Development of a knowledge acquisition tool for an expert system flight status monitor
NASA Technical Reports Server (NTRS)
Disbrow, J. D.; Duke, E. L.; Regenie, V. A.
1986-01-01
Two of the main issues in artificial intelligence today are knowledge acquisition dion and knowledge representation. The Dryden Flight Research Facility of NASA's Ames Research Center is presently involved in the design and implementation of an expert system flight status monitor that will provide expertise and knowledge to aid the flight systems engineer in monitoring today's advanced high-performance aircraft. The flight status monitor can be divided into two sections: the expert system itself and the knowledge acquisition tool. The knowledge acquisition tool, the means it uses to extract knowledge from the domain expert, and how that knowledge is represented for computer use is discussed. An actual aircraft system has been codified by this tool with great success. Future real-time use of the expert system has been facilitated by using the knowledge acquisition tool to easily generate a logically consistent and complete knowledge base.
Development of a knowledge acquisition tool for an expert system flight status monitor
NASA Technical Reports Server (NTRS)
Disbrow, J. D.; Duke, E. L.; Regenie, V. A.
1986-01-01
Two of the main issues in artificial intelligence today are knowledge acquisition and knowledge representation. The Dryden Flight Research Facility of NASA's Ames Research Center is presently involved in the design and implementation of an expert system flight status monitor that will provide expertise and knowledge to aid the flight systems engineer in monitoring today's advanced high-performance aircraft. The flight status monitor can be divided into two sections: the expert system itself and the knowledge acquisition tool. This paper discusses the knowledge acquisition tool, the means it uses to extract knowledge from the domain expert, and how that knowledge is represented for computer use. An actual aircraft system has been codified by this tool with great success. Future real-time use of the expert system has been facilitated by using the knowledge acquisition tool to easily generate a logically consistent and complete knowledge base.
Dale L. Bartos; Kent B. Downing
1989-01-01
A knowledge acquisition program was written to aid in obtaining knowledge from the experts concerning endemic populations of mountain pine beetle in lodgepole pine forest. An application expert system is then automatically generated by the knowledge acquisition program that contains the codified base of expert knowledge. Data can then be entered into the expert system...
Autonomously acquiring declarative and procedural knowledge for ICAT systems
NASA Technical Reports Server (NTRS)
Kovarik, Vincent J., Jr.
1993-01-01
The construction of Intelligent Computer Aided Training (ICAT) systems is critically dependent on the ability to define and encode knowledge. This knowledge engineering effort can be broadly divided into two categories: domain knowledge and expert or task knowledge. Domain knowledge refers to the physical environment or system with which the expert interacts. Expert knowledge consists of the set of procedures and heuristics employed by the expert in performing their task. Both these areas are a significant bottleneck in the acquisition of knowledge for ICAT systems. This paper presents a research project in the area of autonomous knowledge acquisition using a passive observation concept. The system observes an expert and then generalizes the observations into production rules representing the domain expert's knowledge.
Combining factual and heuristic knowledge in knowledge acquisition
NASA Technical Reports Server (NTRS)
Gomez, Fernando; Hull, Richard; Karr, Clark; Hosken, Bruce; Verhagen, William
1992-01-01
A knowledge acquisition technique that combines heuristic and factual knowledge represented as two hierarchies is described. These ideas were applied to the construction of a knowledge acquisition interface to the Expert System Analyst (OPERA). The goal of OPERA is to improve the operations support of the computer network in the space shuttle launch processing system. The knowledge acquisition bottleneck lies in gathering knowledge from human experts and transferring it to OPERA. OPERA's knowledge acquisition problem is approached as a classification problem-solving task, combining this approach with the use of factual knowledge about the domain. The interface was implemented in a Symbolics workstation making heavy use of windows, pull-down menus, and other user-friendly devices.
Techniques for capturing expert knowledge - An expert systems/hypertext approach
NASA Technical Reports Server (NTRS)
Lafferty, Larry; Taylor, Greg; Schumann, Robin; Evans, Randy; Koller, Albert M., Jr.
1990-01-01
The knowledge-acquisition strategy developed for the Explosive Hazards Classification (EHC) Expert System is described in which expert systems and hypertext are combined, and broad applications are proposed. The EHC expert system is based on rapid prototyping in which primary knowledge acquisition from experts is not emphasized; the explosive hazards technical bulletin, technical guidance, and minimal interviewing are used to develop the knowledge-based system. Hypertext is used to capture the technical information with respect to four issues including procedural, materials, test, and classification issues. The hypertext display allows the integration of multiple knowlege representations such as clarifications or opinions, and thereby allows the performance of a broad range of tasks on a single machine. Among other recommendations, it is suggested that the integration of hypertext and expert systems makes the resulting synergistic system highly efficient.
Liu, Hu-Chen; Liu, Long; Lin, Qing-Lian; Liu, Nan
2013-06-01
The two most important issues of expert systems are the acquisition of domain experts' professional knowledge and the representation and reasoning of the knowledge rules that have been identified. First, during expert knowledge acquisition processes, the domain expert panel often demonstrates different experience and knowledge from one another and produces different types of knowledge information such as complete and incomplete, precise and imprecise, and known and unknown because of its cross-functional and multidisciplinary nature. Second, as a promising tool for knowledge representation and reasoning, fuzzy Petri nets (FPNs) still suffer a couple of deficiencies. The parameters in current FPN models could not accurately represent the increasingly complex knowledge-based systems, and the rules in most existing knowledge inference frameworks could not be dynamically adjustable according to propositions' variation as human cognition and thinking. In this paper, we present a knowledge acquisition and representation approach using the fuzzy evidential reasoning approach and dynamic adaptive FPNs to solve the problems mentioned above. As is illustrated by the numerical example, the proposed approach can well capture experts' diversity experience, enhance the knowledge representation power, and reason the rule-based knowledge more intelligently.
Information/Knowledge Acquisition Methods for Decision Support Systems and Expert Systems.
ERIC Educational Resources Information Center
Yang, Heng-Li
1995-01-01
Compares information requirement-elicitation (IRE) methods for decision support systems (DSS) with knowledge acquisition (KA) methods for expert systems (ES) development. The definition and architectures of ES and DSS are compared and the systems' development cycles and IRE/KA methods are discussed. Differences are noted between ES and DSS…
A middle man approach to knowledge acquisition in expert systems
NASA Technical Reports Server (NTRS)
Jordan, Janice A.; Lin, Min-Jin; Mayer, Richard J.; Sterle, Mark E.
1990-01-01
The Weed Control Advisor (WCA) is a robust expert system that has been successfully implemented on an IBM AT class microcomputer in CLIPS. The goal of the WCA was to demonstrate the feasibility of providing an economical, efficient, user friendly system through which Texas rice producers could obtain expert level knowledge regarding herbicide application for weed control. During the development phase of the WCA, an improved knowledge acquisition method which we call the Middle Man Approach (MMA) was applied to facilitate the communication process between the domain experts and the knowledge engineer. The MMA served to circumvent the problems associated with the more traditional forms of knowledge acquisition by placing the Middle Man, a semi-expert in the problem domain with some computer expertise, at the site of system development. The middle man was able to contribute to system development in two major ways. First, the Middle Man had experience working in rice production and could assume many of the responsibilities normally performed by the domain experts such as explaining the background of the problem domain and determining the important relations. Second, the Middle Man was familiar with computers and worked closely with the system developers to update the rules after the domain experts reviewed the prototype, contribute to the help menus and explanation portions of the expert system, conduct the testing that is required to insure that the expert system gives the expected results answer questions in a timely way, help the knowledge engineer structure the domain knowledge into a useable form, and provide insight into the end user's profile which helped in the development of the simple user friendly interface. The final results were not only that both time expended and costs were greatly reduced by using the MMA, but the quality of the system was improved. This papa will introduce the WCA system and then discuss traditional knowledge acquisition along with some of the problems often associated with it, the MMA methodology, and its application to the WCA development.
On the acquisition and representation of procedural knowledge
NASA Technical Reports Server (NTRS)
Saito, T.; Ortiz, C.; Loftin, R. B.
1992-01-01
Historically knowledge acquisition has proven to be one of the greatest barriers to the development of intelligent systems. Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the knowledge engineer whose responsibility is to acquire and represent knowledge in a useful form. Although much research has been devoted to the development of methodologies and computer software to aid in the capture and representation of some of some types of knowledge, little attention has been devoted to procedural knowledge. NASA personnel frequently perform tasks that are primarily procedural in nature. Previous work is reviewed in the field of knowledge acquisition and then focus on knowledge acquisition for procedural tasks with special attention devoted to the Navy's VISTA tool. The design and development is described of a system for the acquisition and representation of procedural knowledge-TARGET (Task Analysis and Rule Generation Tool). TARGET is intended as a tool that permits experts to visually describe procedural tasks and as a common medium for knowledge refinement by the expert and knowledge engineer. The system is designed to represent the acquired knowledge in the form of production rules. Systems such as TARGET have the potential to profoundly reduce the time, difficulties, and costs of developing knowledge-based systems for the performance of procedural tasks.
Knowledge acquisition and rapid protyping of an expert system: Dealing with real world problems
NASA Technical Reports Server (NTRS)
Bailey, Patrick A.; Doehr, Brett B.
1988-01-01
The knowledge engineering and rapid prototyping phases of an expert system that does fault handling for a Solid Amine, Water Desorbed CO2 removal assembly for the Environmental Control and Life Support System for space based platforms are addressed. The knowledge acquisition phase for this project was interesting because it could not follow the textbook examples. As a result of this, a variety of methods were used during the knowledge acquisition task. The use of rapid prototyping and the need for a flexible prototype suggested certain types of knowledge representation. By combining various techniques, a representative subset of faults and a method for handling those faults was achieved. The experiences should prove useful for developing future fault handling expert systems under similar constraints.
TARGET's role in knowledge acquisition, engineering, validation, and documentation
NASA Technical Reports Server (NTRS)
Levi, Keith R.
1994-01-01
We investigate the use of the TARGET task analysis tool for use in the development of rule-based expert systems. We found TARGET to be very helpful in the knowledge acquisition process. It enabled us to perform knowledge acquisition with one knowledge engineer rather than two. In addition, it improved communication between the domain expert and knowledge engineer. We also found it to be useful for both the rule development and refinement phases of the knowledge engineering process. Using the network in these phases required us to develop guidelines that enabled us to easily translate the network into production rules. A significant requirement for TARGET remaining useful throughout the knowledge engineering process was the need to carefully maintain consistency between the network and the rule representations. Maintaining consistency not only benefited the knowledge engineering process, but also has significant payoffs in the areas of validation of the expert system and documentation of the knowledge in the system.
Knowledge-Acquisition Tool For Expert System
NASA Technical Reports Server (NTRS)
Disbrow, James D.; Duke, Eugene L.; Regenie, Victoria A.
1988-01-01
Digital flight-control systems monitored by computer program that evaluates and recommends. Flight-systems engineers for advanced, high-performance aircraft use knowlege-acquisition tool for expert-system flight-status monitor suppling interpretative data. Interpretative function especially important in time-critical, high-stress situations because it facilitates problem identification and corrective strategy. Conditions evaluated and recommendations made by ground-based engineers having essential knowledge for analysis and monitoring of performances of advanced aircraft systems.
ESKAPE/CF: A Knowledge Acquisition Tool for Expert Systems Using Cognitive Feedback
1991-03-01
NAVAL POSTGRADUATE SCHOOL Monterey, California AD-A241 815i!1! lit 1i iill 1111 !! I 1111 ST E * ODTIC OCT22 z 99I; THESIS ESKAPE /CF: A KNOWLEDGE...11. TITLE (include Security Classification) ESKAPE /CF: A KNOWLEDGE ACQUISITION TOOL FOR EXPERT SYSTEMS USING COGNITIVE FEEDBACK (U) e PERSOIAL AUTVR(Yl...tool using Cognitive Feedback ( ESKAPE /CF), based on Lens model techniques which have demonstrated effectiveness in cap- turing policy knowledge. The
Supplemental knowledge acquisition through external product interface for CLIPS
NASA Technical Reports Server (NTRS)
Saito, Tim; Ebaud, Stephen; Loftin, Bowen R.
1990-01-01
Traditionally, the acquisition of knowledge for expert systems consisted of the interview process with the domain or subject matter expert (SME), observation of domain environment, and information gathering and research which constituted a direct form of knowledge acquisition (KA). The knowledge engineer would be responsible for accumulating pertinent information and/or knowledge from the SME(s) for input into the appropriate expert system development tool. The direct KA process may (or may not) have included forms of data or documentation to incorporate from the SME's surroundings. The differentiation between direct KA and supplemental KA (indirect) would be the difference in the use of data. In acquiring supplemental knowledge, the knowledge engineer would access other types of evidence (manuals, documents, data files, spreadsheets, etc.) that would support the reasoning or premises of the SME. When an expert makes a decision in a particular task, one tool that may have been used to justify a recommendation, would have been a spreadsheet total or column figure. Locating specific decision points from that data within the SME's framework would constitute supplemental KA. Data used for a specific purpose in one system or environment would be used as supplemental knowledge for another, specifically a CLIPS project.
NASA Technical Reports Server (NTRS)
Seamster, Thomas L.; Eike, David R.; Ames, Troy J.
1990-01-01
This presentation concentrates on knowledge acquisition and its application to the development of an expert module and a user interface for an Intelligent Tutoring System (ITS). The Systems Test and Operations Language (STOL) ITS is being developed to assist NASA control center personnel in learning a command and control language as it is used in mission operations rooms. The objective of the tutor is to impart knowledge and skills that will permit the trainee to solve command and control problems in the same way that the STOL expert solves those problems. The STOL ITS will achieve this object by representing the solution space in such a way that the trainee can visualize the intermediate steps, and by having the expert module production rules parallel the STOL expert's knowledge structures.
Psychological tools for knowledge acquisition
NASA Technical Reports Server (NTRS)
Rueter, Henry H.; Olson, Judith Reitman
1988-01-01
Knowledge acquisition is said to be the biggest bottleneck in the development of expert systems. The problem is getting the knowledge out of the expert's head and into a computer. In cognitive psychology, characterizing metal structures and why experts are good at what they do is an important research area. Is there some way that the tools that psychologists have developed to uncover mental structure can be used to benefit knowledge engineers? We think that the way to find out is to browse through the psychologist's toolbox to see what there is in it that might be of use to knowledge engineers. Expert system developers have relied on two standard methods for extracting knowledge from the expert: (1) the knowledge engineer engages in an intense bout of interviews with the expert or experts, or (2) the knowledge engineer becomes an expert himself, relying on introspection to uncover the basis of his own expertise. Unfortunately, these techniques have the difficulty that often the expert himself isn't consciously aware of the basis of his expertise. If the expert himself isn't conscious of how he solves problems, introspection is useless. Cognitive psychology has faced similar problems for many years and has developed exploratory methods that can be used to discover cognitive structure from simple data.
Computer-assisted knowledge acquisition for hypermedia systems
NASA Technical Reports Server (NTRS)
Steuck, Kurt
1990-01-01
The usage of procedural and declarative knowledge to set up the structure or 'web' of a hypermedia environment is described. An automated knowledge acquisition tool was developed that helps a knowledge engineer elicit and represent an expert's knowledge involved in performing procedural tasks. The tool represents both procedural and prerequisite, declarative knowledge that supports each activity performed by the expert. This knowledge is output and subsequently read by a hypertext scripting language to generate the link between blank, but labeled cards. Each step of the expert's activity and each piece of supporting declarative knowledge is set up as an empty node. An instructional developer can then enter detailed instructional material concerning each step and declarative knowledge into these empty nodes. Other research is also described that facilitates the translation of knowledge from one form into a form more readily useable by computerized systems.
Knowledge Acquisition for Expert Systems in Construction
1988-12-01
following scientific personnel have been closely involved in the execution of this research : Dr R J Allwood Mr A E Bryman Mr C N Cooper Dr J Cullen Mr...alternative methods and should use them flexibly as the position unfolds. This approach has been advocated by other researchers (eg Cordingley - see Diaper...currently engaged in research into methods of knowledge acquisition for expert systems. Although their original focus was on construction industry
A reusable knowledge acquisition shell: KASH
NASA Technical Reports Server (NTRS)
Westphal, Christopher; Williams, Stephen; Keech, Virginia
1991-01-01
KASH (Knowledge Acquisition SHell) is proposed to assist a knowledge engineer by providing a set of utilities for constructing knowledge acquisition sessions based on interviewing techniques. The information elicited from domain experts during the sessions is guided by a question dependency graph (QDG). The QDG defined by the knowledge engineer, consists of a series of control questions about the domain that are used to organize the knowledge of an expert. The content information supplies by the expert, in response to the questions, is represented in the form of a concept map. These maps can be constructed in a top-down or bottom-up manner by the QDG and used by KASH to generate the rules for a large class of expert system domains. Additionally, the concept maps can support the representation of temporal knowledge. The high degree of reusability encountered in the QDG and concept maps can vastly reduce the development times and costs associated with producing intelligent decision aids, training programs, and process control functions.
Expert systems as applied to bridges : knowledge acquisition phase : final report.
DOT National Transportation Integrated Search
1987-01-01
Presented in this report is a detailed description of the procedure to be followed to develop a knowledge-based computerized expert system for determining whether to rehabilitate, improve, replace, abandon, or just to routinely maintain an old highwa...
Marketing practitioner’s tacit knowledge acquisition using Repertory Grid Technique (RTG)
NASA Astrophysics Data System (ADS)
Azmi, Afdhal; Adriman, Ramzi
2018-05-01
The tacit knowledge of Marketing practitioner’s experts is excellent resources and priceless. It takes into account their experiential, skill, ideas, belief systems, insight and speculation into management decision-making. This expertise is an individual intuitive judgment and personal shortcuts to complete the work efficiently. Tacit knowledge of Marketing practitioner’s experts is one of best problem solutions in marketing strategy, environmental analysis, product management and partner’s relationship. This paper proposes the acquisition method of tacit knowledge from Marketing practitioner’s using Repertory Grid Technique (RGT). The RGT is a software application for tacit acquisition knowledge to provide a systematic approach to capture and acquire the constructs from an individual. The result shows the understanding of RGT could make TKE and MPE get a good result in capturing and acquiring tacit knowledge of Marketing practitioner’s experts.
NASA Technical Reports Server (NTRS)
Modesitt, Kenneth L.
1990-01-01
A prediction was made that the terms expert systems and knowledge acquisition would begin to disappear over the next several years. This is not because they are falling into disuse; it is rather that practitioners are realizing that they are valuable adjuncts to software engineering, in terms of problem domains addressed, user acceptance, and in development methodologies. A specific problem was discussed, that of constructing an automated test analysis system for the Space Shuttle Main Engine. In this domain, knowledge acquisition was part of requirements systems analysis, and was performed with the aid of a powerful inductive ESBT in conjunction with a computer aided software engineering (CASE) tool. The original prediction is not a very risky one -- it has already been accomplished.
NASA Technical Reports Server (NTRS)
Wu, Cathy; Taylor, Pam; Whitson, George; Smith, Cathy
1990-01-01
This paper describes the building of a corn disease diagnostic expert system using CLIPS, and the development of a neural expert system using the fact representation method of CLIPS for automated knowledge acquisition. The CLIPS corn expert system diagnoses 21 diseases from 52 symptoms and signs with certainty factors. CLIPS has several unique features. It allows the facts in rules to be broken down to object-attribute-value (OAV) triples, allows rule-grouping, and fires rules based on pattern-matching. These features combined with the chained inference engine result to a natural user query system and speedy execution. In order to develop a method for automated knowledge acquisition, an Artificial Neural Expert System (ANES) is developed by a direct mapping from the CLIPS system. The ANES corn expert system uses the same OAV triples in the CLIPS system for its facts. The LHS and RHS facts of the CLIPS rules are mapped into the input and output layers of the ANES, respectively; and the inference engine of the rules is imbedded in the hidden layer. The fact representation by OAC triples gives a natural grouping of the rules. These features allow the ANES system to automate rule-generation, and make it efficient to execute and easy to expand for a large and complex domain.
Automatic acquisition of domain and procedural knowledge
NASA Technical Reports Server (NTRS)
Ferber, H. J.; Ali, M.
1988-01-01
The design concept and performance of AKAS, an automated knowledge-acquisition system for the development of expert systems, are discussed. AKAS was developed using the FLES knowledge base for the electrical system of the B-737 aircraft and employs a 'learn by being told' strategy. The system comprises four basic modules, a system administration module, a natural-language concept-comprehension module, a knowledge-classification/extraction module, and a knowledge-incorporation module; details of the module architectures are explored.
The Instructional Developer, Expert Systems, and the Front End Process.
ERIC Educational Resources Information Center
Dills, Charles R.; Romiszowski, Alexander
This paper is intended to provide the instructional technologist already possessing some understanding of expert systems with some insight into two of the many steps involved in the design and production of such systems: knowledge acquisition and knowledge structuring or representation. It is also intended to help technologists to see how they…
A flight expert system for on-board fault monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Ali, Moonis
1990-01-01
An architecture for a flight expert system (FLES) to assist pilots in monitoring, diagnosing, and recovering from inflight faults is described. A prototype was implemented and an attempt was made to automate the knowledge acquisition process by employing a learning by being told methodology. The scope of acquired knowledge ranges from domain knowledge, including the information about objects and their relationships, to the procedural knowledge associated with the functionality of the mechanisms. AKAS (automatic knowledge acquisition system) is the constructed prototype for demonstration proof of concept, in which the expert directly interfaces with the knowledge acquisition system to ultimately construct the knowledge base for the particular application. The expert talks directly to the system using a natural language restricted only by the extent of the definitions in an analyzer dictionary, i.e., the interface understands a subset of concepts related to a given domain. In this case, the domain is the electrical system of the Boeing 737. Efforts were made to define and employ heuristics as well as algorithmic rules to conceptualize data produced by normal and faulty jet engine behavior examples. These rules were employed in developing the machine learning system (MLS). The input to MLS is examples which contain data of normal and faulty engine behavior and which are obtained from an engine simulation program. MLS first transforms the data into discrete selectors. Partial descriptions formed by those selectors are then generalized or specialized to generate concept descriptions about faults. The concepts are represented in the form of characteristic and discriminant descriptions, which are stored in the knowledge base and are employed to diagnose faults. MLS was successfully tested on jet engine examples.
A Knowledge-Based System Developer for aerospace applications
NASA Technical Reports Server (NTRS)
Shi, George Z.; Wu, Kewei; Fensky, Connie S.; Lo, Ching F.
1993-01-01
A prototype Knowledge-Based System Developer (KBSD) has been developed for aerospace applications by utilizing artificial intelligence technology. The KBSD directly acquires knowledge from domain experts through a graphical interface then builds expert systems from that knowledge. This raises the state of the art of knowledge acquisition/expert system technology to a new level by lessening the need for skilled knowledge engineers. The feasibility, applicability , and efficiency of the proposed concept was established, making a continuation which would develop the prototype to a full-scale general-purpose knowledge-based system developer justifiable. The KBSD has great commercial potential. It will provide a marketable software shell which alleviates the need for knowledge engineers and increase productivity in the workplace. The KBSD will therefore make knowledge-based systems available to a large portion of industry.
NASA Technical Reports Server (NTRS)
Gomez, Fernando
1989-01-01
It is shown how certain kinds of domain independent expert systems based on classification problem-solving methods can be constructed directly from natural language descriptions by a human expert. The expert knowledge is not translated into production rules. Rather, it is mapped into conceptual structures which are integrated into long-term memory (LTM). The resulting system is one in which problem-solving, retrieval and memory organization are integrated processes. In other words, the same algorithm and knowledge representation structures are shared by these processes. As a result of this, the system can answer questions, solve problems or reorganize LTM.
Dokas, Ioannis M; Panagiotakopoulos, Demetrios C
2006-08-01
The available expertise on managing and operating solid waste management (SWM) facilities varies among countries and among types of facilities. Few experts are willing to record their experience, while few researchers systematically investigate the chains of events that could trigger operational failures in a facility; expertise acquisition and dissemination, in SWM, is neither popular nor easy, despite the great need for it. This paper presents a knowledge acquisition process aimed at capturing, codifying and expanding reliable expertise and propagating it to non-experts. The knowledge engineer (KE), the person performing the acquisition, must identify the events (or causes) that could trigger a failure, determine whether a specific event could trigger more than one failure, and establish how various events are related among themselves and how they are linked to specific operational problems. The proposed process, which utilizes logic diagrams (fault trees) widely used in system safety and reliability analyses, was used for the analysis of 24 common landfill operational problems. The acquired knowledge led to the development of a web-based expert system (Landfill Operation Management Advisor, http://loma.civil.duth.gr), which estimates the occurrence possibility of operational problems, provides advice and suggests solutions.
An overview of expert systems. [artificial intelligence
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1982-01-01
An expert system is defined and its basic structure is discussed. The knowledge base, the inference engine, and uses of expert systems are discussed. Architecture is considered, including choice of solution direction, reasoning in the presence of uncertainty, searching small and large search spaces, handling large search spaces by transforming them and by developing alternative or additional spaces, and dealing with time. Existing expert systems are reviewed. Tools for building such systems, construction, and knowledge acquisition and learning are discussed. Centers of research and funding sources are listed. The state-of-the-art, current problems, required research, and future trends are summarized.
Perspective on intelligent avionics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, H.L.
1987-01-01
Technical issues which could potentially limit the capability and acceptibility of expert systems decision-making for avionics applications are addressed. These issues are: real-time AI, mission-critical software, conventional algorithms, pilot interface, knowledge acquisition, and distributed expert systems. Examples from on-going expert system development programs are presented to illustrate likely architectures and applications of future intelligent avionic systems. 13 references.
Passive acquisition of CLIPS rules
NASA Technical Reports Server (NTRS)
Kovarik, Vincent J., Jr.
1991-01-01
The automated acquisition of knowledge by machine has not lived up to expectations, and knowledge engineering remains a human intensive task. Part of the reason for the lack of success is the difference in the cognitive focus of the expert. The expert must shift his or her focus from the subject domain to that of the representation environment. In doing so this cognitive shift introduces opportunity for errors and omissions. Presented here is work that observes the expert interact with a simulation of the domain. The system logs changes in the simulation objects and the expert's actions in response to those changes. This is followed by the application of inductive reasoning to move the domain specific rules observed to general domain rules.
NASA Technical Reports Server (NTRS)
Chien, Steve A.
1996-01-01
A key obstacle hampering fielding of AI planning applications is the considerable expense of developing, verifying, updating, and maintainting the planning knowledge base (KB). Planning systems must be able to compare favorably in terms of software lifecycle costs to other means of automation such as scripts or rule-based expert systems. This paper describes a planning application of automated imaging processing and our overall approach to knowledge acquisition for this application.
Automatic Overset Grid Generation with Heuristic Feedback Control
NASA Technical Reports Server (NTRS)
Robinson, Peter I.
2001-01-01
An advancing front grid generation system for structured Overset grids is presented which automatically modifies Overset structured surface grids and control lines until user-specified grid qualities are achieved. The system is demonstrated on two examples: the first refines a space shuttle fuselage control line until global truncation error is achieved; the second advances, from control lines, the space shuttle orbiter fuselage top and fuselage side surface grids until proper overlap is achieved. Surface grids are generated in minutes for complex geometries. The system is implemented as a heuristic feedback control (HFC) expert system which iteratively modifies the input specifications for Overset control line and surface grids. It is developed as an extension of modern control theory, production rules systems and subsumption architectures. The methodology provides benefits over the full knowledge lifecycle of an expert system for knowledge acquisition, knowledge representation, and knowledge execution. The vector/matrix framework of modern control theory systematically acquires and represents expert system knowledge. Missing matrix elements imply missing expert knowledge. The execution of the expert system knowledge is performed through symbolic execution of the matrix algebra equations of modern control theory. The dot product operation of matrix algebra is generalized for heuristic symbolic terms. Constant time execution is guaranteed.
Proceedings of the 1986 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.
Projects in an expert system class
NASA Technical Reports Server (NTRS)
Whitson, George M.
1991-01-01
Many universities now teach courses in expert systems. In these courses students study the architecture of an expert system, knowledge acquisition techniques, methods of implementing systems and verification and validation techniques. A major component of any such course is a class project consisting of the design and implementation of an expert system. Discussed here are a number of techniques that we have used at the University of Texas at Tyler to develop meaningful projects that could be completed in a semester course.
An expert system that performs a satellite station keepimg maneuver
NASA Technical Reports Server (NTRS)
Linesbrowning, M. Kate; Stone, John L., Jr.
1987-01-01
The development and characteristics of a prototype expert system, Expert System for Satellite Orbit Control (ESSOC), capable of providing real-time spacecraft system analysis and command generation for a geostationary satellite are described. The ESSOC recommends appropriate commands that reflect both the changing spacecraft condition and previous procedural action. An internal knowledge base stores satellite status information and is updated with processed spacecraft telemetry. Procedural structure data are encoded in production rules. Structural methods of knowledge acquisition and the design and performance-enhancing techniques that enable ESSOC to operate in real time are also considered.
The Visual Representation and Acquisition of Driving Knowledge for Autonomous Vehicle
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxia; Jiang, Qing; Li, Ping; Song, LiangTu; Wang, Rujing; Yu, Biao; Mei, Tao
2017-09-01
In this paper, the driving knowledge base of autonomous vehicle is designed. Based on the driving knowledge modeling system, the driving knowledge of autonomous vehicle is visually acquired, managed, stored, and maintenanced, which has vital significance for creating the development platform of intelligent decision-making systems of automatic driving expert systems for autonomous vehicle.
An advanced artificial intelligence tool for menu design.
Khan, Abdus Salam; Hoffmann, Achim
2003-01-01
The computer-assisted menu design still remains a difficult task. Usually knowledge that aids in menu design by a computer is hard-coded and because of that a computerised menu planner cannot handle the menu design problem for an unanticipated client. To address this problem we developed a menu design tool, MIKAS (menu construction using incremental knowledge acquisition system), an artificial intelligence system that allows the incremental development of a knowledge-base for menu design. We allow an incremental knowledge acquisition process in which the expert is only required to provide hints to the system in the context of actual problem instances during menu design using menus stored in a so-called Case Base. Our system incorporates Case-Based Reasoning (CBR), an Artificial Intelligence (AI) technique developed to mimic human problem solving behaviour. Ripple Down Rules (RDR) are a proven technique for the acquisition of classification knowledge from expert directly while they are using the system, which complement CBR in a very fruitful way. This combination allows the incremental improvement of the menu design system while it is already in routine use. We believe MIKAS allows better dietary practice by leveraging a dietitian's skills and expertise. As such MIKAS has the potential to be helpful for any institution where dietary advice is practised.
NASA Technical Reports Server (NTRS)
Modesitt, Kenneth L.
1990-01-01
Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.
Knowledge acquisition for a simple expert controller
NASA Technical Reports Server (NTRS)
Bieker, B.
1987-01-01
A method is presented for process control which has the properties of being incremental, cyclic and top-down. It is described on the basis of the development of an expert controller for a simple, but nonlinear control route. A quality comparison between expert controller and process operator shows the ability of the method for knowledge acquisition.
MOORE: A prototype expert system for diagnosing spacecraft problems
NASA Technical Reports Server (NTRS)
Howlin, Katherine; Weissert, Jerry; Krantz, Kerry
1988-01-01
MOORE is a rule-based, prototype expert system that assists in diagnosing operational Tracking and Data Relay Satellite (TDRS) problems. It is intended to assist spacecraft engineers at the TDRS ground terminal in trouble shooting problems that are not readily solved with routine procedures, and without expert counsel. An additional goal of the prototype system is to develop in-house expert system and knowledge engineering skills. The prototype system diagnoses antenna pointing and earth pointing problems that may occur within the TDRS Attitude Control System (ACS). Plans include expansion to fault isolation of problems in the most critical subsystems of the TDRS spacecraft. Long term benefits are anticipated with use of an expert system during future TDRS programs with increased mission support time, reduced problem solving time, and retained expert knowledge and experience. Phase 2 of the project is intended to provide NASA the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking Data Relay Satellite. Phase 2 also envisions addressing two unexplored applications for expert systems, spacecraft integration and tests (I and T) and support to launch activities. The concept, goals, domain, tools, knowledge acquisition, developmental approach, and design of the expert system. It will explain how NASA obtained the knowledge and capability to develop the system in-house without assistance from outside consultants. Future plans will also be presented.
NASA Technical Reports Server (NTRS)
Ligomenides, Panos A.
1989-01-01
A sensory world modeling system, congruent with a human expert's perception, is proposed. The Experiential Knowledge Base (EKB) system can provide a highly intelligible communication interface for telemonitoring and telecontrol of a real time robotic system operating in space. Paradigmatic acquisition of empirical perceptual knowledge, and real time experiential pattern recognition and knowledge integration are reviewed. The cellular architecture and operation of the EKB system are also examined.
Expert operator's associate: A knowledge based system for spacecraft control
NASA Technical Reports Server (NTRS)
Nielsen, Mogens; Grue, Klaus; Lecouat, Francois
1991-01-01
The Expert Operator's Associate (EOA) project is presented which studies the applicability of expert systems for day-to-day space operations. A prototype expert system is developed, which operates on-line with an existing spacecraft control system at the European Space Operations Centre, and functions as an 'operator's assistant' in controlling satellites. The prototype is demonstrated using an existing real-time simulation model of the MARECS-B2 telecommunication satellite. By developing a prototype system, the extent to which reliability and effectivens of operations can be enhanced by AI based support is examined. In addition the study examines the questions of acquisition and representation of the 'knowledge' for such systems, and the feasibility of 'migration' of some (currently) ground-based functions into future spaceborne autonomous systems.
An Introduction to X Window Application Development
1992-03-23
Acquisition and Policy Evaluation program using Cognitive Feed- back ( ESKAPE /CF) from the SunView windowing system to X Window. The new application...the generic X Window System. This thesis converts an Expert System Knowledge Acquisition and Policy Evaluation program using Cognitive Feedback ( ESKAPE ...15 IV. XESKAPE/CF: THE X WINDOW VERSION OF ESKAPE /CF ........................ 16 A. FUNCTIONAL COMPARISON TO
NASA Astrophysics Data System (ADS)
Weatherwax Scott, Caroline; Tsareff, Christopher R.
1990-06-01
One of the main goals of process engineering in the semiconductor industry is to improve wafer fabrication productivity and throughput. Engineers must work continuously toward this goal in addition to performing sustaining and development tasks. To accomplish these objectives, managers must make efficient use of engineering resources. One of the tools being used to improve efficiency is the diagnostic expert system. Expert systems are knowledge based computer programs designed to lead the user through the analysis and solution of a problem. Several photolithography diagnostic expert systems have been implemented at the Hughes Technology Center to provide a systematic approach to process problem solving. This systematic approach was achieved by documenting cause and effect analyses for a wide variety of processing problems. This knowledge was organized in the form of IF-THEN rules, a common structure for knowledge representation in expert system technology. These rules form the knowledge base of the expert system which is stored in the computer. The systems also include the problem solving methodology used by the expert when addressing a problem in his area of expertise. Operators now use the expert systems to solve many process problems without engineering assistance. The systems also facilitate the collection of appropriate data to assist engineering in solving unanticipated problems. Currently, several expert systems have been implemented to cover all aspects of the photolithography process. The systems, which have been in use for over a year, include wafer surface preparation (HMDS), photoresist coat and softbake, align and expose on a wafer stepper, and develop inspection. These systems are part of a plan to implement an expert system diagnostic environment throughout the wafer fabrication facility. In this paper, the systems' construction is described, including knowledge acquisition, rule construction, knowledge refinement, testing, and evaluation. The roles played by the process engineering expert and the knowledge engineer are discussed. The features of the systems are shown, particularly the interactive quality of the consultations and the ease of system use.
TARGET - TASK ANALYSIS REPORT GENERATION TOOL, VERSION 1.0
NASA Technical Reports Server (NTRS)
Ortiz, C. J.
1994-01-01
The Task Analysis Report Generation Tool, TARGET, is a graphical interface tool used to capture procedural knowledge and translate that knowledge into a hierarchical report. TARGET is based on VISTA, a knowledge acquisition tool developed by the Naval Systems Training Center. TARGET assists a programmer and/or task expert organize and understand the steps involved in accomplishing a task. The user can label individual steps in the task through a dialogue-box and get immediate graphical feedback for analysis. TARGET users can decompose tasks into basic action kernels or minimal steps to provide a clear picture of all basic actions needed to accomplish a job. This method allows the user to go back and critically examine the overall flow and makeup of the process. The user can switch between graphics (box flow diagrams) and text (task hierarchy) versions to more easily study the process being documented. As the practice of decomposition continues, tasks and their subtasks can be continually modified to more accurately reflect the user's procedures and rationale. This program is designed to help a programmer document an expert's task thus allowing the programmer to build an expert system which can help others perform the task. Flexibility is a key element of the system design and of the knowledge acquisition session. If the expert is not able to find time to work on the knowledge acquisition process with the program developer, the developer and subject matter expert may work in iterative sessions. TARGET is easy to use and is tailored to accommodate users ranging from the novice to the experienced expert systems builder. TARGET is written in C-language for IBM PC series and compatible computers running MS-DOS and Microsoft Windows version 3.0 or 3.1. No source code is supplied. The executable also requires 2Mb of RAM, a Microsoft compatible mouse, a VGA display and an 80286, 386 or 486 processor machine. The standard distribution medium for TARGET is one 5.25 inch 360K MS-DOS format diskette. TARGET was developed in 1991.
Sheikhtaheri, Abbas; Sadoughi, Farahnaz; Hashemi Dehaghi, Zahra
2014-09-01
Complicacy of clinical decisions justifies utilization of information systems such as artificial intelligence (e.g. expert systems and neural networks) to achieve better decisions, however, application of these systems in the medical domain faces some challenges. We aimed at to review the applications of these systems in the medical domain and discuss about such challenges. Following a brief introduction of expert systems and neural networks by representing few examples, the challenges of these systems in the medical domain are discussed. We found that the applications of expert systems and artificial neural networks have been increased in the medical domain. These systems have shown many advantages such as utilization of experts' knowledge, gaining rare knowledge, more time for assessment of the decision, more consistent decisions, and shorter decision-making process. In spite of all these advantages, there are challenges ahead of developing and using such systems including maintenance, required experts, inputting patients' data into the system, problems for knowledge acquisition, problems in modeling medical knowledge, evaluation and validation of system performance, wrong recommendations and responsibility, limited domains of such systems and necessity of integrating such systems into the routine work flows. We concluded that expert systems and neural networks can be successfully used in medicine; however, there are many concerns and questions to be answered through future studies and discussions.
An intelligent data acquisition system for fluid mechanics research
NASA Technical Reports Server (NTRS)
Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.
1989-01-01
This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.
1990-01-01
The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.
Machine learning research 1989-90
NASA Technical Reports Server (NTRS)
Porter, Bruce W.; Souther, Arthur
1990-01-01
Multifunctional knowledge bases offer a significant advance in artificial intelligence because they can support numerous expert tasks within a domain. As a result they amortize the costs of building a knowledge base over multiple expert systems and they reduce the brittleness of each system. Due to the inevitable size and complexity of multifunctional knowledge bases, their construction and maintenance require knowledge engineering and acquisition tools that can automatically identify interactions between new and existing knowledge. Furthermore, their use requires software for accessing those portions of the knowledge base that coherently answer questions. Considerable progress was made in developing software for building and accessing multifunctional knowledge bases. A language was developed for representing knowledge, along with software tools for editing and displaying knowledge, a machine learning program for integrating new information into existing knowledge, and a question answering system for accessing the knowledge base.
Real time data acquisition for expert systems in Unix workstations at Space Shuttle Mission Control
NASA Technical Reports Server (NTRS)
Muratore, John F.; Heindel, Troy A.; Murphy, Terri B.; Rasmussen, Arthur N.; Gnabasik, Mark; Mcfarland, Robert Z.; Bailey, Samuel A.
1990-01-01
A distributed system of proprietary engineering-class workstations is incorporated into NASA's Space Shuttle Mission-Control Center to increase the automation of mission control. The Real-Time Data System (RTDS) allows the operator to utilize expert knowledge in the display program for system modeling and evaluation. RTDS applications are reviewed including: (1) telemetry-animated communications schematics; (2) workstation displays of systems such as the Space Shuttle remote manipulator; and (3) a workstation emulation of shuttle flight instrumentation. The hard and soft real-time constraints are described including computer data acquisition, and the support techniques for the real-time expert systems include major frame buffers for logging and distribution as well as noise filtering. The incorporation of the workstations allows smaller programming teams to implement real-time telemetry systems that can improve operations and flight testing.
A knowledge authoring tool for clinical decision support.
Dunsmuir, Dustin; Daniels, Jeremy; Brouse, Christopher; Ford, Simon; Ansermino, J Mark
2008-06-01
Anesthesiologists in the operating room are unable to constantly monitor all data generated by physiological monitors. They are further distracted by clinical and educational tasks. An expert system would ideally provide assistance to the anesthesiologist in this data-rich environment. Clinical monitoring expert systems have not been widely adopted, as traditional methods of knowledge encoding require both expert medical and programming skills, making knowledge acquisition difficult. A software application was developed for use as a knowledge authoring tool for physiological monitoring. This application enables clinicians to create knowledge rules without the need of a knowledge engineer or programmer. These rules are designed to provide clinical diagnosis, explanations and treatment advice for optimal patient care to the clinician in real time. By intelligently combining data from physiological monitors and demographical data sources the expert system can use these rules to assist in monitoring the patient. The knowledge authoring process is simplified by limiting connective relationships between rules. The application is designed to allow open collaboration between communities of clinicians to build a library of rules for clinical use. This design provides clinicians with a system for parameter surveillance and expert advice with a transparent pathway of reasoning. A usability evaluation demonstrated that anesthesiologists can rapidly develop useful rules for use in a predefined clinical scenario.
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Paterra, Frank; Bailin, Sidney
1993-01-01
The old maxim goes: 'A picture is worth a thousand words'. The objective of the research reported in this paper is to demonstrate this idea as it relates to the knowledge acquisition process and the automated development of an expert system's rule base. A prototype tool, the Knowledge From Pictures (KFP) tool, has been developed which configures an expert system's rule base by an automated analysis of and reasoning about a 'picture', i.e., a graphical representation of some target system to be supported by the diagnostic capabilities of the expert system under development. This rule base, when refined, could then be used by the expert system for target system monitoring and fault analysis in an operational setting. Most people, when faced with the problem of understanding the behavior of a complicated system, resort to the use of some picture or graphical representation of the system as an aid in thinking about it. This depiction provides a means of helping the individual to visualize the bahavior and dynamics of the system under study. An analysis of the picture augmented with the individual's background information, allows the problem solver to codify knowledge about the system. This knowledge can, in turn, be used to develop computer programs to automatically monitor the system's performance. The approach taken is this research was to mimic this knowledge acquisition paradigm. A prototype tool was developed which provides the user: (1) a mechanism for graphically representing sample system-configurations appropriate for the domain, and (2) a linguistic device for annotating the graphical representation with the behaviors and mutual influences of the components depicted in the graphic. The KFP tool, reasoning from the graphical depiction along with user-supplied annotations of component behaviors and inter-component influences, generates a rule base that could be used in automating the fault detection, isolation, and repair of the system.
Knowledge acquisition for medical diagnosis using collective intelligence.
Hernández-Chan, G; Rodríguez-González, A; Alor-Hernández, G; Gómez-Berbís, J M; Mayer-Pujadas, M A; Posada-Gómez, R
2012-11-01
The wisdom of the crowds (WOC) is the process of taking into account the collective opinion of a group of individuals rather than a single expert to answer a question. Based on this assumption, the use of processes based on WOC techniques to collect new biomedical knowledge represents a challenging and cutting-edge trend on biomedical knowledge acquisition. The work presented in this paper shows a new schema to collect diagnosis information in Diagnosis Decision Support Systems (DDSS) based on collective intelligence and consensus methods.
Graph-based real-time fault diagnostics
NASA Technical Reports Server (NTRS)
Padalkar, S.; Karsai, G.; Sztipanovits, J.
1988-01-01
A real-time fault detection and diagnosis capability is absolutely crucial in the design of large-scale space systems. Some of the existing AI-based fault diagnostic techniques like expert systems and qualitative modelling are frequently ill-suited for this purpose. Expert systems are often inadequately structured, difficult to validate and suffer from knowledge acquisition bottlenecks. Qualitative modelling techniques sometimes generate a large number of failure source alternatives, thus hampering speedy diagnosis. In this paper we present a graph-based technique which is well suited for real-time fault diagnosis, structured knowledge representation and acquisition and testing and validation. A Hierarchical Fault Model of the system to be diagnosed is developed. At each level of hierarchy, there exist fault propagation digraphs denoting causal relations between failure modes of subsystems. The edges of such a digraph are weighted with fault propagation time intervals. Efficient and restartable graph algorithms are used for on-line speedy identification of failure source components.
Application of artificial intelligence to pharmacy and medicine.
Dasta, J F
1992-04-01
Artificial intelligence (AI) is a branch of computer science dealing with solving problems using symbolic programming. It has evolved into a problem solving science with applications in business, engineering, and health care. One application of AI is expert system development. An expert system consists of a knowledge base and inference engine, coupled with a user interface. A crucial aspect of expert system development is knowledge acquisition and implementing computable ways to solve problems. There have been several expert systems developed in medicine to assist physicians with medical diagnosis. Recently, several programs focusing on drug therapy have been described. They provide guidance on drug interactions, drug therapy monitoring, and drug formulary selection. There are many aspects of pharmacy that AI can have an impact on and the reader is challenged to consider these possibilities because they may some day become a reality in pharmacy.
A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center
NASA Technical Reports Server (NTRS)
Wang, Lui; Fletcher, Malise
1993-01-01
The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.
TDAS: The Thermal Expert System (TEXSYS) data acquisition system
NASA Technical Reports Server (NTRS)
Hack, Edmund C.; Healey, Kathleen J.
1987-01-01
As part of the NASA Systems Autonomy Demonstration Project, a thermal expert system (TEXSYS) is being developed. TEXSYS combines a fast real time control system, a sophisticated human interface for the user and several distinct artificial intelligence techniques in one system. TEXSYS is to provide real time control, operations advice and fault detection, isolation and recovery capabilities for the space station Thermal Test Bed (TTB). TEXSYS will be integrated with the TTB and act as an intelligent assistant to thermal engineers conducting TTB tests and experiments. The results are presented from connecting the real time controller to the knowledge based system thereby creating an integrated system. Special attention will be paid to the problem of filtering and interpreting the raw, real time data and placing the important values into the knowledge base of the expert system.
Acquisition, representation and rule generation for procedural knowledge
NASA Technical Reports Server (NTRS)
Ortiz, Chris; Saito, Tim; Mithal, Sachin; Loftin, R. Bowen
1991-01-01
Current research into the design and continuing development of a system for the acquisition of procedural knowledge, its representation in useful forms, and proposed methods for automated C Language Integrated Production System (CLIPS) rule generation is discussed. The Task Analysis and Rule Generation Tool (TARGET) is intended to permit experts, individually or collectively, to visually describe and refine procedural tasks. The system is designed to represent the acquired knowledge in the form of graphical objects with the capacity for generating production rules in CLIPS. The generated rules can then be integrated into applications such as NASA's Intelligent Computer Aided Training (ICAT) architecture. Also described are proposed methods for use in translating the graphical and intermediate knowledge representations into CLIPS rules.
NASA Technical Reports Server (NTRS)
Nieten, Joseph; Burke, Roger
1993-01-01
Consideration is given to the System Diagnostic Builder (SDB), an automated knowledge acquisition tool using state-of-the-art AI technologies. The SDB employs an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert. Thus, data are captured from the subject system, classified, and used to drive the rule generation process. These rule bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The knowledge bases captured from the Shuttle Mission Simulator can be used as black box simulations by the Intelligent Computer Aided Training devices. The SDB can also be used to construct knowledge bases for the process control industry, such as chemical production or oil and gas production.
NASA Astrophysics Data System (ADS)
Nieten, Joseph L.; Burke, Roger
1993-03-01
The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.
Knowledge-acquisition tools for medical knowledge-based systems.
Lanzola, G; Quaglini, S; Stefanelli, M
1995-03-01
Knowledge-based systems (KBS) have been proposed to solve a large variety of medical problems. A strategic issue for KBS development and maintenance are the efforts required for both knowledge engineers and domain experts. The proposed solution is building efficient knowledge acquisition (KA) tools. This paper presents a set of KA tools we are developing within a European Project called GAMES II. They have been designed after the formulation of an epistemological model of medical reasoning. The main goal is that of developing a computational framework which allows knowledge engineers and domain experts to interact cooperatively in developing a medical KBS. To this aim, a set of reusable software components is highly recommended. Their design was facilitated by the development of a methodology for KBS construction. It views this process as comprising two activities: the tailoring of the epistemological model to the specific medical task to be executed and the subsequent translation of this model into a computational architecture so that the connections between computational structures and their knowledge level counterparts are maintained. The KA tools we developed are illustrated taking examples from the behavior of a KBS we are building for the management of children with acute myeloid leukemia.
KAM (Knowledge Acquisition Module): A tool to simplify the knowledge acquisition process
NASA Technical Reports Server (NTRS)
Gettig, Gary A.
1988-01-01
Analysts, knowledge engineers and information specialists are faced with increasing volumes of time-sensitive data in text form, either as free text or highly structured text records. Rapid access to the relevant data in these sources is essential. However, due to the volume and organization of the contents, and limitations of human memory and association, frequently: (1) important information is not located in time; (2) reams of irrelevant data are searched; and (3) interesting or critical associations are missed due to physical or temporal gaps involved in working with large files. The Knowledge Acquisition Module (KAM) is a microcomputer-based expert system designed to assist knowledge engineers, analysts, and other specialists in extracting useful knowledge from large volumes of digitized text and text-based files. KAM formulates non-explicit, ambiguous, or vague relations, rules, and facts into a manageable and consistent formal code. A library of system rules or heuristics is maintained to control the extraction of rules, relations, assertions, and other patterns from the text. These heuristics can be added, deleted or customized by the user. The user can further control the extraction process with optional topic specifications. This allows the user to cluster extracts based on specific topics. Because KAM formalizes diverse knowledge, it can be used by a variety of expert systems and automated reasoning applications. KAM can also perform important roles in computer-assisted training and skill development. Current research efforts include the applicability of neural networks to aid in the extraction process and the conversion of these extracts into standard formats.
Diagnosis: Reasoning from first principles and experiential knowledge
NASA Technical Reports Server (NTRS)
Williams, Linda J. F.; Lawler, Dennis G.
1987-01-01
Completeness, efficiency and autonomy are requirements for suture diagnostic reasoning systems. Methods for automating diagnostic reasoning systems include diagnosis from first principles (i.e., reasoning from a thorough description of structure and behavior) and diagnosis from experiential knowledge (i.e., reasoning from a set of examples obtained from experts). However, implementation of either as a single reasoning method fails to meet these requirements. The approach of combining reasoning from first principles and reasoning from experiential knowledge does address the requirements discussed above and can possibly ease some of the difficulties associated with knowledge acquisition by allowing developers to systematically enumerate a portion of the knowledge necessary to build the diagnosis program. The ability to enumerate knowledge systematically facilitates defining the program's scope, completeness, and competence and assists in bounding, controlling, and guiding the knowledge acquisition process.
Machine intelligence and autonomy for aerospace systems
NASA Technical Reports Server (NTRS)
Heer, Ewald (Editor); Lum, Henry (Editor)
1988-01-01
The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.
Microcomputer-Based Intelligent Tutoring Systems: An Assessment.
ERIC Educational Resources Information Center
Schaffer, John William
Computer-assisted instruction, while familiar to most teachers, has failed to become an effective self-motivating instructional tool. Developments in artificial intelligence, however, have provided new and better tools for exploring human knowledge acquisition and utilization. Expert system technology represents one of the most promising of these…
Knowledge Acquisition Methods for the IHDS Diagnostic Review Expert System
DOT National Transportation Integrated Search
1997-12-01
The Federal Highway Administration's Interactive Highway Safety Design Model (IHSDM) is a suite of CADD-compatible programs that highway designers can use to evaluate the safety effects of various design alternatives. The IHSDM will include a Policy ...
Knowledge Acquisition for Expert Systems in Construction.
1988-02-01
Trmble R J Aliwood A E Bryman C N Cooper -. Sixth interim report 4r " -Contract DAJA 45-85-C-0033 February 1988 i i 88 3 09 124 "I...Wheeler, has developed a experienced knowlae engineer Successful applications of expert sys- system for material selection of boier researching at...wanted to try engineer who may suddexiy become very also benefitted from application of artifi- the technology for some time, and his busy on a
Knowledge structures and the acquisition of a complex skill.
Day, E A; Arthur, W; Gettman, D
2001-10-01
The purpose of this study was to examine the viability of knowledge structures as an operationalization of learning in the context of a task that required a high degree of skill. Over the course of 3 days, 86 men participated in 9 training sessions and learned a complex video game. At the end of acquisition, participants' knowledge structures were assessed. After a 4-day nonpractice interval, trainees completed tests of skill retention and skill transfer. Findings indicated that the similarity of trainees' knowledge structures to an expert structure was correlated with skill acquisition and was predictive of skill retention and skill transfer. However, the magnitude of these effects was dependent on the method used to derive the expert referent structure. Moreover, knowledge structures mediated the relationship between general cognitive ability and skill-based performance.
Beyond rules: The next generation of expert systems
NASA Technical Reports Server (NTRS)
Ferguson, Jay C.; Wagner, Robert E.
1987-01-01
The PARAGON Representation, Management, and Manipulation system is introduced. The concepts of knowledge representation, knowledge management, and knowledge manipulation are combined in a comprehensive system for solving real world problems requiring high levels of expertise in a real time environment. In most applications the complexity of the problem and the representation used to describe the domain knowledge tend to obscure the information from which solutions are derived. This inhibits the acquisition of domain knowledge verification/validation, places severe constraints on the ability to extend and maintain a knowledge base while making generic problem solving strategies difficult to develop. A unique hybrid system was developed to overcome these traditional limitations.
Boegl, Karl; Adlassnig, Klaus-Peter; Hayashi, Yoichi; Rothenfluh, Thomas E; Leitich, Harald
2004-01-01
This paper describes the fuzzy knowledge representation framework of the medical computer consultation system MedFrame/CADIAG-IV as well as the specific knowledge acquisition techniques that have been developed to support the definition of knowledge concepts and inference rules. As in its predecessor system CADIAG-II, fuzzy medical knowledge bases are used to model the uncertainty and the vagueness of medical concepts and fuzzy logic reasoning mechanisms provide the basic inference processes. The elicitation and acquisition of medical knowledge from domain experts has often been described as the most difficult and time-consuming task in knowledge-based system development in medicine. It comes as no surprise that this is even more so when unfamiliar representations like fuzzy membership functions are to be acquired. From previous projects we have learned that a user-centered approach is mandatory in complex and ill-defined knowledge domains such as internal medicine. This paper describes the knowledge acquisition framework that has been developed in order to make easier and more accessible the three main tasks of: (a) defining medical concepts; (b) providing appropriate interpretations for patient data; and (c) constructing inferential knowledge in a fuzzy knowledge representation framework. Special emphasis is laid on the motivations for some system design and data modeling decisions. The theoretical framework has been implemented in a software package, the Knowledge Base Builder Toolkit. The conception and the design of this system reflect the need for a user-centered, intuitive, and easy-to-handle tool. First results gained from pilot studies have shown that our approach can be successfully implemented in the context of a complex fuzzy theoretical framework. As a result, this critical aspect of knowledge-based system development can be accomplished more easily.
A Real-Time Knowledge Based Expert System For Diagnostic Problem Solving
NASA Astrophysics Data System (ADS)
Esteva, Juan C.; Reynolds, Robert G.
1986-03-01
This paper is a preliminary report of a real-time expert system which is concerned with the detection and diagnosis of electrical deviations in on-board vehicle-based electrical systems. The target systems are being tested at radio frequencies to evaluate their capability to be operated at designed levels of efficiency in an electromagnetic environment. The measurement of this capability is known as ElectroMagnetic Compatibility (EMC). The Intelligent Deviation Diagnosis (IDD) system consists of two basic modules the Automatic Data Acquisition Module (ADAM) and the Diagnosis System (DS). In this paper only the diagnosis system is described.
NASA Astrophysics Data System (ADS)
Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.
1991-03-01
To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).
Applications of Machine Learning and Rule Induction,
1995-02-15
An important area of application for machine learning is in automating the acquisition of knowledge bases required for expert systems. In this paper...we review the major paradigms for machine learning , including neural networks, instance-based methods, genetic learning, rule induction, and analytic
Experts' views regarding Australian school-leavers' knowledge of nutrition and food systems.
Sadegholvad, Sanaz; Yeatman, Heather; Parrish, Anne-Maree; Worsley, Anthony
2017-10-01
To explore Australian experts' views regarding strengths and gaps in school-leavers' knowledge of nutrition and food systems ( N&FS) and factors that influence that knowledge. Semi-structured interviews were conducted with 21 highly experienced food-related experts in Australia. Qualitative data were analysed thematically using Attride-Stirling's thematic network framework. Two global themes and several organising themes were identified. The first global theme, 'structural curriculum-based problems', emerged from three organising themes of: inconsistencies in provided food education programs at schools in Australia; insufficient coverage of food-related skills and food systems topics in school curricula; and the lack of trained school teachers. The second global theme, 'insufficient levels of school-leavers knowledge of N&FS ', was generated from four organising themes, which together described Australian school-leavers' poor knowledge of N&FS more broadly and knowledge translation problem for everyday practices. Study findings identified key problems relating to current school-based N&FS education programs in Australia and reported knowledge gaps in relation to N&FS among Australian school-leavers. These findings provide important guidance for N&FS curriculum development, to clearly articulate broadly-based N&FS knowledge acquisition in curriculum policy and education documents for Australian schools. © 2017 The Authors.
NASA Technical Reports Server (NTRS)
Glass, B. J.; Hack, E. C.
1990-01-01
A knowledge-based control system for real-time control and fault detection, isolation and recovery (FDIR) of a prototype two-phase Space Station Freedom external thermal control system (TCS) is discussed in this paper. The Thermal Expert System (TEXSYS) has been demonstrated in recent tests to be capable of both fault anticipation and detection and real-time control of the thermal bus. Performance requirements were achieved by using a symbolic control approach, layering model-based expert system software on a conventional numerical data acquisition and control system. The model-based capabilities of TEXSYS were shown to be advantageous during software development and testing. One representative example is given from on-line TCS tests of TEXSYS. The integration and testing of TEXSYS with a live TCS testbed provides some insight on the use of formal software design, development and documentation methodologies to qualify knowledge-based systems for on-line or flight applications.
Experiences of building a medical data acquisition system based on two-level modeling.
Li, Bei; Li, Jianbin; Lan, Xiaoyun; An, Ying; Gao, Wuqiang; Jiang, Yuqiao
2018-04-01
Compared to traditional software development strategies, the two-level modeling approach is more flexible and applicable to build an information system in the medical domain. However, the standards of two-level modeling such as openEHR appear complex to medical professionals. This study aims to investigate, implement, and improve the two-level modeling approach, and discusses the experience of building a unified data acquisition system for four affiliated university hospitals based on this approach. After the investigation, we simplified the approach of archetype modeling and developed a medical data acquisition system where medical experts can define the metadata for their own specialties by using a visual easy-to-use tool. The medical data acquisition system for multiple centers, clinical specialties, and diseases has been developed, and integrates the functions of metadata modeling, form design, and data acquisition. To date, 93,353 data items and 6,017 categories for 285 specific diseases have been created by medical experts, and over 25,000 patients' information has been collected. OpenEHR is an advanced two-level modeling method for medical data, but its idea to separate domain knowledge and technical concern is not easy to realize. Moreover, it is difficult to reach an agreement on archetype definition. Therefore, we adopted simpler metadata modeling, and employed What-You-See-Is-What-You-Get (WYSIWYG) tools to further improve the usability of the system. Compared with the archetype definition, our approach lowers the difficulty. Nevertheless, to build such a system, every participant should have some knowledge in both medicine and information technology domains, as these interdisciplinary talents are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.
Understanding the role of knowledge in the practice of expert nephrology nurses in Australia.
Bonner, Ann
2007-09-01
This paper, which is abstracted from a larger study into the acquisition and exercise of nephrology nursing expertise, aims to explore the role of knowledge in expert practice. Using grounded theory methodology, the study involved 17 registered nurses who were practicing in a metropolitan renal unit in New South Wales, Australia. Concurrent data collection and analysis was undertaken, incorporating participants' observations and interviews. Having extensive nephrology nursing knowledge was a striking characteristic of a nursing expert. Expert nurses clearly relied on and utilized extensive nephrology nursing knowledge to practice. Of importance for nursing, the results of this study indicate that domain-specific knowledge is a crucial feature of expert practice.
Quantitative knowledge acquisition for expert systems
NASA Technical Reports Server (NTRS)
Belkin, Brenda L.; Stengel, Robert F.
1991-01-01
A common problem in the design of expert systems is the definition of rules from data obtained in system operation or simulation. While it is relatively easy to collect data and to log the comments of human operators engaged in experiments, generalizing such information to a set of rules has not previously been a direct task. A statistical method is presented for generating rule bases from numerical data, motivated by an example based on aircraft navigation with multiple sensors. The specific objective is to design an expert system that selects a satisfactory suite of measurements from a dissimilar, redundant set, given an arbitrary navigation geometry and possible sensor failures. The systematic development is described of a Navigation Sensor Management (NSM) Expert System from Kalman Filter convariance data. The method invokes two statistical techniques: Analysis of Variance (ANOVA) and the ID3 Algorithm. The ANOVA technique indicates whether variations of problem parameters give statistically different covariance results, and the ID3 algorithms identifies the relationships between the problem parameters using probabilistic knowledge extracted from a simulation example set. Both are detailed.
Automated Induction Of Rule-Based Neural Networks
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J.; Goodman, Rodney M.
1994-01-01
Prototype expert systems implemented in software and are functionally equivalent to neural networks set up automatically and placed into operation within minutes following information-theoretic approach to automated acquisition of knowledge from large example data bases. Approach based largely on use of ITRULE computer program.
Systematic methods for knowledge acquisition and expert system development
NASA Technical Reports Server (NTRS)
Belkin, Brenda L.; Stengel, Robert F.
1991-01-01
Nine cooperating rule-based systems, collectively called AUTOCREW which were designed to automate functions and decisions associated with a combat aircraft's subsystems, are discussed. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base and to assess the cooperation between the rule bases. Simulation and comparative workload results for two mission scenarios are given. The scenarios are inbound surface-to-air-missile attack on the aircraft and pilot incapacitation. The methodology used to develop the AUTOCREW knowledge bases is summarized. Issues involved in designing the navigation sensor selection expert in AUTOCREW's NAVIGATOR knowledge base are discussed in detail. The performance of seven navigation systems aiding a medium-accuracy INS was investigated using Kalman filter covariance analyses. A navigation sensor management (NSM) expert system was formulated from covariance simulation data using the analysis of variance (ANOVA) method and the ID3 algorithm. ANOVA results show that statistically different position accuracies are obtained when different navaids are used, the number of navaids aiding the INS is varied, the aircraft's trajectory is varied, and the performance history is varied. The ID3 algorithm determines the NSM expert's classification rules in the form of decision trees. The performance of these decision trees was assessed on two arbitrary trajectories, and the results demonstrate that the NSM expert adapts to new situations and provides reasonable estimates of the expected hybrid performance.
Knowledge Acquisition: A Review of Tools and Ideas.
1987-08-01
tools. However, none could be applied directly to solving the problem of acquiring knowledge for the ASPA. RECOMMENDATIONS Develop a tool based on...the social sciences. BACKGROUND Because of the newness and complexity of the knowledge acquisition problem, the background of the knowledge...4. Minimal (does not incorporate any unnecessary complexities ) 5. Expected (experts are not in disagreement over any important aspect) (Grover 1983
Intelligent control of mixed-culture bioprocesses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, D.L.; Larsen, E.D.; Miller, K.S.
A hierarchical control system is being developed and applied to a mixed culture bioprocess in a continuous stirred tank reactor. A bioreactor, with its inherent complexity and non-linear behavior was an interesting, yet, difficult application for control theory. The bottom level of the hierarchy was implemented as a number of integrated set point controls and data acquisition modules. Within the second level was a diagnostic system that used expert knowledge to determine the operational status of the sensors, actuators, and control modules. A diagnostic program was successfully implemented for the detection of stirrer malfunctions, and to monitor liquid delivery ratesmore » and recalibrate the pumps when deviations from desired flow rates occurred. The highest control level was a supervisory shell that was developed using expert knowledge and the history of the reactor operation to determine the set points required to meet a set of production criteria. At this stage the supervisory shell analyzed the data to determine the state of the system. In future implementations, this shell will determine the set points required to optimize a cost function using expert knowledge and adaptive learning techniques.« less
TARGET: Rapid Capture of Process Knowledge
NASA Technical Reports Server (NTRS)
Ortiz, C. J.; Ly, H. V.; Saito, T.; Loftin, R. B.
1993-01-01
TARGET (Task Analysis/Rule Generation Tool) represents a new breed of tool that blends graphical process flow modeling capabilities with the function of a top-down reporting facility. Since NASA personnel frequently perform tasks that are primarily procedural in nature, TARGET models mission or task procedures and generates hierarchical reports as part of the process capture and analysis effort. Historically, capturing knowledge has proven to be one of the greatest barriers to the development of intelligent systems. Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the knowledge engineer whose responsibility is to acquire and represent the expert's knowledge in a useful form. Although much research has been devoted to the development of methodologies and computer software to aid in the capture and representation of some types of knowledge, procedural knowledge has received relatively little attention. In essence, TARGET is one of the first tools of its kind, commercial or institutional, that is designed to support this type of knowledge capture undertaking. This paper will describe the design and development of TARGET for the acquisition and representation of procedural knowledge. The strategies employed by TARGET to support use by knowledge engineers, subject matter experts, programmers and managers will be discussed. This discussion includes the method by which the tool employs its graphical user interface to generate a task hierarchy report. Next, the approach to generate production rules for incorporation in and development of a CLIPS based expert system will be elaborated. TARGET also permits experts to visually describe procedural tasks as a common medium for knowledge refinement by the expert community and knowledge engineer making knowledge consensus possible. The paper briefly touches on the verification and validation issues facing the CLIPS rule generation aspects of TARGET. A description of efforts to support TARGET's interoperability issues on PCs, Macintoshes and UNIX workstations concludes the paper.
PSG-EXPERT. An expert system for the diagnosis of sleep disorders.
Fred, A; Filipe, J; Partinen, M; Paiva, T
2000-01-01
This paper describes PSG-EXPERT, an expert system in the domain of sleep disorders exploring polysomnographic data. The developed software tool is addressed from two points of view: (1)--as an integrated environment for the development of diagnosis-oriented expert systems; (2)--as an auxiliary diagnosis tool in the particular domain of sleep disorders. Developed over a Windows platform, this software tool extends one of the most popular shells--CLIPS (C Language Integrated Production System) with the following features: backward chaining engine; graph-based explanation facilities; knowledge editor including a fuzzy fact editor and a rules editor, with facts-rules integrity checking; belief revision mechanism; built-in case generator and validation module. It therefore provides graphical support for knowledge acquisition, edition, explanation and validation. From an application domain point of view, PSG-Expert is an auxiliary diagnosis system for sleep disorders based on polysomnographic data, that aims at assisting the medical expert in his diagnosis task by providing automatic analysis of polysomnographic data, summarising the results of this analysis in terms of a report of major findings and possible diagnosis consistent with the polysomnographic data. Sleep disorders classification follows the International Classification of Sleep Disorders. Major features of the system include: browsing on patients data records; structured navigation on Sleep Disorders descriptions according to ASDA definitions; internet links to related pages; diagnosis consistent with polysomnographic data; graphical user-interface including graph-based explanatory facilities; uncertainty modelling and belief revision; production of reports; connection to remote databases.
NASA Astrophysics Data System (ADS)
Avolio, G.; Corso Radu, A.; Kazarov, A.; Lehmann Miotto, G.; Magnoni, L.
2012-12-01
The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment is a very complex distributed computing system, composed of more than 20000 applications running on more than 2000 computers. The TDAQ Controls system has to guarantee the smooth and synchronous operations of all the TDAQ components and has to provide the means to minimize the downtime of the system caused by runtime failures. During data taking runs, streams of information messages sent or published by running applications are the main sources of knowledge about correctness of running operations. The huge flow of operational monitoring data produced is constantly monitored by experts in order to detect problems or misbehaviours. Given the scale of the system and the rates of data to be analyzed, the automation of the system functionality in the areas of operational monitoring, system verification, error detection and recovery is a strong requirement. To accomplish its objective, the Controls system includes some high-level components which are based on advanced software technologies, namely the rule-based Expert System and the Complex Event Processing engines. The chosen techniques allow to formalize, store and reuse the knowledge of experts and thus to assist the shifters in the ATLAS control room during the data-taking activities.
Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results
NASA Technical Reports Server (NTRS)
Glass, B. J. (Editor)
1992-01-01
The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.
Thermal Expert System (TEXSYS): Systems automony demonstration project, volume 1. Overview
NASA Technical Reports Server (NTRS)
Glass, B. J. (Editor)
1992-01-01
The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS test bed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.
Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results
NASA Astrophysics Data System (ADS)
Glass, B. J.
1992-10-01
The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.
1987-05-01
Computers . " Symbolics. Inc. 8. Carnegie Group. Inc KnoiledgeCraft Carnegie Group, Inc.. 1985. .- 9. Moser, Margaret, An Overviev of NIKL. Section of BBN...ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASK BBN Laboratories Inc. AREAAWoRIUNTNUMER_ 10 Moulton St. Cambridge, MA 02238 It...knowledge representation, expert systems; strategic computing , . A 20 ABSTRACT (Contnue an r rerse ide If neceaesary and Identify by block number) This
NASA Astrophysics Data System (ADS)
Resdiansyah; O. K Rahmat, R. A.; Ismail, A.
2018-03-01
Green transportation refers to a sustainable transport that gives the least impact in terms of social and environmental but at the same time is able to supply energy sources globally that includes non-motorized transport strategies deployment to promote healthy lifestyles, also known as Mobility Management Scheme (MMS). As construction of road infrastructure cannot help solve the problem of congestion, past research has shown that MMS is an effective measure to mitigate congestion and to achieve green transportation. MMS consists of different strategies and policies that subdivided into categories according to how they are able to influence travel behaviour. Appropriate selection of mobility strategies will ensure its effectiveness in mitigating congestion problems. Nevertheless, determining appropriate strategies requires human expert and depends on a number of success factors. This research has successfully developed a computer clone system based on human expert, called E-MMS. The process of knowledge acquisition for MMS strategies and the next following process to selection of strategy has been encode in a knowledge-based system using a shell expert system. The newly developed computer cloning system was successfully verified, validated and evaluated (VV&E) by comparing the result output with the real transportation expert recommendation in which the findings suggested Introduction
The Roles of Knowledge Professionals for Knowledge Management.
ERIC Educational Resources Information Center
Kim, Seonghee
This paper starts by exploring the definition of knowledge and knowledge management; examples of acquisition, creation, packaging, application, and reuse of knowledge are provided. It then considers the partnership for knowledge management and especially how librarians as knowledge professionals, users, and technology experts can contribute to…
DesAutels, Spencer J; Fox, Zachary E; Giuse, Dario A; Williams, Annette M; Kou, Qing-Hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia
2016-01-01
Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems.
The Role of Knowledge Base and Declarative Metamemory in the Acquisition of a Reading Strategy.
ERIC Educational Resources Information Center
Gaultney, Jane F.; Hack-Weiner, Nancy
A study examined whether previous knowledge facilitates the acquisition of a reading comprehension strategy by children who are poor readers. Subjects, 54 fourth- and fifth-grade boys in Palm Beach County, Florida, who were poor readers and baseball experts, were trained in the use of a reading strategy (asking "why" questions), with…
Recursive heuristic classification
NASA Technical Reports Server (NTRS)
Wilkins, David C.
1994-01-01
The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.
Reusable rocket engine turbopump health monitoring system, part 3
NASA Technical Reports Server (NTRS)
Perry, John G.
1989-01-01
Degradation mechanisms and sensor identification/selection resulted in a list of degradation modes and a list of sensors that are utilized in the diagnosis of these degradation modes. The sensor list is divided into primary and secondary indicators of the corresponding degradation modes. The signal conditioning requirements are discussed, describing the methods of producing the Space Shuttle Main Engine (SSME) post-hot-fire test data to be utilized by the Health Monitoring System. Development of the diagnostic logic and algorithms is also presented. The knowledge engineering approach, as utilized, includes the knowledge acquisition effort, characterization of the expert's problem solving strategy, conceptually defining the form of the applicable knowledge base, and rule base, and identifying an appropriate inferencing mechanism for the problem domain. The resulting logic flow graphs detail the diagnosis/prognosis procedure as followed by the experts. The nature and content of required support data and databases is also presented. The distinction between deep and shallow types of knowledge is identified. Computer coding of the Health Monitoring System is shown to follow the logical inferencing of the logic flow graphs/algorithms.
Yao, Bin; Kang, Hong; Miao, Qi; Zhou, Sicheng; Liang, Chen; Gong, Yang
2017-01-01
Patient falls are a common safety event type that impairs the healthcare quality. Strategies including solution tools and reporting systems for preventing patient falls have been developed and implemented in the U.S. However, the current strategies do not include timely knowledge support, which is in great need in bridging the gap between reporting and learning. In this study, we constructed a knowledge base of fall events by combining expert-reviewed fall prevention solutions and then integrating them into a reporting system. The knowledge base enables timely and tailored knowledge support and thus will serve as a prevailing fall prevention tool. This effort holds promise in making knowledge acquisition and management a routine process for enhancing the reporting and understanding of patient safety events.
2010-01-01
Background Decision support in health systems is a highly difficult task, due to the inherent complexity of the process and structures involved. Method This paper introduces a new hybrid methodology Expert-based Cooperative Analysis (EbCA), which incorporates explicit prior expert knowledge in data analysis methods, and elicits implicit or tacit expert knowledge (IK) to improve decision support in healthcare systems. EbCA has been applied to two different case studies, showing its usability and versatility: 1) Bench-marking of small mental health areas based on technical efficiency estimated by EbCA-Data Envelopment Analysis (EbCA-DEA), and 2) Case-mix of schizophrenia based on functional dependency using Clustering Based on Rules (ClBR). In both cases comparisons towards classical procedures using qualitative explicit prior knowledge were made. Bayesian predictive validity measures were used for comparison with expert panels results. Overall agreement was tested by Intraclass Correlation Coefficient in case "1" and kappa in both cases. Results EbCA is a new methodology composed by 6 steps:. 1) Data collection and data preparation; 2) acquisition of "Prior Expert Knowledge" (PEK) and design of the "Prior Knowledge Base" (PKB); 3) PKB-guided analysis; 4) support-interpretation tools to evaluate results and detect inconsistencies (here Implicit Knowledg -IK- might be elicited); 5) incorporation of elicited IK in PKB and repeat till a satisfactory solution; 6) post-processing results for decision support. EbCA has been useful for incorporating PEK in two different analysis methods (DEA and Clustering), applied respectively to assess technical efficiency of small mental health areas and for case-mix of schizophrenia based on functional dependency. Differences in results obtained with classical approaches were mainly related to the IK which could be elicited by using EbCA and had major implications for the decision making in both cases. Discussion This paper presents EbCA and shows the convenience of completing classical data analysis with PEK as a mean to extract relevant knowledge in complex health domains. One of the major benefits of EbCA is iterative elicitation of IK.. Both explicit and tacit or implicit expert knowledge are critical to guide the scientific analysis of very complex decisional problems as those found in health system research. PMID:20920289
Gibert, Karina; García-Alonso, Carlos; Salvador-Carulla, Luis
2010-09-30
Decision support in health systems is a highly difficult task, due to the inherent complexity of the process and structures involved. This paper introduces a new hybrid methodology Expert-based Cooperative Analysis (EbCA), which incorporates explicit prior expert knowledge in data analysis methods, and elicits implicit or tacit expert knowledge (IK) to improve decision support in healthcare systems. EbCA has been applied to two different case studies, showing its usability and versatility: 1) Bench-marking of small mental health areas based on technical efficiency estimated by EbCA-Data Envelopment Analysis (EbCA-DEA), and 2) Case-mix of schizophrenia based on functional dependency using Clustering Based on Rules (ClBR). In both cases comparisons towards classical procedures using qualitative explicit prior knowledge were made. Bayesian predictive validity measures were used for comparison with expert panels results. Overall agreement was tested by Intraclass Correlation Coefficient in case "1" and kappa in both cases. EbCA is a new methodology composed by 6 steps:. 1) Data collection and data preparation; 2) acquisition of "Prior Expert Knowledge" (PEK) and design of the "Prior Knowledge Base" (PKB); 3) PKB-guided analysis; 4) support-interpretation tools to evaluate results and detect inconsistencies (here Implicit Knowledg -IK- might be elicited); 5) incorporation of elicited IK in PKB and repeat till a satisfactory solution; 6) post-processing results for decision support. EbCA has been useful for incorporating PEK in two different analysis methods (DEA and Clustering), applied respectively to assess technical efficiency of small mental health areas and for case-mix of schizophrenia based on functional dependency. Differences in results obtained with classical approaches were mainly related to the IK which could be elicited by using EbCA and had major implications for the decision making in both cases. This paper presents EbCA and shows the convenience of completing classical data analysis with PEK as a mean to extract relevant knowledge in complex health domains. One of the major benefits of EbCA is iterative elicitation of IK.. Both explicit and tacit or implicit expert knowledge are critical to guide the scientific analysis of very complex decisional problems as those found in health system research.
Key properties of expert movement systems in sport : an ecological dynamics perspective.
Seifert, Ludovic; Button, Chris; Davids, Keith
2013-03-01
This paper identifies key properties of expertise in sport predicated on the performer-environment relationship. Weaknesses of traditional approaches to expert performance, which uniquely focus on the performer and the environment separately, are highlighted by an ecological dynamics perspective. Key properties of expert movement systems include 'multi- and meta-stability', 'adaptive variability', 'redundancy', 'degeneracy' and the 'attunement to affordances'. Empirical research on these expert system properties indicates that skill acquisition does not emerge from the internal representation of declarative and procedural knowledge, or the imitation of expert behaviours to linearly reduce a perceived 'gap' separating movements of beginners and a putative expert model. Rather, expert performance corresponds with the ongoing co-adaptation of an individual's behaviours to dynamically changing, interacting constraints, individually perceived and encountered. The functional role of adaptive movement variability is essential to expert performance in many different sports (involving individuals and teams; ball games and outdoor activities; land and aquatic environments). These key properties signify that, in sport performance, although basic movement patterns need to be acquired by developing athletes, there exists no ideal movement template towards which all learners should aspire, since relatively unique functional movement solutions emerge from the interaction of key constraints.
ERIC Educational Resources Information Center
Lenard, Mary Jane
2003-01-01
The assessment of internal control is a consideration in all financial statement audits, as stressed by the Statement on Auditing Standards (SAS) No. 78. According to this statement, "the auditor should obtain an understanding of internal control sufficient to plan the audit" (Accounting Standards Board, 1995, p. 1). Therefore, an…
Controlling Real-Time Processes On The Space Station With Expert Systems
NASA Astrophysics Data System (ADS)
Leinweber, David; Perry, John
1987-02-01
Many aspects of space station operations involve continuous control of real-time processes. These processes include electrical power system monitoring, propulsion system health and maintenance, environmental and life support systems, space suit checkout, on-board manufacturing, and servicing of attached vehicles such as satellites, shuttles, orbital maneuvering vehicles, orbital transfer vehicles and remote teleoperators. Traditionally, monitoring of these critical real-time processes has been done by trained human experts monitoring telemetry data. However, the long duration of space station missions and the high cost of crew time in space creates a powerful economic incentive for the development of highly autonomous knowledge-based expert control procedures for these space stations. In addition to controlling the normal operations of these processes, the expert systems must also be able to quickly respond to anomalous events, determine their cause and initiate corrective actions in a safe and timely manner. This must be accomplished without excessive diversion of system resources from ongoing control activities and any events beyond the scope of the expert control and diagnosis functions must be recognized and brought to the attention of human operators. Real-time sensor based expert systems (as opposed to off-line, consulting or planning systems receiving data via the keyboard) pose particular problems associated with sensor failures, sensor degradation and data consistency, which must be explicitly handled in an efficient manner. A set of these systems must also be able to work together in a cooperative manner. This paper describes the requirements for real-time expert systems in space station control, and presents prototype implementations of space station expert control procedures in PICON (process intelligent control). PICON is a real-time expert system shell which operates in parallel with distributed data acquisition systems. It incorporates a specialized inference engine with a specialized scheduling portion specifically designed to match the allocation of system resources with the operational requirements of real-time control systems. Innovative knowledge engineering techniques used in PICON to facilitate the development of real-time sensor-based expert systems which use the special features of the inference engine are illustrated in the prototype examples.
DesAutels, Spencer J.; Fox, Zachary E.; Giuse, Dario A.; Williams, Annette M.; Kou, Qing-hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia
2016-01-01
Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems. PMID:28269846
An Educational Program of Mechatronics for Multidisciplinary Knowledge Acquisition
NASA Astrophysics Data System (ADS)
Watanuki, Keiichi; Kojima, Kazuyuki
Recently, as the technologies surrounding mechanical engineering have improved remarkably, the expectations for students who graduate from departments of mechanical engineering have increased. For example, in order to develop a mechatronics system, a student needs to integrate a wide variety of technologies, such as mechanical engineering, electrical and electronics engineering, and information technology. Therefore, from the perspective of educators, the current education system, which stresses expertizing each technology, should be replaced by an education system that stresses integrating multidisciplinary knowledge. In this paper, a trial education program for students of the department of mechanical engineering in our university, in which students are required to integrate multidisciplinary knowledge in order to develop a biologically-based robot, is described. Finally, the efficacy of the program is analyzed.
Developing an Environmental Decision Support System for Stream Management: the STREAMES Experience
NASA Astrophysics Data System (ADS)
Riera, J.; Argerich, A.; Comas, J.; Llorens, E.; Martí, E.; Godé, L.; Pargament, D.; Puig, M.; Sabater, F.
2005-05-01
Transferring research knowledge to stream managers is crucial for scientifically sound management. Environmental decision support systems are advocated as an effective means to accomplish this. STREAMES (STream REAach Management: an Expert System) is a decision tree based EDSS prototype developed within the context of an European project as a tool to assist water managers in the diagnosis of problems, detection of causes, and selection of management strategies for coping with stream degradation issues related mostly to excess nutrient availability. STREAMES was developed by a team of scientists, water managers, and experts in knowledge engineering. Although the tool focuses on management at the stream reach scale, it also incorporates a mass-balance catchment nutrient emission model and a simple GIS module. We will briefly present the prototype and share our experience in its development. Emphasis will be placed on the process of knowledge acquisition, the design process, the pitfalls and benefits of the communication between scientists and managers, and the potential for future development of STREAMES, particularly in the context of the EU Water Framework Directive.
AIRID: an application of the KAS/Prospector expert system builder to airplane identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, J.P.
1984-01-01
The Knowledge Acquisition System/Prospector expert system building tool developed by SRI, International, has been used to construct an expert system to identify aircraft on the basis of observables such as wing shape, engine number/location, fuselage shape, and tail assembly shape. Additional detailed features are allowed to influence the identification as other favorable features. Constraints on the observations imposed by bad weather and distant observations have been included as contexts to the models. Models for Soviet and US fighter aircraft have been included. Inclusion of other types of aircraft such as bombers, transports, and reconnaissance craft is straightforward. Two models permitmore » exploration of the interaction of semantic and taxonomic networks with the models. A full set of text data for fluid communication with the user has been included. The use of demons as triggered output responses to enhance utility to the user has been explored. This paper presents discussion of the ease of building the expert system using this powerful tool and problems encountered in the construction process.« less
Systematic methods for knowledge acquisition and expert system development
NASA Technical Reports Server (NTRS)
Belkin, Brenda L.; Stengel, Robert F.
1991-01-01
Nine cooperating rule-based systems, collectively called AUTOCREW, were designed to automate functions and decisions associated with a combat aircraft's subsystem. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base, and to assess the cooperation between the rule-bases. Each AUTOCREW subsystem is composed of several expert systems that perform specific tasks. AUTOCREW's NAVIGATOR was analyzed in detail to understand the difficulties involved in designing the system and to identify tools and methodologies that ease development. The NAVIGATOR determines optimal navigation strategies from a set of available sensors. A Navigation Sensor Management (NSM) expert system was systematically designed from Kalman filter covariance data; four ground-based, a satellite-based, and two on-board INS-aiding sensors were modeled and simulated to aid an INS. The NSM Expert was developed using the Analysis of Variance (ANOVA) and the ID3 algorithm. Navigation strategy selection is based on an RSS position error decision metric, which is computed from the covariance data. Results show that the NSM Expert predicts position error correctly between 45 and 100 percent of the time for a specified navaid configuration and aircraft trajectory. The NSM Expert adapts to new situations, and provides reasonable estimates of hybrid performance. The systematic nature of the ANOVA/ID3 method makes it broadly applicable to expert system design when experimental or simulation data is available.
NASA Technical Reports Server (NTRS)
Dominick, Jeffrey; Bull, John; Healey, Kathleen J.
1990-01-01
The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.
Prompt comprehension in UNIX command production.
Doane, S M; McNamara, D S; Kintsch, W; Polson, P G; Clawson, D M
1992-07-01
We hypothesize that a cognitive analysis based on the construction-integration theory of comprehension (Kintsch, 1988) can predict what is difficult about generating complex composite commands in the UNIX operating system. We provide empirical support for assumptions of the Doane, Kintsch, and Polson (1989, 1990) construction-integration model for generating complex commands in UNIX. We asked users whose UNIX experience varied to produce complex UNIX commands, and then provided help prompts whenever the commands that they produced were erroneous. The help prompts were designed to assist subjects with respect to both the knowledge and the memory processes that our UNIX modeling efforts have suggested are lacking in less expert users. It appears that experts respond to different prompts than do novices. Expert performance is helped by the presentation of abstract information, whereas novice and intermediate performance is modified by presentation of concrete information. Second, while presentation of specific prompts helps less expert subjects, they do not provide sufficient information to obtain correct performance. Our analyses suggest that information about the ordering of commands is required to help the less expert with both knowledge and memory load problems in a manner consistent with skill acquisition theories.
How to help intelligent systems with different uncertainty representations cooperate with each other
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.; Kumar, Sundeep
1991-01-01
In order to solve a complicated problem one must use the knowledge from different domains. Therefore, if one wants to automatize the solution of these problems, one has to help the knowledge-based systems that correspond to these domains cooperate, that is, communicate facts and conclusions to each other in the process of decision making. One of the main obstacles to such cooperation is the fact that different intelligent systems use different methods of knowledge acquisition and different methods and formalisms for uncertainty representation. So an interface f is needed, 'translating' the values x, y, which represent uncertainty of the experts' knowledge in one system, into the values f(x), f(y) appropriate for another one. The problem of designing such an interface as a mathematical problem is formulated and solved. It is shown that the interface must be fractionally linear: f(x) = (ax + b)/(cx + d).
Structural Representations in Knowledge Acquisition.
ERIC Educational Resources Information Center
Gonzalvo, Pilar; And Others
1994-01-01
Multidimensional scaling (MDS) and Pathfinder techniques for assessing changes in the structural representation of a knowledge domain were studied with relatedness ratings collected from 72 Spanish college students. Comparison of student and expert similarity measures indicate that MDS and graph theoretic approaches are valid techniques. (SLD)
Knowledge acquisition for temporal abstraction.
Stein, A; Musen, M A; Shahar, Y
1996-01-01
Temporal abstraction is the task of detecting relevant patterns in data over time. The knowledge-based temporal-abstraction method uses knowledge about a clinical domain's contexts, external events, and parameters to create meaningful interval-based abstractions from raw time-stamped clinical data. In this paper, we describe the acquisition and maintenance of domain-specific temporal-abstraction knowledge. Using the PROTEGE-II framework, we have designed a graphical tool for acquiring temporal knowledge directly from expert physicians, maintaining the knowledge in a sharable form, and converting the knowledge into a suitable format for use by an appropriate problem-solving method. In initial tests, the tool offered significant gains in our ability to rapidly acquire temporal knowledge and to use that knowledge to perform automated temporal reasoning.
Development of Teaching Expertise Viewed through the Dreyfus Model of Skill Acquisition
ERIC Educational Resources Information Center
Lyon, Lucinda J.
2015-01-01
This study was designed to explore development of skill acquisition in dental education, utilizing the Dreyfus and Dreyfus continuum. By identifying what skill progression may be recognized in the expert dental educator and what experiences appear to influence this growth, the knowledge gained may inform more efficient, effective faculty support,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, S.C.; Woolf, B.
The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its purpose is to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress that has been made in the fourth year of the existence of the NAIC on the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert system for equipment maintenance, distributed AI for communications system control, automatic photointerpretation, time-oriented problem solving, speech understanding systems, knowledge base maintenance, hardwaremore » architectures for very large systems, knowledge-based reasoning and planning, and a knowledge acquisition, assistance, and explanation system. The specific topic for this volume is the recognition of plans expressed in natural language, followed by their discussion and use.« less
Agent Learning for Mixed-Initiative Knowledge Acquisition
2010-02-28
philosopher of science Stephen Toulmin (1963), and the evidence professor David Schum (1987, 2001a). This approach uses expert knowledge and evidence to...Change, Forward to Ilya Prigogine and Isabelle Stengers. Order Out of Chaos: Man’s New Dialogue with Nature. Bantam Books, 1984. Toulmin , S. E., The
Inflexibility of Experts--Reality or Myth? Quantifying the Einstellung Effect in Chess Masters
ERIC Educational Resources Information Center
Bilalic, Merim; McLeod, Peter; Gobet, Fernand
2008-01-01
How does the knowledge of experts affect their behaviour in situations that require unusual methods of dealing? One possibility, loosely originating in research on creativity and skill acquisition, is that an increase in expertise can lead to inflexibility of thought due to automation of procedures. Yet another possibility, based on expertise…
An expert system for the design of heating, ventilating, and air-conditioning systems
NASA Astrophysics Data System (ADS)
Camejo, Pedro Jose
1989-12-01
Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.
An Evaluation of Text Mining Tools as Applied to Selected Scientific and Engineering Literature.
ERIC Educational Resources Information Center
Trybula, Walter J.; Wyllys, Ronald E.
2000-01-01
Addresses an approach to the discovery of scientific knowledge through an examination of data mining and text mining techniques. Presents the results of experiments that investigated knowledge acquisition from a selected set of technical documents by domain experts. (Contains 15 references.) (Author/LRW)
NASA Technical Reports Server (NTRS)
Liebowitz, J.
1986-01-01
The development of an expert system prototype for software functional requirement determination for NASA Goddard's Command Management System, as part of its process of transforming general requests into specific near-earth satellite commands, is described. The present knowledge base was formulated through interactions with domain experts, and was then linked to the existing Knowledge Engineering Systems (KES) expert system application generator. Steps in the knowledge-base development include problem-oriented attribute hierarchy development, knowledge management approach determination, and knowledge base encoding. The KES Parser and Inspector, in addition to backcasting and analogical mapping, were used to validate the expert system-derived requirements for one of the major functions of a spacecraft, the solar Maximum Mission. Knowledge refinement, evaluation, and implementation procedures of the expert system were then accomplished.
Industrial knowledge design: an approach for designing information artifacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schatz, Sae; Berking, Peter; Raybourn, Elaine M.
In this study, the authors define a new approach that addresses the challenge of efficiently designing informational artefacts for optimal knowledge acquisition, an important issue in cognitive ergonomics. Termed Industrial Knowledge Design (or InK'D), it draws from information-related (e.g. informatics) and neurosciences-related (e.g. neuroergonomics) disciplines. Although it can be used for a broad scope of communication-driven business functions, our focus as learning professionals is on conveying knowledge for purposes of training, education, and performance support. This paper discusses preliminary principles of InK'D practice that can be employed to maximise the quality and quantity of transferred knowledge through interaction design. Themore » paper codifies tacit knowledge into explicit concepts that can be leveraged by expert and non-expert knowledge designers alike.« less
Industrial knowledge design: an approach for designing information artifacts
Schatz, Sae; Berking, Peter; Raybourn, Elaine M.
2017-01-19
In this study, the authors define a new approach that addresses the challenge of efficiently designing informational artefacts for optimal knowledge acquisition, an important issue in cognitive ergonomics. Termed Industrial Knowledge Design (or InK'D), it draws from information-related (e.g. informatics) and neurosciences-related (e.g. neuroergonomics) disciplines. Although it can be used for a broad scope of communication-driven business functions, our focus as learning professionals is on conveying knowledge for purposes of training, education, and performance support. This paper discusses preliminary principles of InK'D practice that can be employed to maximise the quality and quantity of transferred knowledge through interaction design. Themore » paper codifies tacit knowledge into explicit concepts that can be leveraged by expert and non-expert knowledge designers alike.« less
Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camejo, P.J.
1989-12-01
Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are neededmore » and have been developed to join the separate knowledge bases into one simple-to-use program unit.« less
DOT National Transportation Integrated Search
1987-01-01
Expert systems, a branch of artificial-intelligence studies, is introduced with a view to its relevance in transportation engineering. Knowledge engineering, the process of building expert systems or transferring knowledge from human experts to compu...
1986-08-01
is then applied in i ABSTRCT : ,.:,.vu knowledge acquisition from those multiple sources for a specific design, for example, an expert system for...67. N 181.1 47.U3 a75 269;9.6 % A. %3 3 Genetic Explanations: For the concept of a genetic explanation (see .d -. above) to apply to the Gaither...Simulation Research Unit (Acock,1985; Baker,1983; Baker,1985). -. MD’,EX srves as an inner shell for apPlying Artificial Intelligence and E:pert System
Expert systems in civil engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostem, C.N.; Maher, M.L.
1986-01-01
This book presents the papers given at a symposium on expert systems in civil engineering. Topics considered at the symposium included problem solving using expert system techniques, construction schedule analysis, decision making and risk analysis, seismic risk analysis systems, an expert system for inactive hazardous waste site characterization, an expert system for site selection, knowledge engineering, and knowledge-based expert systems in seismic analysis.
Evaluation of PROforma as a language for implementing medical guidelines in a practical context
Sutton, David R; Taylor, Paul; Earle, Kenneth
2006-01-01
Background PROforma is one of several languages that allow clinical guidelines to be expressed in a computer-interpretable manner. How these languages should be compared, and what requirements they should meet, are questions that are being actively addressed by a community of interested researchers. Methods We have developed a system to allow hypertensive patients to be monitored and assessed without visiting their GPs (except in the most urgent cases). Blood pressure measurements are performed at the patients' pharmacies and a web-based system, created using PROforma, makes recommendations for continued monitoring, and/or changes in medication. The recommendations and measurements are transmitted electronically to a practitioner with authority to issue and change prescriptions. We evaluated the use of PROforma during the knowledge acquisition, analysis, design and implementation of this system. The analysis focuses on the logical adequacy, heuristic power, notational convenience, and explanation support provided by the PROforma language. Results PROforma proved adequate as a language for the implementation of the clinical reasoning required by this project. However a lack of notational convenience led us to use UML activity diagrams, rather than PROforma process descriptions, to create the models that were used during the knowledge acquisition and analysis phases of the project. These UML diagrams were translated into PROforma during the implementation of the project. Conclusion The experience accumulated during this study highlighted the importance of structure preserving design, that is to say that the models used in the design and implementation of a knowledge-based system should be structurally similar to those created during knowledge acquisition and analysis. Ideally the same language should be used for all of these models. This means that great importance has to be attached to the notational convenience of these languages, by which we mean the ease with which they can be read, written, and understood by human beings. The importance of notational convenience arises from the fact that a language used during knowledge acquisition and analysis must be intelligible to the potential users of a system, and to the domain experts who provide the knowledge that will be used in its construction. PMID:16597341
Evaluation of PROforma as a language for implementing medical guidelines in a practical context.
Sutton, David R; Taylor, Paul; Earle, Kenneth
2006-04-05
PROforma is one of several languages that allow clinical guidelines to be expressed in a computer-interpretable manner. How these languages should be compared, and what requirements they should meet, are questions that are being actively addressed by a community of interested researchers. We have developed a system to allow hypertensive patients to be monitored and assessed without visiting their GPs (except in the most urgent cases). Blood pressure measurements are performed at the patients' pharmacies and a web-based system, created using PROforma, makes recommendations for continued monitoring, and/or changes in medication. The recommendations and measurements are transmitted electronically to a practitioner with authority to issue and change prescriptions. We evaluated the use of PROforma during the knowledge acquisition, analysis, design and implementation of this system. The analysis focuses on the logical adequacy, heuristic power, notational convenience, and explanation support provided by the PROforma language. PROforma proved adequate as a language for the implementation of the clinical reasoning required by this project. However a lack of notational convenience led us to use UML activity diagrams, rather than PROforma process descriptions, to create the models that were used during the knowledge acquisition and analysis phases of the project. These UML diagrams were translated into PROforma during the implementation of the project. The experience accumulated during this study highlighted the importance of structure preserving design, that is to say that the models used in the design and implementation of a knowledge-based system should be structurally similar to those created during knowledge acquisition and analysis. Ideally the same language should be used for all of these models. This means that great importance has to be attached to the notational convenience of these languages, by which we mean the ease with which they can be read, written, and understood by human beings. The importance of notational convenience arises from the fact that a language used during knowledge acquisition and analysis must be intelligible to the potential users of a system, and to the domain experts who provide the knowledge that will be used in its construction.
Uncovering clinical knowledge and caring practices.
Feldman, M E
1993-06-01
Narrative storytelling is a means by which knowledge embedded in nursing practice is uncovered and examined. Benner uses this method to study and explore skill acquisition and experience-based knowledge in nursing practice. By sharing these stories, knowledge that is unique to the experienced clinician is preserved and extended. The narrative presented here describes the expert coaching, discretionary judgment, and skilled involvement in the care of a patient in the PACU.
NASA Technical Reports Server (NTRS)
Mcmanus, Shawn; Mcdaniel, Michael
1989-01-01
Planning for processing payloads was always difficult and time-consuming. With the advent of Space Station Freedom and its capability to support a myriad of complex payloads, the planning to support this ground processing maze involves thousands of man-hours of often tedious data manipulation. To provide the capability to analyze various processing schedules, an object oriented knowledge-based simulation environment called the Advanced Generic Accomodations Planning Environment (AGAPE) is being developed. Having nearly completed the baseline system, the emphasis in this paper is directed toward rule definition and its relation to model development and simulation. The focus is specifically on the methodologies implemented during knowledge acquisition, analysis, and representation within the AGAPE rule structure. A model is provided to illustrate the concepts presented. The approach demonstrates a framework for AGAPE rule development to assist expert system development.
WIRM: An Open Source Toolkit for Building Biomedical Web Applications
Jakobovits, Rex M.; Rosse, Cornelius; Brinkley, James F.
2002-01-01
This article describes an innovative software toolkit that allows the creation of web applications that facilitate the acquisition, integration, and dissemination of multimedia biomedical data over the web, thereby reducing the cost of knowledge sharing. There is a lack of high-level web application development tools suitable for use by researchers, clinicians, and educators who are not skilled programmers. Our Web Interfacing Repository Manager (WIRM) is a software toolkit that reduces the complexity of building custom biomedical web applications. WIRM’s visual modeling tools enable domain experts to describe the structure of their knowledge, from which WIRM automatically generates full-featured, customizable content management systems. PMID:12386108
Expert system prototype developments for NASA-KSC business and engineering applications
NASA Technical Reports Server (NTRS)
Ragusa, James M.; Gonzalez, Avelino J.
1988-01-01
Prototype expert systems developed for a variety of NASA projects in the business/management and engineering domains are discussed. Business-related problems addressed include an assistant for simulating launch vehicle processing, a plan advisor for the acquisition of automated data processing equipment, and an expert system for the identification of customer requirements. Engineering problems treated include an expert system for detecting potential ignition sources in LOX and gaseous-oxygen transportation systems and an expert system for hazardous-gas detection.
Expert and Knowledge Based Systems.
ERIC Educational Resources Information Center
Demaid, Adrian; Edwards, Lyndon
1987-01-01
Discusses the nature and current state of knowledge-based systems and expert systems. Describes an expert system from the viewpoints of a computer programmer and an applications expert. Addresses concerns related to materials selection and forecasts future developments in the teaching of materials engineering. (ML)
Fire Effects, Education, and Expert Systems
Robert E. Martin
1987-01-01
Predicting the effects of fires in the year 2000 and beyond will be enhanced by the use of expert systems. Although our predictions may have broad confidence limits, expert systems should help us to improve the predictions and to focus on the areas where improved knowledge is most needed. The knowledge of experts can be incorporated into previously existing knowledge...
Symbolic Knowledge Processing for the Acquisition of Expert Behavior: A Study in Medicine.
1984-05-01
information . It provides a model for this type of study, suggesting a different approach to the problem of learning and efficiency of knowledge -based...flow of information 2.2. Scope and description of the subsystems Three subsystems perform distinct operations using the preceding knowledge sources...which actually yields a new knowledge rCpresentation Ahere new external information is encoded in the combination and ordering of elements of the
Intelligent systems for human resources.
Kline, K B
1988-11-01
An intelligent system contains knowledge about some domain; it has sophisticated decision-making processes and the ability to explain its actions. The most important aspect of an intelligent system is its ability to effectively interact with humans to teach or assist complex information processing. Two intelligent systems are Intelligent Tutoring Systems (ITs) and Expert Systems. The ITSs provide instruction to a student similar to a human tutor. The ITSs capture individual performance and tutor deficiencies. These systems consist of an expert module, which contains the knowledge or material to be taught; the student module, which contains a representation of the knowledge the student knows and does not know about the domain; and the instructional or teaching module, which selects specific knowledge to teach, the instructional strategy, and provides assistance to the student to tutor deficiencies. Expert systems contain an expert's knowledge about some domain and perform specialized tasks or aid a novice in the performance of certain tasks. The most important part of an expert system is the knowledge base. This knowledge base contains all the specialized and technical knowledge an expert possesses. For an expert system to interact effectively with humans, it must have the ability to explain its actions. Use of intelligent systems can have a profound effect on human resources. The ITSs can provide better training by tutoring on an individual basis, and the expert systems can make better use of human resources through job aiding and performing complex tasks. With increasing training requirements and "doing more with less," intelligent systems can have a positive effect on human resources.
Knowledge-based fault diagnosis system for refuse collection vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, CheeFai; Juffrizal, K.; Khalil, S. N.
The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledgemore » that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.« less
Effect of Video-Cases on the Acquisition of Situated Knowledge of Teachers
ERIC Educational Resources Information Center
Geerts, Walter M.; Steenbeek, Henderien W.; van Geert, Paul L. C.
2018-01-01
Video footage is frequently used at teacher education. According to Sherin and Dyer (2017), this is often done in a way that contradicts recent studies. According to them, video is suitable for observing and interpreting interactions in the classroom. This contributes to their situated knowledge, which allows expert teachers to act intuitively,…
Determining rules for closing customer service centers: A public utility company's fuzzy decision
NASA Technical Reports Server (NTRS)
Dekorvin, Andre; Shipley, Margaret F.; Lea, Robert N.
1992-01-01
In the present work, we consider the general problem of knowledge acquisition under uncertainty. Simply stated, the problem reduces to the following: how can we capture the knowledge of an expert when the expert is unable to clearly formulate how he or she arrives at a decision? A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision may have been made. Unique to our work is the fuzzy set representation of the conditions or attributes upon which the expert may possibly base his fuzzy decision. From our examples, we infer certain and possible fuzzy rules for closing a customer service center and illustrate the importance of having the decision closely relate to the conditions under consideration.
Small Knowledge-Based Systems in Education and Training: Something New Under the Sun.
ERIC Educational Resources Information Center
Wilson, Brent G.; Welsh, Jack R.
1986-01-01
Discusses artificial intelligence, robotics, natural language processing, and expert or knowledge-based systems research; examines two large expert systems, MYCIN and XCON; and reviews the resources required to build large expert systems and affordable smaller systems (intelligent job aids) for training. Expert system vendors and products are…
Automatic programming of arc welding robots
NASA Astrophysics Data System (ADS)
Padmanabhan, Srikanth
Automatic programming of arc welding robots requires the geometric description of a part from a solid modeling system, expert weld process knowledge and the kinematic arrangement of the robot and positioner automatically. Current commercial solid models are incapable of storing explicitly product and process definitions of weld features. This work presents a paradigm to develop a computer-aided engineering environment that supports complete weld feature information in a solid model and to create an automatic programming system for robotic arc welding. In the first part, welding features are treated as properties or attributes of an object, features which are portions of the object surface--the topological boundary. The structure for representing the features and attributes is a graph called the Welding Attribute Graph (WAGRAPH). The method associates appropriate weld features to geometric primitives, adds welding attributes, and checks the validity of welding specifications. A systematic structure is provided to incorporate welding attributes and coordinate system information in a CSG tree. The specific implementation of this structure using a hybrid solid modeler (IDEAS) and an object-oriented programming paradigm is described. The second part provides a comprehensive methodology to acquire and represent weld process knowledge required for the proper selection of welding schedules. A methodology of knowledge acquisition using statistical methods is proposed. It is shown that these procedures did little to capture the private knowledge of experts (heuristics), but helped in determining general dependencies, and trends. A need was established for building the knowledge-based system using handbook knowledge and to allow the experts further to build the system. A methodology to check the consistency and validity for such knowledge addition is proposed. A mapping shell designed to transform the design features to application specific weld process schedules is described. A new approach using fixed path modified continuation methods is proposed in the final section to plan continuously the trajectory of weld seams in an integrated welding robot and positioner environment. The joint displacement, velocity, and acceleration histories all along the path as a function of the path parameter for the best possible welding condition are provided for the robot and the positioner to track various paths normally encountered in arc welding.
PVDaCS - A prototype knowledge-based expert system for certification of spacecraft data
NASA Technical Reports Server (NTRS)
Wharton, Cathleen; Shiroma, Patricia J.; Simmons, Karen E.
1989-01-01
On-line data management techniques to certify spacecraft information are mandated by increasing telemetry rates. Knowledge-based expert systems offer the ability to certify data electronically without the need for time-consuming human interaction. Issues of automatic certification are explored by designing a knowledge-based expert system to certify data from a scientific instrument, the Orbiter Ultraviolet Spectrometer, on an operating NASA planetary spacecraft, Pioneer Venus. The resulting rule-based system, called PVDaCS (Pioneer Venus Data Certification System), is a functional prototype demonstrating the concepts of a larger system design. A key element of the system design is the representation of an expert's knowledge through the usage of well ordered sequences. PVDaCS produces a certification value derived from expert knowledge and an analysis of the instrument's operation. Results of system performance are presented.
SWAN: An expert system with natural language interface for tactical air capability assessment
NASA Technical Reports Server (NTRS)
Simmons, Robert M.
1987-01-01
SWAN is an expert system and natural language interface for assessing the war fighting capability of Air Force units in Europe. The expert system is an object oriented knowledge based simulation with an alternate worlds facility for performing what-if excursions. Responses from the system take the form of generated text, tables, or graphs. The natural language interface is an expert system in its own right, with a knowledge base and rules which understand how to access external databases, models, or expert systems. The distinguishing feature of the Air Force expert system is its use of meta-knowledge to generate explanations in the frame and procedure based environment.
The BBN Knowledge Acquisition Project
1988-09-01
Optation 17 S . Large-Scale Revisions of Knowledge Bases 19 5.1 The Macro and Structure Editor 19 5.2 Developing Macro Editing Procedre 20 5.2.1 Macro...consistency checking foreach style of representaton easier and mote efficient, so that knowledge engineers and subject matter expert s can work together to... s ~Ta OIM-iJC ~Va Coetnin: MILECSXCT 8.1.3.1 Local Comumand Menus Anytime ICREM ais~laying a view of a particular kind of knowledge , the State Winsdow
NASA Technical Reports Server (NTRS)
Liebowitz, Jay
1986-01-01
At NASA Goddard, the role of the command management system (CMS) is to transform general requests for spacecraft opeerations into detailed operational plans to be uplinked to the spacecraft. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Presently, it takes one to three years, with meetings once or twice a week, to determine functional requirements for CMS software design. As an alternative approach to the present technique of developing CMS software functional requirements, an expert system prototype was developed to aid in this function. Specifically, the knowledge base was formulated through interactions with domain experts, and was then linked to an existing expert system application generator called 'Knowledge Engineering System (Version 1.3).' Knowledge base development focused on four major steps: (1) develop the problem-oriented attribute hierachy; (2) determine the knowledge management approach; (3) encode the knowledge base; and (4) validate, test, certify, and evaluate the knowledge base and the expert system prototype as a whole. Backcasting was accomplished for validating and testing the expert system prototype. Knowledge refinement, evaluation, and implementation procedures of the expert system prototype were then transacted.
Development of a Spacecraft Materials Selector Expert System
NASA Technical Reports Server (NTRS)
Pippin, G.; Kauffman, W. (Technical Monitor)
2002-01-01
This report contains a description of the knowledge base tool and examples of its use. A downloadable version of the Spacecraft Materials Selector (SMS) knowledge base is available through the NASA Space Environments and Effects Program. The "Spacecraft Materials Selector" knowledge base is part of an electronic expert system. The expert system consists of an inference engine that contains the "decision-making" code and the knowledge base that contains the selected body of information. The inference engine is a software package previously developed at Boeing, called the Boeing Expert System Tool (BEST) kit.
1989-02-01
which capture the knowledge of such experts. These Expert Systems, or Knowledge-Based Systems’, differ from the usual computer programming techniques...their applications in the fields of structural design and welding is reviewed. 5.1 Introduction Expert Systems, or KBES, are computer programs using Al...procedurally constructed as conventional computer programs usually are; * The knowledge base of such systems is executable, unlike databases 3 "Ill
Expert Systems: A Challenge for the Reading Profession.
ERIC Educational Resources Information Center
Balajthy, Ernest
The expert systems are designed to imitate the reasoning of a human expert in a content area field. Designed to be advisors, these software systems combine the content area knowledge and decision-making ability of an expert with the user's understanding and knowledge of particular circumstances. The reading diagnosis system, the RD2P System…
Data, knowledge and method bases in chemical sciences. Part IV. Current status in databases.
Braibanti, Antonio; Rao, Rupenaguntla Sambasiva; Rao, Gollapalli Nagesvara; Ramam, Veluri Anantha; Rao, Sattiraju Veera Venkata Satyanarayana
2002-01-01
Computer readable databases have become an integral part of chemical research right from planning data acquisition to interpretation of the information generated. The databases available today are numerical, spectral and bibliographic. Data representation by different schemes--relational, hierarchical and objects--is demonstrated. Quality index (QI) throws light on the quality of data. The objective, prospects and impact of database activity on expert systems are discussed. The number and size of corporate databases available on international networks crossed manageable number leading to databases about their contents. Subsets of corporate or small databases have been developed by groups of chemists. The features and role of knowledge-based or intelligent databases are described.
An Expert System for Environmental Data Management.
ERIC Educational Resources Information Center
Berka, Petr; Jirku, Petr
1995-01-01
Examines the possibility of using expert system tools for environmental data management. Describes the domain-independent expert system shell SAK and Knowledge EXplorer, a system that learns rules from data. Demonstrates the functionality of Knowledge EXplorer on an example of water quality evaluation. (LZ)
An engineering approach to the use of expert systems technology in avionics applications
NASA Technical Reports Server (NTRS)
Duke, E. L.; Regenie, V. A.; Brazee, M.; Brumbaugh, R. W.
1986-01-01
The concept of using a knowledge compiler to transform the knowledge base and inference mechanism of an expert system into a conventional program is presented. The need to accommodate real-time systems requirements in applications such as embedded avionics is outlined. Expert systems and a brief comparison of expert systems and conventional programs are reviewed. Avionics applications of expert systems are discussed before the discussions of applying the proposed concept to example systems using forward and backward chaining.
NASA Technical Reports Server (NTRS)
Loftin, Karin C.; Ly, Bebe; Webster, Laurie; Verlander, James; Taylor, Gerald R.; Riley, Gary; Culbert, Chris
1992-01-01
One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through BRAIN, an integrated network of both human and computer elements. BRAIN will function as an advisor to mission managers by assessing the risk of inflight biomedical problems and recommending appropriate countermeasures. Described here is a joint effort among various NASA elements to develop BRAIN and the Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of knowledge acquisition, integration of IDRA components, the use of expert systems to automate the biomedical prediction process, development of a user friendly interface, and integration of IDRA and ExerCISys systems. Because C language, CLIPS and the X-Window System are portable and easily integrated, they were chosen ss the tools for the initial IDRA prototype.
Shaikh, Ulfat; Afsar-Manesh, Nasim; Amin, Alpesh N; Clay, Brian; Ranji, Sumant R
2017-10-01
Implementing quality improvement (QI) education during clinical training is challenging due to time constraints and inadequate faculty development in these areas. Quiz-based reinforcement systems show promise in fostering active engagement, collaboration, healthy competition and real-time formative feedback, although further research on their effectiveness is required. An online quiz-based reinforcement system to increase resident and faculty knowledge in QI, patient safety and care transitions. Experts in QI and educational assessment at the 5 University of California medical campuses developed a course comprised of 3 quizzes on Introduction to QI, Patient Safety and Care Transitions. Each quiz contained 20 questions and utilized an online educational quiz-based reinforcement system that leveraged spaced learning. Approximately 500 learners completed the course (completion rate 66-86%). Knowledge acquisition scores for all quizzes increased after completion: Introduction to QI (35-73%), Patient Safety (58-95%), and Care Transitions (66-90%). Learners reported that the quiz-based system was an effective teaching modality and preferred this type of education to classroom-based lectures. Suggestions for improvement included reducing frequency of presentation of questions and utilizing more questions that test learners on application of knowledge instead of knowledge acquisition. A multi-campus online quiz-based reinforcement system to train residents in QI, patient safety and care transitions was feasible, acceptable, and increased knowledge. The course may be best utilized to supplement classroom-based and experiential curricula, along with increased attention to optimizing frequency of presentation of questions and enhancing application skills. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Students' Refinement of Knowledge during the Development of Knowledge Bases for Expert Systems.
ERIC Educational Resources Information Center
Lippert, Renate; Finley, Fred
The refinement of the cognitive knowledge base was studied through exploration of the transition from novice to expert and the use of an instructional strategy called novice knowledge engineering. Six college freshmen, who were enrolled in an honors physics course, used an expert system to create questions, decisions, rules, and explanations…
CLEAR: Communications Link Expert Assistance Resource
NASA Technical Reports Server (NTRS)
Hull, Larry G.; Hughes, Peter M.
1987-01-01
Communications Link Expert Assistance Resource (CLEAR) is a real time, fault diagnosis expert system for the Cosmic Background Explorer (COBE) Mission Operations Room (MOR). The CLEAR expert system is an operational prototype which assists the MOR operator/analyst by isolating and diagnosing faults in the spacecraft communication link with the Tracking and Data Relay Satellite (TDRS) during periods of realtime data acquisition. The mission domain, user requirements, hardware configuration, expert system concept, tool selection, development approach, and system design were discussed. Development approach and system implementation are emphasized. Also discussed are system architecture, tool selection, operation, and future plans.
Structure/activity relationships for biodegradability and their role in environmental assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boethling, R.S.
1994-12-31
Assessment of biodegradability is an important part of the review process for both new and existing chemicals under the Toxic Substances Control Act. It is often necessary to estimate biodegradability because experimental data are unavailable. Structure/biodegradability relationships (SBR) are a means to this end. Quantitative SBR have been developed, but this approach has not been very useful because they apply only to a few narrowly defined classes of chemicals. In response to the need for more widely applicable methods, multivariate analysis has been used to develop biodegradability classification models. For example, recent efforts have produced four new models. Two calculatemore » the probability of rapid biodegradation and can be used for classification; the other two models allow semi-quantitative estimation of primary and ultimate biodegradation rates. All are based on multiple regressions against 36 preselected substructures plus molecular weight. Such efforts have been fairly successful by statistical criteria, but in general are hampered by a lack of large and consistent datasets. Knowledge-based expert systems may represent the next step in the evolution of SBR. In principle such systems need not be as severely limited by imperfect datasets. However, the codification of expert knowledge and reasoning is a critical prerequisite. Results of knowledge acquisition exercises and modeling based on them will also be described.« less
EXPECT: Explicit Representations for Flexible Acquisition
NASA Technical Reports Server (NTRS)
Swartout, BIll; Gil, Yolanda
1995-01-01
To create more powerful knowledge acquisition systems, we not only need better acquisition tools, but we need to change the architecture of the knowledge based systems we create so that their structure will provide better support for acquisition. Current acquisition tools permit users to modify factual knowledge but they provide limited support for modifying problem solving knowledge. In this paper, the authors argue that this limitation (and others) stem from the use of incomplete models of problem-solving knowledge and inflexible specification of the interdependencies between problem-solving and factual knowledge. We describe the EXPECT architecture which addresses these problems by providing an explicit representation for problem-solving knowledge and intent. Using this more explicit representation, EXPECT can automatically derive the interdependencies between problem-solving and factual knowledge. By deriving these interdependencies from the structure of the knowledge-based system itself EXPECT supports more flexible and powerful knowledge acquisition.
Processes in construction of failure management expert systems from device design information
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Lance, Nick
1987-01-01
This paper analyzes the tasks and problem solving methods used by an engineer in constructing a failure management expert system from design information about the device to te diagnosed. An expert test engineer developed a trouble-shooting expert system based on device design information and experience with similar devices, rather than on specific expert knowledge gained from operating the device or troubleshooting its failures. The construction of the expert system was intensively observed and analyzed. This paper characterizes the knowledge, tasks, methods, and design decisions involved in constructing this type of expert system, and makes recommendations concerning tools for aiding and automating construction of such systems.
Knowing for Nursing Practice: Patterns of Knowledge and Their Emulation in Expert Systems
Abraham, Ivo L.; Fitzpatrick, Joyce J.
1987-01-01
This paper addresses the issue of clinical knowledge in nursing, and the feasibility of emulating this knowledge into expert system technology. The perspective on patterns of knowing for nursing practice, advanced by Carper (1978), serves as point of departure. The four patterns of knowing -- empirics, esthetics, ethics, personal knowledge -- are evaluated as to the extent to which they can be emulated in clinical expert systems, given constraints imposed by the current technology of these systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harber, K.S.
1993-05-01
This report contains the following papers: Implications in vivid logic; a self-learning bayesian expert system; a natural language generation system for a heterogeneous distributed database system; competence-switching'' managed by intelligent systems; strategy acquisition by an artificial neural network: Experiments in learning to play a stochastic game; viewpoints and selective inheritance in object-oriented modeling; multivariate discretization of continuous attributes for machine learning; utilization of the case-based reasoning method to resolve dynamic problems; formalization of an ontology of ceramic science in CLASSIC; linguistic tools for intelligent systems; an application of rough sets in knowledge synthesis; and a relational model for imprecise queries.more » These papers have been indexed separately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harber, K.S.
1993-05-01
This report contains the following papers: Implications in vivid logic; a self-learning Bayesian Expert System; a natural language generation system for a heterogeneous distributed database system; ``competence-switching`` managed by intelligent systems; strategy acquisition by an artificial neural network: Experiments in learning to play a stochastic game; viewpoints and selective inheritance in object-oriented modeling; multivariate discretization of continuous attributes for machine learning; utilization of the case-based reasoning method to resolve dynamic problems; formalization of an ontology of ceramic science in CLASSIC; linguistic tools for intelligent systems; an application of rough sets in knowledge synthesis; and a relational model for imprecise queries.more » These papers have been indexed separately.« less
a Study on Satellite Diagnostic Expert Systems Using Case-Based Approach
NASA Astrophysics Data System (ADS)
Park, Young-Tack; Kim, Jae-Hoon; Park, Hyun-Soo
1997-06-01
Many research works are on going to monitor and diagnose diverse malfunctions of satellite systems as the complexity and number of satellites increase. Currently, many works on monitoring and diagnosis are carried out by human experts but there are needs to automate much of the routine works of them. Hence, it is necessary to study on using expert systems which can assist human experts routine work by doing automatically, thereby allow human experts devote their expertise more critical and important areas of monitoring and diagnosis. In this paper, we are employing artificial intelligence techniques to model human experts' knowledge and inference the constructed knowledge. Especially, case-based approaches are used to construct a knowledge base to model human expert capabilities which use previous typical exemplars. We have designed and implemented a prototype case-based system for diagnosing satellite malfunctions using cases. Our system remembers typical failure cases and diagnoses a current malfunction by indexing the case base. Diverse methods are used to build a more user friendly interface which allows human experts can build a knowledge base in as easy way.
Expert systems and simulation models; Proceedings of the Seminar, Tucson, AZ, November 18, 19, 1985
NASA Technical Reports Server (NTRS)
1986-01-01
The seminar presents papers on modeling and simulation methodology, artificial intelligence and expert systems, environments for simulation/expert system development, and methodology for simulation/expert system development. Particular attention is given to simulation modeling concepts and their representation, modular hierarchical model specification, knowledge representation, and rule-based diagnostic expert system development. Other topics include the combination of symbolic and discrete event simulation, real time inferencing, and the management of large knowledge-based simulation projects.
Expert systems applied to spacecraft fire safety
NASA Technical Reports Server (NTRS)
Smith, Richard L.; Kashiwagi, Takashi
1989-01-01
Expert systems are problem-solving programs that combine a knowledge base and a reasoning mechanism to simulate a human expert. The development of an expert system to manage fire safety in spacecraft, in particular the NASA Space Station Freedom, is difficult but clearly advantageous in the long-term. Some needs in low-gravity flammability characteristics, ventilating-flow effects, fire detection, fire extinguishment, and decision models, all necessary to establish the knowledge base for an expert system, are discussed.
Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems
NASA Technical Reports Server (NTRS)
Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith
1988-01-01
Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.
Adaptive cyber-attack modeling system
NASA Astrophysics Data System (ADS)
Gonsalves, Paul G.; Dougherty, Edward T.
2006-05-01
The pervasiveness of software and networked information systems is evident across a broad spectrum of business and government sectors. Such reliance provides an ample opportunity not only for the nefarious exploits of lone wolf computer hackers, but for more systematic software attacks from organized entities. Much effort and focus has been placed on preventing and ameliorating network and OS attacks, a concomitant emphasis is required to address protection of mission critical software. Typical software protection technique and methodology evaluation and verification and validation (V&V) involves the use of a team of subject matter experts (SMEs) to mimic potential attackers or hackers. This manpower intensive, time-consuming, and potentially cost-prohibitive approach is not amenable to performing the necessary multiple non-subjective analyses required to support quantifying software protection levels. To facilitate the evaluation and V&V of software protection solutions, we have designed and developed a prototype adaptive cyber attack modeling system. Our approach integrates an off-line mechanism for rapid construction of Bayesian belief network (BN) attack models with an on-line model instantiation, adaptation and knowledge acquisition scheme. Off-line model construction is supported via a knowledge elicitation approach for identifying key domain requirements and a process for translating these requirements into a library of BN-based cyber-attack models. On-line attack modeling and knowledge acquisition is supported via BN evidence propagation and model parameter learning.
Building a case-based diet recommendation system without a knowledge engineer.
Khan, Abdus Salam; Hoffmann, Achim
2003-02-01
We present a new approach to the effective development of menu construction systems that allow to automatically construct a menu that is strongly tailored to the individual requirements and food preferences of a client. In hospitals and other health care institutions dietitians develop diets for clients which need to change their eating habits. Many clients have special needs in regards to their medical conditions, cultural backgrounds, or special levels of nutrient requirements for better recovery from diseases or surgery, etc. Existing computer support for this task is insufficient-many diets are not specifically tailored for the client's needs or require substantial time of a dietitian to be manually developed. Our approach is based on case-based reasoning, an artificial intelligence technique that finds increasing entry into industrial practice. Our approach goes beyond the traditional case-based reasoning (CBR) approach by allowing an incremental improvement of the system's competency during routine use of the system. The improvement of the system takes place through a direct expert user-system interaction while the expert is accomplishing their tasks of constructing a diet for a given client. Whenever the system performs unsatisfactorily, the expert will need to modify the system-produced diet 'manually', i.e. by entering the desired modifications into the system. Our implemented system, menu construction using an incremental knowledge acquisition system (MIKAS), asks the expert for simple explanations for each of the manual actions he/she takes and incorporates the explanations automatically into its knowledge base (KB) so that the system will perform these manually conducted actions automatically at the next occasion. We present MIKAS and discuss the results of our case study. While still being a prototype, the senior clinical dietitian involved in our evaluation studies judges the approach to have considerable potential to improve the daily routine of hospital dietitians as well as to improve the average quality of the dietary advice given to patients within the limited available time for dietary consultations. Our approach opens up a new avenue towards building highly specialised CBR systems in a more cost-effective way. Hence, our approach promises to allow a significantly more widespread development and practical deployment of CBR systems in a large variety of application domains including many medical applications.
Engineering monitoring expert system's developer
NASA Technical Reports Server (NTRS)
Lo, Ching F.
1991-01-01
This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.
Artificial intelligence within the chemical laboratory.
Winkel, P
1994-01-01
Various techniques within the area of artificial intelligence such as expert systems and neural networks may play a role during the problem-solving processes within the clinical biochemical laboratory. Neural network analysis provides a non-algorithmic approach to information processing, which results in the ability of the computer to form associations and to recognize patterns or classes among data. It belongs to the machine learning techniques which also include probabilistic techniques such as discriminant function analysis and logistic regression and information theoretical techniques. These techniques may be used to extract knowledge from example patients to optimize decision limits and identify clinically important laboratory quantities. An expert system may be defined as a computer program that can give advice in a well-defined area of expertise and is able to explain its reasoning. Declarative knowledge consists of statements about logical or empirical relationships between things. Expert systems typically separate declarative knowledge residing in a knowledge base from the inference engine: an algorithm that dynamically directs and controls the system when it searches its knowledge base. A tool is an expert system without a knowledge base. The developer of an expert system uses a tool by entering knowledge into the system. Many, if not the majority of problems encountered at the laboratory level are procedural. A problem is procedural if it is possible to write up a step-by-step description of the expert's work or if it can be represented by a decision tree. To solve problems of this type only small expert system tools and/or conventional programming are required.(ABSTRACT TRUNCATED AT 250 WORDS)
On the reproducibility of expert-operated and robotic ultrasound acquisitions.
Kojcev, Risto; Khakzar, Ashkan; Fuerst, Bernhard; Zettinig, Oliver; Fahkry, Carole; DeJong, Robert; Richmon, Jeremy; Taylor, Russell; Sinibaldi, Edoardo; Navab, Nassir
2017-06-01
We present the evaluation of the reproducibility of measurements performed using robotic ultrasound imaging in comparison with expert-operated sonography. Robotic imaging for interventional procedures may be a valuable contribution, but requires reproducibility for its acceptance in clinical routine. We study this by comparing repeated measurements based on robotic and expert-operated ultrasound imaging. Robotic ultrasound acquisition is performed in three steps under user guidance: First, the patient is observed using a 3D camera on the robot end effector, and the user selects the region of interest. This allows for automatic planning of the robot trajectory. Next, the robot executes a sweeping motion following the planned trajectory, during which the ultrasound images and tracking data are recorded. As the robot is compliant, deviations from the path are possible, for instance due to patient motion. Finally, the ultrasound slices are compounded to create a volume. Repeated acquisitions can be performed automatically by comparing the previous and current patient surface. After repeated image acquisitions, the measurements based on acquisitions performed by the robotic system and expert are compared. Within our case series, the expert measured the anterior-posterior, longitudinal, transversal lengths of both of the left and right thyroid lobes on each of the 4 healthy volunteers 3 times, providing 72 measurements. Subsequently, the same procedure was performed using the robotic system resulting in a cumulative total of 144 clinically relevant measurements. Our results clearly indicated that robotic ultrasound enables more repeatable measurements. A robotic ultrasound platform leads to more reproducible data, which is of crucial importance for planning and executing interventions.
Knowledge acquisition for case-based reasoning systems
NASA Technical Reports Server (NTRS)
Riesbeck, Christopher K.
1988-01-01
Case-based reasoning (CBR) is a simple idea: solve new problems by adapting old solutions to similar problems. The CBR approach offers several potential advantages over rule-based reasoning: rules are not combined blindly in a search for solutions, solutions can be explained in terms of concrete examples, and performance can improve automatically as new problems are solved and added to the case library. Moving CBR for the university research environment to the real world requires smooth interfaces for getting knowledge from experts. Described are the basic elements of an interface for acquiring three basic bodies of knowledge that any case-based reasoner requires: the case library of problems and their solutions, the analysis rules that flesh out input problem specifications so that relevant cases can be retrieved, and the adaptation rules that adjust old solutions to fit new problems.
NASA Technical Reports Server (NTRS)
Bochsler, Daniel C.
1988-01-01
The preliminary version of expert knowledge for the Onboard Navigation (ONAV) Ground Based Expert Trainer Ascent system for the space shuttle is presented. Included is some brief background information along with the information describing the knowledge the system will contain. Information is given on rules and heuristics, telemetry status, landing sites, inertial measurement units, and a high speed trajectory determinator (HSTD) state vector.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Industrial mobilization, engineering, developmental, or research capability, or expert services. 206.302-3 Section 206.302-3 Federal..., engineering, developmental, or research capability, or expert services. ...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Industrial mobilization, engineering, developmental, or research capability, or expert services. 206.302-3 Section 206.302-3 Federal..., engineering, developmental, or research capability, or expert services. ...
NASA Technical Reports Server (NTRS)
Bochsler, Daniel C.
1988-01-01
A revised version of expert knowledge for the onboard navigation (ONAV) entry system is given. Included is some brief background information together with information describing the knowledge that the system does contain.
Expert system for web based collaborative CAE
NASA Astrophysics Data System (ADS)
Hou, Liang; Lin, Zusheng
2006-11-01
An expert system for web based collaborative CAE was developed based on knowledge engineering, relational database and commercial FEA (Finite element analysis) software. The architecture of the system was illustrated. In this system, the experts' experiences, theories and typical examples and other related knowledge, which will be used in the stage of pre-process in FEA, were categorized into analysis process and object knowledge. Then, the integrated knowledge model based on object-oriented method and rule based method was described. The integrated reasoning process based on CBR (case based reasoning) and rule based reasoning was presented. Finally, the analysis process of this expert system in web based CAE application was illustrated, and an analysis example of a machine tool's column was illustrated to prove the validity of the system.
NASA Technical Reports Server (NTRS)
Menzel, Christopher; Mayer, Richard J.; Edwards, Douglas D.
1991-01-01
The Process Description Capture Method (IDEF3) is one of several Integrated Computer-Aided Manufacturing (ICAM) DEFinition methods developed by the Air Force to support systems engineering activities, and in particular, to support information systems development. These methods have evolved as a distillation of 'good practice' experience by information system developers and are designed to raise the performance level of the novice practitioner to one comparable with that of an expert. IDEF3 is meant to serve as a knowledge acquisition and requirements definition tool that structures the user's understanding of how a given process, event, or system works around process descriptions. A special purpose graphical language accompanying the method serves to highlight temporal precedence and causality relationships relative to the process or event being described.
NASA Technical Reports Server (NTRS)
Krolak, Patrick D.
1990-01-01
CLIPS is an expert system, created specifically to allow rapid implementation of an expert system. CLIPS is written in C, and thus needs a very small amount of memory to run. Parallel CLIPS (PCLIPS) is an extension to CLIPS which is intended to be used in situations where a group of expert systems are expected to run simultaneously and occasionally communicate with each other on an integrated network. PCLIPS is a coarse-grained data distribution system. Its main goal is to take information in one knowledge base and distribute it to other knowledge bases so that all the executing expert systems are able to use that knowledge to solve their disparate problems.
ERIC Educational Resources Information Center
Davies, Jim
This paper begins by examining concepts of artificial intelligence (AI) and discusses various definitions of the concept that have been suggested in the literature. The nesting relationship of expert systems within the broader framework of AI is described, and expert systems are characterized as knowledge-based systems (KBS) which attempt to solve…
Expert System for Automated Design Synthesis
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Barthelemy, Jean-Francois M.
1987-01-01
Expert-system computer program EXADS developed to aid users of Automated Design Synthesis (ADS) general-purpose optimization program. EXADS aids engineer in determining best combination based on knowledge of specific problem and expert knowledge stored in knowledge base. Available in two interactive machine versions. IBM PC version (LAR-13687) written in IQ-LISP. DEC VAX version (LAR-13688) written in Franz-LISP.
A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base
NASA Technical Reports Server (NTRS)
Kautzmann, Frank N., III
1988-01-01
Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.
NASA Technical Reports Server (NTRS)
Jaworski, Allan; Lavallee, David; Zoch, David
1987-01-01
The prototype demonstrates the feasibility of using Ada for expert systems and the implementation of an expert-friendly interface which supports knowledge entry. In the Ford LISP-Ada Connection (FLAC) system LISP and Ada are used in ways which complement their respective capabilities. Future investigation will concentrate on the enhancement of the expert knowledge entry/debugging interface and on the issues associated with multitasking and real-time expert systems implementation in Ada.
Perspectives on knowledge in engineering design
NASA Technical Reports Server (NTRS)
Rasdorf, W. J.
1985-01-01
Various perspectives are given of the knowledge currently used in engineering design, specifically dealing with knowledge-based expert systems (KBES). Constructing an expert system often reveals inconsistencies in domain knowledge while formalizing it. The types of domain knowledge (facts, procedures, judgments, and control) differ from the classes of that knowledge (creative, innovative, and routine). The feasible tasks for expert systems can be determined based on these types and classes of knowledge. Interpretive tasks require reasoning about a task in light of the knowledge available, where generative tasks create potential solutions to be tested against constraints. Only after classifying the domain by type and level can the engineer select a knowledge-engineering tool for the domain being considered. The critical features to be weighed after classification are knowledge representation techniques, control strategies, interface requirements, compatibility with traditional systems, and economic considerations.
Desiderata for product labeling of medical expert systems.
Geissbühler, A; Miller, R A
1997-12-01
The proliferation and increasing complexity of medical expert systems raise ethical and legal concerns about the ability of practitioners to protect their patients from defective or misused software. Appropriate product labeling of expert systems can help clinical users to understand software indications and limitations. Mechanisms of action and knowledge representation schema should be explained in layperson's terminology. User qualifications and resources available for acquiring the skills necessary to understand and critique the system output should be listed. The processes used for building and maintaining the system's knowledge base are key determinants of the product's quality, and should be carefully documented. To meet these desiderata, a printed label is insufficient. The authors suggest a new, more active, model of product labeling for medical expert systems that involves embedding 'knowledge of the knowledge base', creating user-specific data, and sharing global information using the Internet.
Generic domain models in software engineering
NASA Technical Reports Server (NTRS)
Maiden, Neil
1992-01-01
This paper outlines three research directions related to domain-specific software development: (1) reuse of generic models for domain-specific software development; (2) empirical evidence to determine these generic models, namely elicitation of mental knowledge schema possessed by expert software developers; and (3) exploitation of generic domain models to assist modelling of specific applications. It focuses on knowledge acquisition for domain-specific software development, with emphasis on tool support for the most important phases of software development.
NASA Astrophysics Data System (ADS)
Xuan, Albert L.; Shinghal, Rajjan
1989-03-01
As the need for knowledge-based systems increases, an increasing number of domain experts are becoming interested in taking more active part in the building of knowledge-based systems. However, such a domain expert often must deal with a large number of unfamiliar terms concepts, facts, procedures and principles based on different approaches and schools of thought. He (for brevity, we shall use masculine pronouns for both genders) may need the help of a knowledge engineer (KE) in building the knowledge-based system but may encounter a number of problems. For instance, much of the early interaction between him and the knowl edge engineer may be spent in educating each other about their seperate kinds of expertise. Since the knowledge engineer will usually be ignorant of the knowledge domain while the domain expert (DE) will have little knowledge about knowledge-based systems, a great deal of time will be wasted on these issues ad the DE and the KE train each other to the point where a fruitful interaction can occur. In some situations, it may not even be possible for the DE to find a suitable KE to work with because he has no time to train the latter in his domain. This will engender the need for the DE to be more knowledgeable about knowledge-based systems and for the KE to find methods and techniques which will allow them to learn new domains as fast as they can. In any event, it is likely that the process of building knowledge-based systems will be smooth, er and more efficient if the domain expert is knowledgeable about the methods and techniques of knowledge-based systems building.
Apweiler, Rolf; Beissbarth, Tim; Berthold, Michael R; Blüthgen, Nils; Burmeister, Yvonne; Dammann, Olaf; Deutsch, Andreas; Feuerhake, Friedrich; Franke, Andre; Hasenauer, Jan; Hoffmann, Steve; Höfer, Thomas; Jansen, Peter LM; Kaderali, Lars; Klingmüller, Ursula; Koch, Ina; Kohlbacher, Oliver; Kuepfer, Lars; Lammert, Frank; Maier, Dieter; Pfeifer, Nico; Radde, Nicole; Rehm, Markus; Roeder, Ingo; Saez-Rodriguez, Julio; Sax, Ulrich; Schmeck, Bernd; Schuppert, Andreas; Seilheimer, Bernd; Theis, Fabian J; Vera, Julio; Wolkenhauer, Olaf
2018-01-01
New technologies to generate, store and retrieve medical and research data are inducing a rapid change in clinical and translational research and health care. Systems medicine is the interdisciplinary approach wherein physicians and clinical investigators team up with experts from biology, biostatistics, informatics, mathematics and computational modeling to develop methods to use new and stored data to the benefit of the patient. We here provide a critical assessment of the opportunities and challenges arising out of systems approaches in medicine and from this provide a definition of what systems medicine entails. Based on our analysis of current developments in medicine and healthcare and associated research needs, we emphasize the role of systems medicine as a multilevel and multidisciplinary methodological framework for informed data acquisition and interdisciplinary data analysis to extract previously inaccessible knowledge for the benefit of patients. PMID:29497170
An application of object-oriented knowledge representation to engineering expert systems
NASA Technical Reports Server (NTRS)
Logie, D. S.; Kamil, H.; Umaretiya, J. R.
1990-01-01
The paper describes an object-oriented knowledge representation and its application to engineering expert systems. The object-oriented approach promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects and organized by defining relationships between the objects. An Object Representation Language (ORL) was implemented as a tool for building and manipulating the object base. Rule-based knowledge representation is then used to simulate engineering design reasoning. Using a common object base, very large expert systems can be developed, comprised of small, individually processed, rule sets. The integration of these two schemes makes it easier to develop practical engineering expert systems. The general approach to applying this technology to the domain of the finite element analysis, design, and optimization of aerospace structures is discussed.
NASA Technical Reports Server (NTRS)
Kellner, A.
1987-01-01
Extremely large knowledge sources and efficient knowledge access characterizing future real-life artificial intelligence applications represent crucial requirements for on-board artificial intelligence systems due to obvious computer time and storage constraints on spacecraft. A type of knowledge representation and corresponding reasoning mechanism is proposed which is particularly suited for the efficient processing of such large knowledge bases in expert systems.
NASA Technical Reports Server (NTRS)
Modesitt, Kenneth L.
1987-01-01
Progress is reported on the development of SCOTTY, an expert knowledge-based system to automate the analysis procedure following test firings of the Space Shuttle Main Engine (SSME). The integration of a large-scale relational data base system, a computer graphics interface for experts and end-user engineers, potential extension of the system to flight engines, application of the system for training of newly-hired engineers, technology transfer to other engines, and the essential qualities of good software engineering practices for building expert knowledge-based systems are among the topics discussed.
48 CFR 633.214-70 - Alternative dispute resolution.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Alternative dispute resolution. 633.214-70 Section 633.214-70 Federal Acquisition Regulations System DEPARTMENT OF STATE GENERAL... situations; (vi) There is a need for independent expert analysis; or, (vii) The claim has merit but its value...
Knowledge Acquisition Using Linguistic-Based Knowledge Analysis
Daniel L. Schmoldt
1998-01-01
Most knowledge-based system developmentefforts include acquiring knowledge from one or more sources. difficulties associated with this knowledge acquisition task are readily acknowledged by most researchers. While a variety of knowledge acquisition methods have been reported, little has been done to organize those different methods and to suggest how to apply them...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Davinia B.; Blackburn, Mark R.
As systems become more complex, systems engineers rely on experts to inform decisions. There are few experts and limited data in many complex new technologies. This challenges systems engineers as they strive to plan activities such as qualification in an environment where technical constraints are coupled with the traditional cost, risk, and schedule constraints. Bayesian network (BN) models provide a framework to aid systems engineers in planning qualification efforts with complex constraints by harnessing expert knowledge and incorporating technical factors. By quantifying causal factors, a BN model can provide data about the risk of implementing a decision supplemented with informationmore » on driving factors. This allows a systems engineer to make informed decisions and examine “what-if” scenarios. This paper discusses a novel process developed to define a BN model structure based primarily on expert knowledge supplemented with extremely limited data (25 data sets or less). The model was developed to aid qualification decisions—specifically to predict the suitability of six degrees of freedom (6DOF) vibration testing for qualification. The process defined the model structure with expert knowledge in an unbiased manner. Finally, validation during the process execution and of the model provided evidence the process may be an effective tool in harnessing expert knowledge for a BN model.« less
Rizzo, Davinia B.; Blackburn, Mark R.
2018-03-30
As systems become more complex, systems engineers rely on experts to inform decisions. There are few experts and limited data in many complex new technologies. This challenges systems engineers as they strive to plan activities such as qualification in an environment where technical constraints are coupled with the traditional cost, risk, and schedule constraints. Bayesian network (BN) models provide a framework to aid systems engineers in planning qualification efforts with complex constraints by harnessing expert knowledge and incorporating technical factors. By quantifying causal factors, a BN model can provide data about the risk of implementing a decision supplemented with informationmore » on driving factors. This allows a systems engineer to make informed decisions and examine “what-if” scenarios. This paper discusses a novel process developed to define a BN model structure based primarily on expert knowledge supplemented with extremely limited data (25 data sets or less). The model was developed to aid qualification decisions—specifically to predict the suitability of six degrees of freedom (6DOF) vibration testing for qualification. The process defined the model structure with expert knowledge in an unbiased manner. Finally, validation during the process execution and of the model provided evidence the process may be an effective tool in harnessing expert knowledge for a BN model.« less
An Expert System for Designing Fire Prescriptions
Elizabeth Reinhardt
1987-01-01
Managers use prescribed fire to accomplish a variety of resource objectives. The knowledge needed to design successful prescriptions is both quantitative and qualitative. Some of it is available through publications and computer programs, but much of the knowledge of expert practitioners has never been collected or published. An expert system being developed at the,...
Sojda, Richard S.; Cornely, John E.; Howe, Adele E.
2002-01-01
A decision support system for the management of the Rocky Mountain Population of Trumpeter Swans (Cygnus buccinators) is being developed. As part of this, three expert systems are also in development: one for assessing the quality of Trumpeter Swan breeding habitat; one for making water level recommendations in montane, palustrine wetlands; and one for assessing the contribution a particular site can make towards meeting objectives from as flyway perspective. The focus of this paper is the development of the breeding habitat expert system, which currently consists of 157 rules. Out purpose is to provide decision support for issues that appear to be beyond the capability of a single persons to conceptualize and solve. We propose that by involving multiple experts in the development and use of the systems, management will be significantly improved. The knowledge base for the expert system has been developed using standard knowledge engineering techniques with a small team of ecological experts. Knowledge was then coded using production rules organized in decision trees using a commercial expert system development shell. The final system has been deployed on the world wide web.
Using Ada to implement the operations management system in a community of experts
NASA Technical Reports Server (NTRS)
Frank, M. S.
1986-01-01
An architecture is described for the Space Station Operations Management System (OMS), consisting of a distributed expert system framework implemented in Ada. The motivation for such a scheme is based on the desire to integrate the very diverse elements of the OMS while taking maximum advantage of knowledge based systems technology. Part of the foundation of an Ada based distributed expert system was accomplished in the form of a proof of concept prototype for the KNOMES project (Knowledge-based Maintenance Expert System). This prototype successfully used concurrently active experts to accomplish monitoring and diagnosis for the Remote Manipulator System. The basic concept of this software architecture is named ACTORS for Ada Cognitive Task ORganization Scheme. It is when one considers the overall problem of integrating all of the OMS elements into a cooperative system that the AI solution stands out. By utilizing a distributed knowledge based system as the framework for OMS, it is possible to integrate those components which need to share information in an intelligent manner.
NASA Astrophysics Data System (ADS)
Lidya, L.
2017-03-01
National Health Insurance has been implemented since 1st January 2014. A number of new policies have been established including multilevel referral system. The multilevel referral system classified health care center into three levels, it determined that the flow of patient treatment should be started from first level health care center. There are 144 kind of diseases that must be treat in the first level which mainly consists of general physicians. Unfortunately, competence of the physician in the first level may not fulfil the standard competence yet. To improved the physisians knowledge, government has created many events to accelerate knowledge sharing. However, it still needs times and many resources to give significan results. Expert system is kind of software that provide consulting services to non-expert users in accordance with the area of its expertise. It can improved effectivity and efficiency of knowledge sharing and learning. This research was developed a model of TB diagnose expert system which comply with the standard procedure of TB diagnosis and regulation. The proposed expert system has characteristics as follows provide facility to manage multimedia clinical data, supporting the complexity of TB diagnosis (combine rule-based and case-based expert system), interactive interface, good usability, multi-platform, evolutionary.
A brief history and technical review of the expert system research
NASA Astrophysics Data System (ADS)
Tan, Haocheng
2017-09-01
The expert system is a computer system that emulates the decision-making ability of a human expert, which aims to solve complex problems by reasoning knowledge. It is an important branch of artificial intelligence. In this paper, firstly, we briefly introduce the development and basic structure of the expert system. Then, from the perspective of the enabling technology, we classify the current expert systems and elaborate four expert systems: The Rule-Based Expert System, the Framework-Based Expert System, the Fuzzy Logic-Based Expert System and the Expert System Based on Neural Network.
Reliability and performance evaluation of systems containing embedded rule-based expert systems
NASA Technical Reports Server (NTRS)
Beaton, Robert M.; Adams, Milton B.; Harrison, James V. A.
1989-01-01
A method for evaluating the reliability of real-time systems containing embedded rule-based expert systems is proposed and investigated. It is a three stage technique that addresses the impact of knowledge-base uncertainties on the performance of expert systems. In the first stage, a Markov reliability model of the system is developed which identifies the key performance parameters of the expert system. In the second stage, the evaluation method is used to determine the values of the expert system's key performance parameters. The performance parameters can be evaluated directly by using a probabilistic model of uncertainties in the knowledge-base or by using sensitivity analyses. In the third and final state, the performance parameters of the expert system are combined with performance parameters for other system components and subsystems to evaluate the reliability and performance of the complete system. The evaluation method is demonstrated in the context of a simple expert system used to supervise the performances of an FDI algorithm associated with an aircraft longitudinal flight-control system.
NASA Technical Reports Server (NTRS)
Prince, Mary Ellen
1987-01-01
The expert system is a computer program which attempts to reproduce the problem-solving behavior of an expert, who is able to view problems from a broad perspective and arrive at conclusions rapidly, using intuition, shortcuts, and analogies to previous situations. Expert systems are a departure from the usual artificial intelligence approach to problem solving. Researchers have traditionally tried to develop general modes of human intelligence that could be applied to many different situations. Expert systems, on the other hand, tend to rely on large quantities of domain specific knowledge, much of it heuristic. The reasoning component of the system is relatively simple and straightforward. For this reason, expert systems are often called knowledge based systems. The report expands on the foregoing. Section 1 discusses the architecture of a typical expert system. Section 2 deals with the characteristics that make a problem a suitable candidate for expert system solution. Section 3 surveys current technology, describing some of the software aids available for expert system development. Section 4 discusses the limitations of the latter. The concluding section makes predictions of future trends.
Interoperable Data Sharing for Diverse Scientific Disciplines
NASA Astrophysics Data System (ADS)
Hughes, John S.; Crichton, Daniel; Martinez, Santa; Law, Emily; Hardman, Sean
2016-04-01
For diverse scientific disciplines to interoperate they must be able to exchange information based on a shared understanding. To capture this shared understanding, we have developed a knowledge representation framework using ontologies and ISO level archive and metadata registry reference models. This framework provides multi-level governance, evolves independent of implementation technologies, and promotes agile development, namely adaptive planning, evolutionary development, early delivery, continuous improvement, and rapid and flexible response to change. The knowledge representation framework is populated through knowledge acquisition from discipline experts. It is also extended to meet specific discipline requirements. The result is a formalized and rigorous knowledge base that addresses data representation, integrity, provenance, context, quantity, and their relationships within the community. The contents of the knowledge base is translated and written to files in appropriate formats to configure system software and services, provide user documentation, validate ingested data, and support data analytics. This presentation will provide an overview of the framework, present the Planetary Data System's PDS4 as a use case that has been adopted by the international planetary science community, describe how the framework is being applied to other disciplines, and share some important lessons learned.
A Working Framework for Enabling International Science Data System Interoperability
NASA Astrophysics Data System (ADS)
Hughes, J. Steven; Hardman, Sean; Crichton, Daniel J.; Martinez, Santa; Law, Emily; Gordon, Mitchell K.
2016-07-01
For diverse scientific disciplines to interoperate they must be able to exchange information based on a shared understanding. To capture this shared understanding, we have developed a knowledge representation framework that leverages ISO level reference models for metadata registries and digital archives. This framework provides multi-level governance, evolves independent of the implementation technologies, and promotes agile development, namely adaptive planning, evolutionary development, early delivery, continuous improvement, and rapid and flexible response to change. The knowledge representation is captured in an ontology through a process of knowledge acquisition. Discipline experts in the role of stewards at the common, discipline, and project levels work to design and populate the ontology model. The result is a formal and consistent knowledge base that provides requirements for data representation, integrity, provenance, context, identification, and relationship. The contents of the knowledge base are translated and written to files in suitable formats to configure system software and services, provide user documentation, validate input, and support data analytics. This presentation will provide an overview of the framework, present a use case that has been adopted by an entire science discipline at the international level, and share some important lessons learned.
Artificial Intelligence In Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Vogel, Alison Andrews
1991-01-01
Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.
NASA Technical Reports Server (NTRS)
Lee, S. C.; Lollar, Louis F.
1988-01-01
The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.
Framing of scientific knowledge as a new category of health care research.
Salvador-Carulla, Luis; Fernandez, Ana; Madden, Rosamond; Lukersmith, Sue; Colagiuri, Ruth; Torkfar, Ghazal; Sturmberg, Joachim
2014-12-01
The new area of health system research requires a revision of the taxonomy of scientific knowledge that may facilitate a better understanding and representation of complex health phenomena in research discovery, corroboration and implementation. A position paper by an expert group following and iterative approach. 'Scientific evidence' should be differentiated from 'elicited knowledge' of experts and users, and this latter typology should be described beyond the traditional qualitative framework. Within this context 'framing of scientific knowledge' (FSK) is defined as a group of studies of prior expert knowledge specifically aimed at generating formal scientific frames. To be distinguished from other unstructured frames, FSK must be explicit, standardized, based on the available evidence, agreed by a group of experts and subdued to the principles of commensurability, transparency for corroboration and transferability that characterize scientific research. A preliminary typology of scientific framing studies is presented. This typology includes, among others, health declarations, position papers, expert-based clinical guides, conceptual maps, classifications, expert-driven health atlases and expert-driven studies of costs and burden of illness. This grouping of expert-based studies constitutes a different kind of scientific knowledge and should be clearly differentiated from 'evidence' gathered from experimental and observational studies in health system research. © 2014 John Wiley & Sons, Ltd.
The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1
NASA Technical Reports Server (NTRS)
Lee, S. C.
1989-01-01
The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.
Best Practices for Reduction of Uncertainty in CFD Results
NASA Technical Reports Server (NTRS)
Mendenhall, Michael R.; Childs, Robert E.; Morrison, Joseph H.
2003-01-01
This paper describes a proposed best-practices system that will present expert knowledge in the use of CFD. The best-practices system will include specific guidelines to assist the user in problem definition, input preparation, grid generation, code selection, parameter specification, and results interpretation. The goal of the system is to assist all CFD users in obtaining high quality CFD solutions with reduced uncertainty and at lower cost for a wide range of flow problems. The best-practices system will be implemented as a software product which includes an expert system made up of knowledge databases of expert information with specific guidelines for individual codes and algorithms. The process of acquiring expert knowledge is discussed, and help from the CFD community is solicited. Benefits and challenges associated with this project are examined.
Chung, Younjin; Salvador-Carulla, Luis; Salinas-Pérez, José A; Uriarte-Uriarte, Jose J; Iruin-Sanz, Alvaro; García-Alonso, Carlos R
2018-04-25
Decision-making in mental health systems should be supported by the evidence-informed knowledge transfer of data. Since mental health systems are inherently complex, involving interactions between its structures, processes and outcomes, decision support systems (DSS) need to be developed using advanced computational methods and visual tools to allow full system analysis, whilst incorporating domain experts in the analysis process. In this study, we use a DSS model developed for interactive data mining and domain expert collaboration in the analysis of complex mental health systems to improve system knowledge and evidence-informed policy planning. We combine an interactive visual data mining approach, the self-organising map network (SOMNet), with an operational expert knowledge approach, expert-based collaborative analysis (EbCA), to develop a DSS model. The SOMNet was applied to the analysis of healthcare patterns and indicators of three different regional mental health systems in Spain, comprising 106 small catchment areas and providing healthcare for over 9 million inhabitants. Based on the EbCA, the domain experts in the development team guided and evaluated the analytical processes and results. Another group of 13 domain experts in mental health systems planning and research evaluated the model based on the analytical information of the SOMNet approach for processing information and discovering knowledge in a real-world context. Through the evaluation, the domain experts assessed the feasibility and technology readiness level (TRL) of the DSS model. The SOMNet, combined with the EbCA, effectively processed evidence-based information when analysing system outliers, explaining global and local patterns, and refining key performance indicators with their analytical interpretations. The evaluation results showed that the DSS model was feasible by the domain experts and reached level 7 of the TRL (system prototype demonstration in operational environment). This study supports the benefits of combining health systems engineering (SOMNet) and expert knowledge (EbCA) to analyse the complexity of health systems research. The use of the SOMNet approach contributes to the demonstration of DSS for mental health planning in practice.
Ryan, Matthew
2003-06-01
This discussion aims to provide the occasional medical expert witness with background knowledge of the adversarial court system and the role of the medical expert witness within it. The parallel evolution of the adversarial and inquisitorial legal systems has been more out of tradition rather than any systematic review of the effectiveness of one system or the other. Both legal systems have their merits and limitations. Witnesses within the adversarial system are required to present evidence in a structured and highly stylized format consisting of 'evidence in chief' followed by 'cross-examination'. This format is an attempt to exclude unreliable evidence. The medical witness is an 'expert' by means of specialized knowledge not possessed by the general public. This distinction allows the expert medical witness to offer his or her opinion as evidence. There remain several limitations to the expert's evidence and these relate to common knowledge, field of expertise and the 'ultimate issue'. The current practice of selection of expert medical witnesses is seriously flawed with several pressures operating to maximise bias and inaccurate testimony. Doctors should not only anticipate change in this area they should lead reform in this area.
A Logical Framework for Service Migration Based Survivability
2016-06-24
platforms; Service Migration Strategy Fuzzy Inference System Knowledge Base Fuzzy rules representing domain expert knowledge about implications of...service migration strategy. Our approach uses expert knowledge as linguistic reasoning rules and takes service programs damage assessment, service...programs complexity, and available network capability as input. The fuzzy inference system includes four components as shown in Figure 5: (1) a knowledge
The Advantages of Abstract Control Knowledge in Expert System Design. Technical Report #7.
ERIC Educational Resources Information Center
Clancey, William J.
This paper argues that an important design principle for building expert systems is to represent all control knowledge abstractly and separately from the domain knowledge upon which it operates. Abstract control knowledge is defined as the specifications of when and how a program is to carry out its operations, such as pursuing a goal, focusing,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Davinia; Blackburn, Mark
Complex systems are comprised of technical, social, political and environmental factors as well as the programmatic factors of cost, schedule and risk. Testing these systems for enhanced security requires expert knowledge in many different fields. It is important to test these systems to ensure effectiveness, but testing is limited to due cost, schedule, safety, feasibility and a myriad of other reasons. Without an effective decision framework for Test and Evaluation (T&E) planning that can take into consideration technical as well as programmatic factors and leverage expert knowledge, security in complex systems may not be assessed effectively. Therefore, this paper coversmore » the identification of the current T&E planning problem and an approach to include the full variety of factors and leverage expert knowledge in T&E planning through the use of Bayesian Networks (BN).« less
NASA Technical Reports Server (NTRS)
Kawamura, K.; Beale, G. O.; Schaffer, J. D.; Hsieh, B. J.; Padalkar, S.; Rodriguez-Moscoso, J. J.
1985-01-01
The results of the first phase of Research on an Expert System for Database Operation of Simulation/Emulation Math Models, is described. Techniques from artificial intelligence (AI) were to bear on task domains of interest to NASA Marshall Space Flight Center. One such domain is simulation of spacecraft attitude control systems. Two related software systems were developed to and delivered to NASA. One was a generic simulation model for spacecraft attitude control, written in FORTRAN. The second was an expert system which understands the usage of a class of spacecraft attitude control simulation software and can assist the user in running the software. This NASA Expert Simulation System (NESS), written in LISP, contains general knowledge about digital simulation, specific knowledge about the simulation software, and self knowledge.
Knowledge engineering for PACES, the particle accelerator control expert system
NASA Astrophysics Data System (ADS)
Lind, P. C.; Poehlman, W. F. S.; Stark, J. W.; Cousins, T.
1992-04-01
The KN-3000 used at Defense Research Establishment Ottawa is a Van de Graaff particle accelerator employed primarily to produce monoenergetic neutrons for calibrating radiation detectors. To provide training and assistance for new operators, it was decided to develop an expert system for accelerator operation. Knowledge engineering aspects of the expert system are reviewed. Two important issues are involved: the need to encapsulate expert knowledge into the system in a form that facilitates automatic accelerator operation and to partition the system so that time-consuming inferencing is minimized in favor of faster, more algorithmic control. It is seen that accelerator control will require fast, narrowminded decision making for rapid fine tuning, but slower and broader reasoning for machine startup, shutdown, fault diagnosis, and correction. It is also important to render the knowledge base in a form conducive to operator training. A promising form of the expert system involves a hybrid system in which high level reasoning is performed on the host machine that interacts with the user, while an embedded controller employs neural networks for fast but limited adjustment of accelerator performance. This partitioning of duty facilitates a hierarchical chain of command yielding an effective mixture of speed and reasoning ability.
Do we need annotation experts? A case study in celiac disease classification.
Kwitt, Roland; Hegenbart, Sebastian; Rasiwasia, Nikhil; Vécsei, Andreas; Uhl, Andreas
2014-01-01
Inference of clinically-relevant findings from the visual appearance of images has become an essential part of processing pipelines for many problems in medical imaging. Typically, a sufficient amount labeled training data is assumed to be available, provided by domain experts. However, acquisition of this data is usually a time-consuming and expensive endeavor. In this work, we ask the question if, for certain problems, expert knowledge is actually required. In fact, we investigate the impact of letting non-expert volunteers annotate a database of endoscopy images which are then used to assess the absence/presence of celiac disease. Contrary to previous approaches, we are not interested in algorithms that can handle the label noise. Instead, we present compelling empirical evidence that label noise can be compensated by a sufficiently large corpus of training data, labeled by the non-experts.
Elicitation of neurological knowledge with argument-based machine learning.
Groznik, Vida; Guid, Matej; Sadikov, Aleksander; Možina, Martin; Georgiev, Dejan; Kragelj, Veronika; Ribarič, Samo; Pirtošek, Zvezdan; Bratko, Ivan
2013-02-01
The paper describes the use of expert's knowledge in practice and the efficiency of a recently developed technique called argument-based machine learning (ABML) in the knowledge elicitation process. We are developing a neurological decision support system to help the neurologists differentiate between three types of tremors: Parkinsonian, essential, and mixed tremor (comorbidity). The system is intended to act as a second opinion for the neurologists, and most importantly to help them reduce the number of patients in the "gray area" that require a very costly further examination (DaTSCAN). We strive to elicit comprehensible and medically meaningful knowledge in such a way that it does not come at the cost of diagnostic accuracy. To alleviate the difficult problem of knowledge elicitation from data and domain experts, we used ABML. ABML guides the expert to explain critical special cases which cannot be handled automatically by machine learning. This very efficiently reduces the expert's workload, and combines expert's knowledge with learning data. 122 patients were enrolled into the study. The classification accuracy of the final model was 91%. Equally important, the initial and the final models were also evaluated for their comprehensibility by the neurologists. All 13 rules of the final model were deemed as appropriate to be able to support its decisions with good explanations. The paper demonstrates ABML's advantage in combining machine learning and expert knowledge. The accuracy of the system is very high with respect to the current state-of-the-art in clinical practice, and the system's knowledge base is assessed to be very consistent from a medical point of view. This opens up the possibility to use the system also as a teaching tool. Copyright © 2012 Elsevier B.V. All rights reserved.
Intrusion Detection Systems with Live Knowledge System
2016-05-31
Ripple -down Rule (RDR) to maintain the knowledge from human experts with knowledge base generated by the Induct RDR, which is a machine-learning based RDR...propose novel approach that uses Ripple -down Rule (RDR) to maintain the knowledge from human experts with knowledge base generated by the Induct RDR...detection model by applying Induct RDR approach. The proposed induct RDR ( Ripple Down Rules) approach allows to acquire the phishing detection
German, Ramaris E; Adler, Abby; Frankel, Sarah A; Stirman, Shannon Wiltsey; Pinedo, Paola; Evans, Arthur C; Beck, Aaron T; Creed, Torrey A
2018-03-01
Use of expert-led workshops plus consultation has been established as an effective strategy for training community mental health (CMH) clinicians in evidence-based practices (EBPs). Because of high rates of staff turnover, this strategy inadequately addresses the need to maintain capacity to deliver EBPs. This study examined knowledge, competency, and retention outcomes of a two-phase model developed to build capacity for an EBP in CMH programs. In the first phase, an initial training cohort in each CMH program participated in in-person workshops followed by expert-led consultation (in-person, expert-led [IPEL] phase) (N=214 clinicians). After this cohort completed training, new staff members participated in Web-based training (in place of in-person workshops), followed by peer-led consultation with the initial cohort (Web-based, trained-peer [WBTP] phase) (N=148). Tests of noninferiority assessed whether WBTP was not inferior to IPEL at increasing clinician cognitive-behavioral therapy (CBT) competency, as measured by the Cognitive Therapy Rating Scale. WBTP was not inferior to IPEL at developing clinician competency. Hierarchical linear models showed no significant differences in CBT knowledge acquisition between the two phases. Survival analyses indicated that WBTP trainees were less likely than IPEL trainees to complete training. In terms of time required from experts, WBTP required 8% of the resources of IPEL. After an initial investment to build in-house CBT expertise, CMH programs were able to use a WBTP model to broaden their own capacity for high-fidelity CBT. IPEL followed by WBTP offers an effective alternative to build EBP capacity in CMH programs, rather than reliance on external experts.
Object-oriented knowledge representation for expert systems
NASA Technical Reports Server (NTRS)
Scott, Stephen L.
1991-01-01
Object oriented techniques have generated considerable interest in the Artificial Intelligence (AI) community in recent years. This paper discusses an approach for representing expert system knowledge using classes, objects, and message passing. The implementation is in version 4.3 of NASA's C Language Integrated Production System (CLIPS), an expert system tool that does not provide direct support for object oriented design. The method uses programmer imposed conventions and keywords to structure facts, and rules to provide object oriented capabilities.
Knowledge representation issues for explaining plans
NASA Technical Reports Server (NTRS)
Prince, Mary Ellen; Johannes, James D.
1988-01-01
Explanations are recognized as an important facet of intelligent behavior. Unfortunately, expert systems are currently limited in their ability to provide useful, intelligent justifications of their results. We are currently investigating the issues involved in providing explanation facilities for expert planning systems. This investigation addresses three issues: knowledge content, knowledge representation, and explanation structure.
Rudowski, R; Frostell, C; Gill, H
1989-09-01
The KUSIVAR is an expert system for mechanical ventilation of adult patients suffering from respiratory insufficiency. Its main objective is to provide guidance in respirator management. The knowledge base includes both qualitative, rule-based knowledge and quantitative knowledge expressed in the form of mathematical models (expert control) which is used for prediction of arterial gas tensions and optimization purposes. The system is data driven and uses a forward chaining mechanism for rule invocation. The interaction with the user will be performed in advisory, critiquing, semi-automatic and automatic modes. The system is at present in an advanced prototype stage. Prototyping is performed using KEE (Knowledge Engineering Environment) on a Sperry Explorer workstation. For further development and clinical use the expert system will be downloaded to an advanced PC. The system is intended to support therapy with a Siemens-Elema Servoventilator 900 C.
Expert Systems in Reference Services.
ERIC Educational Resources Information Center
Roysdon, Christine, Ed.; White, Howard D., Ed.
1989-01-01
Eleven articles introduce expert systems applications in library and information science, and present design and implementation issues of system development for reference services. Topics covered include knowledge based systems, prototype development, the use of artificial intelligence to remedy current system inadequacies, and an expert system to…
NASA Technical Reports Server (NTRS)
Rogers, J. L.; Barthelemy, J.-F. M.
1986-01-01
An expert system called EXADS has been developed to aid users of the Automated Design Synthesis (ADS) general purpose optimization program. ADS has approximately 100 combinations of strategy, optimizer, and one-dimensional search options from which to choose. It is difficult for a nonexpert to make this choice. This expert system aids the user in choosing the best combination of options based on the users knowledge of the problem and the expert knowledge stored in the knowledge base. The knowledge base is divided into three categories; constrained problems, unconstrained problems, and constrained problems being treated as unconstrained problems. The inference engine and rules are written in LISP, contains about 200 rules, and executes on DEC-VAX (with Franz-LISP) and IBM PC (with IQ-LISP) computers.
Abidi, Syed Sibte Raza; Cheah, Yu-N; Curran, Janet
2005-06-01
Tacit knowledge of health-care experts is an important source of experiential know-how, yet due to various operational and technical reasons, such health-care knowledge is not entirely harnessed and put into professional practice. Emerging knowledge-management (KM) solutions suggest strategies to acquire the seemingly intractable and nonarticulated tacit knowledge of health-care experts. This paper presents a KM methodology, together with its computational implementation, to 1) acquire the tacit knowledge possessed by health-care experts; 2) represent the acquired tacit health-care knowledge in a computational formalism--i.e., clinical scenarios--that allows the reuse of stored knowledge to acquire tacit knowledge; and 3) crystallize the acquired tacit knowledge so that it is validated for health-care decision-support and medical education systems.
Development of a software tool to support chemical and biological terrorism intelligence analysis
NASA Astrophysics Data System (ADS)
Hunt, Allen R.; Foreman, William
1997-01-01
AKELA has developed a software tool which uses a systems analytic approach to model the critical processes which support the acquisition of biological and chemical weapons by terrorist organizations. This tool has four major components. The first is a procedural expert system which describes the weapon acquisition process. It shows the relationship between the stages a group goes through to acquire and use a weapon, and the activities in each stage required to be successful. It applies to both state sponsored and small group acquisition. An important part of this expert system is an analysis of the acquisition process which is embodied in a list of observables of weapon acquisition activity. These observables are cues for intelligence collection The second component is a detailed glossary of technical terms which helps analysts with a non- technical background understand the potential relevance of collected information. The third component is a linking capability which shows where technical terms apply to the parts of the acquisition process. The final component is a simple, intuitive user interface which shows a picture of the entire process at a glance and lets the user move quickly to get more detailed information. This paper explains e each of these five model components.
Fuzzy Expert System for Heart Attack Diagnosis
NASA Astrophysics Data System (ADS)
Hassan, Norlida; Arbaiy, Nureize; Shah, Noor Aziyan Ahmad; Afizah Afif@Afip, Zehan
2017-08-01
Heart attack is one of the serious illnesses and reported as the main killer disease. Early prevention is significant to reduce the risk of having the disease. The prevention efforts can be strengthen through awareness and education about risk factor and healthy lifestyle. Therefore the knowledge dissemination is needed to play role in order to distribute and educate public in health care management and disease prevention. Since the knowledge dissemination in medical is important, there is a need to develop a knowledge based system that can emulate human intelligence to assist decision making process. Thereby, this study utilized hybrid artificial intelligence (AI) techniques to develop a Fuzzy Expert System for Diagnosing Heart Attack Disease (HAD). This system integrates fuzzy logic with expert system, which helps the medical practitioner and people to predict the risk and as well as diagnosing heart attack based on given symptom. The development of HAD is expected not only providing expert knowledge but potentially become one of learning resources to help citizens to develop awareness about heart-healthy lifestyle.
Complex learning: the role of knowledge, intelligence, motivation and learning strategies.
Castejón, Juan L; Gilar, Raquel; Pérez, Antonio M
2006-11-01
This work presents the main theories and models formulated with the purpose of offering a global overview on the acquisition of knowledge and skills involved in the initial development of expert competence. Setting from this background, we developed an empirical work whose main purpose is to define those factors in a complex learning situation such as chapter-sized in a knowledge-rich domain. The results obtained in a sample of Master students reveal that the several variables intervening, such as the qualitative organization of knowledge, intellectual ability, motivation, the deliberate use of strategies, and a rich learning environment, contribute in an independent way to provide an explanation for the acquired knowledge.
What Is An Expert System? ERIC Digest.
ERIC Educational Resources Information Center
Boss, Richard W.
This digest describes and defines the various components of an expert system, e.g., a computerized tool designed to enhance the quality and availability of knowledge required by decision makers. It is noted that expert systems differ from conventional applications software in the following areas: (1) the existence of the expert systems shell, or…
Expert Systems: Implications for the Diagnosis and Treatment of Learning Disabilities.
ERIC Educational Resources Information Center
Hofmeister, Alan M.; Lubke, Margaret M.
1988-01-01
The article examines characteristics and present or potential applications of expert systems technology for diagnosis and treatment of learning disabilities. Preliminary findings indicate that expert systems can perform as well as humans in specific areas, and that the process of organizing knowledge bases for expert systems helps clarify existing…
Expert Systems and Command, Control, and Communication System Acquisition
1989-03-01
Systems and Command, Control, and Communicaton System Acquisition 12 Personal Author(s) James E. Minnema 13a Type of Report 13b Time Covered 14 Date...isolated strategic planning, unstructured problems, the author feels that this category should also include problems involving the integration of...distinct operational or management control, and structured or semi-structured problem efforts. The reason for this is that integration of a number of
NASA Technical Reports Server (NTRS)
Muratore, John F.
1991-01-01
Lessons learned from operational real time expert systems are examined. The basic system architecture is discussed. An expert system is any software that performs tasks to a standard that would normally require a human expert. An expert system implies knowledge contained in data rather than code. And an expert system implies the use of heuristics as well as algorithms. The 15 top lessons learned by the operation of a real time data system are presented.
Expert Knowledge-Based Automatic Sleep Stage Determination by Multi-Valued Decision Making Method
NASA Astrophysics Data System (ADS)
Wang, Bei; Sugi, Takenao; Kawana, Fusae; Wang, Xingyu; Nakamura, Masatoshi
In this study, an expert knowledge-based automatic sleep stage determination system working on a multi-valued decision making method is developed. Visual inspection by a qualified clinician is adopted to obtain the expert knowledge database. The expert knowledge database consists of probability density functions of parameters for various sleep stages. Sleep stages are determined automatically according to the conditional probability. Totally, four subjects were participated. The automatic sleep stage determination results showed close agreements with the visual inspection on sleep stages of awake, REM (rapid eye movement), light sleep and deep sleep. The constructed expert knowledge database reflects the distributions of characteristic parameters which can be adaptive to variable sleep data in hospitals. The developed automatic determination technique based on expert knowledge of visual inspection can be an assistant tool enabling further inspection of sleep disorder cases for clinical practice.
Psychology of developing and designing expert systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonn, B.; MacGregor, D.
This paper discusses psychological problems relevant to developing and designing expert systems. With respect to the former, the psychological literature suggests that several cognitive biases may affect the elicitation of a valid knowledge base from the expert. The literature also suggests that common expert system inference engines may be quite inconsistent with reasoning heuristics employed by experts. With respect to expert system user interfaces, care should be taken when eliciting uncertainty estimates from users, presenting system conclusions, and ordering questions.
NASA Technical Reports Server (NTRS)
Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)
1993-01-01
The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.
The Systems SOAP Note: A Systems Learning Tool.
Mitsuishi, Fumi; Young, John Q; Leary, Mark; Dilley, James; Mangurian, Christina
2016-02-01
Systems-based practice (SBP) is the only Accreditation Council for Graduate Medical Education (ACGME) competency concerned with public health and is relatively neglected in residency curricula. A tool was developed and pilot-tested to improve SBP learning on inpatient psychiatry rotations. A four-step approach was used: (1) literature review, (2) expert consultation, (3) tool development, and (4) pilot testing on four cases and evaluation for completion time and preliminary efficacy. Out of 51 SBP articles, six (12%) focused on psychiatric residency programs, and none had a practical SBP learning tool. The "systems SOAP (subjective, objective, assessment, plan) note" (S-SOAP) was structured after a clinical SOAP note and was easy to use (mean completion time = 60 min), and residents self-reported more insight into systems issues. The S-SOAP tool was effectively integrated into clinical experience and provided insight into systemic complexities. Future research should assess SBP knowledge acquisition after the use of such tools.
Structuration and acquisition of medical knowledge. Using UMLS in the conceptual graph formalism.
Volot, F.; Zweigenbaum, P.; Bachimont, B.; Ben Said, M.; Bouaud, J.; Fieschi, M.; Boisvieux, J. F.
1993-01-01
The use of a taxonomy, such as the concept type lattice (CTL) of Conceptual Graphs, is a central structuring piece in a knowledge-based system. The knowledge it contains is constantly used by the system, and its structure provides a guide for the acquisition of other pieces of knowledge. We show how UMLS can be used as a knowledge resource to build a CTL and how the CTL can help the process of acquisition for other kinds of knowledge. We illustrate this method in the context of the MENELAS natural language understanding project. PMID:8130568
The nutrition advisor expert system
NASA Technical Reports Server (NTRS)
Huse, Scott M.; Shyne, Scott S.
1991-01-01
The Nutrition Advisor Expert System (NAES) is an expert system written in the C Language Integrated Production System (CLIPS). NAES provides expert knowledge and guidance into the complex world of nutrition management by capturing the knowledge of an expert and placing it at the user's fingertips. Specifically, NAES enables the user to: (1) obtain precise nutrition information for food items; (2) perform nutritional analysis of meal(s), flagging deficiencies based upon the U.S. Recommended Daily Allowances; (3) predict possible ailments based upon observed nutritional deficiency trends; (4) obtain a top ten listing of food items for a given nutrient; and (5) conveniently upgrade the data base. An explanation facility for the ailment prediction feature is also provided to document the reasoning process.
NASA Technical Reports Server (NTRS)
Loftin, Karin C.; Ly, Bebe; Webster, Laurie; Verlander, James; Taylor, Gerald R.; Riley, Gary; Culbert, Chris; Holden, Tina; Rudisill, Marianne
1993-01-01
One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through the Biomedical Risk Assessment Intelligent Network (BRAIN), an integrated network of both human and computer elements. The BRAIN will function as an advisor to flight surgeons by assessing the risk of in-flight biomedical problems and recommending appropriate countermeasures. This paper describes the joint effort among various NASA elements to develop BRAIN and an Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of the following: (1) knowledge acquisition; (2) integration of IDRA components; (3) use of expert systems to automate the biomedical prediction process; (4) development of a user-friendly interface; and (5) integration of the IDRA prototype and Exercise Countermeasures Intelligent System (ExerCISys). Because the C Language, CLIPS (the C Language Integrated Production System), and the X-Window System were portable and easily integrated, they were chosen as the tools for the initial IDRA prototype. The feasibility was tested by developing an IDRA prototype that predicts the individual risk of influenza. The application of knowledge-based systems to risk assessment is of great market value to the medical technology industry.
Expert system for skin problem consultation in Thai traditional medicine.
Nopparatkiat, Pornchai; na Nagara, Byaporn; Chansa-ngavej, Chuvej
2014-01-01
This paper aimed to demonstrate the research and development of a rule-based expert system for skin problem consulting in the areas of acne, melasma, freckle, wrinkle, and uneven skin tone, with recommended treatments from Thai traditional medicine knowledge. The tool selected for developing the expert system is a software program written in the PHP language. MySQL database is used to work together with PHP for building database of the expert system. The system is web-based and can be reached from anywhere with Internet access. The developed expert system gave recommendations on the skin problem treatment with Thai herbal recipes and Thai herbal cosmetics based on 416 rules derived from primary and secondary sources. The system had been tested by 50 users consisting of dermatologists, Thai traditional medicine doctors, and general users. The developed system was considered good for learning and consultation. The present work showed how such a scattered body of traditional knowledge as Thai traditional medicine and herbal recipes could be collected, organised and made accessible to users and interested parties. The expert system developed herein should contribute in a meaningful way towards preserving the knowledge and helping promote the use of Thai traditional medicine as a practical alternative medicine for the treatment of illnesses.
Castro, Alexander Garcia; Rocca-Serra, Philippe; Stevens, Robert; Taylor, Chris; Nashar, Karim; Ragan, Mark A; Sansone, Susanna-Assunta
2006-01-01
Background Incorporation of ontologies into annotations has enabled 'semantic integration' of complex data, making explicit the knowledge within a certain field. One of the major bottlenecks in developing bio-ontologies is the lack of a unified methodology. Different methodologies have been proposed for different scenarios, but there is no agreed-upon standard methodology for building ontologies. The involvement of geographically distributed domain experts, the need for domain experts to lead the design process, the application of the ontologies and the life cycles of bio-ontologies are amongst the features not considered by previously proposed methodologies. Results Here, we present a methodology for developing ontologies within the biological domain. We describe our scenario, competency questions, results and milestones for each methodological stage. We introduce the use of concept maps during knowledge acquisition phases as a feasible transition between domain expert and knowledge engineer. Conclusion The contributions of this paper are the thorough description of the steps we suggest when building an ontology, example use of concept maps, consideration of applicability to the development of lower-level ontologies and application to decentralised environments. We have found that within our scenario conceptual maps played an important role in the development process. PMID:16725019
Experiments in Knowledge Refinement for a Large Rule-Based System
1993-08-01
empirical analysis to refine expert system knowledge bases. Aritificial Intelligence , 22:23-48, 1984. *! ...The Addison- Weslev series in artificial intelligence . Addison-Weslev. Reading, Massachusetts. 1981. Cooke, 1991: ttoger M. Cooke. Experts in...ment for classification systems. Artificial Intelligence , 35:197-226, 1988. 14 Overall, we believe that it will be possible to build a heuristic system
[Multicenter evaluation of the Nutri-Expert Telematic System in diabetic patients].
Turnin, M C; Bolzonella-Pene, C; Dumoulin, S; Cerf, I; Charpentier, G; Sandre-Banon, D; Valensi, P; Grenier, J L; Cathelineau, G; Mattei, C
1995-02-01
Nutri-Expert is a system for self-monitoring and dietetic education, accessible through Minitel. A preliminary randomised evaluation of one hundred diabetic patients in the Midi-Pyrénées region showed that Nutri-Expert improved dietetic knowledge, dietary habits and metabolic balance. The aim of the present study was to show that the system can be successfully prescribed to patients by physicians outside the center which originated it, indicating the benefit of a wider use of Nutri-Expert, among the diabetic population. One hundred and fifty-five patients, recruited by six French centres of diabetology, used Nutri-Expert from their homes for six months. Clinical examination, tests of dietetic knowledge and biological tests, including lipid fractions, were carried out before and after six months of use. After six months, there was a significant improvement in the patients' dietetic knowledge and in some biological parameters. Nutri-Expert is thus useful even when prescribed by a centre other than the hospital which devised the system. It is an additional beneficial tool in the ambulatory management of diabetic patients.
Collaborative knowledge acquisition for the design of context-aware alert systems.
Joffe, Erel; Havakuk, Ofer; Herskovic, Jorge R; Patel, Vimla L; Bernstam, Elmer Victor
2012-01-01
To present a framework for combining implicit knowledge acquisition from multiple experts with machine learning and to evaluate this framework in the context of anemia alerts. Five internal medicine residents reviewed 18 anemia alerts, while 'talking aloud'. They identified features that were reviewed by two or more physicians to determine appropriate alert level, etiology and treatment recommendation. Based on these features, data were extracted from 100 randomly-selected anemia cases for a training set and an additional 82 cases for a test set. Two staff internists assigned an alert level, etiology and treatment recommendation before and after reviewing the entire electronic medical record. The training set of 118 cases (100 plus 18) and the test set of 82 cases were explored using RIDOR and JRip algorithms. The feature set was sufficient to assess 93% of anemia cases (intraclass correlation for alert level before and after review of the records by internists 1 and 2 were 0.92 and 0.95, respectively). High-precision classifiers were constructed to identify low-level alerts (precision p=0.87, recall R=0.4), iron deficiency (p=1.0, R=0.73), and anemia associated with kidney disease (p=0.87, R=0.77). It was possible to identify low-level alerts and several conditions commonly associated with chronic anemia. This approach may reduce the number of clinically unimportant alerts. The study was limited to anemia alerts. Furthermore, clinicians were aware of the study hypotheses potentially biasing their evaluation. Implicit knowledge acquisition, collaborative filtering and machine learning were combined automatically to induce clinically meaningful and precise decision rules.
Decision support system for nursing management control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, C.J.
A knowledge representation approach for expert systems supporting decision processes in business is proposed. A description of a knowledge representation schema using a logic programming metalanguage is described, then the role of such a schema in a management expert system is demonstrated through the problem of nursing management control in hospitals. 18 references.
NASA Technical Reports Server (NTRS)
Fernandez, Becerra
2003-01-01
Expert Seeker is a computer program of the knowledge-management-system (KMS) type that falls within the category of expertise-locator systems. The main goal of the KMS system implemented by Expert Seeker is to organize and distribute knowledge of who are the domain experts within and without a given institution, company, or other organization. The intent in developing this KMS was to enable the re-use of organizational knowledge and provide a methodology for querying existing information (including structured, semistructured, and unstructured information) in a way that could help identify organizational experts. More specifically, Expert Seeker was developed to make it possible, by use of an intranet, to do any or all of the following: Assist an employee in identifying who has the skills needed for specific projects and to determine whether the experts so identified are available. Assist managers in identifying employees who may need training opportunities. Assist managers in determining what expertise is lost when employees retire or otherwise leave. Facilitate the development of new ways of identifying opportunities for innovation and minimization of duplicated efforts. Assist employees in achieving competitive advantages through the application of knowledge-management concepts and related systems. Assist external organizations in requesting speakers for specific engagements or determining from whom they might be able to request help via electronic mail. Help foster an environment of collaboration for rapid development in today's environment, in which it is increasingly necessary to assemble teams of experts from government, universities, research laboratories, and industries, to quickly solve problems anytime, anywhere. Make experts more visible. Provide a central repository of information about employees, including information that, heretofore, has typically not been captured by the human-resources systems (e.g., information about past projects, patents, or hobbies). Unify myriad collections of data into Web-enabled repository that could easily be searched for relevant data.
RAMBOT: A Connectionist Expert System That Learns by Example.
ERIC Educational Resources Information Center
Mozer, Michael C.
One solution to the problem of getting expert knowledge into expert systems would be to endow the systems with powerful learning procedures that could discover appropriate behaviors by observing an expert in action. A promising source of such learning procedures can be found in recent work on connectionist networks, which are massively parallel…
NASA Technical Reports Server (NTRS)
Andrews, Alison E.
1987-01-01
An approach to analyzing CFD knowledge-based systems is proposed which is based, in part, on the concept of knowledge-level analysis. Consideration is given to the expert cooling fan design system, the PAN AIR knowledge system, grid adaptation, and expert zonal grid generation. These AI/CFD systems demonstrate that current AI technology can be successfully applied to well-formulated problems that are solved by means of classification or selection of preenumerated solutions.
A hierarchically distributed architecture for fault isolation expert systems on the space station
NASA Technical Reports Server (NTRS)
Miksell, Steve; Coffer, Sue
1987-01-01
The Space Station Axiomatic Fault Isolating Expert Systems (SAFTIES) system deals with the hierarchical distribution of control and knowledge among independent expert systems doing fault isolation and scheduling of Space Station subsystems. On its lower level, fault isolation is performed on individual subsystems. These fault isolation expert systems contain knowledge about the performance requirements of their particular subsystem and corrective procedures which may be involved in repsonse to certain performance errors. They can control the functions of equipment in their system and coordinate system task schedules. On a higher level, the Executive contains knowledge of all resources, task schedules for all systems, and the relative priority of all resources and tasks. The executive can override any subsystem task schedule in order to resolve use conflicts or resolve errors that require resources from multiple subsystems. Interprocessor communication is implemented using the SAFTIES Communications Interface (SCI). The SCI is an application layer protocol which supports the SAFTIES distributed multi-level architecture.
Second CLIPS Conference Proceedings, volume 1
NASA Technical Reports Server (NTRS)
Giarratano, Joseph (Editor); Culbert, Christopher J. (Editor)
1991-01-01
Topics covered at the 2nd CLIPS Conference held at the Johnson Space Center, September 23-25, 1991 are given. Topics include rule groupings, fault detection using expert systems, decision making using expert systems, knowledge representation, computer aided design and debugging expert systems.
Shen, Ying; Colloc, Joël; Jacquet-Andrieu, Armelle; Lei, Kai
2015-08-01
This research aims to depict the methodological steps and tools about the combined operation of case-based reasoning (CBR) and multi-agent system (MAS) to expose the ontological application in the field of clinical decision support. The multi-agent architecture works for the consideration of the whole cycle of clinical decision-making adaptable to many medical aspects such as the diagnosis, prognosis, treatment, therapeutic monitoring of gastric cancer. In the multi-agent architecture, the ontological agent type employs the domain knowledge to ease the extraction of similar clinical cases and provide treatment suggestions to patients and physicians. Ontological agent is used for the extension of domain hierarchy and the interpretation of input requests. Case-based reasoning memorizes and restores experience data for solving similar problems, with the help of matching approach and defined interfaces of ontologies. A typical case is developed to illustrate the implementation of the knowledge acquisition and restitution of medical experts. Copyright © 2015 Elsevier Inc. All rights reserved.
Weng, Chunhua; Payne, Philip R O; Velez, Mark; Johnson, Stephen B; Bakken, Suzanne
2014-01-01
The successful adoption by clinicians of evidence-based clinical practice guidelines (CPGs) contained in clinical information systems requires efficient translation of free-text guidelines into computable formats. Natural language processing (NLP) has the potential to improve the efficiency of such translation. However, it is laborious to develop NLP to structure free-text CPGs using existing formal knowledge representations (KR). In response to this challenge, this vision paper discusses the value and feasibility of supporting symbiosis in text-based knowledge acquisition (KA) and KR. We compare two ontologies: (1) an ontology manually created by domain experts for CPG eligibility criteria and (2) an upper-level ontology derived from a semantic pattern-based approach for automatic KA from CPG eligibility criteria text. Then we discuss the strengths and limitations of interweaving KA and NLP for KR purposes and important considerations for achieving the symbiosis of KR and NLP for structuring CPGs to achieve evidence-based clinical practice.
ERIC Educational Resources Information Center
Zeng, Qingtian; Zhao, Zhongying; Liang, Yongquan
2009-01-01
User's knowledge requirement acquisition and analysis are very important for a personalized or user-adaptive learning system. Two approaches to capture user's knowledge requirement about course content within an e-learning system are proposed and implemented in this paper. The first approach is based on the historical data accumulated by an…
Organization and integration of biomedical knowledge with concept maps for key peroxisomal pathways.
Willemsen, A M; Jansen, G A; Komen, J C; van Hooff, S; Waterham, H R; Brites, P M T; Wanders, R J A; van Kampen, A H C
2008-08-15
One important area of clinical genomics research involves the elucidation of molecular mechanisms underlying (complex) disorders which eventually may lead to new diagnostic or drug targets. To further advance this area of clinical genomics one of the main challenges is the acquisition and integration of data, information and expert knowledge for specific biomedical domains and diseases. Currently the required information is not very well organized but scattered over biological and biomedical databases, basic text books, scientific literature and experts' minds and may be highly specific, heterogeneous, complex and voluminous. We present a new framework to construct knowledge bases with concept maps for presentation of information and the web ontology language OWL for the representation of information. We demonstrate this framework through the construction of a peroxisomal knowledge base, which focuses on four key peroxisomal pathways and several related genetic disorders. All 155 concept maps in our knowledge base are linked to at least one other concept map, which allows the visualization of one big network of related pieces of information. The peroxisome knowledge base is available from www.bioinformaticslaboratory.nl (Support-->Web applications). Supplementary data is available from www.bioinformaticslaboratory.nl (Research-->Output--> Publications--> KB_SuppInfo)
Real-time diagnostics for a reusable rocket engine
NASA Technical Reports Server (NTRS)
Guo, T. H.; Merrill, W.; Duyar, A.
1992-01-01
A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is implemented using a real-time expert system tool called G2 by Gensym Corp. Finally, the distributed diagnostic system requires another level of intelligence to oversee the fault mode reports generated by component fault detectors. The decision making at this level can best be done using a rule-based expert system. This level of expert knowledge is also implemented using G2.
Distributed systems status and control
NASA Technical Reports Server (NTRS)
Kreidler, David; Vickers, David
1990-01-01
Concepts are investigated for an automated status and control system for a distributed processing environment. System characteristics, data requirements for health assessment, data acquisition methods, system diagnosis methods and control methods were investigated in an attempt to determine the high-level requirements for a system which can be used to assess the health of a distributed processing system and implement control procedures to maintain an accepted level of health for the system. A potential concept for automated status and control includes the use of expert system techniques to assess the health of the system, detect and diagnose faults, and initiate or recommend actions to correct the faults. Therefore, this research included the investigation of methods by which expert systems were developed for real-time environments and distributed systems. The focus is on the features required by real-time expert systems and the tools available to develop real-time expert systems.
A machine independent expert system for diagnosing environmentally induced spacecraft anomalies
NASA Technical Reports Server (NTRS)
Rolincik, Mark J.
1991-01-01
A new rule-based, machine independent analytical tool for diagnosing spacecraft anomalies, the EnviroNET expert system, was developed. Expert systems provide an effective method for storing knowledge, allow computers to sift through large amounts of data pinpointing significant parts, and most importantly, use heuristics in addition to algorithms which allow approximate reasoning and inference, and the ability to attack problems not rigidly defines. The EviroNET expert system knowledge base currently contains over two hundred rules, and links to databases which include past environmental data, satellite data, and previous known anomalies. The environmental causes considered are bulk charging, single event upsets (SEU), surface charging, and total radiation dose.
The Potential of Computer-Based Expert Systems for Special Educators in Rural Settings.
ERIC Educational Resources Information Center
Parry, James D.; Ferrara, Joseph M.
Knowledge-based expert computer systems are addressing issues relevant to all special educators, but are particularly relevant in rural settings where human experts are less available because of distance and cost. An expert system is an application of artificial intelligence (AI) that typically engages the user in a dialogue resembling the…
The Contract Management Body of Knowledge: A Comparison of Contracting Competencies
2013-12-01
SME subject matter expert SOW statement of work TINA Truth in Negotiations Act UCC uniform commercial code WBS work breakdown structure xv...documents whose terms and condition are legally enforceable. Sources of law and guidance covered include the uniform commercial code ( UCC ), Federal...contracting including the uniform commercial code ( UCC ), Federal Acquisition Regulation (FAR), as well as various other laws pertaining to both
Mergers and acquisitions. Frequently asked questions and answers.
Lin, S M; Smeltzer, C H; Thomas, C
2000-03-01
This article is structured in a question/answer format based on interviews with Dr. Carolyn Hope Smeltzer and Salima Manji Lin of PricewaterhouseCoopers, Chicago, and Chuck Thomas of Hinshaw & Culbertson, Rockford. The questions come from CEO's, healthcare executives, and nurse executives at hospitals that are contemplating mergers or that have both succeeded and failed to merge their institutions. The experts share their knowledge.
NASA Technical Reports Server (NTRS)
Liberman, Eugene M.; Manner, David B.; Dolce, James L.; Mellor, Pamela A.
1993-01-01
Expert systems are widely used in health monitoring and fault detection applications. One of the key features of an expert system is that it possesses a large body of knowledge about the application for which it was designed. When the user consults this knowledge base, it is essential that the expert system's reasoning process and its conclusions be as concise as possible. If, in addition, an expert system is part of a process monitoring system, the expert system's conclusions must be combined with current events of the process. Under these circumstances, it is difficult for a user to absorb and respond to all the available information. For example, a user can become distracted and confused if two or more unrelated devices in different parts of the system require attention. A human interface designed to integrate expert system diagnoses with process data and to focus the user's attention to the important matters provides a solution to the 'information overload' problem. This paper will discuss a user interface to the power distribution expert system for Space Station Freedom. The importance of features which simplify assessing system status and which minimize navigating through layers of information will be discussed. Design rationale and implementation choices will also be presented.
A Quest for Efficiencies: Total System Performance Responsibility
2002-04-01
Program Office................................ 22 Contract Law Comments...resources and suppliers. 25 Contract Law Comments An integral member of any acquisition team is the legal expert(s) from the Staff Judge...Eglin AFB and Hanscom AFB were sent surveys in order to determine what cautions and concerns exist based on their contract law experiences. Getting
Knowledge Engineering (Or, Catching Black Cats in Dark Rooms).
ERIC Educational Resources Information Center
Ruyle, Kim E.
1993-01-01
Discusses knowledge engineering, its relationship to artificial intelligence, and possible applications to developing expert systems, job aids, and technical training. The educational background of knowledge engineers is considered; the role of subject matter experts is described; and examples of flow charts, lists, and pictorial representations…
Defense Acquisitions: Assessments of Selected Weapon Programs
2015-03-01
offices on technology, design , and manufacturing knowledge; the use of knowledge- based acquisition practices; and the implementation of acquisition...and production maturity using two data-collection instruments, including a questionnaire on issues such as systems engineering reviews, design ...Demonstrating technology maturity is a prerequisite for moving forward into system development, during which the focus should be on design and
Expert systems for C3I. Volume 1. A user's introduction
NASA Astrophysics Data System (ADS)
Clapp, J. A.; Hockett, S. M.; Prelle, M. J.; Tallant, A. M.; Triant, D. D.
1985-10-01
There has been a tremendous burgeoning of interest in artificial intelligence (AI) over the last few years. Investments of commercial and government sponsors reflect a widespread belief that AI is now ready for practical applications. The area of AI currently receiving the greatest attention and investment is expert system technology. Most major high tech corporations have begun to develop expert systems, and many software houses specializing in expert system tools and applications have recently appeared. The defense community is one of the heaviest investors in expert system technology, and within this community one of the application areas receiving greatest attention is C3I. Many ESD programs are now beginning to ask whether expert system applications for C3I are ready for incorporation into ESD-developed systems, and, if so, what are the potential benefits and risks of doing so. This report was prepared to help ESD and MITRE personnel working on acquisition programs to address these issues and to gain a better understanding of what expert systems are all about. The primary intention of this report is to investigate what expert systems are and the advances that are being made in expert system technology for C3I applications. The report begins with a brief tutorial on expert systems, emphasizing how they differ from conventional software systems and what they are best at doing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
These proceedings discuss human factor issues related to aerospace systems, aging, communications, computer systems, consumer products, education and forensic topics, environmental design, industrial ergonomics, international technology transfer, organizational design and management, personality and individual differences in human performance, safety, system development, test and evaluation, training, and visual performance. Particular attention is given to HUDs, attitude indicators, and sensor displays; human factors of space exploration; behavior and aging; the design and evaluation of phone-based interfaces; knowledge acquisition and expert systems; handwriting, speech, and other input techniques; interface design for text, numerics, and speech; and human factor issues in medicine. Also discussedmore » are cumulative trauma disorders, industrial safety, evaluative techniques for automation impacts on the human operators, visual issues in training, and interpreting and organizing human factor concepts and information.« less
SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting
NASA Astrophysics Data System (ADS)
Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.
2014-12-01
Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.
Huang, Jeannie S; Chun, Stanford; Sandhu, Amanpreet; Terrones, Laura
2013-11-01
To assess the Health and Obesity: Prevention and Education (HOPE) Curriculum Project, a web-based clinician education program that promotes appropriate screening, prevention, and management of weight among youth by pediatric practitioners, based on the 2007 Expert Committee recommendations. The project currently provides Maintenance of Certification (MOC) Part 4 credit through the American Board of Pediatrics. Participants identified themselves to the HOPE MOC Part 4 program. Enrollees were required to complete all continuing medical education modules (10.5 hours). Knowledge acquisition and self-reported confidence levels related to screening, prevention, and management practices of pediatric obesity were measured using preknowledge and postknowledge questionnaires. Participants were also required to perform a quality improvement project and submit practice performance data from repeated medical chart reviews over time. Knowledge acquisition, self-efficacy, and practice performance data were analyzed using repeated-measures analyses. The 51 participants demonstrated significant improvements in knowledge acquisition and self-efficacy scores after viewing individual modules. In addition, participants demonstrated significant improvements in measured clinical compliance with recommended practices over time. Participation in the HOPE MOC Part 4 program appeared to improve knowledge acquisition, self-efficacy, and physician compliance with recommended practice recommendations for the screening, prevention, and management of pediatric obesity. Further data are required to determine whether such practice-based improvements translate into actual reduction in patient weight and/or reduction in health-related costs related to overweight and obesity in youth. Copyright © 2013 Mosby, Inc. All rights reserved.
Computer Based Expert Systems.
ERIC Educational Resources Information Center
Parry, James D.; Ferrara, Joseph M.
1985-01-01
Claims knowledge-based expert computer systems can meet needs of rural schools for affordable expert advice and support and will play an important role in the future of rural education. Describes potential applications in prediction, interpretation, diagnosis, remediation, planning, monitoring, and instruction. (NEC)
Paquette-Warren, Jann; Tyler, Marie; Fournie, Meghan; Harris, Stewart B
2017-06-01
In order to scale-up successful innovations, more evidence is needed to evaluate programs that attempt to address the rising prevalence of diabetes and the associated burdens on patients and the healthcare system. This study aimed to assess the construct and content validity of the Diabetes Evaluation Framework for Innovative National Evaluations (DEFINE), a tool developed to guide the evaluation, design and implementation with built-in knowledge translation principles. A modified Delphi method, including 3 individual rounds (questionnaire with 7-point agreement/importance Likert scales and/or open-ended questions) and 1 group round (open discussion) were conducted. Twelve experts in diabetes, research, knowledge translation, evaluation and policy from Canada (Ontario, Quebec and British Columbia) and Australia participated. Quantitative consensus criteria were an interquartile range of ≤1. Qualitative data were analyzed thematically and confirmed by participants. An importance scale was used to determine a priority multi-level indicator set. Items rated very or extremely important by 80% or more of the experts were reviewed in the final group round to build the final set. Participants reached consensus on the content and construct validity of DEFINE, including its title, overall goal, 5-step evaluation approach, medical and nonmedical determinants of health schematics, full list of indicators and associated measurement tools, priority multi-level indicator set and next steps in DEFINE's development. Validated by experts, DEFINE has the right theoretic components to evaluate comprehensively diabetes prevention and management programs and to support acquisition of evidence that could influence the knowledge translation of innovations to reduce the burden of diabetes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
2014-11-18
this research was to characterize the naturalistic decision making process used in Naval Aviation acquisition to assess cost, schedule and...Naval Aviation acquisitions can be identified, which can support the future development of new processes and tools for training and decision making...part of Department of Defense acquisition processes , HSI ensures that operator, maintainer and sustainer considerations are incorporated into
Artificial Intelligence in Education.
ERIC Educational Resources Information Center
Ruyle, Kim E.
Expert systems have made remarkable progress in areas where the knowledge of an expert can be codified and represented, and these systems have many potentially useful applications in education. Expert systems seem "intelligent" because they do not simply repeat a set of predetermined questions during a consultation session, but will have…
ERIC Educational Resources Information Center
Khan, Abdul Azeez; Khader, Sheik Abdul
2014-01-01
E-learning or electronic learning platforms facilitate delivery of the knowledge spectrum to the learning community through information and communication technologies. The transfer of knowledge takes place from experts to learners, and externalization of the knowledge transfer is significant. In the e-learning environment, the learners seek…
Applying AI tools to operational space environmental analysis
NASA Technical Reports Server (NTRS)
Krajnak, Mike; Jesse, Lisa; Mucks, John
1995-01-01
The U.S. Air Force and National Oceanic Atmospheric Agency (NOAA) space environmental operations centers are facing increasingly complex challenges meeting the needs of their growing user community. These centers provide current space environmental information and short term forecasts of geomagnetic activity. Recent advances in modeling and data access have provided sophisticated tools for making accurate and timely forecasts, but have introduced new problems associated with handling and analyzing large quantities of complex data. AI (Artificial Intelligence) techniques have been considered as potential solutions to some of these problems. Fielding AI systems has proven more difficult than expected, in part because of operational constraints. Using systems which have been demonstrated successfully in the operational environment will provide a basis for a useful data fusion and analysis capability. Our approach uses a general purpose AI system already in operational use within the military intelligence community, called the Temporal Analysis System (TAS). TAS is an operational suite of tools supporting data processing, data visualization, historical analysis, situation assessment and predictive analysis. TAS includes expert system tools to analyze incoming events for indications of particular situations and predicts future activity. The expert system operates on a knowledge base of temporal patterns encoded using a knowledge representation called Temporal Transition Models (TTM's) and an event database maintained by the other TAS tools. The system also includes a robust knowledge acquisition and maintenance tool for creating TTM's using a graphical specification language. The ability to manipulate TTM's in a graphical format gives non-computer specialists an intuitive way of accessing and editing the knowledge base. To support space environmental analyses, we used TAS's ability to define domain specific event analysis abstractions. The prototype system defines events covering reports of natural phenomena such as solar flares, bursts, geomagnetic storms, and five others pertinent to space environmental analysis. With our preliminary event definitions we experimented with TAS's support for temporal pattern analysis using X-ray flare and geomagnetic storm forecasts as case studies. We are currently working on a framework for integrating advanced graphics and space environmental models into this analytical environment.
Widening the Knowledge Acquisition Bottleneck for Constraint-Based Tutors
ERIC Educational Resources Information Center
Suraweera, Pramuditha; Mitrovic, Antonija; Martin, Brent
2010-01-01
Intelligent Tutoring Systems (ITS) are effective tools for education. However, developing them is a labour-intensive and time-consuming process. A major share of the effort is devoted to acquiring the domain knowledge that underlies the system's intelligence. The goal of this research is to reduce this knowledge acquisition bottleneck and better…
Serious games and blended learning; effects on performance and motivation in medical education.
Dankbaar, Mary
2017-02-01
More efficient, flexible training models are needed in medical education. Information technology offers the tools to design and develop effective and more efficient training. The aims of this thesis were: 1) Compare the effectiveness of blended versus classroom training for the acquisition of knowledge; 2) Investigate the effectiveness and critical design features of serious games for performance improvement and motivation. Five empirical studies were conducted to answer the research questions and a descriptive study on an evaluation framework to assess serious games was performed. The results of the research studies indicated that: 1) For knowledge acquisition, blended learning is equally effective and attractive for learners as classroom learning; 2) A serious game with realistic, interactive cases improved complex cognitive skills for residents, with limited self-study time. Although the same game was motivating for inexperienced medical students and stimulated them to study longer, it did not improve their cognitive skills, compared with what they learned from an instructional e‑module. This indicates an 'expertise reversal effect', where a rich learning environment is effective for experts, but may be contra-productive for novices (interaction of prior knowledge and complexity of format). A blended design is equally effective and attractive as classroom training. Blended learning facilitates adaptation to the learners' knowledge level, flexibility in time and scalability of learning. Games may support skills learning, provided task complexity matches the learner's competency level. More design-based research is needed on the effects of task complexity and other design features on performance improvement, for both novices and experts.
Mylopoulos, Maria; Regehr, Glenn
2009-02-01
The ability to innovate new solutions in response to daily workplace challenges is an important component of adaptive expertise. Exploring how to optimally develop this skill is therefore of paramount importance to education researchers. This is certainly no less true in health care, where optimal patient care is contingent on the continuous efforts of doctors and other health care workers to provide the best care to their patients through the development and incorporation of new knowledge. Medical education programmes must therefore foster the skills and attitudes necessary to engage future doctors in the systematic development of innovative problem solving. The aim of this paper is to describe the perceptions and experiences of medical students in their third and fourth years of training, and to explore their understanding of their development as adaptive experts. A sample of 25 medical students participated in individual 45-60-minute semi-structured interviews. Interviews were audiotaped, transcribed and entered into NVivo qualitative data analysis software to facilitate a thematic analysis. The analysis was both inductive, in that themes were generated from the data, and deductive, in that our data were meaningful when interpreted in the context of theories of adaptive expertise. Participants expressed a general belief that, as learners in the health care system, exerting any effort to be innovative was beyond the scope of their responsibilities. Generally, students suggested that innovative practice was the prerogative of experts and an outcome of expert development centred on the acquisition of knowledge and experience. Students' perceptions of themselves as having no responsibility to be innovative in their learning process have implications for their learning trajectories as adaptive experts.
A knowledge engineering taxonomy for intelligent tutoring system development
NASA Technical Reports Server (NTRS)
Fink, Pamela K.; Herren, L. Tandy
1993-01-01
This paper describes a study addressing the issue of developing an appropriate mapping of knowledge acquisition methods to problem types for intelligent tutoring system development. Recent research has recognized that knowledge acquisition methodologies are not general across problem domains; the effectiveness of a method for obtaining knowledge depends on the characteristics of the domain and problem solving task. Southwest Research Institute developed a taxonomy of problem types by evaluating the characteristics that discriminate between problems and grouping problems that share critical characteristics. Along with the problem taxonomy, heuristics that guide the knowledge acquisition process based on the characteristics of the class are provided.
Aniba, Mohamed Radhouene; Siguenza, Sophie; Friedrich, Anne; Plewniak, Frédéric; Poch, Olivier; Marchler-Bauer, Aron; Thompson, Julie Dawn
2009-01-01
The traditional approach to bioinformatics analyses relies on independent task-specific services and applications, using different input and output formats, often idiosyncratic, and frequently not designed to inter-operate. In general, such analyses were performed by experts who manually verified the results obtained at each step in the process. Today, the amount of bioinformatics information continuously being produced means that handling the various applications used to study this information presents a major data management and analysis challenge to researchers. It is now impossible to manually analyse all this information and new approaches are needed that are capable of processing the large-scale heterogeneous data in order to extract the pertinent information. We review the recent use of integrated expert systems aimed at providing more efficient knowledge extraction for bioinformatics research. A general methodology for building knowledge-based expert systems is described, focusing on the unstructured information management architecture, UIMA, which provides facilities for both data and process management. A case study involving a multiple alignment expert system prototype called AlexSys is also presented.
Aniba, Mohamed Radhouene; Siguenza, Sophie; Friedrich, Anne; Plewniak, Frédéric; Poch, Olivier; Marchler-Bauer, Aron
2009-01-01
The traditional approach to bioinformatics analyses relies on independent task-specific services and applications, using different input and output formats, often idiosyncratic, and frequently not designed to inter-operate. In general, such analyses were performed by experts who manually verified the results obtained at each step in the process. Today, the amount of bioinformatics information continuously being produced means that handling the various applications used to study this information presents a major data management and analysis challenge to researchers. It is now impossible to manually analyse all this information and new approaches are needed that are capable of processing the large-scale heterogeneous data in order to extract the pertinent information. We review the recent use of integrated expert systems aimed at providing more efficient knowledge extraction for bioinformatics research. A general methodology for building knowledge-based expert systems is described, focusing on the unstructured information management architecture, UIMA, which provides facilities for both data and process management. A case study involving a multiple alignment expert system prototype called AlexSys is also presented. PMID:18971242
DOT National Transportation Integrated Search
1988-01-01
The development of a prototype knowledge-based expert system (KBES) for selecting appropriate traffic control strategies and management techniques around highway work zones was initiated. This process was encompassed by the steps that formulate the p...
An expert system, CORMIX1, was developed to predict the dilution and trajectory of a single buoyant discharge into an unstratified aquatic environment with and without crossflow. The system uses knowledge and inference rules obtained from hydrodynamic experts to classify and pred...
Expert Systems for Libraries at SCIL [Small Computers in Libraries]'88.
ERIC Educational Resources Information Center
Kochtanek, Thomas R.; And Others
1988-01-01
Six brief papers on expert systems for libraries cover (1) a knowledge-based approach to database design; (2) getting started in expert systems; (3) using public domain software to develop a business reference system; (4) a music cataloging inquiry system; (5) linguistic analysis of reference transactions; and (6) a model of a reference librarian.…
1989-12-01
that can be easily understood. (9) Parallelism. Several system components may need to execute in parallel. For example, the processing of sensor data...knowledge base are not accessible for processing by the database. Also in the likely case that the expert system poses a series of related queries, the...hiharken nxpfilcs’Iog - Knowledge base for the automation of loCgistics rr-ovenet T’he Ii rectorY containing the strike aircraft replacement knowledge base
NASA Technical Reports Server (NTRS)
Herrin, Stephanie; Iverson, David; Spukovska, Lilly; Souza, Kenneth A. (Technical Monitor)
1994-01-01
Failure Modes and Effects Analysis contain a wealth of information that can be used to create the knowledge base required for building automated diagnostic Expert systems. A real time monitoring and diagnosis expert system based on an actual NASA project's matrix failure modes and effects analysis was developed. This Expert system Was developed at NASA Ames Research Center. This system was first used as a case study to monitor the Research Animal Holding Facility (RAHF), a Space Shuttle payload that is used to house and monitor animals in orbit so the effects of space flight and microgravity can be studied. The techniques developed for the RAHF monitoring and diagnosis Expert system are general enough to be used for monitoring and diagnosis of a variety of other systems that undergo a Matrix FMEA. This automated diagnosis system was successfully used on-line and validated on the Space Shuttle flight STS-58, mission SLS-2 in October 1993.
Xiao, Xinqing; Fu, Zetian; Qi, Lin; Mira, Trebar; Zhang, Xiaoshuan
2015-10-01
The main export varieties in China are brand-name, high-quality bred aquatic products. Among them, tilapia has become the most important and fast-growing species since extensive consumer markets in North America and Europe have evolved as a result of commodity prices, year-round availability and quality of fresh and frozen products. As the largest tilapia farming country, China has over one-third of its tilapia production devoted to further processing and meeting foreign market demand. Using by tilapia fillet processing, this paper introduces the efforts for developing and evaluating ITS-TF: an intelligent traceability system integrated with statistical process control (SPC) and fault tree analysis (FTA). Observations, literature review and expert questionnaires were used for system requirement and knowledge acquisition; scenario simulation was applied to evaluate and validate ITS-TF performance. The results show that traceability requirement is evolved from a firefighting model to a proactive model for enhancing process management capacity for food safety; ITS-TF transforms itself as an intelligent system to provide functions on early warnings and process management by integrated SPC and FTA. The valuable suggestion that automatic data acquisition and communication technology should be integrated into ITS-TF was achieved for further system optimization, perfection and performance improvement. © 2014 Society of Chemical Industry.
2012-07-01
Background The Patriot system began because of the need to replace an aging and limited air defense system in the 1970s, the Nike -Hercules, and...1980s by Bolt, Beranek & Newman Inc . that overlaid student performance and expert solutions in a real-time simulation, with feedback from an...Interaction and Interface Design Team at Aptima, Inc . In this role she managed and led the work-centered development of a variety of military and
An expert system for diagnostics and estimation of steam turbine components condition
NASA Astrophysics Data System (ADS)
Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.
2017-11-01
The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis, calculating the probability of faults hypotheses, given the degree of the expert confidence in estimation of turbine components operation parameters.
Knowledge-based diagnosis for aerospace systems
NASA Technical Reports Server (NTRS)
Atkinson, David J.
1988-01-01
The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center.
Cirrus: Inducing Subject Models from Protocol Data
1988-08-16
behavior scientists, and more recently, by knowledge engineers who wish to embed the knowledge of human experts in an expert system. However, protocol...analysis is notoriously difficult and time comsuming . Several systems have been developed to aid in protocol analysis. Waterman and Newell (1971, 1973...developed a system that could read the natural langauge of the protocol and produce a formal trace of it (a problem behavior graph). The system, however
Defense Acquisition Reform: Where Do We Go From Here? A Compendium of Views by Leading Experts
2014-10-02
and government-owned production come close to matching the power of the Free Enterprise System broadly embraced by the U.S., including when providing...The defense acquisition process—along with most of our nation’s challenges, such as the provision of energy , building an economy, providing...Acquisition, Technology & Logistics. The projects have covered a wide variety of topics including, directed energy , unmanned vehicle, reviews of
An Expert System for Diagnosing Eye Diseases using Forward Chaining Method
NASA Astrophysics Data System (ADS)
Munaiseche, C. P. C.; Kaparang, D. R.; Rompas, P. T. D.
2018-02-01
Expert System is a system that seeks to adopt human knowledge to the computer, so that the computer can solve problems which are usually done by experts. The purpose of medical expert system is to support the diagnosis process of physicians. It considers facts and symptoms to provide diagnosis. This implies that a medical expert system uses knowledge about diseases and facts about the patients to suggest diagnosis. The aim of this research is to design an expert system application for diagnosing eye diseases using forward chaining method and to figure out user acceptance to this application through usability testing. Eye is selected because it is one of the five senses which is very sensitive and important. The scope of the work is extended to 16 types of eye diseases with 41 symptoms of the disease, arranged in 16 rules. The computer programming language employed was the PHP programming language and MySQL as the Relational Database Management System (RDBMS). The results obtained showed that the expert system was able to successfully diagnose eye diseases corresponding to the selected symptoms entered as query and the system evaluation through usability testing showed the expert system for diagnosis eye diseases had very good rate of usability, which includes learnability, efficiency, memorability, errors, and satisfaction so that the system can be received in the operational environment.
Gutiérrez, Fátima; Pierce, Jennifer; Vergara, Víctor M; Coulter, Robert; Saland, Linda; Caudell, Thomas P; Goldsmith, Timothy E; Alverson, Dale C
2007-01-01
Simulations are being used in education and training to enhance understanding, improve performance, and assess competence. However, it is important to measure the performance of these simulations as learning and training tools. This study examined and compared knowledge acquisition using a knowledge structure design. The subjects were first-year medical students at The University of New Mexico School of Medicine. One group used a fully immersed virtual reality (VR) environment using a head mounted display (HMD) and another group used a partially immersed (computer screen) VR environment. The study aims were to determine whether there were significant differences between the two groups as measured by changes in knowledge structure before and after the VR simulation experience. The results showed that both groups benefited from the VR simulation training as measured by the significant increased similarity to the expert knowledge network after the training experience. However, the immersed group showed a significantly higher gain than the partially immersed group. This study demonstrated a positive effect of VR simulation on learning as reflected by improvements in knowledge structure but an enhanced effect of full-immersion using a HMD vs. a screen-based VR system.
Collaborative knowledge acquisition for the design of context-aware alert systems
Joffe, Erel; Havakuk, Ofer; Herskovic, Jorge R; Patel, Vimla L
2012-01-01
Objective To present a framework for combining implicit knowledge acquisition from multiple experts with machine learning and to evaluate this framework in the context of anemia alerts. Materials and Methods Five internal medicine residents reviewed 18 anemia alerts, while ‘talking aloud’. They identified features that were reviewed by two or more physicians to determine appropriate alert level, etiology and treatment recommendation. Based on these features, data were extracted from 100 randomly-selected anemia cases for a training set and an additional 82 cases for a test set. Two staff internists assigned an alert level, etiology and treatment recommendation before and after reviewing the entire electronic medical record. The training set of 118 cases (100 plus 18) and the test set of 82 cases were explored using RIDOR and JRip algorithms. Results The feature set was sufficient to assess 93% of anemia cases (intraclass correlation for alert level before and after review of the records by internists 1 and 2 were 0.92 and 0.95, respectively). High-precision classifiers were constructed to identify low-level alerts (precision p=0.87, recall R=0.4), iron deficiency (p=1.0, R=0.73), and anemia associated with kidney disease (p=0.87, R=0.77). Discussion It was possible to identify low-level alerts and several conditions commonly associated with chronic anemia. This approach may reduce the number of clinically unimportant alerts. The study was limited to anemia alerts. Furthermore, clinicians were aware of the study hypotheses potentially biasing their evaluation. Conclusion Implicit knowledge acquisition, collaborative filtering and machine learning were combined automatically to induce clinically meaningful and precise decision rules. PMID:22744961
NASA Technical Reports Server (NTRS)
Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.
Integration of expert knowledge and uncertainty in natural risk assessment
NASA Astrophysics Data System (ADS)
Baruffini, Mirko; Jaboyedoff, Michel
2010-05-01
Natural hazards occurring in alpine regions during the last decades have clearly shown that interruptions of the Swiss railway power supply and closures of the Gotthard highway due to those events have increased the awareness of infrastructure vulnerability also in Switzerland and illustrate the potential impacts of failures on the performance of infrastructure systems. This asks for a high level of surveillance and preservation along the transalpine lines. Traditional simulation models are only partially capable to predict complex systems behaviours and the subsequently designed and implemented protection strategies are not able to mitigate the full spectrum of risk consequences. They are costly, and maximal protection is most probably not economically feasible. In addition, the quantitative risk assessment approaches such as fault tree analysis, event tree analysis and equivalent annual fatality analysis rely heavily on statistical information. Collecting sufficient data to base a statistical probability of risk is costly and, in many situations, such data does not exist; thus, expert knowledge and experience or engineering judgment can be exploited to estimate risk qualitatively. In order to overcome the statistics lack we used models based on expert's knowledge in order to qualitatively predict based on linguistic appreciation that are more expressive and natural in risk assessment. Fuzzy reasoning (FR) can be used providing a mechanism of computing with words (Zadeh, 1965) for modelling qualitative human thought processes in analyzing complex systems and decisions. Uncertainty in predicting the risk levels arises from such situations because no fully-formalized knowledge are available. Another possibility is to use probability based on triangular probability density function (T-PDF) that can be used to follow the same flow-chart as FR. We implemented the Swiss natural hazard recommendations FR and probability using T-PDF in order to obtain hazard zoning and uncertainties. We followed the same approach for each term of risks i.e. hazard, vulnerability, element at risk, exposition. This risk approach can be achieved by a comprehensive use of several artificial intelligence (AI) technologies, which are done through, for example: (1) GIS techniques; (2) FR or T-PDF for qualitatively predicting risks for possible review results; and (3) A Multi-Criteria Evaluation for analyzing weak points. The main advantages of FR or T-PDF involve the ability to express not-fully-formalized knowledge, easy knowledge representation and acquisition, and self updatability. The results show that such an approach points out quite wide zone of uncertainty. REFERENCES Zadeh L.A. 1965 : Fuzzy Sets. Information and Control, 8:338-353.
Expert and competent non-expert visual cues during simulated diagnosis in intensive care.
McCormack, Clare; Wiggins, Mark W; Loveday, Thomas; Festa, Marino
2014-01-01
The aim of this study was to examine the information acquisition strategies of expert and competent non-expert intensive care physicians during two simulated diagnostic scenarios involving respiratory distress in an infant. Specifically, the information acquisition performance of six experts and 12 competent non-experts was examined using an eye-tracker during the initial 90 s of the assessment of the patient. The results indicated that, in comparison to competent non-experts, experts recorded longer mean fixations, irrespective of the scenario. When the dwell times were examined against specific areas of interest, the results revealed that competent non-experts recorded greater overall dwell times on the nurse, where experts recorded relatively greater dwell times on the head and face of the manikin. In the context of the scenarios, experts recorded differential dwell times, spending relatively more time on the head and face during the seizure scenario than during the coughing scenario. The differences evident between experts and competent non-experts were interpreted as evidence of the relative availability of task-specific cues or heuristics in memory that might direct the process of information acquisition amongst expert physicians. The implications are discussed for the training and assessment of diagnostic skills.
Expert database system for quality control
NASA Astrophysics Data System (ADS)
Wang, Anne J.; Li, Zhi-Cheng
1993-09-01
There are more competitors today. Markets are not homogeneous they are fragmented into increasingly focused niches requiring greater flexibility in the product mix shorter manufacturing production runs and above allhigher quality. In this paper the author identified a real-time expert system as a way to improve plantwide quality management. The quality control expert database system (QCEDS) by integrating knowledge of experts in operations quality management and computer systems use all information relevant to quality managementfacts as well as rulesto determine if a product meets quality standards. Keywords: expert system quality control data base
The Shrinkage Model And Expert System Of Plastic Lens Formation
NASA Astrophysics Data System (ADS)
Chang, Rong-Seng
1988-06-01
Shrinkage causes both the appearance & dimension defects of the injected plastic lens. We have built up a model of state equations with the help of finite element analysis program to estimate the volume change (shrinkage and swelling) under the combinations of injection variables such as pressure and temperature etc., then the personal computer expert system has been build up to make that knowledge conveniently available to the user in the model design, process planning, process operation and some other work. The domain knowledge is represented by a R-graph (Relationship-graph) model which states the relationships of variables & equations. This model could be compare with other models in the expert system. If the user has better model to solve the shrinkage problem, the program will evaluate it automatically and a learning file will be trigger by the expert system to teach the user to update their knowledge base and modify the old model by this better model. The Rubin's model and Gilmore's model have been input to the expert system. The conflict has been solved both from the user and the deeper knowledge base. A cube prism and the convex lens examples have been shown in this paper. This program is written by MULISP language in IBM PC-AT. The natural language provides English Explaination of know why and know how and the automatic English translation for the equation rules and the production rules.
Proceedings of the international conference on cybernetics and societ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book presents the papers given at a conference on artificial intelligence, expert systems and knowledge bases. Topics considered at the conference included automating expert system development, modeling expert systems, causal maps, data covariances, robot vision, image processing, multiprocessors, parallel processing, VLSI structures, man-machine systems, human factors engineering, cognitive decision analysis, natural language, computerized control systems, and cybernetics.
Multi-viewpoint clustering analysis
NASA Technical Reports Server (NTRS)
Mehrotra, Mala; Wild, Chris
1993-01-01
In this paper, we address the feasibility of partitioning rule-based systems into a number of meaningful units to enhance the comprehensibility, maintainability and reliability of expert systems software. Preliminary results have shown that no single structuring principle or abstraction hierarchy is sufficient to understand complex knowledge bases. We therefore propose the Multi View Point - Clustering Analysis (MVP-CA) methodology to provide multiple views of the same expert system. We present the results of using this approach to partition a deployed knowledge-based system that navigates the Space Shuttle's entry. We also discuss the impact of this approach on verification and validation of knowledge-based systems.
Lumb, A.M.; McCammon, R.B.; Kittle, J.L.
1994-01-01
Expert system software was developed to assist less experienced modelers with calibration of a watershed model and to facilitate the interaction between the modeler and the modeling process not provided by mathematical optimization. A prototype was developed with artificial intelligence software tools, a knowledge engineer, and two domain experts. The manual procedures used by the domain experts were identified and the prototype was then coded by the knowledge engineer. The expert system consists of a set of hierarchical rules designed to guide the calibration of the model through a systematic evaluation of model parameters. When the prototype was completed and tested, it was rewritten for portability and operational use and was named HSPEXP. The watershed model Hydrological Simulation Program--Fortran (HSPF) is used in the expert system. This report is the users manual for HSPEXP and contains a discussion of the concepts and detailed steps and examples for using the software. The system has been tested on watersheds in the States of Washington and Maryland, and the system correctly identified the model parameters to be adjusted and the adjustments led to improved calibration.
Knowledge-based systems for power management
NASA Technical Reports Server (NTRS)
Lollar, L. F.
1992-01-01
NASA-Marshall's Electrical Power Branch has undertaken the development of expert systems in support of further advancements in electrical power system automation. Attention is given to the features (1) of the Fault Recovery and Management Expert System, (2) a resource scheduler or Master of Automated Expert Scheduling Through Resource Orchestration, and (3) an adaptive load-priority manager, or Load Priority List Management System. The characteristics of an advisory battery manager for the Hubble Space Telescope, designated the 'nickel-hydrogen expert system', are also noted.
Integrated Knowledge Based Expert System for Disease Diagnosis System
NASA Astrophysics Data System (ADS)
Arbaiy, Nureize; Sulaiman, Shafiza Eliza; Hassan, Norlida; Afizah Afip, Zehan
2017-08-01
The role and importance of healthcare systems to improve quality of life and social welfare in a society have been well recognized. Attention should be given to raise awareness and implementing appropriate measures to improve health care. Therefore, a computer based system is developed to serve as an alternative for people to self-diagnose their health status based on given symptoms. This strategy should be emphasized so that people can utilize the information correctly as a reference to enjoy healthier life. Hence, a Web-based Community Center for Healthcare Diagnosis system is developed based on expert system technique. Expert system reasoning technique is employed in the system to enable information about treatment and prevention of the diseases based on given symptoms. At present, three diseases are included which are arthritis, thalassemia and pneumococcal. Sets of rule and fact are managed in the knowledge based system. Web based technology is used as a platform to disseminate the information to users in order for them to optimize the information appropriately. This system will benefit people who wish to increase health awareness and seek expert knowledge on the diseases by performing self-diagnosis for early disease detection.
Representation and matching of knowledge to design digital systems
NASA Technical Reports Server (NTRS)
Jones, J. U.; Shiva, S. G.
1988-01-01
A knowledge-based expert system is described that provides an approach to solve a problem requiring an expert with considerable domain expertise and facts about available digital hardware building blocks. To design digital hardware systems from their high level VHDL (Very High Speed Integrated Circuit Hardware Description Language) representation to their finished form, a special data representation is required. This data representation as well as the functioning of the overall system is described.
ECLSS advanced automation preliminary requirements
NASA Technical Reports Server (NTRS)
Lukefahr, Brenda D.; Rochowiak, Daniel M.; Benson, Brian L.; Rogers, John S.; Mckee, James W.
1989-01-01
A description of the total Environmental Control and Life Support System (ECLSS) is presented. The description of the hardware is given in a top down format, the lowest level of which is a functional description of each candidate implementation. For each candidate implementation, both its advantages and disadvantages are presented. From this knowledge, it was suggested where expert systems could be used in the diagnosis and control of specific portions of the ECLSS. A process to determine if expert systems are applicable and how to select the expert system is also presented. The consideration of possible problems or inconsistencies in the knowledge or workings in the subsystems is described.
Expert Recommender: Designing for a Network Organization
NASA Astrophysics Data System (ADS)
Reichling, Tim; Veith, Michael; Wulf, Volker
Recent knowledge management initiatives focus on expertise sharing within formal organizational units and informal communities of practice. Expert recommender systems seem to be a promising tool in support of these initiatives. This paper presents experiences in designing an expert recommender system for a knowledge- intensive organization, namely the National Industry Association (NIA). Field study results provide a set of specific design requirements. Based on these requirements, we have designed an expert recommender system which is integrated into the specific software infrastructure of the organizational setting. The organizational setting is, as we will show, specific for historical, political, and economic reasons. These particularities influence the employees’ organizational and (inter-)personal needs within this setting. The paper connects empirical findings of a long-term case study with design experiences of an expertise recommender system.
The Dreyfus model of clinical problem-solving skills acquisition: a critical perspective
Peña, Adolfo
2010-01-01
Context The Dreyfus model describes how individuals progress through various levels in their acquisition of skills and subsumes ideas with regard to how individuals learn. Such a model is being accepted almost without debate from physicians to explain the ‘acquisition’ of clinical skills. Objectives This paper reviews such a model, discusses several controversial points, clarifies what kind of knowledge the model is about, and examines its coherence in terms of problem-solving skills. Dreyfus' main idea that intuition is a major aspect of expertise is also discussed in some detail. Relevant scientific evidence from cognitive science, psychology, and neuroscience is reviewed to accomplish these aims. Conclusions Although the Dreyfus model may partially explain the ‘acquisition’ of some skills, it is debatable if it can explain the acquisition of clinical skills. The complex nature of clinical problem-solving skills and the rich interplay between the implicit and explicit forms of knowledge must be taken into consideration when we want to explain ‘acquisition’ of clinical skills. The idea that experts work from intuition, not from reason, should be evaluated carefully. PMID:20563279
An expert systems approach to automated fault management in a regenerative life support subsystem
NASA Technical Reports Server (NTRS)
Malin, J. T.; Lance, N., Jr.
1986-01-01
This paper describes FIXER, a prototype expert system for automated fault management in a regenerative life support subsystem typical of Space Station applications. The development project provided an evaluation of the use of expert systems technology to enhance controller functions in space subsystems. The software development approach permitted evaluation of the effectiveness of direct involvement of the expert in design and development. The approach also permitted intensive observation of the knowledge and methods of the expert. This paper describes the development of the prototype expert system and presents results of the evaluation.
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Applications of artificial intelligence V; Proceedings of the Meeting, Orlando, FL, May 18-20, 1987
NASA Technical Reports Server (NTRS)
Gilmore, John F. (Editor)
1987-01-01
The papers contained in this volume focus on current trends in applications of artificial intelligence. Topics discussed include expert systems, image understanding, artificial intelligence tools, knowledge-based systems, heuristic systems, manufacturing applications, and image analysis. Papers are presented on expert system issues in automated, autonomous space vehicle rendezvous; traditional versus rule-based programming techniques; applications to the control of optional flight information; methodology for evaluating knowledge-based systems; and real-time advisory system for airborne early warning.
Artificial intelligence and space power systems automation
NASA Technical Reports Server (NTRS)
Weeks, David J.
1987-01-01
Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.
Cirrus: Inducing Subject Models from Protocol Data
1988-08-16
Protocol analysis is used routinely by psychologists and other behavior scientists, and more recently, by knowledge engineers who wish to embed the...knowledge of human experts in an expert system. However, protocol analysis is notoriously difficult and time comsuming . Several systems have been developed to...formal trace of it (a problem behavior graph). The system, however, did not produce an abstract model of the subject. Bhaskar and Simon (1977) avoided the
Empirical Analysis and Refinement of Expert System Knowledge Bases
1988-08-31
refinement. Both a simulated case generation program, and a random rule basher were developed to enhance rule refinement experimentation. *Substantial...the second fiscal year 88 objective was fully met. Rule Refinement System Simulated Rule Basher Case Generator Stored Cases Expert System Knowledge...generated until the rule is satisfied. Cases may be randomly generated for a given rule or hypothesis. Rule Basher Given that one has a correct
An integrated knowledge system for the Space Shuttle hazardous gas detection system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Shi, George Z.; Bangasser, Carl; Fensky, Connie; Cegielski, Eric; Overbey, Glenn
1993-01-01
A computer-based integrated Knowledge-Based System, the Intelligent Hypertext Manual (IHM), was developed for the Space Shuttle Hazardous Gas Detection System (HGDS) at NASA Marshall Space Flight Center (MSFC). The IHM stores HGDS related knowledge and presents it in an interactive and intuitive manner. This manual is a combination of hypertext and an expert system which store experts' knowledge and experience in hazardous gas detection and analysis. The IHM's purpose is to provide HGDS personnel with the capabilities of: locating applicable documentation related to procedures, constraints, and previous fault histories; assisting in the training of personnel; enhancing the interpretation of real time data; and recognizing and identifying possible faults in the Space Shuttle sub-systems related to hazardous gas detection.
Computers Simulate Human Experts.
ERIC Educational Resources Information Center
Roberts, Steven K.
1983-01-01
Discusses recent progress in artificial intelligence in such narrowly defined areas as medical and electronic diagnosis. Also discusses use of expert systems, man-machine communication problems, novel programing environments (including comments on LISP and LISP machines), and types of knowledge used (factual, heuristic, and meta-knowledge). (JN)
PI in the sky: The astronaut science advisor on SLS-2
NASA Technical Reports Server (NTRS)
Hazelton, Lyman R.; Groleau, Nicolas; Frainier, Richard J.; Compton, Michael M.; Colombano, Silvano P.; Szolovits, Peter
1994-01-01
The Astronaut Science Advisor (ASA, also known as Principal-Investigator-in-a-Box) is an advanced engineering effort to apply expert systems technology to experiment monitoring and control. Its goal is to increase the scientific value of information returned from experiments on manned space missions. The first in-space test of the system will be in conjunction with Professor Larry Young's (MIT) vestibulo-ocular 'Rotating Dome' experiment on the Spacelab Life Sciences 2 mission (STS-58) in the Fall of 1993. In a cost-saving effort, off-the-shelf equipment was employed wherever possible. Several modifications were necessary in order to make the system flight-worthy. The software consists of three interlocking modules. A real-time data acquisition system digitizes and stores all experiment data and then characterizes the signals in symbolic form; a rule-based expert system uses the symbolic signal characteristics to make decisions concerning the experiment; and a highly graphic user interface requiring a minimum of user intervention presents information to the astronaut operator. Much has been learned about the design of software and user interfaces for interactive computing in space. In addition, we gained a great deal of knowledge about building relatively inexpensive hardware and software for use in space. New technologies are being assessed to make the system a much more powerful ally in future scientific research in space and on the ground.
2011-04-30
Corporation. All rights reserved End Users Administrator/ Maintainer (A/M) Subject Matter Expert ( SME ) Trainer/ Instructor Manager, Evaluator, Supervisor... CMMI ) - Acquisition (AQ) © 2011 The MITRE Corporation. All rights reserved 13 CMMI -Development Incremental iterative development (planning & execution...objectives Constructing games highlighting particular aspects of proposed CCOD® acquisition, and conducting exercises with Subject Matter Experts ( SMEs
Explainable expert systems: A research program in information processing
NASA Technical Reports Server (NTRS)
Paris, Cecile L.
1993-01-01
Our work in Explainable Expert Systems (EES) had two goals: to extend and enhance the range of explanations that expert systems can offer, and to ease their maintenance and evolution. As suggested in our proposal, these goals are complementary because they place similar demands on the underlying architecture of the expert system: they both require the knowledge contained in a system to be explicitly represented, in a high-level declarative language and in a modular fashion. With these two goals in mind, the Explainable Expert Systems (EES) framework was designed to remedy limitations to explainability and evolvability that stem from related fundamental flaws in the underlying architecture of current expert systems.
ERIC Educational Resources Information Center
Major, Raymond L.
1998-01-01
Presents a technique for developing a knowledge-base of information to use in an expert system. Proposed approach employs a popular machine-learning algorithm along with a method for forming a finite number of features or conjuncts of at most n primitive attributes. Illustrates this procedure by examining qualitative information represented in a…
SIRE: A Simple Interactive Rule Editor for NICBES
NASA Technical Reports Server (NTRS)
Bykat, Alex
1988-01-01
To support evolution of domain expertise, and its representation in an expert system knowledge base, a user-friendly rule base editor is mandatory. The Nickel Cadmium Battery Expert System (NICBES), a prototype of an expert system for the Hubble Space Telescope power storage management system, does not provide such an editor. In the following, a description of a Simple Interactive Rule Base Editor (SIRE) for NICBES is described. The SIRE provides a consistent internal representation of the NICBES knowledge base. It supports knowledge presentation and provides a user-friendly and code language independent medium for rule addition and modification. The SIRE is integrated with NICBES via an interface module. This module provides translation of the internal representation to Prolog-type rules (Horn clauses), latter rule assertion, and a simple mechanism for rule selection for its Prolog inference engine.
NASA Technical Reports Server (NTRS)
Hadipriono, Fabian C.; Diaz, Carlos F.; Merritt, Earl S.
1989-01-01
The research project results in a powerful yet user friendly CROPCAST expert system for use by a client to determine the crop yield production of a certain crop field. The study is based on the facts that heuristic assessment and decision making in agriculture are significant and dominate much of agribusiness. Transfer of the expert knowledge concerning remote sensing based crop yield production into a specific expert system is the key program in this study. A knowledge base consisting of a root frame, CROP-YIELD-FORECAST, and four subframes, namely, SATELLITE, PLANT-PHYSIOLOGY, GROUND, and MODEL were developed to accommodate the production rules obtained from the domain expert. The expert system shell Personal Consultant Plus version 4.0. was used for this purpose. An external geographic program was integrated to the system. This project is the first part of a completely built expert system. The study reveals that much effort was given to the development of the rules. Such effort is inevitable if workable, efficient, and accurate rules are desired. Furthermore, abundant help statements and graphics were included. Internal and external display routines add to the visual capability of the system. The work results in a useful tool for the client for making decisions on crop yield production.
An SQL query generator for CLIPS
NASA Technical Reports Server (NTRS)
Snyder, James; Chirica, Laurian
1990-01-01
As expert systems become more widely used, their access to large amounts of external information becomes increasingly important. This information exists in several forms such as statistical, tabular data, knowledge gained by experts and large databases of information maintained by companies. Because many expert systems, including CLIPS, do not provide access to this external information, much of the usefulness of expert systems is left untapped. The scope of this paper is to describe a database extension for the CLIPS expert system shell. The current industry standard database language is SQL. Due to SQL standardization, large amounts of information stored on various computers, potentially at different locations, will be more easily accessible. Expert systems should be able to directly access these existing databases rather than requiring information to be re-entered into the expert system environment. The ORACLE relational database management system (RDBMS) was used to provide a database connection within the CLIPS environment. To facilitate relational database access a query generation system was developed as a CLIPS user function. The queries are entered in a CLlPS-like syntax and are passed to the query generator, which constructs and submits for execution, an SQL query to the ORACLE RDBMS. The query results are asserted as CLIPS facts. The query generator was developed primarily for use within the ICADS project (Intelligent Computer Aided Design System) currently being developed by the CAD Research Unit in the California Polytechnic State University (Cal Poly). In ICADS, there are several parallel or distributed expert systems accessing a common knowledge base of facts. Expert system has a narrow domain of interest and therefore needs only certain portions of the information. The query generator provides a common method of accessing this information and allows the expert system to specify what data is needed without specifying how to retrieve it.
Utilizing Expert Knowledge in Estimating Future STS Costs
NASA Technical Reports Server (NTRS)
Fortner, David B.; Ruiz-Torres, Alex J.
2004-01-01
A method of estimating the costs of future space transportation systems (STSs) involves classical activity-based cost (ABC) modeling combined with systematic utilization of the knowledge and opinions of experts to extend the process-flow knowledge of existing systems to systems that involve new materials and/or new architectures. The expert knowledge is particularly helpful in filling gaps that arise in computational models of processes because of inconsistencies in historical cost data. Heretofore, the costs of planned STSs have been estimated following a "top-down" approach that tends to force the architectures of new systems to incorporate process flows like those of the space shuttles. In this ABC-based method, one makes assumptions about the processes, but otherwise follows a "bottoms up" approach that does not force the new system architecture to incorporate a space-shuttle-like process flow. Prototype software has been developed to implement this method. Through further development of software, it should be possible to extend the method beyond the space program to almost any setting in which there is a need to estimate the costs of a new system and to extend the applicable knowledge base in order to make the estimate.
Essential Nutrition and Food Systems Components for School Curricula: Views from Experts in Iran
SADEGHOLVAD, Sanaz; YEATMAN, Heather; OMIDVAR, Nasrin; PARRISH, Anne-Maree; WORSLEY, Anthony
2017-01-01
Background: This study aimed to investigate food experts’ views on important nutrition and food systems knowledge issues for education purposes at schools in Iran. Methods: In 2012, semi-structured, face-to-face or telephone interviews were conducted with twenty-eight acknowledged Iranian experts in food and nutrition fields. Participants were selected from four major provinces in Iran (Tehran, Isfahan, Fars and Gilan). Open-ended interview questions were used to identify nutrition and food systems knowledge issues, which experts considered as important to be included in school education programs. Qualitative interviews were analyzed thematically using NVivo. Results: A framework of knowledge that would assist Iranian students and school-leavers to make informed decisions in food-related areas was developed, comprising five major clusters and several sub-clusters. Major knowledge clusters included nutrition basics; food production; every day food-related practices; prevalent nutritional health problems in Iran and improvement of students’ ethical attitudes in the food domain. Conclusion: These findings provide a guide to curriculum developers and policy makers to assess current education curricula in order to optimize students’ knowledge of nutrition and food systems. PMID:28845405
An intelligent interface for satellite operations: Your Orbit Determination Assistant (YODA)
NASA Technical Reports Server (NTRS)
Schur, Anne
1988-01-01
An intelligent interface is often characterized by the ability to adapt evaluation criteria as the environment and user goals change. Some factors that impact these adaptations are redefinition of task goals and, hence, user requirements; time criticality; and system status. To implement adaptations affected by these factors, a new set of capabilities must be incorporated into the human-computer interface design. These capabilities include: (1) dynamic update and removal of control states based on user inputs, (2) generation and removal of logical dependencies as change occurs, (3) uniform and smooth interfacing to numerous processes, databases, and expert systems, and (4) unobtrusive on-line assistance to users of concepts were applied and incorporated into a human-computer interface using artificial intelligence techniques to create a prototype expert system, Your Orbit Determination Assistant (YODA). YODA is a smart interface that supports, in real teime, orbit analysts who must determine the location of a satellite during the station acquisition phase of a mission. Also described is the integration of four knowledge sources required to support the orbit determination assistant: orbital mechanics, spacecraft specifications, characteristics of the mission support software, and orbit analyst experience. This initial effort is continuing with expansion of YODA's capabilities, including evaluation of results of the orbit determination task.
Pragmatic User Model Implementation in an Intelligent Help System.
ERIC Educational Resources Information Center
Fernandez-Manjon, Baltasar; Fernandez-Valmayor, Alfredo; Fernandez-Chamizo, Carmen
1998-01-01
Describes Aran, a knowledge-based system designed to help users deal with problems related to Unix operation. Highlights include adaptation to the individual user; user modeling knowledge; stereotypes; content of the individual user model; instantiation, acquisition, and maintenance of the individual model; dynamic acquisition of objective and…
NASA Technical Reports Server (NTRS)
Butler, G. F.; Graves, A. T.; Disbrow, J. D.; Duke, E. L.
1989-01-01
A joint activity between the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) and the Royal Aerospace Establishment (RAE) on knowledge-based systems has been agreed. Under the agreement, a flight status monitor knowledge base developed at Ames-Dryden has been implemented using the real-time AI (artificial intelligence) toolkit MUSE, which was developed in the UK. Here, the background to the cooperation is described and the details of the flight status monitor and a prototype MUSE implementation are presented. It is noted that the capabilities of the expert-system flight status monitor to monitor data downlinked from the flight test aircraft and to generate information on the state and health of the system for the test engineers provides increased safety during flight testing of new systems. Furthermore, the expert-system flight status monitor provides the systems engineers with ready access to the large amount of information required to describe a complex aircraft system.
Expert Systems: Tutors, Tools, and Tutees.
ERIC Educational Resources Information Center
Lippert, Renate C.
1989-01-01
Discusses the current status, research, and practical implications of artificial intelligence and expert systems in education. Topics discussed include computer-assisted instruction; intelligent computer-assisted instruction; intelligent tutoring systems; instructional strategies involving the creation of knowledge bases; decision aids;…
[Research & development on computer expert system for forensic bones estimation].
Zhao, Jun-ji; Zhang, Jan-zheng; Liu, Nin-guo
2005-08-01
To build an expert system for forensic bones estimation. By using the object oriented method, employing statistical data of forensic anthropology, combining the statistical data frame knowledge representation with productions and also using the fuzzy matching and DS evidence theory method. Software for forensic estimation of sex, age and height with opened knowledge base was designed. This system is reliable and effective, and it would be a good assistant of the forensic technician.
A knowledge based expert system for propellant system monitoring at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Jamieson, J. R.; Delaune, C.; Scarl, E.
1985-01-01
The Lox Expert System (LES) is the first attempt to build a realtime expert system capable of simulating the thought processes of NASA system engineers, with regard to fluids systems analysis and troubleshooting. An overview of the hardware and software describes the techniques used, and possible applications to other process control systems. LES is now in the advanced development stage, with a full implementation planned for late 1985.
Manage Toward Success - Utilization of Analytics in Acquisition Decision Making
2015-04-01
on the concept of knowledge- based acquisition described by the GAO. In the GAO (2005) report for National Aeronautics and Space Administration ( NASA ...acquisition programs, GAO recommended to NASA , and NASA subsequently con- curred, that transition to a knowledge-based acquisition framework will...Certification and Accreditation Process; ERAM = Enterprise Risk Assessment Manager; EVMS = Earned Value Management System; GOV = Government; POA&M = Plan of
Decision Support Systems for Launch and Range Operations Using Jess
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar
2007-01-01
The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.
Sicard, M; Perrot, N; Leclercq-Perlat, M-N; Baudrit, C; Corrieu, G
2011-01-01
Modeling the cheese ripening process remains a challenge because of its complexity. We still lack the knowledge necessary to understand the interactions that take place at different levels of scale during the process. However, information may be gathered from expert knowledge. Combining this expertise with knowledge extracted from experimental databases may allow a better understanding of the entire ripening process. The aim of this study was to elicit expert knowledge and to check its validity to assess the evolution of organoleptic quality during a dynamic food process: Camembert cheese ripening. Experiments on a pilot scale were carried out at different temperatures and relative humidities to obtain contrasting ripening kinetics. During these experiments, macroscopic evolution was evaluated from an expert's point of view and instrumental measurements were carried out to simultaneously monitor microbiological, physicochemical, and biochemical kinetics. A correlation of 76% was established between the microbiological, physicochemical, and biochemical data and the sensory phases measured according to expert knowledge, highlighting the validity of the experts' measurements. In the future, it is hoped that this expert knowledge may be integrated into food process models to build better decision-aid systems that will make it possible to preserve organoleptic qualities by linking them to other phenomena at the microscopic level. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A prototype knowledge-based simulation support system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, T.R.; Roberts, S.D.
1987-04-01
As a preliminary step toward the goal of an intelligent automated system for simulation modeling support, we explore the feasibility of the overall concept by generating and testing a prototypical framework. A prototype knowledge-based computer system was developed to support a senior level course in industrial engineering so that the overall feasibility of an expert simulation support system could be studied in a controlled and observable setting. The system behavior mimics the diagnostic (intelligent) process performed by the course instructor and teaching assistants, finding logical errors in INSIGHT simulation models and recommending appropriate corrective measures. The system was programmed inmore » a non-procedural language (PROLOG) and designed to run interactively with students working on course homework and projects. The knowledge-based structure supports intelligent behavior, providing its users with access to an evolving accumulation of expert diagnostic knowledge. The non-procedural approach facilitates the maintenance of the system and helps merge the roles of expert and knowledge engineer by allowing new knowledge to be easily incorporated without regard to the existing flow of control. The background, features and design of the system are describe and preliminary results are reported. Initial success is judged to demonstrate the utility of the reported approach and support the ultimate goal of an intelligent modeling system which can support simulation modelers outside the classroom environment. Finally, future extensions are suggested.« less
Temporal and contextual knowledge in model-based expert systems
NASA Technical Reports Server (NTRS)
Toth-Fejel, Tihamer; Heher, Dennis
1987-01-01
A basic paradigm that allows representation of physical systems with a focus on context and time is presented. Paragon provides the capability to quickly capture an expert's knowledge in a cognitively resonant manner. From that description, Paragon creates a simulation model in LISP, which when executed, verifies that the domain expert did not make any mistakes. The Achille's heel of rule-based systems has been the lack of a systematic methodology for testing, and Paragon's developers are certain that the model-based approach overcomes that problem. The reason this testing is now possible is that software, which is very difficult to test, has in essence been transformed into hardware.
2016-01-01
Observations of individual organisms (data) can be combined with expert ecological knowledge of species, especially causal knowledge, to model and extract from flower–visiting data useful information about behavioral interactions between insect and plant organisms, such as nectar foraging and pollen transfer. We describe and evaluate a method to elicit and represent such expert causal knowledge of behavioral ecology, and discuss the potential for wider application of this method to the design of knowledge-based systems for knowledge discovery in biodiversity and ecosystem informatics. PMID:27851814
Knowledge Engineering as a Component of the Curriculum for Medical Cybernetists.
Karas, Sergey; Konev, Arthur
2017-01-01
According to a new state educational standard, students who have chosen medical cybernetics as their major must develop a knowledge engineering competency. Previously, in the course "Clinical cybernetics" while practicing project-based learning students were designing automated workstations for medical personnel using client-server technology. The purpose of the article is to give insight into the project of a new educational module "Knowledge engineering". Students will acquire expert knowledge by holding interviews and conducting surveys, and then they will formalize it. After that, students will form declarative expert knowledge in a network model and analyze the knowledge graph. Expert decision making methods will be applied in software on the basis of a production model of knowledge. Project implementation will result not only in the development of analytical competencies among students, but also creation of a practically useful expert system based on student models to support medical decisions. Nowadays, this module is being tested in the educational process.
Varying Use of Conceptual Metaphors across Levels of Expertise in Thermodynamics
NASA Astrophysics Data System (ADS)
Jeppsson, Fredrik; Haglund, Jesper; Amin, Tamer G.
2015-04-01
Many studies have previously focused on how people with different levels of expertise solve physics problems. In early work, focus was on characterising differences between experts and novices and a key finding was the central role that propositionally expressed principles and laws play in expert, but not novice, problem-solving. A more recent line of research has focused on characterising continuity between experts and novices at the level of non-propositional knowledge structures and processes such as image-schemas, imagistic simulation and analogical reasoning. This study contributes to an emerging literature addressing the coordination of both propositional and non-propositional knowledge structures and processes in the development of expertise. Specifically, in this paper, we compare problem-solving across two levels of expertise-undergraduate students of chemistry and Ph.D. students in physical chemistry-identifying differences in how conceptual metaphors (CMs) are used (or not) to coordinate propositional and non-propositional knowledge structures in the context of solving problems on entropy. It is hypothesised that the acquisition of expertise involves learning to coordinate the use of CMs to interpret propositional (linguistic and mathematical) knowledge and apply it to specific problem situations. Moreover, we suggest that with increasing expertise, the use of CMs involves a greater degree of subjective engagement with physical entities and processes. Implications for research on learning and instructional practice are discussed. Third contribution to special issue entitled: Conceptual metaphor and embodied cognition in science learning
Determining rules for closing customer service centers: A public utility company's fuzzy decision
NASA Technical Reports Server (NTRS)
Dekorvin, Andre; Shipley, Margaret F.
1992-01-01
In the present work, we consider the general problem of knowledge acquisition under uncertainty. A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision was made. Unique to this work is the fuzzy set representation of the conditions or attributes upon which the decision make may base his fuzzy set decision. From our examples, we infer certain and possible rules containing fuzzy terms. It should be stressed that the procedure determines how closely the expert follows the conditions under consideration in making his decision. We offer two examples pertaining to the possible decision to close a customer service center of a public utility company. In the first example, the decision maker does not follow too closely the conditions. In the second example, the conditions are much more relevant to the decision of the expert.
Knowledge-based operation and management of communications systems
NASA Technical Reports Server (NTRS)
Heggestad, Harold M.
1988-01-01
Expert systems techniques are being applied in operation and control of the Defense Communications System (DCS), which has the mission of providing reliable worldwide voice, data and message services for U.S. forces and commands. Thousands of personnel operate DCS facilities, and many of their functions match the classical expert system scenario: complex, skill-intensive environments with a full spectrum of problems in training and retention, cost containment, modernization, and so on. Two of these functions are: (1) fault isolation and restoral of dedicated circuits at Tech Control Centers, and (2) network management for the Defense Switched Network (the modernized dial-up voice system currently replacing AUTOVON). An expert system for the first of these is deployed for evaluation purposes at Andrews Air Force Base, and plans are being made for procurement of operational systems. In the second area, knowledge obtained with a sophisticated simulator is being embedded in an expert system. The background, design and status of both projects are described.
Knowledge-based operation and management of communications systems
NASA Astrophysics Data System (ADS)
Heggestad, Harold M.
1988-11-01
Expert systems techniques are being applied in operation and control of the Defense Communications System (DCS), which has the mission of providing reliable worldwide voice, data and message services for U.S. forces and commands. Thousands of personnel operate DCS facilities, and many of their functions match the classical expert system scenario: complex, skill-intensive environments with a full spectrum of problems in training and retention, cost containment, modernization, and so on. Two of these functions are: (1) fault isolation and restoral of dedicated circuits at Tech Control Centers, and (2) network management for the Defense Switched Network (the modernized dial-up voice system currently replacing AUTOVON). An expert system for the first of these is deployed for evaluation purposes at Andrews Air Force Base, and plans are being made for procurement of operational systems. In the second area, knowledge obtained with a sophisticated simulator is being embedded in an expert system. The background, design and status of both projects are described.
Innovative applications of artificial intelligence
NASA Astrophysics Data System (ADS)
Schorr, Herbert; Rappaport, Alain
Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.
EDNA: Expert fault digraph analysis using CLIPS
NASA Technical Reports Server (NTRS)
Dixit, Vishweshwar V.
1990-01-01
Traditionally fault models are represented by trees. Recently, digraph models have been proposed (Sack). Digraph models closely imitate the real system dependencies and hence are easy to develop, validate and maintain. However, they can also contain directed cycles and analysis algorithms are hard to find. Available algorithms tend to be complicated and slow. On the other hand, the tree analysis (VGRH, Tayl) is well understood and rooted in vast research effort and analytical techniques. The tree analysis algorithms are sophisticated and orders of magnitude faster. Transformation of a digraph (cyclic) into trees (CLP, LP) is a viable approach to blend the advantages of the representations. Neither the digraphs nor the trees provide the ability to handle heuristic knowledge. An expert system, to capture the engineering knowledge, is essential. We propose an approach here, namely, expert network analysis. We combine the digraph representation and tree algorithms. The models are augmented by probabilistic and heuristic knowledge. CLIPS, an expert system shell from NASA-JSC will be used to develop a tool. The technique provides the ability to handle probabilities and heuristic knowledge. Mixed analysis, some nodes with probabilities, is possible. The tool provides graphics interface for input, query, and update. With the combined approach it is expected to be a valuable tool in the design process as well in the capture of final design knowledge.
Transformation reborn: A new generation expert system for planning HST operations
NASA Technical Reports Server (NTRS)
Gerb, Andrew
1991-01-01
The Transformation expert system (TRANS) converts proposals for astronomical observations with the Hubble Space Telescope (HST) into detailed observing plans. It encodes expert knowledge to solve problems faced in planning and commanding HST observations to enable their processing by the Science Operations Ground System (SOGS). Among these problems are determining an acceptable order of executing observations, grouping of observations to enhance efficiency and schedulability, inserting extra observations when necessary, and providing parameters for commanding HST instruments. TRANS is currently an operational system and plays a critical role in the HST ground system. It was originally designed using forward-chaining provided by the OPS5 expert system language, but has been reimplemented using a procedural knowledge base. This reimplementation was forced by the explosion in the amount of OPS5 code required to specify the increasingly complicated situations requiring expert-level intervention by the TRANS knowledge base. This problem was compounded by the difficulty of avoiding unintended interaction between rules. To support the TRANS knowledge base, XCL, a small but powerful extension to Commom Lisp was implemented. XCL allows a compact syntax for specifying assignments and references to object attributes. XCL also allows the capability to iterate over objects and perform keyed lookup. The reimplementation of TRANS has greatly diminished the effort needed to maintain and enhance it. As a result of this, its functions have been expanded to include warnings about observations that are difficult or impossible to schedule or command, providing data to aid SPIKE, an intelligent planning system used for HST long-term scheduling, and providing information to the Guide Star Selection System (GSSS) to aid in determination of the long range availability of guide stars.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.
Chen, Luke Y C; McDonald, Julie A; Pratt, Daniel D; Wisener, Katherine M; Jarvis-Selinger, Sandra
2015-04-01
To examine the role of classroom-based learning in graduate medical education through the lens of academic half days (AHDs) by exploring residents' perceptions of AHDs' purpose and relevance and the effectiveness of teaching and learning in AHDs. The authors invited a total of 186 residents in three programs (internal medicine, orthopedic surgery, and hematology) at the University of British Columbia Faculty of Medicine to participate in semistructured focus groups from October 2010 to February 2011. Verbatim transcripts of the interviews underwent inductive analysis. Twenty-seven residents across the three programs volunteered to participate. Two major findings emerged. Purpose and relevance of AHDs: Residents believed that AHDs are primarily for knowledge acquisition and should complement clinical learning. Classroom learning facilitated consolidation of clinical experiences with expert clinical reasoning. Social aspects of AHDs were highly valued as an important secondary purpose. Perceived effectiveness of teaching and learning: Case-based teaching engaged residents in critical thinking; active learning was valued. Knowledge retention was considered suboptimal. Perspectives on the concept of AHDs as "protected time" varied in the three programs. Findings suggest that (1) engagement in classroom learning occurs through participation in clinically oriented discussions that highlight expert reasoning processes; (2) formal classroom teaching, which focuses on knowledge acquisition, can enhance informal learning occurring during clinical activity; and (3) social aspects of AHDs, including their role in creating communities of practice in residency programs and in professional identity formation, are an important, underappreciated asset for residency programs.
Analysis of experts' perception of the effectiveness of teaching methods
NASA Astrophysics Data System (ADS)
Kindra, Gurprit S.
1984-03-01
The present study attempts to shed light on the perceptions of business educators regarding the effectiveness of six methodologies in achieving Gagné's five learning outcomes. Results of this study empirically confirm the oft-stated contention that no one method is globally effective for the attainment of all objectives. Specifically, business games, traditional lecture, and case study methods are perceived to be most effective for the learning of application, knowledge acquisition, and analysis and application, respectively.
The potential of expert systems for remote sensing application
NASA Technical Reports Server (NTRS)
Mooneyhan, D. W.
1983-01-01
An overview of the status and potential of artificial intelligence-driven expert systems in the role of image data analysis is presented. An expert system is defined and its structure is summarized. Three such systems designed for image interpretation are outlined. The use of an expert system to detect changes on the earth's surface is discussed, and the components of a knowledge-based image interpretation system and their make-up are outlined. An example of how such a system should work for an area in the tropics where deforestation has occurred is presented as a sequence of situation/action decisions.
Ascertaining top evidence in emergency medicine: A modified Delphi study.
Bazak, Stephanie J; Sherbino, Jonathan; Upadhye, Suneel; Chan, Teresa
2018-06-21
CLINICIAN'S CAPSULE What is known about the topic? EM is a specialty with a broad knowledge base making it daunting for a junior resident to know where to begin the acquisition of evidence-based knowledge. What did the study ask? What list of "top papers" was formulated in the field of EM using a national Canadian Delphi approach to achieve an expert consensus? What did the study find? A list was produced of top studies relevant for Canadian EM physicians in training. Why does this study matter to clinicians? The list produced can be used as an educational resource for junior residents.
A design for a ground-based data management system
NASA Technical Reports Server (NTRS)
Lambird, Barbara A.; Lavine, David
1988-01-01
An initial design for a ground-based data management system which includes intelligent data abstraction and cataloging is described. The large quantity of data on some current and future NASA missions leads to significant problems in providing scientists with quick access to relevant data. Human screening of data for potential relevance to a particular study is time-consuming and costly. Intelligent databases can provide automatic screening when given relevent scientific parameters and constraints. The data management system would provide, at a minimum, information of availability of the range of data, the type available, specific time periods covered together with data quality information, and related sources of data. The system would inform the user about the primary types of screening, analysis, and methods of presentation available to the user. The system would then aid the user with performing the desired tasks, in such a way that the user need only specify the scientific parameters and objectives, and not worry about specific details for running a particular program. The design contains modules for data abstraction, catalog plan abstraction, a user-friendly interface, and expert systems for data handling, data evaluation, and application analysis. The emphasis is on developing general facilities for data representation, description, analysis, and presentation that will be easily used by scientists directly, thus bypassing the knowledge acquisition bottleneck. Expert system technology is used for many different aspects of the data management system, including the direct user interface, the interface to the data analysis routines, and the analysis of instrument status.
ERIC Educational Resources Information Center
Floryan, Mark
2013-01-01
This dissertation presents a novel effort to develop ITS technologies that adapt by observing student behavior. In particular, we define an evolving expert knowledge base (EEKB) that structures a domain's information as a set of nodes and the relationships that exist between those nodes. The structure of this model is not the particularly novel…
Expert Maintenance Advisor Development for Navy Shipboard Systems
1994-01-01
Estoril (EDEN) Chair: Xavier Alaman, Instituto de Ingenieria del Conocimiento, SPAIN "A Model of Handling Uncertainty in Expert Systems," 01 Zhao...for Supervisory Process Control," Xavier Alaman, Instituto de Ingenieria del Conocimiento, SPAIN - (L) INTEGRATED KNOWLEDGE BASED SYSTEMS IN POWER
Introducing Managers to Expert Systems.
ERIC Educational Resources Information Center
Finlay, Paul N.; And Others
1991-01-01
Describes a short course to expose managers to expert systems, consisting of (1) introductory lecture; (2) supervised computer tutorial; (3) lecture and discussion about knowledge structuring and modeling; and (4) small group work on a case study using computers. (SK)
What Artificial Intelligence Is Doing for Training.
ERIC Educational Resources Information Center
Kirrane, Peter R.; Kirrane, Diane E.
1989-01-01
Discusses the three areas of research and application of artificial intelligence: (1) robotics, (2) natural language processing, and (3) knowledge-based or expert systems. Focuses on what expert systems can do, especially in the area of training. (JOW)
1983-08-01
constitutes a fundamental problem in many decision making processes. In business management we face this problem when determining the status of an...Tehiical Report 576 ( 1 ) 4 KNOWLEDGE REQUIREMENTS AND MANAGEMENT IN EXPERT DECISION SUPPORT SYSTEMS FOR (MILITARY) SITUATION ASSESSMENT MOOM sen...accomplished under contract for the Department of the Army The Israel Institute of Business Research Technical review by Robert H. Sasmor Joseph M
An expert system for the evaluation of reinforced concrete structure durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berra, M.; Bertolini, L.; Briglia, M.C.
1999-11-01
A user-friendly expert system has been developed to evaluate primarily the durability of reinforced concrete structures, either in the design phase or during service life related to reinforcement corrosion. Besides the durability module, the ES has been provided with three other expert modules in order to support the user during the following activities: inspections, corrosion diagnosis and repair strategy (of concrete and reinforcement). Corrosion induced by carbonation and chlorides penetration and caused by concrete degradation such as sulfate attack, freeze/thaw cycles, alkali silica reaction are considered. The knowledge used for the expert system is based both on open literature andmore » international standards as well as on specific experiences and proprietary databases. The paper describes main features of the system, including the modeling of the knowledge, input data, the algorithms, the rules and the outputs for each module.« less
Enhancing an adaptive e-learning system with didactic test assessment using an expert system
NASA Astrophysics Data System (ADS)
Bradáč, Vladimír; Kostolányová, Kateřina
2017-07-01
The paper deals with a follow-up research on intelligent tutoring systems that were studied in authors' previous papers from the point of view of describing their advantages. In this paper, the authors make use of the fuzzy logic expert system, which assesses student's knowledge, and integrate it into the intelligent tutoring system called Barborka. The goal is to create an even more personal student's study plan, which is tailored both to student's sensory/learning preferences and the level of knowledge of the given subject.
FUTURE APPLICATIONS OF EXPERT SYSTEMS FOR THE EVALUATION OF ENERGY RESOURCES.
Miller, Betty M.
1988-01-01
The loss of professional experience and expertise in the domain of the earth sciences may prove to be one of the most serious outcomes of the boom-and-bust cyclic nature of the volatile energy and mining industries. Promising new applications of powerful computer systems, known as 'expert systems' or 'knowledge-based systems', are predicted for use in the earth science. These systems have the potential capability to capture and preserve the invaluable knowledge bases essential to the evaluation of US energy and mineral resources.
FUTURE APPLICATIONS OF EXPERT SYSTEMS FOR THE EVALUATION OF ENERGY RESOURCES.
Miller, B.M.
1987-01-01
The loss of professional experience and expertise in the domain of the earth sciences may prove to be one of the most serious outcomes of the boom-and-bust cyclic nature of the volatile energy and mining industries. Promising new applications of powerful computer systems, known as 'expert systems' or 'knowledge-based systems', are predicted for use in the earth sciences. These systems have the potential capability to capture and preserve the invaluable knowledge bases essential to the evaluation of the Nation's energy and mineral resources.
Teaching Human Poses Interactively to a Social Robot
Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.
2013-01-01
The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336
Teaching human poses interactively to a social robot.
Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A
2013-09-17
The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.
Adaptation and validation of the REGEN expert system for the Central Appalachians
Lance A. Vickers; Thomas R. Fox; David L. Loftis; David A. Boucugnani
2011-01-01
REGEN is an expert system that predicts future species composition at the onset of stem exclusion using preharvest stand conditions. To extend coverage into hardwood stands of the Central Appalachians, we developed REGEN knowledge bases for four site qualities (xeric, subxeric, submesic, mesic) based on relevant literature and expert opinion. Data were collected from...
Motor-response learning at a process control panel by an autonomous robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; de Saussure, G.; Lyness, E.
1988-01-01
The Center for Engineering Systems Advanced Research (CESAR) was founded at Oak Ridge National Laboratory (ORNL) by the Department of Energy's Office of Energy Research/Division of Engineering and Geoscience (DOE-OER/DEG) to conduct basic research in the area of intelligent machines. Therefore, researchers at the CESAR Laboratory are engaged in a variety of research activities in the field of machine learning. In this paper, we describe our approach to a class of machine learning which involves motor response acquisition using feedback from trial-and-error learning. Our formulation is being experimentally validated using an autonomous robot, learning tasks of control panel monitoring andmore » manipulation for effect process control. The CLIPS Expert System and the associated knowledge base used by the robot in the learning process, which reside in a hypercube computer aboard the robot, are described in detail. Benchmark testing of the learning process on a robot/control panel simulation system consisting of two intercommunicating computers is presented, along with results of sample problems used to train and test the expert system. These data illustrate machine learning and the resulting performance improvement in the robot for problems similar to, but not identical with, those on which the robot was trained. Conclusions are drawn concerning the learning problems, and implications for future work on machine learning for autonomous robots are discussed. 16 refs., 4 figs., 1 tab.« less
Benchmarking expert system tools
NASA Technical Reports Server (NTRS)
Riley, Gary
1988-01-01
As part of its evaluation of new technologies, the Artificial Intelligence Section of the Mission Planning and Analysis Div. at NASA-Johnson has made timing tests of several expert system building tools. Among the production systems tested were Automated Reasoning Tool, several versions of OPS5, and CLIPS (C Language Integrated Production System), an expert system builder developed by the AI section. Also included in the test were a Zetalisp version of the benchmark along with four versions of the benchmark written in Knowledge Engineering Environment, an object oriented, frame based expert system tool. The benchmarks used for testing are studied.
Signal Processing Expert Code (SPEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, H.S.
1985-12-01
The purpose of this paper is to describe a prototype expert system called SPEC which was developed to demonstrate the utility of providing an intelligent interface for users of SIG, a general purpose signal processing code. The expert system is written in NIL, runs on a VAX 11/750 and consists of a backward chaining inference engine and an English-like parser. The inference engine uses knowledge encoded as rules about the formats of SIG commands and about how to perform frequency analyses using SIG. The system demonstrated that expert system can be used to control existing codes.
Building an adaptive agent to monitor and repair the electrical power system of an orbital satellite
NASA Technical Reports Server (NTRS)
Tecuci, Gheorghe; Hieb, Michael R.; Dybala, Tomasz
1995-01-01
Over several years we have developed a multistrategy apprenticeship learning methodology for building knowledge-based systems. Recently we have developed and applied our methodology to building intelligent agents. This methodology allows a subject matter expert to build an agent in the same way in which the expert would teach a human apprentice. The expert will give the agent specific examples of problems and solutions, explanations of these solutions, or supervise the agent as it solves new problems. During such interactions, the agent learns general rules and concepts, continuously extending and improving its knowledge base. In this paper we present initial results on applying this methodology to build an intelligent adaptive agent for monitoring and repair of the electrical power system of an orbital satellite, stressing the interaction with the expert during apprenticeship learning.
Understanding Basic Temporal Relations in Primary School Pupils with Hearing Impairments.
Dulcić, Adinda; Bakota, Koraljka; Saler, Zrinka
2015-09-01
Time can be observed as a subjective, as well as an objective phenomenon which is a component of our life, and due to its communicational needs, it is standardized by temporal signs and symbols. The aim of this study was to determine the understanding of basic temporal relations of pupils with hearing impairments. We assumed that the knowledge of basic time relations is a precondition for the acquisition of knowledge that is connected with the understanding of the syllabus in regular school programs. Three groups of pupils have been examined: pupils with hearing impairments who attend the primary school of SUVAG Polyclinic under special condition, integrated hearing impaired pupils with minor additional difficulties who attend regular primary schools in Zagreb with a prolonged expert procedure and pupils of the control group. The subjects have been examined with a measuring instrument constructed by the expert team of the Polyclinic Suvag. Twenty nine subjects have been questioned, chronologically aged between 10 and 12.
Online Patent Searching: Guided by an Expert System.
ERIC Educational Resources Information Center
Ardis, Susan B.
1990-01-01
Describes the development of an expert system for online patent searching that uses menu driven software to interpret the user's knowledge level and the general nature of the search problem. The discussion covers the rationale for developing such a system, current system functions, cost effectiveness, user reactions, and plans for future…
Planning bioinformatics workflows using an expert system.
Chen, Xiaoling; Chang, Jeffrey T
2017-04-15
Bioinformatic analyses are becoming formidably more complex due to the increasing number of steps required to process the data, as well as the proliferation of methods that can be used in each step. To alleviate this difficulty, pipelines are commonly employed. However, pipelines are typically implemented to automate a specific analysis, and thus are difficult to use for exploratory analyses requiring systematic changes to the software or parameters used. To automate the development of pipelines, we have investigated expert systems. We created the Bioinformatics ExperT SYstem (BETSY) that includes a knowledge base where the capabilities of bioinformatics software is explicitly and formally encoded. BETSY is a backwards-chaining rule-based expert system comprised of a data model that can capture the richness of biological data, and an inference engine that reasons on the knowledge base to produce workflows. Currently, the knowledge base is populated with rules to analyze microarray and next generation sequencing data. We evaluated BETSY and found that it could generate workflows that reproduce and go beyond previously published bioinformatics results. Finally, a meta-investigation of the workflows generated from the knowledge base produced a quantitative measure of the technical burden imposed by each step of bioinformatics analyses, revealing the large number of steps devoted to the pre-processing of data. In sum, an expert system approach can facilitate exploratory bioinformatic analysis by automating the development of workflows, a task that requires significant domain expertise. https://github.com/jefftc/changlab. jeffrey.t.chang@uth.tmc.edu. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Planning bioinformatics workflows using an expert system
Chen, Xiaoling; Chang, Jeffrey T.
2017-01-01
Abstract Motivation: Bioinformatic analyses are becoming formidably more complex due to the increasing number of steps required to process the data, as well as the proliferation of methods that can be used in each step. To alleviate this difficulty, pipelines are commonly employed. However, pipelines are typically implemented to automate a specific analysis, and thus are difficult to use for exploratory analyses requiring systematic changes to the software or parameters used. Results: To automate the development of pipelines, we have investigated expert systems. We created the Bioinformatics ExperT SYstem (BETSY) that includes a knowledge base where the capabilities of bioinformatics software is explicitly and formally encoded. BETSY is a backwards-chaining rule-based expert system comprised of a data model that can capture the richness of biological data, and an inference engine that reasons on the knowledge base to produce workflows. Currently, the knowledge base is populated with rules to analyze microarray and next generation sequencing data. We evaluated BETSY and found that it could generate workflows that reproduce and go beyond previously published bioinformatics results. Finally, a meta-investigation of the workflows generated from the knowledge base produced a quantitative measure of the technical burden imposed by each step of bioinformatics analyses, revealing the large number of steps devoted to the pre-processing of data. In sum, an expert system approach can facilitate exploratory bioinformatic analysis by automating the development of workflows, a task that requires significant domain expertise. Availability and Implementation: https://github.com/jefftc/changlab Contact: jeffrey.t.chang@uth.tmc.edu PMID:28052928
An architecture for the development of real-time fault diagnosis systems using model-based reasoning
NASA Technical Reports Server (NTRS)
Hall, Gardiner A.; Schuetzle, James; Lavallee, David; Gupta, Uday
1992-01-01
Presented here is an architecture for implementing real-time telemetry based diagnostic systems using model-based reasoning. First, we describe Paragon, a knowledge acquisition tool for offline entry and validation of physical system models. Paragon provides domain experts with a structured editing capability to capture the physical component's structure, behavior, and causal relationships. We next describe the architecture of the run time diagnostic system. The diagnostic system, written entirely in Ada, uses the behavioral model developed offline by Paragon to simulate expected component states as reflected in the telemetry stream. The diagnostic algorithm traces causal relationships contained within the model to isolate system faults. Since the diagnostic process relies exclusively on the behavioral model and is implemented without the use of heuristic rules, it can be used to isolate unpredicted faults in a wide variety of systems. Finally, we discuss the implementation of a prototype system constructed using this technique for diagnosing faults in a science instrument. The prototype demonstrates the use of model-based reasoning to develop maintainable systems with greater diagnostic capabilities at a lower cost.
NASA ground terminal communication equipment automated fault isolation expert systems
NASA Technical Reports Server (NTRS)
Tang, Y. K.; Wetzel, C. R.
1990-01-01
The prototype expert systems are described that diagnose the Distribution and Switching System I and II (DSS1 and DSS2), Statistical Multiplexers (SM), and Multiplexer and Demultiplexer systems (MDM) at the NASA Ground Terminal (NGT). A system level fault isolation expert system monitors the activities of a selected data stream, verifies that the fault exists in the NGT and identifies the faulty equipment. Equipment level fault isolation expert systems are invoked to isolate the fault to a Line Replaceable Unit (LRU) level. Input and sometimes output data stream activities for the equipment are available. The system level fault isolation expert system compares the equipment input and output status for a data stream and performs loopback tests (if necessary) to isolate the faulty equipment. The equipment level fault isolation system utilizes the process of elimination and/or the maintenance personnel's fault isolation experience stored in its knowledge base. The DSS1, DSS2 and SM fault isolation systems, using the knowledge of the current equipment configuration and the equipment circuitry issues a set of test connections according to the predefined rules. The faulty component or board can be identified by the expert system by analyzing the test results. The MDM fault isolation system correlates the failure symptoms with the faulty component based on maintenance personnel experience. The faulty component can be determined by knowing the failure symptoms. The DSS1, DSS2, SM, and MDM equipment simulators are implemented in PASCAL. The DSS1 fault isolation expert system was converted to C language from VP-Expert and integrated into the NGT automation software for offline switch diagnoses. Potentially, the NGT fault isolation algorithms can be used for the DSS1, SM, amd MDM located at Goddard Space Flight Center (GSFC).
ERIC Educational Resources Information Center
Mogharreban, Namdar
2004-01-01
A typical tutorial system functions by means of interaction between four components: the expert knowledge base component, the inference engine component, the learner's knowledge component and the user interface component. In typical tutorial systems the interaction and the sequence of presentation as well as the mode of evaluation are…
Optics Toolbox: An Intelligent Relational Database System For Optical Designers
NASA Astrophysics Data System (ADS)
Weller, Scott W.; Hopkins, Robert E.
1986-12-01
Optical designers were among the first to use the computer as an engineering tool. Powerful programs have been written to do ray-trace analysis, third-order layout, and optimization. However, newer computing techniques such as database management and expert systems have not been adopted by the optical design community. For the purpose of this discussion we will define a relational database system as a database which allows the user to specify his requirements using logical relations. For example, to search for all lenses in a lens database with a F/number less than two, and a half field of view near 28 degrees, you might enter the following: FNO < 2.0 and FOV of 28 degrees ± 5% Again for the purpose of this discussion, we will define an expert system as a program which contains expert knowledge, can ask intelligent questions, and can form conclusions based on the answers given and the knowledge which it contains. Most expert systems store this knowledge in the form of rules-of-thumb, which are written in an English-like language, and which are easily modified by the user. An example rule is: IF require microscope objective in air and require NA > 0.9 THEN suggest the use of an oil immersion objective The heart of the expert system is the rule interpreter, sometimes called an inference engine, which reads the rules and forms conclusions based on them. The use of a relational database system containing lens prototypes seems to be a viable prospect. However, it is not clear that expert systems have a place in optical design. In domains such as medical diagnosis and petrology, expert systems are flourishing. These domains are quite different from optical design, however, because optical design is a creative process, and the rules are difficult to write down. We do think that an expert system is feasible in the area of first order layout, which is sufficiently diagnostic in nature to permit useful rules to be written. This first-order expert would emulate an expert designer as he interacted with a customer for the first time: asking the right questions, forming conclusions, and making suggestions. With these objectives in mind, we have developed the Optics Toolbox. Optics Toolbox is actually two programs in one: it is a powerful relational database system with twenty-one search parameters, four search modes, and multi-database support, as well as a first-order optical design expert system with a rule interpreter which has full access to the relational database. The system schematic is shown in Figure 1.
TES: A modular systems approach to expert system development for real time space applications
NASA Technical Reports Server (NTRS)
England, Brenda; Cacace, Ralph
1987-01-01
A major goal of the space station era is to reduce reliance on support from ground based experts. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation as it would otherwise be carried out by a knowledgeable designer. The development process and primary features of the TES, the modular system and the lessons learned are discussed.
Diagnosis - Using automatic test equipment and artificial intelligence expert systems
NASA Astrophysics Data System (ADS)
Ramsey, J. E., Jr.
Three expert systems (ATEOPS, ATEFEXPERS, and ATEFATLAS), which were created to direct automatic test equipment (ATE), are reviewed. The purpose of the project was to develop an expert system to troubleshoot the converter-programmer power supply card for the F-15 aircraft and have that expert system direct the automatic test equipment. Each expert system uses a different knowledge base or inference engine, basing the testing on the circuit schematic, test requirements document, or ATLAS code. Implementing generalized modules allows the expert systems to be used for any different unit under test. Using converted ATLAS to LISP code allows the expert system to direct any ATE using ATLAS. The constraint propagated frame system allows for the expansion of control by creating the ATLAS code, checking the code for good software engineering techniques, directing the ATE, and changing the test sequence as needed (planning).
NASA Technical Reports Server (NTRS)
Chokr, Bassam A.; Kreinovich, Vladik YA.
1991-01-01
When a knowledge base represents the experts' uncertainty, then it is reasonable to ask how far we are from the complete knowledge, that is, how many more questions do we have to ask (to these experts, to nature by means of experimenting, etc) in order to attain the complete knowledge. Of course, since we do not know what the real world is, we cannot get the precise number of questions from the very beginning: it is quite possible, for example, that we ask the right question first and thus guess the real state of the world after the first question. So we have to estimate this number and use this estimate as a natural measure of completeness for a given knowledge base. We give such estimates for Dempster-Shafer formalism. Namely, we show that this average number of questions can be obtained by solving a simple mathematical optimization problem. In principle this characteristic is not always sufficient to express the fact that sometimes we have more knowledge. For example, it has the same value if we have an event with two possible outcomes and nothing else is known, and if there is an additional knowledge that the probability of every outcome is 0.5. We'll show that from the practical viewpoint this is not a problem, because the difference between the necessary number of questions in both cases is practically negligible.
1986-09-01
expert systems will certainly find management applications a fertile field for research and practice." Elam and Henderson (1983) also discuss concepts ...Shortliffe, E.H. (1983). Expert systems research. Science, 220, 261-268, 15 Apr. * Elam, J.J. and Henderson, J.C. (1983). Knowledge engineering concepts for...Symposium on Aerospace and Electronic Systems, Advanced Concepts and Pioneering Perspectives, Dayton, OH, Sect 4, (pp 1-9), Nov 14-15. Dreyfus, H
Software Analyzes Complex Systems in Real Time
NASA Technical Reports Server (NTRS)
2008-01-01
Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.
Knowledge Preservation for Design of Rocket Systems
NASA Technical Reports Server (NTRS)
Moreman, Douglas
2002-01-01
An engineer at NASA Lewis RC presented a challenge to us at Southern University. Our response to that challenge, stated circa 1993, has evolved into the Knowledge Preservation Project which is here reported. The stated problem was to capture some of the knowledge of retiring NASA engineers and make it useful to younger engineers via computers. We evolved that initial challenge to this - design a system of tools such that, with this system, people might efficiently capture and make available via commonplace computers, deep knowledge of retiring NASA engineers. In the process of proving some of the concepts of this system, we would (and did) capture knowledge from some specific engineers and, so, meet the original challenge along the way to meeting the new. Some of the specific knowledge acquired, particularly that on the RL- 10 engine, was directly relevant to design of rocket engines. We considered and rejected some of the techniques popular in the days we began - specifically "expert systems" and "oral histories". We judged that these old methods had too high a cost per sentence preserved. That cost could be measured in hours of labor of a "knowledge professional". We did spend, particularly in the grant preceding this one, some time creating a couple of "concept maps", one of the latest ideas of the day, but judged this also to be costly in time of a specially trained knowledge-professional. We reasoned that the cost in specialized labor could be lowered if less time were spent being selective about sentences from the engineers and in crafting replacements for those sentences. The trade-off would seem to be that our set of sentences would be less dense in information, but we found a computer-based way around this seeming defect. Our plan, details of which we have been carrying out, was to find methods of extracting information from experts which would be capable of gaining cooperation, and interest, of senior engineers and using their time in a way they would find worthy (and, so, they would give more of their time and recruit time of other engineers as well). We studied these four ways of creating text: 1) the old way, via interviews and discussions - one of our team working with one expert, 2) a group-discussion led by one of the experts themselves and on a topic which inspires interaction of the experts, 3) a spoken dissertation by one expert practiced in giving talks, 4) expropriating, and modifying for our system, some existing reports (such as "oral histories" from the Smithsonian Institution).
Tu, S W; Eriksson, H; Gennari, J H; Shahar, Y; Musen, M A
1995-06-01
PROTEGE-II is a suite of tools and a methodology for building knowledge-based systems and domain-specific knowledge-acquisition tools. In this paper, we show how PROTEGE-II can be applied to the task of providing protocol-based decision support in the domain of treating HIV-infected patients. To apply PROTEGE-II, (1) we construct a decomposable problem-solving method called episodic skeletal-plan refinement, (2) we build an application ontology that consists of the terms and relations in the domain, and of method-specific distinctions not already captured in the domain terms, and (3) we specify mapping relations that link terms from the application ontology to the domain-independent terms used in the problem-solving method. From the application ontology, we automatically generate a domain-specific knowledge-acquisition tool that is custom-tailored for the application. The knowledge-acquisition tool is used for the creation and maintenance of domain knowledge used by the problem-solving method. The general goal of the PROTEGE-II approach is to produce systems and components that are reusable and easily maintained. This is the rationale for constructing ontologies and problem-solving methods that can be composed from a set of smaller-grained methods and mechanisms. This is also why we tightly couple the knowledge-acquisition tools to the application ontology that specifies the domain terms used in the problem-solving systems. Although our evaluation is still preliminary, for the application task of providing protocol-based decision support, we show that these goals of reusability and easy maintenance can be achieved. We discuss design decisions and the tradeoffs that have to be made in the development of the system.
NASA Astrophysics Data System (ADS)
Fredouille, Corinne; Pouchoulin, Gilles; Ghio, Alain; Revis, Joana; Bonastre, Jean-François; Giovanni, Antoine
2009-12-01
This paper addresses voice disorder assessment. It proposes an original back-and-forth methodology involving an automatic classification system as well as knowledge of the human experts (machine learning experts, phoneticians, and pathologists). The goal of this methodology is to bring a better understanding of acoustic phenomena related to dysphonia. The automatic system was validated on a dysphonic corpus (80 female voices), rated according to the GRBAS perceptual scale by an expert jury. Firstly, focused on the frequency domain, the classification system showed the interest of 0-3000 Hz frequency band for the classification task based on the GRBAS scale. Later, an automatic phonemic analysis underlined the significance of consonants and more surprisingly of unvoiced consonants for the same classification task. Submitted to the human experts, these observations led to a manual analysis of unvoiced plosives, which highlighted a lengthening of VOT according to the dysphonia severity validated by a preliminary statistical analysis.
48 CFR 50.103-5 - Processing cases.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Processing cases. 50.103-5 Section 50.103-5 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT... knowledge of individuals when documentary evidence is lacking, and audits if considered necessary to...
ERIC Educational Resources Information Center
Luo, Yanyan
2009-01-01
In the article, the author tries to find out the main factors that affect the subject's vocabulary acquisition by an investigation. It is concluded that vocabulary acquisition models and strategies are something external, what really works upon vocabulary acquisition is the intermediary system of cognition including the knowledge structure and…
Development of the Spacecraft Materials Selector Expert System
NASA Technical Reports Server (NTRS)
Pippin, H. G.
2000-01-01
A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft is being developed under contract to the NASA SEE program. An artificial intelligence software package, the Boeing Expert System Tool (BEST), contains an inference engine used to operate knowledge bases constructed to selectively recall and distribute information about materials performance in space applications. This same system is used to make estimates of the environmental exposures expected for a given space flight. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described in this paper. A case history for a planned flight experiment on ISS is shown as an example of the use of the SMS, and capabilities and limitations of the knowledge base are discussed.
An expert system to manage the operation of the Space Shuttle's fuel cell cryogenic reactant tanks
NASA Technical Reports Server (NTRS)
Murphey, Amy Y.
1990-01-01
This paper describes a rule-based expert system to manage the operation of the Space Shuttle's cryogenic fuel system. Rules are based on standard fuel tank operating procedures described in the EECOM Console Handbook. The problem of configuring the operation of the Space Shuttle's fuel tanks is well-bounded and well defined. Moreover, the solution of this problem can be encoded in a knowledge-based system. Therefore, a rule-based expert system is the appropriate paradigm. Furthermore, the expert system could be used in coordination with power system simulation software to design operating procedures for specific missions.
Expert system shell to reason on large amounts of data
NASA Technical Reports Server (NTRS)
Giuffrida, Gionanni
1994-01-01
The current data base management systems (DBMS's) do not provide a sophisticated environment to develop rule based expert systems applications. Some of the new DBMS's come with some sort of rule mechanism; these are active and deductive database systems. However, both of these are not featured enough to support full implementation based on rules. On the other hand, current expert system shells do not provide any link with external databases. That is, all the data are kept in the system working memory. Such working memory is maintained in main memory. For some applications the reduced size of the available working memory could represent a constraint for the development. Typically these are applications which require reasoning on huge amounts of data. All these data do not fit into the computer main memory. Moreover, in some cases these data can be already available in some database systems and continuously updated while the expert system is running. This paper proposes an architecture which employs knowledge discovering techniques to reduce the amount of data to be stored in the main memory; in this architecture a standard DBMS is coupled with a rule-based language. The data are stored into the DBMS. An interface between the two systems is responsible for inducing knowledge from the set of relations. Such induced knowledge is then transferred to the rule-based language working memory.
Use of artificial intelligence in analytical systems for the clinical laboratory
Truchaud, Alain; Ozawa, Kyoichi; Pardue, Harry; Schnipelsky, Paul
1995-01-01
The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories. PMID:18924784
Evaluation of HardSys/HardDraw, An Expert System for Electromagnetic Interactions Modelling
1993-05-01
interactions ir complex systems. This report gives a description of HardSys/HardDraw and reviews the main concepts used in its design. Various aspects of its ...HardDraw, an expert system for the modelling of electromagnetic interactions in complex systems. It consists of two main components: HardSys and HardDraw...HardSys is the advisor part of the expert system. It is knowledge-based, that is it contains a database of models and properties for various types of
ERIC Educational Resources Information Center
Choi, Jung-Min
2010-01-01
The primary concern in current interaction design is focused on how to help users solve problems and achieve goals more easily and efficiently. While users' sufficient knowledge acquisition of operating a product or system is considered important, their acquisition of problem-solving knowledge in the task domain has largely been disregarded. As a…
Engine Data Interpretation System (EDIS), phase 2
NASA Technical Reports Server (NTRS)
Cost, Thomas L.; Hofmann, Martin O.
1991-01-01
A prototype of an expert system was developed which applies qualitative constraint-based reasoning to the task of post-test analysis of data resulting from a rocket engine firing. Data anomalies are detected and corresponding faults are diagnosed. Engine behavior is reconstructed using measured data and knowledge about engine behavior. Knowledge about common faults guides but does not restrict the search for the best explanation in terms of hypothesized faults. The system contains domain knowledge about the behavior of common rocket engine components and was configured for use with the Space Shuttle Main Engine (SSME). A graphical user interface allows an expert user to intimately interact with the system during diagnosis. The system was applied to data taken during actual SSME tests where data anomalies were observed.
An SSME High Pressure Oxidizer Turbopump diagnostic system using G2 real-time expert system
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
1991-01-01
An expert system which diagnoses various seal leakage faults in the High Pressure Oxidizer Turbopump of the SSME was developed using G2 real-time expert system. Three major functions of the software were implemented: model-based data generation, real-time expert system reasoning, and real-time input/output communication. This system is proposed as one module of a complete diagnostic system for the SSME. Diagnosis of a fault is defined as the determination of its type, severity, and likelihood. Since fault diagnosis is often accomplished through the use of heuristic human knowledge, an expert system based approach has been adopted as a paradigm to develop this diagnostic system. To implement this approach, a software shell which can be easily programmed to emulate the human decision process, the G2 Real-Time Expert System, was selected. Lessons learned from this implementation are discussed.
An SSME high pressure oxidizer turbopump diagnostic system using G2(TM) real-time expert system
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
1991-01-01
An expert system which diagnoses various seal leakage faults in the High Pressure Oxidizer Turbopump of the SSME was developed using G2(TM) real-time expert system. Three major functions of the software were implemented: model-based data generation, real-time expert system reasoning, and real-time input/output communication. This system is proposed as one module of a complete diagnostic system for Space Shuttle Main Engine. Diagnosis of a fault is defined as the determination of its type, severity, and likelihood. Since fault diagnosis is often accomplished through the use of heuristic human knowledge, an expert system based approach was adopted as a paradigm to develop this diagnostic system. To implement this approach, a software shell which can be easily programmed to emulate the human decision process, the G2 Real-Time Expert System, was selected. Lessons learned from this implementation are discussed.
An Ada Based Expert System for the Ada Version of SAtool II. Volume 1 and 2
1991-06-06
Integrated Computer-Aided Manufacturing (ICAM) (20). In fact, IDEF 0 stands for ICAM Definition Method Zero . IDEF0 defines a subset of SA that omits...reasoning that has been programmed). An expert’s knowledge is specific to one problem domain as opposed to knowledge about general problem-solving...techniques. General problem domains are medicine, finance, science or engineering and so forth in which an expert can solve specific problems very well
ERIC Educational Resources Information Center
Vosniadou, Stella
Analogical reasoning is one mechanism that has been recognized as having the potential of bringing prior knowledge to bear on the acquisition of new information. Analogical reasoning involves the identification and transfer of structural information from a known system to a new and relatively unknown system. The productive use of analogy is often…
ERIC Educational Resources Information Center
Utah State Univ., Logan. Center for Persons with Disabilities.
This project studied the effects of implementing a computerized management information system developed for special education administrators. The Intelligent Administration Support Program (IASP), an expert system and database program, assisted in information acquisition and analysis pertaining to the district's quality of decisions and procedures…
Spacelab Life Sciences-1 electrical diagnostic expert system
NASA Technical Reports Server (NTRS)
Kao, C. Y.; Morris, W. S.
1989-01-01
The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous, real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.
SigmaCLIPSE = presentation management + NASA CLI PS + SQL
NASA Technical Reports Server (NTRS)
Weiss, Bernard P., Jr.
1990-01-01
SigmaCLIPSE provides an expert systems and 'intelligent' data base development program for diverse systems integration environments that require support for automated reasoning and expert systems technology, presentation management, and access to 'intelligent' SQL data bases. The SigmaCLIPSE technology and and its integrated ability to access 4th generation application development and decision support tools through a portable SQL interface, comprises a sophisticated software development environment for solving knowledge engineering and expert systems development problems in information intensive commercial environments -- financial services, health care, and distributed process control -- where the expert system must be extendable -- a major architectural advantage of NASA CLIPS. SigmaCLIPSE is a research effort intended to test the viability of merging SQL data bases with expert systems technology.
A diagnostic expert system for aircraft generator control unit (GCU)
NASA Astrophysics Data System (ADS)
Ho, Ting-Long; Bayles, Robert A.; Havlicsek, Bruce L.
The modular VSCF (variable-speed constant-frequency) generator families are described as using standard modules to reduce the maintenance cost and to improve the product's testability. A general diagnostic expert system shell that guides troubleshooting of modules or line replaceable units (LRUs) is introduced. An application of the diagnostic system to a particular LRU, the generator control unit (GCU) is reported. The approach to building the diagnostic expert system is first to capture general diagnostic strategy in an expert system shell. This shell can be easily applied to different devices or LRUs by writing rules to capture only additional device-specific diagnostic information from expert repair personnel. The diagnostic system has the necessary knowledge embedded in its programs and exhibits expertise to troubleshoot the GCU.
The Development of a General Auxiliary Diagnosis System for Common Disease of Animal
NASA Astrophysics Data System (ADS)
Xiao, Jianhua; Wang, Hongbin; Zhang, Ru; Luan, Peixian; Li, Lin; Xu, Danning
In order to development one expert system for animal disease in china, and this expert system can help veterinary surgeon diagnose all kinds of disease of animal. The design of an intelligent medical system for diagnosis of animal diseases is presented in this paper. The system comprises three major parts: a disease case management system (DCMS), a Knowledge management system (KMS) and an Expert System (ES). The DCMS is used to manipulate patient data include all kinds of data about the animal and the symptom, diagnosis result etc. The KMS is used to acquire knowledge from disease cases and manipulate knowledge by human. The ES is used to perform diagnosis. The program is designed in N-layers system; they are data layer, security layer, business layer, appearance layer, and user interface. When diagnosis, user can select some symptoms in system group by system. One conclusion with three possibilities (final diagnosis result, suspect diagnosis result, and no diagnosis result) is output. By diagnosis some times, one most possible result can be get. By application, this system can increased the accurate of diagnosis to some extent, but the statistics result was not compute now.
DIAMS revisited: Taming the variety of knowledge in fault diagnosis expert systems
NASA Technical Reports Server (NTRS)
Haziza, M.; Ayache, S.; Brenot, J.-M.; Cayrac, D.; Vo, D.-P.
1994-01-01
The DIAMS program, initiated in 1986, led to the development of a prototype expert system, DIAMS-1 dedicated to the Telecom 1 Attitude and Orbit Control System, and to a near-operational system, DIAMS-2, covering a whole satellite (the Telecom 2 platform and its interfaces with the payload), which was installed in the Satellite Control Center in 1993. The refinement of the knowledge representation and reasoning is now being studied, focusing on the introduction of appropriate handling of incompleteness, uncertainty and time, and keeping in mind operational constraints. For the latest generation of the tool, DIAMS-3, a new architecture has been proposed, that enables the cooperative exploitation of various models and knowledge representations. On the same baseline, new solutions enabling higher integration of diagnostic systems in the operational environment and cooperation with other knowledge intensive systems such as data analysis, planning or procedure management tools have been introduced.
Ogrinc, Greg; Headrick, Linda A; Mutha, Sunita; Coleman, Mary T; O'Donnell, Joseph; Miles, Paul V
2003-07-01
To create a framework for teaching the knowledge and skills of practice-based learning and improvement to medical students and residents based on proven, effective strategies. The authors conducted a Medline search of English-language articles published between 1996 and May 2001, using the term "quality improvement" (QI), and cross-matched it with "medical education" and "health professions education." A thematic-synthesis method of review was used to compile the information from the articles. Based on the literature review, an expert panel recommended educational objectives for practice-based learning and improvement. Twenty-seven articles met the inclusion criteria. The majority of studies were conducted in academic medical centers and medical schools and 40% addressed experiential learning of QI. More than 75% were qualitative case reports capturing educational outcomes, and 7% included an experimental study design. The expert panel integrated data from the literature review with the Dreyfus model of professional skill acquisition, the Institute for Healthcare Improvement's (IHI) knowledge domains for improving health care, and the ACGME competencies and generated a framework of core educational objectives about teaching practice-based learning and improvement to medical students and residents. Teaching the knowledge and skills of practice-based learning and improvement to medical students and residents is a necessary and important foundation for improving patient care. The authors present a framework of learning objectives-informed by the literature and synthesized by the expert panel-to assist educational leaders when integrating these objectives into a curriculum. This framework serves as a blueprint to bridge the gap between current knowledge and future practice needs.
Performance Engineering as an Expert System.
ERIC Educational Resources Information Center
Harmon, Paul
1984-01-01
Considers three powerful techniques--heuristics, context trees, and search via backward chaining--that a knowledge engineer might employ to develop an expert system to automate performance engineering, i.e., the branch of instructional technology that focuses on the problems of business and industry. (MBR)
Diagnostics aid for mass spectrometer trouble-shooting
NASA Astrophysics Data System (ADS)
Filby, E. E.; Rankin, R. A.; Webb, G. W.
The MS Expert system provides problem diagnostics for instruments used in the Mass Spectrometry Laboratory (MSL). The most critical results generated on these mass spectrometers are the uranium concentration and isotopic content data used for process control and materials accountability at the Idaho Chemical Processing Plant. The two purposes of the system are: (1) to minimize instrument downtime and thereby provide the best possible support to the Plant, and (2) to improve long-term data quality. This system combines the knowledge of several experts on mass spectrometry to provide a diagnostic tool, and can make these skills available on a more timely basis. It integrates code written in the Pascal language with a knowledge base entered into a commercial expert system shell. The user performs some preliminary status checks, and then selects from among several broad diagnostic categories. These initial steps provide input to the rule base. The overall analysis provides the user with a set of possible solutions to the observed problems, graded as to their probabilities. Besides the trouble-shooting benefits expected from this system, it will also provide structures diagnostic training for lab personnel. In addition, development of the system knowledge base has already produced a better understanding of instrument behavior. Two key findings are that a good user interface is necessary for full acceptance of the tool, and a development system should include standard programming capabilities as well as the expert system shell.
GESA--a two-dimensional processing system using knowledge base techniques.
Rowlands, D G; Flook, A; Payne, P I; van Hoff, A; Niblett, T; McKee, S
1988-12-01
The successful analysis of two-dimensional (2-D) polyacrylamide electrophoresis gels demands considerable experience and understanding of the protein system under investigation as well as knowledge of the separation technique itself. The present work concerns the development of a computer system for analysing 2-D electrophoretic separations which incorporates concepts derived from artificial intelligence research such that non-experts can use the technique as a diagnostic or identification tool. Automatic analysis of 2-D gel separations has proved to be extremely difficult using statistical methods. Non-reproducibility of gel separations is also difficult to overcome using automatic systems. However, the human eye is extremely good at recognising patterns in images, and human intervention in semi-automatic computer systems can reduce the computational complexities of fully automatic systems. Moreover, the expertise and understanding of an "expert" is invaluable in reducing system complexity if it can be encapsulated satisfactorily in an expert system. The combination of user-intervention in the computer system together with the encapsulation of expert knowledge characterises the present system. The domain within which the system has been developed is that of wheat grain storage proteins (gliadins) which exhibit polymorphism to such an extent that cultivars can be uniquely identified by their gliadin patterns. The system can be adapted to other domains where a range of polymorpic protein sub-units exist. In its generalised form, the system can also be used for comparing more complex 2-D gel electrophoretic separations.
NASA Astrophysics Data System (ADS)
Mo, Yunjeong
The purpose of this research is to support the development of an intelligent Decision Support System (DSS) by integrating quantitative information with expert knowledge in order to facilitate effective retrofit decision-making. To achieve this goal, the Energy Retrofit Decision Process Framework is analyzed. Expert system shell software, a retrofit measure cost database, and energy simulation software are needed for developing the DSS; Exsys Corvid, the NREM database and BEopt were chosen for implementing an integration model. This integration model demonstrates the holistic function of a residential energy retrofit system for existing homes, by providing a prioritized list of retrofit measures with cost information, energy simulation and expert advice. The users, such as homeowners and energy auditors, can acquire all of the necessary retrofit information from this unified system without having to explore several separate systems. The integration model plays the role of a prototype for the finalized intelligent decision support system. It implements all of the necessary functions for the finalized DSS, including integration of the database, energy simulation and expert knowledge.
Intelligent interfaces for expert systems
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Wang, Lui
1988-01-01
Vital to the success of an expert system is an interface to the user which performs intelligently. A generic intelligent interface is being developed for expert systems. This intelligent interface was developed around the in-house developed Expert System for the Flight Analysis System (ESFAS). The Flight Analysis System (FAS) is comprised of 84 configuration controlled FORTRAN subroutines that are used in the preflight analysis of the space shuttle. In order to use FAS proficiently, a person must be knowledgeable in the areas of flight mechanics, the procedures involved in deploying a certain payload, and an overall understanding of the FAS. ESFAS, still in its developmental stage, is taking into account much of this knowledge. The generic intelligent interface involves the integration of a speech recognizer and synthesizer, a preparser, and a natural language parser to ESFAS. The speech recognizer being used is capable of recognizing 1000 words of connected speech. The natural language parser is a commercial software package which uses caseframe instantiation in processing the streams of words from the speech recognizer or the keyboard. The systems configuration is described along with capabilities and drawbacks.
An on-line expert system for diagnosing environmentally induced spacecraft anomalies using CLIPS
NASA Technical Reports Server (NTRS)
Lauriente, Michael; Rolincik, Mark; Koons, Harry C; Gorney, David
1993-01-01
A new rule-based, expert system for diagnosing spacecraft anomalies is under development. The knowledge base consists of over two-hundred rules and provide links to historical and environmental databases. Environmental causes considered are bulk charging, single event upsets (SEU), surface charging, and total radiation dose. The system's driver translates forward chaining rules into a backward chaining sequence, prompting the user for information pertinent to the causes considered. The use of heuristics frees the user from searching through large amounts of irrelevant information (varying degrees of confidence in an answer) or 'unknown' to any question. The expert system not only provides scientists with needed risk analysis and confidence estimates not available in standard numerical models or databases, but it is also an effective learning tool. In addition, the architecture of the expert system allows easy additions to the knowledge base and the database. For example, new frames concerning orbital debris and ionospheric scintillation are being considered. The system currently runs on a MicroVAX and uses the C Language Integrated Production System (CLIPS).
1993-09-01
is not present at output of the power amplifier- THEN replace train drive motor ELSE continue troubleshooting procedures. 30 Rules offer several...Type Body Type Tires Tires Engine Type Engine Type Battery Type Battery Type Figure 5-2 KOWLEDGE ACCESS BY FRAME AND SLOT 33 B. SEMANTIC NETWORKS A
TES: A modular systems approach to expert system development for real-time space applications
NASA Technical Reports Server (NTRS)
Cacace, Ralph; England, Brenda
1988-01-01
A major goal of the Space Station era is to reduce reliance on support from ground based experts. The development of software programs using expert systems technology is one means of reaching this goal without requiring crew members to become intimately familiar with the many complex spacecraft subsystems. Development of an expert systems program requires a validation of the software with actual flight hardware. By combining accurate hardware and software modelling techniques with a modular systems approach to expert systems development, the validation of these software programs can be successfully completed with minimum risk and effort. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation tasks as they would otherwise be carried out by a knowledgeable designer. The development process and primary features of TES, a modular systems approach, and the lessons learned are discussed.
Towards a Fuzzy Expert System on Toxicological Data Quality Assessment.
Yang, Longzhi; Neagu, Daniel; Cronin, Mark T D; Hewitt, Mark; Enoch, Steven J; Madden, Judith C; Przybylak, Katarzyna
2013-01-01
Quality assessment (QA) requires high levels of domain-specific experience and knowledge. QA tasks for toxicological data are usually performed by human experts manually, although a number of quality evaluation schemes have been proposed in the literature. For instance, the most widely utilised Klimisch scheme1 defines four data quality categories in order to tag data instances with respect to their qualities; ToxRTool2 is an extension of the Klimisch approach aiming to increase the transparency and harmonisation of the approach. Note that the processes of QA in many other areas have been automatised by employing expert systems. Briefly, an expert system is a computer program that uses a knowledge base built upon human expertise, and an inference engine that mimics the reasoning processes of human experts to infer new statements from incoming data. In particular, expert systems have been extended to deal with the uncertainty of information by representing uncertain information (such as linguistic terms) as fuzzy sets under the framework of fuzzy set theory and performing inferences upon fuzzy sets according to fuzzy arithmetic. This paper presents an experimental fuzzy expert system for toxicological data QA which is developed on the basis of the Klimisch approach and the ToxRTool in an effort to illustrate the power of expert systems to toxicologists, and to examine if fuzzy expert systems are a viable solution for QA of toxicological data. Such direction still faces great difficulties due to the well-known common challenge of toxicological data QA that "five toxicologists may have six opinions". In the meantime, this challenge may offer an opportunity for expert systems because the construction and refinement of the knowledge base could be a converging process of different opinions which is of significant importance for regulatory policy making under the regulation of REACH, though a consensus may never be reached. Also, in order to facilitate the implementation of Weight of Evidence approaches and in silico modelling proposed by REACH, there is a higher appeal of numerical quality values than nominal (categorical) ones, where the proposed fuzzy expert system could help. Most importantly, the deriving processes of quality values generated in this way are fully transparent, and thus comprehensible, for final users, which is another vital point for policy making specified in REACH. Case studies have been conducted and this report not only shows the promise of the approach, but also demonstrates the difficulties of the approach and thus indicates areas for future development. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experts bodies, experts minds: How physical and mental training shape the brain
Debarnot, Ursula; Sperduti, Marco; Di Rienzo, Franck; Guillot, Aymeric
2014-01-01
Skill learning is the improvement in perceptual, cognitive, or motor performance following practice. Expert performance levels can be achieved with well-organized knowledge, using sophisticated and specific mental representations and cognitive processing, applying automatic sequences quickly and efficiently, being able to deal with large amounts of information, and many other challenging task demands and situations that otherwise paralyze the performance of novices. The neural reorganizations that occur with expertise reflect the optimization of the neurocognitive resources to deal with the complex computational load needed to achieve peak performance. As such, capitalizing on neuronal plasticity, brain modifications take place over time-practice and during the consolidation process. One major challenge is to investigate the neural substrates and cognitive mechanisms engaged in expertise, and to define “expertise” from its neural and cognitive underpinnings. Recent insights showed that many brain structures are recruited during task performance, but only activity in regions related to domain-specific knowledge distinguishes experts from novices. The present review focuses on three expertise domains placed across a motor to mental gradient of skill learning: sequential motor skill, mental simulation of the movement (motor imagery), and meditation as a paradigmatic example of “pure” mental training. We first describe results on each specific domain from the initial skill acquisition to expert performance, including recent results on the corresponding underlying neural mechanisms. We then discuss differences and similarities between these domains with the aim to identify the highlights of the neurocognitive processes underpinning expertise, and conclude with suggestions for future research. PMID:24847236
Toward a theory of distributed word expert natural language parsing
NASA Technical Reports Server (NTRS)
Rieger, C.; Small, S.
1981-01-01
An approach to natural language meaning-based parsing in which the unit of linguistic knowledge is the word rather than the rewrite rule is described. In the word expert parser, knowledge about language is distributed across a population of procedural experts, each representing a word of the language, and each an expert at diagnosing that word's intended usage in context. The parser is structured around a coroutine control environment in which the generator-like word experts ask questions and exchange information in coming to collective agreement on sentence meaning. The word expert theory is advanced as a better cognitive model of human language expertise than the traditional rule-based approach. The technical discussion is organized around examples taken from the prototype LISP system which implements parts of the theory.
Nickel cadmium battery expert system
NASA Technical Reports Server (NTRS)
1986-01-01
The applicability of artificial intelligence methodologies for the automation of energy storage management, in this case, nickel cadmium batteries, is demonstrated. With the Hubble Space Telescope Electrical Power System (HST/EPS) testbed as the application domain, an expert system was developed which incorporates the physical characterization of the EPS, in particular, the nickel cadmium batteries, as well as the human's operational knowledge. The expert system returns not only fault diagnostics but also status and advice along with justifications and explanations in the form of decision support.
1986-06-10
the solution of the base could be the solution of the target. If expert systems are to mimic humans , then they should inherently utilize analogy. In the...expert systems environment, the theory of frames for representing knowledge developed partly because humans usually solve problems by first seeing if...Goals," Computer, May 1975, p. 17. 8. A.I. Wasserman, "Some Principles of User Software Engineering for Information Systems ," Digest of Papers, COMPCON
Methods for optimizing solutions when considering group arguments by team of experts
NASA Astrophysics Data System (ADS)
Chernyi, Sergei; Budnik, Vlad
2017-11-01
The article is devoted to methods of expert evaluation. The technology of expert evaluation is presented from the standpoint of precedent structures. In this paper, an aspect of the mathematical basis for constructing a component of decision analysis is considered. In fact, this approach leaves out any identification of their knowledge and skills of simulating organizational and manufacturing situations and taking efficient managerial decisions; it doesn't enable any identification and assessment of their knowledge on the basis of multi-informational and least loss-making methods and information technologies. Hence the problem is to research and develop a methodology for systemic identification of professional problem-focused knowledge acquired by employees operating adaptive automated systems of training management (AASTM operators), which shall also further the theory and practice of the intelligence-related aspects thereof.
An expert system based software sizing tool, phase 2
NASA Technical Reports Server (NTRS)
Friedlander, David
1990-01-01
A software tool was developed for predicting the size of a future computer program at an early stage in its development. The system is intended to enable a user who is not expert in Software Engineering to estimate software size in lines of source code with an accuracy similar to that of an expert, based on the program's functional specifications. The project was planned as a knowledge based system with a field prototype as the goal of Phase 2 and a commercial system planned for Phase 3. The researchers used techniques from Artificial Intelligence and knowledge from human experts and existing software from NASA's COSMIC database. They devised a classification scheme for the software specifications, and a small set of generic software components that represent complexity and apply to large classes of programs. The specifications are converted to generic components by a set of rules and the generic components are input to a nonlinear sizing function which makes the final prediction. The system developed for this project predicted code sizes from the database with a bias factor of 1.06 and a fluctuation factor of 1.77, an accuracy similar to that of human experts but without their significant optimistic bias.
Expert system for adhesive selection of composite material joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, R.B.; Vanderveldt, H.H.
The development of composite joining is still in its infancy and much is yet to be learned. Consequently, this field is developing rapidly and new advances occur with great regularity. The need for up-to-date information and expertise in engineering and planning of composite materials, especially in critical applications, is acute. The American Joining Institute`s (AJI) development of JOINEXCELL (an off-line intelligent planner for joining composite materials) is an intelligent engineering/planning software system that incorporates the knowledge of several experts which can be expanded as these developments occur. Phase I effort of JOINEXCELL produced an expert system for adhesive selection, JOINADSELECT,more » for composite material joints. The expert system successfully selects from over 26 different adhesive families for 44 separate material types and hundreds of application situations. Through a series of design questions the expert system selects the proper adhesive for each particular design. Performing this {open_quotes}off-line{close_quotes} engineering planning by computer allows the decision to be made with full knowledge of the latest information about materials and joining procedures. JOINADSELECT can greatly expedite the joining design process, thus yielding cost savings.« less
An Expert System Shell to Teach Problem Solving.
ERIC Educational Resources Information Center
Lippert, Renate C.
1988-01-01
Discusses the use of expert systems to teach problem-solving skills to students from grade 6 to college level. The role of computer technology in the future of education is considered, and the construction of knowledge bases is described, including an example for physics. (LRW)
Mining temporal data sets: hypoplastic left heart syndrome case study
NASA Astrophysics Data System (ADS)
Kusiak, Andrew; Caldarone, Christopher A.; Kelleher, Michael D.; Lamb, Fred S.; Persoon, Thomas J.; Gan, Yuan; Burns, Alex
2003-03-01
Hypoplastic left heart syndrome (HLHS) affects infants and is uniformly fatal without surgery. Post-surgery mortality rates are highly variable and dependent on postoperative management. The high mortality after the first stage surgery usually occurs within the first few days after procedure. Typically, the deaths are attributed to the unstable balance between the pulmonary and systemic circulations. An experienced team of physicians, nurses, and therapists is required to successfully manage the infant. However, even the most experienced teams report significant mortality due to the extremely complex relationships among physiologic parameters in a given patient. A data acquisition system was developed for the simultaneous collection of 73 physiologic, laboratory, and nurse-assessed variables. Data records were created at intervals of 30 seconds. An expert-validated wellness score was computed for each data record. A training data set consisting of over 5000 data records from multiple patients was collected. Preliminary results demonstratd that the knowledge discovery approach was over 94.57% accurate in predicting the "wellness score" of an infant. The discovered knowledge can improve care of complex patients by development of an intelligent simulator that can be used to support decisions.
ONAV - An Expert System for the Space Shuttle Mission Control Center
NASA Technical Reports Server (NTRS)
Mills, Malise; Wang, Lui
1992-01-01
The ONAV (Onboard Navigation) Expert System is being developed as a real-time console assistant to the ONAV flight controller for use in the Mission Control Center at the Johnson Space Center. Currently, Oct. 1991, the entry and ascent systems have been certified for use on console as support tools, and were used for STS-48. The rendezvous system is in verification with the goal to have the system certified for STS-49, Intelsat retrieval. To arrive at this stage, from a prototype to real-world application, the ONAV project has had to deal with not only Al issues but operating environment issues. The Al issues included the maturity of Al languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.
Knowledge-Based Information Retrieval.
ERIC Educational Resources Information Center
Ford, Nigel
1991-01-01
Discussion of information retrieval focuses on theoretical and empirical advances in knowledge-based information retrieval. Topics discussed include the use of natural language for queries; the use of expert systems; intelligent tutoring systems; user modeling; the need for evaluation of system effectiveness; and examples of systems, including…
Acquisition of business intelligence from human experience in route planning
NASA Astrophysics Data System (ADS)
Bello Orgaz, Gema; Barrero, David F.; R-Moreno, María D.; Camacho, David
2015-04-01
The logistic sector raises a number of highly challenging problems. Probably one of the most important ones is the shipping planning, i.e. plan the routes that the shippers have to follow to deliver the goods. In this article, we present an artificial intelligence-based solution that has been designed to help a logistic company to improve its routes planning process. In order to achieve this goal, the solution uses the knowledge acquired by the company drivers to propose optimised routes. Hence, the proposed solution gathers the experience of the drivers, processes it and optimises the delivery process. The solution uses data mining to extract knowledge from the company information systems and prepares it for analysis with a case-based reasoning (CBR) algorithm. The CBR obtains critical business intelligence knowledge from the drivers experience that is needed by the planner. The design of the routes is done by a genetic algorithm that, given the processed information, optimises the routes following several objectives, such as minimise the distance or time. Experimentation shows that the proposed approach is able to find routes that improve, on average, the routes made by the human experts.
Expert systems built by the Expert: An evaluation of OPS5
NASA Technical Reports Server (NTRS)
Jackson, Robert
1987-01-01
Two expert systems were written in OPS5 by the expert, a Ph.D. astronomer with no prior experience in artificial intelligence or expert systems, without the use of a knowledge engineer. The first system was built from scratch and uses 146 rules to check for duplication of scientific information within a pool of prospective observations. The second system was grafted onto another expert system and uses 149 additional rules to estimate the spacecraft and ground resources consumed by a set of prospective observations. The small vocabulary, the IF this occurs THEN do that logical structure of OPS5, and the ability to follow program execution allowed the expert to design and implement these systems with only the data structures and rules of another OPS5 system as an example. The modularity of the rules in OPS5 allowed the second system to modify the rulebase of the system onto which it was grafted without changing the code or the operation of that system. These experiences show that experts are able to develop their own expert systems due to the ease of programming and code reusability in OPS5.
A prototype system for perinatal knowledge engineering using an artificial intelligence tool.
Sokol, R J; Chik, L
1988-01-01
Though several perinatal expert systems are extant, the use of artificial intelligence has, as yet, had minimal impact in medical computing. In this evaluation of the potential of AI techniques in the development of a computer based "Perinatal Consultant," a "top down" approach to the development of a perinatal knowledge base was taken, using as a source for such a knowledge base a 30-page manuscript of a chapter concerning high risk pregnancy. The UNIX utility "style" was used to parse sentences and obtain key words and phrases, both as part of a natural language interface and to identify key perinatal concepts. Compared with the "gold standard" of sentences containing key facts as chosen by the experts, a semiautomated method using a nonmedical speller to identify key words and phrases in context functioned with a sensitivity of 79%, i.e., approximately 8 in 10 key sentences were detected as the basis for PROLOG, rules and facts for the knowledge base. These encouraging results suggest that functional perinatal expert systems may well be expedited by using programming utilities in conjunction with AI tools and published literature.
NASA Technical Reports Server (NTRS)
Stewart, Helen; Spence, Matt Chew; Holm, Jeanne; Koga, Dennis (Technical Monitor)
2001-01-01
This white paper explores how to increase the success and operation of critical, complex, national systems by effectively capturing knowledge management requirements within the federal acquisition process. Although we focus on aerospace flight systems, the principles outlined within may have a general applicability to other critical federal systems as well. Fundamental design deficiencies in federal, mission-critical systems have contributed to recent, highly visible system failures, such as the V-22 Osprey and the Delta rocket family. These failures indicate that the current mechanisms for knowledge management and risk management are inadequate to meet the challenges imposed by the rising complexity of critical systems. Failures of aerospace system operations and vehicles may have been prevented or lessened through utilization of better knowledge management and information management techniques.
Debugging expert systems using a dynamically created hypertext network
NASA Technical Reports Server (NTRS)
Boyle, Craig D. B.; Schuette, John F.
1991-01-01
The labor intensive nature of expert system writing and debugging motivated this study. The hypothesis is that a hypertext based debugging tool is easier and faster than one traditional tool, the graphical execution trace. HESDE (Hypertext Expert System Debugging Environment) uses Hypertext nodes and links to represent the objects and their relationships created during the execution of a rule based expert system. HESDE operates transparently on top of the CLIPS (C Language Integrated Production System) rule based system environment and is used during the knowledge base debugging process. During the execution process HESDE builds an execution trace. Use of facts, rules, and their values are automatically stored in a Hypertext network for each execution cycle. After the execution process, the knowledge engineer may access the Hypertext network and browse the network created. The network may be viewed in terms of rules, facts, and values. An experiment was conducted to compare HESDE with a graphical debugging environment. Subjects were given representative tasks. For speed and accuracy, in eight of the eleven tasks given to subjects, HESDE was significantly better.
Artificial intelligence, expert systems, computer vision, and natural language processing
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1984-01-01
An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.
Expert systems in transmission planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galiana, F.D.; McGillis, D.T.; Marin, M.A.
1992-05-01
In this paper the state of the field of expert systems and knowledge engineering in transmission planning is reviewed. A detailed analysis of the goals, definition, requirements and methodology of transmission planning is presented. Potential benefits of knowledge-based applications in transmission planning are reviewed. This is followed by a thorough review of the area broken down into subareas or important related topics. The conclusions offer a number of suggestions for possible future research and development. Finally, a detailed bibliography divided into subareas is presented.
Graphical explanation in an expert system for Space Station Freedom rack integration
NASA Technical Reports Server (NTRS)
Craig, F. G.; Cutts, D. E.; Fennel, T. R.; Purves, B.
1990-01-01
The rationale and methodology used to incorporate graphics into explanations provided by an expert system for Space Station Freedom rack integration is examined. The rack integration task is typical of a class of constraint satisfaction problems for large programs where expertise from several areas is required. Graphically oriented approaches are used to explain the conclusions made by the system, the knowledge base content, and even at more abstract levels the control strategies employed by the system. The implemented architecture combines hypermedia and inference engine capabilities. The advantages of this architecture include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. The graphical techniques employed range from simple statis presentation of schematics to dynamic creation of a series of pictures presented motion picture style. User models control the type, amount, and order of information presented.
Simulation-based Education to Ensure Provider Competency Within the Health Care System.
Griswold, Sharon; Fralliccardi, Alise; Boulet, John; Moadel, Tiffany; Franzen, Douglas; Auerbach, Marc; Hart, Danielle; Goswami, Varsha; Hui, Joshua; Gordon, James A
2018-02-01
The acquisition and maintenance of individual competency is a critical component of effective emergency care systems. This article summarizes consensus working group deliberations and recommendations focusing on the topic "Simulation-based education to ensure provider competency within the healthcare system." The authors presented this work for discussion and feedback at the 2017 Academic Emergency Medicine Consensus Conference on "Catalyzing System Change Through Healthcare Simulation: Systems, Competency, and Outcomes," held on May 16, 2017, in Orlando, Florida. Although simulation-based training is a quality and safety imperative in other high-reliability professions such as aviation, nuclear power, and the military, health care professions still lag behind in applying simulation more broadly. This is likely a result of a number of factors, including cost, assessment challenges, and resistance to change. This consensus subgroup focused on identifying current gaps in knowledge and process related to the use of simulation for developing, enhancing, and maintaining individual provider competency. The resulting product is a research agenda informed by expert consensus and literature review. © 2017 by the Society for Academic Emergency Medicine.
Distributed Knowledge Base Systems for Diagnosis and Information Retrieval.
1983-11-01
social system metaphors State University. for distributed problem solving: Introduction to the issue. IEEE Newell. A. and Simon, H. A. (1972) Human...experts and Sriram Mahalingam wha-helped think out the probLema associated with building Auto-Mech. Research on diagnostic expert systemas for the
Schmalhofer, F J; Tschaitschian, B
1998-11-01
In this paper, we perform a cognitive analysis of knowledge discovery processes. As a result of this analysis, the construction-integration theory is proposed as a general framework for developing cooperative knowledge evolution systems. We thus suggest that for the acquisition of new domain knowledge in medicine, one should first construct pluralistic views on a given topic which may contain inconsistencies as well as redundancies. Only thereafter does this knowledge become consolidated into a situation-specific circumscription and the early inconsistencies become eliminated. As a proof for the viability of such knowledge acquisition processes in medicine, we present the IDEAS system, which can be used for the intelligent documentation of adverse events in clinical studies. This system provides a better documentation of the side-effects of medical drugs. Thereby, knowledge evolution occurs by achieving consistent explanations in increasingly larger contexts (i.e., more cases and more pharmaceutical substrates). Finally, it is shown how prototypes, model-based approaches and cooperative knowledge evolution systems can be distinguished as different classes of knowledge-based systems.
WebProtégé: A Collaborative Ontology Editor and Knowledge Acquisition Tool for the Web
Tudorache, Tania; Nyulas, Csongor; Noy, Natalya F.; Musen, Mark A.
2012-01-01
In this paper, we present WebProtégé—a lightweight ontology editor and knowledge acquisition tool for the Web. With the wide adoption of Web 2.0 platforms and the gradual adoption of ontologies and Semantic Web technologies in the real world, we need ontology-development tools that are better suited for the novel ways of interacting, constructing and consuming knowledge. Users today take Web-based content creation and online collaboration for granted. WebProtégé integrates these features as part of the ontology development process itself. We tried to lower the entry barrier to ontology development by providing a tool that is accessible from any Web browser, has extensive support for collaboration, and a highly customizable and pluggable user interface that can be adapted to any level of user expertise. The declarative user interface enabled us to create custom knowledge-acquisition forms tailored for domain experts. We built WebProtégé using the existing Protégé infrastructure, which supports collaboration on the back end side, and the Google Web Toolkit for the front end. The generic and extensible infrastructure allowed us to easily deploy WebProtégé in production settings for several projects. We present the main features of WebProtégé and its architecture and describe briefly some of its uses for real-world projects. WebProtégé is free and open source. An online demo is available at http://webprotege.stanford.edu. PMID:23807872
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2009-07-01
One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.
Automatic natural acquisition of a semantic network for information retrieval systems
NASA Astrophysics Data System (ADS)
Enguehard, Chantal; Malvache, Pierre; Trigano, Philippe
1992-03-01
The amount of information is becoming greater and greater, in industries where complex processes are performed it is becoming increasingly difficult to profit from all the documents produced when fresh knowledge becomes available (reports, experiments, findings). This situation causes a considerable and expensive waste of precious time lost searching for documents or, quite simply, results in outright repeating what has been done. One solution is to transform all paper information into computerized information. We might imagine that we are in a science-fiction world and that we have the perfect computer. We tell it everything we know, we make it read all the books, and if we ask it any question, it will find the response if that response exists. But unfortunately, we are in the real world and the last four decades have taught us to minimize our expectations of computers. During the 1960s, the information retrieval systems appeared. Their purpose is to provide access to any desired documents, in response to a question about a subject, even if it is not known to exist. Here we focus on the problem of selecting items to index the documents. In 1966, Salton identified this problem as crucial when he saw that his system, Medlars, did not find a relevant text because of the wrong indexation. Faced with this problem, he imagined a guide to help authors choose the correct indexation, but he anticipated the automation of this operation with the SMART system. It was stated previously that a manual language analysis for information items by subjects experts is likely to prove impractical in the long run. After a brief survey of the existing responses to the index choice problem, we shall present the system automatic natural acquisition (ANA) which chooses items to index texts by using as little knowledge as possible- -just by learning the language. This system does not use any grammar or lexicon, so the selected indexes will be very close to the field concerned in the texts.
How Experts Practice: A Novel Test of Deliberate Practice Theory
ERIC Educational Resources Information Center
Coughlan, Edward K.; Williams, A. Mark; McRobert, Allistair P.; Ford, Paul R.
2014-01-01
Performance improvement is thought to occur through engagement in deliberate practice. Deliberate practice is predicted to be challenging, effortful, and not inherently enjoyable. Expert and intermediate level Gaelic football players executed two types of kicks during an acquisition phase and pre-, post-, and retention tests. During acquisition,…
Tanaka, M; Nakazono, S; Matsuno, H; Tsujimoto, H; Kitamura, Y; Miyano, S
2000-01-01
We have implemented a system for assisting experts in selecting MEDLINE records for database construction purposes. This system has two specific features: The first is a learning mechanism which extracts characteristics in the abstracts of MEDLINE records of interest as patterns. These patterns reflect selection decisions by experts and are used for screening the records. The second is a keyword recommendation system which assists and supplements experts' knowledge in unexpected cases. Combined with a conventional keyword-based information retrieval system, this system may provide an efficient and comfortable environment for MEDLINE record selection by experts. Some computational experiments are provided to prove that this idea is useful.
Functional specifications for a radioactive waste decision support system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westrom, G.B.; Kurrasch, E.R.; Carlton, R.E.
1989-09-01
It is generally recognized that decisions relative to the treatment, handling, transportation and disposal of low-level wastes produced in nuclear power plants involve a complex array of many inter-related elements or considerations. Complex decision processes can be aided through the use of computer-based expert systems which are based on the knowledge of experts and the inferencing of that knowledge to provide advice to an end-user. To determine the feasibility of developing and applying an expert system in nuclear plant low level waste operations, a Functional Specification for a Radwaste Decision Support System (RDSS) was developed. All areas of radwaste management,more » from the point of waste generation to the disposition of the waste in the final disposal location were considered for inclusion within the scope of the RDSS. 27 figs., 8 tabs.« less
Validation and verification of expert systems
NASA Technical Reports Server (NTRS)
Gilstrap, Lewey
1991-01-01
Validation and verification (V&V) are procedures used to evaluate system structure or behavior with respect to a set of requirements. Although expert systems are often developed as a series of prototypes without requirements, it is not possible to perform V&V on any system for which requirements have not been prepared. In addition, there are special problems associated with the evaluation of expert systems that do not arise in the evaluation of conventional systems, such as verification of the completeness and accuracy of the knowledge base. The criticality of most NASA missions make it important to be able to certify the performance of the expert systems used to support these mission. Recommendations for the most appropriate method for integrating V&V into the Expert System Development Methodology (ESDM) and suggestions for the most suitable approaches for each stage of ESDM development are presented.
ERIC Educational Resources Information Center
Dunabeitia, Jon Andoni; Dimitropoulou, María; Estevez, Adelina; Carreiras, Manuel
2013-01-01
The visual word recognition system recruits neuronal systems originally developed for object perception which are characterized by orientation insensitivity to mirror reversals. It has been proposed that during reading acquisition beginning readers have to "unlearn" this natural tolerance to mirror reversals in order to efficiently…
Model of critical diagnostic reasoning: achieving expert clinician performance.
Harjai, Prashant Kumar; Tiwari, Ruby
2009-01-01
Diagnostic reasoning refers to the analytical processes used to determine patient health problems. While the education curriculum and health care system focus on training nurse clinicians to accurately recognize and rescue clinical situations, assessments of non-expert nurses have yielded less than satisfactory data on diagnostic competency. The contrast between the expert and non-expert nurse clinician raises the important question of how differences in thinking may contribute to a large divergence in accurate diagnostic reasoning. This article recognizes superior organization of one's knowledge base, using prototypes, and quick retrieval of pertinent information, using similarity recognition as two reasons for the expert's superior diagnostic performance. A model of critical diagnostic reasoning, using prototypes and similarity recognition, is proposed and elucidated using case studies. This model serves as a starting point toward bridging the gap between clinical data and accurate problem identification, verification, and management while providing a structure for a knowledge exchange between expert and non-expert clinicians.
Knowledge Base Editor (SharpKBE)
NASA Technical Reports Server (NTRS)
Tikidjian, Raffi; James, Mark; Mackey, Ryan
2007-01-01
The SharpKBE software provides a graphical user interface environment for domain experts to build and manage knowledge base systems. Knowledge bases can be exported/translated to various target languages automatically, including customizable target languages.
Development of an intelligent hypertext system for wind tunnel testing
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Shi, George Z.; Steinle, Frank W.; Wu, Y. C. L. Susan; Hoyt, W. Andes
1991-01-01
This paper summarizes the results of a system utilizing artificial intelligence technology to improve the productivity of project engineers who conduct wind tunnel tests. The objective was to create an intelligent hypertext system which integrates a hypertext manual and expert system that stores experts' knowledge and experience. The preliminary (Phase I) effort implemented a prototype IHS module encompassing a portion of the manuals and knowledge used for wind tunnel testing. The effort successfully demonstrated the feasibility of the intelligent hypertext system concept. A module for the internal strain gage balance, implemented on both IBM-PC and Macintosh computers, is presented. A description of the Phase II effort is included.
Building validation tools for knowledge-based systems
NASA Technical Reports Server (NTRS)
Stachowitz, R. A.; Chang, C. L.; Stock, T. S.; Combs, J. B.
1987-01-01
The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the correctness, consistency and completeness of a knowledge-based system. A declarative meta-language (higher-order language), is used to create a generic version of EVA to validate applications written in arbitrary expert system shells. The architecture and functionality of EVA are presented. The functionality includes Structure Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check, Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error Localization, and Behavior Verification.
NASA Technical Reports Server (NTRS)
Heymans, Bart C.; Onema, Joel P.; Kuti, Joseph O.
1991-01-01
A rule based knowledge system was developed in CLIPS (C Language Integrated Production System) for identifying Opuntia species in the family Cactaceae, which contains approx. 1500 different species. This botanist expert tool system is capable of identifying selected Opuntia plants from the family level down to the species level when given some basic characteristics of the plants. Many plants are becoming of increasing importance because of their nutrition and human health potential, especially in the treatment of diabetes mellitus. The expert tool system described can be extremely useful in an unequivocal identification of many useful Opuntia species.
The Use of Computer-Based Videogames in Knowledge Acquisition and Retention.
ERIC Educational Resources Information Center
Ricci, Katrina E.
1994-01-01
Research conducted at the Naval Training Systems Center in Orlando, Florida, investigated the acquisition and retention of basic knowledge with subject matter presented in the forms of text, test, and game. Results are discussed in terms of the effectiveness of computer-based games for military training. (Author/AEF)
Knowledge Acquisition by Hypervideo Design: An Instructional Program for University Courses
ERIC Educational Resources Information Center
Stahl, Elmar; Finke, Matthias; Zahn, Carmen
2006-01-01
This article presents an instructional program for collaborative construction of hypervideos. The instructional program integrates (a) hypervideo technology development, (b) assumptions on learning with hypervideo systems, and (c) the application of research on knowledge acquisition by writing texts or hypertexts to hypervideos. The aim of the…
ERIC Educational Resources Information Center
Jaros, Milan
2009-01-01
It is the outstanding intellectual challenge of our age to find ways of providing citizens with access to and competent acquisition of the new applications and systems of knowledge. The purpose of this article is twofold. First, it is to justify at the conceptual level that we are facing an unprecedented shift in the way knowledge is generated and…
An integrated knowledge system for wind tunnel testing - Project Engineers' Intelligent Assistant
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Shi, George Z.; Hoyt, W. A.; Steinle, Frank W., Jr.
1993-01-01
The Project Engineers' Intelligent Assistant (PEIA) is an integrated knowledge system developed using artificial intelligence technology, including hypertext, expert systems, and dynamic user interfaces. This system integrates documents, engineering codes, databases, and knowledge from domain experts into an enriched hypermedia environment and was designed to assist project engineers in planning and conducting wind tunnel tests. PEIA is a modular system which consists of an intelligent user-interface, seven modules and an integrated tool facility. Hypermedia technology is discussed and the seven PEIA modules are described. System maintenance and updating is very easy due to the modular structure and the integrated tool facility provides user access to commercial software shells for documentation, reporting, or database updating. PEIA is expected to provide project engineers with technical information, increase efficiency and productivity, and provide a realistic tool for personnel training.
Artificial Intelligence Applications in Special Education: How Feasible? Final Report.
ERIC Educational Resources Information Center
Hofmeister, Alan M.; Ferrara, Joseph M.
The research project investigated whether expert system tools have become sophisticated enough to be applied efficiently to problems in special education. (Expert systems are a development of artificial intelligence that combines the computer's capacity for storing specialized knowledge with a general set of rules intended to replicate the…
Developing Expert Systems for the Analysis of Syntactic and Semantic Patterns.
ERIC Educational Resources Information Center
Hellwig, Harold H.
Noting that expert computer systems respond to various contexts in terms of knowledge representation, this paper explains that heuristic rules of production, procedural representation, and frame representation have been adapted to such areas as medical diagnosis, signal interpretation, design and planning of electrical circuits and computer system…
Robot path planning using expert systems and machine vision
NASA Astrophysics Data System (ADS)
Malone, Denis E.; Friedrich, Werner E.
1992-02-01
This paper describes a system developed for the robotic processing of naturally variable products. In order to plan the robot motion path it was necessary to use a sensor system, in this case a machine vision system, to observe the variations occurring in workpieces and interpret this with a knowledge based expert system. The knowledge base was acquired by carrying out an in-depth study of the product using examination procedures not available in the robotic workplace and relates the nature of the required path to the information obtainable from the machine vision system. The practical application of this system to the processing of fish fillets is described and used to illustrate the techniques.
Ramp Technology and Intelligent Processing in Small Manufacturing
NASA Technical Reports Server (NTRS)
Rentz, Richard E.
1992-01-01
To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.
Ramp technology and intelligent processing in small manufacturing
NASA Astrophysics Data System (ADS)
Rentz, Richard E.
1992-04-01
To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.
Techniques and implementation of the embedded rule-based expert system using Ada
NASA Technical Reports Server (NTRS)
Liberman, Eugene M.; Jones, Robert E.
1991-01-01
Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with its portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assured a growing role in providing human-like reasoning capability and expertise for computer systems. The integration of expert system technology with Ada programming language, specifically a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell is discussed. The NASA Lewis Research Center was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-base power expert system, in ART-Ada. Three components, the rule-based expert system, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.
NASA Astrophysics Data System (ADS)
Peloquin, Stephane
1999-11-01
The socio-economic impact of mass movements for our society is getting more and more serious. The loss of lives and economic losses are now ten times greater than they were at the beginning of the decade. In the hope of reducing these impacts, it is essential to adopt a preventive policy that will encourage mapping of mass movement susceptibility level (MMSL) in critical zones. However, this task is complex and only experts using present techniques can provide satisfactory results. To make possible the production of these maps by a larger number of individuals, we have developed an expert system called EXPERIM that uses remote sensing data and geographic information systems to facilitate the complex tasks without requiring the user to be highly competent in this field of study. This thesis presents the results obtained from a complete strategy developed for a region surrounding Cochabamba, Bolivia. The operational expert system prototype will soon be integrated within the watershed management program directed by the local executing organisation PROMIC. The knowledge acquisition and its expression in concrete terms constitute the principal axis of this research, while the results obtained are the heart of the EXPERIM expert system. These strategic steps aim to establish a knowledge base of data and rules that describe field conditions for each MMSL. We have been able to extract this information by using binary discriminant analysis of a MMSL map produced by an expert for a pilot zone called Cuenca Taquina, which is geoecologically representative of the 38 neighbouring watersheds. Using this technique, we were able to establish a sensitivity model that recreates the expert's map with a success rate of 89% and 78% when two or three MMS levels are used. Based on a detailed analysis of the susceptibility model it was evident that stability conditions are the result of the topographic, geologic and geomorphologic environments. The level of susceptibility was found to be independent of the vegetation condition. In order to apply the model to the surrounding watersheds, we integrated remotely sensed data within the spatial database to map the presence/absence of five essential geoecological units required by the susceptibility model. This was done using a hierarchical classification method. Three sensors were evaluated: Landsat, SPOT and RADARSAT. In the elaboration of this specific step, we evaluated the most efficient spectral band combinations within each image and between images for each of the five geoecological units. For each of the land cover types, the analysis shows that LANDSAT constitutes the most powerful sensor to map these units and that image fusion does not provide significantly better results when compared to the extra amount of work that this requires. Using remote sensing data instead of field data or airphotograph interpretation in watersheds where only topographic data are available decreases the level of accuracy by less than 10%.
A knowledge-based expert system for scheduling of airborne astronomical observations
NASA Technical Reports Server (NTRS)
Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.
1985-01-01
The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.
Structure of the knowledge base for an expert labeling system
NASA Technical Reports Server (NTRS)
Rajaram, N. S.
1981-01-01
One of the principal objectives of the NASA AgRISTARS program is the inventory of global crop resources using remotely sensed data gathered by Land Satellites (LANDSAT). A central problem in any such crop inventory procedure is the interpretation of LANDSAT images and identification of parts of each image which are covered by a particular crop of interest. This task of labeling is largely a manual one done by trained human analysts and consequently presents obstacles to the development of totally automated crop inventory systems. However, development in knowledge engineering as well as widespread availability of inexpensive hardware and software for artificial intelligence work offers possibilities for developing expert systems for labeling of crops. Such a knowledge based approach to labeling is presented.
An information extraction framework for cohort identification using electronic health records.
Liu, Hongfang; Bielinski, Suzette J; Sohn, Sunghwan; Murphy, Sean; Wagholikar, Kavishwar B; Jonnalagadda, Siddhartha R; Ravikumar, K E; Wu, Stephen T; Kullo, Iftikhar J; Chute, Christopher G
2013-01-01
Information extraction (IE), a natural language processing (NLP) task that automatically extracts structured or semi-structured information from free text, has become popular in the clinical domain for supporting automated systems at point-of-care and enabling secondary use of electronic health records (EHRs) for clinical and translational research. However, a high performance IE system can be very challenging to construct due to the complexity and dynamic nature of human language. In this paper, we report an IE framework for cohort identification using EHRs that is a knowledge-driven framework developed under the Unstructured Information Management Architecture (UIMA). A system to extract specific information can be developed by subject matter experts through expert knowledge engineering of the externalized knowledge resources used in the framework.
Research on knowledge representation, machine learning, and knowledge acquisition
NASA Technical Reports Server (NTRS)
Buchanan, Bruce G.
1987-01-01
Research in knowledge representation, machine learning, and knowledge acquisition performed at Knowledge Systems Lab. is summarized. The major goal of the research was to develop flexible, effective methods for representing the qualitative knowledge necessary for solving large problems that require symbolic reasoning as well as numerical computation. The research focused on integrating different representation methods to describe different kinds of knowledge more effectively than any one method can alone. In particular, emphasis was placed on representing and using spatial information about three dimensional objects and constraints on the arrangement of these objects in space. Another major theme is the development of robust machine learning programs that can be integrated with a variety of intelligent systems. To achieve this goal, learning methods were designed, implemented and experimented within several different problem solving environments.
Knowledge Gateways: The Building Blocks.
ERIC Educational Resources Information Center
Hawkins, Donald T.; And Others
1988-01-01
Discusses the need for knowledge gateway systems to provide access to scattered information and the use of technologies in gateway building, including artificial intelligence and expert systems, networking, online retrieval systems, optical storage, and natural language processing. The status of four existing gateways is described. (20 references)…
NASA Astrophysics Data System (ADS)
Sakaguchi, Hideharu
Do you remember an expert system? I think there are various impressions about the system. For example, some might say “It reminds me of old days”. On the other hand, some might say “It was really troublesome”. About 25 years ago, from late 1980s to the middle of 1990s, when the Showa era was about to change into the Heisei Era, artificial intelligence boomed. Research and development for an expert system which was equipped with expertise and worked as smart as expert, was advanced in various fields. Our company also picked up the system as the new system which covered weak point of conventional computer technology. We started research and development in 1984, and installed an expert system in a SCADA system, which started operating in March 1990 in the Fukuoka Integrated Control Center. In this essay, as an electric power engineer who involved in development at that time, I introduce the situation and travail story about developing an expert system which support restorative actions from the outage and overload condition of power networks.
Seitz, Max W; Haux, Christian; Knaup, Petra; Schubert, Ingrid; Listl, Stefan
2018-01-01
Associations between dental and chronic-systemic diseases were observed frequently in medical research, however the findings of this research have so far found little relevance in everyday clinical treatment. Major problems are the assessment of evidence for correlations between such diseases and how to integrate current medical knowledge into the intersectoral care of dentists and general practitioners. On the example of dental and chronic-systemic diseases, the Dent@Prevent project develops an interdisciplinary decision support system (DSS), which provides the specialists with information relevant for the treatment of such cases. To provide the physicians with relevant medical knowledge, a mixed-methods approach is developed to acquire the knowledge in an evidence-oriented way. This procedure includes a literature review, routine data analyses, focus groups of dentists and general practitioners as well as the identification and integration of applicable guidelines and Patient Reported Measures (PRMs) into the treatment process. The developed mixed methods approach for an evidence-oriented knowledge acquisition indicates to be applicable and supportable for interdisciplinary projects. It can raise the systematic quality of the knowledge-acquisition process and can be applicable for an evidence-based system development. Further research is necessary to assess the impact on patient care and to evaluate possible applicability in other interdisciplinary areas.
Image reconstruction by domain-transform manifold learning.
Zhu, Bo; Liu, Jeremiah Z; Cauley, Stephen F; Rosen, Bruce R; Rosen, Matthew S
2018-03-21
Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction-automated transform by manifold approximation (AUTOMAP)-which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development of new acquisition strategies across imaging modalities.
Image reconstruction by domain-transform manifold learning
NASA Astrophysics Data System (ADS)
Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.
2018-03-01
Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development of new acquisition strategies across imaging modalities.
ERIC Educational Resources Information Center
Thomas, Jennifer D. E.
2007-01-01
This paper investigates students' perceptions of their acquisition of knowledge management skills, namely thinking and team-building skills, resulting from the integration of various resources and technologies into an entirely team-based, online upper level distributed computing (DC) information systems (IS) course. Results seem to indicate that…
48 CFR 52.222-18 - Certification Regarding Knowledge of Child Labor for Listed End Products.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for Listed End Products. As prescribed in 22.1505(a), insert the following provision: Certification... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Certification Regarding Knowledge of Child Labor for Listed End Products. 52.222-18 Section 52.222-18 Federal Acquisition...
The model for estimation production cost of embroidery handicraft
NASA Astrophysics Data System (ADS)
Nofierni; Sriwana, IK; Septriani, Y.
2017-12-01
Embroidery industry is one of type of micro industry that produce embroidery handicraft. These industries are emerging in some rural areas of Indonesia. Embroidery clothing are produce such as scarves and clothes that show cultural value of certain region. The owner of an enterprise must calculate the cost of production before making a decision on how many products are received from the customer. A calculation approach to production cost analysis is needed to consider the feasibility of each order coming. This study is proposed to design the expert system (ES) in order to improve production management in the embroidery industry. The model will design used Fuzzy inference system as a model to estimate production cost. Research conducted based on survey and knowledge acquisitions from stakeholder of supply chain embroidery handicraft industry at Bukittinggi, West Sumatera, Indonesia. This paper will use fuzzy input where the quality, the complexity of the design and the working hours required and the result of the model are useful to manage production cost on embroidery production.
An expert system/ion trap mass spectrometry approach for life support systems monitoring
NASA Technical Reports Server (NTRS)
Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael
1992-01-01
Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.
ACES: Space shuttle flight software analysis expert system
NASA Technical Reports Server (NTRS)
Satterwhite, R. Scott
1990-01-01
The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software.
Brasil, L M; de Azevedo, F M; Barreto, J M
2001-09-01
This paper proposes a hybrid expert system (HES) to minimise some complexity problems pervasive to the artificial intelligence such as: the knowledge elicitation process, known as the bottleneck of expert systems; the model choice for knowledge representation to code human reasoning; the number of neurons in the hidden layer and the topology used in the connectionist approach; the difficulty to obtain the explanation on how the network arrived to a conclusion. Two algorithms applied to developing of HES are also suggested. One of them is used to train the fuzzy neural network and the other to obtain explanations on how the fuzzy neural network attained a conclusion. To overcome these difficulties the cognitive computing was integrated to the developed system. A case study is presented (e.g. epileptic crisis) with the problem definition and simulations. Results are also discussed.
Expert system for computer-assisted annotation of MS/MS spectra.
Neuhauser, Nadin; Michalski, Annette; Cox, Jürgen; Mann, Matthias
2012-11-01
An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions.
Expert System for Computer-assisted Annotation of MS/MS Spectra*
Neuhauser, Nadin; Michalski, Annette; Cox, Jürgen; Mann, Matthias
2012-01-01
An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions. PMID:22888147
2012-01-01
Objectives This study demonstrates the feasibility of using expert system shells for rapid clinical decision support module development. Methods A readily available expert system shell was used to build a simple rule-based system for the crude diagnosis of vaginal discharge. Pictures and 'canned text explanations' are extensively used throughout the program to enhance its intuitiveness and educational dimension. All the steps involved in developing the system are documented. Results The system runs under Microsoft Windows and is available as a free download at http://healthcybermap.org/vagdisch.zip (the distribution archive includes both the program's executable and the commented knowledge base source as a text document). The limitations of the demonstration system, such as the lack of provisions for assessing uncertainty or various degrees of severity of a sign or symptom, are discussed in detail. Ways of improving the system, such as porting it to the Web and packaging it as an app for smartphones and tablets, are also presented. Conclusions An easy-to-use expert system shell enables clinicians to rapidly become their own 'knowledge engineers' and develop concise evidence-based decision support modules of simple to moderate complexity, targeting clinical practitioners, medical and nursing students, as well as patients, their lay carers and the general public (where appropriate). In the spirit of the social Web, it is hoped that an online repository can be created to peer review, share and re-use knowledge base modules covering various clinical problems and algorithms, as a service to the clinical community. PMID:23346475
Knowledge-Based Reinforcement Learning for Data Mining
NASA Astrophysics Data System (ADS)
Kudenko, Daniel; Grzes, Marek
Data Mining is the process of extracting patterns from data. Two general avenues of research in the intersecting areas of agents and data mining can be distinguished. The first approach is concerned with mining an agent’s observation data in order to extract patterns, categorize environment states, and/or make predictions of future states. In this setting, data is normally available as a batch, and the agent’s actions and goals are often independent of the data mining task. The data collection is mainly considered as a side effect of the agent’s activities. Machine learning techniques applied in such situations fall into the class of supervised learning. In contrast, the second scenario occurs where an agent is actively performing the data mining, and is responsible for the data collection itself. For example, a mobile network agent is acquiring and processing data (where the acquisition may incur a certain cost), or a mobile sensor agent is moving in a (perhaps hostile) environment, collecting and processing sensor readings. In these settings, the tasks of the agent and the data mining are highly intertwined and interdependent (or even identical). Supervised learning is not a suitable technique for these cases. Reinforcement Learning (RL) enables an agent to learn from experience (in form of reward and punishment for explorative actions) and adapt to new situations, without a teacher. RL is an ideal learning technique for these data mining scenarios, because it fits the agent paradigm of continuous sensing and acting, and the RL agent is able to learn to make decisions on the sampling of the environment which provides the data. Nevertheless, RL still suffers from scalability problems, which have prevented its successful use in many complex real-world domains. The more complex the tasks, the longer it takes a reinforcement learning algorithm to converge to a good solution. For many real-world tasks, human expert knowledge is available. For example, human experts have developed heuristics that help them in planning and scheduling resources in their work place. However, this domain knowledge is often rough and incomplete. When the domain knowledge is used directly by an automated expert system, the solutions are often sub-optimal, due to the incompleteness of the knowledge, the uncertainty of environments, and the possibility to encounter unexpected situations. RL, on the other hand, can overcome the weaknesses of the heuristic domain knowledge and produce optimal solutions. In the talk we propose two techniques, which represent first steps in the area of knowledge-based RL (KBRL). The first technique [1] uses high-level STRIPS operator knowledge in reward shaping to focus the search for the optimal policy. Empirical results show that the plan-based reward shaping approach outperforms other RL techniques, including alternative manual and MDP-based reward shaping when it is used in its basic form. We showed that MDP-based reward shaping may fail and successful experiments with STRIPS-based shaping suggest modifications which can overcome encountered problems. The STRIPSbased method we propose allows expressing the same domain knowledge in a different way and the domain expert can choose whether to define an MDP or STRIPS planning task. We also evaluated the robustness of the proposed STRIPS-based technique to errors in the plan knowledge. In case that STRIPS knowledge is not available, we propose a second technique [2] that shapes the reward with hierarchical tile coding. Where the Q-function is represented with low-level tile coding, a V-function with coarser tile coding can be learned in parallel and used to approximate the potential for ground states. In the context of data mining, our KBRL approaches can also be used for any data collection task where the acquisition of data may incur considerable cost. In addition, observing the data collection agent in specific scenarios may lead to new insights into optimal data collection behaviour in the respective domains. In future work, we intend to demonstrate and evaluate our techniques on concrete real-world data mining applications.
ERIC Educational Resources Information Center
Golovachyova, Viktoriya N.; Menlibekova, Gulbakhyt Zh.; Abayeva, Nella F.; Ten, Tatyana L.; Kogaya, Galina D.
2016-01-01
Using computer-based monitoring systems that rely on tests could be the most effective way of knowledge evaluation. The problem of objective knowledge assessment by means of testing takes on a new dimension in the context of new paradigms in education. The analysis of the existing test methods enabled us to conclude that tests with selected…
PDA: A coupling of knowledge and memory for case-based reasoning
NASA Technical Reports Server (NTRS)
Bharwani, S.; Walls, J.; Blevins, E.
1988-01-01
Problem solving in most domains requires reference to past knowledge and experience whether such knowledge is represented as rules, decision trees, networks or any variant of attributed graphs. Regardless of the representational form employed, designers of expert systems rarely make a distinction between the static and dynamic aspects of the system's knowledge base. The current paper clearly distinguishes between knowledge-based and memory-based reasoning where the former in its most pure sense is characterized by a static knowledge based resulting in a relatively brittle expert system while the latter is dynamic and analogous to the functions of human memory which learns from experience. The paper discusses the design of an advisory system which combines a knowledge base consisting of domain vocabulary and default dependencies between concepts with a dynamic conceptual memory which stores experimental knowledge in the form of cases. The case memory organizes past experience in the form of MOPs (memory organization packets) and sub-MOPs. Each MOP consists of a context frame and a set of indices. The context frame contains information about the features (norms) common to all the events and sub-MOPs indexed under it.
Effect of basic laparoscopic skills courses on essential knowledge of equipment.
van Hove, P Diederick; Verdaasdonk, Emiel G G; van der Harst, Erwin; Jansen, Frank Willem; Dankelman, Jenny; Stassen, Laurents P S
2012-12-01
This study aims to evaluate the effect of laparoscopic skills courses on the knowledge of laparoscopic equipment. A knowledge test on laparoscopic equipment was developed, and participants of 3 separate basic laparoscopic skills courses in the Netherlands completed the test at the beginning and end of these courses. All lectures and demonstrations during the courses were recorded on video to assess the matching of its contents with the items in the test. As a reference, the test was also completed by a group of laparoscopic experts by e-mail. In total, 36 participants (64.3%) completed both the pretest and posttest. Overall, the mean test score improved from 60.4% of the maximum possible score for the pretest to 68.4% for the posttest. There were no significant differences in test scores between the 3 separate courses. However, the actual content varied among the courses. The correspondence of the test items with the course content varied from 47% to 69%. Although 30% of the participants had already received training for laparoscopic equipment in their own hospital, 92.5% wanted to receive more training. 28 experts completed the test with a mean score of 75.7%, which was significantly better than the posttest score of the course participants. The laparoscopic skills courses evaluated in this study had a modest positive effect on the acquisition of knowledge about laparoscopic equipment. Variance exists among their contents.
EX.MAIN. Expert System Model for Maintenance and Staff Training.
ERIC Educational Resources Information Center
Masturzi, Elio R.
EX.MAIN, a model for maintenance and staff training which combines knowledge based expert systems and computer based training, was developed jointly by the Department of Production Engineering of the University of Naples and CIRCUMVESUVIANA, the largest private railroad in Italy. It is a global model in the maintenance field which contains both…
1991-03-01
Cliffs, New Jersey, 1989. Merritt, Dennis, "Forward Chaining in Prolog," Al Expert, v.7 November 1986. Minsky , Marvin ., "A Framework for Representing... Minsky , Marvin , (editor), Semantic Information Processing, MIT Press, 1968. Rychener, M. D., Production Systems as a Programming Language for Artificial
Models and Systems for Structurization of Knowledge in Training
ERIC Educational Resources Information Center
Pelin, Nicolae; Pelin, Serghei
2007-01-01
In this work the problems of the automated structurization and activation of the knowledge, saved and used by mankind, during the organization and training, and also that knowledge which are generated by experts (including teachers) in the current activity, are analyzed. The purpose--the further perfection of methods and systems of the automated…
The Cultural Interface of Islander and Scientific Knowledge
ERIC Educational Resources Information Center
Nakata, Martin
2010-01-01
The interface between Indigenous knowledge systems and Western scientific knowledge systems is a contested space where the difficult dialogue between us and them is often reduced to a position of taking sides. Storytelling is however a very familiar tradition in Indigenous families where we can and do translate expertly difficult concepts from one…
Machine Methods for Acquiring, Learning, and Applying Knowledge.
ERIC Educational Resources Information Center
Hayes-Roth, Frederick; And Others
A research plan for identifying and acting upon constraints that impede the development of knowledge-based intelligent systems is described. The two primary problems identified are knowledge programming, the task of which is to create an intelligent system that does what an expert says it should, and learning, the problem requiring the criticizing…
Expert systems for automated maintenance of a Mars oxygen production system
NASA Astrophysics Data System (ADS)
Huang, Jen-Kuang; Ho, Ming-Tsang; Ash, Robert L.
1992-08-01
Application of expert system concepts to a breadboard Mars oxygen processor unit have been studied and tested. The research was directed toward developing the methodology required to enable autonomous operation and control of these simple chemical processors at Mars. Failure detection and isolation was the key area of concern, and schemes using forward chaining, backward chaining, knowledge-based expert systems, and rule-based expert systems were examined. Tests and simulations were conducted that investigated self-health checkout, emergency shutdown, and fault detection, in addition to normal control activities. A dynamic system model was developed using the Bond-Graph technique. The dynamic model agreed well with tests involving sudden reductions in throughput. However, nonlinear effects were observed during tests that incorporated step function increases in flow variables. Computer simulations and experiments have demonstrated the feasibility of expert systems utilizing rule-based diagnosis and decision-making algorithms.
Expert systems for space power supply - Design, analysis, and evaluation
NASA Technical Reports Server (NTRS)
Cooper, Ralph S.; Thomson, M. Kemer; Hoshor, Alan
1987-01-01
The feasibility of applying expert systems to the conceptual design, analysis, and evaluation of space power supplies in particular, and complex systems in general is evaluated. To do this, the space power supply design process and its associated knowledge base were analyzed and characterized in a form suitable for computer emulation of a human expert. The existing expert system tools and the results achieved with them were evaluated to assess their applicability to power system design. Some new concepts for combining program architectures (modular expert systems and algorithms) with information about the domain were applied to create a 'deep' system for handling the complex design problem. NOVICE, a code to solve a simplified version of a scoping study of a wide variety of power supply types for a broad range of missions, has been developed, programmed, and tested as a concrete feasibility demonstration.
Decision support system and medical liability.
Allaërt, F. A.; Dusserre, L.
1992-01-01
Expert systems, which are going to be an essential tool in Medicine, are evolving in terms of sophistication of both knowledge representation and types of reasoning models used. The more efficient they are, the more often they will be used and professional liability will be involved. So after giving a short survey of configuration and working of expert systems, the authors will study the liabilities of people building and the using expert systems regarding some various dysfunctions. Of course the expert systems have to be considered only for human support and they should not possess any authority themselves, therefore the doctors must keep in mind that it is their own responsibility and as such keep their judgment and criticism. However other professionals could be involved, if they have participated in the building of expert systems. The different liabilities and the burden of proof are discussed according to some possible dysfunctions. In any case the final proof is inside the expert system by itself through re-computation of data. PMID:1482972
Use of expert systems for the selection and the design of solar domestic hot water systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panteliou, S.; Dentsoras, A.; Daskalopoulos, E.
1996-07-01
The aim of this article is the study of the application of expert systems to a mechanical engineering research domain with practical and commercial interest, such as design and manufacturing of Solar Domestic Hot Water (SDHW) Systems. The issues studied were the selection and the design of SDHW systems. The application of an expert system was explored. Frame and class formalism was used for knowledge representation together with forward and backward chaining techniques for drawing conclusions and utilizing the accumulated information present. The appropriate computer program was developed to yield the selection of SDHW systems using the software tool LEONARDOmore » 3.0 (1989), an integrated environment for the development of expert systems. The developed program was tested with data according to the Greek standard ELOT corresponding to the ISO/DIS 9459-2 and it performed successfully for 21 SDHW systems available on the Greek market. Apart from the possibility of selection of a SDHW system, the program also supports the facility for updating its knowledge based with new data so that it can be adapted to changes appearing on the market. The program proved to be functional and user friendly to a high degree. 8 refs., 9 figs.« less
Expert system verification concerns in an operations environment
NASA Technical Reports Server (NTRS)
Goodwin, Mary Ann; Robertson, Charles C.
1987-01-01
The Space Shuttle community is currently developing a number of knowledge-based tools, primarily expert systems, to support Space Shuttle operations. It is proposed that anticipating and responding to the requirements of the operations environment will contribute to a rapid and smooth transition of expert systems from development to operations, and that the requirements for verification are critical to this transition. The paper identifies the requirements of expert systems to be used for flight planning and support and compares them to those of existing procedural software used for flight planning and support. It then explores software engineering concepts and methodology that can be used to satisfy these requirements, to aid the transition from development to operations and to support the operations environment during the lifetime of expert systems. Many of these are similar to those used for procedural hardware.
NASA Technical Reports Server (NTRS)
Wilhite, Larry D.; Lee, S. C.; Lollar, Louis F.
1989-01-01
The design and implementation of the real-time data acquisition and processing system employed in the AMPERES project is described, including effective data structures for efficient storage and flexible manipulation of the data by the knowledge-based system (KBS), the interprocess communication mechanism required between the data acquisition system and the KBS, and the appropriate data acquisition protocols for collecting data from the sensors. Sensor data are categorized as critical or noncritical data on the basis of the inherent frequencies of the signals and the diagnostic requirements reflected in their values. The critical data set contains 30 analog values and 42 digital values and is collected every 10 ms. The noncritical data set contains 240 analog values and is collected every second. The collected critical and noncritical data are stored in separate circular buffers. Buffers are created in shared memory to enable other processes, i.e., the fault monitoring and diagnosis process and the user interface process, to freely access the data sets.
System control module diagnostic Expert Assistant
NASA Technical Reports Server (NTRS)
Flores, Luis M.; Hansen, Roger F.
1990-01-01
The Orbiter EXperiments (OEX) Program was established by NASA's Office of Aeronautics and Space Technology (OAST) to accomplish the precise data collection necessary to support a complete and accurate assessment of Space Transportation System (STS) Orbiter performance during all phases of a mission. During a mission, data generated by the various experiments are conveyed to the OEX System Control Module (SCM) which arranges for and monitors storage of the data on the OEX tape recorder. The SCM Diagnostic Expert Assistant (DEA) is an expert system which provides on demand advice to technicians performing repairs of a malfunctioning SCM. The DEA is a self-contained, data-driven knowledge-based system written in the 'C' Language Production System (CLIPS) for a portable micro-computer of the IBM PC/XT class. The DEA reasons about SCM hardware faults at multiple levels; the most detailed layer of encoded knowledge of the SCM is a representation of individual components and layouts of the custom-designed component boards.
NASA Astrophysics Data System (ADS)
Watanuki, Keiichi; Kojima, Kazuyuki
The environment in which Japanese industry has achieved great respect is changing tremendously due to the globalization of world economies, while Asian countries are undergoing economic and technical development as well as benefiting from the advances in information technology. For example, in the design of custom-made casting products, a designer who lacks knowledge of casting may not be able to produce a good design. In order to obtain a good design and manufacturing result, it is necessary to equip the designer and manufacturer with a support system related to casting design, or a so-called knowledge transfer and creation system. This paper proposes a new virtual reality based knowledge acquisition and job training system for casting design, which is composed of the explicit and tacit knowledge transfer systems using synchronized multimedia and the knowledge internalization system using portable virtual environment. In our proposed system, the education content is displayed in the immersive virtual environment, whereby a trainee may experience work in the virtual site operation. Provided that the trainee has gained explicit and tacit knowledge of casting through the multimedia-based knowledge transfer system, the immersive virtual environment catalyzes the internalization of knowledge and also enables the trainee to gain tacit knowledge before undergoing on-the-job training at a real-time operation site.
Seeing Fluid Physics via Visual Expertise Training
NASA Astrophysics Data System (ADS)
Hertzberg, Jean; Goodman, Katherine; Curran, Tim
2016-11-01
In a course on Flow Visualization, students often expressed that their perception of fluid flows had increased, implying the acquisition of a type of visual expertise, akin to that of radiologists or dog show judges. In the first steps towards measuring this expertise, we emulated an experimental design from psychology. The study had two groups of participants: "novices" with no formal fluids education, and "experts" who had passed as least one fluid mechanics course. All participants were trained to place static images of fluid flows into two categories (laminar and turbulent). Half the participants were trained on flow images with a specific format (Von Kármán vortex streets), and the other half on a broader group. Novices' results were in line with past perceptual expertise studies, showing that it is easier to transfer learning from a broad category to a new specific format than vice versa. In contrast, experts did not have a significant difference between training conditions, suggesting the experts did not undergo the same learning process as the novices. We theorize that expert subjects were able to access their conceptual knowledge about fluids to perform this new, visual task. This finding supports new ways of understanding conceptual learning.
Expert and non-expert knowledge in medical practice.
Nordin, I
2000-01-01
One problematic aspect of the rationality of medical practice concerns the relation between expert knowledge and non-expert knowledge. In medical practice it is important to match medical knowledge with the self-knowledge of the individual patient. This paper tries to study the problem of such matching by describing a model for technological paradigms and comparing it with an ideal of technological rationality. The professionalised experts tend to base their decisions and actions mostly on medical knowledge while the rationality of medicine also involves just as important elements of the personal evaluation and knowledge of the patients. Since both types of knowledge are necessary for rational decisions, the gap between the expert and the non-expert has to be bridged in some way. A solution to the problem is suggested in terms of pluralism, with the patient as ultimate decision-maker.
[An expert system of aiding decision making in breast pathology connected to a clinical data base].
Brunet, M; Durrleman, S; Ferber, J; Ganascia, J G; Hacene, K; Hirt, F; Jouniaux, F; Meeus, L
1987-01-01
The René Huguenin Cancer Center holds a medical file for each patient which is intended to store and process medical data. Since 1970, we introduced computerization: a development plan was elaborated and simultaneously a statistical software (Clotilde--GSI/CFRO) was selected. Thus, we now have access to a large database, structured according to medical rationale, and utilizable with methods of artificial intelligence towards three objectives: improved data acquisition, decision making and exploitation. The first application was to breast pathology, which represents one of the Center's primary activities. The structure of the data concerning patients is by all criteria part of the medical knowledge. This information needs to be presented as well as processed with a suitable language. To this end, we chose a language-oriented object, Mering II, usable with Apple and IBM 4 micro-computers. This project has already allowed to work out an operational model.
Linking medical records to an expert system
NASA Technical Reports Server (NTRS)
Naeymi-Rad, Frank; Trace, David; Desouzaalmeida, Fabio
1991-01-01
This presentation will be done using the IMR-Entry (Intelligent Medical Record Entry) system. IMR-Entry is a software program developed as a front-end to our diagnostic consultant software MEDAS (Medical Emergency Decision Assistance System). MEDAS (the Medical Emergency Diagnostic Assistance System) is a diagnostic consultant system using a multimembership Bayesian design for its inference engine and relational database technology for its knowledge base maintenance. Research on MEDAS began at the University of Southern California and the Institute of Critical Care in the mid 1970's with support from NASA and NSF. The MEDAS project moved to Chicago in 1982; its current progress is due to collaboration between Illinois Institute of Technology, The Chicago Medical School, Lake Forest College and NASA at KSC. Since the purpose of an expert system is to derive a hypothesis, its communication vocabulary is limited to features used by its knowledge base. The development of a comprehensive problem based medical record entry system which could handshake with an expert system while creating an electronic medical record at the same time was studied. IMR-E is a computer based patient record that serves as a front end to the expert system MEDAS. IMR-E is a graphically oriented comprehensive medical record. The programs major components are demonstrated.
Brough, David B; Wheeler, Daniel; Kalidindi, Surya R
2017-03-01
There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.