons and excitons. By assuming a Boltzmann kinetic description of the scattering process, we show that intracondensate relaxation can be accounted for by an additional time-dependent term in the Gross-Pitaevskii equation. As an example, we apply the formalism to the experimental results recently obtained in polariton microwires [E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, Nat. Phys. 6, 860 (2010)]. In the presence of a local nonresonant optical pump, a dynamic balance between spatially dependent relaxation and particle loss develops and excites a series of modes, roughly equally spaced in energy. Upon comparison, excellent agreement is found with the experimental data.

  13. Experimental evidence of condensation-driven airflow

    NASA Astrophysics Data System (ADS)

    Bunyard, P.; Hodnett, M.; Poveda, G.; Burgos Salcedo, J. D.; Peña, C.

    2015-10-01

    The dominant "convection" model of atmospheric circulation is based on the premise that hot air expands and rises, to be replaced by colder air, thereby creating horizontal surface winds. A recent theory put forward by Makarieva and Gorshkov (2007, 2013) maintains that the primary motive force of atmospheric circulation derives from the intense condensation and sharp pressure reduction that is associated with regions where a high rate of evapotranspiration from natural closed-canopy forests provides the "fuel" for cloud formation. The net result of the "biotic pump" theory is that moist air flows from ocean to land, drawn in by the pressure changes associated with a high rate of condensation. To test the physics underpinning the biotic pump theory, namely that condensation of water vapour, at a sufficiently high rate, results in an uni-directional airflow, a 5 m tall experimental apparatus was designed and built, in which a 20 m3 body of atmospheric air is enclosed inside an annular 14 m long space (a "square donut") around which it can circulate freely, allowing for rotary air flows. One vertical side of the apparatus contains some 17 m of copper refrigeration coils, which cause condensation. The apparatus contains a series of sensors measuring temperature, humidity and barometric pressure every five seconds, and air flow every second. The laws of Newtonian physics are used in calculating the rate of condensation inside the apparatus. The results of more than one hundred experiments show a highly significant correlation, with r2 > 0.9, of airflow and the rate of condensation. The rotary air flows created appear to be consistent both in direction and velocity with the biotic pump hypothesis, the critical factor being the rate change in the partial pressure of water vapour in the enclosed body of atmospheric air. Air density changes, in terms of kinetic energy, are found to be orders of magnitude smaller than the kinetic energy of partial pressure change. The

  14. Homogeneous cosmologies as group field theory condensates

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2014-06-01

    We give a general procedure, in the group field theory (GFT) formalism for quantum gravity, for constructing states that describe macroscopic, spatially homogeneous universes. These states are close to coherent (condensate) states used in the description of Bose-Einstein condensates. The condition on such states to be (approximate) solutions to the quantum equations of motion of GFT is used to extract an effective dynamics for homogeneous cosmologies directly from the underlying quantum theory. The resulting description in general gives nonlinear and nonlocal equations for the `condensate wavefunction' which are analogous to the Gross-Pitaevskii equation in Bose-Einstein condensates. We show the general form of the effective equations for current quantum gravity models, as well as some concrete examples. We identify conditions under which the dynamics becomes linear, admitting an interpretation as a quantum-cosmological Wheeler-DeWitt equation, and give its semiclassical (WKB) approximation in the case of a kinetic term that includes a Laplace-Beltrami operator. For isotropic states, this approximation reproduces the classical Friedmann equation in vacuum with positive spatial curvature. We show how the formalism can be consistently extended from Riemannian signature to Lorentzian signature models, and discuss the addition of matter fields, obtaining the correct coupling of a massless scalar in the Friedmann equation from the most natural extension of the GFT action. We also outline the procedure for extending our condensate states to include cosmological perturbations. Our results form the basis of a general programme for extracting effective cosmological dynamics directly from a microscopic non-perturbative theory of quantum gravity.

  15. Nanostructure-induced DNA condensation

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Llizo, Axel; Wang, Chen; Xu, Guiying; Yang, Yanlian

    2013-08-01

    The control of the DNA condensation process is essential for compaction of DNA in chromatin, as well as for biological applications such as nonviral gene therapy. This review endeavours to reflect the progress of investigations on DNA condensation effects of nanostructure-based condensing agents (such as nanoparticles, nanotubes, cationic polymer and peptide agents) observed by using atomic force microscopy (AFM) and other techniques. The environmental effects on structural characteristics of nanostructure-induced DNA condensates are also discussed.

  16. Influence of organic films on the evaporation and condensation of water in aerosol.

    PubMed

    Davies, James F; Miles, Rachael E H; Haddrell, Allen E; Reid, Jonathan P

    2013-05-28

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [C(n)H(2n+1)OH], with the value decreasing from 2.4 × 10(-3) to 1.7 × 10(-5) as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid.

  17. Influence of organic films on the evaporation and condensation of water in aerosol

    PubMed Central

    Davies, James F.; Miles, Rachael E. H.; Haddrell, Allen E.; Reid, Jonathan P.

    2013-01-01

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [CnH(2n+1)OH], with the value decreasing from 2.4 × 10−3 to 1.7 × 10−5 as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid. PMID:23674675

  18. Formation of activated biomolecules by condensation on mineral surfaces--a comparison of peptide bond formation and phosphate condensation.

    PubMed

    Georgelin, Thomas; Jaber, Maguy; Bazzi, Houssein; Lambert, Jean-François

    2013-10-01

    Many studies have reported condensation reactions of prebiotic molecules, such as the formation of peptide bonds between amino acids, to occur to some degree on mineral surfaces. We have studied several such reactions on the same divided silica. When drying steps are applied, the equilibria of peptide formation from glycine, and polyphosphate formation from monophosphate, are displaced to the right because these reactions are dehydrating condensations, accompanied by the emission of water. In contrast, the equilibrium of AMP dismutation is not significantly favored by drying. The silica surface plays little role (if any) in the thermochemistry of the condensation reactions, but is does play a significant kinetic role by acting as a catalyst, lowering the condensation temperatures with respect to bulk solids. Of course, the surface also catalyzes the inverse hydrolysis reactions.

  19. Recovery of condensate water quality in power generator's surface condenser

    NASA Astrophysics Data System (ADS)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  20. Gravity triggered neutrino condensates

    SciTech Connect

    Barenboim, Gabriela

    2010-11-01

    In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.

  1. Feshbach-Einstein Condensates

    SciTech Connect

    Rousseau, V. G.; Denteneer, P. J. H.

    2009-01-09

    We investigate the phase diagram of a two-species Bose-Hubbard model describing atoms and molecules on a lattice, interacting via a Feshbach resonance. We identify a region where the system exhibits an exotic super-Mott phase and regions with phases characterized by atomic and/or molecular condensates. Our approach is based on a recently developed exact quantum Monte Carlo algorithm: the stochastic Green function algorithm with tunable directionality. We confirm some of the results predicted by mean-field studies, but we also find disagreement with these studies. In particular, we find a phase with an atomic but no molecular condensate, which is missing in all mean-field phase diagrams.

  2. Gravitational vacuum condensate stars

    PubMed Central

    Mazur, Pawel O.; Mottola, Emil

    2004-01-01

    A new final state of gravitational collapse is proposed. By extending the concept of Bose–Einstein condensation to gravitational systems, a cold, dark, compact object with an interior de Sitter condensate pv = -ρv and an exterior Schwarzschild geometry of arbitrary total mass M is constructed. These regions are separated by a shell with a small but finite proper thickness ℓ of fluid with equation of state p = +ρ, replacing both the Schwarzschild and de Sitter classical horizons. The new solution has no singularities, no event horizons, and a global time. Its entropy is maximized under small fluctuations and is given by the standard hydrodynamic entropy of the thin shell, which is of the order kBℓMc/, instead of the Bekenstein–Hawking entropy formula, SBH = 4πkBGM2/c. Hence, unlike black holes, the new solution is thermodynamically stable and has no information paradox. PMID:15210982

  3. Bose-Einstein Condensation

    SciTech Connect

    El-Sherbini, Th.M.

    2005-03-17

    This article gives a brief review of Bose-Einstein condensation. It is an exotic quantum phenomenon that was observed in dilute atomic gases for the first time in 1995. It exhibits a new state of matter in which a group of atoms behaves as a single particle. Experiments on this form of matter are relevant to many different areas of physics- from atomic clocks and quantum computing to super fluidity, superconductivity and quantum phase transition.

  4. Sidestream condensate polishing for PWRs

    SciTech Connect

    Shor, S.W.W.; Yim, S.L.; Rios, J.; Liu, J.

    1986-06-01

    Condensate polishers are used in power plant condensate system to remove both particulate matter and ionized corrodents. Their conventional location is just downstream of the hotwell pumps (condensate pumps). Most polisher installations have enough flow capacity to polish 100% of the condensate. This inline configuration has some disadvantage, including a flow that varies with unit load and tends to disturb the polisher beds and reduce their effectiveness, and a potential for interrupting flow to the feedwater pumps. An alternate arrangement where water is extracted from either the condenser or the condensate system, polished and returned to the system, has been used in a few plants. Three different ways of doing this have been used: divide the condenser hotwell into two parts, one of which receives condensate from the tube bundles and the other of which is sheltered. Take unpolished condensate from the first part, purify it and return it to the other part from which the condensate pumps take suction; take unpolished condensate from one end of a divided header on the suction side of the hotwell pumps and after polishing it return it to the other end; and take unpolished condensate from a header on the discharge side of the condensate pumps, purify it and return it to the condensate system a short distance downstream. The three variants are analyzed in this report. It is concluded that the variant where the connections are on the discharge side of the condensate pumps is the most desirable for retrofitting, in all cases being far easier to retrofit than an inline polisher. In many cases it will be most desirable for new construction.

  5. Asymmetric condensed dark matter

    SciTech Connect

    Aguirre, Anthony; Diez-Tejedor, Alberto E-mail: alberto.diez@fisica.ugto.mx

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  6. Asymmetric condensed dark matter

    NASA Astrophysics Data System (ADS)

    Aguirre, Anthony; Diez-Tejedor, Alberto

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  7. Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Levrat, Jacques; Butté, Raphaël; Feltin, Eric; Carlin, Jean-François; Grandjean, Nicolas; Solnyshkov, Dmitry; Malpuech, Guillaume

    2010-03-01

    The evolution of the polariton condensation threshold (Pthr) under incoherent optical pumping is investigated both theoretically and experimentally over a wide range of temperatures (4-340 K) and exciton-cavity photon detunings (-120-0meV) in a multiple quantum-well GaN-based microcavity. The condensation phase diagram of these bosonic quasiparticles is first theoretically described within the framework of Bose-Einstein condensation of polaritons in the thermodynamic limit. Then a qualitative picture of cavity polariton relaxation kinetics including the impact of detuning and temperature is given before introducing a modeling of cavity polariton relaxation kinetics with semiclassical Boltzmann equations. The results of the theoretical modeling are finally compared with systematic measurements of Pthr . At low temperature and negative detunings, the polariton gas is far from thermal equilibrium and the condensation threshold is governed by the efficiency of the relaxation kinetics of the particles. Conversely, at high temperature and for less negative detunings, the relaxation kinetics is efficient enough to allow the achievement of a thermal polariton distribution function with a critical density for condensation given by the thermodynamic theory of Bose-Einstein condensation. For temperatures ranging between ˜140 and 340 K, an optimum detuning is found experimentally, where the condensation threshold power is minimized. At high temperatures, polariton detrapping effects from the bottom of the trap formed in k∥ space by the lower polariton branch are found to play a supplementary role among the processes governing Pthr .

  8. Gravitational collapse of Bose-Einstein condensate dark matter halos

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu

    2014-04-01

    We study the mechanisms of the gravitational collapse of the Bose-Einstein condensate dark matter halos, described by the zero temperature time-dependent nonlinear Schrödinger equation (the Gross-Pitaevskii equation), with repulsive interparticle interactions. By using a variational approach, and by choosing an appropriate trial wave function, we reformulate the Gross-Pitaevskii equation with spherical symmetry as Newton's equation of motion for a particle in an effective potential, which is determined by the zero-point kinetic energy, the gravitational energy, and the particles interaction energy, respectively. The velocity of the condensate is proportional to the radial distance, with a time-dependent proportionality function. The equation of motion of the collapsing dark matter condensate is studied by using both analytical and numerical methods. The collapse of the condensate ends with the formation of a stable configuration, corresponding to the minimum of the effective potential. The radius and the mass of the resulting dark matter object are obtained, as well as the collapse time of the condensate. The numerical values of these global astrophysical quantities, characterizing condensed dark matter systems, strongly depend on the two parameters describing the condensate, the mass of the dark matter particle, and of the scattering length, respectively. The stability of the condensate under small perturbations is also studied, and the oscillations frequency of the halo is obtained. Hence these results show that the gravitational collapse of the condensed dark matter halos can lead to the formation of stable astrophysical systems with both galactic and stellar sizes.

  9. Effect of spontaneous condensation on condensation heat transfer in the presence of non-condensable gases

    SciTech Connect

    Karl, J.; Hein, D.

    1999-07-01

    The presence of non condensable gases like nitrogen or air reduces the condensation heat transfer during condensation of binary steam mixtures. The non condensable gas accumulates in the vapor phase boundary layer and causes a high heat transfer resistance. Especially with high pressures and low water temperatures spontaneous condensation reduces heat transfer additionally. Fog forms within the steam-nitrogen boundary layer and the steam condenses on the water droplets of the fog layer. The convective mass transfer to the cooling water interface diminishes. Raman spectroscopy and film theory are used to quantify this effect locally. The calculation of overall condensation rates in large steam nitrogen systems requires to use three dimensional CFD codes. The paper presents equations to predict fog formation in the boundary layer which can be implemented in CFD codes.

  10. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  11. Nanocarbon condensation in detonation

    PubMed Central

    Bastea, Sorin

    2017-01-01

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions. PMID:28176827

  12. Nanocarbon condensation in detonation

    NASA Astrophysics Data System (ADS)

    Bastea, Sorin

    2017-02-01

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions.

  13. Nanocarbon condensation in detonation.

    PubMed

    Bastea, Sorin

    2017-02-08

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions.

  14. Expansion in condensates

    SciTech Connect

    Chakrabarti, J.; Sajjad Zahir, M.

    1985-03-01

    We show that the product of local current operators in quantum chromodynamics (QCD), when expanded in terms of condensates, such as psi-barpsi, G/sup a//sub munu/ G/sup a//sub munu/, psi-barGAMMA psipsi-barGAMMApsi, f/sub a/bcG/sup a//sub munu/G/sup b//sub nualpha/ x G/sup c//sub alphamu/, etc., yields a series in Planck's constant. This, however, provides no hint that the higher terms in such an expansion may be less significant.

  15. Confinement Contains Condensates

    SciTech Connect

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  16. Nanocarbon condensation in detonation

    DOE PAGES

    Bastea, Sorin

    2017-02-08

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactivemore » conditions.« less

  17. Condensed Plasmas under Microgravity

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Thomas, H. M.; Konopka, U.; Rothermel, H.; Zuzic, M.; Ivlev, A.; Goree, J.; Rogers, Rick (Technical Monitor)

    1999-01-01

    Experiments under microgravity conditions were carried out to study 'condensed' (liquid and crystalline) states of a colloidal plasma (ions, electrons, and charged microspheres). Systems with approximately 10(exp 6) microspheres were produced. The observed systems represent new forms of matter--quasineutral, self-organized plasmas--the properties of which are largely unexplored. In contrast to laboratory measurements, the systems under microgravity are clearly three dimensional (as expected); they exhibit stable vortex flows, sometimes adjacent to crystalline regions, and a central 'void,' free of microspheres.

  18. The Condensate Wave Function of a Trapped Atomic Gas

    PubMed Central

    Dalfovo, F.; Pitaevskii, L.; Stringari, S.

    1996-01-01

    We discuss various properties of the ground state of a Bose-condensed dilute gas confined by an external potential. We devote particular attention to the role played by the interaction in determining the kinetic energy of the system and the aspect ratio of the velocity distribution. The structure of the wave function near the classical turning point is discussed and the drawback of the Thomas-Fermi approximation is explicitly pointed out. We consider also states with quantized vorticity and calculate the critical angular velocity for the production of vortices. The presence of vortex states is found to increases the stability of the condensate in the case of attractive interactions. PMID:27805106

  19. Two-step condensation of the charged Bose gas.

    PubMed

    Delgado, R L; Bargueño, P; Sols, F

    2012-09-01

    The condensation of the spinless ideal charged Bose gas in the presence of a magnetic field is revisited. The conventional approach is extended to include the macroscopic occupation of excited kinetic states lying in the lowest Landau level, which plays an essential role in the case of large magnetic fields. In that limit, signatures of two diffuse phase transitions (crossovers) appear in the specific heat. In particular, at temperatures lower than the cyclotron frequency, the system behaves as an effectively one-dimensional free boson system, with the specific heat equal to 1/2Nk(B) and a gradual condensation at lower temperatures.

  20. Cosmic curvature and condensation

    NASA Technical Reports Server (NTRS)

    Harwit, Martin

    1992-01-01

    It is shown that the universe may consist of a patchwork of domains with different Riemann curvature constants k = 0, +/-1. Features of a phase transition in which flat space breaks up in a transition 2k0 - k(-) + k(+) with initial scale factors R(-) = R(+) are postulated and explored. It is shown that such a transition is energetically permitted, has the equivalent of a Curie temperature, and can lead in a natural way to the formation of voids and galaxies. It is predicted that, if the ambient universe on average is well fitted by a purely k(-) space, with only occasional domains of k(+) containing galaxies, a density parameter of (A(z sub c + 1)) super -1 should be expected, where z sub c represents the redshift of the earliest objects to have condensed, and A takes on values ranging from about 5 to 3. Present observations of quasars would suggest a density of about 0.03 or 0.05, respectively, but it could be lower if earlier condensation took place.

  1. Topology and Fermionic Condensate

    NASA Astrophysics Data System (ADS)

    Kulikov, I.; Pronin, P.

    The purpose of this paper is to investigate an influence of a space-time topology on the formation of fermionic condensate in the model with four-fermion interaction ()2. The value for the space-time with topology of R1 × R1 × S1 is found. Moreover a relation of the value of fermionic condensate to a periodic length is studied. In this connection the possibility of a relation of the topologic deposits to structure of hadrons is discussed.Translated AbstractTopologie und FermikondensatEs wird der Einfluß einer Raum-Zeittopologie auf die Bildung des Fermikondensats in einem Modell mit Vierfermionenwechselwirkung ()2 untersucht. Für eine Raum-Zeit mit der Topologie R1 × R2 × S1 werden die Parameter gegeben. Weiterhin wird die Relation der Größe des Fermikondensats zu einer periodischen Länge untersucht. In diesem Zusammenhang wird die Verbindung des topologischen Depots zur Struktur der Hadronen diskutiert.

  2. Pion condensation in holographic QCD

    SciTech Connect

    Albrecht, Dylan; Erlich, Joshua

    2010-11-01

    We study pion condensation at zero temperature in a hard-wall holographic model of hadrons with isospin chemical potential. We find that the transition from the hadronic phase to the pion condensate phase is first order except in a certain limit of model parameters. Our analysis suggests that immediately across the phase boundary the condensate acts as a stiff medium approaching the Zel'dovich limit of equal energy density and pressure.

  3. Growth dynamics of a Bose-Einstein condensate in a dimple trap without cooling

    SciTech Connect

    Garrett, Michael C.; Davis, Matthew J.; Ratnapala, Adrian; Ooijen, Eikbert D. van; Vale, Christopher J.; Weegink, Kristian; Schnelle, Sebastian K.; Vainio, Otto; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina

    2011-01-15

    We study the formation of a Bose-Einstein condensate in a cigar-shaped three-dimensional harmonic trap, induced by the controlled addition of an attractive ''dimple'' potential along the weak axis. In this manner we are able to induce condensation without cooling due to a localized increase in the phase-space density. We perform a quantitative analysis of the thermodynamic transformation in both the sudden and adiabatic regimes for a range of dimple widths and depths. We find good agreement with equilibrium calculations based on self-consistent semiclassical Hartree-Fock theory describing the condensate and thermal cloud. We observe that there is an optimal dimple depth that results in a maximum in the condensate fraction. We also study the nonequilibrium dynamics of condensate formation in the sudden turn-on regime, finding good agreement for the observed time dependence of the condensate fraction with calculations based on quantum kinetic theory.

  4. Ferminoic physics in dipolariton condensates.

    PubMed

    Su, Jung-Jung; Kim, Na Young; Yamamoto, Yoshihisa; Macdonald, Allan H

    2014-03-21

    An exciton polariton is an extremely light bosonic quasiparticle that is composed of an exciton and a photon. We report on a theoretical study of exciton-polariton condensation in a system with tunnel-coupled quantum wells. Because their excitons can carry an electric dipole moment, these systems have been referred to as dipolariton condensates. We use a fermionic mean-field theory that can address quantum well and other internal exciton degrees of freedom to describe the new physics present in dipolariton condensates. We find that the role of underlying fermonic degrees of freedom is enhanced and predict that metallic condensates can occur at high carrier densities.

  5. Condensation phase transitions in ferrofluids.

    PubMed

    Iskakova, L Yu; Smelchakova, G A; Zubarev, A Yu

    2009-01-01

    Experiments show that under suitable conditions magnetic particles in ferrofluids and other polar suspensions undergo condensation phase transitions and form dense liquidlike or solidlike phases. The problem of fundamental features and scenarios of the phase transitions is one of the central problems of the physics of these systems. This work deals with the theoretical study of scenarios of condensation phase transitions in ferrofluids, consisting of identical magnetic particles. Our results show that, unlike the classical condensation phase transitions, the appearance of the linear chains precedes the magnetic particle bulk condensation. The effect of the chains on the diagrams of the equilibrium phase transitions is studied.

  6. Condensation heat transfer in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chow, L. C.; Parish, R. C.

    1986-01-01

    In the present treatment of the condensation heat transfer process in a microgravity environment, two mechanisms for condensate removal are analyzed in light of two problems: (1) film condensation on a flat, porous plate, with condensate being removed by wall suction; and (2) the analytical prediction of the heat transfer coefficient of condensing annular flows, where the condensate film is driven by vapor shear. Both suction and vapor shear can effectively drain the condensate, ensuring continuous operation in microgravity.

  7. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q″ > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes.

  8. Microgravity condensing heat exchanger

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  9. Condenser for photolithography system

    DOEpatents

    Sweatt, William C.

    2004-03-02

    A condenser for a photolithography system, in which a mask image from a mask is projected onto a wafer through a camera having an entrance pupil, includes a source of propagating radiation, a first mirror illuminated by the radiation, a mirror array illuminated by the radiation reflected from said first mirror, and a second mirror illuminated by the radiation reflected from the array. The mirror array includes a plurality of micromirrors. Each of the micromirrors is selectively actuatable independently of each other. The first mirror and the second mirror are disposed such that the source is imaged onto a plane of the mask and the mirror array is imaged into the entrance pupil of the camera.

  10. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  11. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  12. Kinetics of degenerate atomic gases

    NASA Astrophysics Data System (ADS)

    Geist, W.; You, L.; Kennedy, T. A. B.

    1998-05-01

    Using the Uehling-Uhlenbeck, or quantum Boltzmann equation, we discuss the kinetics and evaporative cooling of quantum degenerate gases confined in magnetic traps with cylindrical symmetry. We study the full nonergodic time evolution and compare with results obtained by making the ergodic or continuum energy approximation(C. W. Gardiner, P. Zoller, R. J. Ballagh, M. J. Davis, ``Quantum kinetic theory. Simulation of the quantum Boltzmann master equation'', Phys. Rev. A 56), 575 (1997).. We report evidence of strongly non-ergodic distribution functions, whose relaxation times do not coincide with other characteristic timescales, but depend on trap anisotropy. We also report our study of condensate growth which exhibits the same qualitative behaviour as observed in a recent experiment(H. J. Miesner, D. M. Stamper, M. R. Andrews, D. S. Durfee, S. Inouve, W. Ketterle, ``Bosonic stimulation in the formation of a Bose-Einstein condensate'', (preprint).). Preliminary results for sympathetic cooling of fermions by bosons will also be presented.

  13. Calculations of condensation and chemistry in an aircraft contrail

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Brown, R. C.; Anderson, M. R.; Kolb, C. E.

    1994-01-01

    The flow field, chemistry, and condensation nucleation behind a transport airplane are calculated in two regimes using two separate reacting flow codes: first the axisymmetric plume, then the three dimensional vortex wake. The included chemical kinetics equations follow the evolution of the NO(y) and SO(x) chemical families. In the plume regime, the chemistry is coupled with the binary homogeneous formation of sulfate condensation nuclei, where the calculated nucleation rates predict that copious quantities of H2SO4/H2O nuclei are produced in subnanometer sizes. These sulfate aerosols could play a major role in the subsequent condensation of water vapor and the formation of contrails under favorable atmospheric conditions.

  14. Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data

    NASA Astrophysics Data System (ADS)

    Kryukov, A. P.; Levashov, V. Yu.; Pavlyukevich, N. V.

    2014-01-01

    A brief analysis of different approaches to the calculation and measurement of the condensation coefficient of a vapor is presented. It is shown that, on frequent occasions, calculations give values of this coefficient that are at variance with the corresponding experimental data and that the condensation coefficient is determined most exactly on the basis of the molecular-kinetic theory. It was established that the spread in the literature data on the measured values of this coefficient is explained mainly by the fact that these values were obtained not in the immediate vicinity from the boundary between the gas and liquid phases but at a large distance (as compared to the mean free path of molecules) from it. Results of calculations of the condensation coefficient of argon by the method of moleculardynamic simulation are presented.

  15. Counterion condensation on ionic oligomers

    NASA Astrophysics Data System (ADS)

    Manning, Gerald S.; Mohanty, Udayan

    1997-02-01

    The Ramanathan-Woodbury formulas representing the charge density critical for the onset of counterion condensation on finite-length polymers are derived by three alternate methods, an extension of Debye-Huckel theory, a theory of end effects, and by density functional theory. For charged oligomers with length of the same order as the Debye length, the threshold for condensation is the same as for polymers of length much greater than the Debye lenght. However, the threshold depends both on length and salt concentration if the oligomer is shorter than the Debye length, in such a way as to recede to infinity as the ratio of oligomer length to Debye length tends to zero (i.e., condensation vanishes in this limit). The extended Debye-Huckel theory additionally provides a new result for the partition function of the condensed layer, showing that the free energy of the condensed counterions is different on an oligomer and a polymer, even when the fractional extent of condensation is the same. The end effect theory discloses a hitherto unnoticed connection between the number of counterions condensed at the ends of a long polymer and the number condensed on a short oligomer.

  16. Amine catalyzed condensation of tetraethylorthosilicate

    NASA Technical Reports Server (NTRS)

    Jones, S.

    2001-01-01

    The catalysis of the condensation of hydrolyzed metal alkoxides by amines has been mentioned in the literature, but there has been no systematic study of their influence on the rate of the condensation reaction of the alkoxide and the microstructure of the resultant gel.

  17. Amine catalyzed condensation of tetraethylorthosilicate

    NASA Technical Reports Server (NTRS)

    Jones, S.

    2001-01-01

    The catalysis of the condensation of hydrolyzed metal alkoxides by amines has been mentioned in the literature, but there has been no systematic study of their influence on the rate of the condensation reaction of the alkoxide and the microstructure of the resultant gel.

  18. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  19. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  20. APPARATUS FOR CONDENSATION AND SUBLIMATION

    DOEpatents

    Schmidt, R.J.; Fuis, F. Jr.

    1958-10-01

    An apparatus is presented for the sublimation and condensation of uranium compounds in order to obtain an improved crystalline structure of this material. The apparatus comprises a vaporizing chamber and condensing structure connected thereto. There condenser is fitted with a removable liner having a demountable baffle attached to the liner by means of brackets and a removable pin. The baffle is of spiral cross-section and is provided with cooling coils disposed between the surfaces of the baffle for circulation of a temperature controlling liquid within the baffle. The cooling coll provides for controlllng the temperature of the baffle to insure formatlon of a satisfactory condensate, and the removable liner facilitates the removal of condensate formed during tbe sublimation process.

  1. Chromatin condensation during terminal erythropoiesis.

    PubMed

    Zhao, Baobing; Yang, Jing; Ji, Peng

    2016-09-02

    Mammalian terminal erythropoiesis involves gradual but dramatic chromatin condensation steps that are essential for cell differentiation. Chromatin and nuclear condensation is followed by a unique enucleation process, which is believed to liberate more spaces for hemoglobin enrichment and enable the generation of a physically flexible mature red blood cell. Although these processes have been known for decades, the mechanisms are still unclear. Our recent study reveals an unexpected nuclear opening formation during mouse terminal erythropoiesis that requires caspase-3 activity. Major histones, except H2AZ, are partially released from the opening, which is important for chromatin condensation. Block of the nuclear opening through caspase inhibitor or knockdown of caspase-3 inhibits chromatin condensation and enucleation. We also demonstrate that nuclear opening and histone release are cell cycle regulated. These studies reveal a novel mechanism for chromatin condensation in mammalia terminal erythropoiesis.

  2. Condensed Matter Theories: Volume 25

    NASA Astrophysics Data System (ADS)

    Ludeña, Eduardo V.; Bishop, Raymond F.; Iza, Peter

    2011-03-01

    dynamics and density functional theory. Exchange-correlation functionals from the identical-particle Ornstein-Zernike equation: Basic formulation and numerical algorithms / R. Cuevas-Saavedra and P. W. Ayers. Features and catalytic properties of RhCu: A review / S. Gonzalez, C. Sousa and F. Illas. Kinetic energy functionals: Exact ones from analytic model wave functions and approximate ones in orbital-free molecular dynamics / V. V. Karasiev ... [et al.]. Numerical analysis of hydrogen storage in carbon nanopores / C. Wexler ... [et al.] -- pt. F. Superconductivity. Generalized Bose-Einstein condensation in superconductivity / M. de Llano. Kohn anomaly energy in conventional superconductors equals twice the energy of the superconducting gap: How and why? / R. Chaudhury and M. P. Das. Collective excitations in superconductors and semiconductors in the presence of a condensed phase / Z. Koinov. Thermal expansion of ferromagnetic superconductors: Possible application to UGe[symbol] / N. Hatayama and R. Konno. Generalized superconducting gap in a Boson-Fermion model / T. A. Mamedov and M. de Llano. Influence of domain walls in the superconductor/ferromagnet proximity effect / E. J. Patino. Spin singlet and triplet superconductivity induced by correlated hopping interactions / L. A. Perez, J. S. Millan and C. Wang -- pt. G. Statistical mechanics, relativistic quantum mechanics. Boltzmann's ergodic hypothesis: A meeting place for two cultures / M. H. Lee. Electron-electron interaction in the non-relativistic limit / F. B. Malik.

  3. Characterization of spacecraft humidity condensate

    NASA Technical Reports Server (NTRS)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  4. Characterization of spacecraft humidity condensate

    NASA Technical Reports Server (NTRS)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  5. Condensation in Nanoporous Packed Beds.

    PubMed

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  6. Epimerization in peptide thioester condensation.

    PubMed

    Teruya, Kenta; Tanaka, Takeyuki; Kawakami, Toru; Akaji, Kenichi; Aimoto, Saburo

    2012-11-01

    Peptide segment couplings are now widely utilized in protein chemical synthesis. One of the key structures for the strategy is the peptide thioester. Peptide thioester condensation, in which a C-terminal peptide thioester is selectively activated by silver ions then condensed with an amino component, is a powerful tool. But the amino acid adjacent to the thioester is at risk of epimerization. During the preparation of peptide thioesters by the Boc solid-phase method, no substantial epimerization of the C-terminal amino acid was detected. Epimerization was, however, observed during a thioester-thiol exchange reaction and segment condensation in DMSO in the presence of a base. In contrast, thioester-thiol exchange reactions in aqueous solutions gave no epimerization. The epimerization during segment condensation was significantly suppressed with a less polar solvent that is applicable to segments in thioester peptide condensation. These results were applied to a longer peptide thioester condensation. The epimer content of the coupling product of 89 residues was reduced from 27% to 6% in a condensation between segments of 45 and 44 residues for the thioester and the amino component, respectively.

  7. Water condensation: a multiscale phenomenon.

    PubMed

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund; Gurevich, Leonid

    2014-02-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address the shortcomings of the thermodynamic theory in describing the nucleation and emphasize the importance of nanoscale effects. This leads to the description of condensation from a molecular viewpoint. Also presented is how the nucleation can be simulated by use of molecular models, and how the condensation process is simulated on the macroscale using computational fluid dynamics. Finally, examples of hybrid models combining molecular and macroscale models for the simulation of condensation on a surface are presented.

  8. Experiments in Condensed Hydrogen

    NASA Astrophysics Data System (ADS)

    Paine, Christopher George

    The binding energy of each of the helium isotopes, ^3He and ^4He, to the surface of liquid hydrogen and liquid deuterium has been measured. The experimental technique involved the differential capillary rise of the liquid in the presence of varying density of the helium vapor. Over the temperature range from near the triple point temperature to 0.6 the critical temperature for the liquid hydrogens, the binding energies are found to be in the range 10-20 K, depending upon isotope. In addition, the energy of interaction between helium atoms adsorbed on the liquid surface has been determined over the same temperature range, and found to be in reasonable agreement with prior theoretical calculations. Techniques for trapping and manipulating small drops of liquid hydrogen without the use of material containers have been investigated. A magnetic trap employing superconducting solenoids and capable of levitating condensed hydrogen in the earth's gravitational field has been demonstrated. Drops of liquid and solid hydrogen have been manipulated in the trap using static electric field gradients and the electric field gradient of a laser. This capability has potential application to the confinement and manipulation of antimatter, as for example in advanced propulsion systems; to the study of rotation of free liquid drops, as proposed for future spacelab missions studying normal and superfluid helium, and is an important step in our investigation of dynamics of supercooling in molecular hydrogen.

  9. Fate of catechols in coal gasification condensate waters

    SciTech Connect

    Uhrich, K.E.

    1986-02-01

    Even after the wastewater has been subjected to rigorous cleaning, many chemicals still remain. In order to remove these compounds, they must be identified. Catechol is a compound which appears in the condensate water and, because its concentration changes, its fate is somewhat uncertain. In recent experiments modeling the condensate water conditions, catechol solutions were aerated in the presence of ammonia. Upon acidification of the solutions, a polymer precipitates. This polymer was compared to the black compound isolated from the condensate water by spectral and elemental analyses. The structures of the two polymers were reasonably similar. The kinetics of oxidation, as determined by the uptake of oxygen, indicates that the reaction was first order in catechol and oxygen. The rate was significantly enhanced by an increase in pH. Assuming that catechol is the only subunit of the polymers isolated from the different condensate waters, calculations would indicate that the initial catechol concentration varies from 440 to 1700 ppM. An attempt is being made to account for all of the carbon that appears in the water from the gasification process. Presently, only 60% to 70% of the carbon-containing products have been identified. Part of the remaining total organic carbon can be accounted for by the catechol polymer. Studying the fate of catechol in the coal gasification condensate water will help to develop an environmentally and financially feasible treatment of the wastewater. 4 refs.

  10. Submicron Dropwise Condensation under Superheated and Rarefied Vapor Condition

    PubMed Central

    Anand, Sushant; Son, Sang Young

    2010-01-01

    Phase change accompanying conversion of a saturated or superheated vapor in presence of subcooled surfaces is one of the most common occurring phenomena in nature. The mode of phase change which follows such a transformation is dependent upon surface properties like as of contact angle and thermodynamic conditions of the system. In present studies, an experimental approach is used to study the physics behind droplet growth on a partially wetting surface. Superheated vapor at low pressures of 4–5 torr was condensed on subcooled silicon surface with static contact angle as of 60° in absence of non-condensable gases, and the condensation process monitored using Environmental Scanning Electron Microscope (ESEM) with submicroscopic spatial resolution. The condensation process was analyzed in the form of size growth of isolated droplets for before a coalescence event ended the regime of single droplet growth. Droplet growth obtained as a function of time reveals that the rate of growth decreases as the droplet increases in size. This behavior is indicative of an overall droplet growth law existing over larger time scales of which the current observations in their brief time intervals could be fitted in. A theoretical model based on kinetic theory further support the experimental observations indicating a mechanism where growth occurs by interfacial mass transport directly on condensing droplet surface. Evidence was also found which establishes the presence of submicroscopic droplets nucleating and growing in between microscopic droplets for partially wetting case. PMID:20942412

  11. Accuracy Analysis for Kinetic Modeling of Homogeneous Condensation in Plumes

    DTIC Science & Technology

    2009-06-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 29-05-2009 2. REPORT TYPE...Mizuseki, K. Hongo , Y. Kawazoe, and L. Wille, “Multiscale simulation of cluster growth and deposition processes by hybrid model based on direct

  12. Accuracy Analysis for Kinetic Modeling of Homogeneous Condensation in Plumes

    DTIC Science & Technology

    2009-12-18

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 18-12-2009 2. REPORT TYPE...of magnetic clusters studied by direct simulation Monte Carlo method,” J. Appl. Phys., vol. 87, p. 6561, 2000. 15H. Mizuseki, K. Hongo , Y. Kawazoe, and

  13. Steam condenser thermal design theories

    NASA Astrophysics Data System (ADS)

    Davidson, B. J.

    Test data and prediction methods for condensation in steam condenser tube banks are reviewed. Standards for thermal rating; effect of vapor velocity; vapor shear and inundation in tube banks; correction factors to the Nusselt equation; and equations for the combined effect of vapor shear and inundation are discussed. Effects of noncondensible gases; tube side heat transfer; and expressions for combined tube side and shell side heat transfer are considered. Frictional, gravitational, momentum, and pressure drop trends; and the role of access lanes to reduce pressure drop are outlined. Computer models of condensers, including algebraic representations of the field equations, are summarized.

  14. On the late-time cosmology of a condensed scalar field

    NASA Astrophysics Data System (ADS)

    Ghalee, Amir

    2016-04-01

    We study the late-time cosmology of a scalar field with a kinetic term non-minimally coupled to gravity. It is demonstrated that the scalar field dominate the radiation matter and the cold dark matter (CDM). Moreover, we show that eventually the scalar field will be condensed and results in an accelerated expansion. The metric perturbations around the condensed phase of the scalar field are investigated and it has been shown that the ghost instability and gradient instability do not exist.

  15. Condensation heat transfer under a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chow, L. C.

    1986-01-01

    A description of the condensation heat transfer process in microgravity is given. A review of the literature is also reported. The most essential element of condensation heat transfer in microgravity is the condensate removal mechanism. Two mechanisms for condensate removal are analyzed by looking into two problems. The first problem is concerned with film condensation on a flat porous plate with the condensate being removed by suction at the wall. The second problem is an analytical prediction of the heat transfer coefficient for condensing annular flows with the condensate film driven by the vapor shear. It is concluded that both suction and vapor shear can effectively drain the condensate to ensure continuous operation of the condensers operated under a microgravity environment. It is recommended that zero-g flight experiments be carried out to verify the prediction made in the present report. The results contained in this report should also aid in the design of future space condensers.

  16. Flow Boiling and Condensation Experiment

    NASA Image and Video Library

    The Flow Boiling and Condensation Experiment is another investigation that examines the flow of a mixture of liquids and the vapors they produce when in contact with hot space system equipment. Coo...

  17. Monitoring by Control Technique - Condensers

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about condenser control techniques used to reduce pollutant emissions.

  18. Patterns of heterochromatin replication and condensation correlate in rat kangaroo PtK2 cells.

    PubMed

    Goitein, R; Hirschberg, J; Marcus, M; Sperling, K

    1984-01-01

    Chromosome replication in mammalian cells in an ordered phenomenon. This is true also for the condensation in G2 of the heterochromatic chromosomal regions in mouse cells. The generality of this phenomenon and its mechanism are not known, nor is it known whether the order of condensation of the heterochromatic chromosomal segments in G2 reflects the order of replication or is independent of it. We determined the order of replication during the S phase and of condensation in G2 of the short heterochromatic chromosomal regions in the rat kangaroo cell line PtK2. The kinetics of condensation of these regions in G2 was studied in cells treated with Hoechst 33258. Their order of replication was established with the use of a sensitive technique based on the treatment of living cells with 5-bromodeoxyuridine and Hoechst 33258. Our results show that these regions exhibit a similar pattern of replication in S and condensation in G2.

  19. Anyon condensation and tensor categories

    NASA Astrophysics Data System (ADS)

    Kong, Liang

    2014-09-01

    Instead of studying anyon condensation in various concrete models, we take a bootstrap approach by considering an abstract situation, in which an anyon condensation happens in a 2-d topological phase with anyonic excitations given by a modular tensor category C; and the anyons in the condensed phase are given by another modular tensor category D. By a bootstrap analysis, we derive a relation between anyons in D-phase and anyons in C-phase from natural physical requirements. It turns out that the vacuum (or the tensor unit) A in D-phase is necessary to be a connected commutative separable algebra in C, and the category D is equivalent to the category of local A-modules as modular tensor categories. This condensation also produces a gapped domain wall with wall excitations given by the category of A-modules in C. A more general situation is also studied in this paper. We will also show how to determine such algebra A from the initial and final data. Multi-condensations and 1-d condensations will also be briefly discussed. Examples will be given in the toric code model, Kitaev quantum double models, Levin-Wen types of lattice models and some chiral topological phases.

  20. Finite-temperature simulations of the scissors mode in Bose-Einstein condensed gases.

    PubMed

    Jackson, B; Zaremba, E

    2001-09-03

    The dynamics of a trapped Bose-condensed gas at finite temperatures is described by a generalized Gross-Pitaevskii equation for the condensate order parameter and a semiclassical kinetic equation for the thermal cloud, solved using N-body simulations. The two components are coupled by mean fields as well as collisional processes that transfer atoms between the two. We use this scheme to investigate scissors modes in anisotropic traps as a function of temperature. Frequency shifts and damping rates of the condensate mode are extracted, and are found to be in good agreement with recent experiments.

  1. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  2. Non-equilibrium effects on the chemistry of nebular condensates - Implications for the planets and asteroids

    NASA Technical Reports Server (NTRS)

    Blander, M.

    1979-01-01

    Kinetic effects, for example nucleation constraints and slow reactions, should have been important in nebular condensation. Consideration of these effects leads to the prediction of pressure-dependent compositions and physical properties of nebular condensates which is consistent with (1) the differences between different classes of chondritic meteorites, (2) some of the differences between planets, and (3) the presence of oxidized iron on the moon and in the eucrite parent body (presumably an asteroid) despite the low abundance of volatiles. Diffusion effects appear to be important for understanding oxygen isotope anomalies in refractory inclusions in Allende. The consideration of kinetic effects leads to more information concerning nebular processes than if equilibrium is assumed.

  3. Research progress of control of condensate depression for condenser

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Liang, Run; Li, Fengyu

    2017-08-01

    It is introduced that significance and structure of the condensate depression control system. In accordance with controller devised procedure, we analyze and elaborate how to construct the lumped parameter and dynamic mathematical model which possesses distinct physics significance. Neural network model being called black-box model is also introduced. We analyze and contrast the control technique of condensate depression as conventional PI control, fuzzy PI control and fuzzy control. It is indicated that if the controller of condensate depression were devised inappropriate, while the steam discharged of turbine varying by a large margin, would result in the rotation rate of cooling water circulating pump accelerating at a great lick even to trigger the galloping danger which is less impressive for the units operating safely.

  4. Advances in shell side condensation for refrigerants

    NASA Astrophysics Data System (ADS)

    Webb, Ralph L.

    The design of shell and tube condensers used in air conditioning and refrigeration applications is discussed. The geometry of interest involves condensation on the shell side of a horizontal tube bundle. Enhanced heat transfer geometries are typically used for condensation on the shell side. The heat transfer is removed by water on the tube side, which typically have tube side enhancement. Single tube and row effect condensation data are presented. Thermal design methods for sizing of the condenser are outlined.

  5. Bose-Einstein condensate strings

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Lake, Matthew J.

    2015-02-01

    We consider the possible existence of gravitationally bound general relativistic strings consisting of Bose-Einstein condensate (BEC) matter which is described, in the Newtonian limit, by the zero temperature time-dependent nonlinear Schrödinger equation (the Gross-Pitaevskii equation), with repulsive interparticle interactions. In the Madelung representation of the wave function, the quantum dynamics of the condensate can be formulated in terms of the classical continuity equation and the hydrodynamic Euler equations. In the case of a condensate with quartic nonlinearity, the condensates can be described as a gas with two pressure terms, the interaction pressure, which is proportional to the square of the matter density, and the quantum pressure, which is without any classical analogue, though, when the number of particles in the system is high enough, the latter may be neglected. Assuming cylindrical symmetry, we analyze the physical properties of the BEC strings in both the interaction pressure and quantum pressure dominated limits, by numerically integrating the gravitational field equations. In this way we obtain a large class of stable stringlike astrophysical objects, whose basic parameters (mass density and radius) depend sensitively on the mass and scattering length of the condensate particle, as well as on the quantum pressure of the Bose-Einstein gas.

  6. Polariton condensates at room temperature

    NASA Astrophysics Data System (ADS)

    Guillet, Thierry; Brimont, Christelle

    2016-10-01

    We review the recent developments of the polariton physics in microcavities featuring the exciton-photon strong coupling at room temperature, and leading to the achievement of room-temperature polariton condensates. Such cavities embed active layers with robust excitons that present a large binding energy and a large oscillator strength, i.e. wide bandgap inorganic or organic semiconductors, or organic molecules. These various systems are compared, in terms of figures of merit and of common features related to their strong oscillator strength. The various demonstrations of polariton laser are compared, as well as their condensation phase diagrams. The room-temperature operation indeed allows a detailed investigation of the thermodynamic and out-of-equilibrium regimes of the condensation process. The crucial role of the spatial dynamics of the condensate formation is discussed, as well as the debated issue of the mechanism of stimulated relaxation from the reservoir to the condensate under non-resonant excitation. Finally the prospects of polariton devices are presented.

  7. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  8. Introduction. Cosmology meets condensed matter.

    PubMed

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  9. Persistent currents in ferromagnetic condensates

    NASA Astrophysics Data System (ADS)

    Lamacraft, Austen

    2017-06-01

    Persistent currents in Bose condensates with a scalar order parameter are stabilized by the topology of the order parameter manifold. In condensates with multicomponent order parameters it is topologically possible for supercurrents to "unwind" without leaving the manifold. We study the energetics of this process in the case of ferromagnetic condensates using a long wavelength energy functional that includes both the superfluid and spin stiffnesses. Exploiting analogies to an elastic rod and rigid body motion, we show that the current carrying state in a 1D ring geometry transitions between a spin helix in the energy minima and a solitonlike configuration at the maxima. The relevance to recent experiments in ultracold atoms is briefly discussed.

  10. Condensed astatine: monatomic and metallic.

    PubMed

    Hermann, Andreas; Hoffmann, Roald; Ashcroft, N W

    2013-09-13

    The condensed matter properties of the nominal terminating element of the halogen group with atomic number 85, astatine, are as yet unknown. In the intervening more than 70 years since its discovery significant advances have been made in substrate cooling and the other techniques necessary for the production of the element to the point where we might now enquire about the key properties astatine might have if it attained a condensed phase. This subject is addressed here using density functional theory and structural selection methods, with an accounting for relativistic physics that is essential. Condensed astatine is predicted to be quite different in fascinating ways from iodine, being already at 1 atm a metal, and monatomic at that, and possibly a superconductor (as is dense iodine).

  11. Condensed Astatine: Monatomic and Metallic

    NASA Astrophysics Data System (ADS)

    Hermann, Andreas; Hoffmann, Roald; Ashcroft, N. W.

    2013-09-01

    The condensed matter properties of the nominal terminating element of the halogen group with atomic number 85, astatine, are as yet unknown. In the intervening more than 70 years since its discovery significant advances have been made in substrate cooling and the other techniques necessary for the production of the element to the point where we might now enquire about the key properties astatine might have if it attained a condensed phase. This subject is addressed here using density functional theory and structural selection methods, with an accounting for relativistic physics that is essential. Condensed astatine is predicted to be quite different in fascinating ways from iodine, being already at 1 atm a metal, and monatomic at that, and possibly a superconductor (as is dense iodine).

  12. Neuroamine condensations in human subjects.

    PubMed

    Collins, M A

    1980-01-01

    Non-enzymatic products of neuroamines and endogenous carbonyl compounds are apparent "normal" products in human metabolism, and their levels become increased during pathological conditions. DA condensation products--salsolinol, its O-methylated derivative, and methylated derivatives of 1-carboxyl-THP--are found normally in human urine, and the last TIQ is in human brain. Potential beta-carboline condensation products also occur in (aging) human lens tissue. Chronic drinking in alcoholics causes significant increases in urinary salsolinol and O-methyl-salsolinol, presumably due to the increased AcH which is made available. L-DOPA therapy (in Parkinson's disease) elevates urinary and tissue levels of the carboxylated THP derivatives, as well as of salsolinol and THP itself; hyperphenylalaninemia during PKU also increases tissue levels of a DA/phenylpyruvate-derived TIQ and an imine condensate of phenylethylamine and vitamin B6. These unusual products may interfere with neural dynamic processes, and produce cytotoxic metabolites.

  13. Scrutinizing the pion condensed phase

    NASA Astrophysics Data System (ADS)

    Carignano, Stefano; Lepori, Luca; Mammarella, Andrea; Mannarelli, Massimo; Pagliaroli, Giulia

    2017-02-01

    When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the "radial" fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition.

  14. On the onset of surface condensation: formation and transition mechanisms of condensation mode

    PubMed Central

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-01-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the ‘classical hypotheses’ of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation. PMID:27481071

  15. On the onset of surface condensation: formation and transition mechanisms of condensation mode.

    PubMed

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-08-02

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the 'classical hypotheses' of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.

  16. Tripol condensate polishing - operational experience

    SciTech Connect

    Swainsbury, D.

    1995-01-01

    This paper gives a brief outline of the Mission Energy Management Australia Company who operate and maintain the Loy Yang B Power Station in the Latrobe Valley, Victoria, Australia. Details of the plant configuration, the water/steam circuit and cycle chemistry are discussed. The arrangement of the TRIPOL Condensate Polishing Plant and it`s operational modes are examined. Results of the first twelve months operation of the TRIPOL plant are detailed. Levels of crud removal during early commissioning phases employing the pre-filter are presented. Typical parameters achieved during a simulated condenser leak and an operational run beyond the ammonia break point are also documented.

  17. Condensed Matter Physics - Biology Resonance

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    The field of condensed matter physics had its genesis this century and it has had a remarkable evolution. A closer look at its growth reveals a hidden aim in the collective consciousness of the field - a part of the development this century is a kind of warm up exercise to understand the nature of living condensed matter, namely the field of biology, by a growing new breed of scientists in the coming century. Through some examples the vitality of this interaction will be pointed out.

  18. Applications of condensed dynamic images

    SciTech Connect

    Klein, H.A.

    1986-03-01

    In appropriate cases, information from a dynamic series of nuclear images may be condensed into a single image with one spatial and one temporal dimension. A useful elaboration of the method consists of the masking out of undesired spatial regions. The versatility of such condensed dynamic images is illustrated by examples derived from gastroesophageal and pulmonary studies. Advantages of the method include obviating the need to examine and comprehend multiple images as well as enabling economical archiving of image data. Its diagnostic potential is particularly evident in esophageal transit and infant gastroesophageal reflux studies.

  19. Andreev Reflection in Bosonic Condensates

    SciTech Connect

    Zapata, I.; Sols, F.

    2009-05-08

    We study the bosonic analog of Andreev reflection at a normal-superfluid interface where the superfluid is a boson condensate. We model the normal region as a zone where nonlinear effects can be neglected. Against the background of a decaying condensate, we identify a novel contribution to the current of reflected atoms. The group velocity of this Andreev reflected component differs from that of the normally reflected one. For a three-dimensional planar or two-dimensional linear interface Andreev reflection is neither specular nor conjugate.

  20. Andreev reflection in bosonic condensates.

    PubMed

    Zapata, I; Sols, F

    2009-05-08

    We study the bosonic analog of Andreev reflection at a normal-superfluid interface where the superfluid is a boson condensate. We model the normal region as a zone where nonlinear effects can be neglected. Against the background of a decaying condensate, we identify a novel contribution to the current of reflected atoms. The group velocity of this Andreev reflected component differs from that of the normally reflected one. For a three-dimensional planar or two-dimensional linear interface Andreev reflection is neither specular nor conjugate.

  1. Gravity Effects in Condensing and Evaporating Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.

    2004-01-01

    A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.

  2. Generalized Mean Fields for Trapped Atomic Bose-Einstein Condensates

    PubMed Central

    Proukakis, N. P.; Burnett, K.

    1996-01-01

    We describe generalized time-dependent mean-field equations for partially condensed samples of trapped and evaporatively cooled atoms. These equations give a way of investigating the various order parameters that may be present as well as the existence of a mean value of the field due to condensed atoms. Our approach provides us with a closed system of self-consistent equations for the order parameters present. The equations we derive are shown to reduce to other treatments in the literature in various limits. We also show how the equation of motion method allows us to construct a formalism that can handle the evolution of these mean fields due to two-loop kinetics. PMID:27805101

  3. Spinor condensate of {sup 87}Rb as a dipolar gas

    SciTech Connect

    Swislocki, Tomasz; Gajda, Mariusz; RzaPzewski, Kazimierz

    2010-03-15

    We consider a spinor condensate of {sup 87}Rb atoms in the F=1 hyperfine state confined in an optical dipole trap. Putting initially all atoms in the m{sub F}=0 component, we find that the system evolves toward a state of thermal equilibrium with kinetic energy equally distributed among all magnetic components. We show that this process is dominated by the dipolar interaction of magnetic spins rather than spin-mixing contact potential. Our results show that because of a dynamical separation of magnetic components, the spin-mixing dynamics in the {sup 87}Rb condensate is governed by the dipolar interaction which plays no role in a single-component rubidium system in a magnetic trap.

  4. Magnetic catalysis of a finite-size pion condensate

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Mercado, Pedro; Villavicencio, C.

    2017-01-01

    We study the Bose-Einstein condensation of a finite-size pion gas subject to the influence of a magnetic field. We find the expressions for the critical chemical potential and temperature for the onset of condensation. We show that for values of the external magnetic flux larger than the elemental flux, the critical temperature is larger than the one obtained by considering only finite-size effects. We use experimentally reported values of pion source sizes and multiplicities at Large Hadron Collider (LHC) energies to show that if the magnetic flux, produced initially in peripheral heavy-ion collisions, is at least partially preserved up to the hadronic phase, the combined finite-size and magnetic field effects give rise to a critical temperature above the kinetic freeze-out temperature. We discuss the implications for the evolution of the pion system created in relativistic heavy-ion collisions.

  5. Origin of uranium isotope variations in early solar nebula condensates.

    PubMed

    Tissot, François L H; Dauphas, Nicolas; Grossman, Lawrence

    2016-03-01

    High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system's formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t 1/2 = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture.

  6. Origin of uranium isotope variations in early solar nebula condensates

    PubMed Central

    Tissot, François L. H.; Dauphas, Nicolas; Grossman, Lawrence

    2016-01-01

    High-temperature condensates found in meteorites display uranium isotopic variations (235U/238U), which complicate dating the solar system’s formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide 247Cm (t1/2 = 15.6 My) into 235U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of 235U reaching ~+6% relative to average solar system composition, which can only be due to the decay of 247Cm. This allows us to constrain the 247Cm/235U ratio at solar system formation to (1.1 ± 0.3) × 10−4. This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture. PMID:26973874

  7. Bose-Einstein condensation mechanism in economic system

    NASA Astrophysics Data System (ADS)

    Xu, Jianping

    2015-06-01

    This paper starts from modifying the kinetic exchange model and ends with making a parallel between economic crisis and the Bose-Einstein condensation. By introducing a parameter δ, we incorporate the time influence into the Bose-Einstein statistics. And δ is found to represent the technology level in an economy. δ's growth in time enlarges the rich and poor gap and induces economic crisis in free market despite the fact that average living standard is raised. Then we find the “δ-Te-Entropy” dilemma which features a strong implication of the second law of thermodynamics. The dilemma means when an economy is isolated the entropy grows and synergetically Te and δ grow inducing the Bose-Einstein condensation, i.e., economic crisis while for open economy the dilemma breaks. Then we raise the question: What would happen if the world economy as a whole became isolated with ultimately omnibearing globalization?

  8. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    PubMed

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  9. Counterion condensation and ionic conductivity

    NASA Astrophysics Data System (ADS)

    Penafiel, L. Miguel; Litovitz, Theodore A.

    1992-02-01

    The occurrence of counterion condensation is demonstrated through measurements of the incremental ionic conductivity of pH buffered Na polyacrylate solutions. pH values were selected to allow variation of the charge density parameter ξ in the range between 0.4 and 2.8, that is, across ξ=1, the theoretical critical level for counterion condensation. The results show two regions where the incremental conductivity, ΔσP, varies differently with ξ. For ξ<1.3, ΔσP remains relatively constant. A sharp drop in ΔσP is observed between ξ=1.3 and ξ=1.7 corresponding to the onset of counterion condensation. It is suggested that this discontinuity reflects a drastic change in the polyion mobility caused by a structural rearrangement of the macromolecule. For ξ≳1.7, ΔσP decreases with approximately constant slope. This latter behavior agrees qualitatively but not quantitatively with the prediction of the counterion condensation model.

  10. KAON CONDENSATION IN NEUTRON STARS.

    SciTech Connect

    RAMOS,A.; SCHAFFNER-BIELICH,J.; WAMBACH,J.

    2001-04-24

    We discuss the kaon-nucleon interaction and its consequences for the change of the properties of the kaon in the medium. The onset of kaon condensation in neutron stars under various scenarios as well its effects for neutron star properties are reviewed.

  11. Linker DNA destabilizes condensed chromatin.

    PubMed

    Green, G R; Ferlita, R R; Walkenhorst, W F; Poccia, D L

    2001-01-01

    The contribution of the linker region to maintenance of condensed chromatin was examined in two model systems, namely sea urchin sperm nuclei and chicken red blood cell nuclei. Linkerless nuclei, prepared by extensive digestion with micrococcal nuclease, were compared with Native nuclei using several assays, including microscopic appearance, nuclear turbidity, salt stability, and trypsin resistance. Chromatin in the Linkerless nuclei was highly condensed, resembling pyknotic chromatin in apoptotic cells. Linkerless nuclei were more stable in low ionic strength buffers and more resistant to trypsin than Native nuclei. Analysis of histones from the trypsinized nuclei by polyacrylamide gel electrophoresis showed that specific histone H1, H2B, and H3 tail regions stabilized linker DNA in condensed nuclei. Thermal denaturation of soluble chromatin preparations from differentially trypsinized sperm nuclei demonstrated that the N-terminal regions of histones Sp H1, Sp H2B, and H3 bind tightly to linker DNA, causing it to denature at a high temperature. We conclude that linker DNA exerts a disruptive force on condensed chromatin structure which is counteracted by binding of specific histone tail regions to the linker DNA. The inherent instability of the linker region may be significant in all eukaryotic chromatins and may promote gene activation in living cells.

  12. Magnetofermionic condensate in two dimensions.

    PubMed

    Kulik, L V; Zhuravlev, A S; Dickmann, S; Gorbunov, A V; Timofeev, V B; Kukushkin, I V; Schmult, S

    2016-11-16

    Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations.

  13. Visualization of early chromosome condensation

    PubMed Central

    Kireeva, Natashe; Lakonishok, Margot; Kireev, Igor; Hirano, Tatsuya; Belmont, Andrew S.

    2004-01-01

    Current models of mitotic chromosome structure are based largely on the examination of maximally condensed metaphase chromosomes. Here, we test these models by correlating the distribution of two scaffold components with the appearance of prophase chromosome folding intermediates. We confirm an axial distribution of topoisomerase IIα and the condensin subunit, structural maintenance of chromosomes 2 (SMC2), in unextracted metaphase chromosomes, with SMC2 localizing to a 150–200-nm-diameter central core. In contrast to predictions of radial loop/scaffold models, this axial distribution does not appear until late prophase, after formation of uniformly condensed middle prophase chromosomes. Instead, SMC2 associates throughout early and middle prophase chromatids, frequently forming foci over the chromosome exterior. Early prophase condensation occurs through folding of large-scale chromatin fibers into condensed masses. These resolve into linear, 200–300-nm-diameter middle prophase chromatids that double in diameter by late prophase. We propose a unified model of chromosome structure in which hierarchical levels of chromatin folding are stabilized late in mitosis by an axial “glue.” PMID:15353545

  14. CWSA (Condensate Water Separator Assembly)

    NASA Image and Video Library

    2009-05-14

    ISS019-E-016029 (14 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, performs in-flight maintenance on the Condensate Water Separator Assembly (CWSA) in the Columbus laboratory of the International Space Station.

  15. Magnetofermionic condensate in two dimensions

    PubMed Central

    Kulik, L. V.; Zhuravlev, A. S.; Dickmann, S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.; Schmult, S.

    2016-01-01

    Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations. PMID:27848969

  16. Approaching Bose-Einstein Condensation

    ERIC Educational Resources Information Center

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  17. Magnetofermionic condensate in two dimensions

    NASA Astrophysics Data System (ADS)

    Kulik, L. V.; Zhuravlev, A. S.; Dickmann, S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.; Schmult, S.

    2016-11-01

    Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations.

  18. Approaching Bose-Einstein Condensation

    ERIC Educational Resources Information Center

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  19. Protonation, Hydrolysis, and Condensation of Mono- and Trifunctional Silanes at the Air/Water Interface

    PubMed Central

    Britt, David W.; Hlady, Vladimir

    2012-01-01

    The protonation, hydrolysis, and condensation kinetics of octadecyldimethylmethoxysilane (OMMS) and octadecyltrimethoxysilane (OTMS) at the air/water interface were investigated using a monolayer trough. OTMS chemical condensation within physically condensed phases was observed in transferred monolayers using fluorescence microscopy. Molecular area increases and decreases attributed to protonation and hydrolysis, respectively, of silane methoxy groups were measured by a surface balance. These area changes at constant surface pressure suggested a stepwise protonation and hydrolysis of the three OTMS methoxy groups. In contrast, only a single protonation and hydrolysis event was observed for monofunctional OMMS. The influences of monolayer spreading time, silane packing density, and subphase pH on the reaction kinetics are presented. PMID:25147424

  20. POTENTIAL DIMETHYLMERCURY CONCENTRATION IN WATER & ORGANIC CONDENSATE

    SciTech Connect

    MEACHAM, J.E.

    2004-12-28

    This document bounds potential dimethylmercury concentration in water or organic condensate that might form in ventilation systems or cooler tank regions. Dimethylmercury concentrations were extremely low and would be below drinking water standards in the water condensate.

  1. Internally drained condenser for spacecraft thermal management

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.; Drew, Brian C.

    1989-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux condenser for use in two-phase spacecraft thermal management loops. The objective is to obtain a several fold increase in condensation heat transfer coefficient over those which can be achieved with shear-controlled or capillary-wick condensers. The internally drained condenser relies on shaped fins to develop a capillary pressure gradient over the surface of the fins and drive the condensate toward narrow drainage grooves separating the fins. The condensate then flows through a drainage network embedded in the condenser walls. Heat transfer coefficients of up to 8 W/sq cm C were measured in steam, providing a heat transfer enhancement ratio greater than a factor of 8. In the paper the proof-of-concept experiments are described and simplified models to predict the performance of the internally drained condenser are presented.

  2. Stabilization of semilocal strings by dark scalar condensates

    NASA Astrophysics Data System (ADS)

    Forgács, Péter; Lukács, Árpád

    2017-02-01

    Semilocal and electroweak strings are well known to be unstable against unwinding by the condensation of the second Higgs component in their cores. A large class of current models of dark matter contains dark scalar fields coupled to the Higgs sector of the Standard Model (Higgs portal) and/or dark U(1) gauge fields. It is shown that Higgs-portal-type couplings and a gauge kinetic mixing term of the dark U(1) gauge field have a significant stabilizing effect on semilocal strings in the "visible" sector.

  3. Phase-space views into dye-microcavity thermalized and condensed photons

    NASA Astrophysics Data System (ADS)

    Marelic, Jakov; Walker, Benjamin T.; Nyman, Robert A.

    2016-12-01

    We have observed momentum- and position-resolved spectra and images of the photoluminescence from thermalized and condensed dye-microcavity photons. The spectra yield the dispersion relation and the potential energy landscape for the photons. From this dispersion relation, below condensation threshold, we find that the effective mass is that of a bare cavity photon, not a polariton. Above threshold, we place an upper bound on the dimensionless two-dimensional interaction strength of g ˜≲10-3 , which is compatible with existing estimates. Both photon-photon and photon-molecule interactions are weak. The temperature is found to be independent of momentum, but dependent on pump spot size, indicating that the system is ergodic but not perfectly at thermal equilibrium. Condensation always happens first in the mode with lowest potential and lowest kinetic energy, although at very high pump powers multimode condensation occurs into other modes.

  4. Simulations of condensation flows induced by reflection of weak shocks from liquid surfaces

    NASA Astrophysics Data System (ADS)

    Barbante, Paolo; Frezzotti, Aldo

    2016-11-01

    The condensation of a vapor onto a planar liquid surface, caused by the reflection of a weak shock wave, is studied by three different simulation method. The first one is based on molecular dynamics (MD) simulations of the Lennard-Jones fluid which are supposed to provide reference solutions. The second method is based on a Diffuse Interface Model (DIM), consistent with the thermodynamic properties of the Lennard-Jones fluid as well as with its transport properties. The third method is based on a hybrid model (HM) in which the liquid is described by a purely hydrodynamic approach, whereas the vapor is described by the Boltzmann equation. The two phases are connected by kinetic boundary conditions. The results show that DIM fails to accurately predict the condensation rate when the vapor is dilute but becomes more accurate when the vapor phase gets denser. HM reproduces MD simulations of nearly ideal vapor condensations with good accuracy, assuming unit condensation coefficient.

  5. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    PubMed

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-09

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  6. Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Mark, Alan E; Hush, Noel S

    2009-03-17

    In 1968, Fröhlich showed that a driven set of oscillators can condense with nearly all of the supplied energy activating the vibrational mode of lowest frequency. This is a remarkable property usually compared with Bose-Einstein condensation, superconductivity, lasing, and other unique phenomena involving macroscopic quantum coherence. However, despite intense research, no unambiguous example has been documented. We determine the most likely experimental signatures of Fröhlich condensation and show that they are significant features remote from the extraordinary properties normally envisaged. Fröhlich condensates are classified into 3 types: weak condensates in which profound effects on chemical kinetics are possible, strong condensates in which an extremely large amount of energy is channeled into 1 vibrational mode, and coherent condensates in which this energy is placed in a single quantum state. Coherent condensates are shown to involve extremely large energies, to not be produced by the Wu-Austin dynamical Hamiltonian that provides the simplest depiction of Fröhlich condensates formed using mechanically supplied energy, and to be extremely fragile. They are inaccessible in a biological environment. Hence the Penrose-Hameroff orchestrated objective-reduction model and related theories for cognitive function that embody coherent Fröhlich condensation as an essential element are untenable. Weak condensates, however, may have profound effects on chemical and enzyme kinetics, and may be produced from biochemical energy or from radio frequency, microwave, or terahertz radiation. Pokorný's observed 8.085-MHz microtubulin resonance is identified as a possible candidate, with microwave reactors (green chemistry) and terahertz medicine appearing as other feasible sources.

  7. Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness

    PubMed Central

    Reimers, Jeffrey R.; McKemmish, Laura K.; McKenzie, Ross H.; Mark, Alan E.; Hush, Noel S.

    2009-01-01

    In 1968, Fröhlich showed that a driven set of oscillators can condense with nearly all of the supplied energy activating the vibrational mode of lowest frequency. This is a remarkable property usually compared with Bose–Einstein condensation, superconductivity, lasing, and other unique phenomena involving macroscopic quantum coherence. However, despite intense research, no unambiguous example has been documented. We determine the most likely experimental signatures of Fröhlich condensation and show that they are significant features remote from the extraordinary properties normally envisaged. Fröhlich condensates are classified into 3 types: weak condensates in which profound effects on chemical kinetics are possible, strong condensates in which an extremely large amount of energy is channeled into 1 vibrational mode, and coherent condensates in which this energy is placed in a single quantum state. Coherent condensates are shown to involve extremely large energies, to not be produced by the Wu–Austin dynamical Hamiltonian that provides the simplest depiction of Fröhlich condensates formed using mechanically supplied energy, and to be extremely fragile. They are inaccessible in a biological environment. Hence the Penrose–Hameroff orchestrated objective-reduction model and related theories for cognitive function that embody coherent Fröhlich condensation as an essential element are untenable. Weak condensates, however, may have profound effects on chemical and enzyme kinetics, and may be produced from biochemical energy or from radio frequency, microwave, or terahertz radiation. Pokorný's observed 8.085-MHz microtubulin resonance is identified as a possible candidate, with microwave reactors (green chemistry) and terahertz medicine appearing as other feasible sources. PMID:19251667

  8. Exciton-polaritons condensate in a microwire

    NASA Astrophysics Data System (ADS)

    Kamoun, O.; Jaziri, S.

    2013-12-01

    Recently, polariton condensation has been claimed in microwires. Numerical solutions of the time-dependent Gross-Pitaevskii equation that describes the behavior of the condensate in a trap and exciton-polariton interaction, have been obtained. In this work we study theoretically exciton-polariton one dimensional condensation in several quantized states.

  9. Proceedings: 2000 Workshop on Condensate Polishing

    SciTech Connect

    2001-06-01

    Condensate polishing maintains control of impurities in the nuclear power plant and allows the unit to operate more reliably. This report presents proceedings of EPRI's 2000 Workshop on Condensate Polishing, where 30 papers were presented on current issues and utility experience involving condensate polishing at both pressurized water reactor (PWR) and boiling water reactor (BWR) plants.

  10. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  11. Bose-Einstein condensate collapse and dynamical squeezing of vacuum fluctuations

    SciTech Connect

    Calzetta, E.A.; Hu, B.L.

    2003-10-01

    We analyze the phenomena of condensate collapse, as described by Donley et al. [Nature 412, 295 (2001)] and N. Claussen [Ph. D thesis, University of Colorado, 2003 (unpublished)] by focusing on the behavior of excitations or fluctuations above the condensate, as driven by the dynamics of the condensate, rather than the dynamics of the condensate alone or the kinetics of the atoms. The dynamics of the condensate squeezes and amplifies the quantum excitations, mixing the positive and negative frequency components of their wave functions thereby creating particles that appear as bursts and jets. By analyzing the changing amplitude and particle content of these excitations, our simple physical picture explains well the overall features of the collapse phenomena and provides excellent quantitative fits with experimental data on several aspects, such as the scaling behavior of the collapse time and the number of particles in the jet. The prediction of the bursts at this level of approximation is less than satisfactory but may be improved by including the backreaction of the excitations on the condensate. The mechanism behind the dominant effect--parametric amplification of vacuum fluctuations and freezing of modes outside of horizon--is similar to that of cosmological particle creation and structure formation in a rapid quench (which is fundamentally different from Hawking radiation in black holes). This shows that Bose-Einstein condensate dynamics is a promising venue for doing 'laboratory cosmology'.

  12. Condensation of dust in supernova ejecta

    NASA Astrophysics Data System (ADS)

    Sarangi, A.; Cherchneff, I.

    Observations in the infrared and submm indicate the presence of molecules and dust in the ejecta of type II-P supernovae. The mass of dust formed in the ejecta of supernovae is still uncertain and highly debated: Infrared observations indicate smaller dust masses (10-5 to 10-3 M ) before 500 days post-explosion, compared to submm observations with Herschel revealing supernova remnants as large reservoirs of cool dust (10-2 to 0.7 M ). We study the ejecta of a typical type II-P supernova with a chemical kinetic approach considering a 15 M progenitor as a benchmark. The synthesis of molecules (e.g., CO, SiO, O2, AlO, SiS, FeS, SiC, SO) and small clusters (e.g., silicates, carbon, metal oxides, metallic clusters etc.) in the gas phase is considered. The clusters form gradually over time in different ejecta zones, small dust masses form in the first 600 days (˜ 10-4 M ), that gradually increase up to ˜ 0.1 M at 1500 days post-explosion. The small clusters condense to form dust grains in the gas phase. The size distributions of different dust components are derived from the study.

  13. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  14. Perturbing a quantum gravity condensate

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen

    2015-02-01

    In a recent proposal using the group field theory approach, a spatially homogeneous (generally anisotropic) universe is described as a quantum gravity condensate of "atoms of space," which allows the derivation of an effective cosmological Friedmann equation from the microscopic quantum gravity dynamics. Here we take a first step towards the study of cosmological perturbations over the homogeneous background. We consider a state in which a single "atom" is added to an otherwise homogeneous condensate. Backreaction of the perturbation on the background is negligible and the background dynamics can be solved separately. The dynamics for the perturbation takes the form of a quantum cosmology Hamiltonian for a "wave function," depending on background and perturbations, of the product form usually assumed in a Born-Oppenheimer approximation. We show that the perturbation we consider corresponds to a spatially homogeneous metric perturbation, and for this case derive the usual procedures in quantum cosmology from fundamental quantum gravity.

  15. Wealth condensation in pareto macroeconomies

    NASA Astrophysics Data System (ADS)

    Burda, Z.; Johnston, D.; Jurkiewicz, J.; Kamiński, M.; Nowak, M. A.; Papp, G.; Zahed, I.

    2002-02-01

    We discuss a Pareto macroeconomy (a) in a closed system with fixed total wealth and (b) in an open system with average mean wealth, and compare our results to a similar analysis in a super-open system (c) with unbounded wealth [J.-P. Bouchaud and M. Mézard, Physica A 282, 536 (2000)]. Wealth condensation takes place in the social phase for closed and open economies, while it occurs in the liberal phase for super-open economies. In the first two cases, the condensation is related to a mechanism known from the balls-in-boxes model, while in the last case, to the nonintegrable tails of the Pareto distribution. For a closed macroeconomy in the social phase, we point to the emergence of a ``corruption'' phenomenon: a sizeable fraction of the total wealth is always amassed by a single individual.

  16. Polymer Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Castellanos, E.; Chacón-Acosta, G.

    2013-05-01

    In this work we analyze a non-interacting one-dimensional polymer Bose-Einstein condensate in a harmonic trap within the semiclassical approximation. We use an effective Hamiltonian coming from the polymer quantization that arises in loop quantum gravity. We calculate the number of particles in order to obtain the critical temperature. The Bose-Einstein functions are replaced by series, whose high order terms are related to powers of the polymer length. It is shown that the condensation temperature presents a shift respect to the standard case, for small values of the polymer scale. In typical experimental conditions, it is possible to establish a bound for λ2 up to ≲10-16 m2. To improve this bound we should decrease the frequency of the trap and also decrease the number of particles.

  17. Atomistic modeling of dropwise condensation

    SciTech Connect

    Sikarwar, B. S. Singh, P. L.; Muralidhar, K.; Khandekar, S.

    2016-05-23

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smaller sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.

  18. Analysis of automobile exhaust condensates.

    PubMed

    Grimmer, G

    1977-01-01

    1. On the basis of figures for the production of PAH during the Europa drive cycle by 100 passenger cars and those for the consumption of petrol in the Federal Republic of Germany, an annual emission of 1,850 kg benzo[a]pyrene from petrol engine vehicles has been calculated. 2. The carcinogenic effect of benzo[a]pyrene accounts for only 9% of the total activity of exhaust condensates. 3. The amounts of other known carcinogenic PAH, such as benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[j]fluoranthene, indeno[1,2,3-cd]pyrene and dibenzo[a,h]anthracene are shown in Table 2. (table: see text). Assuming that there is no significant promoting or hyper-additive effect, it can be estimated that these six known carcinogenic PAH contribute about 10-15% of the total carcinogenicity. 4. Six unknown PAH were found: cyclopenteno[cd]pyrene (mol wt 226), methylenebenzo[a]pyrene (mol 264), methylenebenzo[e]pyrene (mol wt 264), methylenebenzo[ghi]perylene (mol wt 288), PAH mol wt 300A and PAH mol wt 300B. It is reasonable to assume that these unknown PAH account for the predominant part of the carcinogenic effect. Biological tests with these pure substances are being undertaken by Drs Pott, Pfeiffer and Habs. 5. It has been shown that almost all of the carcinogenic effect of automobile exhaust condensates is due to PAH. To support this claim, the carcinogenic effects of the exhaust condensate should be compared with those of a mixture of the known and unknwon PAH in the same proportions as are found in the exhaust condensate. The gas chromatogram of such a mixture is shown in Figure 6.

  19. Atomistic modeling of dropwise condensation

    NASA Astrophysics Data System (ADS)

    Sikarwar, B. S.; Singh, P. L.; Muralidhar, K.; Khandekar, S.

    2016-05-01

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smaller sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.

  20. Revisiting the research of floating condensation pressure for combined cooling circuits of refrigerating condensers

    NASA Astrophysics Data System (ADS)

    Fot, A. N.; Maksimenko, V. A.

    2017-08-01

    The application of refrigeration condensers combined cooling circuit for reducing fresh water consumption is validated. The insufficiency of existing method of air and water cooling condensers combined circuits calculation is revealed. These circuits result in different values of the recommended condensation temperature (pressure) which does not correspond to a condenser combined cooling operation mode. The condensing temperatures ranges recommended by the known engineering calculation procedures; nature of their mutual change; and the small area having the common solution are graphically shown. The analysis of the known condensing temperature dependences for condensers is carried out and the influence quantities row is defined. The numerical technique of condensation temperature (pressure) determination considering the characteristics and operation modes within a year of evaporator, compressor throttling devices, compressor, condensers, and pipelines is offered. Numerical technique dependences for determination of floating condensation pressure within a year are given. In the given case, the refrigerator economic operation costs will be minimum during the year of refrigerator exploitation.

  1. Grain formation in astronomical systems: A critical review of condensation processes

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1978-01-01

    An analysis is presented of the assumption and the applicability of the three theoretical methods for calculating condensations in cosmic clouds where no pre-existing nuclei exist. The three procedures are: thermodynamic equilibrium calculations, nucleation theory, and a kinetic treatment which would take into account the characteristics of each individual collision. Thermodynamics provide detailed results on the composition temperature and composition of the condensate provided the system attains equilibrium. Because of the cosmic abundance mixture of elements, large supersaturations in some cases and low pressures, equilibrium is not expected in astronomical clouds. Nucleation theory, a combination of thermodynamics and kinetics, has the limitations of each scheme. Kinetics, not requiring equilibrium, avoids nearly all the thermodynamics difficulties but requires detailed knowledge of many reactions which thermodynamics avoids. It appears to be the only valid way to treat grain formation in space. A review of experimental studies is given.

  2. Extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Sweeney, Donald W.; Shafer, David; McGuire, James

    2001-01-01

    Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

  3. Condensation on Slippery Asymmetric Bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    2016-11-01

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  4. Condensation on Slippery Asymmetric Bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  5. Condensation shocks in hypersonic nitrogen tunnels

    NASA Technical Reports Server (NTRS)

    Hudson, Susan T.; Griffith, Wayland C.; Lederer, Melissa; Ragsdale, William C.; Yanta, William J.

    1990-01-01

    Experimental observations and a theoretical model for the onset and disappearance of condensation are provided for hypersonic flows of pure nitrogen at M = 10, 14, and 18. A method for analyzing the thermodynamic and flow properties of a partially condensed mixture from known supply conditions and measured Pitot pressure yields the local static pressure and temperature, mass fraction of the nitrogen condensed, and the Mach number of the partially condensed flow based on frozen sound speed. The transition between partially condensed-supercooled flow is found to occur at 22-25 K isobaric supercooling with the corresponding mass fraction condensed being 12-14 percent over a range of two orders of magnitude in local static pressure. The heat released and vapor mass removed during condensation ultimately raise the local pressure and temperature and reduce the flow Mach number.

  6. Universal Themes of Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose–Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose–Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995–2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose–Einstein condensation R. P. Smith; 7. Formation of Bose–Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii–Kosterlitz–Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose–Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose–Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose–Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19

  7. Condensation shocks in hypersonic nitrogen tunnels

    NASA Technical Reports Server (NTRS)

    Hudson, Susan T.; Griffith, Wayland C.; Lederer, Melissa; Ragsdale, William C.; Yanta, William J.

    1990-01-01

    Experimental observations and a theoretical model for the onset and disappearance of condensation are provided for hypersonic flows of pure nitrogen at M = 10, 14, and 18. A method for analyzing the thermodynamic and flow properties of a partially condensed mixture from known supply conditions and measured Pitot pressure yields the local static pressure and temperature, mass fraction of the nitrogen condensed, and the Mach number of the partially condensed flow based on frozen sound speed. The transition between partially condensed-supercooled flow is found to occur at 22-25 K isobaric supercooling with the corresponding mass fraction condensed being 12-14 percent over a range of two orders of magnitude in local static pressure. The heat released and vapor mass removed during condensation ultimately raise the local pressure and temperature and reduce the flow Mach number.

  8. Compressible Heating in the Condense Phase due to Pore Collapse in HMX

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Jackson, Thomas

    Axisymmetric pore collapse in HMX is studied numerically by solving multi-phase reactive Euler equations. The generation of hot spots in the condense phase due to compressible heating is examined. The motivation is to improve the understanding of the role of embedded cavities in the initiation of reaction in explosives, and to investigate the effect of hot spots in the condense phase due to compressible heating alone, complementing previous study on hot spots due to the reaction in the gas phase and at the interface. It is found that the shock-cavity interaction results in pressures and thus temperatures that are substantially higher than the post-shock values in the condense phase. However, these hot spots in the condense phase due to compressible heating alone do not seem to be sufficiently hot to lead to ignition at shock pressures of 1-3 GPa. Thus, compressible heating in the condense phase may be excluded as a mechanism for initiation of explosives. It should be pointed out that the ignition threshold for the temperature, the so-called ``switch-on'' temperature, of hot spots depend on chemistry kinetics parameters. Switch-on temperature is lower for faster reaction rate. The current chemistry kinetics parameters are based on previous experimental work. This work was supported in part by the Defense Threat Reduction Agency and by the U.S. Department of Energy.

  9. Kinetic percolation

    NASA Astrophysics Data System (ADS)

    Heinson, W. R.; Chakrabarti, A.; Sorensen, C. M.

    2017-05-01

    We demonstrate that kinetic aggregation forms superaggregates that have structures identical to static percolation aggregates, and these superaggregates appear as a separate phase in the size distribution. Diffusion limited cluster-cluster aggregation (DLCA) simulations were performed to yield fractal aggregates with a fractal dimension of 1.8 and superaggregates with a fractal dimension of D = 2.5 composed of these DLCA supermonomers. When properly normalized to account for the DLCA fractal nature of their supermonomers, these superaggregates have the exact same monomer packing fraction, scaling law prefactor, and scaling law exponent (the fractal dimension) as percolation aggregates; these are necessary and sufficient conditions for same structure. The size distribution remains monomodal until these superaggregates form to alter the distribution. Thus the static percolation and the kinetic descriptions of gelation are now unified.

  10. R410A condensation inside a commercial brazed plate heat exchanger

    SciTech Connect

    Longo, Giovanni A.

    2009-01-15

    This paper presents the heat transfer coefficients and the pressure drop measured during HFC-410A condensation inside a commercial brazed plate heat exchanger: the effects of saturation temperature, refrigerant mass flux and vapour super-heating are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature and great sensitivity to refrigerant mass flux and vapour super-heating. At low refrigerant mass flux (<20 kg/m{sup 2} s) the saturated vapour condensation heat transfer coefficients are not dependent on mass flux and are well predicted by Nusselt [W. Nusselt, Die oberflachenkondensation des wasserdampfes, Energy 60 (1916) 541-546, 569-575] analysis for vertical surface: the condensation process is gravity controlled. For higher refrigerant mass flux (>20 kg/m{sup 2}s) the saturated vapour condensation heat transfer coefficients depend on mass flux and are well predicted by Akers et al. [W.W. Akers, H.A. Deans, O.K. Crosser, Condensing heat transfer within horizontal tubes, Chem. Eng. Prog. Symp. Series 55 (1959) 171-176] equation: forced convection condensation occurs. In the forced convection condensation region the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8-10% higher than those of saturated vapour and are well predicted by Webb [R.L. Webb, Convective condensation of superheated vapor, ASME J. Heat Transfer 120 (1998) 418-421] model. A simple linear equation based on the kinetic energy per unit volume of the refrigerant flow is proposed for the computation of the frictional pressure drop. (author)

  11. Non-equilibrium atomic condensates and mixtures: collective modes, condensate growth and thermalisation

    NASA Astrophysics Data System (ADS)

    Loon Lee, Kean; Proukakis, Nick P.

    2016-11-01

    The non-equilibrium dynamics of trapped ultracold atomic gases, or mixtures thereof, is an extremely rich subject. Despite 20 years of studies, and remarkable progress mainly on the experimental front, numerous open question remain, related to the growth, relaxation and thermalisation of such systems, and there is still no universally accepted theory for their theoretical description. In this paper we discuss one of the state-of-the-art kinetic approaches, which gives an intuitive picture of the physical processes happening at the microscopic scale, being broadly applicable both below and above the critical region (but not within the critical region itself, where fluctuations become dominant and symmetry breaking takes place). Specifically, the ‘Zaremba-Nikuni-Griffin’ (ZNG) scheme provides a self-consistent description of the coupling between the condensate and the thermal atoms, including the collisions between these two subsystems. It has been successfully tested against experiments in various settings, including investigation of collective modes (e.g. monopole, dipole and quadrupole modes), dissipation of topological excitations (solitons and vortices) as well as surface evaporative cooling. Here, we show that the ZNG model can capture two important aspects of non-equilibrium dynamics for both single-component and two-component BECs: the Kohn mode (the undamped dipole oscillation independent of interactions and temperature) and (re)thermalisation leading to condensate growth following sudden evaporation. Our simulations, performed in a spherically symmetric trap reveal (i) an interesting two-stage dynamics and the emergence of a prominent monopole mode in the evaporative cooling of a single-component Bose gas, and (ii) the long thermalisation time associated with the sympathetic cooling of a realistic two-component mixture. Related open questions arise about the mechanisms and the nature of thermalisation in such systems, where further controlled

  12. Condensing efficiency of the truncated cone condenser and its comparison with the Winston cone condenser in terahertz region

    NASA Astrophysics Data System (ADS)

    Aoki, Makoto; Hiromoto, Norihisa

    2015-01-01

    The angle-dependent condensing efficiency of a truncated cone condenser (TCC) in the terahertz (THz) region has been examined by 2D ray tracing and 3D electromagnetic simulation. The condensing efficiency in the THz region is transferred to that in the optical region by theoretical dispersive reflection from a rough surface, and it is confirmed that the latter is consistent with the measured condensing efficiency in the optical region. Although the TCC has a gradual field of view (FOV) compared with the Winston cone condenser (WCC), we improved the steepness of the FOV by adding a baffle before the input aperture of the TCC. We also proved that the TCC has a high condensing efficiency at around normal incidence in comparison with the WCC in the THz region.

  13. Condensation on slippery asymmetric bumps.

    PubMed

    Park, Kyoo-Chul; Kim, Philseok; Grinthal, Alison; He, Neil; Fox, David; Weaver, James C; Aizenberg, Joanna

    2016-03-03

    Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach--based on principles derived from Namib desert beetles, cacti, and pitcher plants--that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be

  14. Cold fusion in condensed matter

    SciTech Connect

    Schommers, W.; Politis, C. )

    1989-01-01

    A model for cold fusion in condensed matter is proposed (cold fusion of deuterons in palladium). It is assumed that the palladium-deuterium system forms an alloy, i.e., it is assumed that Pd ions as well as d/sup +/ ions are embedded in an uniform background of negative charge (conduction electrons). The model is based on an interaction potential for deuterons in solid palladium which has been estimated by means of a theoretical picture well known in the physics of liquids. In particular, the following effects are possible: 1. Cold fusion in condensed matter can take place. 2. The observed energy should be larger than that given by the fusion reactions. 3. Hitherto unknown nuclear processes must not be postulated as reported by Fleischmann and Pons. 4. The deuterons are mobile. 5. The deuterons can form close-packed clusters, and in principle a fusion reaction can take place within such a cluster. 6. Not only /sup 3/He should be produced in Pd but possible /sup 4/He too. From their theoretical picture, it can be concluded that experimental results will be strongly dependent on the condition of the materials used in the experiments. This can possible explain that only a part of experiments could show up cold fusion. A well defined condition (lattice defects, different phases, impurities, etc.) of the materials is probably the most critical point in connection with the observation of cold fusion in condensed matter. The effect should also be influenced by lattice dilatations. Experiments with other materials instead of palladium (e.g. vanadium, titanium, lanthanide metals, and different alloys) should be probably more informative.

  15. Condensation on slippery asymmetric bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Grinthal, Alison; He, Neil; Fox, David; Weaver, James C.; Aizenberg, Joanna

    2016-03-01

    Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach—based on principles derived from Namib desert beetles, cacti, and pitcher plants—that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle’s bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be

  16. Marine Steam Condenser Design Optimization.

    DTIC Science & Technology

    1983-12-01

    AND AGO~NVl ’O. PROGRAM LEMHNT. PROJECT. TAlN AREA M WORK UNIT NU 1&RS Naval Postgraduate School Monterey, California 93943 I. CONTROLI.IG OPPIC NANI...efficient steam plants be developed. While there are numerous advanced concepts i . all areas of steam propulsion which can be ezplo-Zd, one simple way to...flow at the minimum cross-sectional area in the row segment. o) The heat transfer rate per square foot of condenser tube. p) The mass flow rate of

  17. Direct condensation by humid air

    NASA Astrophysics Data System (ADS)

    Schwab, S.; Schiebelsberger, B.

    1980-12-01

    The practicability of direct condensation with humid air (DKFL) for waste heat removal from thermal power plants was investigated with regard to technical, economical and environmental aspects. The adjustment of a uniform trickling-water film was examined. A vertical test tube was erected to study the phenomenon of a trickling-water film. A pilot plant with a vertical tube-bundle was installed to evaluate the main process parameters. The applicability of the cooling system is judged. A theoretical model was derived for the design of a DKFL apparatus. A vertical geometry for the test tube has essential operational and economical advantages in comparison with a horizontal one.

  18. Velocity Condensation for Magnetotactic Bacteria.

    PubMed

    Rupprecht, Jean-François; Waisbord, Nicolas; Ybert, Christophe; Cottin-Bizonne, Cécile; Bocquet, Lydéric

    2016-04-22

    Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We show that the swimming strategy, e.g., active Brownian motion versus run-and-tumble dynamics, strongly affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the phase transition to collective motion, indicating that Lévy run-and-tumble walks can outperform active Brownian processes as strategies to trigger collective behavior.

  19. Turbulent Distortion of Condensate Accretion

    NASA Technical Reports Server (NTRS)

    Hazoume, R.; Orou Chabi, J.; Johnson, J. A., III

    1997-01-01

    When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.

  20. Exact periodic and solitonic states of the spinor condensates in a uniform external potential

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hai; Yang, Shi-Jie

    2016-08-01

    We propose a method to analytically solve the one-dimensional coupled nonlinear Gross-Pitaevskii equations which govern the motion of the spinor Bose-Einstein condensates. In a uniform external potential, several classes of exact periodic and solitonic solutions, either in real or in complex forms, are obtained for both the F=1 and F=2 condensates for the Hamiltonian comprising the kinetic energy, the linear and the quadratic Zeeman energies. Real solutions take the form of composite soliton trains. Complex solutions correspond to the mass counter-flows as well as spin currents. These solutions are general that contains neither approximations nor constraints on the system parameters.

  1. Density-functional theory of hard-sphere condensation under gravity.

    PubMed

    Both, J A; Hong, D C

    2001-12-01

    The onset of condensation of hard spheres in a gravitational field is studied using density-functional theory (DFT). We find that the local density approximation yields results identical to those obtained previously using the kinetic theory [Physica A 271, 192, (1999)], and a weighted density-functional theory gives qualitatively similar results, namely, that the temperature at which condensation begins at the bottom scales linearly with the weight, diameter, and number of layers of particles. We find also that the different DFT approaches give quantitatively different results for the density profiles at low temperatures. In particular, the weighted density-functional approach reveals the layering of hard spheres in the solid regime.

  2. Bio-oil fractionation and condensation

    DOEpatents

    Brown, Robert C.; Jones, Samuel T.; Pollard, Anthony

    2017-04-04

    The present invention relates to a method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also disclosed are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  3. Bio-oil fractionation and condensation

    DOEpatents

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  4. DNA condensation in one dimension

    NASA Astrophysics Data System (ADS)

    Pardatscher, Günther; Bracha, Dan; Daube, Shirley S.; Vonshak, Ohad; Simmel, Friedrich C.; Bar-Ziv, Roy H.

    2016-12-01

    DNA can be programmed to assemble into a variety of shapes and patterns on the nanoscale and can act as a template for hybrid nanostructures such as conducting wires, protein arrays and field-effect transistors. Current DNA nanostructures are typically in the sub-micrometre range, limited by the sequence space and length of the assembled strands. Here we show that on a patterned biochip, DNA chains collapse into one-dimensional (1D) fibres that are 20 nm wide and around 70 µm long, each comprising approximately 35 co-aligned chains at its cross-section. Electron beam writing on a photocleavable monolayer was used to immobilize and pattern the DNA molecules, which condense into 1D bundles in the presence of spermidine. DNA condensation can propagate and split at junctions, cross gaps and create domain walls between counterpropagating fronts. This system is inherently adept at solving probabilistic problems and was used to find the possible paths through a maze and to evaluate stochastic switching circuits. This technique could be used to propagate biological or ionic signals in combination with sequence-specific DNA nanotechnology or for gene expression in cell-free DNA compartments.

  5. Condensation induced water hammer safety

    SciTech Connect

    Gintner, M.A.

    1997-03-10

    Condensation induced water hammer events in piping systems can cause catastrophic steam system failures which can result in equipment damage, personal injury, and even death. As an industry, we have learned to become accustomed to the ''banging'' that we often hear in our steam piping systems, and complacent in our actions to prevent it. It is unfortunate that lives are lost needlessly, as this type of water hammer event is preventable if one only applies some basic principles when operating and maintaining their steam systems. At the U. S. Department of Energy's Hanford Site where I work, there was one such accident that occurred in 1993 which took the life of a former co-worker and friend of mine. Hanford was established as part of the Manhattan Project during World War II. it is a 560 square mile complex located along the banks of the Columbia River in Southeastern Washington State. For almost 45 years, hanford's mission was to produce weapons grade plutonium for our nations defense programs. Today, Hanford no longer produces plutonium, but is focused on site clean-up and economic diversification. Hanford still uses steam for heating and processing activities, utilizing over 20 miles of piping distribution systems similar to those found in industry. Although these aging systems are still sound, they cannot stand up to the extreme pressure pulses developed by a condensation induced water hammer.

  6. Chemical Looping Combustion Kinetics

    SciTech Connect

    Edward Eyring; Gabor Konya

    2009-03-31

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  7. Ultra-low threshold polariton condensation

    NASA Astrophysics Data System (ADS)

    Steger, Mark; Fluegel, Brian; Alberi, Kirstin; Snoke, David W.; Pfeiffer, Loren N.; West, Ken; Mascarenhas, Angelo

    2017-03-01

    We demonstrate condensation of microcavity polaritons with a very sharp threshold occuring at two orders of magnitude lower pump intensity than previous demonstrations of condensation. The long cavity-lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or "polariton lasing" has long been proposed as a promising source of coherent light at lower threshold than traditional lasing, and these results suggest methods to bring this threshold even lower.

  8. Bose-Einstein Condensation of Sr84

    NASA Astrophysics Data System (ADS)

    de Escobar, Y. N. Martinez; Mickelson, P. G.; Yan, M.; Desalvo, B. J.; Nagel, S. B.; Killian, T. C.

    2009-11-01

    We report Bose-Einstein condensation of Sr84 in an optical dipole trap. Efficient laser cooling on the narrow intercombination line and an ideal s-wave scattering length allow the creation of large condensates (N0˜3×105) even though the natural abundance of this isotope is only 0.6%. Condensation is heralded by the emergence of a low-velocity component in time-of-flight images.

  9. Progress in Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito

    Recent studies of condensed matter nuclear science (CMNS) including cold fusion have accumulated some convincing data and theoretical modeling, and we are about to conclude that (1) deuteron-related clean fusion reactions and (2) cold and special transmutations may take place in the environment of condensed matter containing deuterons and protons. This emerging field of CMNS is expected to give us strong impact on the future of basic sciences for energy-application, fundamental nuclear science, and condensed matter sciences.

  10. Ultra-low threshold polariton condensation.

    PubMed

    Steger, Mark; Fluegel, Brian; Alberi, Kirstin; Snoke, David W; Pfeiffer, Loren N; West, Ken; Mascarenhas, Angelo

    2017-03-15

    We demonstrate the condensation of microcavity polaritons with a very sharp threshold occurring at a two orders of magnitude pump intensity lower than previous demonstrations of condensation. The long cavity lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or "polariton lasing" has long been proposed as a promising source of coherent light at a lower threshold than traditional lasing, and these results indicate some considerations for optimizing designs for lower thresholds.

  11. Ultra-low threshold polariton condensation

    DOE PAGES

    Steger, Mark; Fluegel, Brian; Alberi, Kirstin; ...

    2017-03-13

    Here, we demonstrate the condensation of microcavity polaritons with a very sharp threshold occurring at a two orders of magnitude pump intensity lower than previous demonstrations of condensation. The long cavity lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or 'polariton lasing' has long been proposed as a promising source of coherent light at a lower threshold than traditional lasing, and these results indicate some considerations for optimizing designs for lower thresholds.

  12. High-temperature condensates in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Grossman, L.

    1977-01-01

    Equilibrium thermodynamic calculations of the sequence of condensation of minerals from a cooling gas of solar composition play an important role in explaining the mineralogy and trace element content of different types of inclusions in carbonaceous chondrites. Group IV B iron meteorites and enstatite chondrites may also be direct condensates from the solar nebula. Condensation theory provides a framework within which chemical fractionations between different classes of chondrites may be understood.

  13. Advances in modelling of condensation phenomena

    SciTech Connect

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  14. Treatment of evaporator condensates by pervaporation

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  15. Evaporative condensing minimizes system power requirements

    SciTech Connect

    Knebel, D.E.

    1997-04-01

    Evaporative condensing is a heat-rejection technology widely applied with industrial refrigeration. When employed with HVAC systems it can reduce electrical energy and demand consumption of an HVAC system by 20 to 40%, depending on location, compared to air-cooled condensing. Evaporative condensing allows direct-expansion (DX) systems to achieve energy and demand consumption comparable to the most efficient chilled water central plant systems. As the industry focuses its attention on solving the problems of energy conservation, demand reduction, and global warming, high-efficiency air conditioning systems utilizing evaporative condensing provide a reliable and cost-effective solution today. This article addresses the advantages of evaporative condensing over air-cooled and water-cooled condensing in DX packaged systems as well as chiller/cooling tower systems. A review of condensing methods and standard system operating characteristics will be used as examples to illustrate the thermodynamic benefits of evaporative condensing. Requirements for successful operation of evaporative condensers will be discussed.

  16. Combined boiler feed and condensate pump

    SciTech Connect

    Paul Cooper, Titusville, N.J.

    1993-06-01

    A pump for drawing the condensate from a condenser and feeding it to a steam boiler is described, the combination comprising: an elongate casing adapted to be connected in a pipeline having an inlet for receiving the condensate from a steam condenser and an outlet for feeding the condensate to a steam boiler; a pump shaft mounted in said casing rotating in a pair of bearings spaced along said shaft and fixed in said casing; an electric motor mounted in said casing connected to one end of said shaft for driving it; control means for operating said electric motor; an inducer pump mounted at the other end of said shaft, driven by said shaft; a multiple stage centrifugal feed pump located in said casing driven by said shaft and receiving condensate from the inducer pump, pumping said condensate to a higher pressure suitable for feeding a steam boiler and delivering said condensate to the outlet of said pump, the multiple stage centrifugal feed pump being located adjacent said inducer pump; and said inducer pump being of the type to produce sufficient positive pressure for properly feeding condensate to said feed pump.

  17. Vapor condensation on a turbulent liquid interface

    NASA Technical Reports Server (NTRS)

    Helmick, M. R.; Khoo, B. C.; Sonin, A. A.

    1987-01-01

    An experimental investigation which seeks the fundamental relationship between the interfacial condensation rate and the parameters which control it when the liquid side is turbulent is discussed. The scaling laws for free-surface condensation are discussed for this case. It is argued that the condensation of cryogenic liquids can, in principle, be simulated in experiments using steam and water. Data are presented for the condensation rate in terms of the dimensionless scaling parameters which involve the fluid properties and the liquid-side turbulence velocity and length scales.

  18. Tolrestat kinetics

    SciTech Connect

    Hicks, D.R.; Kraml, M.; Cayen, M.N.; Dubuc, J.; Ryder, S.; Dvornik, D.

    1984-10-01

    The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total /sup 14/C were measured after dosing normal subjects and subjects with diabetes with /sup 14/C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of /sup 14/C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the same in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate.

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  1. Ghost condensation on the lattice

    SciTech Connect

    Cucchieri, Attilio; Mendes, Tereza; Mihara, Antonio

    2005-11-01

    We perform a numerical study of ghost condensation--in the so-called Overhauser channel--for SU(2) lattice gauge theory in minimal Landau gauge. The off-diagonal components of the momentum-space ghost propagator G{sup cd}(p) are evaluated for lattice volumes V=8{sup 4}, 12{sup 4}, 16{sup 4}, 20{sup 4}, 24{sup 4} and for three values of the lattice coupling: {beta}=2.2, 2.3, 2.4. Our data show that the quantity {phi}{sup b}(p)={epsilon}{sup bcd}G{sup cd}(p)/2 is zero within error bars, being characterized by very large statistical fluctuations. On the contrary, vertical bar {phi}{sup b}(p) vertical bar has relatively small error bars and behaves at small momenta as L{sup -2}p{sup -z}, where L is the lattice side in physical units and z{approx_equal}4. We argue that the large fluctuations for {phi}{sup b}(p) come from spontaneous breaking of a global symmetry and are associated with ghost condensation. It may thus be necessary (in numerical simulations at finite volume) to consider vertical bar {phi}{sup b}(p) vertical bar instead of {phi}{sup b}(p), to avoid a null average due to tunneling between different broken vacua. Also, we show that {phi}{sup b}(p) is proportional to the Fourier-transformed gluon field components A-tilde{sub {mu}}{sup b}(q). This explains the L{sup -2} dependence of vertical bar {phi}{sup b}(p) vertical bar, as induced by the behavior of vertical bar A-tilde{sub {mu}}{sup b}(q) vertical bar. We fit our data for vertical bar {phi}{sup b}(p) vertical bar to the theoretical prediction (r/L{sup 2}+v)/(p{sup 4}+v{sup 2}), obtaining for the ghost condensate v an upper bound of about 0.058 GeV{sup 2}. In order to check if v is nonzero in the continuum limit, one probably needs numerical simulations at much larger physical volumes than the ones we consider. As a by-product of our analysis, we perform a careful study of the color structure of the inverse Faddeev-Popov matrix in momentum space.

  2. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    NASA Technical Reports Server (NTRS)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  3. An Experimental Study of Filmwise Condensation on Horizontal Enhanced Condenser Tubing.

    DTIC Science & Technology

    1979-12-01

    with a 51 mm thick sheet of Johns - Manville Aerotube insulation. 22 D. CONDENSATE AND FEEDWATER SYSTEMS The condensate and feedwater systems are shown...desuperheater. The condensate and feedwater lines are insulated with 25.4 mm thick Johns - Manville Aerotube insulation. E. COOLING WATER SYSTEM The cooling

  4. Gravitino condensation in fivebrane backgrounds

    NASA Astrophysics Data System (ADS)

    Kitazawa, Noriaki

    2002-04-01

    We calculate the tension of the D3-brane in the fivebrane background which is described by the exactly solvable SU(2)k×U(1) world-sheet conformal field theory with large Kač-Moody level k. The D3-brane tension is extracted from the amplitude of one closed string exchange between two parallel D3-branes, and the amplitude is calculated by utilizing the open-closed string duality. The tension of the D3-brane in the background does not coincide with the one in the flat space-time even in the flat space-time limit: k-->∞. The finite curvature effect should vanish in the flat space-time limit and only the topological effect can remain. Therefore, the deviation suggests the condensation of the gravitino and/or dilatino which has been expected in the fivebrane background as a gravitational instanton.

  5. Relativistic Calculation on Pion Condensation

    NASA Astrophysics Data System (ADS)

    Nakano, Masahiro; Tatsumi, Toshitaka; Liu, Liang-Gang; Matsuura, Hiroyuki; Iwasaki, Yoshitaka; Sakamoto, Katsuaki; Kouno, Hiroaki; Hasegawa, Akira

    2001-04-01

    The critical density of neutral pion condensation is investigated by using a new set of Landau-Migdal parameters, which are derived from a recent experimental data on the quenching factor of Gamow-Teller giant resonance. The particle-hole and delta-hole polarizations of the pion selfenergy are calculated based on the relativistic framework and compared with several nonrelativistic formulae. It is shown that the relativistic calculation gives higher critical densities than those of the nonrelativistic calculations. It is confirmed in the relativistic calculation that "universality assumption" leads to so-called "wall" in the critical density and the wall disappears in the present calculation based on the findings of the experiment of Wakasa et al. on the quenching of the Gamow Teller strength.

  6. Condensed DNA in lipid microcompartments.

    PubMed

    Osfouri, Shahriar; Stano, Pasquale; Luisi, Pier Luigi

    2005-10-27

    DNA was studied in lipid reverse micelles with the aim of investigating the interactions of DNA with lipids in a restricted compartment with minimal water content. Circular dichroic (CD) spectra of DNA at low water content showed the characteristic polymer-salt-induced (psi) spectra of condensed DNA. Dynamic light scattering showed a peak around a radius of 400 nm (corresponding to DNA-containing micelles), and a peak around 2.5 nm (corresponding to "empty" micelles). Fourier Transform-IR (FT-IR) spectroscopy was carried out and analyzed in terms of three distinct states of water inside the micelle water pool, where the local concentration of DNA reached an estimated value of ca. 600 mg/mL, comparable to that found in restricted biological compartments.

  7. Molecular attraction of condensed bodies

    NASA Astrophysics Data System (ADS)

    Derjaguin, B. V.; Abrikosova, I. I.; Lifshitz, E. M.

    2015-09-01

    From the Editorial Board. As a contribution to commemorating the 100th anniversary of the birth of Evgenii Mikhailovich Lifshitz, it was found appropriate by the Editorial Board of Uspekhi Fizicheskikh Nauk (UFN) [Physics-Uspekhi] journal that the materials of the jubilee-associated Scientific Session of the Physical Sciences Division of the Russian Academy of Sciences published in this issue (pp. 877-905) be augmented by the review paper "Molecular attraction of condensed bodies" reproduced from a 1958 UFN issue. Included in this review, in addition to an account by Evgenii Mikhailovich Lifshitz of his theory of molecular attractive forces between condensed bodies (first published in Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (ZhETF) in 1955 and in its English translation Journal of Experimental and Theoretical Physics (JETP) in 1956), is a summary of a series of experimental studies beginning in 1949 by Irina Igorevna Abrikosova at the Institute of Physical Chemistry of the Academy of Sciences of the USSR in a laboratory led by Boris Vladimirovich Derjaguin (1902-1994), a Corresponding Member of the USSR Academy of Sciences. In 1958, however, UFN was not yet available in English translation, so the material of the review is insufficiently accessible to the present-day English-speaking reader. This is the reason why the UFN Editorial Board decided to contribute to celebrating the 100th anniversary of E M Lifshitz's birthday by reproducing on the journal's pages a 1958 review paper which contains both E M Lifshitz's theory itself and the experimental data that underpinned it (for an account of how Evgenii Mikhailovich Lifshitz was enlisted to explain the experimental results of I I Abrikosova and B V Derjaguin, see the letter to the editors N P Danilova on page 925 of this jubilee collection of publications).

  8. Counterion condensation on heparin oligomers.

    PubMed

    Minsky, Burcu Baykal; Atmuri, Anand; Kaltashov, Igor A; Dubin, Paul L

    2013-04-08

    The electropherogram of native heparin shows a broad distribution of mobilities μ, which truncates abruptly at a notably high μ = 4.7 × 10(-4) cm(2) V(-1) s(-1). This highly skewed mobility distribution is also found for the 20-saccharide chain, which shows from mass spectrometry a more uniform (symmetrical) with respect to sulfation level. Since a partially degraded heparin exhibits oligomer peaks with μ> 5 × 10(-4) cm(2) V(-1) s(-1) (appearing to escape the limitation of the mobility value for native heparin), we examined the electrophoretic behavior of chain-length monodisperse heparin oligomers. Their mobilities varied inversely with the logarithm of the contour length, L, for L from 3 to 10 nm and reached an asymptotic limit for L > 20 nm. The generality of this effect was indicated by similar behavior for oligomers of poly(styrene sulfonate). A recent theory of polyelectrolyte end effects (Manning, G. S. Macromolecules2008, 41, 6217-6227), in which chain termini exhibit reduced counterion condensation was found to quantitatively account for these results. A qualitative explanation for the anomalously high value of μ of native heparin, 10-20% higher than those seen for synthetic polyelectrolytes of higher linear charge density, is suggested on the basis of similar junction effects (Manning, G. S. Macromolecules2008, 41, 6217-6227), which reduce counterion condensation at the interfaces of regions of high and low sulfation. We suggest that these effects should be considered in models for the biofunctionality of the regulated high and low sulfation (NS/NA) domains of heparan sulfate.

  9. Tunable Vapor-Condensed Nanolenses

    PubMed Central

    2015-01-01

    Nanostructured optical components, such as nanolenses, direct light at subwavelength scales to enable, among others, high-resolution lithography, miniaturization of photonic circuits, and nanoscopic imaging of biostructures. A major challenge in fabricating nanolenses is the appropriate positioning of the lens with respect to the sample while simultaneously ensuring it adopts the optimal size and shape for the intended use. One application of particular interest is the enhancement of contrast and signal-to-noise ratio in the imaging of nanoscale objects, especially over wide fields-of-view (FOVs), which typically come with limited resolution and sensitivity for imaging nano-objects. Here we present a self-assembly method for fabricating time- and temperature-tunable nanolenses based on the condensation of a polymeric liquid around a nanoparticle, which we apply to the high-throughput on-chip detection of spheroids smaller than 40 nm, rod-shaped particles with diameter smaller than 20 nm, and biofunctionalized nanoparticles, all across an ultralarge FOV of >20 mm2. Previous nanoparticle imaging efforts across similar FOVs have detected spheroids no smaller than 100 nm, and therefore our results demonstrate the detection of particles >15-fold smaller in volume, which in free space have >240 times weaker Rayleigh scattering compared to the particle sizes detected in earlier wide-field imaging work. This entire platform, with its tunable nanolens condensation and wide-field imaging functions, is also miniaturized into a cost-effective and portable device, which might be especially important for field use, mobile sensing, and diagnostics applications, including, for example, the measurement of viral load in bodily fluids. PMID:24979060

  10. New technology in condensate polishing

    SciTech Connect

    Kunin, R.; Salem, E.; Libutti, B. . Water Div.)

    1992-08-01

    Sulfonic acid ion exchange resins. when carried into a boiler or steam generator, thermally decompose releasing large amounts of corrosive, sulfates. Replacement of the sulfonic acid resin with a carboxylic acid resin would eliminate this source of contamination. The sulfonic acid resin is a strong acid: the carboxylic acid resin is a weak acid. The carboxylic acid resin alone is not capable of splitting salts which limits its use to mixed resin beds or to its use in single or individual beds with feeds of high alkalinity or high pH values. Laboratory, pilot plant and full scale plant tests compared the two resins in precoat filters. When the resins in mixed beds were in the acid form, the weakly acid resin was almost as effective in removing sodium ion as the strongly acid resin. In the ammonium form. the weakly acid resin was generally more effective in removing sodium than the strongly acid resin. Condensate polishing reduced the sodium ion to a few parts per billion (ppB). Complete resin separation before regeneration is more important for the weakly acid resin than for the strongly acid resin. Another development found that the hydrazine reaction with oxygen could be catalyzed by powdered activated carbon combined with microfibers on a Powdex substrate. The carbon should be thoroughly washed to reduce its residual sodium content. In plant tests, the carbon reduced the oxygen concentration in condensate about 50% during startup. In preliminary tests believed to be typical, carbon lowered the oxygen concentration below 10 ppB in about 6 hours compared to 18 hours without the carbon. Oxygen is also reduced during normal operation.

  11. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.

    PubMed

    Li, Jun-De

    2013-02-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected.

  12. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers

    PubMed Central

    Li, Jun-De

    2013-01-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  13. Kinetic buffers.

    PubMed

    Alibrandi, Giuseppe; Fabbrizzi, Luigi; Licchelli, Maurizio; Puglisi, Antonio

    2015-01-12

    This paper proposes a new type of molecular device that is able to act as an inverse proton sponge to slowly decrease the pH inside a reaction vessel. This makes the automatic monitoring of the concentration of pH-sensitive systems possible. The device is a composite formed of an alkyl chloride, which kinetically produces acidity, and a buffer that thermodynamically modulates the variation in pH value. Profiles of pH versus time (pH-t plots) have been generated under various experimental conditions by computer simulation, and the device has been tested by carrying out automatic spectrophotometric titrations, without using an autoburette. To underline the wide variety of possible applications, this new system has been used to realize and monitor HCl uptake by a di-copper(II) bistren complex in a single run, in a completely automatic experiment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Optimized evaporative cooling for sodium Bose-Einstein condensation against three-body loss

    SciTech Connect

    Shobu, Takahiko; Yamaoka, Hironobu; Imai, Hiromitsu; Morinaga, Atsuo; Yamashita, Makoto

    2011-09-15

    We report on a highly efficient evaporative cooling optimized experimentally. We successfully created sodium Bose-Einstein condensates with 6.4x10{sup 7} atoms starting from 6.6x10{sup 9} thermal atoms trapped in a magnetic trap by employing a fast linear sweep of radio frequency at the final stage of evaporative cooling so as to overcome the serious three-body losses. The experimental results such as the cooling trajectory and the condensate growth quantitatively agree with the numerical simulations of evaporative cooling on the basis of the kinetic theory of a Bose gas carefully taking into account our specific experimental conditions. We further discuss theoretically a possibility of producing large condensates, more than 10{sup 8} sodium atoms, by simply increasing the number of initial thermal trapped atoms and the corresponding optimization of evaporative cooling.

  15. Soliton resonance in bose-einstein condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  16. Fragmentation of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mueller, Erich J.; Ho, Tin-Lun; Ueda, Masahito; Baym, Gordon

    2006-09-01

    We present the theory of bosonic systems with multiple condensates, providing a unified description of various model systems that are found in the literature. We discuss how degeneracies, interactions, and symmetries conspire to give rise to this unusual behavior. We show that as degeneracies multiply, so do the varieties of fragmentation, eventually leading to strongly correlated states with no trace of condensation.

  17. Drinking influences exhaled breath condensate acidity.

    PubMed

    Kullmann, Tamás; Barta, Imre; Antus, Balázs; Horváth, Ildikó

    2008-01-01

    Exhaled breath condensate analysis is a developing method for investigating airway pathology. Impact of food and drink on breath condensate composition has not been systematically addressed. The aim of the study was to follow exhaled breath condensate pH after drinking an acidic and a neutral beverage. Breath condensate, capillary blood, and urine of 12 healthy volunteers were collected before and after drinking either 1 l of coke or 1 l of mineral water. The pH of each sample was determined with a blood gas analyzer. The mean difference between the pH of two breath condensate samples collected within 15 min before drinking was 0.13+/-0.03. Condensate pH decreased significantly from 6.29+/-0.02 to 6.24+/-0.02 (p<0.03) after drinking coke and from 6.37+/-0.03 to 6.22+/-0.04 (p<0.003) after drinking water. Drinking coke induced significant changes in blood and urine pH as well. Drinking influences exhaled breath condensate composition and may contribute to the variability of exhaled breath condensate pH.

  18. Proceedings: 2002 Workshop on Condensate Polishing

    SciTech Connect

    2002-06-01

    Condensate polishing aims to control impurities in a nuclear power plant, thus allowing the unit to operate more reliably. This report contains the work presented at EPRI's 2002 Workshop on Condensate Polishing, where 36 papers were presented on current issues, research, and utility experiences involving polishing issues at both pressurized water reactor (PWR) and boiling water reactor (BWR) units.

  19. Nephron induction revisited: from caps to condensates.

    PubMed

    Sariola, Hannu

    2002-01-01

    Conversion of mesenchyme to epithelium in the metanephric kidney is clearly a multimolecular, multistep and partly redundant process. The present short review focuses on a neglected morphological aspect of kidney differentiation: the development of two transitory mesenchymal condensations that precede epithelial differentiation of nephrons. The first appearing condensate covers the tips of the collecting ducts and is termed a cap condensate. In the early kidney rudiment this structure has been referred to as a primary or early condensate. A few cells of the cap condensate (maybe only four to six cells), situated at the lateral edge of the cap, start proliferating rapidly and form a pretubular aggregate (or pretubular condensate), which converts to secretory nephron epithelia and finally segregates to different tubule segments. Throughout nephrogenesis, the cap condensates and pretubular aggregates are clearly distinguishable structures that show only partly overlapping gene expression profiles. Apart from being the source for the pretubular aggregates, the role of the cap condensate is unknown. It is now proposed that the cap regulates ureteric branching morphogenesis.

  20. Dynamic Condensation of Mass and Stiffness Matrices

    NASA Astrophysics Data System (ADS)

    Zhang, N.

    1995-12-01

    Details are given of a procedure for condensing the mass and stiffness matrices of a structure for dynamic analysis. The condensed model is based on choosing ncnatural frequencies and the corresponding modes of original model. The model is constructed so that (1) it has ncnatural frequencies equal to those of the original model, (2) the modes φ ifcless than i,j = 1, 2, . . . , ncare the same as those for the master co-ordinates in the corresponding modes of the original and (3) the responses of the condensed system at the co-ordinates Xcdue to forces at these co-ordinates, at one particular chosen frequency, are the same as those of the original system. The natural frequencies, the corresponding modes and the dynamic responses used for the condensation can be obtained from finite element analysis of the original structure. The method has been applied to the modelling of two common structures to examine its applicability. Comparisons between the performance of the condensed models obtained by means of the dynamic condensation method and that of the models obtained by the Guyan method have been conducted. The results of the example show that the condensed models determined by the dynamic condensation method retain the natural frequencies and modal shapes and perform better in describing the dynamic responses of the structures than do the corresponding models obtained by the Guyan method.

  1. Soliton resonance in bose-einstein condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  2. Collision of Bose Condensate Dark Matter structures

    SciTech Connect

    Guzman, F. S.

    2008-12-04

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  3. Hydrophilic structures for condensation management in appliances

    DOEpatents

    Kuehl, Steven John; Vonderhaar, John J.; Wu, Guolian; Wu, Mianxue

    2016-02-02

    An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.

  4. Enhancement of Condensation on a Vertical Plate

    NASA Astrophysics Data System (ADS)

    Chu, Rencai; Hatanaka, Tsutomu; Nishio, Shigefumi

    In previous study, the characteristic of the condensation heat transfer on the dispersed vertical surface were investigated experimentally for the application of the finned surface to the thermoelectric generator utilizing boiling and condensation as the electrodes of the thermoelectric module. A prediction model for this diapered finned surface was proposed, based on Adamek-Webb model of the condensation on a finned tube. In this study, a condensation heat transfer experiment on a vertical dispersed finned surfaces using FC5312 was carried out, in order to enhance the condensation heat transfer coefficient by optimizing the fin size on a dispersed heat transfer surface. Experimental parameters were the fin width, thickness, height and the dispersed fin length. As the results, it was found from the experiment there was a dispersed fin length corresponding to the condensation at the maximum and its value was 1.75 mm. As the characteristic, the condensation changed from slowly increasing to rapidly increasing and then decreasing at a steep grade, with decreasing the dispersed fin length. In addition, the fin height did not affect this optimum dispersed fin length and the dispersed fin length affects the dependence of the condensation on different fin thickness. Further, the prediction values have a good agreement with the experimental data except the case of short dispersed fin length.

  5. Chiral symmetry breaking by monopole condensation

    NASA Astrophysics Data System (ADS)

    Iwazaki, Aiichi

    2017-08-01

    Under the assumption of Abelian dominance in QCD, we have shown that chiral condensate is locally present around each QCD monopole. The essence is that either charge or chirality of a quark is not conserved, when the low energy massless quark collides with QCD monopole. In reality, the charge is conserved so that the chirality is not conserved. Reviewing the presence of the local chiral condensate, we show by using chiral anomaly that chiral nonsymmetric quark pair production takes place when a color charge is putted in a vacuum with monopole condensation, while chiral symmetric pair production takes place in a vacuum with no monopole condensation. Our results strongly indicate that the chiral symmetry is broken by the monopole condensation.

  6. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  7. Condensational Droplet Growth in Rarefied Quiescent Vapor and Forced Convective Conditions

    NASA Astrophysics Data System (ADS)

    Anand, Sushant

    can be detected is critically dependent upon controlling wall geometry and size, wall temperature, flow rate and relative humidity of nanoparticle laden air stream. Droplet growths rates and sizes have been predicted based on different models. The efficacy of the device under various conditions has been measured in terms of its ability to activate nanoparticles of different sizes. Since the condensation mechanism is dependent upon the Knudsen regime in which droplets are growing via condensation, special consideration was made to understand their behavior in large Knudsen number conditions. For this purpose, ESEM was used to study condensation on a bare surface. Droplet growth obtained as a function of time reveals that the rate of growth decreases as the droplet increases in size. The experimental results obtained from these experiments were matched with theoretical description provided by a model based on framework of kinetic theory. Evidence was also found which establishes the presence of submicroscopic droplets nucleating and growing in between microscopic droplets for partially wetting case.

  8. Bose–Einstein condensation and superfluidity of magnons in yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Nattermann, Thomas; Pokrovsky, Valery L.

    2017-04-01

    A brief review of the theory of quasi-equilibrium Bose–Einstein condensation and superfluidity of magnons in a film of yttrium iron garnet is presented. The Bose–Einstein condensation of magnons in YIG film at room temperature under rf pumping was discovered in 2006 by the Münster experimental team led by Demokritov. There are two symmetric minima in the magnon spectrum of a ferromagnetic film, and therefore two condensates. In 2012 the same experimental group discovered the interference of these two condensates, thus proving their coherence. The reviewed theory that explains these experimental observations predicts that the reflection symmetry of the magnon gas is spontaneously violated at Bose–Einstein condensation in thick films. In thin films the condensate is symmetric at low magnetic field and transits to the non-symmetric state at higher field. Dipolar interaction energy depends on the phase of the condensate wave function. In quasi-equilibrium it traps the phase. All these features are due to the interaction between magnons Since the magnon condensate is coherent, a logical question is whether the condensate is superfluid. Two obstacles for superfluidity are the dominance of the normal magnon density over the condensate (approximately 100-fold) and the phase trapping. We show that the velocity of the superfluid part is by 5–7 decimal orders larger than that of the normal part at typical values of the field gradients. Thus, the spin current is mainly superfluid. The phase trapping violates the U(1) symmetry, reducing it to a discrete symmetry. Stationary superfluid flow is still possible, but it becomes inhomogeneous. In 1-d stationary flow at low kinetic energy the condensate phase over long intervals of length remains close to the trapped values and changes by 2π within comparatively short intervals (phase solitons). The current and number of magnons are conserved globally but not locally, since they transfer spin momentum to the lattice. These

  9. Condensed Matter Theories - Volume 22

    NASA Astrophysics Data System (ADS)

    Reinholz, Heidi; Röpke, Gerd; de Llano, Manuel

    2007-09-01

    pt. A. Fermi liquids. Pressure comparison between the spherical cellular model and the Thomas-Fermi model / G.A. Baker, Jr. Pair excitations and vertex corrections in Fermi fluids and the dynamic structure function of two-dimension 3He / H.M. Böhm, H. Godfrin, E. Krotscheck, H.J. Lauter, M. Meschke and M. Panholzer. Condensation of helium in wedges / E.S. Hernádez ... [et al.]. Non-Fermi liquid behavior from the Fermi-liquid approach / V.A. Khodel ... [et al.]. Theory of third sound and stability of thin 3He-4He superfluid films / E. Krotscheck and M.D. Miller. Pairing in asymmetrical Fermi systems / K.F. Quader and R. Liao. Ground-state properties of small 3He drops from quantum Monte Carlo simulations / E. Sola, J. Casulleras and J. Boronat. Ground-state energy and compressibility of a disordered two-dimensional electron gas / Tanatar ... [et al.]. Quasiexcitons in photoluminescence of incompressible quantum liquids / A. Wójs, A.G ladysiewicz and J.J. Quinn -- pt. B. Bose liquids. Quantum Boltzmann liquids / K.A. Gernoth, M L. Ristig and T. Lindenau. Condensate fraction in the dynamic structure function of Bose fluids / M. Saarela, F. Mazzanti and V. Apaja -- pt. C. Strongly-correlated electronic systems. Electron gas in high-field nanoscopic transport: metallic carbon nanotubes / F. Green and D. Neilson. Evolution and destruction of the Kondo effect in a capacitively coupled double dot system / D.E. Logan and M.R. Galpin. The method of increments-a wavefunction-based Ab-Initio correlation method for solids / B. Paulus. Fractionally charged excitations on frustrated lattices / E. Runge, F. Pollmann and P. Fulde. 5f Electrons in actinides: dual nature and photoemission spectra / G. Zwicknagl -- pt. D. Magnetism. Magnetism in disordered two-dimensional Kondo-Necklace / W. Brenig. On the de Haas-can Alphen oscillation in 2D / S. Fujita and D.L. Morabito. Dynamics in one-dimensional spin systems-density matrix reformalization group study / S. Nishimoto and M

  10. Comparing the mechanism of water condensation and evaporation in glassy aerosol.

    PubMed

    Bones, David L; Reid, Jonathan P; Lienhard, Daniel M; Krieger, Ulrich K

    2012-07-17

    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3-4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫10(3) s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 10(13) Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk.

  11. Comparing the mechanism of water condensation and evaporation in glassy aerosol

    PubMed Central

    Bones, David L.; Reid, Jonathan P.; Lienhard, Daniel M.; Krieger, Ulrich K.

    2012-01-01

    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3–4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫103 s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 1013 Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk. PMID:22753520

  12. Kinetic Theory and Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Sone, Yoshio

    This monograph gives a comprehensive description of the relationship and connections between kinetic theory and fluid dynamics, mainly for a time-independent problem in a general domain. Ambiguities in this relationship are clarified, and the incompleteness of classical fluid dynamics in describing the behavior of a gas in the continuum limit—recently reported as the ghost effect—is also discussed. The approach used in this work engages an audience of theoretical physicists, applied mathematicians, and engineers. By a systematic asymptotic analysis, fluid-dynamic-type equations and their associated boundary conditions that take into account the weak effect of gas rarefaction are derived from the Boltzmann system. Comprehensive information on the Knudsen-layer correction is also obtained. Equations and their boundary conditions are carefully classified depending on the physical context of problems. Applications are presented to various physically interesting phenomena, including flows induced by temperature fields, evaporation and condensation problems, examples of the ghost effect, and bifurcation of flows. Key features: * many applications and physical models of practical interest * experimental works such as the Knudsen compressor are examined to supplement theory * engineers will not be overwhelmed by sophisticated mathematical techniques * mathematicians will benefit from clarity of definitions and precise physical descriptions given in mathematical terms * appendices collect key derivations and formulas, important to the practitioner, but not easily found in the literature Kinetic Theory and Fluid Dynamics serves as a bridge for those working in different communities where kinetic theory or fluid dynamics is important: graduate students, researchers and practitioners in theoretical physics, applied mathematics, and various branches of engineering. The work can be used in graduate-level courses in fluid dynamics, gas dynamics, and kinetic theory; some parts

  13. DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END OF THE CONDENSING SYSTEM, REUSED BY VIVIANNA WORKS AS THE END OF THEIR CONDENSING SYSTEM, LOOKING SOUTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  14. 26. DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END OF THE CONDENSING SYSTEM, REUSED BY VIVIANNA WORKS AS THE END OF THEIR CONDENSING SYSTEM, LOOKING SOUTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  15. Crossover from nucleation to spinodal decomposition in a condensing vapor.

    PubMed

    Wedekind, Jan; Chkonia, Guram; Wölk, Judith; Strey, Reinhard; Reguera, David

    2009-09-21

    The mechanism controlling the initial step of a phase transition has a tremendous influence on the emerging phase. We study the crossover from a purely nucleation-controlled transition toward spinodal decomposition in a condensing Lennard-Jones vapor using molecular dynamics simulations. We analyze both the kinetics and at the same time the thermodynamics by directly reconstructing the free energy of cluster formation. We estimate the location of the spinodal, which lies at much deeper supersaturations than expected. Moreover, the nucleation barriers we find differ only by a constant from the classical nucleation theory predictions and are in very good agreement with semiempirical scaling relations. In the regime from very small barriers to the spinodal, growth controls the rate of the transition but not its nature because the activation barrier has not yet vanished. Finally, we discuss in detail the influence of the chosen reaction coordinate on the interpretation of such simulation results.

  16. Fouling computations for optimized condenser cleaning

    SciTech Connect

    Wolff, P.J.; March, P.A.

    1996-08-01

    Condenser tests are typically performed to evaluate water side fouling levels. Because the water side fouling level is independent of condenser operating conditions, fouling levels determined from a condenser test should also be independent of condenser operating conditions. This study investigates the effect of inlet cooling water temperature on fouling levels computed with an empirical relation presented in the Heat Exchange Institute (HEI) Standard and with the resistance-summation method. These two methods are compared with a simplified mathematical model of a condenser and with actual test data. The comparisons show that the fouling and fouling rate computed by the HEI method are significantly lower than the resistance-summation method for cold condenser circulating water inlet temperatures. The significance of the deviation in fouling rates is then evaluated within the context of an optimized condenser cleaning schedule to determine differences in cleaning schedules and the associated dollar costs of basing cleaning decisions on each of the two methods. 11 refs., 11 figs.

  17. Boson condensation in topologically ordered quantum liquids

    NASA Astrophysics Data System (ADS)

    Neupert, Titus; He, Huan; von Keyserlingk, Curt; Sierra, Germán; Bernevig, B. Andrei

    2016-03-01

    Boson condensation in topological quantum field theories (TQFT) has been previously investigated through the formalism of Frobenius algebras and the use of vertex lifting coefficients. While general, this formalism is physically opaque and computationally arduous: analyses of TQFT condensation are practically performed on a case by case basis and for very simple theories only, mostly not using the Frobenius algebra formalism. In this paper, we provide a way of treating boson condensation that is computationally efficient. With a minimal set of physical assumptions, such as commutativity of lifting and the definition of confined particles, we can prove a number of theorems linking Boson condensation in TQFT with chiral algebra extensions, and with the factorization of completely positive matrices over Z+. We present numerically efficient ways of obtaining a condensed theory fusion algebra and S matrices; and we then use our formalism to prove several theorems for the S and T matrices of simple current condensation and of theories which upon condensation result in a low number of confined particles. We also show that our formalism easily reproduces results existent in the mathematical literature such as the noncondensability of five and ten layers of the Fibonacci TQFT.

  18. Black holes in the ghost condensate

    SciTech Connect

    Mukohyama, Shinji

    2005-05-15

    We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u{sup {mu}}=-g{sup {mu}}{sup {nu}}{partial_derivative}{sub {nu}}{phi}. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter.

  19. Enhancing dropwise condensation through bioinspired wettability patterning.

    PubMed

    Ghosh, Aritra; Beaini, Sara; Zhang, Bong June; Ganguly, Ranjan; Megaridis, Constantine M

    2014-11-04

    Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.

  20. Low-temperature Condensation of Carbon

    NASA Astrophysics Data System (ADS)

    Krasnokutski, S. A.; Goulart, M.; Gordon, E. B.; Ritsch, A.; Jäger, C.; Rastogi, M.; Salvenmoser, W.; Henning, Th.; Scheier, P.

    2017-10-01

    Two different types of experiments were performed. In the first experiment, we studied the low-temperature condensation of vaporized graphite inside bulk liquid helium, while in the second experiment, we studied the condensation of single carbon atoms together with H2, H2O, and CO molecules inside helium nanodroplets. The condensation of vaporized graphite leads to the formation of partially graphitized carbon, which indicates high temperatures, supposedly higher than 1000°C, during condensation. Possible underlying processes responsible for the instant rise in temperature during condensation are discussed. This suggests that such processes cause the presence of partially graphitized carbon dust formed by low-temperature condensation in the diffuse interstellar medium. Alternatively, in the denser regions of the ISM, the condensation of carbon atoms together with the most abundant interstellar molecules (H2, H2O, and CO), leads to the formation of complex organic molecules (COMs) and finally organic polymers. Water molecules were found not to be involved directly in the reaction network leading to the formation of COMs. It was proposed that COMs are formed via the addition of carbon atoms to H2 and CO molecules ({{C}}+{{{H}}}2\\to {HCH},{HCH}+{CO}\\to {{OCCH}}2). Due to the involvement of molecular hydrogen, the formation of COMs by carbon addition reactions should be more efficient at high extinctions compared with the previously proposed reaction scheme with atomic hydrogen.

  1. Ice-condenser aerosol tests

    SciTech Connect

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. )

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  2. Condensation Processes in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Rietmeijer, Frans J. M.; Hill, Hugh G. M.

    2002-01-01

    Astrophysical systems present an intriguing set of challenges for laboratory chemists. Chemistry occurs in regions considered an excellent vacuum by laboratory standards and at temperatures that would vaporize laboratory equipment. Outflows around Asymptotic Giant Branch (AGB) stars have timescales ranging from seconds to weeks depending on the distance of the region of interest from the star and, on the way significant changes in the state variables are defined. The atmospheres in normal stars may only change significantly on several billion-year timescales. Most laboratory experiments carried out to understand astrophysical processes are not done at conditions that perfectly match the natural suite of state variables or timescales appropriate for natural conditions. Experimenters must make use of simple analog experiments that place limits on the behavior of natural systems, often extrapolating to lower-pressure and/or higher-temperature environments. Nevertheless, we argue that well-conceived experiments will often provide insights into astrophysical processes that are impossible to obtain through models or observations. This is especially true for complex chemical phenomena such as the formation and metamorphism of refractory grains under a range of astrophysical conditions. Data obtained in our laboratory has been surprising in numerous ways, ranging from the composition of the condensates to the thermal evolution of their spectral properties. None of this information could have been predicted from first principals and would not have been credible even if it had.

  3. Initial Reaction Steps in the Condensed-Phase Decomposition of Propellants

    SciTech Connect

    Melius, C F; Piqueras, M C

    2001-12-11

    Understanding the reaction mechanisms for the decomposition of energetic materials in the condensed phase is critical to our development of detailed kinetic models of propellant combustion. To date, the reaction mechanisms in the condensed phase have been represented by global, reactions. The detailed elementary reactions subsequent to the initial NO{sub 2} bond scissioning are not known. Using quantum chemical calculations, we have investigated the possible early steps in the decomposition of energetic materials that can occur in the condensed phase. We have used methylnitrate, methylnitramine, and nitroethane as prototypes for O-NO{sub 2}, N-NO{sub 2} and C-NO{sub 2} nitro compounds. We find the energetic radicals formed from the initial NO{sub 2} bond scissioning can be converted to unsaturated non-radical intermediates as an alternative to the unzipping of the energetic radical. We propose a new, prompt oxidation mechanism in which the trapped HONO can add back onto the energetic molecule. This produces oxidation products in the condensed phase that normally would not be produced until much later in the flame. We have shown that this prompt oxidation mechanism is a general feature of both nitramines and nitrate esters. The resulting HONO formed by the H-atom abstraction will be strongly influenced by the cage effect of the condensed phase. The applicability of this mechanism is demonstrated for decomposition of ethylnitrate, illustrating the importance of the cage effect in enabling this mechanism to occur at low temperatures.

  4. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    PubMed Central

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-01-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity. PMID:27040483

  5. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    NASA Astrophysics Data System (ADS)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  6. Temperature-dependent regulation of rDNA condensation in Saccharomyces cerevisiae

    PubMed Central

    Shen, Donglai; Skibbens, Robert V.

    2017-01-01

    ABSTRACT Chromatin condensation during mitosis produces detangled and discrete DNA entities required for high fidelity sister chromatid segregation during mitosis and positions DNA away from the cleavage furrow during cytokinesis. Regional condensation during G1 also establishes a nuclear architecture through which gene transcription is regulated but remains plastic so that cells can respond to changes in nutrient levels, temperature and signaling molecules. To date, however, the potential impact of this plasticity on mitotic chromosome condensation remains unknown. Here, we report results obtained from a new condensation assay that wildtype budding yeast cells exhibit dramatic changes in rDNA conformation in response to temperature. rDNA hypercondenses in wildtype cells maintained at 37°C, compared with cells maintained at 23°C. This hypercondensation machinery can be activated during preanaphase but readily inactivated upon exposure to lower temperatures. Extended mitotic arrest at 23°C does not result in hypercondensation, negating a kinetic-based argument in which condensation that typically proceeds slowly is accelerated when cells are placed at 37°C. Neither elevated recombination nor reduced transcription appear to promote this hypercondensation. This heretofore undetected temperature-dependent hypercondensation pathway impacts current views of chromatin structure based on conditional mutant gene analyses and significantly extends our understanding of physiologic changes in chromatin architecture in response to hypothermia. PMID:28426272

  7. Temperature-dependent regulation of rDNA condensation in Saccharomyces cerevisiae.

    PubMed

    Shen, Donglai; Skibbens, Robert V

    2017-06-03

    Chromatin condensation during mitosis produces detangled and discrete DNA entities required for high fidelity sister chromatid segregation during mitosis and positions DNA away from the cleavage furrow during cytokinesis. Regional condensation during G1 also establishes a nuclear architecture through which gene transcription is regulated but remains plastic so that cells can respond to changes in nutrient levels, temperature and signaling molecules. To date, however, the potential impact of this plasticity on mitotic chromosome condensation remains unknown. Here, we report results obtained from a new condensation assay that wildtype budding yeast cells exhibit dramatic changes in rDNA conformation in response to temperature. rDNA hypercondenses in wildtype cells maintained at 37°C, compared with cells maintained at 23°C. This hypercondensation machinery can be activated during preanaphase but readily inactivated upon exposure to lower temperatures. Extended mitotic arrest at 23°C does not result in hypercondensation, negating a kinetic-based argument in which condensation that typically proceeds slowly is accelerated when cells are placed at 37°C. Neither elevated recombination nor reduced transcription appear to promote this hypercondensation. This heretofore undetected temperature-dependent hypercondensation pathway impacts current views of chromatin structure based on conditional mutant gene analyses and significantly extends our understanding of physiologic changes in chromatin architecture in response to hypothermia.

  8. Condensed droplet jumping: Capillary to inertial energy transfer

    NASA Astrophysics Data System (ADS)

    Enright, Ryan; Miljkovic, Nenad; Morris, Michael; Wang, Evelyn

    2013-03-01

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. This behavior has been shown to follow a simple inertial-capillary scaling. However, questions remain regarding the nature of the energy conversion process linking the excess surface energy of the system before coalescence and the kinetic energy of the jumping droplet. Furthermore, the primary energy dissipation mechanisms limiting this jumping behavior remain relatively unexplored. In this work, we present new experimental data from a two-camera setup capturing the trajectory of jumping droplets on nanostructured surfaces with a characteristic surface roughness length scale on the order of 10 nm. Coupled with a model developed to capture the main details of the bridging flow during coalescence, our findings suggest that: 1. the excess surface energy available for jumping is a fraction of that suggested by simple scaling due to incomplete energy transfer, 2. internal viscous dissipation is not a limiting factor on the jumping process at droplet sizes on the order of 10 μm and 3. jumping performance is strongly affected by forces associated with the external flow and fields around the droplet. This work suggests bounds on the heat transfer performance of superhydrophobic condensation surfaces.

  9. 12. ANGLED VIEW OF THE SCOTT FURNACE WITH PRIMARY CONDENSER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. ANGLED VIEW OF THE SCOTT FURNACE WITH PRIMARY CONDENSER AND SOUTH SECONDARY CONDENSER IN BACKGROUND, LOOKING SOUTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  10. Vortices and turbulence in trapped atomic condensates

    PubMed Central

    White, Angela C.; Anderson, Brian P.; Bagnato, Vanderlei S.

    2014-01-01

    After more than a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose–Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices, and superfluidity and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates. PMID:24704880

  11. Macroscopic Two-Dimensional Polariton Condensates

    NASA Astrophysics Data System (ADS)

    Ballarini, Dario; Caputo, Davide; Muñoz, Carlos Sánchez; De Giorgi, Milena; Dominici, Lorenzo; Szymańska, Marzena H.; West, Kenneth; Pfeiffer, Loren N.; Gigli, Giuseppe; Laussy, Fabrice P.; Sanvitto, Daniele

    2017-05-01

    We report a record-size, two-dimensional polariton condensate of a fraction of a millimeter radius free from the presence of an exciton reservoir. This macroscopically occupied state is formed by the ballistically expanding polariton flow that relaxes and condenses over a large area outside of the excitation spot. The density of this trap-free condensate is <1 polariton /μ m2 , reducing the phase noise induced by the interaction energy. Moreover, the backflow effect, recently predicted for the nonparabolic polariton dispersion, is observed here for the first time in the fast-expanding wave packet.

  12. Holographic Duality in Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Zaanen, Jan; Liu, Yan; Sun, Ya-Wen; Schalm, Koenraad

    2015-11-01

    Preface; 1. Introduction; 2. Condensed matter: the charted territory; 3. Condensed matter: the challenges; 4. Large N field theories for holography and condensed matter; 5. The AdS/CFT correspondence as computational device: the dictionary; 6. Finite temperature magic: black holes and holographic thermodynamics; 7. Holographic hydrodynamics; 8. Finite density: the Reissner-Nordström black hole and strange metals; 9. Holographic photoemission and the RN metal: the fermions as probes; 10. Holographic superconductivity; 11. Holographic Fermi liquids; 12. Breaking translational invariance; 13. AdS/CMT from the top down; 14. Outlook: holography and quantum matter; References; Index.

  13. Equilibrium condensation in a solar nebula

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.; De, R. R.

    1973-01-01

    In attempts to reconstruct the environment of condensation of solar system materials, particularly exemplified by certain meteorite components, the relative temperatures of the gas and the solid are of critical importance. The relationships that determine the heat balance in a circumsolar grain-gas system are examined. Fundamental considerations show that regardless of opacity or gas density, the gas will always be at a higher temperature than the solid in such regions of the system where condensation is possible. Implications of the characteristic temperature differential between the gas and the condensing solid are discussed.

  14. Open string decoupling and tachyon condensation

    NASA Astrophysics Data System (ADS)

    Chalmers, Gordon

    2001-06-01

    The amplitudes in perturbative open string theory are examined as functions of the tachyon condensate parameter. The boundary state formalism demonstrates the decoupling of the open string modes at the non-perturbative minima of the tachyon potential via a degeneration of open world-sheets and identifies an independence of the coupling constants gs and gYM at general values of the tachyon condensate. The closed string sector is generated at the quantum level; it is also generated at the classical level perturbatively through the condensation of propagating open string modes on the D-brane degrees of freedom.

  15. Heterogeneous Vapor Condensation in Boundary Layers

    SciTech Connect

    Bonilla, L. L.; Carpio, A.; Neu, J. C.

    2008-09-01

    We consider heterogeneous condensation of vapors mixed with a carrier gas in stagnation point boundary layer flow near a cold wall in the presence of solid particles much larger than the mean free path of vapor particles. The supersaturated vapor condenses on the particles by diffusion, particles and droplets are thermophoretically attracted to the wall. We sketch three asymptotic theories of the condensation process, calculate the flow-induced shift in the dew point interface, vapor density profile and deposition rates at the wall, and compare them to direct numerical simulation.

  16. Dropwise condensation dynamics in humid air

    NASA Astrophysics Data System (ADS)

    Castillo Chacon, Julian Eduardo

    Dropwise condensation of atmospheric water vapor is important in multiple practical engineering applications. The roles of environmental factors and surface morphology/chemistry on the condensation dynamics need to be better understood to enable efficient water-harvesting, dehumidication, and other psychrometric processes. Systems and surfaces that promote faster condensation rates and self-shedding of condensate droplets could lead to improved mass transfer rates and higher water yields in harvesting applications. The thesis presents the design and construction of an experimental facility that allows visualization of the condensation process as a function of relative humidity. Dropwise condensation experiments are performed on a vertically oriented, hydrophobic surface at a controlled relative humidity and surface subcooling temperature. The distribution and growth of water droplets are monitored across the surface at different relative humidities (45%, 50%, 55%, and 70%) at a constant surface subcooling temperature of 15 °C below the ambient temperature. The droplet growth dynamics exhibits a strong dependency on relative humidity in the early stages during which there is a large population of small droplets on the surface and single droplet growth dominates over coalescence effects. At later stages, the dynamics of droplet growth is insensitive to relative humidity due to the dominance of coalescence effects. The overall volumetric rate of condensation on the surface is also assessed as a function of time and ambient relative humidity. Low relative humidity conditions not only slow the absolute rate of condensation, but also prolong an initial transient regime over which the condensation rate remains significantly below the steady-state value. The current state-of-the-art in dropwise condensation research indicates the need for systematic experimental investigations as a function of relative humidity. The improved understanding of the relative humidity

  17. Macroscopic Two-Dimensional Polariton Condensates.

    PubMed

    Ballarini, Dario; Caputo, Davide; Muñoz, Carlos Sánchez; De Giorgi, Milena; Dominici, Lorenzo; Szymańska, Marzena H; West, Kenneth; Pfeiffer, Loren N; Gigli, Giuseppe; Laussy, Fabrice P; Sanvitto, Daniele

    2017-05-26

    We report a record-size, two-dimensional polariton condensate of a fraction of a millimeter radius free from the presence of an exciton reservoir. This macroscopically occupied state is formed by the ballistically expanding polariton flow that relaxes and condenses over a large area outside of the excitation spot. The density of this trap-free condensate is <1  polariton/μm^{2}, reducing the phase noise induced by the interaction energy. Moreover, the backflow effect, recently predicted for the nonparabolic polariton dispersion, is observed here for the first time in the fast-expanding wave packet.

  18. Microscopic theory of equilibrium polariton condensates

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Wu, Fengcheng; Xie, Ming; Su, Jung-Jung; MacDonald, A. H.

    2016-12-01

    We present a microscopic theory of the equilibrium polariton condensate state of a semiconductor quantum well in a planar optical cavity. The theory accounts for the adjustment of matter excitations to the presence of a coherent photon field, predicts effective polariton-polariton interaction strengths that are weaker and condensate exciton fractions that are smaller than in the commonly employed exciton-photon model, and yields effective Rabi coupling strengths that depend on the detuning of the cavity-photon energy relative to the bare exciton energy. The dressed quasiparticle bands that appear naturally in the theory provide a mechanism for electrical manipulation of polariton condensates.

  19. Capillary instabilities in thin films. II. Kinetics

    SciTech Connect

    Srolovitz, D.J.; Safran, S.A.

    1986-07-01

    We consider the kinetic evolution of perturbations to thin films. Since all small (nonsubstrate intersecting) perturbations to the film surface decay, we consider the evolution of large perturbations, in the form of a single hole which exposes the substrate. For large holes, the hole radius increases at a constant rate under the assumption of evaporation/condensation kinetics. When the dominant transport mode is surface diffusion, large holes grow with a rate proportional to t/sup -3/4/ (log/sup 3/(t/ rho/sup 4//sub c/)). Small holes with a radii less than rho/sub c/ shrink, where rho/sub c/ is the film thickness divided by the tangent of the equilibrium wetting angle. The growth of these holes eventually leads to hole impingement which ruptures the film, creating a set of disconnected islands. The relaxation time for these islands to go to their equilibrium shape and size (rho/sub eq/) scales as rho/sup 2//sub eq/ or rho/sup 4//sub eq/ for evaporation/condensation or surface diffusion kinetics, respectively.

  20. Fermion condensation and gapped domain walls in topological orders

    NASA Astrophysics Data System (ADS)

    Wan, Yidun; Wang, Chenjie

    2017-03-01

    We study fermion condensation in bosonic topological orders in two spatial dimensions. Fermion condensation may be realized as gapped domain walls between bosonic and fermionic topological orders, which may be thought of as real-space phase transitions from bosonic to fermionic topological orders. This picture generalizes the previous idea of understanding boson condensation as gapped domain walls between bosonic topological orders. While simple-current fermion condensation was considered before, we systematically study general fermion condensation and show that it obeys a Hierarchy Principle: a general fermion condensation can always be decomposed into a boson condensation followed by a minimal fermion condensation. The latter involves only a single self-fermion that is its own anti-particle and that has unit quantum dimension. We develop the rules of minimal fermion condensation, which together with the known rules of boson condensation, provides a full set of rules for general fermion condensation.

  1. Recent developments in Bose-Einstein condensation

    SciTech Connect

    Kalman, G.

    1997-09-22

    This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.

  2. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE PAGES

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...

    2017-02-22

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  3. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  4. Kaon condensation in dense stellar matter

    SciTech Connect

    Lee, Chang-Hwan; Rho, M. |

    1995-03-01

    This article combines two talks given by the authors and is based on Works done in collaboration with G.E. Brown and D.P. Min on kaon condensation in dense baryonic medium treated in chiral perturbation theory using heavy-baryon formalism. It contains, in addition to what was recently published, astrophysical backgrounds for kaon condensation discussed by Brown and Bethe, a discussion on a renormalization-group analysis to meson condensation worked out together with H.K. Lee and S.J. Sin, and the recent results of K.M. Westerberg in the bound-state approach to the Skyrme model. Negatively charged kaons are predicted to condense at a critical density 2 {approx_lt} {rho}/{rho}o {approx_lt} 4, in the range to allow the intriguing new phenomena predicted by Brown and Bethe to take place in compact star matter.

  5. Condensation and Hydrolysis - An Optical Problem?

    ERIC Educational Resources Information Center

    Kellett, N. C.; Johnstone, A. H.

    1974-01-01

    Recent surveys have shown that pupils find the topics of esterification and condensation difficult. Reasons for the difficulty are not clear. Described is research designed to determine where the difficulties were visual or conceptual in origin. (RH)

  6. Ferromagnetic properties of charged vector boson condensate

    SciTech Connect

    Dolgov, Alexander D.; Lepidi, Angela; Piccinelli, Gabriella E-mail: lepidi@fe.infn.it

    2010-08-01

    Bose-Einstein condensation of W bosons in the early universe is studied. It is shown that, in the broken phase of the standard electroweak theory, the condensed W bosons form a ferromagnetic state with aligned spins. In this case the primeval plasma may be spontaneously magnetized inside macroscopically large domains and form magnetic fields which may be the seeds for the observed today galactic and intergalactic fields. However, in a modified theory, e.g. in a theory with stronger quartic self interactions of gauge bosons e.g. due to a smaller value of the weak mixing angle, antiferromagnetic condensation is possible. In the latter case W bosons form scalar condensate with macroscopically large electric charge density i.e. with a large average value of the bilinear product of W-vector fields but with microscopically small average value of the field itself.

  7. Accretion of Ghost Condensate by Black Holes

    SciTech Connect

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  8. Condensed-matter trio scoop Dirac prize

    NASA Astrophysics Data System (ADS)

    Durrani, Matin

    2012-09-01

    Three condensed-matter physicists, who have advanced our understanding of a strange type of material known as a "topological insulator", have won this year's Dirac medal from the International Centre for Theoretical Physics (ICTP) in Trieste, Italy.

  9. Condenser design for AMTEC power conversion

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.

    1991-01-01

    The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.

  10. Scanning Tunneling Microscopy Observation of Phonon Condensate

    PubMed Central

    Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.

    2017-01-01

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066

  11. Scanning Tunneling Microscopy Observation of Phonon Condensate.

    PubMed

    Altfeder, Igor; Voevodin, Andrey A; Check, Michael H; Eichfeld, Sarah M; Robinson, Joshua A; Balatsky, Alexander V

    2017-02-22

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.

  12. Forming a Bose-Einstein Condensate

    NASA Image and Video Library

    2014-09-26

    This sequence of false-color images shows the formation of a Bose-Einstein condensate in the Cold Atom Laboratory prototype at NASA Jet Propulsion Laboratory as the temperature gets progressively closer to absolute zero.

  13. Magnons in a box: Condensation and Application

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Olf, Ryan; Wu, Shun; Kadau, Holger; Marti, G. Edward; Stamper-Kurn, Dan

    2016-05-01

    Ultracold gases offer us a remarkable window into the quantum world, allowing direct access to a wide range of manybody and condensed matter phenomena at convenient macroscopic length and time scales. However, producing ultracold gases at ever lower entropy, and measuring statistical properties such as temperature in these low entropy regimes, is a persistent challenge. Magnons, gapless spin excitations of spinor Bose Einstein Condensate (BEC), are expected to behave like free particles. We show that magnons can be used to cool BEC in a deep trap and serve as a thermometer to measure temperatures at extremely low entropy-per-particle. Unlike atoms trapped in a harmonic trap, trapped magnons experience a box potential due to near exact cancellation of the trapping potential by the mean-field interaction within the condensate. We observe the quasi-condensation of magnon excitations within this nature-made box.

  14. Condenser design for AMTEC power conversion

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.

    1991-01-01

    The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.

  15. Scanning Tunneling Microscopy Observation of Phonon Condensate

    NASA Astrophysics Data System (ADS)

    Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.

    2017-02-01

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.

  16. Arnold Sommerfeld and Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Joas, Christian; Eckert, Michael

    2017-03-01

    Arnold Sommerfeld (1868-1951), one of the founders of modern theoretical physics and a pioneer of quantum theory, was no condensed matter physicist. He nevertheless played a crucial role for the history of the field. Besides his important contributions to the study of condensed matter systems, among which his seminal electron gas theory of metallic conduction probably stands out, he influenced the field through his very approach to science, through his way of “doing” physics. Sommerfeld's specific style permeated not only his research but also his teaching and his promoting of physics. This has had a lasting influence on the practices of physicists to this day, and not only, but importantly, on those of condensed matter physicists. This article aims to provide a concise account of Sommerfeld's influence on the study of condensed matter systems, with regard to both his research and his practice.

  17. The condensation of water on adsorbed viruses.

    PubMed

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to <50 nm. The viruses preserved their shape after a condensation/evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  18. Nonlinear interactions in an organic polariton condensate.

    PubMed

    Daskalakis, K S; Maier, S A; Murray, R; Kéna-Cohen, S

    2014-03-01

    Under the right conditions, cavity polaritons form a macroscopic condensate in the ground state. The fascinating nonlinear behaviour of this condensate is largely dictated by the strength of polariton-polariton interactions. In inorganic semiconductors, these result principally from the Coulomb interaction between Wannier-Mott excitons. Such interactions are considerably weaker for the tightly bound Frenkel excitons characteristic of organic semiconductors and were notably absent in the first reported demonstration of organic polariton lasing. In this work, we demonstrate the realization of an organic polariton condensate, at room temperature, in a microcavity containing a thin film of 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene. On reaching threshold, we observe the spontaneous formation of a linearly polarized condensate, which exhibits a superlinear power dependence, long-range order and a power-dependent blueshift: a clear signature of Frenkel polariton interactions.

  19. Condensation and Hydrolysis - An Optical Problem?

    ERIC Educational Resources Information Center

    Kellett, N. C.; Johnstone, A. H.

    1974-01-01

    Recent surveys have shown that pupils find the topics of esterification and condensation difficult. Reasons for the difficulty are not clear. Described is research designed to determine where the difficulties were visual or conceptual in origin. (RH)

  20. Ghost Condensation in N=1 Supergravity

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt

    We present the theory of an N=1 supersymmetric ghost condensate coupled to supergravity using a general formalism for constructing locally supersymmetric higher-derivative chiral superfield actions. The theory admits a ghost condensate vacuum in de Sitter spacetime. Expanded around this vacuum, the scalar sector is shown to be ghost-free with no spatial gradient instabilities. The fermion sector is found to consist of a massless chiral fermion and a massless gravitino. The ghost condensate vacuum spontaneously breaks local supersymmetry with the chiral field as the Goldstone fermion. Although potentially able to get a mass through the super-Higgs effect, the vanishing superpotential in the ghost condensate theory renders the gravitino massless.

  1. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  2. Passive control of unsteady condensation shock wave

    NASA Astrophysics Data System (ADS)

    Setoguchi, Toshiaki; Matsuo, Shigeru; Shimamoto, Katsumi; Yasugi, Shinichi; Yu, Shen

    2000-12-01

    A rapid expansion of moist air or steam in a supersonic nozzle gives rise to nonequilibrium condensation phenomena. Thereby, if the heat released by condensation of water vapour exceeds a certain quantity, the flow will become unstable and periodic flow oscillations of the unsteady condensation shock wave will occur. For the passive control of shock-boundary layer interaction using the porous wall with a plenum underneath, many papers have been presented on the application of the technique to transonic airfoil flows. In this paper, the passive technique is applied to three types of oscillations of the unsteady condensation shock wave generated in a supersonic nozzle in order to suppress the unsteady behavior. As a result, the effects of number of slits and length of cavity on the aspect of flow field have been clarified numerically using a 3rd-order MUSCL type TVD finite-difference scheme with a second-order fractional-step for time integration.

  3. Condensate polishers add operating reliability and flexibility

    SciTech Connect

    Layman, C.M.; Bennett, L.L.

    2008-08-15

    Many of today's advanced steam generators favour either an all-volatile treatment or oxygenated treatment chemistry programme, both of which require strict maintenance of an ultra-pure boiler fedwater ro condensate system. Those requirements are many times at odds with the lower-quality water sources, such as greywater, available for plant makeup and cooling water. Adding a condensate polisher can be a simple, cost-effective solution. 4 figs.

  4. Essay: fifty years of condensed matter physics.

    PubMed

    Cohen, Marvin L

    2008-12-19

    Since the birth of Physical Review Letters fifty years ago, condensed matter physics has seen considerable growth, and both the journal and the field have flourished during this period. In this essay, I begin with some general comments about condensed matter physics and then give some personal views on the conceptual development of the field and list some highlights. The focus is mostly on theoretical developments.

  5. Dynamic simulation recalls condensate piping event

    SciTech Connect

    Farrell, R.J.; Reneberg, K.O. ); Moy, H.C. )

    1994-05-01

    This article describes how experience gained from simulating and reconstructing a condensate piping event will be used by Consolidated Edison to analyze control system problems. A cooperative effort by Con Edison and the Chemical Engineering Department at Polytechnic University used modular modeling system to investigate the probable cause of a Con Edison condensate piping event. Con Edison commissioned the work to serve as a case study for the more general problem of control systems analysis using dynamic simulation and MMS.

  6. Dynamics of Fragmented Condensates and Macroscopic Entanglement

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel; Jin, Shi

    2017-08-01

    The relative phase of the order parameters in the collision of two condensates can influence the outcome of their collision in the case of weak coupling. With increasing interaction strength, however, the initially independent phases of the two order parameters in the colliding partners quickly become phase locked, as the strong coupling favors an overall phase rigidity of the entire condensate, and upon their separation the emerging superfluid fragments become entangled.

  7. Molecular equilibrium with condensation. [in astrophysics

    NASA Technical Reports Server (NTRS)

    Sharp, C. M.; Huebner, W. F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated.

  8. Enhancement of Condensation on a Vertical Plate

    NASA Astrophysics Data System (ADS)

    Chu, Rencai; Hatanaka, Tsutomu; Nishio, Shigefumi

    In previous study, the characteristic of the condensation heat transfer on the dispersed vertical surface were investigated experimentally for the application of the finned surface to the thermoelectric generator utilizing boiling and condensation as the electrodes of the thermoelectric module. A prediction model for this diapered finned surface was proposed, based on Adamek-Webb model of the condensation on a finned tube. In this study, a condensation heat transfer experiment on a vertical dispersed finned surfaces using FC5312 was carried out, in order to enhance the condensation heat transfer coefficient by optimizing the fin size on a dispersed heat transfer surface. The object of the experiment was limited to the rectangular fin with the height of 3 mm. Experimental parameters were the temperature difference, the fin groove width, the fin thickness and the dispersing size on the vertical direction. As the results, it was found from the experiment that the dependence of the condensation heat transfer coefficient on the dispersed size is controlled by the fin groove width. That is, the condensation heat transfer coefficient will increase for a smaller fin groove width and will decrease for a larger fin groove width, with decreasing of the dispersing size. Moreover, there is an optimum fin thickness at which the condensation heat transfer coefficient becomes the maximum in the case of constant fin groove width for both size of the fin groove width. This effect of the fin thickness is more significant for the smaller fin groove width. Further, the prediction values exhibit a good agreement with the experimental data in the present experiment.

  9. Kinetic Monte Carlo approach to nonequilibrium bosonic systems

    NASA Astrophysics Data System (ADS)

    Liew, T. C. H.; Flayac, H.; Poletti, D.; Savenko, I. G.; Laussy, F. P.

    2017-09-01

    We consider the use of a kinetic Monte Carlo approach for the description of nonequilibrium bosonic systems, taking nonresonantly excited exciton-polariton condensates and bosonic cascade lasers as examples. In the former case, the considered approach allows the study of the cross-over between incoherent and coherent regimes, which represents the formation of a quasicondensate that forms purely from the action of energy relaxation processes rather than interactions between the condensing particles themselves. In the latter case, we show theoretically that a bosonic cascade can develop an output coherent state.

  10. Diagrammatics for Bose condensation in anyon theories

    NASA Astrophysics Data System (ADS)

    Eliëns, I. S.; Romers, J. C.; Bais, F. A.

    2014-11-01

    We reformulate the topological symmetry-breaking scheme for phase transitions in systems with anyons in a graphical manner. A set of quantities called vertex lifiting coefficients (VLCs) is introduced and used to specify the full operator content of the broken phase. First, it is shown how the assumption that a set of charges behaves like the vacuum of a new theory naturally leads to diagrammatic consistency conditions for a condensate. This recovers the notion of a condensate used in earlier approaches and uncovers the connection to pure mathematics. The VLCs are needed to solve the consistency conditions and establish the mapping of the fusion and splitting spaces of the broken theory into the parent phase. This enables one to calculate the full set of topological data (S ,T ,R , and F matrices) for the condensed phase and closed-form expressions in terms of the VLCs are provided. We furthermore furnish a concrete recipe to lift arbitrary diagrams directly from the condensed phase to the original phase using only a limited number of VLCs and we describe a method for the explicit calculation of VLCs for a large class of bosonic condensates. This allows for the explicit calculation of condensed-phase diagrams in many physically relevant cases and representative examples are worked out in detail.

  11. Interstitial Condensation Risk at Thermal Rehabilitated Buildings

    NASA Astrophysics Data System (ADS)

    Baran, I.; Bliuc, I.; Iacob, A.; Dumitrescu, L.; Pescaru, R. A.; Helepciuc, C.

    2016-11-01

    The increasing thermal insulation degree of existing residential buildings, aiming to reduce the energy requirements for ensuring the indoor comfort, has as expected effect the elimination of condensation risk. However, in some cases this phenomenon occurs, both on the inner surface of the closing element and also in its structure. The surface condensation causes can be identified and can be easily removed. Instead, the causes and even the presence of interstitial condensation are more difficult to be observed. But the moistening of the insulation materials and the reduction of thermal insulation capacity or even its total degradation, contravene into a large extent or totally to the main purpose of the additional thermal protection. To avoid such situations, it is necessary to respect some principles concerning the structure, resulted from the knowledge of the water vapour diffusion behaviour of various materials. It is known that condensation vulnerability is higher for the additional thermal protection solutions by disposing the insulating material on the inside surface of the closing element. But practice has shown that the condensation phenomenon is not totally excluded neither in the case of outside thermal insulation - which is the current solution applied to the rehabilitation works - if the principles mentioned above are not known and respected. In this paper two models are compared on which the risk of interstitial condensation can be checked. The analysis made on two structures of exterior walls with thermal insulation demonstrates the need for additional verifications before proposing a solution for thermal rehabilitation of the envelope elements.

  12. Dual condensates at finite isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Miao, Qing

    2016-02-01

    The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential μI in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for μI >mπ / 2 under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with T is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with T at low temperatures due to the influence of pion condensate. We also find that the dressed Polyakov-loop always rises most steeply at the chiral transition temperature, which is consistent with the previous results in Nambu-Jona-Lasinio (NJL) model and its variants without considering the center symmetry. Since both quantities are strongly affected by the chiral symmetry and pion condensation, we conclude that it is difficult to clarify the deconfinement transition from the dual condensates in this situation within this model.

  13. Numerical simulation of condensation on structured surfaces.

    PubMed

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.

  14. Condensation of the air-steam mixture in a vertical tube condenser

    NASA Astrophysics Data System (ADS)

    Havlík, Jan; Dlouhý, Tomáš

    2016-03-01

    This paper deals with the condensation of water vapour in the presence of non-condensable air. Experimental and theoretical solutions of this problem are presented here. A heat exchanger for the condensation of industrial waste steam containing infiltrated air was designed. The condenser consists of a bundle of vertical tubes in which the steam condenses as it flows downwards with cooling water flowing outside the tubes in the opposite direction. Experiments with pure steam and with mixtures of steam with added air were carried out to find the dependence of the condensation heat transfer coefficient (HTC) on the air concentration in the steam mixture. The experimental results were compared with the theoretical formulas describing the cases. The theoretical determination of the HTC is based on the Nusselt model of steam condensation on a vertical wall, where the analogy of heat and mass transfer is used to take into account the behaviour of air in a steam mixture during the condensation process. The resulting dependencies obtained from the experiments and obtained from the theoretical model have similar results. The significant decrease in the condensation HTC, which begins at very low air concentrations in a steam mixture, was confirmed.

  15. Implementation of non-condensable gases condensation suppression model into the WCOBRA/TRAC-TF2 LOCA safety evaluation code

    SciTech Connect

    Liao, J.; Cao, L.; Ohkawa, K.; Frepoli, C.

    2012-07-01

    The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model is conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)

  16. Particle growth kinetics over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Pinterich, T.; Andreae, M. O.; Artaxo, P.; Kuang, C.; Longo, K.; Machado, L.; Manzi, A. O.; Martin, S. T.; Mei, F.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Shilling, J. E.; Shiraiwa, M.; Tomlinson, J. M.; Zaveri, R. A.; Wang, J.

    2016-12-01

    Aerosol particles larger than 100 nm play a key role in global climate by acting as cloud condensation nuclei (CCN). Most of these particles, originated from new particle formation or directly emitted into the atmospheric, are initially too small to serve as CCN. These small particles grow to CCN size mainly through condensation of secondary species. In one extreme, the growth is dictated by kinetic condensation of very low-volatility compounds, favoring the growth of the smallest particles; in the other extreme, the process is driven by Raoult's law-based equilibrium partitioning of semi-volatile organic compound, favoring the growth of larger particles. These two mechanisms can lead to very different production rates of CCN. The growth of particles depends on a number of parameters, including the volatility of condensing species, particle phase, and diffusivity inside the particles, and this process is not well understood in part due to lack of ambient data. Here we examine atmospheric particle growth using high-resolution size distributions measured onboard the DOE G-1 aircraft during GoAmazon campaign, which took place from January 2014 to December 2015 near Manaus, Brazil, a city surrounded by natural forest for over 1000 km in every direction. City plumes are clearly identified by the strong enhancement of nucleation and Aitken mode particle concentrations over the clean background. As the plume traveled downwind, particle growth was observed, and is attributed to condensation of secondary species and coagulation (Fig.1). Observed aerosol growth is modeled using MOSAIC (Model for Simulating Aerosol Interactions and Chemistry), which dynamically partitions multiple compounds to all particle size bins by taking into account compound volatility, gas-phase diffusion, interfacial mass accommodation, particle-phase diffusion, and particle-phase reaction. The results from both wet and dry seasons will be discussed.

  17. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    It is widely believed that the materials making up the solar system were derived from a nebular gas and dust cloud that went through an early high-temperature stage during which virtually all of the material was in the gas phase. At one time, it was thought that the entire inner solar nebula was hot, but it is now believed that most material was processed through regions where high temperatures were achieved. Certainly some material, such as presolar grains (cf., Mendybaev et al., 2002a), has never been exposed to high temperatures. As the system cooled, solids and perhaps liquids began to condense, but at some point the partially condensed materials became isolated from the remaining gas. Various lines of evidence support this view. At the largest scale, there is the observation that the Earth, Moon, Mars, and all chondritic meteorites except for the CI chondrites are depleted to varying degrees in the abundances of moderately volatile elements relative to bulk solar system composition. The CI chondrites reflect the bulk composition of the solar system for all but hydrogen, carbon, nitrogen, oxygen, and the rare gases, the most volatile elements (see Chapter 1.03; Palme et al., 1988; McDonough and Sun, 1995; Humayun and Cassen, 2000). The depletions in moderately volatile elements are, to a significant degree, correlated with condensation temperature, suggesting progressive removal of gas as condensation proceeded ( Cassen, 1996). Additional observations that can be explained by partial condensation are that various particularly primitive components of meteorites (e.g., calcium-, aluminum-rich refractory inclusions, and certain metal grains) have mineralogy and/or details of their chemical composition that are remarkably similar to what is calculated for equilibrium condensates from a solar composition gas. For example, the calcium-, aluminum-rich inclusions (CAIs) in chondritic meteorites have compositions very similar to that calculated for the first 5% of total

  18. Mitotic chromosome condensation in vertebrates

    SciTech Connect

    Vagnarelli, Paola

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes of

  19. Buckling condensation in constrained growth

    NASA Astrophysics Data System (ADS)

    Dervaux, Julien; Ben Amar, Martine

    2011-03-01

    The multiple complexities inherent to living objects have motivated the search for abiotic substitutes, able to mimic some of their relevant physical properties. Hydrogels provide a highly monitorable counterpart and have thus found many applications in medicine and bioengineering. Recently, it has been recognized that their ability to swell could be used to unravel some of the universal physical processes at work during biological growth. However, it is yet unknown how the microscopic distinctions between swelling and biological growth affect macroscopic changes (shape, stresses) induced by volume variations. To answer this question, we focus on a clinically motivated example of growth. Some solid tumors such as melanoma or glioblastoma undergo a shape transition during their evolution. This bifurcation appears when growth is confined at the periphery of the tumor and is concomitant with the transition from the avascular to the vascular stage of the tumor evolution. To model this phenomenon, we consider in this paper the deformation of an elastic ring enclosing a core of different stiffness. When the volume of the outer ring increases, the system develops a periodic instability. We consider two possible descriptions of the volume variation process: either by imposing a homogeneous volumetric strain (biological growth) or through migration of solvent molecules inside a solid network (swelling). For thin rings, both theories are in qualitative agreement. When the interior is soft, we predict the emergence of a large wavelength buckling. Upon increasing the stiffness of the inner disc, the wavelength of the instability decreases until a condensation of the buckles occurs at the free boundary. This short wavelength pattern is independent of the stiffness of the disc and is only limited by the presence of surface tension. For thicker rings, two scenarios emerge. When a volumetric strain is prescribed, compressive stresses accumulate in the vicinity of the core and the

  20. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  1. Infinite statistics condensate as a model of dark matter

    SciTech Connect

    Ebadi, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein E-mail: b.mirza@cc.iut.ac.ir

    2013-11-01

    In some models, dark matter is considered as a condensate bosonic system. In this paper, we prove that condensation is also possible for particles that obey infinite statistics and derive the critical condensation temperature. We argue that a condensed state of a gas of very weakly interacting particles obeying infinite statistics could be considered as a consistent model of dark matter.

  2. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  3. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  4. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  5. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  6. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  7. Enhanced tubes for steam condensers. Volume 1, Summary of condensation and fouling; Volume 2, Detailed study of steam condensation

    SciTech Connect

    Webb, R.L.; Chamra, L.; Jaber, H.

    1992-02-01

    Electric utility steam condensers typically use plain tubes made of titanium, stainless steel, or copper alloys. Approximately two-thirds of the total thermal resistance is on the water side of the plain tube. This program seeks to conceive and develop a tube geometry that has special enhancement geometries on the tube (water) side and the steam (shell) side. This ``enhanced`` tube geometry, will provide increased heat transfer coefficients. The enhanced tubes will allow the steam to condense at a lower temperature. The reduced condensing temperature will reduce the turbine heat rate, and increase the plant peak load capability. Water side fouling and fouling control is a very important consideration affecting the choice of the tube side enhancement. Hence, we have consciously considered fouling potential in our selection of the tube side surface geometry. Using appropriate correlations and theoretical models, we have designed condensation and water side surface geometries that will provide high performance and be cleanable using sponge ball cleaning. Commercial tube manufacturers have made the required tube geometries for test purposes. The heat transfer test program includes measurement of the condensation and water side heat transfer coefficients. Fouling tests are being run to measure the waterside fouling resistance, and to the test the ability of the sponge ball cleaning system to clean the tubes.

  8. Thermodynamic, Kinetic, and Structural Factors in the Synthesis of Imine-Linked Dynamic Covalent Frameworks.

    SciTech Connect

    Duncan, Nathan C; Hay, Benjamin; Hagaman, Edward {Ed} W; Custelcean, Radu

    2012-01-01

    The formation of imine-linked dynamic covalent frameworks (DCFs) has been systematically studied to determine how different factors such as reaction solvent and composition, reaction kinetics and thermodynamics, and structure of the building units influence the yield, degree of condensation, and homogeneity of the resulting products. Using molecular tetraimine analogs, we first investigated the kinetics and thermodynamics of imine condensation reactions under a variety of conditions, as well as the structures of the basic tetraimine units by X-ray crystallography. These model systems allowed us to identify conditions that favored both high reversibility and fast reaction kinetics for the imine condensation, leading in the end to the development of effective synthetic routes toward imine-linked DCFs with high degrees of cross-linking and homogeneity.

  9. Deepak Condenser Model (DeCoM)

    NASA Technical Reports Server (NTRS)

    Patel, Deepak

    2013-01-01

    Development of the DeCoM comes from the requirement of analyzing the performance of a condenser. A component of a loop heat pipe (LHP), the condenser, is interfaced with the radiator in order to reject heat. DeCoM simulates the condenser, with certain input parameters. Systems Improved Numerical Differencing Analyzer (SINDA), a thermal analysis software, calculates the adjoining component temperatures, based on the DeCoM parameters and interface temperatures to the radiator. Application of DeCoM is (at the time of this reporting) restricted to small-scale analysis, without the need for in-depth LHP component integrations. To efficiently develop a model to simulate the LHP condenser, DeCoM was developed to meet this purpose with least complexity. DeCoM is a single-condenser, single-pass simulator for analyzing its behavior. The analysis is done based on the interactions between condenser fluid, the wall, and the interface between the wall and the radiator. DeCoM is based on conservation of energy, two-phase equations, and flow equations. For two-phase, the Lockhart- Martinelli correlation has been used in order to calculate the convection value between fluid and wall. Software such as SINDA (for thermal analysis analysis) and Thermal Desktop (for modeling) are required. DeCoM also includes the ability to implement a condenser into a thermal model with the capability of understanding the code process and being edited to user-specific needs. DeCoM requires no license, and is an open-source code. Advantages to DeCoM include time dependency, reliability, and the ability for the user to view the code process and edit to their needs.

  10. Vortices in a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Haljan, Paul C.

    2004-05-01

    Since the advent of Bose-Einstein condensation in the dilute alkalis, there has been considerable interest in observing effects in atomic condensates akin to the hallmark effects associated with superfluidity and superconductivity. In particular, the study of quantized vortices and vortex lattices represents an important connection between the traditional ``super" systems such as liquid Helium and this new atomic system. This thesis explores some of the first vortex experiments in a condensate of magnetically trapped Rubidium-87. Single vortex lines and rings are created using a wavefunction engineering technique, which is an ideal starting point to study the dynamical behavior of vortices within the condensate. An entirely different approach of ``intrinsic nucleation" has been developed to create rapidly rotating condensates with large amounts of vorticity. A novel variation of forced evaporation is used to simultaneously cool and spin up an ultracold gas. In this way, condensates can be formed that are rotating in excess of 95% of the centrifugal limit and contain large, extraordinarily regular lattices of well over 100 vortices. Direct detection of the vortex cores makes it possible to study the microscopic structure of the vortex arrangements both at equilibrium and under dynamical conditions where severe applied stresses distort the lattice far from its equilibrium configuration. In conclusion, the techniques developed in this work have helped to open up a new area of rotating condensate physics and, in the future, may lead to regimes of extreme rotation and quantum Hall physics. This work was performed at the University of Colorado, Boulder, under the supervision of Prof. Eric A. Cornell.

  11. Nanoscopic structure of DNA condensed for gene delivery.

    PubMed Central

    Dunlap, D D; Maggi, A; Soria, M R; Monaco, L

    1997-01-01

    Scanning force microscopy was used to examine DNA condensates prepared with varying stoichiometries of lipospermine or polyethylenimine in physiological solution. For the first time, individual DNA strands were clearly visualized in incomplete condensates without drying. Using lipospermine at sub-saturating concentrations, discrete nuclei of condensation were observed often surrounded by folded loops of DNA. Similar packing of DNA loops occurred for polyethylenimine-induced condensation. Increasing the amount of the condensing agent led to the progressive coalescence or aggregation of initial condensation nuclei through folding rather than winding the DNA. At over-saturating charge ratios of the cationic lipid or polymer to DNA, condensates had sizes smaller than or equal to those measured previously in electron micrographs. Polyethylenimine condensates were more compact than lipospermine condensates and both produced more homogeneously compacted plasmids when used in a 2-4-fold charge excess. The size and morphology of the condensates may affect their efficiency in transfection. PMID:9224610

  12. GENOTOXICITY OF TEN CIGARETTE SMOKE CONDENSATES IN FOUR TEST SYSTEMS: COMPARISONS BETWEEN ASSAYS AND CONDENSATES

    EPA Science Inventory

    What is the study?
    This the first assessment of a set of cigarette smoke condensates from a range of cigarette types in a variety (4) of short-term genotoxicity assays.
    Why was it done?
    No such comparative study of cigarette smoke condensates has been reported. H...

  13. GENOTOXICITY OF TEN CIGARETTE SMOKE CONDENSATES IN FOUR TEST SYSTEMS: COMPARISONS BETWEEN ASSAYS AND CONDENSATES

    EPA Science Inventory

    What is the study?
    This the first assessment of a set of cigarette smoke condensates from a range of cigarette types in a variety (4) of short-term genotoxicity assays.
    Why was it done?
    No such comparative study of cigarette smoke condensates has been reported. H...

  14. Chemical and Biological Kinetics

    NASA Astrophysics Data System (ADS)

    Emanuel', N. M.

    1981-10-01

    Examples of the application of the methods and ideas of chemical kinetics in various branches of chemistry and biology are considered and the results of studies on the kinetics and mechanisms of autoxidation and inhibited and catalysed oxidation of organic substances in the liquid phase are surveyed. Problems of the kinetics of the ageing of polymers and the principles of their stabilisation are discussed and certain trends in biological kinetics (kinetics of tumour growth, kinetic criteria of the effectiveness of chemotherapy, problems of gerontology, etc.) are considered. The bibliography includes 281 references.

  15. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  16. Condenser biofouling control with ferrate(VI)

    SciTech Connect

    Fagan, J.; Waite, T.D.

    1982-01-01

    Biofouling is caused by bacterial growth on the walls of the condenser. The cells become attached, increase in number, secrete extracellular material and create a slime. The organic deposits attract additional deposits of organic and inorganic material. Also increases in heat transfer resistance result in less efficient condensation and therefore less backpressure to the turbine. With less vacuum in the system, the steam passes more slowly through the turbine, generating less electricity, and resulting in greater fuel consumption per unit of electrical energy produced. To reduce this extra energy generation cost, condensers must be treated to reduce biofouling. The objective of this study was to investigate the possible use of iron(VI) ferrate as an alternative to chlorine in controlling biofilm formation. The effectiveness of ferrate in controlling film growth was investigated using a model laboratory condenser system. Potassium ferrate was used in this study. Results indicate that ferrate(VI) ion appears to be an effective antifoulant. Short contact times are required for ferrate concentrations of 10/sup -5/M to maintain condenser cleanliness. (DMC)

  17. Why double-stranded RNA resists condensation

    PubMed Central

    Tolokh, Igor S.; Pabit, Suzette A.; Katz, Andrea M.; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan; Pollack, Lois; Onufriev, Alexey V.

    2014-01-01

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to inter-DNA attraction and eventual condensation. Surprisingly, the condensation is suppressed in double-stranded RNA, which carries the same negative charge as DNA, but assumes a different double helical form. Here, we combine experiment and atomistic simulations to propose a mechanism that explains the variations in condensation of short (25 base-pairs) nucleic acid (NA) duplexes, from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA. Circular dichroism measurements suggest that duplex helical geometry is not the fundamental property that ultimately determines the observed differences in condensation. Instead, these differences are governed by the spatial variation of cobalt hexammine (CoHex) binding to NA. There are two major NA-CoHex binding modes—internal and external—distinguished by the proximity of bound CoHex to the helical axis. We find a significant difference, up to 5-fold, in the fraction of ions bound to the external surfaces of the different NA constructs studied. NA condensation propensity is determined by the fraction of CoHex ions in the external binding mode. PMID:25123663

  18. Infrared applications for steam turbine condenser systems

    NASA Astrophysics Data System (ADS)

    Lanius, Mark A.

    2000-03-01

    Infrared inspection of the main steam condensers at the Peach Bottom Atomic Power Station has been utilized successfully in detecting condenser air in-leakage problems. Air in-leakage lowers the condenser's vacuum, thus decreasing the condenser's efficiency. This creates backpressure on the turbine which lowers its efficiency, resulting in fewer megawatts generated. Air in-leakage also creates an increase in off-gas flow which is a radiological concern for both the plant and the public. Inspections are normally performed on the condenser's manway covers and rupture disks prior to an outage during coast down and post outage. The optimum conditions are 100% power and temperature, however, a high radiation field prevents the inspection until reactor power is down to 65% or less. Anomalies are typically indicated by cooling in the effected areas of the air in-leakage. The anomalies are not limited to air in-leakage. Intermittent water out-leakage, due to a heater dump valve cycling, has been detected when visual inspections field nothing.

  19. Structure of vacuum Cu–Ta condensates

    NASA Astrophysics Data System (ADS)

    Zubkov, A. I.; Zubarev, E. N.; Sobol', O. V.; Hlushchenko, M. A.; Lutsenko, E. V.

    2017-02-01

    The structure of vacuum condensate foils (separated from substrates) of the binary Cu-Ta system has been investigated both in the initial condensed state and after annealings at temperatures of up to 1000°C. It has been shown that the alloying of a vapor flow of the matrix metal (copper) with tantalum to 0.5 at % makes it possible to reduce the grain size from 3 μm to 50 nm. Depending on the tantalum concentration, condensates exhibit a broad spectrum of structural states, i.e., single- and two-phase, a supersaturated solution of tantalum in the fcc lattice of copper, etc. The structure of the objects possesses a high thermal stability. The temperature of the start of grain growth in the copper matrix depends on the tantalum content and can reach 900°C. The dispersion of the structure of copper condensates and its thermal stability is due to the formation of segregates of tantalum atoms at the boundaries of grains of the copper matrix both in the process of condensation and upon subsequent annealing.

  20. The NSF Condensed Matter Physics Program

    NASA Astrophysics Data System (ADS)

    Sokol, Paul

    The Condensed Matter Physics (CMP) program in the NSF Division of Materials Research (DMR) supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems. CMP is the largest Individual Investigator Award program in DMR and supports a broad portfolio of research spanning both hard and soft condensed matter. Representative research areas include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; topological insulators; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, liquid crystals, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields. In this talk I will review the current CMP portfolio and discuss future funding trends for the program. I will also describe recent activities in the program aimed at addressing the challenges facing current and future principal investigators.

  1. Why double-stranded RNA resists condensation.

    PubMed

    Tolokh, Igor S; Pabit, Suzette A; Katz, Andrea M; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan; Pollack, Lois; Onufriev, Alexey V

    2014-01-01

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to inter-DNA attraction and eventual condensation. Surprisingly, the condensation is suppressed in double-stranded RNA, which carries the same negative charge as DNA, but assumes a different double helical form. Here, we combine experiment and atomistic simulations to propose a mechanism that explains the variations in condensation of short (25 base-pairs) nucleic acid (NA) duplexes, from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA. Circular dichroism measurements suggest that duplex helical geometry is not the fundamental property that ultimately determines the observed differences in condensation. Instead, these differences are governed by the spatial variation of cobalt hexammine (CoHex) binding to NA. There are two major NA-CoHex binding modes--internal and external--distinguished by the proximity of bound CoHex to the helical axis. We find a significant difference, up to 5-fold, in the fraction of ions bound to the external surfaces of the different NA constructs studied. NA condensation propensity is determined by the fraction of CoHex ions in the external binding mode.

  2. Cesium removal and kinetics equilibrium: Precipitation kinetics

    SciTech Connect

    Barnes, M.J.

    1999-12-17

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics.

  3. Vector meson condensation in a pion superfluid

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš; Huang, Xu-Guang

    2016-11-01

    We revisit the suggestion that charged ρ -mesons undergo Bose-Einstein condensation in isospin-rich nuclear matter. Using a simple version of the Nambu-Jona-Lasinio (NJL) model, we conclude that ρ -meson condensation is either avoided or postponed to isospin chemical potentials much higher than the ρ -meson mass as a consequence of the repulsive interaction with the preformed pion condensate. In order to support our numerical results, we work out a linear sigma model for pions and ρ -mesons, showing that the two models lead to similar patterns of medium dependence of meson masses. As a byproduct, we analyze in detail the mapping between the NJL model and the linear sigma model, focusing on conditions that must be satisfied for a quantitative agreement between the models.

  4. Quantum Langevin model for nonequilibrium condensation

    NASA Astrophysics Data System (ADS)

    Chiocchetta, Alessio; Carusotto, Iacopo

    2014-08-01

    We develop a quantum model for nonequilibrium Bose-Einstein condensation of photons and polaritons in planar microcavity devices. The model builds on laser theory and includes the spatial dynamics of the cavity field, a saturation mechanism, and some frequency dependence of the gain: quantum Langevin equations are written for a cavity field coupled to a continuous distribution of externally pumped two-level emitters with a well-defined frequency. As an example of application, the method is used to study the linearized quantum fluctuations around a steady-state condensed state. In the good-cavity regime, an effective equation for the cavity field only is proposed in terms of a stochastic Gross-Pitaevskii equation. Perspectives in view of a full quantum simulation of the nonequilibrium condensation process are finally sketched.

  5. Preoperational test report, recirculation condenser cooling systems

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  6. Dropwise condensation over superhydrophobic aluminium surfaces

    NASA Astrophysics Data System (ADS)

    Parin, R.; Del, D., Col; Bortolin, S.; Martucci, A.

    2016-09-01

    Superhydrophobic aluminum surfaces have been analyzed being a promising solution to promote dropwise condensation. Superhydrophobicity has been obtained on an aluminum substrate by etching it with two different reagents and by depositing a fluorosilane film over them to lower the surface energy. The samples are characterized by means of contact angle measurements and Scanning Electron Microscopy (SEM). Experimental tests of pure steam condensation have been carried out on the samples and DWC has been visualized. Images of the dropwise condensation have been captured with high speed camera and, furthermore, the phenomenon of the jumping droplets has been observed. A heat transfer coefficient higher than 50 kW m-2 K-1 has been measured over the samples.

  7. DROPWISE CONDENSATION ON MICRO- AND NANOSTRUCTURED SURFACES

    SciTech Connect

    Enright, R; Miljkovic, N; Alvarado, JL; Kim, K; Rose, JW

    2014-07-23

    In this review we cover recent developments in the area of surface-enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro-and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena. In the heat transfer community, researchers have been extensively exploring the use of advanced surface structuring techniques to enhance phase-change heat transfer processes. In particular, the field of vapor-to-liquid condensation and especially that of water condensation has experienced a renaissance due to the promise of further optimizing this process at the micro-and nanoscale by exploiting advances in surface engineering developed over the last several decades.

  8. Fermion masses through four-fermion condensates

    SciTech Connect

    Ayyar, Venkitesh; Chandrasekharan, Shailesh

    2016-10-12

    Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the two phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.

  9. Fermion masses through four-fermion condensates

    DOE PAGES

    Ayyar, Venkitesh; Chandrasekharan, Shailesh

    2016-10-12

    Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the twomore » phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.« less

  10. Why double-stranded RNA resists condensation

    SciTech Connect

    Tolokh, Igor S.; Pabit, Suzette; Katz, Andrea M.; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan A.; Pollack, Lois; Onufriev, Alexey

    2014-09-15

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to attraction between the negatively charged helices and eventually to condensation. Surprisingly, this effect is suppressed in double-stranded RNA, which carries the same charge as the DNA, but assumes a different double helical form. However, additional characterization of short (25 base-pairs) nucleic acid (NA) duplex structures by circular dichroism shows that measured differences in condensation are not solely determined by duplex helical geometry. Here we combine experiment, theory, and atomistic simulations to propose a mechanism that connects the observed variations in condensation of short NA duplexes with the spatial variation of cobalt hexammine (CoHex) binding at the NA duplex surface. The atomistic picture that emerged showed that CoHex distributions around the NA reveals two major NA-CoHex binding modes -- internal and external -- distinguished by the proximity of bound CoHex to the helical axis. Decreasing trends in experimentally observed condensation propensity of the four studied NA duplexes (from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA) are explained by the progressive decrease of a single quantity: the fraction of CoHex ions in the external binding mode. Thus, while NA condensation depends on a complex interplay between various structural and sequence features, our coupled experimental and theoretical results suggest a new model in which a single parameter connects the NA condensation propensity with geometry and sequence dependence of CoHex binding.

  11. Condensation-induced jumping water drops

    NASA Astrophysics Data System (ADS)

    Narhe, R. D.; Khandkar, M. D.; Shelke, P. B.; Limaye, A. V.; Beysens, D. A.

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length ˜1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  12. Condensation-induced jumping water drops.

    PubMed

    Narhe, R D; Khandkar, M D; Shelke, P B; Limaye, A V; Beysens, D A

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length approximately 1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  13. Atomic Phase Conjugation From a Bose Condensate

    PubMed Central

    Goldstein, Elena V.; Plättner, Katja; Meystre, Pierre

    1996-01-01

    We discuss the possibility of observing atomic phase conjugation from Bose condensates, and using it as a diagnostic tool to access the spatial coherence properties and to measure the lifetime of the condensate. We argue that since phase conjugation results from the scattering of a partial matter wave off the spatial grating produced by two other waves, it offers a natural way to directly measure such properties, and as such provides an attractive alternative to the optical methods proposed in the past. PMID:27805111

  14. Neutron star cooling and pion condensation

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka

    1994-01-01

    The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.

  15. Bose-Einstein condensation of ^84Sr

    NASA Astrophysics Data System (ADS)

    Natali Martinez de Escobar, Y.; Desalvo, B. J.; Mickelson, P. G.; Yan, M.; Killian, T. C.

    2010-03-01

    We observe Bose-Einstein condensation (BEC) in the alkaline-earth metal atom strontium (Sr). Bosonic ^84Sr possesses ideal collisional properties for efficient evaporative cooling to quantum degeneracy despite not being the isotope of choice due to its unfavorably low natural abundance (0.6%). This newly condensed element offers novel experimental possibilities, such as using an optical Feshbach resonance to tune atom-atom interactions with relatively low atomic losses. Equally exciting theoretical proposals use quantum fluids made of alkaline-earth atoms to create exotic quantum magnetism states and demonstrate quantum computation in optical lattices.

  16. Bose-Einstein condensation. Twenty years after

    SciTech Connect

    Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; Malomed, B. A.; Mihalache, D.

    2015-02-23

    The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.

  17. Dynamic condensation blocking in cryogenic refueling

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Muratov, C. B.

    2008-12-01

    We demonstrate that a negative feedback between vapor pressure and condensation rate may be established in two-phase systems during vapor compression with rates of practical importance. As a result, dynamic condensation blocking occurs. The effect is studied numerically in the case of filling a no-vent insulated tank by liquid hydrogen. It is shown that the filling dynamics quite sensitively depends on the filling rate, and for sufficiently fast filling rates consist of a fast stage dominated by gas compression and a slow stage governed by heat conduction in the liquid.

  18. Condenser optic with sacrificial reflective surface

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sang Hun

    2006-07-25

    Employing collector optics that have a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics are normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  19. Condenser optic with sacrificial reflective surface

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sung Hun

    2007-07-03

    Employing collector optics that has a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics is normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  20. Colored condensates deep inside neutron stars

    NASA Astrophysics Data System (ADS)

    Blaschke, David

    2014-09-01

    It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 Mʘ.

  1. Novel insights into mitotic chromosome condensation

    PubMed Central

    Piskadlo, Ewa; Oliveira, Raquel A.

    2016-01-01

    The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division. PMID:27508072

  2. Geometric approach to condensates in holographic QCD

    SciTech Connect

    Hirn, Johannes; Rius, Nuria; Sanz, Veronica

    2006-04-15

    An SU(N{sub f})xSU(N{sub f}) Yang-Mills theory on an extra-dimensional interval is considered, with appropriate symmetry-breaking boundary conditions on the IR brane. UV-brane to UV-brane correlators at high energies are compared with the OPE of two-point functions of QCD quark currents. Condensates correspond to departure from the AdS metric of the (different) metrics felt by vector and axial combinations, away from the UV brane. Their effect on hadronic observables is studied: the extracted condensates agree with the signs and orders of magnitude expected from QCD.

  3. Experimental Investigation of Flow Condensation in Microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Hyoungsoon; Park, Ilchung; Konishi, Christopher; Mudawar, Issam; May, Rochelle I.; Juergens, Jeffery R.; Wagner, James D.; Hall, Nancy R.; Nahra, Henry K.; Hasan, Mohammed M.; Mackey, Jeffery R.

    2013-01-01

    Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to

  4. An HPLC-DAD and LC-MS study of condensation oscillations with S(+)-ketoprofen dissolved in acetonitrile.

    PubMed

    Sajewicz, Mieczysław; Gontarska, Monika; Kronenbach, Dorota; Berry, Etienne; Kowalska, Teresa

    2012-03-01

    In our earlier studies, a spontaneous chiral conversion of the selected low-molecular-weight carboxylic acids (i.e., amino acids, hydroxy acids, and profen drugs) dissolved in aqueous ethanol medium, running in vitro was described. Then it became clear that this spontaneous chiral conversion is accompanied by the spontaneous condensation of the discussed compounds. With several acids, it was established that this condensation is also oscillatory in nature. The theoretical models were developed aiming to give a rough explanation of the observed non-linear processes. In this paper, the results of these studies on the dynamics of condensation with S(+)-ketoprofen, a very popular profen drug, when stored for certain amount of time dissolved in a non-aqueous medium (i.e., acetonitrile) is presented. These investigations were carried out with the aid of two independent high-performance liquid chromatographic systems with the diode array detection and of a third high-performance liquid chromatographic system equipped with mass spectrometric detection. In one cycle of chromatographic measurements, it was possible to monitor condensation of S(+)-ketoprofen in 25-min intervals for 30 h, thus obtaining kinetic information on the progress of this process. Mass spectrometric detection confirmed the presence of new species in the stored solution with molecular weights much higher than that of S(+)-ketoprofen, which can be attributed to the condensation products. The obtained data show that condensation of S(+)-ketoprofen dissolved in acetonitrile progresses in a rapid manner, and that the observed oscillatory concentration changes with S(+)-ketoprofen and with the main condensation product characterize with an irregularity and shallow amplitudes. A theoretical model was referenced that jointly describes the oscillatory chiral conversion and the oscillatory condensation with the low-molecular-weight chiral carboxylic acids.

  5. Kinetic theory of diffusion-limited nucleation.

    PubMed

    Philippe, T; Bonvalet, M; Blavette, D

    2016-05-28

    We examine binary nucleation in the size and composition space {R,c} using the formalism of the multivariable theory [N. V. Alekseechkin, J. Chem. Phys. 124, 124512 (2006)]. We show that the variable c drops out of consideration for very large curvature of the new phase Gibbs energy with composition. Consequently nuclei around the critical size have the critical composition, which is derived from the condition of criticality for the canonical variables and is found not to depend on surface tension. In this case, nucleation kinetics can be investigated in the size space only. Using macroscopic kinetics, we determine the general expression for the condensation rate when growth is limited by bulk diffusion, which accounts for both diffusion and capillarity and exhibits a different dependence with the critical size, as compared with the interface-limited regime. This new expression of the condensation rate for bulk diffusion-limited nucleation is the counterpart of the classical interface-limited result. We then extend our analysis to multicomponent solutions.

  6. Experiments on condensation over in-line and staggered condenser tubes in the presence of non-condensable gases

    NASA Astrophysics Data System (ADS)

    Ramadan, Abdulghani; Yamali, Cemil

    2013-12-01

    The problem of the forced film condensation heat transfer of pure steam and steam-air mixture flowing downward a tier of horizontal cylinders is investigated experimentally. An experimental setup was manufactured and mounted at Middle East Technical University workshop. A set of experiments were conducted to observe the condensation heat transfer phenomenon and to verify the theoretical results. The results of the experimental investigation are presented to show the effect of different parameters on the film condensation heat transfer phenomenon over bundle of tubes. These parameters include; free stream velocity, free stream non-condensable gas (air) mass fractions, free stream temperature to wall temperature difference, the angle of inclination. heat transfer coefficients are evaluated at different working conditions for both inline and staggered arrangements. Results show that; a remarked reduction in the vapor side heat transfer coefficient is noticed when very small amounts of air mass fractions present in the vapor. In addition, it decreases by increasing the temperature difference. On the other hand, it increases by increasing the free stream velocity (Reynolds number). Average heat transfer coefficient at the middle and the bottom cylinders increases by increasing the angle of inclination, whereas, no significant change is observed for that of the upper cylinder. Although some discrepancies are noticed, the present study results are inline and in a reasonable agreement with the theory and experiment in the literature.

  7. Superfluidity of Bose—Einstein condensates in ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Zhu, Qi-Zhong; Wu, Biao

    2015-05-01

    Liquid helium 4 had been the only bosonic superfluid available in experiments for a long time. This situation was changed in 1995, when a new superfluid was born with the realization of the Bose-Einstein condensation in ultracold atomic gases. The liquid helium 4 is strongly interacting and has no spin; there is almost no way to change its parameters, such as interaction strength and density. The new superfluid, Bose-Einstein condensate (BEC), offers various advantages over liquid helium. On the one hand, BEC is weakly interacting and has spin degrees of freedom. On the other hand, it is convenient to tune almost all the parameters of a BEC, for example, the kinetic energy by spin-orbit coupling, the density by the external potential, and the interaction by Feshbach resonance. Great efforts have been devoted to studying these new aspects, and the results have greatly enriched our understanding of superfluidity. Here we review these developments by focusing on the stability and critical velocity of various superfluids. The BEC systems considered include a uniform superfluid in free space, a superfluid with its density periodically modulated, a superfluid with artificially engineered spin-orbit coupling, and a superfluid of pure spin current. Due to the weak interaction, these BEC systems can be well described by the mean-field Gross-Pitaevskii theory and their superfluidity, in particular critical velocities, can be examined with the aid of Bogoliubov excitations. Experimental proposals to observe these new aspects of superfluidity are discussed. Project supported by the National Basic Research Program of China (Grant Nos. 2013CB921903 and 2012CB921300) and the National Natural Science Foundation of China (Grant Nos. 11274024, 11334001, and 11429402).

  8. Non-traditional Aharonov-Bohm effects in condensed matter

    SciTech Connect

    Krive, I.V. ); Rozhavsky, A.S. )

    1992-05-10

    In 1959, Aharonov and Bohm proposed an elegant experiment demonstrating observability of electromagnetic potentials (or, which is the same, the non-locality of the wave function of charged particles) in quantum mechanics. This paper discusses the Aharonov-Bohm effect, based on the fundamental principles of quantum theory, as the superposition principles, the quantum character of motion of particles and locality of the interaction of a charge with an electromagnetic potential L{sub int} = j{sub {mu}}A{sup {mu}}. It is thus no wonder that the Aharonov-Bohm's paper aroused much dispute which is still ongoing. Originally, the Aharonov-Bohm effect (ABE) means the dependence of the interference pattern on the magnetic fluid flux {phi} in a Gendaken experiment on a coherent electron beam in the field of an infinitely thin solenoid. Later, however, it became common to refer to the Aharonov-Bohm phenomenon wherever the characteristics of systems under study appear to depend on the flux {phi} in the absence of electric and magnetic fields. In this sense, it was highly interesting to analyze the ABE in condensed media (the many-particle Aharonov-Bohm effect), in particular to study the dependence of the thermodynamic and kinetic characteristics, e.g., of metal on the flux. Such a problem was first discussed by Byers and Yang who formulated the general theorems related to the ABE in conducting condensed media. The next important step was the work of Kulik who formulated a concrete model and calculated the flux-dependent contribution to the metal free energy and provided a first clear formulation of the requirements to reveal.

  9. Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations.

    PubMed

    Czebe, Krisztina; Barta, Imre; Antus, Balázs; Valyon, Márta; Horváth, Ildikó; Kullmann, Tamás

    2008-05-01

    Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to -20 or -70 degrees C. Condensate pH at standardised CO(2) level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Breath condensates collected using EcoScreen were more alkaline (6.45+/-0.20 vs. 6.19+/-0.23, p<0.05 and 6.10+/-0.26, p<0.001) and contained more protein (3.89+/-2.03 vs. 2.65+/-1.98, n.s. and 1.88+/-1.99 microg/ml, p<0.004) as compared to the other devices. Only parameters obtained with R-Tube and Anacon correlated. Condensing temperature affected condensate pH (5.99+/-0.20 at -20 degrees C and 5.82+/-0.07 at -70 degrees C, p<0.05) but not protein content. Leukotriene B(4) was not found in any sample and cysteinyl-leukotriene was not found in condensates collected with R-Tube or Anacon. Condenser type influences sample pH, total protein content and cysteinyl-leukotriene concentration. Condensing temperature influences condensate pH but not total protein content. These results suggest that adherence of the biomarkers to condenser surface and condensing temperature may play a role but does not fully explain the variability of EBC biomarker levels.

  10. Poster 4: Investigating the first steps of hydrocarbon condensation in the laboratory and in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Biennier, Ludovic; Bourgalais, Jeremy; Benidar, Abdessamad; Le Picard, Sebastien

    2016-06-01

    Hydrocarbons formed in Titan's cold atmosphere, starting with ethane C2H6, ethylene C2H4, acetylene C2H2, propane C3H8,... up to benzene C6H6, play some role in aerosol production, cloud processes, rain generation and Titan's lakes formation. We have started to study in the laboratory the kinetics of the first steps of condensation of these hydrocarbons. Rate coefficients are very sensitive to the description of the potential interaction surfaces of the molecules involved. Combined theoretical and experimental studies at the molecular level of the homogenous nucleation of various small molecules should improve greatly our fundamental understanding. This knowledge will serve as a model for studying more complex nucleation processes actually taking places in planetary atmospheres. Here we present the first experimental kinetic study of the dimerization of two small hydrocarbons: ethane C2H6 and propane C3H8. We have performed experiments to identify the temperature and partial densities ranges over which small hydrocarbon clusters form in saturated uniform supersonic flows. Using our unique reactor based on a Laval nozzle expansions, the kinetics of the formation has also been investigated down to 23 K. The chemical species present in the reactor are probed by a time of flight mass spectrometer equipped with an electron gun for soft ionization of the neutral reagents and products. This work aims at putting some constraints on the role of small hydrocarbon condensation in the formation of haze particles in the dense atmosphere of Titan.

  11. Correlation, Decoherence, Dephasing and Relaxation in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Chemla, Daniel

    2001-03-01

    The most striking differences between classical and quantum systems is that the latter are capable of being in entangled states, as recently demonstrated in atomic systems. It remains, however, a challenge to make similar observations in condensed matter, with obvious implications on practical implementation of quantum information processing. Entanglement survives only as long as the relative phase of the sates entering in the coherent superposition remains well defined. In condensed matter because of the extreme density, 10^23 cm-3, many processes occur that turn coherent excitations into incoherent occupations and qualitatively change the behavior of initially coherent systems. These processes stem from Coulomb correlation which has a dual role, it drives coherence and destroys it! Correlation induces states with macroscopic phase coherence such as the ground state of a superconductor or of a 2DEG in the quantum Hall regime, and although it is responsible for the formation of the quasi-particles, it is also responsible for the interactions between these quasi-particles that destroy their phase coherence. In this conference I give a review of both experimental and theoretical advances made in our understanding of correlation, decoherence, dephasing and relaxation in condensed matter. I shall focus on the most important physics observed in regimes where traditional assumptions fail and thus where opportunities exist for controlling correlation and dephasing. For example, the usual description of solids assumes a quasi-stationary limit in which the mean-field Random Phase Approximation is valid. However, at low density and on a time-scale short compared to the time between quasi-particle collisions, not enough events happen over the time span of a measurement for a quasi-particle to interact with a substantial fraction of its neighbors. Thus it become possible to observed deviations from mean-field theory, a regime where the scattering fluctuations induce large

  12. Enhancing Condensers for Geothermal Systems: the Effect of High Contact Angles on Dropwise Condensation Heat Transfer

    SciTech Connect

    Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.

    2009-10-06

    Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.

  13. Propagation of first and second sound in a highly elongated trapped Bose-condensed gas at finite temperatures

    NASA Astrophysics Data System (ADS)

    Arahata, Emiko; Nikuni, Tetsuro

    2013-03-01

    We study sound propagation in Bose-condensed gases in a highly elongated harmonic trap at finite temperatures. This problem is studied within the framework of the Zaremba-Nikuni-Griffin (ZNG) formalism, which consists of a generalized Gross-Pitaevskii equation for the condensate and a kinetic equation for the thermal cloud. We extend the ZNG formalism to deal with a highly anisotropic trap potential and use it to simulate sound propagation using the trap parameters corresponding to an experiment on sound pulse propagation at finite temperature. We focus on the high-density two-fluid hydrodynamic regime, and explore the possibility of observing first- and second-sound pulse propagation. The results of numerical simulation are compared with analytical results derived from linearized ZNG hydrodynamic equations. We show that the second-sound mode makes the dominant contribution to condensate motion at relatively high temperature, while the first-sound mode makes an appreciable contribution.

  14. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    PubMed

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  15. Ammonium nitrate evaporation and nitric acid condensation in DMT CCN counters

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Jaatinen, A.; Laaksonen, A.; Nenes, A.; Raatikainen, T.

    2014-05-01

    The effect of inorganic semivolatile aerosol compounds on the cloud condensation nucleus (CCN) activity of aerosol particles was studied by using a computational model for a DMT-CCN counter, a cloud parcel model for condensation kinetics and experiments to quantify the modelled results. Concentrations of water vapour and semivolatiles as well as aerosol trajectories in the CCN column were calculated by a computational fluid dynamics model. These trajectories and vapour concentrations were then used as an input for the cloud parcel model to simulate mass transfer kinetics of water and semivolatiles between aerosol particles and the gas phase. Two different questions were studied: (1) how big a fraction of semivolatiles is evaporated from particles after entering but before particle activation in the DMT-CCN counter? (2) How much can the CCN activity be increased due to condensation of semivolatiles prior to the maximum water supersaturation in the case of high semivolatile concentration in the gas phase? Both experimental and modelling results show that the evaporation of ammonia and nitric acid from ammonium nitrate particles causes a 10 to 15 nm decrease to the critical particle size in supersaturations between 0.1% and 0.7%. On the other hand, the modelling results also show that condensation of nitric acid or similar vapour can increase the CCN activity of nonvolatile aerosol particles, but a very high gas phase concentration (as compared to typical ambient conditions) would be needed. Overall, it is more likely that the CCN activity of semivolatile aerosol is underestimated than overestimated in the measurements conducted in ambient conditions.

  16. ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.

    SciTech Connect

    CREUTZ, M.

    2005-07-25

    With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.

  17. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B. ); Hughes, E.D. )

    1991-01-01

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  18. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1991-12-31

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  19. Convection in Condensible-rich Atmospheres

    NASA Astrophysics Data System (ADS)

    Ding, F.; Pierrehumbert, R. T.

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  20. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Not Available

    1990-01-01

    This project addresses the problem of acid mist formed by condensation of sulfuric acid vapor in flue gas from coal-fired utility boilers. Acid mists can sometimes constitute a significant portion of the total particulate emissions from power plants burning high-sulfur coals. Complete condensation of 10 ppM of acid vapor produces a condensed acid mass loading of about 0.02 gr/dscf or 0.03 lb/MBtu, equivalent to the total allowable mass emissions under the revised (1979) New Source Performance Standards (2). The purpose of this project is to develop and demonstrated a compact, wet electrostatic collector for condensed acid mist in power plant flue gas. The project is organized in two phases. Phase I involved the WESP fabrication, laboratory and pilot combustor testing, and computer modeling. Phase II involves the solicitation of a utility demonstration site, preliminary site measurements, and planning for the demonstration test program. Only Phase II work will be addressed in this discussion which includes: site selection, site measurements, computer modeling and demonstration plan, and phase II reporting. 9 refs., 11 figs., 7 tabs.

  1. Ultrafine Condensation Particle Counter Instrument Handbook

    SciTech Connect

    Kuang, C.

    2016-02-01

    The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.

  2. Activity, purification, and analysis of condensed tannins

    USDA-ARS?s Scientific Manuscript database

    As a class of plant polyphenolic compounds contained in some forages (i.e., sanfoin, big trefoil, birdfoot trefoil), condensed tannins (CTs), also referred to as proanthocyanidins (PAs), exhibit a variety of biological effects on ruminants and on the dairy farm nitrogen cycle. Interest in CTs stems ...

  3. Spermine Condenses DNA, but Not RNA Duplexes

    SciTech Connect

    Katz, Andrea M.; Tolokh, Igor S.; Pabit, Suzette A.; Baker, Nathan; Onufriev, Alexey V.; Pollack, Lois

    2017-01-01

    Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA, and some RNAs such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA, but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA and compare our findings with predictions of molecular dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence, containing a mixture of 14 GC pairs and 11 AU pairs, resists condensation relative to DNA of an equivalent sequence or to 25 base pair poly(rA):poly(rU) RNA. Comparison of wide-angle x-ray scattering profiles with simulation suggests that spermine is sequestered deep within the major groove of mixed sequence RNA, preventing condensation by limiting opportunities to bridge to other molecules as well as stabilizing the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds external to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble, and available for interaction with other molecules in the cell, despite the presence of spermine at concentrations high enough to precipitate DNA.

  4. Condensation of vapor bubble in subcooled pool

    NASA Astrophysics Data System (ADS)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  5. Dropwise condensation on a cold gradient substrate

    NASA Astrophysics Data System (ADS)

    Macner, Ashley; Daniel, Susan; Steen, Paul

    2012-11-01

    Distributions of drops that arise from dropwise condensation evolve by nucleation, growth, and coalescence of drops. An understanding of how surface-energy gradients applied to the substrate affect drop growth and coalescence is needed for design of effective surfaces for large-scale dropwise condensation. Transient dropwise condensation from a vapor phase onto a cold and chemically treated surface is reported. The surfaces were treated to deliver either a uniform contact-angle or a gradient of contact-angles by silanization. The time evolution of drop-size and number-density distributions is reported. For a typical condensation experiment, the drop distributions advance through two stages: an increase in drop density as a result of nucleation and a decrease in drop density as a result of larger scale coalescence events. Because the experiment is transient in nature, the shape of the distribution can be used to predict the number of drop generations and their stage of development. Preliminary results for gradient surfaces will be discussed and compared against observations of behavior on uniformly coated surfaces. NASA Space Technology Research Fellowship (NSTRF).

  6. Capillary condensation as a morphological transition.

    PubMed

    Kornev, Konstantin G; Shingareva, Inna K; Neimark, Alexander V

    2002-02-25

    The process of capillary condensation/evaporation in cylindrical pores is considered within the idea of symmetry breaking. Capillary condensation/evaporation is treated as a morphological transition between the wetting film configurations of different symmetry. We considered two models: (i) the classical Laplace theory of capillarity and (ii) the Derjaguin model which takes into account the surface forces expressed in terms of the disjoining pressure. Following the idea of Everett and Haynes, the problem of condensation/evaporation is considered as a transition from bumps/undulations to lenses. Using the method of phase portraits, we discuss the mathematical mechanisms of this transition hidden in the Laplace and Derjaguin equations. Analyzing the energetic barriers of the bump and lens formation, it is shown that the bump formation is a prerogative of capillary condensation: for the vapor-liquid transition in a pore, the bump plays the same role as the spherical nucleus in a bulk fluid. We show also that the Derjaguin model admits a variety of interfacial configurations responsible for film patterning at specific conditions.

  7. Tachyon condensation and black hole entropy.

    PubMed

    Dabholkar, Atish

    2002-03-04

    String propagation on a cone with deficit angle 2pi(1-1 / N) is considered for the purpose of computing the entropy of a large mass black hole. The entropy computed using the recent results on condensation of twisted-sector tachyons in this theory is found to be in precise agreement with the Bekenstein-Hawking entropy.

  8. Free convective condensation in a vertical enclosure

    SciTech Connect

    Fox, R.J.; Peterson, P.F.; Corradini, M.L.; Pernsteiner, A.P.

    1995-09-01

    Free convective condensation in a vertical enclosure was studied numerically and the results were compared with experiments. In both the numerical and experimental investigations, mist formation was observed to occur near the cooling wall, with significant droplet concentrations in the bulk. Large recirculation cells near the end of the condensing section were generated as the heavy noncondensing gas collecting near the cooling wall was accelerated downward. Near the top of the enclosure the recirculation cells became weaker and smaller than those below, ultimately disappearing near the top of the condenser. In the experiment the mist density was seen to be highest near the wall and at the bottom of the condensing section, whereas the numerical model predicted a much more uniform distribution. The model used to describe the formation of mist was based on a Modified Critical Saturation Model (MCSM), which allows mist to be generated once the vapor pressure exceeds a critical value. Equilibrium, nonequilibrium, and MCSM calculations were preformed, showing the experimental results to lie somewhere in between the equilibrium and nonequilibrium predictions of the numerical model. A single adjustable constant (indicating the degree to which equilibrium is achieved) is used in the model in order to match the experimental results.

  9. Collisions of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Reinhardt, William P.; Clark, Charles W.

    1997-03-01

    Recent experiments(N. J. van Druten et al.), preprint (1996) have begun to study collisions of dilute Bose-Einstein condensates (BECs), and we are exploring BEC collisional phenomena in a simplified model. Two BECs are separated by a barrier, which is dropped to allow them to interact; in the initial configuration, the two BECs may have different phases. Time evolution is described by numerically solving the time-dependent nonlinear Schrödinger equation for a BEC confined by hard walls in a region of constant external potential. We find that zero--energy collisions between ground state condensates that are separately prepared, and then juxtaposed, are dominated by solitons, and that soliton properties are controlled by the phase difference and initial separation of the colliding condensates. The basic ideas of Anderson(P. W. Anderson, Basic Notions of Condensed Matter Physics) (Addison Wesley, Reading, MA, 1984) p. 18 relating to phase rigidity of ``cold quantum matter'' display themselves in a robust manner; this suggests the inevitability of Josephson-type effects for artificially separated but weakly interacting BEC ground states. Partial results are presented in remote figures. goes between the ; the system generates the footnote number.

  10. Condensate-removal device for heat exchangers

    NASA Technical Reports Server (NTRS)

    Trusch, R. B.; Oconnor, E. W.

    1973-01-01

    Device comprises array of perforated tubes manifolded together and connected to a vacuum suction device. Vacuum applied to these tubes pulls mixture of condensate and effluent gas through perforations and along length of tubes to discharge device. Discharge device may be a separator which separates water vapor from effluent air and allows recirculation of both of them.

  11. THE COLOR GLASS CONDENSATE, RHIC AND HERA.

    SciTech Connect

    MCLERRAN,L.

    2002-04-30

    In this talk, I discuss a universal form of matter, the Color Glass Condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and eRHIC may allow us to probe and study the properties of this matter.

  12. 242-A evaporator vacuum condenser system

    SciTech Connect

    Smith, V.A.

    1994-09-28

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation.

  13. Electroweak Symmetry Breaking from Monopole Condensation

    SciTech Connect

    Csaki, Csaba; Shirman, Yuri; Terning, John

    2011-01-28

    We argue that the electroweak symmetry of the standard model (SM) could be broken via condensation of magnetic monopole bilinears. We present an extension of the SM where this could indeed happen, and where the heavy top mass is also a consequence of the magnetic interactions.

  14. Condensed tannins. Structure of the "phenolic scids"

    Treesearch

    Peter E. Laks; Richard W. Hemingway

    1987-01-01

    Conifer bark-derived condensed tannins can be used in formulating adhesives. Under some extraction conditions and during normal adhesive formulation, the tannin is exposed to strongly alkaline conditions. Alkaline rearrangement results in partial or total rearrangement of tannins of the procyanidin class to "phenolic acids" which have less phloroglucinol...

  15. Counterion condensation and release in micellar solutions

    NASA Astrophysics Data System (ADS)

    Hsiao, Chin Chieh; Wang, Tzu-Yu; Tsao, Heng-Kwong

    2005-04-01

    Counterion condensation and release in micellar solutions are investigated by direct measurement of counterion concentration with ion-selective electrode. Monte Carlo simulations based on the cell model are also performed to analyze the experimental results. The degree of counterion condensation is indicated by the concentration ratio of counterions in the bulk to the total ionic surfactant added, α⩽1. The ionic surfactant is completely dissociated below the critical micelle concentration (cmc). However, as cmc is exceeded, the free counterion ratio α declines with increasing the surfactant concentration and approaches an asymptotic value owing to counterion condensation to the surface of the highly charged micelles. Micelle formation leads to much stronger electrostatic attraction between the counterion and the highly charged sphere in comparison to the attraction of single surfactant ion with its counterion. A simple model is developed to obtain the true degree of ionization, which agrees with our Monte Carlo results. Upon addition of neutral polymer or monovalent salts, some of the surfactant counterions are released to the bulk. The former is due to the decrease of the intrinsic charge (smaller aggregation number) and the degree of ionization is increased. The latter is attributed to competitive counterion condensation, which follows the Hefmeister series. This consequence indicates that the specific ion effect plays an important role next to the electrostatic attraction.

  16. Condensing Organic Aerosols in a Microphysical Model

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Tsigaridis, K.; Bauer, S.

    2015-12-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  17. Condensation in Saturn's Stratospheric Haze Layers

    NASA Astrophysics Data System (ADS)

    Barth, Erika L.; Moses, Julianne I.

    2016-10-01

    Haze particles in Saturn's stratosphere can be seen in the visible limb images of Cassini's Imaging Science Subsystem (ISS). These hazes are likely a mix of particles, including solid organics formed as a result of methane photolysis and electron deposition, as well as the condensation of water and hydrocarbon ices. We have examined data from both Cassini and Voyager to study the detailed vertical structure of absorbing/scattering particulates in Saturn's stratosphere and developed a Saturn version of the Community Aerosol and Radiation Model for Atmospheres (CARMA), adding a large database of hydrocarbons that are observed or expected to be present in Saturn's atmosphere.Our modeling indicates that water ice condenses independently of the hydrocarbons to form a thin layer above the 0.1 mbar pressure level. Between about 5 and 50 mbar, the hydrocarbons reach their condensation levels (in order of increasing pressure level): C6H6, C5H12, C4H2, C4H10, and C2H2. Because of the proximity of their condensation levels and due to the gravitational settling of the particles, the hydrocarbons are likely condensing on one another and forming a thicker layer of mixed composition. Interestingly, butane (C4H10) has a triple point around 135 K which is much lower than most of the other condensing species we've explored. Given an approximate condensation level of 10 mbar and the observed temperature changes at this pressure level following the December 2010 northern-hemisphere storm (stratospheric temperatures were elevated by as much as 50-70 K in a region near 40° N latitude.), melting and further nucleation of droplets could be occurring.A number of factors including temperature profile, vapor pressure equation, volatile abundance, nucleation critical saturation, and coagulation efficiency will affect the altitudes of the individual ice layers. We will present a summary of results following the nucleation and growth of compounds in order to quantify the likely size and

  18. Cloud Condensation in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Anderson, Carrie M.

    2011-01-01

    A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability

  19. Deposition Nucleation or Pore Condensation and Freezing?

    NASA Astrophysics Data System (ADS)

    David, Robert O.; Mahrt, Fabian; Marcolli, Claudia; Fahrni, Jonas; Brühwiler, Dominik; Lohmann, Ulrike; Kanji, Zamin A.

    2017-04-01

    Ice nucleation plays an important role in moderating Earth's climate and precipitation formation. Over the last century of research, several mechanisms for the nucleation of ice have been identified. Of the known mechanisms for ice nucleation, only deposition nucleation occurs below water saturation. Deposition nucleation is defined as the formation of ice from supersaturated water vapor on an insoluble particle without the prior formation of liquid. However, recent work has found that the efficiency of so-called deposition nucleation shows a dependence on the homogeneous freezing temperature of water even though no liquid phase is presumed to be present. Additionally, the ability of certain particles to nucleate ice more efficiently after being pre-cooled (pre-activation) raises questions on the true mechanism when ice nucleation occurs below water saturation. In an attempt to explain the dependence of the efficiency of so-called deposition nucleation on the onset of homogeneous freezing of liquid water, pore condensation and freezing has been proposed. Pore condensation and freezing suggests that the liquid phase can exist under sub-saturated conditions with respect to liquid in narrow confinements or pores due to the inverse Kelvin effect. Once the liquid-phase condenses, it is capable of nucleating ice either homogeneously or heterogeneously. The role of pore condensation and freezing is assessed in the Zurich Ice Nucleation Chamber, a continuous flow diffusion chamber, using spherical nonporous and mesoporous silica particles. The mesoporous silica particles have a well-defined particle size range of 400 to 600nm with discreet pore sizes of 2.5, 2.8, 3.5 and 3.8nm. Experiments conducted between 218K and 238K show that so-called deposition nucleation only occurs below the homogenous freezing temperature of water and is highly dependent on the presence of pores and their size. The results strongly support pore condensation and freezing, questioning the role of

  20. Model Condensation for Non-Classically Damped SYSTEMS—PART i: Static Condensation

    NASA Astrophysics Data System (ADS)

    Qu, Z.-Q.; Jung, Y.; Selvam, R. P.

    2003-09-01

    Three condensation methods for the model reduction of non-classically damped systems are presented. One is defined in the displacement space and the other two are defined in the state space. Since the damping and inertia forces on all degrees of freedom of the full model are ignored, these algorithms are considered as the static condensation. One advantage of these condensation methods is that the explicit forms of the reduced stiffness, mass, and damping matrices can be directly obtained from the reduced model. These explicit reduced system matrices are very useful in further dynamic analyses. These approaches are compared from the assumptions, condensation matrices, computational work and the reduced system matrices. With the introduction of the generalised inverse of matrix, the method defined in the displacement space is extended and one variant is derived. Numerical examples, one three-degree-of-freedom discrete system and one floating raft isolation system, are applied to demonstrate the features of these methods.