ERIC Educational Resources Information Center
Namdar, Bahadir; Shen, Ji
2018-01-01
Computer-supported collaborative learning (CSCL) environments provide learners with multiple representational tools for storing, sharing, and constructing knowledge. However, little is known about how learners organize knowledge through multiple representations about complex socioscientific issues. Therefore, the purpose of this study was to…
NASA Technical Reports Server (NTRS)
Palumbo, David B.
1990-01-01
Relationships between human memory systems and hypermedia systems are discussed with particular emphasis on the underlying importance of associational memory. The distinctions between knowledge presentation, knowledge representation, and knowledge constructions are addressed. Issues involved in actually developing individualizable hypermedia based knowledge construction tools are presented.
The Representation of Object-Directed Action and Function Knowledge in the Human Brain
Chen, Quanjing; Garcea, Frank E.; Mahon, Bradford Z.
2016-01-01
The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. PMID:25595179
EXPECT: Explicit Representations for Flexible Acquisition
NASA Technical Reports Server (NTRS)
Swartout, BIll; Gil, Yolanda
1995-01-01
To create more powerful knowledge acquisition systems, we not only need better acquisition tools, but we need to change the architecture of the knowledge based systems we create so that their structure will provide better support for acquisition. Current acquisition tools permit users to modify factual knowledge but they provide limited support for modifying problem solving knowledge. In this paper, the authors argue that this limitation (and others) stem from the use of incomplete models of problem-solving knowledge and inflexible specification of the interdependencies between problem-solving and factual knowledge. We describe the EXPECT architecture which addresses these problems by providing an explicit representation for problem-solving knowledge and intent. Using this more explicit representation, EXPECT can automatically derive the interdependencies between problem-solving and factual knowledge. By deriving these interdependencies from the structure of the knowledge-based system itself EXPECT supports more flexible and powerful knowledge acquisition.
How Pictorial Knowledge Representations Mediate Collaborative Knowledge Construction in Groups
ERIC Educational Resources Information Center
Naykki, Piia; Jarvela, Sanna
2008-01-01
This study investigates the process of collaborative knowledge construction when technology and pictorial knowledge representations are used for visualizing individual and groups' shared ideas. The focus of the study is on how teacher-students contribute to the group's collaborative knowledge construction and use each other's ideas and tools as an…
Progress in knowledge representation research
NASA Technical Reports Server (NTRS)
Lum, Henry
1985-01-01
Brief descriptions are given of research being carried out in the field of knowledge representation. Dynamic simulation and modelling of planning systems with real-time sensor inputs; development of domain-independent knowledge representation tools which can be used in the development of application-specific expert and planning systems; and development of a space-borne very high speed integrated circuit processor are among the projects discussed.
Student Teachers' Knowledge about Chemical Representations
ERIC Educational Resources Information Center
Taskin, Vahide; Bernholt, Sascha; Parchmann, Ilka
2017-01-01
Chemical representations serve as a communication tool not only in exchanges between scientists but also in chemistry lessons. The goals of the present study were to measure the extent of student teachers' knowledge about chemical representations, focusing on chemical formulae and structures in particular, and to explore which factors related to…
The Representation of Object-Directed Action and Function Knowledge in the Human Brain.
Chen, Quanjing; Garcea, Frank E; Mahon, Bradford Z
2016-04-01
The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
On the acquisition and representation of procedural knowledge
NASA Technical Reports Server (NTRS)
Saito, T.; Ortiz, C.; Loftin, R. B.
1992-01-01
Historically knowledge acquisition has proven to be one of the greatest barriers to the development of intelligent systems. Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the knowledge engineer whose responsibility is to acquire and represent knowledge in a useful form. Although much research has been devoted to the development of methodologies and computer software to aid in the capture and representation of some of some types of knowledge, little attention has been devoted to procedural knowledge. NASA personnel frequently perform tasks that are primarily procedural in nature. Previous work is reviewed in the field of knowledge acquisition and then focus on knowledge acquisition for procedural tasks with special attention devoted to the Navy's VISTA tool. The design and development is described of a system for the acquisition and representation of procedural knowledge-TARGET (Task Analysis and Rule Generation Tool). TARGET is intended as a tool that permits experts to visually describe procedural tasks and as a common medium for knowledge refinement by the expert and knowledge engineer. The system is designed to represent the acquired knowledge in the form of production rules. Systems such as TARGET have the potential to profoundly reduce the time, difficulties, and costs of developing knowledge-based systems for the performance of procedural tasks.
ERIC Educational Resources Information Center
Bowen, Tracey; Evans, M. Max
2015-01-01
The most common tools individuals use to articulate complex and abstract concepts are writing and spoken language, long privileged as primary forms of communication. However, our, explanations of these concepts may be more aptly communicated through visual means, such as drawings. Interpreting and analyzing abstract graphic representations is…
Design of a Cognitive Tool to Enhance Problemsolving Performance
ERIC Educational Resources Information Center
Lee, Youngmin; Nelson, David
2005-01-01
The design of a cognitive tool to support problem-solving performance for external representation of knowledge is described. The limitations of conventional knowledge maps are analyzed in proposing the tool. The design principles and specifications are described. This tool is expected to enhance learners problem-solving performance by allowing…
ERIC Educational Resources Information Center
Bergqvist, Anna; Chang Rundgren, Shu-Nu
2017-01-01
Background: Textbooks are integral tools for teachers' lessons. Several researchers observed that school teachers rely heavily on textbooks as informational sources when planning lessons. Moreover, textbooks are an important resource for developing students' knowledge as they contain various representations that influence students' learning.…
Liu, Hu-Chen; Liu, Long; Lin, Qing-Lian; Liu, Nan
2013-06-01
The two most important issues of expert systems are the acquisition of domain experts' professional knowledge and the representation and reasoning of the knowledge rules that have been identified. First, during expert knowledge acquisition processes, the domain expert panel often demonstrates different experience and knowledge from one another and produces different types of knowledge information such as complete and incomplete, precise and imprecise, and known and unknown because of its cross-functional and multidisciplinary nature. Second, as a promising tool for knowledge representation and reasoning, fuzzy Petri nets (FPNs) still suffer a couple of deficiencies. The parameters in current FPN models could not accurately represent the increasingly complex knowledge-based systems, and the rules in most existing knowledge inference frameworks could not be dynamically adjustable according to propositions' variation as human cognition and thinking. In this paper, we present a knowledge acquisition and representation approach using the fuzzy evidential reasoning approach and dynamic adaptive FPNs to solve the problems mentioned above. As is illustrated by the numerical example, the proposed approach can well capture experts' diversity experience, enhance the knowledge representation power, and reason the rule-based knowledge more intelligently.
ERIC Educational Resources Information Center
Schultz, M.; Lawrie, G. A.; Bailey, C. H.; Dargaville, B. L.
2018-01-01
An established tool for collating secondary teachers' pedagogical content knowledge (Loughran's CoRe) has been adapted for use by tertiary educators. Chemistry lecturers with a range of levels of experience were invited to participate in workshops through which the tool was piloted, refined and applied. We now present this refined tool for the…
An application of object-oriented knowledge representation to engineering expert systems
NASA Technical Reports Server (NTRS)
Logie, D. S.; Kamil, H.; Umaretiya, J. R.
1990-01-01
The paper describes an object-oriented knowledge representation and its application to engineering expert systems. The object-oriented approach promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects and organized by defining relationships between the objects. An Object Representation Language (ORL) was implemented as a tool for building and manipulating the object base. Rule-based knowledge representation is then used to simulate engineering design reasoning. Using a common object base, very large expert systems can be developed, comprised of small, individually processed, rule sets. The integration of these two schemes makes it easier to develop practical engineering expert systems. The general approach to applying this technology to the domain of the finite element analysis, design, and optimization of aerospace structures is discussed.
Comparing the Effects of Representational Tools in Collaborative and Individual Inquiry Learning
ERIC Educational Resources Information Center
Kolloffel, Bas; Eysink, Tessa H. S.; de Jong, Ton
2011-01-01
Constructing a representation in which students express their domain understanding can help them improve their knowledge. Many different representational formats can be used to express one's domain understanding (e.g., concept maps, textual summaries, mathematical equations). The format can direct students' attention to specific aspects of the…
On Representations and Situated Tools.
ERIC Educational Resources Information Center
Moreno-Armella, Luis
This paper suggests that the systems of representations that we use in mathematics have a cultural origin and concludes that the knowledge produced with the help of these systems of representation likewise has a cultural origin. This assertion forces a reformulation of the issue of objectivity in terms that differ from those inherited from…
A knowledge based software engineering environment testbed
NASA Technical Reports Server (NTRS)
Gill, C.; Reedy, A.; Baker, L.
1985-01-01
The Carnegie Group Incorporated and Boeing Computer Services Company are developing a testbed which will provide a framework for integrating conventional software engineering tools with Artifical Intelligence (AI) tools to promote automation and productivity. The emphasis is on the transfer of AI technology to the software development process. Experiments relate to AI issues such as scaling up, inference, and knowledge representation. In its first year, the project has created a model of software development by representing software activities; developed a module representation formalism to specify the behavior and structure of software objects; integrated the model with the formalism to identify shared representation and inheritance mechanisms; demonstrated object programming by writing procedures and applying them to software objects; used data-directed and goal-directed reasoning to, respectively, infer the cause of bugs and evaluate the appropriateness of a configuration; and demonstrated knowledge-based graphics. Future plans include introduction of knowledge-based systems for rapid prototyping or rescheduling; natural language interfaces; blackboard architecture; and distributed processing
Using Knowledge Space Theory To Assess Student Understanding of Stoichiometry
NASA Astrophysics Data System (ADS)
Arasasingham, Ramesh D.; Taagepera, Mare; Potter, Frank; Lonjers, Stacy
2004-10-01
Using the concept of stoichiometry we examined the ability of beginning college chemistry students to make connections among the molecular, symbolic, and graphical representations of chemical phenomena, as well as to conceptualize, visualize, and solve numerical problems. Students took a test designed to follow conceptual development; we then analyzed student responses and the connectivities of their responses, or the cognitive organization of the material or thinking patterns, applying knowledge space theory (KST). The results reveal that the students' logical frameworks of conceptual understanding were very weak and lacked an integrated understanding of some of the fundamental aspects of chemical reactivity. Analysis of response states indicates that the overall thinking patterns began with symbolic representations, moved to numerical problem solving, and then lastly to visualization: the acquisition of visualization skills comes later in the knowledge structure. The results strongly suggest the need for teaching approaches that help students integrate their knowledge by emphasizing the relationships between the different representations and presenting them concurrently during instruction. Also, the results indicate that KST is a useful tool for revealing various aspects of students' cognitive structure in chemistry and can be used as an assessment tool or as a pedagogical tool to address a number of student-learning issues.
ERIC Educational Resources Information Center
Williams, John; Eames, Chris; Hume, Anne; Lockley, John
2012-01-01
Background: This research addressed the key area of early career teacher education and aimed to explore the use of a "content representation" (CoRe) as a mediational tool to develop early career secondary teacher pedagogical content knowledge (PCK). This study was situated in the subject areas of science and technology, where sound…
Software tool for data mining and its applications
NASA Astrophysics Data System (ADS)
Yang, Jie; Ye, Chenzhou; Chen, Nianyi
2002-03-01
A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.
Charlet, J; Darmoni, S J
2015-08-13
To summarize the best papers in the field of Knowledge Representation and Management (KRM). A comprehensive review of medical informatics literature was performed to select some of the most interesting papers of KRM published in 2014. Four articles were selected, two focused on annotation and information retrieval using an ontology. The two others focused mainly on ontologies, one dealing with the usage of a temporal ontology in order to analyze the content of narrative document, one describing a methodology for building multilingual ontologies. Semantic models began to show their efficiency, coupled with annotation tools.
Zarri, Gian Piero
2014-10-01
This paper illustrates some of the knowledge representation structures and inference procedures proper to a high-level, fully implemented conceptual language, NKRL (Narrative Knowledge Representation Language). The aim is to show how these tools can be used to deal, in a sentiment analysis/opinion mining context, with some common types of human (and non-human) "behaviors". These behaviors correspond, in particular, to the concrete, mutual relationships among human and non-human characters that can be expressed under the form of non-fictional and real-time "narratives" (i.e., as logically and temporally structured sequences of "elementary events"). Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Longo, Palma J.
A long-term study was conducted to test the effectiveness of visual thinking networking (VTN), a new generation of knowledge representation strategies with 56 ninth grade earth science students. The recent findings about the brain's organization and processing conceptually ground VTN as a new cognitive tool used by learners when making their…
Using texts in science education: cognitive processes and knowledge representation.
van den Broek, Paul
2010-04-23
Texts form a powerful tool in teaching concepts and principles in science. How do readers extract information from a text, and what are the limitations in this process? Central to comprehension of and learning from a text is the construction of a coherent mental representation that integrates the textual information and relevant background knowledge. This representation engenders learning if it expands the reader's existing knowledge base or if it corrects misconceptions in this knowledge base. The Landscape Model captures the reading process and the influences of reader characteristics (such as working-memory capacity, reading goal, prior knowledge, and inferential skills) and text characteristics (such as content/structure of presented information, processing demands, and textual cues). The model suggests factors that can optimize--or jeopardize--learning science from text.
Towards Ontology as Knowledge Representation for Intellectual Capital Measurement
NASA Astrophysics Data System (ADS)
Zadjabbari, B.; Wongthongtham, P.; Dillon, T. S.
For many years, physical asset indicators were the main evidence of an organization’s successful performance. However, the situation has changed after information technology revolution in the knowledge-based economy. Since 1980’s business performance has not been limited only to physical assets instead intellectual capital are increasingly playing a major role in business performance. In this paper, we utilize ontology as a tool for knowledge representation in the domain of intellectual capital measurement. The ontology classifies ways of intangible capital measurement.
Acquisition, representation and rule generation for procedural knowledge
NASA Technical Reports Server (NTRS)
Ortiz, Chris; Saito, Tim; Mithal, Sachin; Loftin, R. Bowen
1991-01-01
Current research into the design and continuing development of a system for the acquisition of procedural knowledge, its representation in useful forms, and proposed methods for automated C Language Integrated Production System (CLIPS) rule generation is discussed. The Task Analysis and Rule Generation Tool (TARGET) is intended to permit experts, individually or collectively, to visually describe and refine procedural tasks. The system is designed to represent the acquired knowledge in the form of graphical objects with the capacity for generating production rules in CLIPS. The generated rules can then be integrated into applications such as NASA's Intelligent Computer Aided Training (ICAT) architecture. Also described are proposed methods for use in translating the graphical and intermediate knowledge representations into CLIPS rules.
Object oriented studies into artificial space debris
NASA Technical Reports Server (NTRS)
Adamson, J. M.; Marshall, G.
1988-01-01
A prototype simulation is being developed under contract to the Royal Aerospace Establishment (RAE), Farnborough, England, to assist in the discrimination of artificial space objects/debris. The methodology undertaken has been to link Object Oriented programming, intelligent knowledge based system (IKBS) techniques and advanced computer technology with numeric analysis to provide a graphical, symbolic simulation. The objective is to provide an additional layer of understanding on top of conventional classification methods. Use is being made of object and rule based knowledge representation, multiple reasoning, truth maintenance and uncertainty. Software tools being used include Knowledge Engineering Environment (KEE) and SymTactics for knowledge representation. Hooks are being developed within the SymTactics framework to incorporate mathematical models describing orbital motion and fragmentation. Penetration and structural analysis can also be incorporated. SymTactics is an Object Oriented discrete event simulation tool built as a domain specific extension to the KEE environment. The tool provides facilities for building, debugging and monitoring dynamic (military) simulations.
Development of a knowledge acquisition tool for an expert system flight status monitor
NASA Technical Reports Server (NTRS)
Disbrow, J. D.; Duke, E. L.; Regenie, V. A.
1986-01-01
Two of the main issues in artificial intelligence today are knowledge acquisition dion and knowledge representation. The Dryden Flight Research Facility of NASA's Ames Research Center is presently involved in the design and implementation of an expert system flight status monitor that will provide expertise and knowledge to aid the flight systems engineer in monitoring today's advanced high-performance aircraft. The flight status monitor can be divided into two sections: the expert system itself and the knowledge acquisition tool. The knowledge acquisition tool, the means it uses to extract knowledge from the domain expert, and how that knowledge is represented for computer use is discussed. An actual aircraft system has been codified by this tool with great success. Future real-time use of the expert system has been facilitated by using the knowledge acquisition tool to easily generate a logically consistent and complete knowledge base.
Development of a knowledge acquisition tool for an expert system flight status monitor
NASA Technical Reports Server (NTRS)
Disbrow, J. D.; Duke, E. L.; Regenie, V. A.
1986-01-01
Two of the main issues in artificial intelligence today are knowledge acquisition and knowledge representation. The Dryden Flight Research Facility of NASA's Ames Research Center is presently involved in the design and implementation of an expert system flight status monitor that will provide expertise and knowledge to aid the flight systems engineer in monitoring today's advanced high-performance aircraft. The flight status monitor can be divided into two sections: the expert system itself and the knowledge acquisition tool. This paper discusses the knowledge acquisition tool, the means it uses to extract knowledge from the domain expert, and how that knowledge is represented for computer use. An actual aircraft system has been codified by this tool with great success. Future real-time use of the expert system has been facilitated by using the knowledge acquisition tool to easily generate a logically consistent and complete knowledge base.
Supporting Problem-Solving Performance Through the Construction of Knowledge Maps
ERIC Educational Resources Information Center
Lee, Youngmin; Baylor, Amy L.; Nelson, David W.
2005-01-01
The purpose of this article is to provide five empirically-derived guidelines for knowledge map construction tools that facilitate problem solving. First, the combinational representation principle proposes that conceptual and corresponding procedural knowledge should be represented together (rather than separately) within the knowledge map.…
Improving the learning of clinical reasoning through computer-based cognitive representation.
Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A
2014-01-01
Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.
Improving the learning of clinical reasoning through computer-based cognitive representation
Wu, Bian; Wang, Minhong; Johnson, Janice M.; Grotzer, Tina A.
2014-01-01
Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students’ learning products from the beginning to the end of the study, consistent with students’ report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction. PMID:25518871
Improving the learning of clinical reasoning through computer-based cognitive representation.
Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A
2014-01-01
Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.
The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes inmore » the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis.« less
Knowledge-base browsing: an application of hybrid distributed/local connectionist networks
NASA Astrophysics Data System (ADS)
Samad, Tariq; Israel, Peggy
1990-08-01
We describe a knowledge base browser based on a connectionist (or neural network) architecture that employs both distributed and local representations. The distributed representations are used for input and output thereby enabling associative noise-tolerant interaction with the environment. Internally all representations are fully local. This simplifies weight assignment and facilitates network configuration for specific applications. In our browser concepts and relations in a knowledge base are represented using " microfeatures. " The microfeatures can encode semantic attributes structural features contextual information etc. Desired portions of the knowledge base can then be associatively retrieved based on a structured cue. An ordered list of partial matches is presented to the user for selection. Microfeatures can also be used as " bookmarks" they can be placed dynamically at appropriate points in the knowledge base and subsequently used as retrieval cues. A proof-of-concept system has been implemented for an internally developed Honeywell-proprietary knowledge acquisition tool. 1.
Ahmed, Wamiq M; Lenz, Dominik; Liu, Jia; Paul Robinson, J; Ghafoor, Arif
2008-03-01
High-throughput biological imaging uses automated imaging devices to collect a large number of microscopic images for analysis of biological systems and validation of scientific hypotheses. Efficient manipulation of these datasets for knowledge discovery requires high-performance computational resources, efficient storage, and automated tools for extracting and sharing such knowledge among different research sites. Newly emerging grid technologies provide powerful means for exploiting the full potential of these imaging techniques. Efficient utilization of grid resources requires the development of knowledge-based tools and services that combine domain knowledge with analysis algorithms. In this paper, we first investigate how grid infrastructure can facilitate high-throughput biological imaging research, and present an architecture for providing knowledge-based grid services for this field. We identify two levels of knowledge-based services. The first level provides tools for extracting spatiotemporal knowledge from image sets and the second level provides high-level knowledge management and reasoning services. We then present cellular imaging markup language, an extensible markup language-based language for modeling of biological images and representation of spatiotemporal knowledge. This scheme can be used for spatiotemporal event composition, matching, and automated knowledge extraction and representation for large biological imaging datasets. We demonstrate the expressive power of this formalism by means of different examples and extensive experimental results.
DIAMS revisited: Taming the variety of knowledge in fault diagnosis expert systems
NASA Technical Reports Server (NTRS)
Haziza, M.; Ayache, S.; Brenot, J.-M.; Cayrac, D.; Vo, D.-P.
1994-01-01
The DIAMS program, initiated in 1986, led to the development of a prototype expert system, DIAMS-1 dedicated to the Telecom 1 Attitude and Orbit Control System, and to a near-operational system, DIAMS-2, covering a whole satellite (the Telecom 2 platform and its interfaces with the payload), which was installed in the Satellite Control Center in 1993. The refinement of the knowledge representation and reasoning is now being studied, focusing on the introduction of appropriate handling of incompleteness, uncertainty and time, and keeping in mind operational constraints. For the latest generation of the tool, DIAMS-3, a new architecture has been proposed, that enables the cooperative exploitation of various models and knowledge representations. On the same baseline, new solutions enabling higher integration of diagnostic systems in the operational environment and cooperation with other knowledge intensive systems such as data analysis, planning or procedure management tools have been introduced.
ERIC Educational Resources Information Center
Aydogan, Tuncay; Ergun, Serap
2016-01-01
Concept mapping is a method of graphical learning that can be beneficial as a study method for concept linking and organization. Concept maps, which provide an elegant, easily understood representation of an expert's domain knowledge, are tools for organizing and representing knowledge. These tools have been used in educational environments to…
Disentangling representations of shape and action components in the tool network.
Wang, Xiaoying; Zhuang, Tonghe; Shen, Jiasi; Bi, Yanchao
2018-05-30
Shape and how they should be used are two key components of our knowledge about tools. Viewing tools preferentially activated a frontoparietal and occipitotemporal network, with dorsal regions implicated in computation of tool-related actions and ventral areas in shape representation. As shape and manners of manipulation are highly correlated for daily tools, whether they are independently represented in different regions remains inconclusive. In the current study, we collected fMRI data when participants viewed blocks of pictures of four daily tools (i.e., paintbrush, corkscrew, screwdriver, razor) where shape and action (manner of manipulation for functional use) were orthogonally manipulated, to tease apart these two dimensions. Behavioral similarity judgments tapping on object shape and finer aspects of actions (i.e., manners of motion, magnitude of arm movement, configuration of hand) were also collected to further disentangle the representation of object shape and different action components. Information analysis and representational similarity analysis were conducted on regional neural activation patterns of the tool-preferring network. In both analyses, the bilateral lateral occipitotemporal cortex showed robust shape representations but could not effectively distinguish between tool-use actions. The frontal and precentral regions represented kinematic action components, whereas the left parietal region (in information analyses) exhibited coding of both shape and tool-use action. By teasing apart shape and action components, we found both dissociation and association of them within the tool network. Taken together, our study disentangles representations for object shape from finer tool-use action components in the tool network, revealing the potential dissociable roles different tool-preferring regions play in tool processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Thinker versus a Quilting Bee: Contrasting Images.
ERIC Educational Resources Information Center
Thayer-Bacon, Barbara J.
1999-01-01
Offers the image of the quilting bee as a contrasting representation of critical thinking (or constructive thinking), comparing the two images, discussing a quilting bee representation of knowledge construction in terms of the tools used by quilters (knowers), and summarizing the transformation of critical thinking theory that a quilting bee image…
Piano Students' Conceptions of Musical Scores as External Representations: A Cross-Sectional Study
ERIC Educational Resources Information Center
Bautista, Alfredo; Perez Echeverria, Ma del Puy; Pozo, J. Ignacio; Brizuela, Barbara M.
2009-01-01
Musical scores are some of the most important learning tools for musicians' acquisition of musical knowledge. However, despite their educational relevance, very little is known about how music students "conceive" of these cultural external representations. Given that these conceptions might act as mediators of students' learning…
Mapping and Managing Knowledge and Information in Resource-Based Learning
ERIC Educational Resources Information Center
Tergan, Sigmar-Olaf; Graber, Wolfgang; Neumann, Anja
2006-01-01
In resource-based learning scenarios, students are often overwhelmed by the complexity of task-relevant knowledge and information. Techniques for the external interactive representation of individual knowledge in graphical format may help them to cope with complex problem situations. Advanced computer-based concept-mapping tools have the potential…
Modeling biochemical pathways in the gene ontology
Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.; ...
2016-09-01
The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes inmore » the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis.« less
Knowledge representation and management: transforming textual information into useful knowledge.
Rassinoux, A-M
2010-01-01
To summarize current outstanding research in the field of knowledge representation and management. Synopsis of the articles selected for the IMIA Yearbook 2010. Four interesting papers, dealing with structured knowledge, have been selected for the section knowledge representation and management. Combining the newest techniques in computational linguistics and natural language processing with the latest methods in statistical data analysis, machine learning and text mining has proved to be efficient for turning unstructured textual information into meaningful knowledge. Three of the four selected papers for the section knowledge representation and management corroborate this approach and depict various experiments conducted to .extract meaningful knowledge from unstructured free texts such as extracting cancer disease characteristics from pathology reports, or extracting protein-protein interactions from biomedical papers, as well as extracting knowledge for the support of hypothesis generation in molecular biology from the Medline literature. Finally, the last paper addresses the level of formally representing and structuring information within clinical terminologies in order to render such information easily available and shareable among the health informatics community. Delivering common powerful tools able to automatically extract meaningful information from the huge amount of electronically unstructured free texts is an essential step towards promoting sharing and reusability across applications, domains, and institutions thus contributing to building capacities worldwide.
Hwang, Wonil; Salvendy, Gavriel
2005-06-10
Ontologies, as a possible element of organizational memory information systems, appear to support organizational learning. Ontology tools can be used to share knowledge among the members of an organization. However, current ontology-viewing user interfaces of ontology tools do not fully support organizational learning, because most of them lack proper history representation in their display. In this study, a conceptual model was developed that emphasized the role of ontology in the organizational learning cycle and explored the integration of history representation in the ontology display. Based on the experimental results from a split-plot design with 30 participants, two conclusions were derived: first, appropriately selected history representations in the ontology display help users to identify changes in the ontologies; and second, compatibility between types of ontology display and history representation is more important than ontology display and history representation in themselves.
Using Knowledge Space Theory to Assess Student Understanding of Stoichiometry
ERIC Educational Resources Information Center
Arasasingham, Ramesh D.; Taagepera, Mare; Potter, Frank; Lonjers, Stacy
2004-01-01
The use of knowledge space theory (KST), to assess students' understanding and integration of the different representations in an introductory chemistry course are described. KST is a useful tool for revealing various aspects of students' cognitive structure in chemistry.
Tools for Knowledge Analysis, Synthesis, and Sharing
NASA Astrophysics Data System (ADS)
Medland, Michael B.
2007-04-01
Change and complexity are creating a need for increasing levels of literacy in science and technology. Presently, we are beginning to provide students with clear contexts in which to learn, including clearly written text, visual displays and maps, and more effective instruction. We are also beginning to give students tools that promote their own literacy by helping them to interact with the learning context. These tools include peer-group skills as well as strategies to analyze text and to indicate comprehension by way of text summaries and concept maps. Even with these tools, more appears to be needed. Disparate backgrounds and languages interfere with the comprehension and the sharing of knowledge. To meet this need, two new tools are proposed. The first tool fractures language ontologically, giving all learners who use it a language to talk about what has, and what has not, been uttered in text or talk about the world. The second fractures language epistemologically, giving those involved in working with text or on the world around them a way to talk about what they have done and what remains to be done. Together, these tools operate as a two- tiered knowledge representation of knowledge. This representation promotes both an individual meta-cognitive and a social meta-cognitive approach to what is known and to what is not known, both ontologically and epistemologically. Two hypotheses guide the presentation: If the tools are taught during early childhood, children will be prepared to master science and technology content. If the tools are used by both students and those who design and deliver instruction, the learning of such content will be accelerated.
Knowledge representation for commonality
NASA Technical Reports Server (NTRS)
Yeager, Dorian P.
1990-01-01
Domain-specific knowledge necessary for commonality analysis falls into two general classes: commonality constraints and costing information. Notations for encoding such knowledge should be powerful and flexible and should appeal to the domain expert. The notations employed by the Commonality Analysis Problem Solver (CAPS) analysis tool are described. Examples are given to illustrate the main concepts.
Understanding Deep Representations Learned in Modeling Users Likes.
Guntuku, Sharath Chandra; Zhou, Joey Tianyi; Roy, Sujoy; Lin, Weisi; Tsang, Ivor W
2016-08-01
Automatically understanding and discriminating different users' liking for an image is a challenging problem. This is because the relationship between image features (even semantic ones extracted by existing tools, viz., faces, objects, and so on) and users' likes is non-linear, influenced by several subtle factors. This paper presents a deep bi-modal knowledge representation of images based on their visual content and associated tags (text). A mapping step between the different levels of visual and textual representations allows for the transfer of semantic knowledge between the two modalities. Feature selection is applied before learning deep representation to identify the important features for a user to like an image. The proposed representation is shown to be effective in discriminating users based on images they like and also in recommending images that a given user likes, outperforming the state-of-the-art feature representations by ∼ 15 %-20%. Beyond this test-set performance, an attempt is made to qualitatively understand the representations learned by the deep architecture used to model user likes.
Knowledge management: An abstraction of knowledge base and database management systems
NASA Technical Reports Server (NTRS)
Riedesel, Joel D.
1990-01-01
Artificial intelligence application requirements demand powerful representation capabilities as well as efficiency for real-time domains. Many tools exist, the most prevalent being expert systems tools such as ART, KEE, OPS5, and CLIPS. Other tools just emerging from the research environment are truth maintenance systems for representing non-monotonic knowledge, constraint systems, object oriented programming, and qualitative reasoning. Unfortunately, as many knowledge engineers have experienced, simply applying a tool to an application requires a large amount of effort to bend the application to fit. Much work goes into supporting work to make the tool integrate effectively. A Knowledge Management Design System (KNOMAD), is described which is a collection of tools built in layers. The layered architecture provides two major benefits; the ability to flexibly apply only those tools that are necessary for an application, and the ability to keep overhead, and thus inefficiency, to a minimum. KNOMAD is designed to manage many knowledge bases in a distributed environment providing maximum flexibility and expressivity to the knowledge engineer while also providing support for efficiency.
Natural language generation of surgical procedures.
Wagner, J C; Rogers, J E; Baud, R H; Scherrer, J R
1999-01-01
A number of compositional Medical Concept Representation systems are being developed. Although these provide for a detailed conceptual representation of the underlying information, they have to be translated back to natural language for used by end-users and applications. The GALEN programme has been developing one such representation and we report here on a tool developed to generate natural language phrases from the GALEN conceptual representations. This tool can be adapted to different source modelling schemes and to different destination languages or sublanguages of a domain. It is based on a multilingual approach to natural language generation, realised through a clean separation of the domain model from the linguistic model and their link by well defined structures. Specific knowledge structures and operations have been developed for bridging between the modelling 'style' of the conceptual representation and natural language. Using the example of the scheme developed for modelling surgical operative procedures within the GALEN-IN-USE project, we show how the generator is adapted to such a scheme. The basic characteristics of the surgical procedures scheme are presented together with the basic principles of the generation tool. Using worked examples, we discuss the transformation operations which change the initial source representation into a form which can more directly be translated to a given natural language. In particular, the linguistic knowledge which has to be introduced--such as definitions of concepts and relationships is described. We explain the overall generator strategy and how particular transformation operations are triggered by language-dependent and conceptual parameters. Results are shown for generated French phrases corresponding to surgical procedures from the urology domain.
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Paterra, Frank; Bailin, Sidney
1993-01-01
The old maxim goes: 'A picture is worth a thousand words'. The objective of the research reported in this paper is to demonstrate this idea as it relates to the knowledge acquisition process and the automated development of an expert system's rule base. A prototype tool, the Knowledge From Pictures (KFP) tool, has been developed which configures an expert system's rule base by an automated analysis of and reasoning about a 'picture', i.e., a graphical representation of some target system to be supported by the diagnostic capabilities of the expert system under development. This rule base, when refined, could then be used by the expert system for target system monitoring and fault analysis in an operational setting. Most people, when faced with the problem of understanding the behavior of a complicated system, resort to the use of some picture or graphical representation of the system as an aid in thinking about it. This depiction provides a means of helping the individual to visualize the bahavior and dynamics of the system under study. An analysis of the picture augmented with the individual's background information, allows the problem solver to codify knowledge about the system. This knowledge can, in turn, be used to develop computer programs to automatically monitor the system's performance. The approach taken is this research was to mimic this knowledge acquisition paradigm. A prototype tool was developed which provides the user: (1) a mechanism for graphically representing sample system-configurations appropriate for the domain, and (2) a linguistic device for annotating the graphical representation with the behaviors and mutual influences of the components depicted in the graphic. The KFP tool, reasoning from the graphical depiction along with user-supplied annotations of component behaviors and inter-component influences, generates a rule base that could be used in automating the fault detection, isolation, and repair of the system.
Extension of perceived arm length following tool-use: clues to plasticity of body metrics.
Sposito, Ambra; Bolognini, Nadia; Vallar, Giuseppe; Maravita, Angelo
2012-07-01
Humans hold a very accurate representation of the metrics of their body parts. Recent evidence shows that the spatial estimation of body parts length, as assessed through a bisection task, is even more accurate than that of non-corporeal extrapersonal objects (Sposito, Bolognini, Vallar, Posteraro, & Maravita (2009)). In the present paper we show that human participants estimate the mid-point of their forearm, which was kept in a radial posture, to be more distal following a 15-min training with a 60 cm-long tool as compared to pre tool-use. This outcome is compatible with an increased representation of the participants' forearm length. Control experiments show that this result was not due to a mere distal proprioceptive shift induced by tool-use, and was not replicated following the use of a 20 cm-long, functionally irrelevant tool. These results strongly support the view that, although the inner knowledge of one's own body metrics appears to be one of the more stable features of body representation, body-space interactions requiring the use of tools that extend the natural range of action, entail measurable dynamic changes in the representation of body metrics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Soualmia, L F; Charlet, J
2016-11-10
To summarize excellent current research in the field of Knowledge Representation and Management (KRM) within the health and medical care domain. We provide a synopsis of the 2016 IMIA selected articles as well as a related synthetic overview of the current and future field activities. A first step of the selection was performed through MEDLINE querying with a list of MeSH descriptors completed by a list of terms adapted to the KRM section. The second step of the selection was completed by the two section editors who separately evaluated the set of 1,432 articles. The third step of the selection consisted of a collective work that merged the evaluation results to retain 15 articles for peer-review. The selection and evaluation process of this Yearbook's section on Knowledge Representation and Management has yielded four excellent and interesting articles regarding semantic interoperability for health care by gathering heterogeneous sources (knowledge and data) and auditing ontologies. In the first article, the authors present a solution based on standards and Semantic Web technologies to access distributed and heterogeneous datasets in the domain of breast cancer clinical trials. The second article describes a knowledge-based recommendation system that relies on ontologies and Semantic Web rules in the context of chronic diseases dietary. The third article is related to concept-recognition and text-mining to derive common human diseases model and a phenotypic network of common diseases. In the fourth article, the authors highlight the need for auditing the SNOMED CT. They propose to use a crowdbased method for ontology engineering. The current research activities further illustrate the continuous convergence of Knowledge Representation and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care by proposing solutions to cope with the problem of semantic interoperability. Indeed, there is a need for powerful tools able to manage and interpret complex, large-scale and distributed datasets and knowledge bases, but also a need for user-friendly tools developed for the clinicians in their daily practice.
An, Gary C
2010-01-01
The greatest challenge facing the biomedical research community is the effective translation of basic mechanistic knowledge into clinically effective therapeutics. This challenge is most evident in attempts to understand and modulate "systems" processes/disorders, such as sepsis, cancer, and wound healing. Formulating an investigatory strategy for these issues requires the recognition that these are dynamic processes. Representation of the dynamic behavior of biological systems can aid in the investigation of complex pathophysiological processes by augmenting existing discovery procedures by integrating disparate information sources and knowledge. This approach is termed Translational Systems Biology. Focusing on the development of computational models capturing the behavior of mechanistic hypotheses provides a tool that bridges gaps in the understanding of a disease process by visualizing "thought experiments" to fill those gaps. Agent-based modeling is a computational method particularly well suited to the translation of mechanistic knowledge into a computational framework. Utilizing agent-based models as a means of dynamic hypothesis representation will be a vital means of describing, communicating, and integrating community-wide knowledge. The transparent representation of hypotheses in this dynamic fashion can form the basis of "knowledge ecologies," where selection between competing hypotheses will apply an evolutionary paradigm to the development of community knowledge.
He, Yongqun; Xiang, Zuoshuang; Zheng, Jie; Lin, Yu; Overton, James A; Ong, Edison
2018-01-12
Ontologies are critical to data/metadata and knowledge standardization, sharing, and analysis. With hundreds of biological and biomedical ontologies developed, it has become critical to ensure ontology interoperability and the usage of interoperable ontologies for standardized data representation and integration. The suite of web-based Ontoanimal tools (e.g., Ontofox, Ontorat, and Ontobee) support different aspects of extensible ontology development. By summarizing the common features of Ontoanimal and other similar tools, we identified and proposed an "eXtensible Ontology Development" (XOD) strategy and its associated four principles. These XOD principles reuse existing terms and semantic relations from reliable ontologies, develop and apply well-established ontology design patterns (ODPs), and involve community efforts to support new ontology development, promoting standardized and interoperable data and knowledge representation and integration. The adoption of the XOD strategy, together with robust XOD tool development, will greatly support ontology interoperability and robust ontology applications to support data to be Findable, Accessible, Interoperable and Reusable (i.e., FAIR).
Computational neuroanatomy: ontology-based representation of neural components and connectivity.
Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron
2009-02-05
A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future.
Community-Based Individual Knowledge Construction in the Classroom: A Process-Oriented Account
ERIC Educational Resources Information Center
Looi, C.-K.; Chen, W.
2010-01-01
This paper explores the process of knowledge convergence and knowledge sharing in the context of classroom collaboration in which students do a group learning activity mediated by a generic representation tool. In analysing the transcript of the interactions of a group, we adapt the group cognition method of Stahl and the uptake analysis…
EDNA: Expert fault digraph analysis using CLIPS
NASA Technical Reports Server (NTRS)
Dixit, Vishweshwar V.
1990-01-01
Traditionally fault models are represented by trees. Recently, digraph models have been proposed (Sack). Digraph models closely imitate the real system dependencies and hence are easy to develop, validate and maintain. However, they can also contain directed cycles and analysis algorithms are hard to find. Available algorithms tend to be complicated and slow. On the other hand, the tree analysis (VGRH, Tayl) is well understood and rooted in vast research effort and analytical techniques. The tree analysis algorithms are sophisticated and orders of magnitude faster. Transformation of a digraph (cyclic) into trees (CLP, LP) is a viable approach to blend the advantages of the representations. Neither the digraphs nor the trees provide the ability to handle heuristic knowledge. An expert system, to capture the engineering knowledge, is essential. We propose an approach here, namely, expert network analysis. We combine the digraph representation and tree algorithms. The models are augmented by probabilistic and heuristic knowledge. CLIPS, an expert system shell from NASA-JSC will be used to develop a tool. The technique provides the ability to handle probabilities and heuristic knowledge. Mixed analysis, some nodes with probabilities, is possible. The tool provides graphics interface for input, query, and update. With the combined approach it is expected to be a valuable tool in the design process as well in the capture of final design knowledge.
NASA Astrophysics Data System (ADS)
Bergqvist, Anna; Chang Rundgren, Shu-Nu
2017-04-01
Background: Textbooks are integral tools for teachers' lessons. Several researchers observed that school teachers rely heavily on textbooks as informational sources when planning lessons. Moreover, textbooks are an important resource for developing students' knowledge as they contain various representations that influence students' learning. However, several studies report that students have difficulties understanding models in general, and chemical bonding models in particular, and that students' difficulties understanding chemical bonding are partly due to the way it is taught by teachers and presented in textbooks.
What puts the how in where? Tool use and the divided visual streams hypothesis.
Frey, Scott H
2007-04-01
An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.
TARGET: Rapid Capture of Process Knowledge
NASA Technical Reports Server (NTRS)
Ortiz, C. J.; Ly, H. V.; Saito, T.; Loftin, R. B.
1993-01-01
TARGET (Task Analysis/Rule Generation Tool) represents a new breed of tool that blends graphical process flow modeling capabilities with the function of a top-down reporting facility. Since NASA personnel frequently perform tasks that are primarily procedural in nature, TARGET models mission or task procedures and generates hierarchical reports as part of the process capture and analysis effort. Historically, capturing knowledge has proven to be one of the greatest barriers to the development of intelligent systems. Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the knowledge engineer whose responsibility is to acquire and represent the expert's knowledge in a useful form. Although much research has been devoted to the development of methodologies and computer software to aid in the capture and representation of some types of knowledge, procedural knowledge has received relatively little attention. In essence, TARGET is one of the first tools of its kind, commercial or institutional, that is designed to support this type of knowledge capture undertaking. This paper will describe the design and development of TARGET for the acquisition and representation of procedural knowledge. The strategies employed by TARGET to support use by knowledge engineers, subject matter experts, programmers and managers will be discussed. This discussion includes the method by which the tool employs its graphical user interface to generate a task hierarchy report. Next, the approach to generate production rules for incorporation in and development of a CLIPS based expert system will be elaborated. TARGET also permits experts to visually describe procedural tasks as a common medium for knowledge refinement by the expert community and knowledge engineer making knowledge consensus possible. The paper briefly touches on the verification and validation issues facing the CLIPS rule generation aspects of TARGET. A description of efforts to support TARGET's interoperability issues on PCs, Macintoshes and UNIX workstations concludes the paper.
ERIC Educational Resources Information Center
Lazarinis, Fotis
2014-01-01
iLM is a Web based application for representation, management and sharing of IMS LIP conformant user profiles. The tool is developed using a service oriented architecture with emphasis on the easy data sharing. Data elicitation from user profiles is based on the utilization of XQuery scripts and sharing with other applications is achieved through…
Computational neuroanatomy: ontology-based representation of neural components and connectivity
Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron
2009-01-01
Background A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. Results We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Conclusion Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future. PMID:19208191
Improving the Usefulness of Concept Maps as a Research Tool for Science Education
ERIC Educational Resources Information Center
Van Zele, Els; Lenaerts, Josephina; Wieme, Willem
2004-01-01
The search for authentic science research tools to evaluate student understanding in a hybrid learning environment with a large multimedia component has resulted in the use of concept maps as a representation of student's knowledge organization. One hundred and seventy third-semester introductory university-level engineering students represented…
Learner-Information Interaction: A Macro-Level Framework Characterizing Visual Cognitive Tools
ERIC Educational Resources Information Center
Sedig, Kamran; Liang, Hai-Ning
2008-01-01
Visual cognitive tools (VCTs) are external mental aids that maintain and display visual representations (VRs) of information (i.e., structures, objects, concepts, ideas, and problems). VCTs allow learners to operate upon the VRs to perform epistemic (i.e., reasoning and knowledge-based) activities. In VCTs, the mechanism by which learners operate…
Comprehensive Analysis of Semantic Web Reasoners and Tools: A Survey
ERIC Educational Resources Information Center
Khamparia, Aditya; Pandey, Babita
2017-01-01
Ontologies are emerging as best representation techniques for knowledge based context domains. The continuing need for interoperation, collaboration and effective information retrieval has lead to the creation of semantic web with the help of tools and reasoners which manages personalized information. The future of semantic web lies in an ontology…
Boegl, Karl; Adlassnig, Klaus-Peter; Hayashi, Yoichi; Rothenfluh, Thomas E; Leitich, Harald
2004-01-01
This paper describes the fuzzy knowledge representation framework of the medical computer consultation system MedFrame/CADIAG-IV as well as the specific knowledge acquisition techniques that have been developed to support the definition of knowledge concepts and inference rules. As in its predecessor system CADIAG-II, fuzzy medical knowledge bases are used to model the uncertainty and the vagueness of medical concepts and fuzzy logic reasoning mechanisms provide the basic inference processes. The elicitation and acquisition of medical knowledge from domain experts has often been described as the most difficult and time-consuming task in knowledge-based system development in medicine. It comes as no surprise that this is even more so when unfamiliar representations like fuzzy membership functions are to be acquired. From previous projects we have learned that a user-centered approach is mandatory in complex and ill-defined knowledge domains such as internal medicine. This paper describes the knowledge acquisition framework that has been developed in order to make easier and more accessible the three main tasks of: (a) defining medical concepts; (b) providing appropriate interpretations for patient data; and (c) constructing inferential knowledge in a fuzzy knowledge representation framework. Special emphasis is laid on the motivations for some system design and data modeling decisions. The theoretical framework has been implemented in a software package, the Knowledge Base Builder Toolkit. The conception and the design of this system reflect the need for a user-centered, intuitive, and easy-to-handle tool. First results gained from pilot studies have shown that our approach can be successfully implemented in the context of a complex fuzzy theoretical framework. As a result, this critical aspect of knowledge-based system development can be accomplished more easily.
Knowledge Representation Standards and Interchange Formats for Causal Graphs
NASA Technical Reports Server (NTRS)
Throop, David R.; Malin, Jane T.; Fleming, Land
2005-01-01
In many domains, automated reasoning tools must represent graphs of causally linked events. These include fault-tree analysis, probabilistic risk assessment (PRA), planning, procedures, medical reasoning about disease progression, and functional architectures. Each of these fields has its own requirements for the representation of causation, events, actors and conditions. The representations include ontologies of function and cause, data dictionaries for causal dependency, failure and hazard, and interchange formats between some existing tools. In none of the domains has a generally accepted interchange format emerged. The paper makes progress towards interoperability across the wide range of causal analysis methodologies. We survey existing practice and emerging interchange formats in each of these fields. Setting forth a set of terms and concepts that are broadly shared across the domains, we examine the several ways in which current practice represents them. Some phenomena are difficult to represent or to analyze in several domains. These include mode transitions, reachability analysis, positive and negative feedback loops, conditions correlated but not causally linked and bimodal probability distributions. We work through examples and contrast the differing methods for addressing them. We detail recent work in knowledge interchange formats for causal trees in aerospace analysis applications in early design, safety and reliability. Several examples are discussed, with a particular focus on reachability analysis and mode transitions. We generalize the aerospace analysis work across the several other domains. We also recommend features and capabilities for the next generation of causal knowledge representation standards.
Apes have culture but may not know that they do
Gruber, Thibaud; Zuberbühler, Klaus; Clément, Fabrice; van Schaik, Carel
2015-01-01
There is good evidence that some ape behaviors can be transmitted socially and that this can lead to group-specific traditions. However, many consider animal traditions, including those in great apes, to be fundamentally different from human cultures, largely because of lack of evidence for cumulative processes and normative conformity, but perhaps also because current research on ape culture is usually restricted to behavioral comparisons. Here, we propose to analyze ape culture not only at the surface behavioral level but also at the underlying cognitive level. To this end, we integrate empirical findings in apes with theoretical frameworks developed in developmental psychology regarding the representation of tools and the development of metarepresentational abilities, to characterize the differences between ape and human cultures at the cognitive level. Current data are consistent with the notion of apes possessing mental representations of tools that can be accessed through re-representations: apes may reorganize their knowledge of tools in the form of categories or functional schemes. However, we find no evidence for metarepresentations of cultural knowledge: apes may not understand that they or others hold beliefs about their cultures. The resulting Jourdain Hypothesis, based on Molière’s character, argues that apes express their cultures without knowing that they are cultural beings because of cognitive limitations in their ability to represent knowledge, a determining feature of modern human cultures, allowing representing and modifying the current norms of the group. Differences in metarepresentational processes may thus explain fundamental differences between human and other animals’ cultures, notably limitations in cumulative behavior and normative conformity. Future empirical work should focus on how animals mentally represent their cultural knowledge to conclusively determine the ways by which humans are unique in their cultural behavior. PMID:25705199
The Gene Ontology of eukaryotic cilia and flagella.
Roncaglia, Paola; van Dam, Teunis J P; Christie, Karen R; Nacheva, Lora; Toedt, Grischa; Huynen, Martijn A; Huntley, Rachael P; Gibson, Toby J; Lomax, Jane
2017-01-01
Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research community. To this end, members of the Gene Ontology (GO) and SYSCILIA Consortia have worked together to improve representation of ciliary substructures and processes in GO. Members of the SYSCILIA and Gene Ontology Consortia suggested additions and changes to GO, to reflect new knowledge in the field. The project initially aimed to improve coverage of ciliary parts, and was then broadened to cilia-related biological processes. Discussions were documented in a public tracker. We engaged the broader cilia community via direct consultation and by referring to the literature. Ontology updates were implemented via ontology editing tools. So far, we have created or modified 127 GO terms representing parts and processes related to eukaryotic cilia/flagella or prokaryotic flagella. A growing number of biological pathways are known to involve cilia, and we continue to incorporate this knowledge in GO. The resulting expansion in GO allows more precise representation of experimentally derived knowledge, and SYSCILIA and GO biocurators have created 199 annotations to 50 human ciliary proteins. The revised ontology was also used to curate mouse proteins in a collaborative project. The revised GO and annotations, used in comparative 'before and after' analyses of representative ciliary datasets, improve enrichment results significantly. Our work has resulted in a broader and deeper coverage of ciliary composition and function. These improvements in ontology and protein annotation will benefit all users of GO enrichment analysis tools, as well as the ciliary research community, in areas ranging from microscopy image annotation to interpretation of high-throughput studies. We welcome feedback to further enhance the representation of cilia biology in GO.
The nature and evaluation of commercial expert system building tools, revision 1
NASA Technical Reports Server (NTRS)
Gevarter, William B.
1987-01-01
This memorandum reviews the factors that constitute an Expert System Building Tool (ESBT) and evaluates current tools in terms of these factors. Evaluation of these tools is based on their structure and their alternative forms of knowledge representation, inference mechanisms and developer end-user interfaces. Next, functional capabilities, such as diagnosis and design, are related to alternative forms of mechanization. The characteristics and capabilities of existing commercial tools are then reviewed in terms of these criteria.
ERIC Educational Resources Information Center
Polavaram, Sridevi
2016-01-01
Neuroscience can greatly benefit from using novel methods in computer science and informatics, which enable knowledge discovery in unexpected ways. Currently one of the biggest challenges in Neuroscience is to map the functional circuitry of the brain. The applications of this goal range from understanding structural reorganization of neurons to…
The Polygonal Model: A Simple Representation of Biomolecules as a Tool for Teaching Metabolism
ERIC Educational Resources Information Center
Bonafe, Carlos Francisco Sampaio; Bispo, Jose Ailton Conceição; de Jesus, Marcelo Bispo
2018-01-01
Metabolism involves numerous reactions and organic compounds that the student must master to understand adequately the processes involved. Part of biochemical learning should include some knowledge of the structure of biomolecules, although the acquisition of such knowledge can be time-consuming and may require significant effort from the student.…
REKRIATE: A Knowledge Representation System for Object Recognition and Scene Interpretation
NASA Astrophysics Data System (ADS)
Meystel, Alexander M.; Bhasin, Sanjay; Chen, X.
1990-02-01
What humans actually observe and how they comprehend this information is complex due to Gestalt processes and interaction of context in predicting the course of thinking and enforcing one idea while repressing another. How we extract the knowledge from the scene, what we get from the scene indeed and what we bring from our mechanisms of perception are areas separated by a thin, ill-defined line. The purpose of this paper is to present a system for Representing Knowledge and Recognizing and Interpreting Attention Trailed Entities dubbed as REKRIATE. It will be used as a tool for discovering the underlying principles involved in knowledge representation required for conceptual learning. REKRIATE has some inherited knowledge and is given a vocabulary which is used to form rules for identification of the object. It has various modalities of sensing and has the ability to measure the distance between the objects in the image as well as the similarity between different images of presumably the same object. All sensations received from matrix of different sensors put into an adequate form. The methodology proposed is applicable to not only the pictorial or visual world representation, but to any sensing modality. It is based upon the two premises: a) inseparability of all domains of the world representation including linguistic, as well as those formed by various sensor modalities. and b) representativity of the object at several levels of resolution simultaneously.
NASA Astrophysics Data System (ADS)
Ickert, Johanna
2017-04-01
In times of omnipresent digitisation and interconnectedness, the way how we generate and experience knowledge on geo-related themes is strongly influenced by audiovisual media representations. Moving images are powerful tools and have significant potential to communicate science in novel ways. Major research frameworks such as Horizon 2020 strongly encourage the use of audiovisual media in order to communicate science "more effectively" to the public. An increasing number of geoscientists produce films themselves, while most of them still delegate this task to media professionals to whom they provide their scientific expert knowledge. Usually, the intention behind these outreach efforts is to take advantage of the suitability of the medium to convey "scientific facts", or to motivate certain cognitive/behavioural responses of different target audiences. Undoubtedly, film has a great potential for representing geoscientific knowledge and thus has become a key instrument for geoscience communication. However, the use of images also raises fundamental ethical and representational concerns. While the latter have provoked intense debates in sub-disciplines such as visual anthropology or film geography, the geosciences have paid only little attention to questions on how distinct practices and disciplinary paradigms create filmic representations. Given the fact that the use of scientific images and film is far from being "objective" and that the way how we create and experience images is always context-specific and strongly influenced by the relationship between film maker, film subjects/informants and audience, a series of important question arises: What do we know about the use of film in geosciences beyond the realm of information and representational purposes? What can we learn from using film as a reflexive, process-oriented and dialogue-based medium? How can film help us to better understand ethical and representational dimensions of our interaction with the public? What are the phenomenological qualities of film and how can they be made productive for science communication? This article explores the potential for novel approaches to use film in geology not only as outreach tool, but also as method of joint knowledge production in inter- and transdisciplinary collaboration. In order to provide evidence for the above-mentioned observations, a historical perspective on the use of film in geosciences as well as an in-depth analysis of recent art-science-collaborations will be given.
ERIC Educational Resources Information Center
Brown, Keffrelyn D.; Kraehe, Amelia
2011-01-01
In this article we consider the implications of using popular visual media as a pedagogic tool for helping teachers acquire critical sociocultural knowledge to work more effectively with students of color, particularly Black males. Drawing from a textual analysis (McKee 2001, 2003; Rose 2001) conducted in the critical visual studies tradition…
Malone, Patrick S; Glezer, Laurie S; Kim, Judy; Jiang, Xiong; Riesenhuber, Maximilian
2016-09-28
The neural substrates of semantic representation have been the subject of much controversy. The study of semantic representations is complicated by difficulty in disentangling perceptual and semantic influences on neural activity, as well as in identifying stimulus-driven, "bottom-up" semantic selectivity unconfounded by top-down task-related modulations. To address these challenges, we trained human subjects to associate pseudowords (TPWs) with various animal and tool categories. To decode semantic representations of these TPWs, we used multivariate pattern classification of fMRI data acquired while subjects performed a semantic oddball detection task. Crucially, the classifier was trained and tested on disjoint sets of TPWs, so that the classifier had to use the semantic information from the training set to correctly classify the test set. Animal and tool TPWs were successfully decoded based on fMRI activity in spatially distinct subregions of the left medial anterior temporal lobe (LATL). In addition, tools (but not animals) were successfully decoded from activity in the left inferior parietal lobule. The tool-selective LATL subregion showed greater functional connectivity with left inferior parietal lobule and ventral premotor cortex, indicating that each LATL subregion exhibits distinct patterns of connectivity. Our findings demonstrate category-selective organization of semantic representations in LATL into spatially distinct subregions, continuing the lateral-medial segregation of activation in posterior temporal cortex previously observed in response to images of animals and tools, respectively. Together, our results provide evidence for segregation of processing hierarchies for different classes of objects and the existence of multiple, category-specific semantic networks in the brain. The location and specificity of semantic representations in the brain are still widely debated. We trained human participants to associate specific pseudowords with various animal and tool categories, and used multivariate pattern classification of fMRI data to decode the semantic representations of the trained pseudowords. We found that: (1) animal and tool information was organized in category-selective subregions of medial left anterior temporal lobe (LATL); (2) tools, but not animals, were encoded in left inferior parietal lobe; and (3) LATL subregions exhibited distinct patterns of functional connectivity with category-related regions across cortex. Our findings suggest that semantic knowledge in LATL is organized in category-related subregions, providing evidence for the existence of multiple, category-specific semantic representations in the brain. Copyright © 2016 the authors 0270-6474/16/3610089-08$15.00/0.
NASA Astrophysics Data System (ADS)
Drap, P.; Papini, O.; Pruno, E.; Nucciotti, M.; Vannini, G.
2017-02-01
The paper presents some reflexions concerning an interdisciplinary project between Medieval Archaeologists from the University of Florence (Italy) and ICT researchers from CNRS LSIS of Marseille (France), aiming towards a connection between 3D spatial representation and archaeological knowledge. It is well known that Laser Scanner, Photogrammetry and Computer Vision are very attractive tools for archaeologists, although the integration of representation of space and representation of archaeological time has not yet found a methodological standard of reference. We try to develop an integrated system for archaeological 3D survey and all other types of archaeological data and knowledge through integrating observable (material) and non-graphic (interpretive) data. Survey plays a central role, since it is both a metric representation of the archaeological site and, to a wider extent, an interpretation of it (being also a common basis for communication between the 2 teams). More specifically 3D survey is crucial, allowing archaeologists to connect actual spatial assets to the stratigraphic formation processes (i.e. to the archaeological time) and to translate spatial observations into historical interpretation of the site. We propose a common formalism for describing photogrammetrical survey and archaeological knowledge stemming from ontologies: Indeed, ontologies are fully used to model and store 3D data and archaeological knowledge. Xe equip this formalism with a qualitative representation of time. Stratigraphic analyses (both of excavated deposits and of upstanding structures) are closely related to E. C. Harris theory of "Stratigraphic Unit" ("US" from now on). Every US is connected to the others by geometric, topological and, eventually, temporal links, and are recorded by the 3D photogrammetric survey. However, the limitations of the Harris Matrix approach lead to use another representation formalism for stratigraphic relationships, namely Qualitative Constraints Networks (QCN) successfully used in the domain of knowledge representation and reasoning in artificial intelligence for representing temporal relations.
Cognitive Dissonance as an Instructional Tool for Understanding Chemical Representations
NASA Astrophysics Data System (ADS)
Corradi, David; Clarebout, Geraldine; Elen, Jan
2015-10-01
Previous research on multiple external representations (MER) indicates that sequencing representations (compared with presenting them as a whole) can, in some cases, increase conceptual understanding if there is interference between internal and external representations. We tested this mechanism by sequencing different combinations of scientific and abstract chemical representations and presenting them to 133 learners with low prior knowledge of the represented domain. The results provide insight into three separate mechanisms of learning with MER. (1) A memory (number of ideas reproduced) and (2) an accuracy (correctness of these ideas) effects occur when two representations are presented in a sequence. An accuracy and a (3) redundancy (number of redundant ideas remembered) effects occur when three representations are presented in a sequence. A necessary precondition for these effects is that descriptive formats are placed before depictive formats. The identified effects are analyzed in terms of the concept of cognitive dissonance.
Sommerville, Jessica A; Bernstein, Daniel M; Meltzoff, Andrew N
2013-01-01
A novel task, using a continuous spatial layout, was created to investigate the degree to which (in centimeters) 3-year-old children's (N = 63), 5-year-old children's (N = 60), and adults' (N = 60) own privileged knowledge of the location of an object biased their representation of a protagonist's false belief about the object's location. At all ages, participants' knowledge of the object's actual location biased their search estimates, independent of the attentional or memory demands of the task. Children's degree of bias correlated with their performance on a classic change-of-location false belief task, controlling for age. This task is a novel tool for providing a quantitative measurement of the degree to which self-knowledge can bias estimates of others' beliefs. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.
C-Language Integrated Production System, Version 6.0
NASA Technical Reports Server (NTRS)
Riley, Gary; Donnell, Brian; Ly, Huyen-Anh Bebe; Ortiz, Chris
1995-01-01
C Language Integrated Production System (CLIPS) computer programs are specifically intended to model human expertise or other knowledge. CLIPS is designed to enable research on, and development and delivery of, artificial intelligence on conventional computers. CLIPS 6.0 provides cohesive software tool for handling wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming: representation of knowledge as heuristics - essentially, rules of thumb that specify set of actions performed in given situation. Object-oriented programming: modeling of complex systems comprised of modular components easily reused to model other systems or create new components. Procedural-programming: representation of knowledge in ways similar to those of such languages as C, Pascal, Ada, and LISP. Version of CLIPS 6.0 for IBM PC-compatible computers requires DOS v3.3 or later and/or Windows 3.1 or later.
Hubble Space Telescope Design Engineering Knowledgebase (HSTDEK)
NASA Technical Reports Server (NTRS)
Johannes, James D.; Everetts, Clark
1989-01-01
The research covered here pays specific attention to the development of tools to assist knowledge engineers in acquiring knowledge and to assist other technical, engineering, and management personnel in automatically performing knowledge capture as part of their everyday work without adding any extra work to what they already do. Requirements for data products, the knowledge base, and methods for mapping knowledge in the documents onto the knowledge representations are discussed, as are some of the difficulties of capturing in the knowledge base the structure of the design process itself, along with a model of the system designed. The capture of knowledge describing the interactions of different components is also discussed briefly.
Standard model of knowledge representation
NASA Astrophysics Data System (ADS)
Yin, Wensheng
2016-09-01
Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.
The Study on Collaborative Manufacturing Platform Based on Agent
NASA Astrophysics Data System (ADS)
Zhang, Xiao-yan; Qu, Zheng-geng
To fulfill the trends of knowledge-intensive in collaborative manufacturing development, we have described multi agent architecture supporting knowledge-based platform of collaborative manufacturing development platform. In virtue of wrapper service and communication capacity agents provided, the proposed architecture facilitates organization and collaboration of multi-disciplinary individuals and tools. By effectively supporting the formal representation, capture, retrieval and reuse of manufacturing knowledge, the generalized knowledge repository based on ontology library enable engineers to meaningfully exchange information and pass knowledge across boundaries. Intelligent agent technology increases traditional KBE systems efficiency and interoperability and provides comprehensive design environments for engineers.
Coordinating complex decision support activities across distributed applications
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1994-01-01
Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.
Tool use as distributed cognition: how tools help, hinder and define manual skill.
Baber, Chris; Parekh, Manish; Cengiz, Tulin G
2014-01-01
Our thesis in this paper is that, in order to appreciate the interplay between cognitive (goal-directed) and physical performance in tool use, it is necessary to determine the role that representations play in the use of tools. We argue that rather being solely a matter of internal (mental) representation, tool use makes use of the external representations that define the human-environment-tool-object system. This requires the notion of Distributed Cognition to encompass not simply the manner in which artifacts represent concepts but also how they represent praxis. Our argument is that this can be extended to include how artifacts-in-context afford use and how this response to affordances constitutes a particular form of skilled performance. By artifacts-in-context, we do not mean solely the affordances offered by the physical dimensions of a tool but also the interaction between the tool and the object that it is being used on. From this, "affordance" does not simply relate to the physical appearance of the tool but anticipates subsequent actions by the user directed towards the goal of changing the state of the object and this is best understood in terms of the "complimentarity" in the system. This assertion raises two challenges which are explored in this paper. The first is to distinguish "affordance" from the adaptation that one might expect to see in descriptions of motor control; when we speak of "affordance" as a form of anticipation, don't we just mean the ability to adjust movements in response to physical demands? The second is to distinguish "affordance" from a schema of the tool; when we talk about anticipation, don't we just mean the ability to call on a schema representing a "recipe" for using that tool for that task? This question of representation, specifically what knowledge needs to be represented in tool use, is central to this paper.
Fast Multiscale Algorithms for Information Representation and Fusion
2011-07-01
We are also developing convenient command-line invocation tools in addition to the previously developed APIs . Various real-world data sets...This knowledge is important in geolocation applications where knowing whether a received signal is line-of-sight or not is necessary for the
Knowledge-Based Software Development Tools
1993-09-01
GREEN, C., AND WESTFOLD, S. Knowledge-based programming self-applied. In Machine Intelligence 10, J. E. Hayes, D. Mitchie, and Y. Pao, Eds., Wiley...Technical Report KES.U.84.2, Kestrel Institute, April 1984. [181 KORF, R. E. Toward a model of representation changes. Artificial Intelligence 14, 1...Artificial Intelligence 27, 1 (February 1985), 43-96. Replinted in Readings in Artificial Intelligence and Software Engineering, C. Rich •ad R. Waters
Tool use as distributed cognition: how tools help, hinder and define manual skill
Baber, Chris; Parekh, Manish; Cengiz, Tulin G.
2014-01-01
Our thesis in this paper is that, in order to appreciate the interplay between cognitive (goal-directed) and physical performance in tool use, it is necessary to determine the role that representations play in the use of tools. We argue that rather being solely a matter of internal (mental) representation, tool use makes use of the external representations that define the human–environment–tool–object system. This requires the notion of Distributed Cognition to encompass not simply the manner in which artifacts represent concepts but also how they represent praxis. Our argument is that this can be extended to include how artifacts-in-context afford use and how this response to affordances constitutes a particular form of skilled performance. By artifacts-in-context, we do not mean solely the affordances offered by the physical dimensions of a tool but also the interaction between the tool and the object that it is being used on. From this, “affordance” does not simply relate to the physical appearance of the tool but anticipates subsequent actions by the user directed towards the goal of changing the state of the object and this is best understood in terms of the “complimentarity” in the system. This assertion raises two challenges which are explored in this paper. The first is to distinguish “affordance” from the adaptation that one might expect to see in descriptions of motor control; when we speak of “affordance” as a form of anticipation, don’t we just mean the ability to adjust movements in response to physical demands? The second is to distinguish “affordance” from a schema of the tool; when we talk about anticipation, don’t we just mean the ability to call on a schema representing a “recipe” for using that tool for that task? This question of representation, specifically what knowledge needs to be represented in tool use, is central to this paper. PMID:24605103
Taxonomy development and knowledge representation of nurses' personal cognitive artifacts.
McLane, Sharon; Turley, James P
2009-11-14
Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.
Generic Educational Knowledge Representation for Adaptive and Cognitive Systems
ERIC Educational Resources Information Center
Caravantes, Arturo; Galan, Ramon
2011-01-01
The interoperability of educational systems, encouraged by the development of specifications, standards and tools related to the Semantic Web is limited to the exchange of information in domain and student models. High system interoperability requires that a common framework be defined that represents the functional essence of educational systems.…
Trombert-Paviot, B; Rodrigues, J M; Rogers, J E; Baud, R; van der Haring, E; Rassinoux, A M; Abrial, V; Clavel, L; Idir, H
2000-09-01
Generalised architecture for languages, encyclopedia and nomenclatures in medicine (GALEN) has developed a new generation of terminology tools based on a language independent model describing the semantics and allowing computer processing and multiple reuses as well as natural language understanding systems applications to facilitate the sharing and maintaining of consistent medical knowledge. During the European Union 4 Th. framework program project GALEN-IN-USE and later on within two contracts with the national health authorities we applied the modelling and the tools to the development of a new multipurpose coding system for surgical procedures named CCAM in a minority language country, France. On one hand, we contributed to a language independent knowledge repository and multilingual semantic dictionaries for multicultural Europe. On the other hand, we support the traditional process for creating a new coding system in medicine which is very much labour consuming by artificial intelligence tools using a medically oriented recursive ontology and natural language processing. We used an integrated software named CLAW (for classification workbench) to process French professional medical language rubrics produced by the national colleges of surgeons domain experts into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation, on one hand, we generate with the LNAT natural language generator controlled French natural language to support the finalization of the linguistic labels (first generation) in relation with the meanings of the conceptual system structure. On the other hand, the Claw classification manager proves to be very powerful to retrieve the initial domain experts rubrics list with different categories of concepts (second generation) within a semantic structured representation (third generation) bridge to the electronic patient record detailed terminology.
Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy
NASA Astrophysics Data System (ADS)
Naaz, Farah
Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups:
The IHMC CmapTools software in research and education: a multi-level use case in Space Meteorology
NASA Astrophysics Data System (ADS)
Messerotti, Mauro
2010-05-01
The IHMC (Institute for Human and Machine Cognition, Florida University System, USA) CmapTools software is a powerful multi-platform tool for knowledge modelling in graphical form based on concept maps. In this work we present its application for the high-level development of a set of multi-level concept maps in the framework of Space Meteorology to act as the kernel of a space meteorology domain ontology. This is an example of a research use case, as a domain ontology coded in machine-readable form via e.g. OWL (Web Ontology Language) is suitable to be an active layer of any knowledge management system embedded in a Virtual Observatory (VO). Apart from being manageable at machine level, concept maps developed via CmapTools are intrinsically human-readable and can embed hyperlinks and objects of many kinds. Therefore they are suitable to be published on the web: the coded knowledge can be exploited for educational purposes by the students and the public, as the level of information can be naturally organized among linked concept maps in progressively increasing complexity levels. Hence CmapTools and its advanced version COE (Concept-map Ontology Editor) represent effective and user-friendly software tools for high-level knowledge represention in research and education.
Representing energy efficiency diagnosis strategies in cognitive work analysis.
Hilliard, Antony; Jamieson, Greg A
2017-03-01
This article describes challenges encountered in applying Jens Rasmussen's Cognitive Work Analysis (CWA) framework to the practice of energy efficiency Monitoring & Targeting (M&T). Eight theoretic issues encountered in the analysis are described with respect to Rasmussen's work and the modeling solutions we adopted. We grappled with how to usefully apply Work Domain Analysis (WDA) to analyze categories of domains with secondary purposes and no ideal grain of decomposition. This difficulty encouraged us to pursue Control Task (ConTA) and Strategies (StrA) analysis, which are under-explored as bases for interface design. In ConTA we found M&T was best represented by two interlinked work functions; one controlling energy, the other maintaining knowledge representations. From StrA, we identified a popular representation-dependent strategy and inferred information required to diagnose faults in system performance and knowledge representation. This article presents and discusses excerpts from our analysis, and outlines their application to diagnosis support tools. Copyright © 2015 Elsevier Ltd. All rights reserved.
Object-oriented knowledge representation for expert systems
NASA Technical Reports Server (NTRS)
Scott, Stephen L.
1991-01-01
Object oriented techniques have generated considerable interest in the Artificial Intelligence (AI) community in recent years. This paper discusses an approach for representing expert system knowledge using classes, objects, and message passing. The implementation is in version 4.3 of NASA's C Language Integrated Production System (CLIPS), an expert system tool that does not provide direct support for object oriented design. The method uses programmer imposed conventions and keywords to structure facts, and rules to provide object oriented capabilities.
The research on construction and application of machining process knowledge base
NASA Astrophysics Data System (ADS)
Zhao, Tan; Qiao, Lihong; Qie, Yifan; Guo, Kai
2018-03-01
In order to realize the application of knowledge in machining process design, from the perspective of knowledge in the application of computer aided process planning(CAPP), a hierarchical structure of knowledge classification is established according to the characteristics of mechanical engineering field. The expression of machining process knowledge is structured by means of production rules and the object-oriented methods. Three kinds of knowledge base models are constructed according to the representation of machining process knowledge. In this paper, the definition and classification of machining process knowledge, knowledge model, and the application flow of the process design based on the knowledge base are given, and the main steps of the design decision of the machine tool are carried out as an application by using the knowledge base.
Incorporating linguistic knowledge for learning distributed word representations.
Wang, Yan; Liu, Zhiyuan; Sun, Maosong
2015-01-01
Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining.
Incorporating Linguistic Knowledge for Learning Distributed Word Representations
Wang, Yan; Liu, Zhiyuan; Sun, Maosong
2015-01-01
Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining. PMID:25874581
Geneho Kim; Donald Nute; H. Michael Rauscher; David L. Loftis
2000-01-01
A programming environment for developing complex decision support systems (DSSs) should support rapid prototyping and modular design, feature a flexible knowledge representation scheme and sound inference mechanisms, provide project management, and be domain independent. We have previously developed DSSTools (Decision Support System Tools), a reusable, domain-...
The Nature of Integration among PCK Components: A Case Study of Two Experienced Chemistry Teachers
ERIC Educational Resources Information Center
Aydin, Sevgi; Boz, Yezdan
2013-01-01
In this qualitative case study, we examined the nature of integration among pedagogical content knowledge (PCK) components. To attain the goal, two experienced chemistry teachers' teaching redox reactions and electrochemical cells was observed. The data were collected through card-sorting activity, content representation (CoRe) tool, observation,…
ERIC Educational Resources Information Center
Schonborn, Konrad J.; Anderson, Trevor R.
2010-01-01
External representations (ERs), such as diagrams, animations, and dynamic models are vital tools for communicating and constructing knowledge in biochemistry. To build a meaningful understanding of structure, function, and process, it is essential that students become visually literate by mastering key cognitive skills that are essential for…
Enhancing biomedical text summarization using semantic relation extraction.
Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao
2011-01-01
Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.
Conceptual Tools for Understanding Nature - Proceedings of the 3rd International Symposium
NASA Astrophysics Data System (ADS)
Costa, G.; Calucci, M.
1997-04-01
The Table of Contents for the full book PDF is as follows: * Foreword * Some Limits of Science and Scientists * Three Limits of Scientific Knowledge * On Features and Meaning of Scientific Knowledge * How Science Approaches the World: Risky Truths versus Misleading Certitudes * On Discovery and Justification * Thought Experiments: A Philosophical Analysis * Causality: Epistemological Questions and Cognitive Answers * Scientific Inquiry via Rational Hypothesis Revision * Probabilistic Epistemology * The Transferable Belief Model for Uncertainty Representation * Chemistry and Complexity * The Difficult Epistemology of Medicine * Epidemiology, Causality and Medical Anthropology * Conceptual Tools for Transdisciplinary Unified Theory * Evolution and Learning in Economic Organizations * The Possible Role of Symmetry in Physics and Cosmology * Observational Cosmology and/or other Imaginable Models of the Universe
Handling knowledge via Concept Maps: a space weather use case
NASA Astrophysics Data System (ADS)
Messerotti, Mauro; Fox, Peter
Concept Maps (Cmaps) are powerful means for knowledge coding in graphical form. As flexible software tools exist to manipulate the knowledge embedded in Cmaps in machine-readable form, such complex entities are suitable candidates not only for the representation of ontologies and semantics in Virtual Observatory (VO) architectures, but also for knowledge handling and knowledge discovery. In this work, we present a use case relevant to space weather applications and we elaborate on its possible implementation and adavanced use in Semantic Virtual Observatories dedicated to Sun-Earth Connections. This analysis was carried out in the framework of the Electronic Geophysical Year (eGY) and represents an achievement synergized by the eGY Virtual Observatories Working Group.
NASA Astrophysics Data System (ADS)
Krange, Ingeborg; Arnseth, Hans Christian
2012-09-01
The aim of this study is to scrutinize the characteristics of conceptual meaning making when students engage with virtual worlds in combination with a spreadsheet with the aim to develop graphs. We study how these tools and the representations they contain or enable students to construct serve to influence their understanding of energy resource consumption. The data were gathered in 1st grade upper-secondary science classes and they constitute the basis for the interaction analysis of students' meaning making with representations. Our analyses demonstrate the difficulties involved in developing students' orientation toward more conceptual orientations to representations of the knowledge domain. Virtual worlds do not in themselves represent a solution to this problem.
Fifth Conference on Artificial Intelligence for Space Applications
NASA Technical Reports Server (NTRS)
Odell, Steve L. (Compiler)
1990-01-01
The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.
C-Language Integrated Production System, Version 5.1
NASA Technical Reports Server (NTRS)
Riley, Gary; Donnell, Brian; Ly, Huyen-Anh VU; Culbert, Chris; Savely, Robert T.; Mccoy, Daniel J.; Giarratano, Joseph
1992-01-01
CLIPS 5.1 provides cohesive software tool for handling wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming provides representation of knowledge by use of heuristics. Object-oriented programming enables modeling of complex systems as modular components. Procedural programming enables CLIPS to represent knowledge in ways similar to those allowed in such languages as C, Pascal, Ada, and LISP. Working with CLIPS 5.1, one can develop expert-system software by use of rule-based programming only, object-oriented programming only, procedural programming only, or combinations of the three.
An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.
Boon, Mieke
2017-10-01
In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.
Groups: knowledge spreadsheets for symbolic biocomputing.
Travers, Michael; Paley, Suzanne M; Shrager, Jeff; Holland, Timothy A; Karp, Peter D
2013-01-01
Knowledge spreadsheets (KSs) are a visual tool for interactive data analysis and exploration. They differ from traditional spreadsheets in that rather than being oriented toward numeric data, they work with symbolic knowledge representation structures and provide operations that take into account the semantics of the application domain. 'Groups' is an implementation of KSs within the Pathway Tools system. Groups allows Pathway Tools users to define a group of objects (e.g. groups of genes or metabolites) from a Pathway/Genome Database. Groups can be transformed (e.g. by transforming a metabolite group to the group of pathways in which those metabolites are substrates); combined through set operations; analysed (e.g. through enrichment analysis); and visualized (e.g. by painting onto a metabolic map diagram). Users of the Pathway Tools-based BioCyc.org website have made extensive use of Groups, and an informal survey of Groups users suggests that Groups has achieved the goal of allowing biologists themselves to perform some data manipulations that previously would have required the assistance of a programmer. Database URL: BioCyc.org.
Evaluation, Use, and Refinement of Knowledge Representations through Acquisition Modeling
ERIC Educational Resources Information Center
Pearl, Lisa
2017-01-01
Generative approaches to language have long recognized the natural link between theories of knowledge representation and theories of knowledge acquisition. The basic idea is that the knowledge representations provided by Universal Grammar enable children to acquire language as reliably as they do because these representations highlight the…
Framework Support For Knowledge-Based Software Development
NASA Astrophysics Data System (ADS)
Huseth, Steve
1988-03-01
The advent of personal engineering workstations has brought substantial information processing power to the individual programmer. Advanced tools and environment capabilities supporting the software lifecycle are just beginning to become generally available. However, many of these tools are addressing only part of the software development problem by focusing on rapid construction of self-contained programs by a small group of talented engineers. Additional capabilities are required to support the development of large programming systems where a high degree of coordination and communication is required among large numbers of software engineers, hardware engineers, and managers. A major player in realizing these capabilities is the framework supporting the software development environment. In this paper we discuss our research toward a Knowledge-Based Software Assistant (KBSA) framework. We propose the development of an advanced framework containing a distributed knowledge base that can support the data representation needs of tools, provide environmental support for the formalization and control of the software development process, and offer a highly interactive and consistent user interface.
cluML: A markup language for clustering and cluster validity assessment of microarray data.
Bolshakova, Nadia; Cunningham, Pádraig
2005-01-01
cluML is a new markup language for microarray data clustering and cluster validity assessment. The XML-based format has been designed to address some of the limitations observed in traditional formats, such as inability to store multiple clustering (including biclustering) and validation results within a dataset. cluML is an effective tool to support biomedical knowledge representation in gene expression data analysis. Although cluML was developed for DNA microarray analysis applications, it can be effectively used for the representation of clustering and for the validation of other biomedical and physical data that has no limitations.
Research in Knowledge Representation for Natural Language Understanding
1980-11-01
artificial intelligence, natural language understanding , parsing, syntax, semantics, speaker meaning, knowledge representation, semantic networks...TinB PAGE map M W006 1Report No. 4513 L RESEARCH IN KNOWLEDGE REPRESENTATION FOR NATURAL LANGUAGE UNDERSTANDING Annual Report 1 September 1979 to 31... understanding , knowledge representation, and knowledge based inference. The work that we have been doing falls into three classes, successively motivated by
The Role of Floor Control and of Ontology in Argumentative Activities with Discussion-Based Tools
ERIC Educational Resources Information Center
Schwarz, Baruch B.; Glassner, Amnon
2007-01-01
Argumentative activity has been found beneficial for construction of knowledge and evaluation of information in some conditions. Many theorists in CSCL and some empiricists have suggested that graphical representations may help in this endeavor. In the present study, we examine effects of type of ontology and of synchronicity in students that…
ERIC Educational Resources Information Center
Delgato, Margaret H.
2009-01-01
The purpose of this investigation was to determine the extent to which multicultural science education, including indigenous knowledge representations, had been infused within the content of high school biology textbooks. The study evaluated the textbook as an instructional tool and framework for multicultural science education instruction by…
NASA Astrophysics Data System (ADS)
Holbert, Nathan Ryan
Video games have recently become a popular space for educational design due to their interactive and engaging nature and the ubiquity of the gaming experience among youth. Though many researchers argue video games can provide opportunities for learning, educational game design has focused on the classroom rather than the informal settings where games are typically played. Educational games have been moderately successful at achieving learning gains on standardized items, but have failed to show improvements on related but distal problems. In this dissertation I develop and assess a new design principle, called constructible authentic representations for creating informal gaming experiences that players will actively draw on when reasoning in formal and real world contexts. These games provide players with opportunities to engage in meaningful construction with components that integrate relevant concepts to create in-game representations that visually and epistemologically align with related tools and representations utilized in the target domain. In the first phase of the dissertation, I observed children playing popular video games to better understand what in-game representations children attend to and how interactions with these representations contribute to intuitive ideas of encountered STEM content. Results from this study fed into the iterative design of two prototype video games, FormulaT Racing and Particles!, intending to give players useful knowledge resources for reasoning about kinematics and the particulate nature of matter respectively. Designed games encourage players to utilize and refine intuitive ideas about target content through the construction of domain relevant representations. To assess the effectiveness of these designs I conducted two studies of children ages 7-14 playing prototype games in informal settings. An analysis of pre- and post-game clinical interviews, domain specific tasks, and video and logging data of gameplay suggests players developed useful knowledge resources, likely gained and/or refined from experiences in-game, that are employed to solve non-game problems and tasks. Furthermore, players utilized in-game representations as objects-to-think-with when explaining real world phenomena and formal concepts. The results suggest that games designed to include constructible authentic representations can provide players with powerful and useful knowledge resources accessible when thinking and reasoning in a variety of contexts.
Perspectives on knowledge in engineering design
NASA Technical Reports Server (NTRS)
Rasdorf, W. J.
1985-01-01
Various perspectives are given of the knowledge currently used in engineering design, specifically dealing with knowledge-based expert systems (KBES). Constructing an expert system often reveals inconsistencies in domain knowledge while formalizing it. The types of domain knowledge (facts, procedures, judgments, and control) differ from the classes of that knowledge (creative, innovative, and routine). The feasible tasks for expert systems can be determined based on these types and classes of knowledge. Interpretive tasks require reasoning about a task in light of the knowledge available, where generative tasks create potential solutions to be tested against constraints. Only after classifying the domain by type and level can the engineer select a knowledge-engineering tool for the domain being considered. The critical features to be weighed after classification are knowledge representation techniques, control strategies, interface requirements, compatibility with traditional systems, and economic considerations.
Formalizing nursing knowledge: from theories and models to ontologies.
Peace, Jane; Brennan, Patricia Flatley
2009-01-01
Knowledge representation in nursing is poised to address the depth of nursing knowledge about the specific phenomena of importance to nursing. Nursing theories and models may provide a starting point for making this knowledge explicit in representations. We combined knowledge building methods from nursing and ontology design methods from biomedical informatics to create a nursing representation of family health history. Our experience provides an example of how knowledge representations may be created to facilitate electronic support for nursing practice and knowledge development.
Rodrigues, J M; Trombert-Paviot, B; Baud, R; Wagner, J; Meusnier-Carriot, F
1998-01-01
GALEN has developed a language independent common reference model based on a medically oriented ontology and practical tools and techniques for managing healthcare terminology including natural language processing. GALEN-IN-USE is the current phase which applied the modelling and the tools to the development or the updating of coding systems for surgical procedures in different national coding centers co-operating within the European Federation of Coding Centre (EFCC) to create a language independent knowledge repository for multicultural Europe. We used an integrated set of artificial intelligence terminology tools named CLAssification Manager workbench to process French professional medical language rubrics into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation we generate controlled French natural language. The French national coding centre is then able to retrieve the initial professional rubrics with different categories of concepts, to compare the professional language proposed by expert clinicians to the French generated controlled vocabulary and to finalize the linguistic labels of the coding system in relation with the meanings of the conceptual system structure.
Composing Data Parallel Code for a SPARQL Graph Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Tumeo, Antonino; Villa, Oreste
Big data analytics process large amount of data to extract knowledge from them. Semantic databases are big data applications that adopt the Resource Description Framework (RDF) to structure metadata through a graph-based representation. The graph based representation provides several benefits, such as the possibility to perform in memory processing with large amounts of parallelism. SPARQL is a language used to perform queries on RDF-structured data through graph matching. In this paper we present a tool that automatically translates SPARQL queries to parallel graph crawling and graph matching operations. The tool also supports complex SPARQL constructs, which requires more than basicmore » graph matching for their implementation. The tool generates parallel code annotated with OpenMP pragmas for x86 Shared-memory Multiprocessors (SMPs). With respect to commercial database systems such as Virtuoso, our approach reduces memory occupation due to join operations and provides higher performance. We show the scaling of the automatically generated graph-matching code on a 48-core SMP.« less
ERIC Educational Resources Information Center
Chen, Pearl; McGrath, Diane
2003-01-01
This study documented the processes of knowledge construction and knowledge representation in high school students' hypermedia design projects. Analysis of knowledge construction in linking and structural building yielded distinct types and subtypes of hypermedia documents, which were characterized by four features of knowledge representation: (a)…
A study of mapping exogenous knowledge representations into CONFIG
NASA Technical Reports Server (NTRS)
Mayfield, Blayne E.
1992-01-01
Qualitative reasoning is reasoning with a small set of qualitative values that is an abstraction of a larger and perhaps infinite set of quantitative values. The use of qualitative and quantitative reasoning together holds great promise for performance improvement in applications that suffer from large and/or imprecise knowledge domains. Included among these applications are the modeling, simulation, analysis, and fault diagnosis of physical systems. Several research groups continue to discover and experiment with new qualitative representations and reasoning techniques. However, due to the diversity of these techniques, it is difficult for the programs produced to exchange system models easily. The availability of mappings to transform knowledge from the form used by one of these programs to that used by another would open the doors for comparative analysis of these programs in areas such as completeness, correctness, and performance. A group at the Johnson Space Center (JSC) is working to develop CONFIG, a prototype qualitative modeling, simulation, and analysis tool for fault diagnosis applications in the U.S. space program. The availability of knowledge mappings from the programs produced by other research groups to CONFIG may provide savings in CONFIG's development costs and time, and may improve CONFIG's performance. The study of such mappings is the purpose of the research described in this paper. Two other research groups that have worked with the JSC group in the past are the Northwest University Group and the University of Texas at Austin Group. The former has produced a qualitative reasoning tool named SIMGEN, and the latter has produced one named QSIM. Another program produced by the Austin group is CC, a preprocessor that permits users to develop input for eventual use by QSIM, but in a more natural format. CONFIG and CC are both based on a component-connection ontology, so a mapping from CC's knowledge representation to CONFIG's knowledge representation was chosen as the focus of this study. A mapping from CC to CONFIG was developed. Due to differences between the two programs, however, the mapping transforms some of the CC knowledge to CONFIG as documentation rather than as knowledge in a form useful to computation. The study suggests that it may be worthwhile to pursue the mappings further. By implementing the mapping as a program, actual comparisons of computational efficiency and quality of results can be made between the QSIM and CONFIG programs. A secondary study may reveal that the results of the two programs augment one another, contradict one another, or differ only slightly. If the latter, the qualitative reasoning techniques may be compared in other areas, such as computational efficiency.
Which benefits in the use of a modeling platform : The VSoil example.
NASA Astrophysics Data System (ADS)
Lafolie, François; Cousin, Isabelle; Mollier, Alain; Pot, Valérie; Maron, Pierre-Alain; Moitrier, Nicolas; Nouguier, Cedric; Moitrier, Nathalie; Beudez, Nicolas
2015-04-01
In the environmental community the need for coupling the models and the associated knowledges emerged recently. The development of a coupling tool or of a modeling platform is mainly driven by the necessity to create models accounting for multiple processes and to take into account the feed back between these processes. Models focusing on a restricted number of processes exist and thus the coupling of these numerical tools appeared as an efficient and rapid mean to fill up the identified gaps. Several tools have been proposed : OMS3 (David et al. 2013) ; CSDMS framework (Peckham et al. 2013) ; the Open MI project developed within the frame of European Community (Open MI, 2011). However, what we should expect from a modeling platform could be more ambitious than only coupling existing numerical codes. We believe that we need to share easily not only our numerical representations but also the attached knowledges. We need to rapidly and easily develop complex models to have tools to bring responses to current issues on soil functioning and soil evolution within the frame of global change. We also need to share in a common frame our visions of soil functioning at various scales, one the one hand to strengthen our collaborations, and, on the other hand, to make them visible by the other communities working on environmental issues. The presentation will briefly present the VSoil platform. The platform is able to manipulate concepts and numerical representations of these processes. The tool helps in assembling modules to create a model and automatically generates an executable code and a GUI. Potentialities of the tool will be illustrated on few selected cases.
Nag, Ambarish; Karpinets, Tatiana V; Chang, Christopher H; Bar-Peled, Maor
2012-01-01
Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can be directly accessed at http://cricket.ornl.gov:1555/PTR/new-image?object=SUGAR-NUCLEOTIDES.
Nag, Ambarish; Karpinets, Tatiana V.; Chang, Christopher H.; Bar-Peled, Maor
2012-01-01
Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can be directly accessed at http://cricket.ornl.gov:1555/PTR/new-image?object=SUGAR-NUCLEOTIDES. PMID:22465851
ERIC Educational Resources Information Center
Pearl, Lisa; Ho, Timothy; Detrano, Zephyr
2017-01-01
It has long been recognized that there is a natural dependence between theories of knowledge representation and theories of knowledge acquisition, with the idea that the right knowledge representation enables acquisition to happen as reliably as it does. Given this, a reasonable criterion for a theory of knowledge representation is that it be…
Research in Knowledge Representation for Natural Language Understanding.
1984-09-01
TYPE OF REPORT & PERIOO COVERED RESEARCH IN KNOWLEDGE REPRESENTATION Annual Report FOR NATURAL LANGUAGE UNDERSTANDING 9/1/83 - 8/31/84 S. PERFORMING...nhaber) Artificial intelligence, natural language understanding , knowledge representation, semantics, semantic networks, KL-TWO, NIKL, belief and...attempting to understand and react to a complex, evolving situation. This report summarizes our research in knowledge representation and natural language
Knowledge representation to support reasoning based on multiple models
NASA Technical Reports Server (NTRS)
Gillam, April; Seidel, Jorge P.; Parker, Alice C.
1990-01-01
Model Based Reasoning is a powerful tool used to design and analyze systems, which are often composed of numerous interactive, interrelated subsystems. Models of the subsystems are written independently and may be used together while they are still under development. Thus the models are not static. They evolve as information becomes obsolete, as improved artifact descriptions are developed, and as system capabilities change. Researchers are using three methods to support knowledge/data base growth, to track the model evolution, and to handle knowledge from diverse domains. First, the representation methodology is based on having pools, or types, of knowledge from which each model is constructed. In addition information is explicit. This includes the interactions between components, the description of the artifact structure, and the constraints and limitations of the models. The third principle we have followed is the separation of the data and knowledge from the inferencing and equation solving mechanisms. This methodology is used in two distinct knowledge-based systems: one for the design of space systems and another for the synthesis of VLSI circuits. It has facilitated the growth and evolution of our models, made accountability of results explicit, and provided credibility for the user community. These capabilities have been implemented and are being used in actual design projects.
ERIC Educational Resources Information Center
Hume, Anne; Berry, Amanda
2013-01-01
This paper reports findings from an ongoing study exploring how the Content Representation (CoRe) design can be used as a tool to help chemistry student teachers begin acquiring the professional knowledge required to become expert chemistry teachers. Phase 2 of the study, reported in this paper, investigated how collaboration with school-based…
ERIC Educational Resources Information Center
Koc, Mustafa
2012-01-01
This study explored (a) pre-service teachers' perceptions of using concept mapping (CM) in one of their pedagogical courses, (b) the predictive power of such implementation in course achievement, and (c) the role of prior experience with CM, type of mapping, and gender on their perceptions and performances in CM and achievement. The subjects were…
PANDORA: keyword-based analysis of protein sets by integration of annotation sources.
Kaplan, Noam; Vaaknin, Avishay; Linial, Michal
2003-10-01
Recent advances in high-throughput methods and the application of computational tools for automatic classification of proteins have made it possible to carry out large-scale proteomic analyses. Biological analysis and interpretation of sets of proteins is a time-consuming undertaking carried out manually by experts. We have developed PANDORA (Protein ANnotation Diagram ORiented Analysis), a web-based tool that provides an automatic representation of the biological knowledge associated with any set of proteins. PANDORA uses a unique approach of keyword-based graphical analysis that focuses on detecting subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA currently supports SwissProt keywords, NCBI Taxonomy, InterPro entries and the hierarchical classification terms from ENZYME, SCOP and GO databases. The integrated study of several annotation sources simultaneously allows a representation of biological relations of structure, function, cellular location, taxonomy, domains and motifs. PANDORA is also integrated into the ProtoNet system, thus allowing testing thousands of automatically generated clusters. We illustrate how PANDORA enhances the biological understanding of large, non-uniform sets of proteins originating from experimental and computational sources, without the need for prior biological knowledge on individual proteins.
Enhancing Biomedical Text Summarization Using Semantic Relation Extraction
Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao
2011-01-01
Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization. PMID:21887336
2012-01-01
Background Efficient rule authoring tools are critical to allow clinical Knowledge Engineers (KEs), Software Engineers (SEs), and Subject Matter Experts (SMEs) to convert medical knowledge into machine executable clinical decision support rules. The goal of this analysis was to identify the critical success factors and challenges of a fully functioning Rule Authoring Environment (RAE) in order to define requirements for a scalable, comprehensive tool to manage enterprise level rules. Methods The authors evaluated RAEs in active use across Partners Healthcare, including enterprise wide, ambulatory only, and system specific tools, with a focus on rule editors for reminder and medication rules. We conducted meetings with users of these RAEs to discuss their general experience and perceived advantages and limitations of these tools. Results While the overall rule authoring process is similar across the 10 separate RAEs, the system capabilities and architecture vary widely. Most current RAEs limit the ability of the clinical decision support (CDS) interventions to be standardized, sharable, interoperable, and extensible. No existing system meets all requirements defined by knowledge management users. Conclusions A successful, scalable, integrated rule authoring environment will need to support a number of key requirements and functions in the areas of knowledge representation, metadata, terminology, authoring collaboration, user interface, integration with electronic health record (EHR) systems, testing, and reporting. PMID:23145874
Designing a training tool for imaging mental models
NASA Technical Reports Server (NTRS)
Dede, Christopher J.; Jayaram, Geetha
1990-01-01
The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network.
Formal Representations of Eligibility Criteria: A Literature Review
Weng, Chunhua; Tu, Samson W.; Sim, Ida; Richesson, Rachel
2010-01-01
Standards-based, computable knowledge representations for eligibility criteria are increasingly needed to provide computer-based decision support for automated research participant screening, clinical evidence application, and clinical research knowledge management. We surveyed the literature and identified five aspects of eligibility criteria knowledge representations that contribute to the various research and clinical applications: the intended use of computable eligibility criteria, the classification of eligibility criteria, the expression language for representing eligibility rules, the encoding of eligibility concepts, and the modeling of patient data. We consider three of them (expression language, codification of eligibility concepts, and patient data modeling), to be essential constructs of a formal knowledge representation for eligibility criteria. The requirements for each of the three knowledge constructs vary for different use cases, which therefore should inform the development and choice of the constructs toward cost-effective knowledge representation efforts. We discuss the implications of our findings for standardization efforts toward sharable knowledge representation of eligibility criteria. PMID:20034594
Linan, Margaret K; Sottara, Davide; Freimuth, Robert R
2015-01-01
Pharmacogenomics (PGx) guidelines contain drug-gene relationships, therapeutic and clinical recommendations from which clinical decision support (CDS) rules can be extracted, rendered and then delivered through clinical decision support systems (CDSS) to provide clinicians with just-in-time information at the point of care. Several tools exist that can be used to generate CDS rules that are based on computer interpretable guidelines (CIG), but none have been previously applied to the PGx domain. We utilized the Unified Modeling Language (UML), the Health Level 7 virtual medical record (HL7 vMR) model, and standard terminologies to represent the semantics and decision logic derived from a PGx guideline, which were then mapped to the Health eDecisions (HeD) schema. The modeling and extraction processes developed here demonstrate how structured knowledge representations can be used to support the creation of shareable CDS rules from PGx guidelines.
NASA Astrophysics Data System (ADS)
Doerr, Martin; Freitas, Fred; Guizzardi, Giancarlo; Han, Hyoil
Ontology is a cross-disciplinary field concerned with the study of concepts and theories that can be used for representing shared conceptualizations of specific domains. Ontological Engineering is a discipline in computer and information science concerned with the development of techniques, methods, languages and tools for the systematic construction of concrete artifacts capturing these representations, i.e., models (e.g., domain ontologies) and metamodels (e.g., upper-level ontologies). In recent years, there has been a growing interest in the application of formal ontology and ontological engineering to solve modeling problems in diverse areas in computer science such as software and data engineering, knowledge representation, natural language processing, information science, among many others.
Gray, Kathleen M.
2018-01-01
Environmental health literacy (EHL) is a relatively new framework for conceptualizing how people understand and use information about potentially harmful environmental exposures and their influence on health. As such, information on the characterization and measurement of EHL is limited. This review provides an overview of EHL as presented in peer-reviewed literature and aggregates studies based on whether they represent individual level EHL or community level EHL or both. A range of assessment tools has been used to measure EHL, with many studies relying on pre-/post-assessment; however, a broader suite of assessment tools may be needed to capture community-wide outcomes. This review also suggests that the definition of EHL should explicitly include community change or collective action as an important longer-term outcome and proposes a refinement of previous representations of EHL as a theoretical framework, to include self-efficacy. PMID:29518955
A Process for the Representation of openEHR ADL Archetypes in OWL Ontologies.
Porn, Alex Mateus; Peres, Leticia Mara; Didonet Del Fabro, Marcos
2015-01-01
ADL is a formal language to express archetypes, independent of standards or domain. However, its specification is not precise enough in relation to the specialization and semantic of archetypes, presenting difficulties in implementation and a few available tools. Archetypes may be implemented using other languages such as XML or OWL, increasing integration with Semantic Web tools. Exchanging and transforming data can be better implemented with semantics oriented models, for example using OWL which is a language to define and instantiate Web ontologies defined by W3C. OWL permits defining significant, detailed, precise and consistent distinctions among classes, properties and relations by the user, ensuring the consistency of knowledge than using ADL techniques. This paper presents a process of an openEHR ADL archetypes representation in OWL ontologies. This process consists of ADL archetypes conversion in OWL ontologies and validation of OWL resultant ontologies using the mutation test.
Büchi, S; Straub, S; Schwager, U
2010-12-01
Although there is much talk about shared decision making and individualized goal setting, there is a lack of knowledge and knowhow in their realization in daily clinical practice. There is a lack in tools for easy applicable tools to ameliorate person-centred individualized goal setting processes. In three selected psychiatric inpatients the semistructured, theory driven use of PRISM (Pictorial Representation of Illness and Self Measure) in patients with complex psychiatric problems is presented and discussed. PRISM sustains a person-centred individualized process of goal setting and treatment and reinforces the active participation of patients. The process of visualisation and synchronous documentation is validated positively by patients and clinicians. The visual goal setting requires 30 to 45 minutes. In patients with complex psychiatric illness PRISM was used successfully to ameliorate individual goal setting. Specific effects of PRISM-visualisation are actually evaluated in a randomized controlled trial.
TARGET's role in knowledge acquisition, engineering, validation, and documentation
NASA Technical Reports Server (NTRS)
Levi, Keith R.
1994-01-01
We investigate the use of the TARGET task analysis tool for use in the development of rule-based expert systems. We found TARGET to be very helpful in the knowledge acquisition process. It enabled us to perform knowledge acquisition with one knowledge engineer rather than two. In addition, it improved communication between the domain expert and knowledge engineer. We also found it to be useful for both the rule development and refinement phases of the knowledge engineering process. Using the network in these phases required us to develop guidelines that enabled us to easily translate the network into production rules. A significant requirement for TARGET remaining useful throughout the knowledge engineering process was the need to carefully maintain consistency between the network and the rule representations. Maintaining consistency not only benefited the knowledge engineering process, but also has significant payoffs in the areas of validation of the expert system and documentation of the knowledge in the system.
Garcea, Frank E.; Dombovy, Mary; Mahon, Bradford Z.
2013-01-01
A number of studies have observed that the motor system is activated when processing the semantics of manipulable objects. Such phenomena have been taken as evidence that simulation over motor representations is a necessary and intermediary step in the process of conceptual understanding. Cognitive neuropsychological evaluations of patients with impairments for action knowledge permit a direct test of the necessity of motor simulation in conceptual processing. Here, we report the performance of a 47-year-old male individual (Case AA) and six age-matched control participants on a number of tests probing action and object knowledge. Case AA had a large left-hemisphere frontal-parietal lesion and hemiplegia affecting his right arm and leg. Case AA presented with impairments for object-associated action production, and his conceptual knowledge of actions was severely impaired. In contrast, his knowledge of objects such as tools and other manipulable objects was largely preserved. The dissociation between action and object knowledge is difficult to reconcile with strong forms of the embodied cognition hypothesis. We suggest that these, and other similar findings, point to the need to develop tractable hypotheses about the dynamics of information exchange among sensory, motor and conceptual processes. PMID:23641205
The Role of Task Understanding on Younger and Older Adults' Performance.
Frank, David J; Touron, Dayna R
2016-12-16
Age-related performance decrements have been linked to inferior strategic choices. Strategy selection models argue that accurate task representations are necessary for choosing appropriate strategies. But no studies to date have compared task representations in younger and older adults. Metacognition research suggests age-related deficits in updating and utilizing strategy knowledge, but other research suggests age-related sparing when information can be consolidated into a coherent mental model. Study 1 validated the use of concept mapping as a tool for measuring task representation accuracy. Study 2 measured task representations before and after a complex strategic task to test for age-related decrements in task representation formation and updating. Task representation accuracy and task performance were equivalent across age groups. Better task representations were related to better performance. However, task representation scores remained fairly stable over the task with minimal evidence of updating. Our findings mirror those in the mental model literature suggesting age-related sparing of strategy use when information can be integrated into a coherent mental model. Future research should manipulate the presence of a unifying context to better evaluate this hypothesis. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The 1991 Goddard Conference on Space Applications of Artificial Intelligence
NASA Technical Reports Server (NTRS)
Rash, James L. (Editor)
1991-01-01
The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications.
ERIC Educational Resources Information Center
Einsiedler, Wolfgang
1996-01-01
Asks whether theories of knowledge representation provide a basis for the development of theories of knowledge structuring in instruction. Discusses codes of knowledge, surface versus deep structures, semantic networks, and multiple memory systems. Reviews research on teaching, external representation of cognitive structures, hierarchical…
The Neuroscience of Storing and Molding Tool Action Concepts: How "Plastic" is Grounded Cognition?
Mizelle, J C; Wheaton, Lewis A
2010-01-01
Choosing how to use tools to accomplish a task is a natural and seemingly trivial aspect of our lives, yet engages complex neural mechanisms. Recently, work in healthy populations has led to the idea that tool knowledge is grounded to allow for appropriate recall based on some level of personal history. This grounding has presumed neural loci for tool use, centered on parieto-temporo-frontal areas to fuse perception and action representations into one dynamic system. A challenge for this idea is related to one of its great benefits. For such a system to exist, it must be very plastic, to allow for the introduction of novel tools or concepts of tool use and modification of existing ones. Thus, learning new tool usage (familiar tools in new situations and new tools in familiar situations) must involve mapping into this grounded network while maintaining existing rules for tool usage. This plasticity may present a challenging breadth of encoding that needs to be optimally stored and accessed. The aim of this work is to explore the challenges of plasticity related to changing or incorporating representations of tool action within the theory of grounded cognition and propose a modular model of tool-object goal related accomplishment. While considering the neuroscience evidence for this approach, we will focus on the requisite plasticity for this system. Further, we will highlight challenges for flexibility and organization of already grounded tool actions and provide thoughts on future research to better evaluate mechanisms of encoding in the theory of grounded cognition.
Tool-use: An open window into body representation and its plasticity
Martel, Marie; Cardinali, Lucilla; Roy, Alice C.; Farnè, Alessandro
2016-01-01
ABSTRACT Over the last decades, scientists have questioned the origin of the exquisite human mastery of tools. Seminal studies in monkeys, healthy participants and brain-damaged patients have primarily focused on the plastic changes that tool-use induces on spatial representations. More recently, we focused on the modifications tool-use must exert on the sensorimotor system and highlighted plastic changes at the level of the body representation used by the brain to control our movements, i.e., the Body Schema. Evidence is emerging for tool-use to affect also more visually and conceptually based representations of the body, such as the Body Image. Here we offer a critical review of the way different tool-use paradigms have been, and should be, used to try disentangling the critical features that are responsible for tool incorporation into different body representations. We will conclude that tool-use may offer a very valuable means to investigate high-order body representations and their plasticity. PMID:27315277
Tool-use: An open window into body representation and its plasticity.
Martel, Marie; Cardinali, Lucilla; Roy, Alice C; Farnè, Alessandro
2016-01-01
Over the last decades, scientists have questioned the origin of the exquisite human mastery of tools. Seminal studies in monkeys, healthy participants and brain-damaged patients have primarily focused on the plastic changes that tool-use induces on spatial representations. More recently, we focused on the modifications tool-use must exert on the sensorimotor system and highlighted plastic changes at the level of the body representation used by the brain to control our movements, i.e., the Body Schema. Evidence is emerging for tool-use to affect also more visually and conceptually based representations of the body, such as the Body Image. Here we offer a critical review of the way different tool-use paradigms have been, and should be, used to try disentangling the critical features that are responsible for tool incorporation into different body representations. We will conclude that tool-use may offer a very valuable means to investigate high-order body representations and their plasticity.
NASA Astrophysics Data System (ADS)
López, Víctor; Pintó, Roser
2017-07-01
Computer simulations are often considered effective educational tools, since their visual and communicative power enable students to better understand physical systems and phenomena. However, previous studies have found that when students read visual representations some reading difficulties can arise, especially when these are complex or dynamic representations. We have analyzed how secondary-school students read the visual representations displayed in two PhET simulations (one addressing the friction-heating at microscopic level, and the other addressing the electromagnetic induction), and different typologies of reading difficulties have been identified: when reading the compositional structure of the representation, when giving appropriate relevance and semantic meaning to each visual element, and also when dealing with multiple representations and dynamic information. All students experienced at least one of these difficulties, and very similar difficulties appeared in the two groups of students, despite the different scientific content of the simulations. In conclusion, visualisation does not imply a full comprehension of the content of scientific simulations per se, and an effective reading process requires a set of reading skills, previous knowledge, attention, and external supports. Science teachers should bear in mind these issues in order to help students read images to take benefit of their educational potential.
Towards a standardised representation of a knowledge base for adverse drug event prevention.
Koutkias, Vassilis; Lazou, Katerina; de Clercq, Paul; Maglaveras, Nicos
2011-01-01
Knowledge representation is an important part of knowledge engineering activities that is crucial for enabling knowledge sharing and reuse. In this regard, standardised formalisms and technologies play a significant role. Especially for the medical domain, where knowledge may be tacit, not articulated and highly diverse, the development and adoption of standardised knowledge representations is highly challenging and of outmost importance to achieve knowledge interoperability. To this end, this paper presents a research effort towards the standardised representation of a Knowledge Base (KB) encapsulating rule-based signals and procedures for Adverse Drug Event (ADE) prevention. The KB constitutes an integral part of Clinical Decision Support Systems (CDSSs) to be used at the point of care. The paper highlights the requirements at the domain of discourse with respect to knowledge representation, according to which GELLO (an HL7 and ANSI standard) has been adopted. Results of our prototype implementation are presented along with the advantages and the limitations introduced by the employed approach.
Koutkias, Vassilis; Stalidis, George; Chouvarda, Ioanna; Lazou, Katerina; Kilintzis, Vassilis; Maglaveras, Nicos
2009-01-01
Adverse Drug Events (ADEs) are currently considered as a major public health issue, endangering patients' safety and causing significant healthcare costs. Several research efforts are currently concentrating on the reduction of preventable ADEs by employing Information Technology (IT) solutions, which aim to provide healthcare professionals and patients with relevant knowledge and decision support tools. In this context, we present a knowledge engineering approach towards the construction of a Knowledge-based System (KBS) regarded as the core part of a CDSS (Clinical Decision Support System) for ADE prevention, all developed in the context of the EU-funded research project PSIP (Patient Safety through Intelligent Procedures in Medication). In the current paper, we present the knowledge sources considered in PSIP and the implications they pose to knowledge engineering, the methodological approach followed, as well as the components defining the knowledge engineering framework based on relevant state-of-the-art technologies and representation formalisms.
Roy, Shumita; Park, Norman W; Roy, Eric A; Almeida, Quincy J
2015-01-01
Previous research suggests that different aspects of tool knowledge are mediated by different memory systems. It is believed that tool attributes (e.g., function, color) are represented as declarative memory while skill learning is supported by procedural memory. It has been proposed that other aspects (e.g., skilled tool use) may rely on an interaction of both declarative and procedural memory. However, the specific form of procedural memory underlying skilled tool use and the nature of interaction between declarative and procedural memory systems remain unclear. In the current study, individuals with Parkinson's disease (PD) and healthy controls were trained over 2 sessions, 3 weeks apart, to use a set of novel complex tools. They were also tested on their ability to recall tool attributes as well as their ability to demonstrate grasp and use of the tools to command. Results showed that, compared to controls, participants with PD showed intact motor skill acquisition and tool use to command within sessions, but failed to retain performance across sessions. In contrast, people with PD showed equivalent recall of tool attributes and tool grasping relative to controls, both within and across sessions. Current findings demonstrate that the frontal-striatal network, compromised in PD, mediates long-term retention of motor skills. Intact initial skill learning raises the possibility of compensation from declarative memory for frontal-striatal dysfunction. Lastly, skilled tool use appears to rely on both memory systems which may reflect a cooperative interaction between the two systems. Current findings regarding memory representations of tool knowledge and skill learning may have important implications for delivery of rehabilitation programs for individuals with PD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi
2014-01-01
Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: “bats approach their prey.” Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425
Knowledge Representation: A Brief Review.
ERIC Educational Resources Information Center
Vickery, B. C.
1986-01-01
Reviews different structures and techniques of knowledge representation: structure of database records and files, data structures in computer programming, syntatic and semantic structure of natural language, knowledge representation in artificial intelligence, and models of human memory. A prototype expert system that makes use of some of these…
ProphTools: general prioritization tools for heterogeneous biological networks.
Navarro, Carmen; Martínez, Victor; Blanco, Armando; Cano, Carlos
2017-12-01
Networks have been proven effective representations for the analysis of biological data. As such, there exist multiple methods to extract knowledge from biological networks. However, these approaches usually limit their scope to a single biological entity type of interest or they lack the flexibility to analyze user-defined data. We developed ProphTools, a flexible open-source command-line tool that performs prioritization on a heterogeneous network. ProphTools prioritization combines a Flow Propagation algorithm similar to a Random Walk with Restarts and a weighted propagation method. A flexible model for the representation of a heterogeneous network allows the user to define a prioritization problem involving an arbitrary number of entity types and their interconnections. Furthermore, ProphTools provides functionality to perform cross-validation tests, allowing users to select the best network configuration for a given problem. ProphTools core prioritization methodology has already been proven effective in gene-disease prioritization and drug repositioning. Here we make ProphTools available to the scientific community as flexible, open-source software and perform a new proof-of-concept case study on long noncoding RNAs (lncRNAs) to disease prioritization. ProphTools is robust prioritization software that provides the flexibility not present in other state-of-the-art network analysis approaches, enabling researchers to perform prioritization tasks on any user-defined heterogeneous network. Furthermore, the application to lncRNA-disease prioritization shows that ProphTools can reach the performance levels of ad hoc prioritization tools without losing its generality. © The Authors 2017. Published by Oxford University Press.
Bouazzaoui, Badiâa; Fay, Séverine; Taconnat, Laurence; Angel, Lucie; Vanneste, Sandrine; Isingrini, Michel
2013-06-01
Craik and Bialystok (2006, 2008) postulated that examining the evolution of knowledge representation and control processes across the life span could help in understanding age-related cognitive changes. The present study explored the hypothesis that knowledge representation and control processes are differentially involved in the episodic memory performance of young and older adults. Young and older adults were administered a cued-recall task and tests of crystallized knowledge and executive functioning to measure representation and control processes, respectively. Results replicate the classic finding that executive and cued-recall performance decline with age, but crystallized-knowledge performance does not. Factor analysis confirmed the independence of representation and control. Correlation analyses showed that the memory performance of younger adults was correlated with representation but not with control measures, whereas the memory performance of older adults was correlated with both representation and control measures. Regression analyses indicated that the control factor was the main predictor of episodic-memory performance for older adults, with the representation factor adding an independent contribution, but the representation factor was the sole predictor for young adults. This finding supports the view that factors sustaining episodic memory vary from young adulthood to old age; representation was shown to be important throughout adulthood, and control was also important for older adults. The results also indicated that control and representation modulate age-group-related variance in episodic memory.
Candidate R&D Thrusts for the Software Technology Initiative.
1981-05-01
computer-aided design and manufacturing efforts provide examples of multiple representations and multiple manipulation modes. R&D difficulties exist in...farfetched, but the potential payoffs are enormous. References Birk, J., and R. Kelley. Research Needed to Advance the State of Knowledge in Robotics . In...and specifica- tion languages would be benefical . This R&D effort may also result in fusion with management tools with which an acquisition manager
Distributed representations in memory: Insights from functional brain imaging
Rissman, Jesse; Wagner, Anthony D.
2015-01-01
Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly leveraged powerful analytical tools (e.g., multi-voxel pattern analysis) to decode the information represented within distributed fMRI activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content, and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171
Knowledge Engineering for Preservation and Future use of Institutional Knowledge
NASA Technical Reports Server (NTRS)
Moreman, Douglas; Dyer, John
1996-01-01
This Project has two main thrusts-preservation of special knowledge and its useful representation via computers. NASA is losing the expertise of its engineers and scientists who put together the great missions of the past. We no longer are landing men on the moon. Some of the equipment still used today (such as the RL-10 rocket) was designed decades ago by people who are now retiring. Furthermore, there has been a lack, in some areas of technology, of new projects that overlap with the old and that would have provided opportunities for monitoring by senior engineers of the young ones. We are studying this problem and trying out a couple of methods of soliciting and recording rare knowledge from experts. One method is that of Concept Maps which produces a graphical interface to knowledge even as it helps solicit that knowledge. We arranged for experienced help in this method from John Coffey of the Institute of Human and Machine Technology at the University of West Florida. A second method which we plan to try out in May, is a video-taped review of selected failed missions (e.g., the craft tumbled and blew up). Five senior engineers (most already retired from NASA) will, as a team, analyze available data, illustrating their thought processes as they try to solve the problem of why a space craft failed to complete its mission. The session will be captured in high quality audio and with at least two video cameras. The video can later be used to plan future concept mapping interviews and, in edited form, be a product in itself. Our computer representations of the amassed knowledge may eventually, via the methods of expert systems, be joined with other software being prepared as a suite of tools to aid future engineers designing rocket engines. In addition to representation by multimedia concept maps, we plan to consider linking vast bodies of text (and other media) by hypertexting methods.
A Collaborative Reasoning Maintenance System for a Reliable Application of Legislations
NASA Astrophysics Data System (ADS)
Tamisier, Thomas; Didry, Yoann; Parisot, Olivier; Feltz, Fernand
Decision support systems are nowadays used to disentangle all kinds of intricate situations and perform sophisticated analysis. Moreover, they are applied in areas where the knowledge can be heterogeneous, partially un-formalized, implicit, or diffuse. The representation and management of this knowledge become the key point to ensure the proper functioning of the system and keep an intuitive view upon its expected behavior. This paper presents a generic architecture for implementing knowledge-base systems used in collaborative business, where the knowledge is organized into different databases, according to the usage, persistence and quality of the information. This approach is illustrated with Cadral, a customizable automated tool built on this architecture and used for processing family benefits applications at the National Family Benefits Fund of the Grand-Duchy of Luxembourg.
Ramzan, Asia; Wang, Hai; Buckingham, Christopher
2014-01-01
Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.
Do Knowledge-Component Models Need to Incorporate Representational Competencies?
ERIC Educational Resources Information Center
Rau, Martina Angela
2017-01-01
Traditional knowledge-component models describe students' content knowledge (e.g., their ability to carry out problem-solving procedures or their ability to reason about a concept). In many STEM domains, instruction uses multiple visual representations such as graphs, figures, and diagrams. The use of visual representations implies a…
Computational Modeling for Language Acquisition: A Tutorial With Syntactic Islands.
Pearl, Lisa S; Sprouse, Jon
2015-06-01
Given the growing prominence of computational modeling in the acquisition research community, we present a tutorial on how to use computational modeling to investigate learning strategies that underlie the acquisition process. This is useful for understanding both typical and atypical linguistic development. We provide a general overview of why modeling can be a particularly informative tool and some general considerations when creating a computational acquisition model. We then review a concrete example of a computational acquisition model for complex structural knowledge referred to as syntactic islands. This includes an overview of syntactic islands knowledge, a precise definition of the acquisition task being modeled, the modeling results, and how to meaningfully interpret those results in a way that is relevant for questions about knowledge representation and the learning process. Computational modeling is a powerful tool that can be used to understand linguistic development. The general approach presented here can be used to investigate any acquisition task and any learning strategy, provided both are precisely defined.
Turon, Clàudia; Comas, Joaquim; Torrens, Antonina; Molle, Pascal; Poch, Manel
2008-01-01
With the aim of improving effluent quality of waste stabilization ponds, different designs of vertical flow constructed wetlands and intermittent sand filters were tested on an experimental full-scale plant within the framework of a European project. The information extracted from this study was completed and updated with heuristic and bibliographic knowledge. The data and knowledge acquired were difficult to integrate into mathematical models because they involve qualitative information and expert reasoning. Therefore, it was decided to develop an environmental decision support system (EDSS-Filter-Design) as a tool to integrate mathematical models and knowledge-based techniques. This paper describes the development of this support tool, emphasizing the collection of data and knowledge and representation of this information by means of mathematical equations and a rule-based system. The developed support tool provides the main design characteristics of filters: (i) required surface, (ii) media type, and (iii) media depth. These design recommendations are based on wastewater characteristics, applied load, and required treatment level data provided by the user. The results of the EDSS-Filter-Design provide appropriate and useful information and guidelines on how to design filters, according to the expert criteria. The encapsulation of the information into a decision support system reduces the design period and provides a feasible, reasoned, and positively evaluated proposal.
[Representation of knowledge in respiratory medicine: ontology should help the coding process].
Blanc, F-X; Baneyx, A; Charlet, J; Housset, B
2010-09-01
Access to medical knowledge is a major issue for health professionals and requires the development of terminologies. The objective of the reported work was to construct an ontology of respiratory medicine, i.e. an organized and formalized terminology composed by specific knowledge. The purpose is to help the medico-economical coding process and to represent the relevant knowledge about the patient. Our researches cover the whole life cycle of an ontology, from the development of a methodology, to building it from texts, to its use in an operational system. A computerized tool, based on the ontology, allows both a medico-economical coding and a graphical medical one. This second one will be used to index hospital reports. Our ontology counts 1913 concepts and contains all the knowledge included in the PMSI part of the SPLF thesaurus. Our tool has been evaluated and showed a recall of 80% and an accuracy of 85% regarding the medico-economical coding. The work presented in this paper justifies the approach that has been used. It must be continued on a large scale to validate our coding principles and the possibility of making enquiries on patient reports concerning clinical research. Copyright © 2010. Published by Elsevier Masson SAS.
Lifemap: Exploring the Entire Tree of Life.
de Vienne, Damien M
2016-12-01
The Tree of Life (ToL) is meant to be a unique representation of the evolutionary relationships between all species on earth. Huge efforts are made to assemble such a large tree, helped by the decrease of sequencing costs and improved methods to reconstruct and combine phylogenies, but no tool exists today to explore the ToL in its entirety in a satisfying manner. By combining methods used in modern cartography, such as OpenStreetMap, with a new way of representing tree-like structures, I created Lifemap, a tool allowing the exploration of a complete representation of the ToL (between 800,000 and 2.2 million species depending on the data source) in a zoomable interface. A server version of Lifemap also allows users to visualize their own trees. This should help researchers in ecology and evolutionary biology in their everyday work, but may also permit the diffusion to a broader audience of our current knowledge of the evolutionary relationships linking all organisms.
NASA Technical Reports Server (NTRS)
Bailin, Sydney; Paterra, Frank; Henderson, Scott; Truszkowski, Walt
1993-01-01
This paper presents a discussion of current work in the area of graphical modeling and model-based reasoning being undertaken by the Automation Technology Section, Code 522.3, at Goddard. The work was initially motivated by the growing realization that the knowledge acquisition process was a major bottleneck in the generation of fault detection, isolation, and repair (FDIR) systems for application in automated Mission Operations. As with most research activities this work started out with a simple objective: to develop a proof-of-concept system demonstrating that a draft rule-base for a FDIR system could be automatically realized by reasoning from a graphical representation of the system to be monitored. This work was called Knowledge From Pictures (KFP) (Truszkowski et. al. 1992). As the work has successfully progressed the KFP tool has become an environment populated by a set of tools that support a more comprehensive approach to model-based reasoning. This paper continues by giving an overview of the graphical modeling objectives of the work, describing the three tools that now populate the KFP environment, briefly presenting a discussion of related work in the field, and by indicating future directions for the KFP environment.
Marco-Ruiz, Luis; Maldonado, J Alberto; Karlsen, Randi; Bellika, Johan G
2015-01-01
Clinical Decision Support Systems (CDSS) help to improve health care and reduce costs. However, the lack of knowledge management and modelling hampers their maintenance and reuse. Current EHR standards and terminologies can allow the semantic representation of the data and knowledge of CDSS systems boosting their interoperability, reuse and maintenance. This paper presents the modelling process of respiratory conditions' symptoms and signs by a multidisciplinary team of clinicians and information architects with the help of openEHR, SNOMED and clinical information modelling tools for a CDSS. The information model of the CDSS was defined by means of an archetype and the knowledge model was implemented by means of an SNOMED-CT based ontology.
Blobel, Bernd
2013-01-01
Based on the paradigm changes for health, health services and underlying technologies as well as the need for at best comprehensive and increasingly automated interoperability, the paper addresses the challenge of knowledge representation and management for medical decision support. After introducing related definitions, a system-theoretical, architecture-centric approach to decision support systems (DSSs) and appropriate ways for representing them using systems of ontologies is given. Finally, existing and emerging knowledge representation and management standards are presented. The paper focuses on the knowledge representation and management part of DSSs, excluding the reasoning part from consideration.
PubRunner: A light-weight framework for updating text mining results.
Anekalla, Kishore R; Courneya, J P; Fiorini, Nicolas; Lever, Jake; Muchow, Michael; Busby, Ben
2017-01-01
Biomedical text mining promises to assist biologists in quickly navigating the combined knowledge in their domain. This would allow improved understanding of the complex interactions within biological systems and faster hypothesis generation. New biomedical research articles are published daily and text mining tools are only as good as the corpus from which they work. Many text mining tools are underused because their results are static and do not reflect the constantly expanding knowledge in the field. In order for biomedical text mining to become an indispensable tool used by researchers, this problem must be addressed. To this end, we present PubRunner, a framework for regularly running text mining tools on the latest publications. PubRunner is lightweight, simple to use, and can be integrated with an existing text mining tool. The workflow involves downloading the latest abstracts from PubMed, executing a user-defined tool, pushing the resulting data to a public FTP or Zenodo dataset, and publicizing the location of these results on the public PubRunner website. We illustrate the use of this tool by re-running the commonly used word2vec tool on the latest PubMed abstracts to generate up-to-date word vector representations for the biomedical domain. This shows a proof of concept that we hope will encourage text mining developers to build tools that truly will aid biologists in exploring the latest publications.
Lu, Tong; Tai, Chiew-Lan; Yang, Huafei; Cai, Shijie
2009-08-01
We present a novel knowledge-based system to automatically convert real-life engineering drawings to content-oriented high-level descriptions. The proposed method essentially turns the complex interpretation process into two parts: knowledge representation and knowledge-based interpretation. We propose a new hierarchical descriptor-based knowledge representation method to organize the various types of engineering objects and their complex high-level relations. The descriptors are defined using an Extended Backus Naur Form (EBNF), facilitating modification and maintenance. When interpreting a set of related engineering drawings, the knowledge-based interpretation system first constructs an EBNF-tree from the knowledge representation file, then searches for potential engineering objects guided by a depth-first order of the nodes in the EBNF-tree. Experimental results and comparisons with other interpretation systems demonstrate that our knowledge-based system is accurate and robust for high-level interpretation of complex real-life engineering projects.
Conceptual knowledge representation: A cross-section of current research.
Rogers, Timothy T; Wolmetz, Michael
2016-01-01
How is conceptual knowledge encoded in the brain? This special issue of Cognitive Neuropsychology takes stock of current efforts to answer this question through a variety of methods and perspectives. Across this work, three questions recur, each fundamental to knowledge representation in the mind and brain. First, what are the elements of conceptual representation? Second, to what extent are conceptual representations embodied in sensory and motor systems? Third, how are conceptual representations shaped by context, especially linguistic context? In this introductory article we provide relevant background on these themes and introduce how they are addressed by our contributing authors.
Trombert-Paviot, B; Rodrigues, J M; Rogers, J E; Baud, R; van der Haring, E; Rassinoux, A M; Abrial, V; Clavel, L; Idir, H
1999-01-01
GALEN has developed a new generation of terminology tools based on a language independent concept reference model using a compositional formalism allowing computer processing and multiple reuses. During the 4th framework program project Galen-In-Use we applied the modelling and the tools to the development of a new multipurpose coding system for surgical procedures (CCAM) in France. On one hand we contributed to a language independent knowledge repository for multicultural Europe. On the other hand we support the traditional process for creating a new coding system in medicine which is very much labour consuming by artificial intelligence tools using a medically oriented recursive ontology and natural language processing. We used an integrated software named CLAW to process French professional medical language rubrics produced by the national colleges of surgeons into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation on one hand we generate controlled French natural language to support the finalization of the linguistic labels in relation with the meanings of the conceptual system structure. On the other hand the classification manager of third generation proves to be very powerful to retrieve the initial professional rubrics with different categories of concepts within a semantic network.
Nursing Minimum Data Set Based on EHR Archetypes Approach.
Spigolon, Dandara N; Moro, Cláudia M C
2012-01-01
The establishment of a Nursing Minimum Data Set (NMDS) can facilitate the use of health information systems. The adoption of these sets and represent them based on archetypes are a way of developing and support health systems. The objective of this paper is to describe the definition of a minimum data set for nursing in endometriosis represent with archetypes. The study was divided into two steps: Defining the Nursing Minimum Data Set to endometriosis, and Development archetypes related to the NMDS. The nursing data set to endometriosis was represented in the form of archetype, using the whole perception of the evaluation item, organs and senses. This form of representation is an important tool for semantic interoperability and knowledge representation for health information systems.
Nursing Minimum Data Set Based on EHR Archetypes Approach
Spigolon, Dandara N.; Moro, Cláudia M.C.
2012-01-01
The establishment of a Nursing Minimum Data Set (NMDS) can facilitate the use of health information systems. The adoption of these sets and represent them based on archetypes are a way of developing and support health systems. The objective of this paper is to describe the definition of a minimum data set for nursing in endometriosis represent with archetypes. The study was divided into two steps: Defining the Nursing Minimum Data Set to endometriosis, and Development archetypes related to the NMDS. The nursing data set to endometriosis was represented in the form of archetype, using the whole perception of the evaluation item, organs and senses. This form of representation is an important tool for semantic interoperability and knowledge representation for health information systems. PMID:24199126
Software-engineering challenges of building and deploying reusable problem solvers.
O'Connor, Martin J; Nyulas, Csongor; Tu, Samson; Buckeridge, David L; Okhmatovskaia, Anna; Musen, Mark A
2009-11-01
Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task-method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach.
Software-engineering challenges of building and deploying reusable problem solvers
O’CONNOR, MARTIN J.; NYULAS, CSONGOR; TU, SAMSON; BUCKERIDGE, DAVID L.; OKHMATOVSKAIA, ANNA; MUSEN, MARK A.
2012-01-01
Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task–method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach. PMID:23565031
A feature dictionary supporting a multi-domain medical knowledge base.
Naeymi-Rad, F
1989-01-01
Because different terminology is used by physicians of different specialties in different locations to refer to the same feature (signs, symptoms, test results), it is essential that our knowledge development tools provide a means to access a common pool of terms. This paper discusses the design of an online medical dictionary that provides a solution to this problem for developers of multi-domain knowledge bases for MEDAS (Medical Emergency Decision Assistance System). Our Feature Dictionary supports phrase equivalents for features, feature interactions, feature classifications, and translations to the binary features generated by the expert during knowledge creation. It is also used in the conversion of a domain knowledge to the database used by the MEDAS inference diagnostic sessions. The Feature Dictionary also provides capabilities for complex queries across multiple domains using the supported relations. The Feature Dictionary supports three methods for feature representation: (1) for binary features, (2) for continuous valued features, and (3) for derived features.
Model Based Analysis and Test Generation for Flight Software
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.; Schumann, Johann M.; Mehlitz, Peter C.; Lowry, Mike R.; Karsai, Gabor; Nine, Harmon; Neema, Sandeep
2009-01-01
We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission.
Knowledge Representation Of CT Scans Of The Head
NASA Astrophysics Data System (ADS)
Ackerman, Laurens V.; Burke, M. W.; Rada, Roy
1984-06-01
We have been investigating diagnostic knowledge models which assist in the automatic classification of medical images by combining information extracted from each image with knowledge specific to that class of images. In a more general sense we are trying to integrate verbal and pictorial descriptions of disease via representations of knowledge, study automatic hypothesis generation as related to clinical medicine, evolve new mathematical image measures while integrating them into the total diagnostic process, and investigate ways to augment the knowledge of the physician. Specifically, we have constructed an artificial intelligence knowledge model using the technique of a production system blending pictorial and verbal knowledge about the respective CT scan and patient history. It is an attempt to tie together different sources of knowledge representation, picture feature extraction and hypothesis generation. Our knowledge reasoning and representation system (KRRS) works with data at the conscious reasoning level of the practicing physician while at the visual perceptional level we are building another production system, the picture parameter extractor (PPE). This paper describes KRRS and its relationship to PPE.
Personalization and Patient Involvement in Decision Support Systems: Current Trends
Sacchi, L.; Lanzola, G.; Viani, N.
2015-01-01
Summary Objectives This survey aims at highlighting the latest trends (2012-2014) on the development, use, and evaluation of Information and Communication Technologies (ICT) based decision support systems (DSSs) in medicine, with a particular focus on patient-centered and personalized care. Methods We considered papers published on scientific journals, by querying PubMed and Web of Science™. Included studies focused on the implementation or evaluation of ICT-based tools used in clinical practice. A separate search was performed on computerized physician order entry systems (CPOEs), since they are increasingly embedding patient-tailored decision support. Results We found 73 papers on DSSs (53 on specific ICT tools) and 72 papers on CPOEs. Although decision support through the delivery of recommendations is frequent (28/53 papers), our review highlighted also DSSs only based on efficient information presentation (25/53). Patient participation in making decisions is still limited (9/53), and mostly focused on risk communication. The most represented medical area is cancer (12%). Policy makers are beginning to be included among stakeholders (6/73), but integration with hospital information systems is still low. Concerning knowledge representation/management issues, we identified a trend towards building inference engines on top of standard data models. Most of the tools (57%) underwent a formal assessment study, even if half of them aimed at evaluating usability and not effectiveness. Conclusions Overall, we have noticed interesting evolutions of medical DSSs to improve communication with the patient, consider the economic and organizational impact, and use standard models for knowledge representation. However, systems focusing on patient-centered care still do not seem to be available at large. PMID:26293857
Investigating the Implementation of Knowledge Representation in the COMBATXXI System
2015-06-01
mechanism. Finally, follow-on research can work towards more cognitive modeling in order to distinguish between manned systems and unmanned systems in...Approved for public release; distribution is unlimited INVESTIGATING THE IMPLEMENTATION OF KNOWLEDGE REPRESENTATION IN THE COMBATXXI SYSTEM by Mongi...INVESTIGATING THE IMPLEMENTATION OF KNOWLEDGE REPRESENTATION IN THE COMBATXXI SYSTEM 5. FUNDING NUMBERS GM10331601, National Institute of General
De Bellis, Francesco; Ferrara, Antonia; Errico, Domenico; Panico, Francesco; Sagliano, Laura; Conson, Massimiliano; Trojano, Luigi
2016-01-01
Recent evidence shows that activation of motor information can favor identification of related tools, thus suggesting a strict link between motor and conceptual knowledge in cognitive representation of tools. However, the involvement of motor information in further semantic processing has not been elucidated. In three experiments, we aimed to ascertain whether motor information provided by observation of actions could affect processing of conceptual knowledge about tools. In Experiment 1, healthy participants judged whether pairs of tools evoking different functional handgrips had the same function. In Experiment 2 participants judged whether tools were paired with appropriate recipients. Finally, in Experiment 3 we again required functional judgments as in Experiment 1, but also included in the set of stimuli pairs of objects having different function and similar functional handgrips. In all experiments, pictures displaying either functional grasping (aimed to use tools) or structural grasping (just aimed to move tools independently from their use) were presented before each stimulus pair. The results demonstrated that, in comparison with structural grasping, observing functional grasping facilitates judgments about tools' function when objects did not imply the same functional manipulation (Experiment 1), whereas worsened such judgments when objects shared functional grasp (Experiment 3). Instead, action observation did not affect judgments concerning tool-recipient associations (Experiment 2). Our findings support a task-dependent influence of motor information on high-order conceptual tasks and provide further insights into how motor and conceptual processing about tools can interact.
Shahar, Yuval; Young, Ohad; Shalom, Erez; Mayaffit, Alon; Moskovitch, Robert; Hessing, Alon; Galperin, Maya
2004-01-01
We propose to present a poster (and potentially also a demonstration of the implemented system) summarizing the current state of our work on a hybrid, multiple-format representation of clinical guidelines that facilitates conversion of guidelines from free text to a formal representation. We describe a distributed Web-based architecture (DeGeL) and a set of tools using the hybrid representation. The tools enable performing tasks such as guideline specification, semantic markup, search, retrieval, visualization, eligibility determination, runtime application and retrospective quality assessment. The representation includes four parallel formats: Free text (one or more original sources); semistructured text (labeled by the target guideline-ontology semantic labels); semiformal text (which includes some control specification); and a formal, machine-executable representation. The specification, indexing, search, retrieval, and browsing tools are essentially independent of the ontology chosen for guideline representation, but editing the semi-formal and formal formats requires ontology-specific tools, which we have developed in the case of the Asbru guideline-specification language. The four formats support increasingly sophisticated computational tasks. The hybrid guidelines are stored in a Web-based library. All tools, such as for runtime guideline application or retrospective quality assessment, are designed to operate on all representations. We demonstrate the hybrid framework by providing examples from the semantic markup and search tools.
NASA Astrophysics Data System (ADS)
Lederman, Norman G.; Gess-Newsome, Julie; Latz, Mark S.
The purpose of this study was to assess the development and changes in preservice science teachers' subject matter and pedagogy knowledge structures as they proceeded through a professional teacher education program. Twelve secondary preservice science teachers were asked to create representations of their subject matter and pedagogy knowledge structures periodically (four times spanning the entirety of their subject-specific teacher education program) and participate in a videotaped interview concerning the eight knowledge structure representations immediately following student teaching. Qualitative analyses of knowledge structure representations and transcribed interviews within and between subjects were performed by one of the researchers and blindly corroborated by the other two researchers. Initial knowledge structure representations were typically linear and lacked coherence. Both types of knowledge structure representations were highly susceptible to change as a consequence of the act of teaching. Although there was some overlap between subject matter and pedagogy knowledge structures, they were reported to exert separate influences on classroom practice, with the pedagogy knowledge structure having primary influence on instructional decisions. Furthermore, the complexity of one's subject matter structure appeared to be a critical factor in determining whether the structure directly influences classroom practice.Received: 5 February 1993; Revised: 28 July 1993;
The interaction of representation and reasoning.
Bundy, Alan
2013-09-08
Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group.
Burns, Gully APC; Cheng, Wei-Cheng
2006-01-01
Background Knowledge bases that summarize the published literature provide useful online references for specific areas of systems-level biology that are not otherwise supported by large-scale databases. In the field of neuroanatomy, groups of small focused teams have constructed medium size knowledge bases to summarize the literature describing tract-tracing experiments in several species. Despite years of collation and curation, these databases only provide partial coverage of the available published literature. Given that the scientists reading these papers must all generate the interpretations that would normally be entered into such a system, we attempt here to provide general-purpose annotation tools to make it easy for members of the community to contribute to the task of data collation. Results In this paper, we describe an open-source, freely available knowledge management system called 'NeuroScholar' that allows straightforward structured markup of the PDF files according to a well-designed schema to capture the essential details of this class of experiment. Although, the example worked through in this paper is quite specific to neuroanatomical connectivity, the design is freely extensible and could conceivably be used to construct local knowledge bases for other experiment types. Knowledge representations of the experiment are also directly linked to the contributing textual fragments from the original research article. Through the use of this system, not only could members of the community contribute to the collation task, but input data can be gathered for automated approaches to permit knowledge acquisition through the use of Natural Language Processing (NLP). Conclusion We present a functional, working tool to permit users to populate knowledge bases for neuroanatomical connectivity data from the literature through the use of structured questionnaires. This system is open-source, fully functional and available for download from [1]. PMID:16895608
Beyond rules: The next generation of expert systems
NASA Technical Reports Server (NTRS)
Ferguson, Jay C.; Wagner, Robert E.
1987-01-01
The PARAGON Representation, Management, and Manipulation system is introduced. The concepts of knowledge representation, knowledge management, and knowledge manipulation are combined in a comprehensive system for solving real world problems requiring high levels of expertise in a real time environment. In most applications the complexity of the problem and the representation used to describe the domain knowledge tend to obscure the information from which solutions are derived. This inhibits the acquisition of domain knowledge verification/validation, places severe constraints on the ability to extend and maintain a knowledge base while making generic problem solving strategies difficult to develop. A unique hybrid system was developed to overcome these traditional limitations.
The recalibration of tactile perception during tool use is body-part specific
Cawley-Bennett, Andrew; Longo, Matthew R.; Saygin, Ayse P.
2018-01-01
Two decades of research have demonstrated that using a tool modulates spatial representations of the body. Whether this embodiment is specific to representations of the tool-using limb or extends to representations of other body parts has received little attention. Several studies of other perceptual phenomena have found that modulations to the primary somatosensory representation of the hand transfers to the face, due in part to their close proximity in primary somatosensory cortex. In the present study, we investigated whether tool-induced recalibration of tactile perception on the hand transfers to the cheek. Participants verbally estimated the distance between two tactile points applied to either their hand or face, before and after using a hand-shaped tool. Tool use recalibrated tactile distance perception on the hand—in line with previous findings—but left perception on the cheek unchanged. This finding provides support for the idea that embodiment is body-part specific. Furthermore, it suggests that tool-induced perceptual recalibration occurs at a level of somatosensory processing, where representations of the hand and face have become functionally disentangled. PMID:28702834
NASA Astrophysics Data System (ADS)
Cook, Michelle Patrick
2006-11-01
Visual representations are essential for communicating ideas in the science classroom; however, the design of such representations is not always beneficial for learners. This paper presents instructional design considerations providing empirical evidence and integrating theoretical concepts related to cognitive load. Learners have a limited working memory, and instructional representations should be designed with the goal of reducing unnecessary cognitive load. However, cognitive architecture alone is not the only factor to be considered; individual differences, especially prior knowledge, are critical in determining what impact a visual representation will have on learners' cognitive structures and processes. Prior knowledge can determine the ease with which learners can perceive and interpret visual representations in working memory. Although a long tradition of research has compared experts and novices, more research is necessary to fully explore the expert-novice continuum and maximize the potential of visual representations.
EliXR-TIME: A Temporal Knowledge Representation for Clinical Research Eligibility Criteria.
Boland, Mary Regina; Tu, Samson W; Carini, Simona; Sim, Ida; Weng, Chunhua
2012-01-01
Effective clinical text processing requires accurate extraction and representation of temporal expressions. Multiple temporal information extraction models were developed but a similar need for extracting temporal expressions in eligibility criteria (e.g., for eligibility determination) remains. We identified the temporal knowledge representation requirements of eligibility criteria by reviewing 100 temporal criteria. We developed EliXR-TIME, a frame-based representation designed to support semantic annotation for temporal expressions in eligibility criteria by reusing applicable classes from well-known clinical temporal knowledge representations. We used EliXR-TIME to analyze a training set of 50 new temporal eligibility criteria. We evaluated EliXR-TIME using an additional random sample of 20 eligibility criteria with temporal expressions that have no overlap with the training data, yielding 92.7% (76 / 82) inter-coder agreement on sentence chunking and 72% (72 / 100) agreement on semantic annotation. We conclude that this knowledge representation can facilitate semantic annotation of the temporal expressions in eligibility criteria.
Representing Medical Knowledge in a Terminological Language is Difficult1
Haimowits, Ira J.; Patil, Ramesh S.; Szolovits, Peter
1988-01-01
We report on an experiment to use a modern knowledge representation language, NIKL, to express the knowledge of a sophisticated medical reasoning program, ABEL. We are attempting to put the development of more capable medical programs on firmer representational grounds by moving from the ad hoc representations typical of current programs toward more principled representation languages now in use or under construction. Our experience with the project reported here suggests caution, however. Attempts at cleanliness and efficiency in the design of representation languages lead to a poverty of expressiveness that makes it difficult if not impossible to say in such languages what needs to be stated to support the application.
ERIC Educational Resources Information Center
Dietschmann, Hans, Ed.
This 22-paper collection addresses a variety of issues related to representation and transfer of knowledge. Individual papers include an explanation of the usefulness of general scientific models versus case-specific approaches and a discussion of different empirical approaches to the general problem of knowledge representation for information…
Knowledge sharing and collaboration in translational research, and the DC-THERA Directory
Gündel, Michaela; Austyn, Jonathan M.; Cavalieri, Duccio; Scognamiglio, Ciro; Brandizi, Marco
2011-01-01
Biomedical research relies increasingly on large collections of data sets and knowledge whose generation, representation and analysis often require large collaborative and interdisciplinary efforts. This dimension of ‘big data’ research calls for the development of computational tools to manage such a vast amount of data, as well as tools that can improve communication and access to information from collaborating researchers and from the wider community. Whenever research projects have a defined temporal scope, an additional issue of data management arises, namely how the knowledge generated within the project can be made available beyond its boundaries and life-time. DC-THERA is a European ‘Network of Excellence’ (NoE) that spawned a very large collaborative and interdisciplinary research community, focusing on the development of novel immunotherapies derived from fundamental research in dendritic cell immunobiology. In this article we introduce the DC-THERA Directory, which is an information system designed to support knowledge management for this research community and beyond. We present how the use of metadata and Semantic Web technologies can effectively help to organize the knowledge generated by modern collaborative research, how these technologies can enable effective data management solutions during and beyond the project lifecycle, and how resources such as the DC-THERA Directory fit into the larger context of e-science. PMID:21969471
Teacher spatial skills are linked to differences in geometry instruction.
Otumfuor, Beryl Ann; Carr, Martha
2017-12-01
Spatial skills have been linked to better performance in mathematics. The purpose of this study was to examine the relationship between teacher spatial skills and their instruction, including teacher content and pedagogical knowledge, use of pictorial representations, and use of gestures during geometry instruction. Fifty-six middle school teachers participated in the study. The teachers were administered spatial measures of mental rotations and spatial visualization. Next, a single geometry class was videotaped. Correlational analyses revealed that spatial skills significantly correlate with teacher's use of representational gestures and content and pedagogical knowledge during instruction of geometry. Spatial skills did not independently correlate with the use of pointing gestures or the use of pictorial representations. However, an interaction term between spatial skills and content and pedagogical knowledge did correlate significantly with the use of pictorial representations. Teacher experience as measured by the number of years of teaching and highest degree did not appear to affect the relationships among the variables with the exception of the relationship between spatial skills and teacher content and pedagogical knowledge. Teachers with better spatial skills are also likely to use representational gestures and to show better content and pedagogical knowledge during instruction. Spatial skills predict pictorial representation use only as a function of content and pedagogical knowledge. © 2017 The British Psychological Society.
NASA Technical Reports Server (NTRS)
Lewis, Clayton; Wilde, Nick
1989-01-01
Space construction will require heavy investment in the development of a wide variety of user interfaces for the computer-based tools that will be involved at every stage of construction operations. Using today's technology, user interface development is very expensive for two reasons: (1) specialized and scarce programming skills are required to implement the necessary graphical representations and complex control regimes for high-quality interfaces; (2) iteration on prototypes is required to meet user and task requirements, since these are difficult to anticipate with current (and foreseeable) design knowledge. We are attacking this problem by building a user interface development tool based on extensions to the spreadsheet model of computation. The tool provides high-level support for graphical user interfaces and permits dynamic modification of interfaces, without requiring conventional programming concepts and skills.
The power and limits of a rule-based morpho-semantic parser.
Baud, R. H.; Rassinoux, A. M.; Ruch, P.; Lovis, C.; Scherrer, J. R.
1999-01-01
The venue of Electronic Patient Record (EPR) implies an increasing amount of medical texts readily available for processing, as soon as convenient tools are made available. The chief application is text analysis, from which one can drive other disciplines like indexing for retrieval, knowledge representation, translation and inferencing for medical intelligent systems. Prerequisites for a convenient analyzer of medical texts are: building the lexicon, developing semantic representation of the domain, having a large corpus of texts available for statistical analysis, and finally mastering robust and powerful parsing techniques in order to satisfy the constraints of the medical domain. This article aims at presenting an easy-to-use parser ready to be adapted in different settings. It describes its power together with its practical limitations as experienced by the authors. PMID:10566313
The power and limits of a rule-based morpho-semantic parser.
Baud, R H; Rassinoux, A M; Ruch, P; Lovis, C; Scherrer, J R
1999-01-01
The venue of Electronic Patient Record (EPR) implies an increasing amount of medical texts readily available for processing, as soon as convenient tools are made available. The chief application is text analysis, from which one can drive other disciplines like indexing for retrieval, knowledge representation, translation and inferencing for medical intelligent systems. Prerequisites for a convenient analyzer of medical texts are: building the lexicon, developing semantic representation of the domain, having a large corpus of texts available for statistical analysis, and finally mastering robust and powerful parsing techniques in order to satisfy the constraints of the medical domain. This article aims at presenting an easy-to-use parser ready to be adapted in different settings. It describes its power together with its practical limitations as experienced by the authors.
Chaudhri, Vinay K; Elenius, Daniel; Goldenkranz, Andrew; Gong, Allison; Martone, Maryann E; Webb, William; Yorke-Smith, Neil
2014-01-01
Using knowledge representation for biomedical projects is now commonplace. In previous work, we represented the knowledge found in a college-level biology textbook in a fashion useful for answering questions. We showed that embedding the knowledge representation and question-answering abilities in an electronic textbook helped to engage student interest and improve learning. A natural question that arises from this success, and this paper's primary focus, is whether a similar approach is applicable across a range of life science textbooks. To answer that question, we considered four different textbooks, ranging from a below-introductory college biology text to an advanced, graduate-level neuroscience textbook. For these textbooks, we investigated the following questions: (1) To what extent is knowledge shared between the different textbooks? (2) To what extent can the same upper ontology be used to represent the knowledge found in different textbooks? (3) To what extent can the questions of interest for a range of textbooks be answered by using the same reasoning mechanisms? Our existing modeling and reasoning methods apply especially well both to a textbook that is comparable in level to the text studied in our previous work (i.e., an introductory-level text) and to a textbook at a lower level, suggesting potential for a high degree of portability. Even for the overlapping knowledge found across the textbooks, the level of detail covered in each textbook was different, which requires that the representations must be customized for each textbook. We also found that for advanced textbooks, representing models and scientific reasoning processes was particularly important. With some additional work, our representation methodology would be applicable to a range of textbooks. The requirements for knowledge representation are common across textbooks, suggesting that a shared semantic infrastructure for the life sciences is feasible. Because our representation overlaps heavily with those already being used for biomedical ontologies, this work suggests a natural pathway to include such representations as part of the life sciences curriculum at different grade levels.
2011-01-01
Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research. PMID:21595881
Chepelev, Leonid L; Dumontier, Michel
2011-05-19
Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research.
Gainotti, Guido; Ciaraffa, Francesca; Silveri, Maria Caterina; Marra, Camillo
2009-11-01
According to the "sensory-motor model of semantic knowledge," different categories of knowledge differ for the weight that different "sources of knowledge" have in their representation. Our study aimed to evaluate this model, checking if subjective evaluations given by normal subjects confirm the different weight that various sources of knowledge have in the representation of different biological and artifact categories and of unique entities, such as famous people or monuments. Results showed that the visual properties are considered as the main source of knowledge for all the living and nonliving categories (as well as for unique entities), but that the clustering of these "sources of knowledge" is different for biological and artifacts categories. Visual data are, indeed, mainly associated with other perceptual (auditory, olfactory, gustatory, and tactual) attributes in the mental representation of living beings and unique entities, whereas they are associated with action-related properties and tactile information in the case of artifacts.
The interaction of representation and reasoning
Bundy, Alan
2013-01-01
Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group. PMID:24062623
A fuzzy case based reasoning tool for model based approach to rocket engine health monitoring
NASA Technical Reports Server (NTRS)
Krovvidy, Srinivas; Nolan, Adam; Hu, Yong-Lin; Wee, William G.
1992-01-01
In this system we develop a fuzzy case based reasoner that can build a case representation for several past anomalies detected, and we develop case retrieval methods that can be used to index a relevant case when a new problem (case) is presented using fuzzy sets. The choice of fuzzy sets is justified by the uncertain data. The new problem can be solved using knowledge of the model along with the old cases. This system can then be used to generalize the knowledge from previous cases and use this generalization to refine the existing model definition. This in turn can help to detect failures using the model based algorithms.
Knowledge Representation and Ontologies
NASA Astrophysics Data System (ADS)
Grimm, Stephan
Knowledge representation and reasoning aims at designing computer systems that reason about a machine-interpretable representation of the world. Knowledge-based systems have a computational model of some domain of interest in which symbols serve as surrogates for real world domain artefacts, such as physical objects, events, relationships, etc. [1]. The domain of interest can cover any part of the real world or any hypothetical system about which one desires to represent knowledge for com-putational purposes. A knowledge-based system maintains a knowledge base, which stores the symbols of the computational model in the form of statements about the domain, and it performs reasoning by manipulating these symbols. Applications can base their decisions on answers to domain-relevant questions posed to a knowledge base.
Segmentation of medical images using explicit anatomical knowledge
NASA Astrophysics Data System (ADS)
Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee
1999-07-01
Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.
Examining the Task and Knowledge Demands Needed to Teach with Representations
ERIC Educational Resources Information Center
Mitchell, Rebecca; Charalambous, Charalambos Y.; Hill, Heather C.
2014-01-01
Representations are often used in instruction to highlight key mathematical ideas and support student learning. Despite their centrality in scaffolding teaching and learning, most of our understanding about the tasks involved with using representations in instruction and the knowledge requirements imposed on teachers when using these aids is…
Interleaved Practice with Multiple Representations: Analyses with Knowledge Tracing Based Techniques
ERIC Educational Resources Information Center
Rau, Martina A.; Pardos, Zachary A.
2012-01-01
The goal of this paper is to use Knowledge Tracing to augment the results obtained from an experiment that investigated the effects of practice schedules using an intelligent tutoring system for fractions. Specifically, this experiment compared different practice schedules of multiple representations of fractions: representations were presented to…
Biomedical semantics in the Semantic Web
2011-01-01
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences? We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th. PMID:21388570
Biomedical semantics in the Semantic Web.
Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott
2011-03-07
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.
Garten, Justin; Hoover, Joe; Johnson, Kate M; Boghrati, Reihane; Iskiwitch, Carol; Dehghani, Morteza
2018-02-01
Theory-driven text analysis has made extensive use of psychological concept dictionaries, leading to a wide range of important results. These dictionaries have generally been applied through word count methods which have proven to be both simple and effective. In this paper, we introduce Distributed Dictionary Representations (DDR), a method that applies psychological dictionaries using semantic similarity rather than word counts. This allows for the measurement of the similarity between dictionaries and spans of text ranging from complete documents to individual words. We show how DDR enables dictionary authors to place greater emphasis on construct validity without sacrificing linguistic coverage. We further demonstrate the benefits of DDR on two real-world tasks and finally conduct an extensive study of the interaction between dictionary size and task performance. These studies allow us to examine how DDR and word count methods complement one another as tools for applying concept dictionaries and where each is best applied. Finally, we provide references to tools and resources to make this method both available and accessible to a broad psychological audience.
NetWeaver for EMDS user guide (version 1.1): a knowledge base development system.
Keith M. Reynolds
1999-01-01
The guide describes use of the NetWeaver knowledge base development system. Knowledge representation in NetWeaver is based on object-oriented fuzzy-logic networks that offer several significant advantages over the more traditional rulebased representation. Compared to rule-based knowledge bases, NetWeaver knowledge bases are easier to build, test, and maintain because...
ERIC Educational Resources Information Center
Majidi, Sharareh; Emden, Markus
2013-01-01
One of the main components of teachers' pedagogical content knowledge refers to their use of representation forms. In a similar vein, organizing concepts logically and meaningfully is an essential element of teachers' subject matter knowledge. Since subject matter and pedagogical content knowledge of teachers are tightly connected as categories…
An object-relational model for structured representation of medical knowledge.
Koch, S; Risch, T; Schneider, W; Wagner, I V
2006-07-01
Domain specific knowledge is often not static but continuously evolving. This is especially true for the medical domain. Furthermore, the lack of standardized structures for presenting knowledge makes it difficult or often impossible to assess new knowledge in the context of existing knowledge. Possibilities to compare knowledge easily and directly are often not given. It is therefore of utmost importance to create a model that allows for comparability, consistency and quality assurance of medical knowledge in specific work situations. For this purpose, we have designed on object-relational model based on structured knowledge elements that are dynamically reusable by different multi-media-based tools for case-based documentation, disease course simulation, and decision support. With this model, high-level components, such as patient case reports or simulations of the course of a disease, and low-level components (e.g., diagnoses, symptoms or treatments) as well as the relationships between these components are modeled. The resulting schema has been implemented in AMOS II, on object-relational multi-database system supporting different views with regard to search and analysis depending on different work situations.
NASA Astrophysics Data System (ADS)
Juhler, Martin Vogt
2016-08-01
Recent research, both internationally and in Norway, has clearly expressed concerns about missing connections between subject-matter knowledge, pedagogical competence and real-life practice in schools. This study addresses this problem within the domain of field practice in teacher education, studying pre-service teachers' planning of a Physics lesson. Two means of intervention were introduced. The first was lesson study, which is a method for planning, carrying out and reflecting on a research lesson in detail with a learner and content-centered focus. This was used in combination with a second means, content representations, which is a systematic tool that connects overall teaching aims with pedagogical prompts. Changes in teaching were assessed through the construct of pedagogical content knowledge (PCK). A deductive coding analysis was carried out for this purpose. Transcripts of pre-service teachers' planning of a Physics lesson were coded into four main PCK categories, which were thereafter divided into 16 PCK sub-categories. The results showed that the intervention affected the pre-service teachers' potential to start developing PCK. First, they focused much more on categories concerning the learners. Second, they focused far more uniformly in all of the four main categories comprising PCK. Consequently, these differences could affect their potential to start developing PCK.
Tigges, P; Kathmann, N; Engel, R R
1997-07-01
Though artificial neural networks (ANN) are excellent tools for pattern recognition problems when signal to noise ratio is low, the identification of decision relevant features for ANN input data is still a crucial issue. The experience of the ANN designer and the existing knowledge and understanding of the problem seem to be the only links for a specific construction. In the present study a backpropagation ANN based on modified raw data inputs showed encouraging results. Investigating the specific influences of prototypical input patterns on a specially designed ANN led to a new sparse and efficient input data presentation. This data coding obtained by a semiautomatic procedure combining existing expert knowledge and the internal representation structures of the raw data based ANN yielded a list of feature vectors, each representing the relevant information for saccade identification. The feature based ANN produced a reduction of the error rate of nearly 40% compared with the raw data ANN. An overall correct classification of 92% of so far unknown data was realized. The proposed method of extracting internal ANN knowledge for the production of a better input data representation is not restricted to EOG recordings, and could be used in various fields of signal analysis.
Zhao, Chao; Jiang, Jingchi; Guan, Yi; Guo, Xitong; He, Bin
2018-05-01
Electronic medical records (EMRs) contain medical knowledge that can be used for clinical decision support (CDS). Our objective is to develop a general system that can extract and represent knowledge contained in EMRs to support three CDS tasks-test recommendation, initial diagnosis, and treatment plan recommendation-given the condition of a patient. We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a record. Three bipartite subgraphs (bigraphs) were extracted from the EMKN, one to support each task. One part of the bigraph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bigraph was regarded as a Markov random field (MRF) to support the inference. We proposed three graph-based energy functions and three likelihood-based energy functions. Two of these functions are based on knowledge representation learning and can provide distributed representations of medical entities. Two EMR datasets and three metrics were utilized to evaluate the performance. As a whole, the evaluation results indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships with respect to knowledge level. Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require individually designed energy functions. Copyright © 2018 Elsevier B.V. All rights reserved.
Beyond Re/Presentation: A Case for Updating the Epistemology of Schooling
ERIC Educational Resources Information Center
Biesta, Gert J. J.; Osberg, Deborah
2007-01-01
In this paper we wish to argue that despite strong challenges to representational epistemology in the last two centuries, modern schooling is still organised around a representational view of knowledge. This is the case despite teaching practices being modified to accommodate different views of knowledge that have emerged in the last two…
ERIC Educational Resources Information Center
Dreher, Anika; Kuntze, Sebastian; Lerman, Stephen
2016-01-01
Dealing with multiple representations and their connections plays a key role for learners to build up conceptual knowledge in the mathematics classroom. Hence, professional knowledge and views of mathematics teachers regarding the use of multiple representations certainly merit attention. In particular, investigating such views of preservice…
Knowledge-based vision and simple visual machines.
Cliff, D; Noble, J
1997-01-01
The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong. PMID:9304684
Acoustic/seismic signal propagation and sensor performance modeling
NASA Astrophysics Data System (ADS)
Wilson, D. Keith; Marlin, David H.; Mackay, Sean
2007-04-01
Performance, optimal employment, and interpretation of data from acoustic and seismic sensors depend strongly and in complex ways on the environment in which they operate. Software tools for guiding non-expert users of acoustic and seismic sensors are therefore much needed. However, such tools require that many individual components be constructed and correctly connected together. These components include the source signature and directionality, representation of the atmospheric and terrain environment, calculation of the signal propagation, characterization of the sensor response, and mimicking of the data processing at the sensor. Selection of an appropriate signal propagation model is particularly important, as there are significant trade-offs between output fidelity and computation speed. Attenuation of signal energy, random fading, and (for array systems) variations in wavefront angle-of-arrival should all be considered. Characterization of the complex operational environment is often the weak link in sensor modeling: important issues for acoustic and seismic modeling activities include the temporal/spatial resolution of the atmospheric data, knowledge of the surface and subsurface terrain properties, and representation of ambient background noise and vibrations. Design of software tools that address these challenges is illustrated with two examples: a detailed target-to-sensor calculation application called the Sensor Performance Evaluator for Battlefield Environments (SPEBE) and a GIS-embedded approach called Battlefield Terrain Reasoning and Awareness (BTRA).
Representation and matching of knowledge to design digital systems
NASA Technical Reports Server (NTRS)
Jones, J. U.; Shiva, S. G.
1988-01-01
A knowledge-based expert system is described that provides an approach to solve a problem requiring an expert with considerable domain expertise and facts about available digital hardware building blocks. To design digital hardware systems from their high level VHDL (Very High Speed Integrated Circuit Hardware Description Language) representation to their finished form, a special data representation is required. This data representation as well as the functioning of the overall system is described.
Formal ontologies in biomedical knowledge representation.
Schulz, S; Jansen, L
2013-01-01
Medical decision support and other intelligent applications in the life sciences depend on increasing amounts of digital information. Knowledge bases as well as formal ontologies are being used to organize biomedical knowledge and data. However, these two kinds of artefacts are not always clearly distinguished. Whereas the popular RDF(S) standard provides an intuitive triple-based representation, it is semantically weak. Description logics based ontology languages like OWL-DL carry a clear-cut semantics, but they are computationally expensive, and they are often misinterpreted to encode all kinds of statements, including those which are not ontological. We distinguish four kinds of statements needed to comprehensively represent domain knowledge: universal statements, terminological statements, statements about particulars and contingent statements. We argue that the task of formal ontologies is solely to represent universal statements, while the non-ontological kinds of statements can nevertheless be connected with ontological representations. To illustrate these four types of representations, we use a running example from parasitology. We finally formulate recommendations for semantically adequate ontologies that can efficiently be used as a stable framework for more context-dependent biomedical knowledge representation and reasoning applications like clinical decision support systems.
Research on knowledge representation, machine learning, and knowledge acquisition
NASA Technical Reports Server (NTRS)
Buchanan, Bruce G.
1987-01-01
Research in knowledge representation, machine learning, and knowledge acquisition performed at Knowledge Systems Lab. is summarized. The major goal of the research was to develop flexible, effective methods for representing the qualitative knowledge necessary for solving large problems that require symbolic reasoning as well as numerical computation. The research focused on integrating different representation methods to describe different kinds of knowledge more effectively than any one method can alone. In particular, emphasis was placed on representing and using spatial information about three dimensional objects and constraints on the arrangement of these objects in space. Another major theme is the development of robust machine learning programs that can be integrated with a variety of intelligent systems. To achieve this goal, learning methods were designed, implemented and experimented within several different problem solving environments.
Action representation: crosstalk between semantics and pragmatics.
Prinz, Wolfgang
2014-03-01
Marc Jeannerod pioneered a representational approach to movement and action. In his approach, motor representations provide both, declarative knowledge about action and procedural knowledge for action (action semantics and action pragmatics, respectively). Recent evidence from language comprehension and action simulation supports the claim that action pragmatics and action semantics draw on common representational resources, thus challenging the traditional divide between declarative and procedural action knowledge. To account for these observations, three kinds of theoretical frameworks are discussed: (i) semantics is grounded in pragmatics, (ii) pragmatics is anchored in semantics, and (iii) pragmatics is part and parcel of semantics. © 2013 Elsevier Ltd. All rights reserved.
On a categorial aspect of knowledge representation
NASA Astrophysics Data System (ADS)
Tataj, Emanuel; Mulawka, Jan; Nieznański, Edward
Adequate representation of data is crucial for modeling any type of data. To faithfully present and describe the relevant section of the world it is necessary to select the method that can easily be implemented on a computer system which will help in further description allowing reasoning. The main objective of this contribution is to present methods of knowledge representation using categorial approach. Next to identify the main advantages for computer implementation. Categorical aspect of knowledge representation is considered in semantic networks realisation. Such method borrows already known metaphysics properties for data modeling process. The potential topics of further development of categorical semantic networks implementations are also underlined.
A knowledge base of the chemical compounds of intermediary metabolism.
Karp, P D
1992-08-01
This paper describes a publicly available knowledge base of the chemical compounds involved in intermediary metabolism. We consider the motivations for constructing a knowledge base of metabolic compounds, the methodology by which it was constructed, and the information that it currently contains. Currently the knowledge base describes 981 compounds, listing for each: synonyms for its name, a systematic name, CAS registry number, chemical formula, molecular weight, chemical structure and two-dimensional display coordinates for the structure. The Compound Knowledge Base (CompoundKB) illustrates several methodological principles that should guide the development of biological knowledge bases. I argue that biological datasets should be made available in multiple representations to increase their accessibility to end users, and I present multiple representations of the CompoundKB (knowledge base, relational data base and ASN. 1 representations). I also analyze the general characteristics of these representations to provide an understanding of their relative advantages and disadvantages. Another principle is that the error rate of biological data bases should be estimated and documented-this analysis is performed for the CompoundKB.
Ontology and medical diagnosis.
Bertaud-Gounot, Valérie; Duvauferrier, Régis; Burgun, Anita
2012-03-01
Ontology and associated generic tools are appropriate for knowledge modeling and reasoning, but most of the time, disease definitions in existing description logic (DL) ontology are not sufficient to classify patient's characteristics under a particular disease because they do not formalize operational definitions of diseases (association of signs and symptoms=diagnostic criteria). The main objective of this study is to propose an ontological representation which takes into account the diagnostic criteria on which specific patient conditions may be classified under a specific disease. This method needs as a prerequisite a clear list of necessary and sufficient diagnostic criteria as defined for lots of diseases by learned societies. It does not include probability/uncertainty which Web Ontology Language (OWL 2.0) cannot handle. We illustrate it with spondyloarthritis (SpA). Ontology has been designed in Protégé 4.1 OWL-DL2.0. Several kinds of criteria were formalized: (1) mandatory criteria, (2) picking two criteria among several diagnostic criteria, (3) numeric criteria. Thirty real patient cases were successfully classified with the reasoner. This study shows that it is possible to represent operational definitions of diseases with OWL and successfully classify real patient cases. Representing diagnostic criteria as descriptive knowledge (instead of rules in Semantic Web Rule Language or Prolog) allows us to take advantage of tools already available for OWL. While we focused on Assessment of SpondyloArthritis international Society SpA criteria, we believe that many of the representation issues addressed here are relevant to using OWL-DL for operational definition of other diseases in ontology.
Semantic representation of CDC-PHIN vocabulary using Simple Knowledge Organization System.
Zhu, Min; Mirhaji, Parsa
2008-11-06
PHIN Vocabulary Access and Distribution System (VADS) promotes the use of standards based vocabulary within CDC information systems. However, the current PHIN vocabulary representation hinders its wide adoption. Simple Knowledge Organization System (SKOS) is a W3C draft specification to support the formal representation of Knowledge Organization Systems (KOS) within the framework of the Semantic Web. We present a method of adopting SKOS to represent PHIN vocabulary in order to enable automated information sharing and integration.
Forming Tool Use Representations: A Neurophysiological Investigation into Tool Exposure
ERIC Educational Resources Information Center
Mizelle, John Christopher; Tang, Teresa; Pirouz, Nikta; Wheaton, Lewis A.
2011-01-01
Prior work has identified a common left parietofrontal network for storage of tool-related information for various tasks. How these representations become established within this network on the basis of different modes of exposure is unclear. Here, healthy subjects engaged in physical practice (direct exposure) with familiar and unfamiliar tools.…
ERIC Educational Resources Information Center
Franco, Gina M.; Muis, Krista R.; Kendeou, Panayiota; Ranellucci, John; Sampasivam, Lavanya; Wang, Xihui
2012-01-01
The purpose of this study was to investigate the role of epistemic beliefs and knowledge representations in cognitive and metacognitive processing when learning about physics concepts through text. Specifically, we manipulated the representation of physics concepts in texts about Newtonian mechanics and explored how these texts interacted with…
ERIC Educational Resources Information Center
Molina, Otilia Alejandro; Ratté, Sylvie
2017-01-01
This research introduces a method to construct a unified representation of teachers and students perspectives based on the actionable knowledge discovery (AKD) and delivery framework. The representation is constructed using two models: one obtained from student evaluations and the other obtained from teachers' reflections about their teaching…
ERIC Educational Resources Information Center
Portmess, Lisa
2013-01-01
Media representations of massive open online courses (MOOCs) such as those offered by Coursera, edX and Udacity reflect tension and ambiguity in their bold promise of democratized education and global knowledge sharing. An approach to MOOCs that emphasizes the tacit epistemology of such representations suggests a richer account of the ambiguities…
ERIC Educational Resources Information Center
Belenky, Daniel M.; Schalk, Lennart
2014-01-01
Research in both cognitive and educational psychology has explored the effect of different types of external knowledge representations (e.g., manipulatives, graphical/pictorial representations, texts) on a variety of important outcome measures. We place this large and multifaceted research literature into an organizing framework, classifying three…
ERIC Educational Resources Information Center
Rau, Martina A.
2018-01-01
To learn content knowledge in science, technology, engineering, and math domains, students need to make connections among visual representations. This article considers two kinds of connection-making skills: (1) "sense-making skills" that allow students to verbally explain mappings among representations and (2) "perceptual…
Williams, Kent E; Voigt, Jeffrey R
2004-01-01
The research reported herein presents the results of an empirical evaluation that focused on the accuracy and reliability of cognitive models created using a computerized tool: the cognitive analysis tool for human-computer interaction (CAT-HCI). A sample of participants, expert in interacting with a newly developed tactical display for the U.S. Army's Bradley Fighting Vehicle, individually modeled their knowledge of 4 specific tasks employing the CAT-HCI tool. Measures of the accuracy and consistency of task models created by these task domain experts using the tool were compared with task models created by a double expert. The findings indicated a high degree of consistency and accuracy between the different "single experts" in the task domain in terms of the resultant models generated using the tool. Actual or potential applications of this research include assessing human-computer interaction complexity, determining the productivity of human-computer interfaces, and analyzing an interface design to determine whether methods can be automated.
A patient workflow management system built on guidelines.
Dazzi, L.; Fassino, C.; Saracco, R.; Quaglini, S.; Stefanelli, M.
1997-01-01
To provide high quality, shared, and distributed medical care, clinical and organizational issues need to be integrated. This work describes a methodology for developing a Patient Workflow Management System, based on a detailed model of both the medical work process and the organizational structure. We assume that the medical work process is represented through clinical practice guidelines, and that an ontological description of the organization is available. Thus, we developed tools 1) for acquiring the medical knowledge contained into a guideline, 2) to translate the derived formalized guideline into a computational formalism, precisely a Petri Net, 3) to maintain different representation levels. The high level representation guarantees that the Patient Workflow follows the guideline prescriptions, while the low level takes into account the specific organization characteristics and allow allocating resources for managing a specific patient in daily practice. PMID:9357606
NASA Technical Reports Server (NTRS)
Kellner, A.
1987-01-01
Extremely large knowledge sources and efficient knowledge access characterizing future real-life artificial intelligence applications represent crucial requirements for on-board artificial intelligence systems due to obvious computer time and storage constraints on spacecraft. A type of knowledge representation and corresponding reasoning mechanism is proposed which is particularly suited for the efficient processing of such large knowledge bases in expert systems.
Integrating natural language processing and web GIS for interactive knowledge domain visualization
NASA Astrophysics Data System (ADS)
Du, Fangming
Recent years have seen a powerful shift towards data-rich environments throughout society. This has extended to a change in how the artifacts and products of scientific knowledge production can be analyzed and understood. Bottom-up approaches are on the rise that combine access to huge amounts of academic publications with advanced computer graphics and data processing tools, including natural language processing. Knowledge domain visualization is one of those multi-technology approaches, with its aim of turning domain-specific human knowledge into highly visual representations in order to better understand the structure and evolution of domain knowledge. For example, network visualizations built from co-author relations contained in academic publications can provide insight on how scholars collaborate with each other in one or multiple domains, and visualizations built from the text content of articles can help us understand the topical structure of knowledge domains. These knowledge domain visualizations need to support interactive viewing and exploration by users. Such spatialization efforts are increasingly looking to geography and GIS as a source of metaphors and practical technology solutions, even when non-georeferenced information is managed, analyzed, and visualized. When it comes to deploying spatialized representations online, web mapping and web GIS can provide practical technology solutions for interactive viewing of knowledge domain visualizations, from panning and zooming to the overlay of additional information. This thesis presents a novel combination of advanced natural language processing - in the form of topic modeling - with dimensionality reduction through self-organizing maps and the deployment of web mapping/GIS technology towards intuitive, GIS-like, exploration of a knowledge domain visualization. A complete workflow is proposed and implemented that processes any corpus of input text documents into a map form and leverages a web application framework to let users explore knowledge domain maps interactively. This workflow is implemented and demonstrated for a data set of more than 66,000 conference abstracts.
ERIC Educational Resources Information Center
Selva, Ana Coelho Vieira; Falcao, Jorge Tarcisio da Rocha; Nunes, Terezinha
2005-01-01
This research offers empirical evidence of the importance of supplying diverse symbolic representations in order to support concept development in mathematics. Graphical representation can be a helpful symbolic tool for concept development in the conceptual field of additive structures. Nevertheless, this symbolic tool has specific difficulties…
MedRapid--medical community & business intelligence system.
Finkeissen, E; Fuchs, H; Jakob, T; Wetter, T
2002-01-01
currently, it takes at least 6 months for researchers to communicate their results. This delay is caused (a) by partial lacks of machine support for both representation as well as communication and (b) by media breaks during the communication process. To make an integrated communication between researchers and practitioners possible, a general structure for medical content representation has been set up. The procedure for data entry and quality management has been generalized and implemented in a web-based authoring system. The MedRapid-system supports the medical experts in entering their knowledge into a database. Here, the level of detail is still below that of current medical guidelines representation. However, the symmetric structure for an area-wide medical knowledge representation is highly retrievable and thus can quickly be communicated into daily routine for the improvement of the treatment quality. In addition, other sources like journal articles and medical guidelines can be references within the MedRapid-system and thus be communicated into daily routine. The fundamental system for the representation of medical reference knowledge (from reference works/books) itself is not sufficient for the friction-less communication amongst medical staff. Rather, the process of (a) representing medical knowledge, (b) refereeing the represented knowledge, (c) communicating the represented knowledge, and (d) retrieving the represented knowledge has to be unified. MedRapid will soon support the whole process on one server system.
Navarrete, Jairo A; Dartnell, Pablo
2017-08-01
Category Theory, a branch of mathematics, has shown promise as a modeling framework for higher-level cognition. We introduce an algebraic model for analogy that uses the language of category theory to explore analogy-related cognitive phenomena. To illustrate the potential of this approach, we use this model to explore three objects of study in cognitive literature. First, (a) we use commutative diagrams to analyze an effect of playing particular educational board games on the learning of numbers. Second, (b) we employ a notion called coequalizer as a formal model of re-representation that explains a property of computational models of analogy called "flexibility" whereby non-similar representational elements are considered matches and placed in structural correspondence. Finally, (c) we build a formal learning model which shows that re-representation, language processing and analogy making can explain the acquisition of knowledge of rational numbers. These objects of study provide a picture of acquisition of numerical knowledge that is compatible with empirical evidence and offers insights on possible connections between notions such as relational knowledge, analogy, learning, conceptual knowledge, re-representation and procedural knowledge. This suggests that the approach presented here facilitates mathematical modeling of cognition and provides novel ways to think about analogy-related cognitive phenomena.
2017-01-01
Category Theory, a branch of mathematics, has shown promise as a modeling framework for higher-level cognition. We introduce an algebraic model for analogy that uses the language of category theory to explore analogy-related cognitive phenomena. To illustrate the potential of this approach, we use this model to explore three objects of study in cognitive literature. First, (a) we use commutative diagrams to analyze an effect of playing particular educational board games on the learning of numbers. Second, (b) we employ a notion called coequalizer as a formal model of re-representation that explains a property of computational models of analogy called “flexibility” whereby non-similar representational elements are considered matches and placed in structural correspondence. Finally, (c) we build a formal learning model which shows that re-representation, language processing and analogy making can explain the acquisition of knowledge of rational numbers. These objects of study provide a picture of acquisition of numerical knowledge that is compatible with empirical evidence and offers insights on possible connections between notions such as relational knowledge, analogy, learning, conceptual knowledge, re-representation and procedural knowledge. This suggests that the approach presented here facilitates mathematical modeling of cognition and provides novel ways to think about analogy-related cognitive phenomena. PMID:28841643
The effectiveness of physical models in teaching anatomy: a meta-analysis of comparative studies.
Yammine, Kaissar; Violato, Claudio
2016-10-01
There are various educational methods used in anatomy teaching. While three dimensional (3D) visualization technologies are gaining ground due to their ever-increasing realism, reports investigating physical models as a low-cost 3D traditional method are still the subject of considerable interest. The aim of this meta-analysis is to quantitatively assess the effectiveness of such models based on comparative studies. Eight studies (7 randomized trials; 1 quasi-experimental) including 16 comparison arms and 820 learners met the inclusion criteria. Primary outcomes were defined as factual, spatial and overall percentage scores. The meta-analytical results are: educational methods using physical models yielded significantly better results when compared to all other educational methods for the overall knowledge outcome (p < 0.001) and for spatial knowledge acquisition (p < 0.001). Significantly better results were also found with regard to the long-retention knowledge outcome (p < 0.01). No significance was found for the factual knowledge acquisition outcome. The evidence in the present systematic review was found to have high internal validity and at least an acceptable strength. In conclusion, physical anatomical models offer a promising tool for teaching gross anatomy in 3D representation due to their easy accessibility and educational effectiveness. Such models could be a practical tool to bring up the learners' level of gross anatomy knowledge at low cost.
Representation and presentation of requirements knowledge
NASA Technical Reports Server (NTRS)
Johnson, W. L.; Feather, Martin S.; Harris, David R.
1992-01-01
An approach to representation and presentation of knowledge used in the ARIES, an experimental requirements/specification environment, is described. The approach applies the notion of a representation architecture to the domain of software engineering and incorporates a strong coupling to a transformation system. It is characterized by a single highly expressive underlying representation, interfaced simultaneously to multiple presentations, each with notations of differing degrees of expressivity. This enables analysts to use multiple languages for describing systems and have these descriptions yield a single consistent model of the system.
Agoncillo, A V; Mejino, J L; Rosse, C
1999-01-01
A principled and logical representation of the structure of the human body has led to conflicts with traditional representations of the same knowledge by anatomy textbooks. The examples which illustrate resolution of these conflicts suggest that stricter requirements must be met for semantic consistency, expressivity and specificity by knowledge sources intended to support inference than by textbooks and term lists. These next-generation resources should influence traditional concept representation, rather than be constrained by convention.
Demir, E; Babur, O; Dogrusoz, U; Gursoy, A; Nisanci, G; Cetin-Atalay, R; Ozturk, M
2002-07-01
Availability of the sequences of entire genomes shifts the scientific curiosity towards the identification of function of the genomes in large scale as in genome studies. In the near future, data produced about cellular processes at molecular level will accumulate with an accelerating rate as a result of proteomics studies. In this regard, it is essential to develop tools for storing, integrating, accessing, and analyzing this data effectively. We define an ontology for a comprehensive representation of cellular events. The ontology presented here enables integration of fragmented or incomplete pathway information and supports manipulation and incorporation of the stored data, as well as multiple levels of abstraction. Based on this ontology, we present the architecture of an integrated environment named Patika (Pathway Analysis Tool for Integration and Knowledge Acquisition). Patika is composed of a server-side, scalable, object-oriented database and client-side editors to provide an integrated, multi-user environment for visualizing and manipulating network of cellular events. This tool features automated pathway layout, functional computation support, advanced querying and a user-friendly graphical interface. We expect that Patika will be a valuable tool for rapid knowledge acquisition, microarray generated large-scale data interpretation, disease gene identification, and drug development. A prototype of Patika is available upon request from the authors.
ERIC Educational Resources Information Center
Chen, Zhongzhou; Gladding, Gary
2014-01-01
Visual representations play a critical role in teaching physics. However, since we do not have a satisfactory understanding of how visual perception impacts the construction of abstract knowledge, most visual representations used in instructions are either created based on existing conventions or designed according to the instructor's intuition,…
Study of Design Knowledge Capture (DKC) schemes implemented in magnetic bearing applications
NASA Technical Reports Server (NTRS)
1990-01-01
A design knowledge capture (DKC) scheme was implemented using frame-based techniques. The objective of such a system is to capture not only the knowledge which describes a design, but also that which explains how the design decisions were reached. These knowledge types were labelled definitive and explanatory, respectively. Examination of the design process helped determine what knowledge to retain and at what stage that knowledge is used. A discussion of frames resulted in the recognition of their value to knowledge representation and organization. The FORMS frame system was used as a basis for further development, and for examples using magnetic bearing design. The specific contributions made by this research include: determination that frame-based systems provide a useful methodology for management and application of design knowledge; definition of specific user interface requirements, (this consists of a window-based browser); specification of syntax for DKC commands; and demonstration of the feasibility of DKC by applications to existing designs. It was determined that design knowledge capture could become an extremely valuable engineering tool for complicated, long-life systems, but that further work was needed, particularly the development of a graphic, window-based interface.
MTK: An AI tool for model-based reasoning
NASA Technical Reports Server (NTRS)
Erickson, William K.; Rudokas, Mary R.
1988-01-01
A 1988 goal for the Systems Autonomy Demonstration Project Office of the NASA Ames Research Office is to apply model-based representation and reasoning techniques in a knowledge-based system that will provide monitoring, fault diagnosis, control, and trend analysis of the Space Station Thermal Control System (TCS). A number of issues raised during the development of the first prototype system inspired the design and construction of a model-based reasoning tool called MTK, which was used in the building of the second prototype. These issues are outlined here with examples from the thermal system to highlight the motivating factors behind them, followed by an overview of the capabilities of MTK, which was developed to address these issues in a generic fashion.
Modeling a flexible representation machinery of human concept learning.
Matsuka, Toshihiko; Sakamoto, Yasuaki; Chouchourelou, Arieta
2008-01-01
It is widely acknowledged that categorically organized abstract knowledge plays a significant role in high-order human cognition. Yet, there are many unknown issues about the nature of how categories are internally represented in our mind. Traditionally, it has been considered that there is a single innate internal representation system for categorical knowledge, such as Exemplars, Prototypes, or Rules. However, results of recent empirical and computational studies collectively suggest that the human internal representation system is apparently capable of exhibiting behaviors consistent with various types of internal representation schemes. We, then, hypothesized that humans' representational system as a dynamic mechanism, capable of selecting a representation scheme that meets situational characteristics, including complexities of category structure. The present paper introduces a framework for a cognitive model that integrates robust and flexible internal representation machinery. Three simulation studies were conducted. The results showed that SUPERSET, our new model, successfully exhibited cognitive behaviors that are consistent with three main theories of the human internal representation system. Furthermore, a simulation study on social cognitive behaviors showed that the model was capable of acquiring knowledge with high commonality, even for a category structure with numerous valid conceptualizations.
Psychology of knowledge representation.
Grimm, Lisa R
2014-05-01
Every cognitive enterprise involves some form of knowledge representation. Humans represent information about the external world and internal mental states, like beliefs and desires, and use this information to meet goals (e.g., classification or problem solving). Unfortunately, researchers do not have direct access to mental representations. Instead, cognitive scientists design experiments and implement computational models to develop theories about the mental representations present during task performance. There are several main types of mental representation and corresponding processes that have been posited: spatial, feature, network, and structured. Each type has a particular structure and a set of processes that are capable of accessing and manipulating information within the representation. The structure and processes determine what information can be used during task performance and what information has not been represented at all. As such, the different types of representation are likely used to solve different kinds of tasks. For example, structured representations are more complex and computationally demanding, but are good at representing relational information. Researchers interested in human psychology would benefit from considering how knowledge is represented in their domain of inquiry. For further resources related to this article, please visit the WIREs website. The author has declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., and prompt representation to a client. Competent representation requires the legal knowledge, skill, access to evidence, thoroughness, and expeditious preparation reasonably necessary for representation...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., and prompt representation to a client. Competent representation requires the legal knowledge, skill, access to evidence, thoroughness, and expeditious preparation reasonably necessary for representation...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and prompt representation to a client. Competent representation requires the legal knowledge, skill, access to evidence, thoroughness, and expeditious preparation reasonably necessary for representation...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., and prompt representation to a client. Competent representation requires the legal knowledge, skill, access to evidence, thoroughness, and expeditious preparation reasonably necessary for representation...
A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base
NASA Technical Reports Server (NTRS)
Kautzmann, Frank N., III
1988-01-01
Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.
ERIC Educational Resources Information Center
van Garderen, Delinda; Scheuermann, Amy; Poch, Apryl; Murray, Mary M.
2018-01-01
The use of visual representations (VRs) in mathematics is a strongly recommended practice in special education. Although recommended, little is known about special educators' knowledge of and instructional emphasis about VRs. Therefore, in this study, the authors examined special educators' own knowledge of and their instructional emphasis with…
Knowledge representation issues for explaining plans
NASA Technical Reports Server (NTRS)
Prince, Mary Ellen; Johannes, James D.
1988-01-01
Explanations are recognized as an important facet of intelligent behavior. Unfortunately, expert systems are currently limited in their ability to provide useful, intelligent justifications of their results. We are currently investigating the issues involved in providing explanation facilities for expert planning systems. This investigation addresses three issues: knowledge content, knowledge representation, and explanation structure.
The representation of semantic knowledge in a child with Williams syndrome.
Robinson, Sally J; Temple, Christine M
2009-05-01
This study investigated whether there are distinct types of semantic knowledge with distinct representational bases during development. The representation of semantic knowledge in a teenage child (S.T.) with Williams syndrome was explored for the categories of animals, fruit, and vegetables, manipulable objects, and nonmanipulable objects. S.T.'s lexical stores were of a normal size but the volume of "sensory feature" semantic knowledge she generated in oral descriptions was reduced. In visual recognition decisions, S.T. made more false positives to nonitems than did controls. Although overall naming of pictures was unimpaired, S.T. exhibited a category-specific anomia for nonmanipulable objects and impaired naming of visual-feature descriptions of animals. S.T.'s performance was interpreted as reflecting the impaired integration of distinctive features from perceptual input, which may impact upon nonmanipulable objects to a greater extent than the other knowledge categories. Performance was used to inform adult-based models of semantic representation, with category structure proposed to emerge due to differing degrees of dependency upon underlying knowledge types, feature correlations, and the acquisition of information from modality-specific processing modules.
ERIC Educational Resources Information Center
Gebre, Engida
2018-01-01
This paper presents a descriptive case study where infographics--visual representation of data and ideas--have been used as cognitive tools to facilitate learning with multiple representations in the context of secondary school students' science news reporting. Despite the complementary nature of the two research foci, studies on cognitive tools…
Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer
González-Castro, Lorena; Carta, Claudio; van der Horst, Eelke; Lopes, Pedro; Kaliyaperumal, Rajaram; Thompson, Mark; Thompson, Rachel; Queralt-Rosinach, Núria; Lopez, Estrella; Wood, Libby; Robertson, Agata; Lamanna, Claudia; Gilling, Mette; Orth, Michael; Merino-Martinez, Roxana; Taruscio, Domenica; Lochmüller, Hanns
2017-01-01
Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries. PMID:29214177
Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer.
Sernadela, Pedro; González-Castro, Lorena; Carta, Claudio; van der Horst, Eelke; Lopes, Pedro; Kaliyaperumal, Rajaram; Thompson, Mark; Thompson, Rachel; Queralt-Rosinach, Núria; Lopez, Estrella; Wood, Libby; Robertson, Agata; Lamanna, Claudia; Gilling, Mette; Orth, Michael; Merino-Martinez, Roxana; Posada, Manuel; Taruscio, Domenica; Lochmüller, Hanns; Robinson, Peter; Roos, Marco; Oliveira, José Luís
2017-01-01
Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries.
Yildirim, Ilker; Jacobs, Robert A
2015-06-01
If a person is trained to recognize or categorize objects or events using one sensory modality, the person can often recognize or categorize those same (or similar) objects and events via a novel modality. This phenomenon is an instance of cross-modal transfer of knowledge. Here, we study the Multisensory Hypothesis which states that people extract the intrinsic, modality-independent properties of objects and events, and represent these properties in multisensory representations. These representations underlie cross-modal transfer of knowledge. We conducted an experiment evaluating whether people transfer sequence category knowledge across auditory and visual domains. Our experimental data clearly indicate that we do. We also developed a computational model accounting for our experimental results. Consistent with the probabilistic language of thought approach to cognitive modeling, our model formalizes multisensory representations as symbolic "computer programs" and uses Bayesian inference to learn these representations. Because the model demonstrates how the acquisition and use of amodal, multisensory representations can underlie cross-modal transfer of knowledge, and because the model accounts for subjects' experimental performances, our work lends credence to the Multisensory Hypothesis. Overall, our work suggests that people automatically extract and represent objects' and events' intrinsic properties, and use these properties to process and understand the same (and similar) objects and events when they are perceived through novel sensory modalities.
Tao, Cui; Jiang, Guoqian; Oniki, Thomas A; Freimuth, Robert R; Zhu, Qian; Sharma, Deepak; Pathak, Jyotishman; Huff, Stanley M; Chute, Christopher G
2013-05-01
The clinical element model (CEM) is an information model designed for representing clinical information in electronic health records (EHR) systems across organizations. The current representation of CEMs does not support formal semantic definitions and therefore it is not possible to perform reasoning and consistency checking on derived models. This paper introduces our efforts to represent the CEM specification using the Web Ontology Language (OWL). The CEM-OWL representation connects the CEM content with the Semantic Web environment, which provides authoring, reasoning, and querying tools. This work may also facilitate the harmonization of the CEMs with domain knowledge represented in terminology models as well as other clinical information models such as the openEHR archetype model. We have created the CEM-OWL meta ontology based on the CEM specification. A convertor has been implemented in Java to automatically translate detailed CEMs from XML to OWL. A panel evaluation has been conducted, and the results show that the OWL modeling can faithfully represent the CEM specification and represent patient data.
Tao, Cui; Jiang, Guoqian; Oniki, Thomas A; Freimuth, Robert R; Zhu, Qian; Sharma, Deepak; Pathak, Jyotishman; Huff, Stanley M; Chute, Christopher G
2013-01-01
The clinical element model (CEM) is an information model designed for representing clinical information in electronic health records (EHR) systems across organizations. The current representation of CEMs does not support formal semantic definitions and therefore it is not possible to perform reasoning and consistency checking on derived models. This paper introduces our efforts to represent the CEM specification using the Web Ontology Language (OWL). The CEM-OWL representation connects the CEM content with the Semantic Web environment, which provides authoring, reasoning, and querying tools. This work may also facilitate the harmonization of the CEMs with domain knowledge represented in terminology models as well as other clinical information models such as the openEHR archetype model. We have created the CEM-OWL meta ontology based on the CEM specification. A convertor has been implemented in Java to automatically translate detailed CEMs from XML to OWL. A panel evaluation has been conducted, and the results show that the OWL modeling can faithfully represent the CEM specification and represent patient data. PMID:23268487
Semantic e-Learning: Next Generation of e-Learning?
NASA Astrophysics Data System (ADS)
Konstantinos, Markellos; Penelope, Markellou; Giannis, Koutsonikos; Aglaia, Liopa-Tsakalidi
Semantic e-learning aspires to be the next generation of e-learning, since the understanding of learning materials and knowledge semantics allows their advanced representation, manipulation, sharing, exchange and reuse and ultimately promote efficient online experiences for users. In this context, the paper firstly explores some fundamental Semantic Web technologies and then discusses current and potential applications of these technologies in e-learning domain, namely, Semantic portals, Semantic search, personalization, recommendation systems, social software and Web 2.0 tools. Finally, it highlights future research directions and open issues of the field.
[Unconscious sexual desire: fMRI and EEG evidences from self-expansion theory to mirror neurons].
Ortigue, Stephanie; Bianchi-Demicheli, Francesco
2010-03-24
Recent advances in cognitive-social neuroscience allow a better understanding of the mechanisms underlying dyadic relationships. From a neuronal viewpoint, desire in dyadic relationships involves a specific fronto-temporo-parietal network and also a subcortical network that mediates conscious and unconscious mechanisms of reward, satisfaction, attention, self representation and self-expansion. The integration of this neuroscientific knowledge on the unconscious neurobiological activation for sexual desire in the human brain will provide physicians with new therapeutical and neuroscientific tools to apprehend sexual disorders in couple.
Code of Federal Regulations, 2013 CFR
2013-07-01
... competent representation to a client. Competent representation requires the legal, scientific, and technical knowledge, skill, thoroughness and preparation reasonably necessary for the representation. ... COMMERCE REPRESENTATION OF OTHERS BEFORE THE UNITED STATES PATENT AND TRADEMARK OFFICE USPTO Rules of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... competent representation to a client. Competent representation requires the legal, scientific, and technical knowledge, skill, thoroughness and preparation reasonably necessary for the representation. ... COMMERCE REPRESENTATION OF OTHERS BEFORE THE UNITED STATES PATENT AND TRADEMARK OFFICE USPTO Rules of...
Chrysafiadi, Konstantina; Virvou, Maria
2013-12-01
In this paper a knowledge representation approach of an adaptive and/or personalized tutoring system is presented. The domain knowledge should be represented in a more realistic way in order to allow the adaptive and/or personalized tutoring system to deliver the learning material to each individual learner dynamically taking into account her/his learning needs and her/his different learning pace. To succeed this, the domain knowledge representation has to depict the possible increase or decrease of the learner's knowledge. Considering that the domain concepts that constitute the learning material are not independent from each other, the knowledge representation approach has to allow the system to recognize either the domain concepts that are already partly or completely known for a learner, or the domain concepts that s/he has forgotten, taking into account the learner's knowledge level of the related concepts. In other words, the system should be informed about the knowledge dependencies that exist among the domain concepts of the learning material, as well as the strength on impact of each domain concept on others. Fuzzy Cognitive Maps (FCMs) seem to be an ideal way for representing graphically this kind of information. The suggested knowledge representation approach has been implemented in an e-learning adaptive system for teaching computer programming. The particular system was used by the students of a postgraduate program in the field of Informatics in the University of Piraeus and was compared with a corresponding system, in which the domain knowledge was represented using the most common used technique of network of concepts. The results of the evaluation were very encouraging.
Motion sensors in mathematics teaching: learning tools for understanding general math concepts?
NASA Astrophysics Data System (ADS)
Urban-Woldron, Hildegard
2015-05-01
Incorporating technology tools into the mathematics classroom adds a new dimension to the teaching of mathematics concepts and establishes a whole new approach to mathematics learning. In particular, gathering data in a hands-on and real-time method helps classrooms coming alive. The focus of this paper is on bringing forward important mathematics concepts such as functions and rate of change with the motion detector. Findings from the author's studies suggest that the motion detector can be introduced from a very early age and used to enliven classes at any level. Using real-world data to present the main functions invites an experimental approach to mathematics and encourages students to engage actively in their learning. By emphasizing learning experiences with computer-based motion detectors and aiming to involve students in mathematical representations of real-world phenomena, six learning activities, which were developed in previous research studies, will be presented. Students use motion sensors to collect physical data that are graphed in real time and then manipulate and analyse them. Because data are presented in an immediately understandable graphical form, students are allowed to take an active role in their learning by constructing mathematical knowledge from observation of the physical world. By utilizing a predict-observe-explain format, students learn about slope, determining slope and distance vs. time graphs through motion-filled activities. Furthermore, exploring the meaning of slope, viewed as the rate of change, students acquire competencies for reading, understanding and interpreting kinematics graphs involving a multitude of mathematical representations. Consequently, the students are empowered to efficiently move among tabular, graphical and symbolic representation to analyse patterns and discover the relationships between different representations of motion. In fact, there is a need for further research to explore how mathematics teachers can integrate motion sensors into their classrooms.
Silva, Pedro; Garganta, Júlio; Araújo, Duarte; Davids, Keith; Aguiar, Paulo
2013-09-01
Previous research has proposed that team coordination is based on shared knowledge of the performance context, responsible for linking teammates' mental representations for collective, internalized action solutions. However, this representational approach raises many questions including: how do individual schemata of team members become reformulated together? How much time does it take for this collective cognitive process to occur? How do different cues perceived by different individuals sustain a general shared mental representation? This representational approach is challenged by an ecological dynamics perspective of shared knowledge in team coordination. We argue that the traditional shared knowledge assumption is predicated on 'knowledge about' the environment, which can be used to share knowledge and influence intentions of others prior to competition. Rather, during competitive performance, the control of action by perceiving surrounding informational constraints is expressed in 'knowledge of' the environment. This crucial distinction emphasizes perception of shared affordances (for others and of others) as the main communication channel between team members during team coordination tasks. From this perspective, the emergence of coordinated behaviours in sports teams is based on the formation of interpersonal synergies between players resulting from collective actions predicated on shared affordances.
Dowell, Lauren R.; Mahone, E. Mark; Mostofsky, Stewart H.
2009-01-01
Children with autism often have difficulty performing skilled movements. Praxis performance requires basic motor skill, knowledge of representations of the movement (mediated by parietal regions), and transcoding of these representations into movement plans (mediated by premotor circuits). The goals of this study were: (a) to determine whether dyspraxia in autism is associated with impaired representational (“postural”) knowledge, and (b) to examine the contributions of postural knowledge and basic motor skill to dyspraxia in autism. Thirty-seven children with autism spectrum disorder (ASD) and 50 typically developing (TD) children, ages 8–13, completed: (a) an examination of basic motor skills, (b) a postural knowledge test assessing praxis discrimination, and (c) a praxis examination. Children with ASD showed worse basic motor skill and postural knowledge than controls. The ASD group continued to show significantly poorer praxis than controls after accounting for age, IQ, basic motor skill, and postural knowledge. Dyspraxia in autism appears to be associated with impaired formation of spatial representations, as well as transcoding and execution. Distributed abnormality across parietal, premotor, and motor circuitry, as well as anomalous connectivity may be implicated. PMID:19702410
Operator assistant systems - An experimental approach using a telerobotics application
NASA Technical Reports Server (NTRS)
Boy, Guy A.; Mathe, Nathalie
1993-01-01
This article presents a knowledge-based system methodology for developing operator assistant (OA) systems in dynamic and interactive environments. This is a problem both of training and design, which is the subject of this article. Design includes both design of the system to be controlled and design of procedures for operating this system. A specific knowledge representation is proposed for representing the corresponding system and operational knowledge. This representation is based on the situation recognition and analytical reasoning paradigm. It tries to make explicit common factors involved in both human and machine intelligence, including perception and reasoning. An OA system based on this representation has been developed for space telerobotics. Simulations have been carried out with astronauts and the resulting protocols have been analyzed. Results show the relevance of the approach and have been used for improving the knowledge representation and the OA architecture.
Knowledge inhibition and N400: a study with words that look like common words.
Debruille, J B
1998-04-01
In addition to their own representations, low frequency words, such as BRIBE, can covertly activate the representations of higher frequency words they look like (e.g., BRIDE). Hence, look-alike words can activate knowledge that is incompatible with the knowledge corresponding to accurate representations. Comparatively, eccentric words, that is, low frequency words that do not look as much like higher frequency words, are less likely to activate incompatible knowledge. This study focuses on the hypothesis that the N400 component of the event-related potential reflects the inhibition of incompatible knowledge. This hypothesis predicts that look-alike words elicit N400s of greater amplitudes than eccentric words in conditions where incompatible knowledge is inhibited. Results from a single item lexical decision experiment are reported which support the inhibition hypothesis. Copyright 1998 Academic Press.
Forecasting of construction and demolition waste in Brazil.
Paz, Diogo Hf; Lafayette, Kalinny Pv
2016-08-01
The objective of this article is to develop a computerised tool (software) that facilitates the analysis of strategies for waste management on construction sites through the use of indicators of construction and demolition waste generation. The development involved the following steps: knowledge acquisition, structuring the system, coding and system evaluation. The step of knowledge acquisition aims to provide subsidies for the representation of them through models. In the step of structuring the system, it was presented the structuring and formalisation of knowledge for the development of the system, and has two stages: the construction of the conceptual model and the subsequent instantiation of the model. The coding system aims to implement (code) the conceptual model developed in a model played by computer (digital). The results showed that the system is very useful and applicable in construction sites, helping to improve the quality of waste management, and creating a database that will support new research. © The Author(s) 2016.
Leeuwenberg, Emanuel
2003-11-01
This paper draws a bird's eye view of various counter-intuitive characteristics of perception. Peculiar is that perception is a both tool and topic of its study. As a consequence, its output is easily mistaken for its input. Furthermore, its output is characterized by remarkable Gestalt features, such as mutual dependence of stimulus elements and detour solutions. Detour solutions require a complex perception process of testing countless optional pattern interpretations against a criterion. Likelihood is a plausible criterion for reasoning. For perception, however, the simplicity criterion is more appropriate. The consideration is that reasoning aims at establishing properties of distal objects whereas perception aims at establishing objects from proximal properties. The role of knowledge in perception seems plausible but often leads to conflicts. For instance, the assumption that knowledge about handedness is present in pattern representations conflicts with image mirror-image discrimination data. Moreover, knowledge does not provide an anchor for subjective time direction, but a Gestalt quality does.
Maintaining consistency between planning hierarchies: Techniques and applications
NASA Technical Reports Server (NTRS)
Zoch, David R.
1987-01-01
In many planning and scheduling environments, it is desirable to be able to view and manipulate plans at different levels of abstraction, allowing the users the option of viewing and manipulating either a very detailed representation of the plan or a high-level more abstract version of the plan. Generating a detailed plan from a more abstract plan requires domain-specific planning/scheduling knowledge; the reverse process of generating a high-level plan from a detailed plan Reverse Plan Maintenance, or RPM) requires having the system remember the actions it took based on its domain-specific knowledge and its reasons for taking those actions. This reverse plan maintenance process is described as implemented in a specific planning and scheduling tool, The Mission Operations Planning Assistant (MOPA), as well as the applications of RPM to other planning and scheduling problems; emphasizing the knowledge that is needed to maintain the correspondence between the different hierarchical planning levels.
Waters, Theodore E. A.; Ruiz, Sarah K.; Roisman, Glenn I.
2016-01-01
Increasing evidence suggests that attachment representations take at least two forms—a secure base script and an autobiographical narrative of childhood caregiving experiences. This study presents data from the first 26 years of the Minnesota Longitudinal Study of Risk and Adaptation (N = 169), examining the developmental origins of secure base script knowledge in a high-risk sample, and testing alternative models of the developmental sequencing of the construction of attachment representations. Results demonstrated that secure base script knowledge was predicted by observations of maternal sensitivity across childhood and adolescence. Further, findings suggest that the construction of a secure base script supports the development of a coherent autobiographical representation of childhood attachment experiences with primary caregivers by early adulthood. PMID:27302650
The Centre for Speech, Language and the Brain (CSLB) concept property norms.
Devereux, Barry J; Tyler, Lorraine K; Geertzen, Jeroen; Randall, Billi
2014-12-01
Theories of the representation and processing of concepts have been greatly enhanced by models based on information available in semantic property norms. This information relates both to the identity of the features produced in the norms and to their statistical properties. In this article, we introduce a new and large set of property norms that are designed to be a more flexible tool to meet the demands of many different disciplines interested in conceptual knowledge representation, from cognitive psychology to computational linguistics. As well as providing all features listed by 2 or more participants, we also show the considerable linguistic variation that underlies each normalized feature label and the number of participants who generated each variant. Our norms are highly comparable with the largest extant set (McRae, Cree, Seidenberg, & McNorgan, 2005) in terms of the number and distribution of features. In addition, we show how the norms give rise to a coherent category structure. We provide these norms in the hope that the greater detail available in the Centre for Speech, Language and the Brain norms should further promote the development of models of conceptual knowledge. The norms can be downloaded at www.csl.psychol.cam.ac.uk/propertynorms.
NASA Technical Reports Server (NTRS)
Wu, Cathy; Taylor, Pam; Whitson, George; Smith, Cathy
1990-01-01
This paper describes the building of a corn disease diagnostic expert system using CLIPS, and the development of a neural expert system using the fact representation method of CLIPS for automated knowledge acquisition. The CLIPS corn expert system diagnoses 21 diseases from 52 symptoms and signs with certainty factors. CLIPS has several unique features. It allows the facts in rules to be broken down to object-attribute-value (OAV) triples, allows rule-grouping, and fires rules based on pattern-matching. These features combined with the chained inference engine result to a natural user query system and speedy execution. In order to develop a method for automated knowledge acquisition, an Artificial Neural Expert System (ANES) is developed by a direct mapping from the CLIPS system. The ANES corn expert system uses the same OAV triples in the CLIPS system for its facts. The LHS and RHS facts of the CLIPS rules are mapped into the input and output layers of the ANES, respectively; and the inference engine of the rules is imbedded in the hidden layer. The fact representation by OAC triples gives a natural grouping of the rules. These features allow the ANES system to automate rule-generation, and make it efficient to execute and easy to expand for a large and complex domain.
NASA Astrophysics Data System (ADS)
Williams, John; Eames, Chris; Hume, Anne; Lockley, John
2012-11-01
Background: This research addressed the key area of early career teacher education and aimed to explore the use of a 'content representation' (CoRe) as a mediational tool to develop early career secondary teacher pedagogical content knowledge (PCK). This study was situated in the subject areas of science and technology, where sound teacher knowledge is particularly important to student engagement. Purpose: The study was designed to examine whether such a tool (a CoRe), co-designed by an early career secondary teacher with expert content and pedagogy specialists, can enhance the PCK of early career teachers. The research questions were: How can experts in content and pedagogy work together with early career teachers to develop one science topic CoRe and one technology topic CoRe to support the development of PCK for early career secondary teachers? How does the use of a collaboratively designed CoRe affect the planning of an early career secondary teacher in science or technology? How has engagement in the development and use of an expert-informed CoRe developed an early career teacher's PCK? Sample: The research design incorporated a unique partnership between two expert classroom teachers, two content experts, four early career teachers, and four researchers experienced in science and technology education. Design: This study employed an interpretivist-based methodology and an action research approach within a four-case study design. Data were gathered using qualitative research methods focused on semi-structured interviews, observations and document analysis. Results: The study indicated that CoRes, developed through this collaborative process, helped the early career teachers focus on the big picture of the topic, emphasize particularly relevant areas of content and consider alternative ways of planning for their teaching. Conclusions: This paper presents an analysis of the process of CoRe development by the teacher-expert partnerships and the effect that had on the early career teachers' PCK. In addition, as the same tools and methodology were applied to both a science and a technology teaching context, differences between the two learning areas are discussed.
Approaching an Understanding of Omniscience from the Preschool Years to Early Adulthood
ERIC Educational Resources Information Center
Lane, Jonathan D.; Wellman, Henry M.; Evans, E. Margaret
2014-01-01
Individuals in many cultures believe in omniscient (all-knowing) beings, but everyday representations of omniscience have rarely been studied. To understand the nature of such representations requires knowing how they develop. Two studies examined the breadth of knowledge (i.e., types of knowledge) and depth of knowledge (i.e., amount of knowledge…
ERIC Educational Resources Information Center
Moon, Kyunghee
2013-01-01
This study examined how preservice secondary mathematics teachers developed mathematical knowledge for teaching (MKT) around representations and big ideas through mathematics and mathematics education courses. The importance of big ideas and representations in mathematics has been emphasized in national standards as well as in literature. Yet,…
An Overview of OWL, a Language for Knowledge Representation.
ERIC Educational Resources Information Center
Szolovits, Peter; And Others
This is a description of the motivation and overall organization of the OWL language for knowledge representation. OWL consists of a linguistic memory system (LMS), a memory of concepts in terms of which all English phrases and all knowledge of an application domain are represented; a theory of English grammar which tells how to map English…
[Social and cultural representations in epilepsy awareness].
Arborio, Sophie
2015-01-01
Representations relating to epilepsy have evolved over the centuries, but the manifestations of epilepsy awaken archaic images linked to death, violence and disgust. Indeed, the generalised epileptic seizure symbolises a rupture with the surrounding environment, "informs it", through the loss of social codes which it causes. The social and cultural context, as well as medical knowledge, influences the representations of the disease. As a result, popular knowledge is founded on the social and cultural representations of a given era, in a given society. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Arraes, Camila de Oliveira; Palos, Marinésia Aparecida Prado; Barbosa, Maria Alves; Teles, Sheila Araujo; Souza, Márcia Maria de; Matos, Marcos André de
2013-01-01
to analyze the relationship of masculinity, vulnerability and prevention of STD / HIV / AIDS among adolescent males of a land reform settlement in central Brazil. a qualitative study using as precepts the strands of social representations with teenagers between 12 to 24 years. three categories emerged - Perception of vulnerability; Gender and vulnerability; and, Prevention and vulnerability to STD / HIV / AIDS. Adolescents felt invulnerable to sexually transmitted diseases anchored in the social representations in favor of the male hegemony. An ignorance about forms of prevention for STD / HIV / AIDS was demonstrated in their statements. It is believed that institutional projects such as the School Health Program and the Men's Health Care Program constitute essential tools to minimize factors of vulnerability in this population, since the school is recognized as a social facility that promotes socialization of experiences and contributes to the construction of the identity of the adolescent. the social representations of masculinity collaborate for the vulnerable behavior of the adolescents for the acquisition of sexually transmitted diseases. One hopes that this study can contribute to the production of knowledge and technical-scientific improvement of the professionals, especially the nurse, in order to discuss issues related to male sexuality of adolescents in the situation of the land reform settlement.
NASA Astrophysics Data System (ADS)
Canevese, E. P.; De Gottardo, T.
2017-05-01
The morphometric and photogrammetric knowledge, combined with the historical research, are the indispensable prerequisites for the protection and enhancement of historical, architectural and cultural heritage. Nowadays the use of BIM (Building Information Modeling) as a supporting tool for restoration and conservation purposes is becoming more and more popular. However this tool is not fully adequate in this context because of its simplified representation of three-dimensional models, resulting from solid modelling techniques (mostly used in virtual reality) causing the loss of important morphometric information. One solution to this problem is imagining new advanced tools and methods that enable the building of effective and efficient three-dimensional representations backing the correct geometric analysis of the built model. Twenty-year of interdisciplinary research activities implemented by Virtualgeo focused on developing new methods and tools for 3D modeling that go beyond the simplified digital-virtual reconstruction used in standard solid modeling. Methods and tools allowing the creation of informative and true to life three-dimensional representations, that can be further used by various academics or industry professionals to carry out diverse analysis, research and design activities. Virtualgeo applied research activities, in line with the European Commission 2013's directives of Reflective 7 - Horizon 2020 Project, gave birth to GeomaticsCube Ecosystem, an ecosystem resulting from different technologies based on experiences garnered from various fields, metrology in particular, a discipline used in the automotive and aviation industry, and in general mechanical engineering. The implementation of the metrological functionality is only possible if the 3D model is created with special modeling techniques, based on surface modeling that allow, as opposed to solid modeling, a 3D representation of the manufact that is true to life. The advantages offered by metrological analysis are varied and important because they permit a precise and detailed overview of the 3D model's characteristics, and especially the over time monitoring of the model itself, these informations are impossible to obtain from a three-dimensional representation produced with solid modelling techniques. The applied research activities are also focused on the possibility of obtaining a photogrammetric and informative 3D model., Two distinct applications have been developed for this purpose, the first allows the classification of each individual element and the association of its material characteristics during the 3D modelling phase, whilst the second allows segmentations of the photogrammetric 3D model in its diverse aspects (materic, related to decay, chronological) with the possibility to make use and to populate the database, associated with the 3D model, with all types of multimedia contents.
NASA Astrophysics Data System (ADS)
Donnelly, Dermot Francis; Hume, Anne
2015-01-01
Background:Supporting pre-service teacher (PT) collaboration as a means of professional learning is a challenging but essential task for effective practice. However, teacher placements or practicums in schools, which is common practice within teacher education programmes, can often isolate PTs from sharing their experiences with each other. Further, the articulation of effective pedagogical practices by high-quality teachers is limited, restricting PTs' ability to access such professional knowledge. Purpose:This study investigates how the introduction of a collaborative technology, a wiki, may enhance existing and new opportunities for pre-service teachers' (PTs) to develop pedagogical content knowledge (PCK). Sample:Seven PT chemistry teachers of varied backgrounds participated in this study. Design and method:The PTs were learning to collaboratively formulate and document their early topic-specific teaching knowledge using a pedagogical tool known as Content Representation (CoRe) design. Once scaffolded into this process, the PTs continued and extended this collaborative work online through the introduction of a wiki. Data were collected for qualitative analysis through the CoRe artefacts, a semi-structured focus group interview, and PTs' reflective essays about their collaborative experiences representing their teaching knowledge in CoRes through the wiki. Results:Data analysis highlighted that while wiki use showed some potential for collaborative representation when participants were not face-to-face, the PTs were hesitant in critiquing each other's work. As such, the online representations remained relatively static without face-to-face interaction. However, developing artefacts online was favoured over established practice and the access to artefacts of their peers on the wiki enhanced PTs' consideration for their own PCK. Conclusion:Wikis show some potential in the hosting of CoRes, but issues in simultaneous posting and lack of chat functionality may hinder PTs' ability to easily critique each others' work. However, the PTs in this study also demonstrated a broader unwillingness to critique each other's CoRes that teacher educators need to challenge. The use of technology to support PTs' CoRes and critiquing warrants further research.
ERIC Educational Resources Information Center
Rumelhart, David E.; Norman, Donald A.
This paper reviews work on the representation of knowledge from within psychology and artificial intelligence. The work covers the nature of representation, the distinction between the represented world and the representing world, and significant issues concerned with propositional, analogical, and superpositional representations. Specific topics…
Multimodal Literacies in Science: Currency, Coherence and Focus
NASA Astrophysics Data System (ADS)
Klein, Perry D.; Kirkpatrick, Lori C.
2010-01-01
Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of RISE advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are integral to reasoning about scientific phenomena. This focus on thinking with representations mediates between well-resolved representations and formal reasoning of disciplinary science, and the capacity-limited, perceptually-driven nature of human cognition. The teaching practices described here build on three key principles: Each representation is interpreted through others; natural language is a sign system that is used to interpret a variety of other kinds of representations; and this chain of signs or representations is ultimately grounded in bodily experiences of perception and action. In these papers, the researchers provide examples and analysis of teachers scaffolding students in using representations to construct new knowledge, and in constructing new representations to express and develop their knowledge. The result is a new delineation of the power and the challenges of teaching science with multiple representations.
Theoretical foundations for information representation and constraint specification
NASA Technical Reports Server (NTRS)
Menzel, Christopher P.; Mayer, Richard J.
1991-01-01
Research accomplished at the Knowledge Based Systems Laboratory of the Department of Industrial Engineering at Texas A&M University is described. Outlined here are the theoretical foundations necessary to construct a Neutral Information Representation Scheme (NIRS), which will allow for automated data transfer and translation between model languages, procedural programming languages, database languages, transaction and process languages, and knowledge representation and reasoning control languages for information system specification.
Instruments of scientific visual representation in atomic databases
NASA Astrophysics Data System (ADS)
Kazakov, V. V.; Kazakov, V. G.; Meshkov, O. I.
2017-10-01
Graphic tools of spectral data representation provided by operating information systems on atomic spectroscopy—ASD NIST, VAMDC, SPECTR-W3, and Electronic Structure of Atoms—for the support of scientific-research and human-resource development are presented. Such tools of visual representation of scientific data as those of the spectrogram and Grotrian diagram plotting are considered. The possibility of comparative analysis of the experimentally obtained spectra and reference spectra of atomic systems formed according to the database of a resource is described. The access techniques to the mentioned graphic tools are presented.
Robinson, Sally J; Temple, Christine M
2013-04-01
This paper addresses the relative independence of different types of lexical- and factually-based semantic knowledge in JM, a 9-year-old boy with Klinefelter syndrome (KS). JM was matched to typically developing (TD) controls on the basis of chronological age. Lexical-semantic knowledge was investigated for common noun (CN) and mathematical vocabulary items (MV). Factually-based semantic knowledge was investigated for general and number facts. For CN items, JM's lexical stores were of a normal size but the volume of correct 'sensory feature' semantic knowledge he generated within verbal item descriptions was significantly reduced. He was also significantly impaired at naming item descriptions and pictures, particularly for fruit and vegetables. There was also weak object decision for fruit and vegetables. In contrast, for MV items, JM's lexical stores were elevated, with no significant difference in the amount and type of correct semantic knowledge generated within verbal item descriptions and normal naming. JM's fact retrieval accuracy was normal for all types of factual knowledge. JM's performance indicated a dissociation between the representation of CN and MV vocabulary items during development. JM's preserved semantic knowledge of facts in the face of impaired semantic knowledge of vocabulary also suggests that factually-based semantic knowledge representation is not dependent on normal lexical-semantic knowledge during development. These findings are discussed in relation to the emergence of distinct semantic knowledge representations during development, due to differing degrees of dependency upon the acquisition and representation of semantic knowledge from verbal propositions and perceptual input.
Monsen, Karen A; Finn, Robert S; Fleming, Thea E; Garner, Erin J; LaValla, Amy J; Riemer, Judith G
2016-01-01
Rigor in clinical knowledge representation is necessary foundation for meaningful interoperability, exchange and reuse of electronic health record (EHR) data. It is critical for clinicians to understand principles and implications of using clinical standards for knowledge representation within EHRs. To educate clinicians and students about knowledge representation and to evaluate their success of applying the manual lookups method for assigning Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) concept identifiers using formally mapped concepts from the Omaha System interface terminology. Clinicians who were students in a doctoral nursing program conducted 21 lookups for Omaha System terms in publicly available SNOMED CT browsers. Lookups were deemed successful if results matched exactly with the corresponding code from the January 2013 SNOMED CT-Omaha System terminology cross-map. Of the 21 manual lookups attempted, 12 (57.1%) were successful. Errors were due to semantic gaps differences in granularity and synonymy or partial term matching. Achieving rigor in clinical knowledge representation across settings, vendors and health systems is a globally recognized challenge. Cross-maps have potential to improve rigor in SNOMED CT encoding of clinical data. Further research is needed to evaluate outcomes of using of terminology cross-maps to encode clinical terms with SNOMED CT concept identifiers based on interface terminologies.
Dynamic updating of hippocampal object representations reflects new conceptual knowledge
Mack, Michael L.; Love, Bradley C.; Preston, Alison R.
2016-01-01
Concepts organize the relationship among individual stimuli or events by highlighting shared features. Often, new goals require updating conceptual knowledge to reflect relationships based on different goal-relevant features. Here, our aim is to determine how hippocampal (HPC) object representations are organized and updated to reflect changing conceptual knowledge. Participants learned two classification tasks in which successful learning required attention to different stimulus features, thus providing a means to index how representations of individual stimuli are reorganized according to changing task goals. We used a computational learning model to capture how people attended to goal-relevant features and organized object representations based on those features during learning. Using representational similarity analyses of functional magnetic resonance imaging data, we demonstrate that neural representations in left anterior HPC correspond with model predictions of concept organization. Moreover, we show that during early learning, when concept updating is most consequential, HPC is functionally coupled with prefrontal regions. Based on these findings, we propose that when task goals change, object representations in HPC can be organized in new ways, resulting in updated concepts that highlight the features most critical to the new goal. PMID:27803320
Serino, Andrea; Canzoneri, Elisa; Marzolla, Marilena; di Pellegrino, Giuseppe; Magosso, Elisa
2015-01-01
Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data. PMID:25698947
Serino, Andrea; Canzoneri, Elisa; Marzolla, Marilena; di Pellegrino, Giuseppe; Magosso, Elisa
2015-01-01
Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data.
ERIC Educational Resources Information Center
Lim, Kyu Yon
2008-01-01
The purpose of this study was to investigate the effectiveness of concept mapping strategies with different levels of generativity in terms of knowledge acquisition and knowledge representation. Also, it examined whether or not learners' self-regulated learning (SRL) skills influenced the effectiveness of concept mapping strategies with different…
ERIC Educational Resources Information Center
Zembylas, Michalinos
2014-01-01
This essay draws on the concept of "difficult knowledge" to think with some of the interventions and arguments of affect theory and discusses the implications for curriculum and pedagogy in handling traumatic representations. The author makes an argument that affect theory enables the theorization of difficult knowledge as an…
ERIC Educational Resources Information Center
Gardin, Fredrick Anthony
2009-01-01
The purpose of this study was to describe how male, collegiate, certified athletic trainers (AT's) represent knowledge during 5 injury evaluation scenarios. A second purpose of the study was to identify what self-regulatory behaviors participants engaged in to improve or maintain their skills. Knowledge representation was studied as cue selection…
Generative Representations for Computer-Automated Design Systems
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2004-01-01
With the increasing computational power of Computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design programs is the representation with which they encode designs. If the representation cannot encode a certain design, then the design program cannot produce it. Similarly, a poor representation makes some types of designs extremely unlikely to be created. Here we define generative representations as those representations which can create and reuse organizational units within a design and argue that reuse is necessary for design systems to scale to more complex and interesting designs. To support our argument we describe GENRE, an evolutionary design program that uses both a generative and a non-generative representation, and compare the results of evolving designs with both types of representations.
Structural Representations in Knowledge Acquisition.
ERIC Educational Resources Information Center
Gonzalvo, Pilar; And Others
1994-01-01
Multidimensional scaling (MDS) and Pathfinder techniques for assessing changes in the structural representation of a knowledge domain were studied with relatedness ratings collected from 72 Spanish college students. Comparison of student and expert similarity measures indicate that MDS and graph theoretic approaches are valid techniques. (SLD)
Knowledge representation in fuzzy logic
NASA Technical Reports Server (NTRS)
Zadeh, Lotfi A.
1989-01-01
The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.
Lexical is as lexical does: computational approaches to lexical representation
Woollams, Anna M.
2015-01-01
In much of neuroimaging and neuropsychology, regions of the brain have been associated with ‘lexical representation’, with little consideration as to what this cognitive construct actually denotes. Within current computational models of word recognition, there are a number of different approaches to the representation of lexical knowledge. Structural lexical representations, found in original theories of word recognition, have been instantiated in modern localist models. However, such a representational scheme lacks neural plausibility in terms of economy and flexibility. Connectionist models have therefore adopted distributed representations of form and meaning. Semantic representations in connectionist models necessarily encode lexical knowledge. Yet when equipped with recurrent connections, connectionist models can also develop attractors for familiar forms that function as lexical representations. Current behavioural, neuropsychological and neuroimaging evidence shows a clear role for semantic information, but also suggests some modality- and task-specific lexical representations. A variety of connectionist architectures could implement these distributed functional representations, and further experimental and simulation work is required to discriminate between these alternatives. Future conceptualisations of lexical representations will therefore emerge from a synergy between modelling and neuroscience. PMID:25893204
Chamorro-Koc, Marianella; Popovic, Vesna; Emmison, Michael
2009-07-01
This paper introduces research that investigates how human experience influences people's understandings of product usability. It describes an experiment that employs visual representation of concepts to elicit participants' ideas of a product's use. Results from the experiment lead to the identification of relationships between human experience, knowledge, and context-of-use--relationships that influence designers' and users' concepts of product usability. These relationships are translated into design principles that inform the design activity with respect to the aspects of experience that trigger people's understanding of a product's use. A design tool (ECEDT) is devised to aid designers in the application of these principles. This tool is then trialled in the context of a design task in order to verify applicability of the findings.
38 CFR 14.632 - Standards of conduct for persons providing representation before the Department
Code of Federal Regulations, 2013 CFR
2013-07-01
... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...
38 CFR 14.632 - Standards of conduct for persons providing representation before the Department
Code of Federal Regulations, 2011 CFR
2011-07-01
... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...
38 CFR 14.632 - Standards of conduct for persons providing representation before the Department
Code of Federal Regulations, 2014 CFR
2014-07-01
... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...
38 CFR 14.632 - Standards of conduct for persons providing representation before the Department
Code of Federal Regulations, 2010 CFR
2010-07-01
... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...
38 CFR 14.632 - Standards of conduct for persons providing representation before the Department
Code of Federal Regulations, 2012 CFR
2012-07-01
... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...
Formalization of the engineering science discipline - knowledge engineering
NASA Astrophysics Data System (ADS)
Peng, Xiao
Knowledge is the most precious ingredient facilitating aerospace engineering research and product development activities. Currently, the most common knowledge retention methods are paper-based documents, such as reports, books and journals. However, those media have innate weaknesses. For example, four generations of flying wing aircraft (Horten, Northrop XB-35/YB-49, Boeing BWB and many others) were mostly developed in isolation. The subsequent engineers were not aware of the previous developments, because these projects were documented such which prevented the next generation of engineers to benefit from the previous lessons learned. In this manner, inefficient knowledge retention methods have become a primary obstacle for knowledge transfer from the experienced to the next generation of engineers. In addition, the quality of knowledge itself is a vital criterion; thus, an accurate measure of the quality of 'knowledge' is required. Although qualitative knowledge evaluation criteria have been researched in other disciplines, such as the AAA criterion by Ernest Sosa stemming from the field of philosophy, a quantitative knowledge evaluation criterion needs to be developed which is capable to numerically determine the qualities of knowledge for aerospace engineering research and product development activities. To provide engineers with a high-quality knowledge management tool, the engineering science discipline Knowledge Engineering has been formalized to systematically address knowledge retention issues. This research undertaking formalizes Knowledge Engineering as follows: 1. Categorize knowledge according to its formats and representations for the first time, which serves as the foundation for the subsequent knowledge management function development. 2. Develop an efficiency evaluation criterion for knowledge management by analyzing the characteristics of both knowledge and the parties involved in the knowledge management processes. 3. Propose and develop an innovative Knowledge-Based System (KBS), AVD KBS, forming a systematic approach facilitating knowledge management. 4. Demonstrate the efficiency advantages of AVDKBS over traditional knowledge management methods via selected design case studies. This research formalizes, for the first time, Knowledge Engineering as a distinct discipline by delivering a robust and high-quality knowledge management and process tool, AVDKBS. Formalizing knowledge proves to significantly impact the effectiveness of aerospace knowledge retention and utilization.
An Ontology for Representing Geoscience Theories and Related Knowledge
NASA Astrophysics Data System (ADS)
Brodaric, B.
2009-12-01
Online scientific research, or e-science, is increasingly reliant on machine-readable representations of scientific data and knowledge. At present, much of the knowledge is represented in ontologies, which typically contain geoscience categories such as ‘water body’, ‘aquifer’, ‘granite’, ‘temperature’, ‘density’, ‘Co2’. While extremely useful for many e-science activities, such categorical representations constitute only a fragment of geoscience knowledge. Also needed are online representations of elements such as geoscience theories, to enable geoscientists to pose and evaluate hypotheses online. To address this need, the Science Knowledge Infrastructure ontology (SKIo) specializes the DOLCE foundational ontology with basic science knowledge primitives such as theory, model, observation, and prediction. Discussed will be SKIo as well as its implementation in the geosciences, including case studies from marine science, environmental science, and geologic mapping. These case studies demonstrate SKIo’s ability to represent a wide spectrum of geoscience knowledge types, to help fuel next generation e-science.
Integrated knowledge-based tools for documenting and monitoring damages to built heritage
NASA Astrophysics Data System (ADS)
Cacciotti, R.
2015-08-01
The advancements of information technologies as applied to the most diverse fields of science define a breakthrough in the accessibility and processing of data for both expert and non-expert users. Nowadays it is possible to evidence an increasingly relevant research effort in the context of those domains, such as that of cultural heritage protection, in which knowledge mapping and sharing constitute critical prerequisites for accomplishing complex professional tasks. The aim of this paper is to outline the main results and outputs of the MONDIS research project. This project focusses on the development of integrated knowledge-based tools grounded on an ontological representation of the field of heritage conservation. The scope is to overcome the limitations of earlier databases by the application of modern semantic technologies able to integrate, organize and process useful information concerning damages to built heritage objects. In particular MONDIS addresses the need for supporting a diverse range of stakeholders (e.g. administrators, owners and professionals) in the documentation and monitoring of damages to historical constructions and in finding related remedies. The paper concentrates on the presentation of the following integrated knowledgebased components developed within the project: (I) MONDIS mobile application (plus desktop version), (II) MONDIS record explorer, (III) Ontomind profiles, (IV) knowledge matrix and (V) terminology editor. An example of practical application of the MONDIS integrated system is also provided and finally discussed.
NASA Astrophysics Data System (ADS)
van Elk, Michiel; van Schie, Hein; Bekkering, Harold
2014-06-01
Our capacity to use tools and objects is often considered one of the hallmarks of the human species. Many objects greatly extend our bodily capabilities to act in the physical world, such as when using a hammer or a saw. In addition, humans have the remarkable capability to use objects in a flexible fashion and to combine multiple objects in complex actions. We prepare coffee, cook dinner and drive our car. In this review we propose that humans have developed declarative and procedural knowledge, i.e. action semantics that enables us to use objects in a meaningful way. A state-of-the-art review of research on object use is provided, involving behavioral, developmental, neuropsychological and neuroimaging studies. We show that research in each of these domains is characterized by similar discussions regarding (1) the role of object affordances, (2) the relation between goals and means in object use and (3) the functional and neural organization of action semantics. We propose a novel conceptual framework of action semantics to address these issues and to integrate the previous findings. We argue that action semantics entails both multimodal object representations and modality-specific sub-systems, involving manipulation knowledge, functional knowledge and representations of the sensory and proprioceptive consequences of object use. Furthermore, we argue that action semantics are hierarchically organized and selectively activated and used depending on the action intention of the actor and the current task context. Our framework presents an integrative account of multiple findings and perspectives on object use that may guide future studies in this interdisciplinary domain.
Tackling the 2nd V: Big Data, Variety and the Need for Representation Consistency
NASA Astrophysics Data System (ADS)
Clune, T.; Kuo, K. S.
2016-12-01
While Big Data technologies are transforming our ability to analyze ever larger volumes of Earth science data, practical constraints continue to limit our ability to compare data across datasets from different sources in an efficient and robust manner. Within a single data collection, invariants such as file format, grid type, and spatial resolution greatly simplify many types of analysis (often implicitly). However, when analysis combines data across multiple data collections, researchers are generally required to implement data transformations (i.e., "data preparation") to provide appropriate invariants. These transformation include changing of file formats, ingesting into a database, and/or regridding to a common spatial representation, and they can either be performed once, statically, or each time the data is accessed. At the very least, this process is inefficient from the perspective of the community as each team selects its own representation and privately implements the appropriate transformations. No doubt there are disadvantages to any "universal" representation, but we posit that major benefits would be obtained if a suitably flexible spatial representation could be standardized along with tools for transforming to/from that representation. We regard this as part of the historic trend in data publishing. Early datasets used ad hoc formats and lacked metadata. As better tools evolved, published data began to use standardized formats (e.g., HDF and netCDF) with attached metadata. We propose that the modern need to perform analysis across data sets should drive a new generation of tools that support a standardized spatial representation. More specifically, we propose the hierarchical triangular mesh (HTM) as a suitable "generic" resolution that permits standard transformations to/from native representations in use today, as well as tools to convert/regrid existing datasets onto that representation.
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1990-01-01
Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.
Translation between representation languages
NASA Technical Reports Server (NTRS)
Vanbaalen, Jeffrey
1994-01-01
A capability for translating between representation languages is critical for effective knowledge base reuse. A translation technology for knowledge representation languages based on the use of an interlingua for communicating knowledge is described. The interlingua-based translation process consists of three major steps: translation from the source language into a subset of the interlingua, translation between subsets of the interlingua, and translation from a subset of the interlingua into the target language. The first translation step into the interlingua can typically be specified in the form of a grammar that describes how each top-level form in the source language translates into the interlingua. In cases where the source language does not have a declarative semantics, such a grammar is also a specification of a declarative semantics for the language. A methodology for building translators that is currently under development is described. A 'translator shell' based on this methodology is also under development. The shell has been used to build translators for multiple representation languages and those translators have successfully translated nontrivial knowledge bases.
Cardoso Coelho, Kátia; Barcellos Almeida, Maurício
2015-01-01
In this paper, we introduce a set of methodological steps for knowledge acquisition applied to the organization of biomedical information through ontologies. Those steps are tested in a real case involving Human T Cell Lymphotropic Virus (HTLV), which causes myriad infectious diseases. We hope to contribute to providing suitable knowledge representation of scientific domains.
Knowledge representation for fuzzy inference aided medical image interpretation.
Gal, Norbert; Stoicu-Tivadar, Vasile
2012-01-01
Knowledge defines how an automated system transforms data into information. This paper suggests a representation method of medical imaging knowledge using fuzzy inference systems coded in XML files. The imaging knowledge incorporates features of the investigated objects in linguistic form and inference rules that can transform the linguistic data into information about a possible diagnosis. A fuzzy inference system is used to model the vagueness of the linguistic medical imaging terms. XML files are used to facilitate easy manipulation and deployment of the knowledge into the imaging software. Preliminary results are presented.
Waters, Theodore E A; Ruiz, Sarah K; Roisman, Glenn I
2017-01-01
Increasing evidence suggests that attachment representations take at least two forms: a secure base script and an autobiographical narrative of childhood caregiving experiences. This study presents data from the first 26 years of the Minnesota Longitudinal Study of Risk and Adaptation (N = 169), examining the developmental origins of secure base script knowledge in a high-risk sample and testing alternative models of the developmental sequencing of the construction of attachment representations. Results demonstrated that secure base script knowledge was predicted by observations of maternal sensitivity across childhood and adolescence. Furthermore, findings suggest that the construction of a secure base script supports the development of a coherent autobiographical representation of childhood attachment experiences with primary caregivers by early adulthood. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.
Crowley, Rebecca S.; Legowski, Elizabeth; Medvedeva, Olga; Tseytlin, Eugene; Roh, Ellen; Jukic, Drazen
2007-01-01
Objective Determine effects of computer-based tutoring on diagnostic performance gains, meta-cognition, and acceptance using two different problem representations. Describe impact of tutoring on spectrum of diagnostic skills required for task performance. Identify key features of student-tutor interaction contributing to learning gains. Design Prospective, between-subjects study, controlled for participant level of training. Resident physicians in two academic pathology programs spent four hours using one of two interfaces which differed mainly in external problem representation. The case-focused representation provided an open-learning environment in which students were free to explore evidence-hypothesis relationships within a case, but could not visualize the entire diagnostic space. The knowledge-focused representation provided an interactive representation of the entire diagnostic space, which more tightly constrained student actions. Measurements Metrics included results of pretest, post-test and retention-test for multiple choice and case diagnosis tests, ratios of performance to student reported certainty, results of participant survey, learning curves, and interaction behaviors during tutoring. Results Students had highly significant learning gains after one tutoring session. Learning was retained at one week. There were no differences between the two interfaces in learning gains on post-test or retention test. Only students in the knowledge-focused interface exhibited significant metacognitive gains from pretest to post-test and pretest to retention test. Students rated the knowledge-focused interface significantly higher than the case-focused interface. Conclusions Cognitive tutoring is associated with improved diagnostic performance in a complex medical domain. The effect is retained at one-week post-training. Knowledge-focused external problem representation shows an advantage over case-focused representation for metacognitive effects and user acceptance. PMID:17213494
Crowley, Rebecca S; Legowski, Elizabeth; Medvedeva, Olga; Tseytlin, Eugene; Roh, Ellen; Jukic, Drazen
2007-01-01
Determine effects of computer-based tutoring on diagnostic performance gains, meta-cognition, and acceptance using two different problem representations. Describe impact of tutoring on spectrum of diagnostic skills required for task performance. Identify key features of student-tutor interaction contributing to learning gains. Prospective, between-subjects study, controlled for participant level of training. Resident physicians in two academic pathology programs spent four hours using one of two interfaces which differed mainly in external problem representation. The case-focused representation provided an open-learning environment in which students were free to explore evidence-hypothesis relationships within a case, but could not visualize the entire diagnostic space. The knowledge-focused representation provided an interactive representation of the entire diagnostic space, which more tightly constrained student actions. Metrics included results of pretest, post-test and retention-test for multiple choice and case diagnosis tests, ratios of performance to student reported certainty, results of participant survey, learning curves, and interaction behaviors during tutoring. Students had highly significant learning gains after one tutoring session. Learning was retained at one week. There were no differences between the two interfaces in learning gains on post-test or retention test. Only students in the knowledge-focused interface exhibited significant metacognitive gains from pretest to post-test and pretest to retention test. Students rated the knowledge-focused interface significantly higher than the case-focused interface. Cognitive tutoring is associated with improved diagnostic performance in a complex medical domain. The effect is retained at one-week post-training. Knowledge-focused external problem representation shows an advantage over case-focused representation for metacognitive effects and user acceptance.
Sumatran orangutans differ in their cultural knowledge but not in their cognitive abilities.
Gruber, Thibaud; Singleton, Ian; van Schaik, Carel
2012-12-04
Animal cultures are controversial because the method used to isolate culture in animals aims at excluding genetic and environmental influences rather than demonstrating social learning. Here, we analyzed these factors in parallel in captivity to determine their influences on tool use. We exposed Sumatran orangutan (Pongo abelii) orphans from tool-using and non-tool-using regions (western swamps and eastern Langkat, respectively) that differed in both genetic and cultural backgrounds to a raking task and a honey-dipping task to assess their understanding of stick use. Orangutans from both regions were equally successful in raking; however, swamp orangutans were more successful than Langkat orangutans in honey dipping, where previously acquired knowledge was required. A larger analysis suggested that the Alas River could constitute a geographical barrier to the spread of this cultural trait. Finally, honey-dipping individuals were on average less than 4 years old, but this behavior is not observed in the wild before 6 years of age. Our results suggest first that genetic differences between wild Sumatran populations cannot explain their differences in stick use; however, their performances in honey dipping support a cultural differentiation in stick knowledge. Second, the results suggest that the honey-dippers were too young when arriving at the quarantine center to have possibly mastered the behavior in the wild individually, suggesting that they arrived with preestablished mental representations of stick use or, simply put, "cultural ideas." Copyright © 2012 Elsevier Ltd. All rights reserved.
Human white matter and knowledge representation
2018-01-01
Understanding how knowledge is represented in the human brain is a fundamental challenge in neuroscience. To date, most of the work on this topic has focused on knowledge representation in cortical areas and debated whether knowledge is represented in a distributed or localized fashion. Fang and colleagues provide evidence that brain connections and the white matter supporting such connections might play a significant role. The work opens new avenues of investigation, breaking through disciplinary boundaries across network neuroscience, computational neuroscience, cognitive science, and classical lesion studies. PMID:29698391
Human white matter and knowledge representation.
Pestilli, Franco
2018-04-01
Understanding how knowledge is represented in the human brain is a fundamental challenge in neuroscience. To date, most of the work on this topic has focused on knowledge representation in cortical areas and debated whether knowledge is represented in a distributed or localized fashion. Fang and colleagues provide evidence that brain connections and the white matter supporting such connections might play a significant role. The work opens new avenues of investigation, breaking through disciplinary boundaries across network neuroscience, computational neuroscience, cognitive science, and classical lesion studies.
Semantic e-Science in Space Physics - A Case Study
NASA Astrophysics Data System (ADS)
Narock, T.; Yoon, V.; Merka, J.; Szabo, A.
2009-05-01
Several search and retrieval systems for space physics data are currently under development in NASA's heliophysics data environment. We present a case study of two such systems, and describe our efforts in implementing an ontology to aid in data discovery. In doing so we highlight the various aspects of knowledge representation and show how they led to our ontology design, creation, and implementation. We discuss advantages that scientific reasoning allows, as well as difficulties encountered in current tools and standards. Finally, we present a space physics research project conducted with and without e-Science and contrast the two approaches.
Simulation of the microwave heating of a thin multilayered composite material: A parameter analysis
NASA Astrophysics Data System (ADS)
Tertrais, Hermine; Barasinski, Anaïs; Chinesta, Francisco
2018-05-01
Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred to the material that can absorb it at specific frequencies. The complex physics involved in this process is far from being understood and that is why a simulation tool has been developed in order to solve the electromagnetic and thermal equations in such a complex material as a multilayered composite part. The code is based on the in-plane-out-of-plane separated representation within the Proper Generalized Decomposition framework. To improve the knowledge on the process, a parameter study in carried out in this paper.
An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms
NASA Astrophysics Data System (ADS)
Sá, Lucas
2017-03-01
Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.
48 CFR 2052.209-71 - Contractor organizational conflicts of interest (representation).
Code of Federal Regulations, 2010 CFR
2010-10-01
... conflicts of interest (representation). 2052.209-71 Section 2052.209-71 Federal Acquisition Regulations... of Provisions and Clauses 2052.209-71 Contractor organizational conflicts of interest (representation... Organizational Conflicts of Interest Representation (OCT 1999) I represent to the best of my knowledge and belief...
Applying AI tools to operational space environmental analysis
NASA Technical Reports Server (NTRS)
Krajnak, Mike; Jesse, Lisa; Mucks, John
1995-01-01
The U.S. Air Force and National Oceanic Atmospheric Agency (NOAA) space environmental operations centers are facing increasingly complex challenges meeting the needs of their growing user community. These centers provide current space environmental information and short term forecasts of geomagnetic activity. Recent advances in modeling and data access have provided sophisticated tools for making accurate and timely forecasts, but have introduced new problems associated with handling and analyzing large quantities of complex data. AI (Artificial Intelligence) techniques have been considered as potential solutions to some of these problems. Fielding AI systems has proven more difficult than expected, in part because of operational constraints. Using systems which have been demonstrated successfully in the operational environment will provide a basis for a useful data fusion and analysis capability. Our approach uses a general purpose AI system already in operational use within the military intelligence community, called the Temporal Analysis System (TAS). TAS is an operational suite of tools supporting data processing, data visualization, historical analysis, situation assessment and predictive analysis. TAS includes expert system tools to analyze incoming events for indications of particular situations and predicts future activity. The expert system operates on a knowledge base of temporal patterns encoded using a knowledge representation called Temporal Transition Models (TTM's) and an event database maintained by the other TAS tools. The system also includes a robust knowledge acquisition and maintenance tool for creating TTM's using a graphical specification language. The ability to manipulate TTM's in a graphical format gives non-computer specialists an intuitive way of accessing and editing the knowledge base. To support space environmental analyses, we used TAS's ability to define domain specific event analysis abstractions. The prototype system defines events covering reports of natural phenomena such as solar flares, bursts, geomagnetic storms, and five others pertinent to space environmental analysis. With our preliminary event definitions we experimented with TAS's support for temporal pattern analysis using X-ray flare and geomagnetic storm forecasts as case studies. We are currently working on a framework for integrating advanced graphics and space environmental models into this analytical environment.
God-mother-baby: what children think they know.
Kiessling, Florian; Perner, Josef
2014-01-01
This study tested one hundred and nine 3- to 6-year-old children on a knowledge-ignorance task about knowledge in humans (mother, baby) and God. In their responses, participants not reliably grasping that seeing leads to knowing in humans (pre-representational) were significantly influenced by own knowledge and marginally by question format. Moreover, knowledge was attributed significantly more often to mother than baby and explained by agent-based characteristics. Of participants mastering the task for humans (representational), God was largely conceived as ignorant "man in the sky" by younger and increasingly as "supernatural agent in the sky" by older children. Evidence for egocentrism and for anthropomorphizing God lends support to an anthropomorphism hypothesis. First-time evidence for an agent-based conception of others' knowledge in pre-representational children is presented. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.
Ontology-guided data preparation for discovering genotype-phenotype relationships.
Coulet, Adrien; Smaïl-Tabbone, Malika; Benlian, Pascale; Napoli, Amedeo; Devignes, Marie-Dominique
2008-04-25
Complexity and amount of post-genomic data constitute two major factors limiting the application of Knowledge Discovery in Databases (KDD) methods in life sciences. Bio-ontologies may nowadays play key roles in knowledge discovery in life science providing semantics to data and to extracted units, by taking advantage of the progress of Semantic Web technologies concerning the understanding and availability of tools for knowledge representation, extraction, and reasoning. This paper presents a method that exploits bio-ontologies for guiding data selection within the preparation step of the KDD process. We propose three scenarios in which domain knowledge and ontology elements such as subsumption, properties, class descriptions, are taken into account for data selection, before the data mining step. Each of these scenarios is illustrated within a case-study relative to the search of genotype-phenotype relationships in a familial hypercholesterolemia dataset. The guiding of data selection based on domain knowledge is analysed and shows a direct influence on the volume and significance of the data mining results. The method proposed in this paper is an efficient alternative to numerical methods for data selection based on domain knowledge. In turn, the results of this study may be reused in ontology modelling and data integration.
Problem-Oriented Corporate Knowledge Base Models on the Case-Based Reasoning Approach Basis
NASA Astrophysics Data System (ADS)
Gluhih, I. N.; Akhmadulin, R. K.
2017-07-01
One of the urgent directions of efficiency enhancement of production processes and enterprises activities management is creation and use of corporate knowledge bases. The article suggests a concept of problem-oriented corporate knowledge bases (PO CKB), in which knowledge is arranged around possible problem situations and represents a tool for making and implementing decisions in such situations. For knowledge representation in PO CKB a case-based reasoning approach is encouraged to use. Under this approach, the content of a case as a knowledge base component has been defined; based on the situation tree a PO CKB knowledge model has been developed, in which the knowledge about typical situations as well as specific examples of situations and solutions have been represented. A generalized problem-oriented corporate knowledge base structural chart and possible modes of its operation have been suggested. The obtained models allow creating and using corporate knowledge bases for support of decision making and implementing, training, staff skill upgrading and analysis of the decisions taken. The universal interpretation of terms “situation” and “solution” adopted in the work allows using the suggested models to develop problem-oriented corporate knowledge bases in different subject domains. It has been suggested to use the developed models for making corporate knowledge bases of the enterprises that operate engineer systems and networks at large production facilities.
Tupper, Kenneth W; Labate, Beatriz C
2014-01-01
This article offers critical sociological and philosophical reflections on ayahuasca and other psychedelics as objects of research in medicine, health and human sciences. It situates 21st century scientific inquiry on ayahuasca in the broader context of how early modern European social trends and intellectual pursuits translated into new forms of empiricism and experimental philosophy, but later evolved into a form of dogmatism that convenienced the political suppression of academic inquiry into psychedelics. Applying ideas from the field of science and technology studies, we consider how ayahuasca's myriad ontological representations in the 21st century--for example, plant teacher, traditional medicine, religious sacrament, material commodity, cognitive tool, illicit drug--influence our understanding of it as an object of inquiry. We then explore epistemological issues related to ayahuasca studies, including how the indigenous and mestizo concept of "plant teacher" or the more instrumental notion of psychedelics as "cognitive tools" may impact understanding of knowledge. This leads to questions about whether scientists engaged in ayahuasca research should be expected to have personal experiences with the brew, and how these may be perceived to help or hinder the objectivity of their pursuits. We conclude with some brief reflections on the politics of psychedelic research and impediments to academic knowledge production in the field of psychedelic studies.
Some Problems and Proposals for Knowledge Representation.
1984-01-01
BROTHER(BiI, AI ) and FATHER( AI ,John) According to Woods, these both denote the fact that Bill is the uncle of John. However, we now must have two...34knowledge representation language being developed at the Berkeley Artificial Inteligience Research Project. KODIAK is an attempt to redress the above
Knowledge Representation in a Physics Tutor. COINS Technical Report 86-37.
ERIC Educational Resources Information Center
Murray, Tom; Woolf, Beverly
This paper is based on the idea that designing a knowledge representation for an intelligent physics computer tutoring system depends, in part, on the target behavior anticipated from the student. In addition, the document distinguishes between qualitative and quantitative competence in physics. These competencies are illustrated through questions…
Descriptive Analysis of the Graphic Representations of Science Textbooks
ERIC Educational Resources Information Center
Khine, Myint Swe; Liu, Yang
2017-01-01
Textbooks are primary teaching aids, sources from which students obtain knowledge of science domain. Due to this fact, curriculum developers in the field emphasize the crucial role of analysing the contents of science textbooks in improving science education. Scientific domain knowledge relies on graphical representations for the manifestation of…
Enhancing Conceptual Knowledge of Energy in Biology with Incorrect Representations
ERIC Educational Resources Information Center
Wernecke, Ulrike; Schütte, Kerstin; Schwanewedel, Julia; Harms, Ute
2018-01-01
Energy is an important concept in all natural sciences, and a challenging one for school science education. Students' conceptual knowledge of energy is often low, and they entertain misconceptions. Educational research in science and mathematics suggests that learning through depictive representations and learning from errors, based on the theory…
Software GOLUCA: Knowledge Representation in Mental Calculation
ERIC Educational Resources Information Center
Casas-Garcia, Luis M.; Luengo-Gonzalez, Ricardo; Godinho-Lopes, Vitor
2011-01-01
We present a new software, called Goluca (Godinho, Luengo, and Casas, 2007), based on the technique of Pathfinder Associative Networks (Schvaneveldt, 1989), which produces graphical representations of the cognitive structure of individuals in a given field knowledge. In this case, we studied the strategies used by teachers and its relationship…
Semantics vs. World Knowledge in Prefrontal Cortex
ERIC Educational Resources Information Center
Pylkkanen, Liina; Oliveri, Bridget; Smart, Andrew J.
2009-01-01
Humans have knowledge about the properties of their native language at various levels of representation; sound, structure, and meaning computation constitute the core components of any linguistic theory. Although the brain sciences have engaged with representational theories of sound and syntactic structure, the study of the neural bases of…
Systematic Representation of Knowledge of Ecology: Concepts and Relationships.
ERIC Educational Resources Information Center
Garb, Yaakov; And Others
This study describes efforts to apply principles of systematic knowledge representation (concept mapping and computer-based semantic networking techniques) to the domain of ecology. A set of 24 relationships and modifiers is presented that seem sufficient for describing all ecological relationships discussed in an introductory course. Many of…
Hoffman, Paul
2018-05-25
Semantic cognition refers to the appropriate use of acquired knowledge about the world. This requires representation of knowledge as well as control processes which ensure that currently-relevant aspects of knowledge are retrieved and selected. Although these abilities can be impaired selectively following brain damage, the relationship between them in healthy individuals is unclear. It is also commonly assumed that semantic cognition is preserved in later life, because older people have greater reserves of knowledge. However, this claim overlooks the possibility of decline in semantic control processes. Here, semantic cognition was assessed in 100 young and older adults. Despite having a broader knowledge base, older people showed specific impairments in semantic control, performing more poorly than young people when selecting among competing semantic representations. Conversely, they showed preserved controlled retrieval of less salient information from the semantic store. Breadth of semantic knowledge was positively correlated with controlled retrieval but was unrelated to semantic selection ability, which was instead correlated with non-semantic executive function. These findings indicate that three distinct elements contribute to semantic cognition: semantic representations that accumulate throughout the lifespan, processes for controlled retrieval of less salient semantic information, which appear age-invariant, and mechanisms for selecting task-relevant aspects of semantic knowledge, which decline with age and may relate more closely to domain-general executive control.
Making Connections: Elementary Teachers' Construction of Division Word Problems and Representations
ERIC Educational Resources Information Center
Timmerman, Maria A.
2014-01-01
If teachers make few connections among multiple representations of division, supporting students in using representations to develop operation sense demanded by national standards will not occur. Studies have investigated how prospective and practicing teachers use representations to develop knowledge of fraction division. However, few studies…
Playing Linear Number Board Games Improves Children's Mathematical Knowledge
ERIC Educational Resources Information Center
Siegler, Robert S.; Ramani, Geetha
2009-01-01
The present study focused on two main goals. One was to test the "representational mapping hypothesis": The greater the transparency of the mapping between physical materials and desired internal representations, the greater the learning of the desired internal representation. The implication of the representational mapping hypothesis in the…
Franquesa-Soler, Montserrat; Serio-Silva, Juan Carlos
2017-12-01
This study seeks to understand children's perceptions and knowledge of endangered Mexican primates. The black howler monkey (Alouatta pigra) is a charismatic species endemic to Southern Mexico, Northern Belize, and Guatemala and is a symbol of the region that fosters a sense of local pride. Therefore, it can be considered a flagship species for the forests of Southern Mexico. We evaluated the perception and knowledge that 297 Mexican elementary school children (8-10 years old) have about black howler monkeys. Specifically, we analyzed and categorized drawings made by these children based on gender, geographic context (rural or urban), and residence within or outside of Protected Areas (PAs). Student drawings were categorized into three levels of knowledge (no familiarity, basic knowledge, and sophisticated knowledge). Common misconceptions and important landscape elements for black howler conservation were gathered from these visual representations. Children were largely unfamiliar with black howlers, despite sharing the same geographical location. Knowledge was affected by context and residence, with students living within PAs more aware of black howlers than students living outside of PAs. However, overall the children showed a deep understanding of the current forest conservation situation in Southern Mexico; meaning they could be presenting a shifting baseline syndrome. The study highlights the value of assessing children's drawings as a tool that can be used to help policy makers and educational practitioners in fine-tuning educational, environmental, and marketing programs. More importantly, it is a methodology that can be applied in future research for understanding children's perceptions and knowledge about endangered species and environmental change in deciding how to improve the effectiveness of conservation messaging. © 2017 Wiley Periodicals, Inc.
A New Perspective on Modeling Groundwater-Driven Health Risk With Subjective Information
NASA Astrophysics Data System (ADS)
Ozbek, M. M.
2003-12-01
Fuzzy rule-based systems provide an efficient environment for the modeling of expert information in the context of risk management for groundwater contamination problems. In general, their use in the form of conditional pieces of knowledge, has been either as a tool for synthesizing control laws from data (i.e., conjunction-based models), or in a knowledge representation and reasoning perspective in Artificial Intelligence (i.e., implication-based models), where only the latter may lead to coherence problems (e.g., input data that leads to logical inconsistency when added to the knowledge base). We implement a two-fold extension to an implication-based groundwater risk model (Ozbek and Pinder, 2002) including: 1) the implementation of sufficient conditions for a coherent knowledge base, and 2) the interpolation of expert statements to supplement gaps in knowledge. The original model assumes statements of public health professionals for the characterization of the exposed individual and the relation of dose and pattern of exposure to its carcinogenic effects. We demonstrate the utility of the extended model in that it: 1)identifies inconsistent statements and establishes coherence in the knowledge base, and 2) minimizes the burden of knowledge elicitation from the experts for utilizing existing knowledge in an optimal fashion.ÿÿ
Cook, Daniel L; Neal, Maxwell L; Bookstein, Fred L; Gennari, John H
2013-12-02
In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale "physiome" projects such as the EU's Virtual Physiological Human (VPH) and NIH's Virtual Physiological Rat (VPR). Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the "rules" by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm's law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke's law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. We have developed the OPB and annotation methods to represent the meaning-the biophysical semantics-of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes.
Integration of object-oriented knowledge representation with the CLIPS rule based system
NASA Technical Reports Server (NTRS)
Logie, David S.; Kamil, Hasan
1990-01-01
The paper describes a portion of the work aimed at developing an integrated, knowledge based environment for the development of engineering-oriented applications. An Object Representation Language (ORL) was implemented in C++ which is used to build and modify an object-oriented knowledge base. The ORL was designed in such a way so as to be easily integrated with other representation schemes that could effectively reason with the object base. Specifically, the integration of the ORL with the rule based system C Language Production Systems (CLIPS), developed at the NASA Johnson Space Center, will be discussed. The object-oriented knowledge representation provides a natural means of representing problem data as a collection of related objects. Objects are comprised of descriptive properties and interrelationships. The object-oriented model promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects. Data is inherited through an object network via the relationship links. Together, the two schemes complement each other in that the object-oriented approach efficiently handles problem data while the rule based knowledge is used to simulate the reasoning process. Alone, the object based knowledge is little more than an object-oriented data storage scheme; however, the CLIPS inference engine adds the mechanism to directly and automatically reason with that knowledge. In this hybrid scheme, the expert system dynamically queries for data and can modify the object base with complete access to all the functionality of the ORL from rules.
Requirements for the formal representation of pathophysiology mechanisms by clinicians
Helvensteijn, M.; Kokash, N.; Martorelli, I.; Sarwar, D.; Islam, S.; Grenon, P.; Hunter, P.
2016-01-01
Knowledge of multiscale mechanisms in pathophysiology is the bedrock of clinical practice. If quantitative methods, predicting patient-specific behaviour of these pathophysiology mechanisms, are to be brought to bear on clinical decision-making, the Human Physiome community and Clinical community must share a common computational blueprint for pathophysiology mechanisms. A number of obstacles stand in the way of this sharing—not least the technical and operational challenges that must be overcome to ensure that (i) the explicit biological meanings of the Physiome's quantitative methods to represent mechanisms are open to articulation, verification and study by clinicians, and that (ii) clinicians are given the tools and training to explicitly express disease manifestations in direct contribution to modelling. To this end, the Physiome and Clinical communities must co-develop a common computational toolkit, based on this blueprint, to bridge the representation of knowledge of pathophysiology mechanisms (a) that is implicitly depicted in electronic health records and the literature, with (b) that found in mathematical models explicitly describing mechanisms. In particular, this paper makes use of a step-wise description of a specific disease mechanism as a means to elicit the requirements of representing pathophysiological meaning explicitly. The computational blueprint developed from these requirements addresses the Clinical community goals to (i) organize and manage healthcare resources in terms of relevant disease-related knowledge of mechanisms and (ii) train the next generation of physicians in the application of quantitative methods relevant to their research and practice. PMID:27051514
From Data to Knowledge through Concept-oriented Terminologies
Cimino, James J.
2000-01-01
Knowledge representation involves enumeration of conceptual symbols and arrangement of these symbols into some meaningful structure. Medical knowledge representation has traditionally focused more on the structure than the symbols. Several significant efforts are under way, at local, national, and international levels, to address the representation of the symbols though the creation of high-quality terminologies that are themselves knowledge based. This paper reviews these efforts, including the Medical Entities Dictionary (MED) in use at Columbia University and the New York Presbyterian Hospital. A decade's experience with the MED is summarized to serve as a proof-of-concept that knowledge-based terminologies can support the use of coded patient data for a variety of knowledge-based activities, including the improved understanding of patient data, the access of information sources relevant to specific patient care problems, the application of expert systems directly to the care of patients, and the discovery of new medical knowledge. The terminological knowledge in the MED has also been used successfully to support clinical application development and maintenance, including that of the MED itself. On the basis of this experience, current efforts to create standard knowledge-based terminologies appear to be justified. PMID:10833166
Cimino, J J
2000-01-01
Knowledge representation involves enumeration of conceptual symbols and arrangement of these symbols into some meaningful structure. Medical knowledge representation has traditionally focused more on the structure than the symbols. Several significant efforts are under way, at local, national, and international levels, to address the representation of the symbols though the creation of high-quality terminologies that are themselves knowledge based. This paper reviews these efforts, including the Medical Entities Dictionary (MED) in use at Columbia University and the New York Presbyterian Hospital. A decade's experience with the MED is summarized to serve as a proof-of-concept that knowledge-based terminologies can support the use of coded patient data for a variety of knowledge-based activities, including the improved understanding of patient data, the access of information sources relevant to specific patient care problems, the application of expert systems directly to the care of patients, and the discovery of new medical knowledge. The terminological knowledge in the MED has also been used successfully to support clinical application development and maintenance, including that of the MED itself. On the basis of this experience, current efforts to create standard knowledge-based terminologies appear to be justified.
NASA Astrophysics Data System (ADS)
Li, Na; Black, John B.
2016-10-01
Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences of representational activities produced different student learning outcomes in learning a chemistry topic. A sample of 129 seventh graders participated in this study. In a simulation-based environment, participants completed three representational activities to learn several ideal gas law concepts. We conducted a 2 × 3 factorial design experiment. We compared two scaffolding conditions: (1) the inter- level scaffolding condition in which participants received inter-level questions and experienced the dynamic link function in the simulation-based environment and (2) the intra- level scaffolding condition in which participants received intra-level questions and did not experience the dynamic link function. We also compared three different sequences of representational activities: macro-symbolic-micro, micro-symbolic-macro and symbolic-micro-macro. For the scaffolding variable, we found that the inter- level scaffolding condition produced significantly better performance in both knowledge comprehension and application, compared to the intra- level scaffolding condition. For the sequence variable, we found that the macro-symbolic-micro sequence produced significantly better knowledge comprehension performance than the other two sequences; however, it did not benefit knowledge application performance. There was a trend that the treatment group who experienced inter- level scaffolding and the micro-symbolic-macro sequence achieved the best knowledge application performance.
Knowledge representation in space flight operations
NASA Technical Reports Server (NTRS)
Busse, Carl
1989-01-01
In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text.
Secure Base Narrative Representations and Intimate Partner Violence: A Dyadic Perspective
Karakurt, Gunnur; Silver, Kristin E.; Keiley, Margaret K.
2015-01-01
This study aimed to understand the relationship between secure base phenomena and dating violence among couples. Within a relationship, a secure base can be defined as a balancing act of proximity-seeking and exploration at various times and contexts with the assurance of a caregiver’s availability and responsiveness in emotionally distressing situations. Participants were 87 heterosexual couples. The Actor-Partner Interdependence Model was used to examine the relationship between each partner’s scores on secure base representational knowledge and intimate partner violence. Findings demonstrated that women’s secure base representational knowledge had a significant direct negative effect on the victimization of both men and women, while men’s secure base representational knowledge did not have any significant partner or actor effects. Therefore, findings suggest that women with insecure attachments may be more vulnerable to being both the victims and the perpetrators of PMID:27445432
Cognitive Dissonance as an Instructional Tool for Understanding Chemical Representations
ERIC Educational Resources Information Center
Corradi, David; Clarebout, Geraldine; Elen, Jan
2015-01-01
Previous research on multiple external representations (MER) indicates that sequencing representations (compared with presenting them as a whole) can, in some cases, increase conceptual understanding if there is interference between internal and external representations. We tested this mechanism by sequencing different combinations of scientific…
NASA Astrophysics Data System (ADS)
Allen, Emily Christine
Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about abstract topics such as atomic and molecular structure. There is further gain if students' difficulties with these representations are targeted through the use additional instruction such as a workbook that requires the students to exercise their visual modeling skills.
Gestural Imitation and Limb Apraxia in Corticobasal Degeneration
ERIC Educational Resources Information Center
Salter, Jennifer E.; Roy, Eric A.; Black, Sandra E.; Joshi, Anish; Almeida, Quincy
2004-01-01
Limb apraxia is a common symptom of corticobasal degeneration (CBD). While previous research has shown that individuals with CBD have difficulty imitating transitive (tool-use actions) and intransitive non-representational gestures (nonsense actions), intransitive representational gestures (actions without a tool) have not been examined. In the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulvatunyou, Boonserm; Wysk, Richard A.; Cho, Hyunbo
2004-06-01
In today's global manufacturing environment, manufacturing functions are distributed as never before. Design, engineering, fabrication, and assembly of new products are done routinely in many different enterprises scattered around the world. Successful business transactions require the sharing of design and engineering data on an unprecedented scale. This paper describes a framework that facilitates the collaboration of engineering tasks, particularly process planning and analysis, to support such globalized manufacturing activities. The information models of data and the software components that integrate those information models are described. The integration framework uses an Integrated Product and Process Data (IPPD) representation called a Resourcemore » Independent Operation Summary (RIOS) to facilitate the communication of business and manufacturing requirements. Hierarchical process modeling, process planning decomposition and an augmented AND/OR directed graph are used in this representation. The Resource Specific Process Planning (RSPP) module assigns required equipment and tools, selects process parameters, and determines manufacturing costs based on two-level hierarchical RIOS data. The shop floor knowledge (resource and process knowledge) and a hybrid approach (heuristic and linear programming) to linearize the AND/OR graph provide the basis for the planning. Finally, a prototype system is developed and demonstrated with an exemplary part. Java and XML (Extensible Markup Language) are used to ensure software and information portability.« less
Dynamic speech representations in the human temporal lobe.
Leonard, Matthew K; Chang, Edward F
2014-09-01
Speech perception requires rapid integration of acoustic input with context-dependent knowledge. Recent methodological advances have allowed researchers to identify underlying information representations in primary and secondary auditory cortex and to examine how context modulates these representations. We review recent studies that focus on contextual modulations of neural activity in the superior temporal gyrus (STG), a major hub for spectrotemporal encoding. Recent findings suggest a highly interactive flow of information processing through the auditory ventral stream, including influences of higher-level linguistic and metalinguistic knowledge, even within individual areas. Such mechanisms may give rise to more abstract representations, such as those for words. We discuss the importance of characterizing representations of context-dependent and dynamic patterns of neural activity in the approach to speech perception research. Copyright © 2014 Elsevier Ltd. All rights reserved.
The effect of training methodology on knowledge representation in categorization.
Hélie, Sébastien; Shamloo, Farzin; Ell, Shawn W
2017-01-01
Category representations can be broadly classified as containing within-category information or between-category information. Although such representational differences can have a profound impact on decision-making, relatively little is known about the factors contributing to the development and generalizability of different types of category representations. These issues are addressed by investigating the impact of training methodology and category structures using a traditional empirical approach as well as the novel adaptation of computational modeling techniques from the machine learning literature. Experiment 1 focused on rule-based (RB) category structures thought to promote between-category representations. Participants learned two sets of two categories during training and were subsequently tested on a novel categorization problem using the training categories. Classification training resulted in a bias toward between-category representations whereas concept training resulted in a bias toward within-category representations. Experiment 2 focused on information-integration (II) category structures thought to promote within-category representations. With II structures, there was a bias toward within-category representations regardless of training methodology. Furthermore, in both experiments, computational modeling suggests that only within-category representations could support generalization during the test phase. These data suggest that within-category representations may be dominant and more robust for supporting the reconfiguration of current knowledge to support generalization.
The effect of training methodology on knowledge representation in categorization
Shamloo, Farzin; Ell, Shawn W.
2017-01-01
Category representations can be broadly classified as containing within–category information or between–category information. Although such representational differences can have a profound impact on decision–making, relatively little is known about the factors contributing to the development and generalizability of different types of category representations. These issues are addressed by investigating the impact of training methodology and category structures using a traditional empirical approach as well as the novel adaptation of computational modeling techniques from the machine learning literature. Experiment 1 focused on rule–based (RB) category structures thought to promote between–category representations. Participants learned two sets of two categories during training and were subsequently tested on a novel categorization problem using the training categories. Classification training resulted in a bias toward between–category representations whereas concept training resulted in a bias toward within–category representations. Experiment 2 focused on information-integration (II) category structures thought to promote within–category representations. With II structures, there was a bias toward within–category representations regardless of training methodology. Furthermore, in both experiments, computational modeling suggests that only within–category representations could support generalization during the test phase. These data suggest that within–category representations may be dominant and more robust for supporting the reconfiguration of current knowledge to support generalization. PMID:28846732
29 CFR 2570.34 - Information to be included in every exemption application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... knowledge and belief, the representations made in such statement are true and correct. (c) An application... with the matters discussed in this application and, to the best of my knowledge and belief, the representations made in this application are true and correct. (ii) This declaration must be dated and signed by...
On the Roles of External Knowledge Representations in Assessment Design
ERIC Educational Resources Information Center
Mislevy, Robert J.; Behrens, John T.; Bennett, Randy E.; Demark, Sarah F.; Frezzo, Dennis C.; Levy, Roy; Robinson, Daniel H.; Rutstein, Daisy Wise; Shute, Valerie J.; Stanley, Ken; Winters, Fielding I.
2010-01-01
People use external knowledge representations (KRs) to identify, depict, transform, store, share, and archive information. Learning how to work with KRs is central to be-coming proficient in virtually every discipline. As such, KRs play central roles in curriculum, instruction, and assessment. We describe five key roles of KRs in assessment: (1)…
ERIC Educational Resources Information Center
Buerle, Stephen
2017-01-01
This dissertation explores some of the fundamental challenges facing the information assurance community as it relates to knowledge categorization, organization and representation within the field of information security and more specifically within the domain of biometric authentication. A primary objective of this research is the development of…
On the Roles of External Knowledge Representations in Assessment Design. CSE Report 722
ERIC Educational Resources Information Center
Mislevy, Robert J.; Behrens, John T.; Bennett, Randy E.; Demark, Sarah F.; Frezzo, Dennis C.; Levy, Roy; Robinson, Daniel H.; Rutstein, Daisy Wise; Shute, Valerie J.; Stanley, Ken; Winters, Fielding I.
2007-01-01
People use external knowledge representations (EKRs) to identify, depict, transform, store, share, and archive information. Learning how to work with EKRs is central to becoming proficient in virtually every discipline. As such, EKRs play central roles in curriculum, instruction, and assessment. Five key roles of EKRs in educational assessment are…
Disciplinary Representation on Institutional Websites: Changing Knowledge, Changing Power?
ERIC Educational Resources Information Center
O'Connor, Kate; Yates, Lyn
2014-01-01
This paper analyses shifts in the representation of history and physics as named organisational units on Australian university websites over the last 15 years in the context of broader questions about the production of knowledge in contemporary times. It derives from a broader project concerned with disciplinarity, changing university contexts and…
ERIC Educational Resources Information Center
Li, Na; Black, John B.
2016-01-01
Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences…
Decision support system for nursing management control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, C.J.
A knowledge representation approach for expert systems supporting decision processes in business is proposed. A description of a knowledge representation schema using a logic programming metalanguage is described, then the role of such a schema in a management expert system is demonstrated through the problem of nursing management control in hospitals. 18 references.
ERIC Educational Resources Information Center
Parnafes, Orit
2012-01-01
This article presents a theoretical model of the process by which students construct and elaborate explanations of scientific phenomena using visual representations. The model describes progress in the underlying conceptual processes in students' explanations as a reorganization of fine-grained knowledge elements based on the Knowledge in Pieces…
Emerging Standards for Medical Logic
Clayton, Paul D.; Hripcsak, George; Pryor, T. Allan
1990-01-01
Sharing medical logic has traditionally occurred in the form of lectures, conversations, books and journals. As knowledge based computer systems have demonstrated their utility in the health care arena, individuals have pondered the best way to transfer knowledge in a computer based representation (1). A simple representation which allows the knowledge to be shared can be constructed when the knowledge base is modular. Within this representation, units have been named Medical Logic Modules (MLM's) and a syntax has emerged which would allow multiple users to create, criticize, and share those types of medical logic which can be represented in this format. In this paper we talk about why standards exist and why they emerge in some areas and not in others. The appropriateness of using the proposed standards for medical logic modules is then examined against this broader context.
ERIC Educational Resources Information Center
Harle, Marissa; Towns, Marcy H.
2012-01-01
Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…
When one model is not enough: combining epistemic tools in systems biology.
Green, Sara
2013-06-01
In recent years, the philosophical focus of the modeling literature has shifted from descriptions of general properties of models to an interest in different model functions. It has been argued that the diversity of models and their correspondingly different epistemic goals are important for developing intelligible scientific theories (Leonelli, 2007; Levins, 2006). However, more knowledge is needed on how a combination of different epistemic means can generate and stabilize new entities in science. This paper will draw on Rheinberger's practice-oriented account of knowledge production. The conceptual repertoire of Rheinberger's historical epistemology offers important insights for an analysis of the modelling practice. I illustrate this with a case study on network modeling in systems biology where engineering approaches are applied to the study of biological systems. I shall argue that the use of multiple representational means is an essential part of the dynamic of knowledge generation. It is because of-rather than in spite of-the diversity of constraints of different models that the interlocking use of different epistemic means creates a potential for knowledge production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Carriger, John F; Dyson, Brian E; Benson, William H
2018-01-15
This article develops and explores a methodology for using qualitative influence diagrams in environmental policy and management to support decision making efforts that minimize risk and increase resiliency. Influence diagrams are representations of the conditional aspects of a problem domain. Their graphical properties are useful for structuring causal knowledge relevant to policy interventions and can be used to enhance inference and inclusivity of multiple viewpoints. Qualitative components of influence diagrams are beneficial tools for identifying and examining the interactions among the critical variables in complex policy development and implementation. Policy interventions on social-environmental systems can be intuitively diagrammed for representing knowledge of critical relationships among economic, environmental, and social attributes. Examples relevant to coastal resiliency issues in the U.S. Gulf Coast region are developed to illustrate model structures for developing qualitative influence diagrams useful for clarifying important policy intervention issues and enhancing transparency in decision making. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
ERIC Educational Resources Information Center
Rau, Martina A.
2013-01-01
Most learning environments in the STEM disciplines use multiple graphical representations along with textual descriptions and symbolic representations. Multiple graphical representations are powerful learning tools because they can emphasize complementary aspects of complex learning contents. However, to benefit from multiple graphical…
Liberal Entity Extraction: Rapid Construction of Fine-Grained Entity Typing Systems.
Huang, Lifu; May, Jonathan; Pan, Xiaoman; Ji, Heng; Ren, Xiang; Han, Jiawei; Zhao, Lin; Hendler, James A
2017-03-01
The ability of automatically recognizing and typing entities in natural language without prior knowledge (e.g., predefined entity types) is a major challenge in processing such data. Most existing entity typing systems are limited to certain domains, genres, and languages. In this article, we propose a novel unsupervised entity-typing framework by combining symbolic and distributional semantics. We start from learning three types of representations for each entity mention: general semantic representation, specific context representation, and knowledge representation based on knowledge bases. Then we develop a novel joint hierarchical clustering and linking algorithm to type all mentions using these representations. This framework does not rely on any annotated data, predefined typing schema, or handcrafted features; therefore, it can be quickly adapted to a new domain, genre, and/or language. Experiments on genres (news and discussion forum) show comparable performance with state-of-the-art supervised typing systems trained from a large amount of labeled data. Results on various languages (English, Chinese, Japanese, Hausa, and Yoruba) and domains (general and biomedical) demonstrate the portability of our framework.
Implementation of a frame-based representation in CLIPS
NASA Technical Reports Server (NTRS)
Assal, Hisham; Myers, Leonard
1990-01-01
Knowledge representation is one of the major concerns in expert systems. The representation of domain-specific knowledge should agree with the nature of the domain entities and their use in the real world. For example, architectural applications deal with objects and entities such as spaces, walls, and windows. A natural way of representing these architectural entities is provided by frames. This research explores the potential of using the expert system shell CLIPS, developed by NASA, to implement a frame-based representation that can accommodate architectural knowledge. These frames are similar but quite different from the 'template' construct in version 4.3 of CLIPS. Templates support only the grouping of related information and the assignment of default values to template fields. In addition to these features frames provide other capabilities including definition of classes, inheritance between classes and subclasses, relation of objects of different classes with 'has-a', association of methods (demons) of different types (standard and user-defined) to fields (slots), and creation of new fields at run-time. This frame-based representation is implemented completely in CLIPS. No change to the source code is necessary.
Liberal Entity Extraction: Rapid Construction of Fine-Grained Entity Typing Systems
Huang, Lifu; May, Jonathan; Pan, Xiaoman; Ji, Heng; Ren, Xiang; Han, Jiawei; Zhao, Lin; Hendler, James A.
2017-01-01
Abstract The ability of automatically recognizing and typing entities in natural language without prior knowledge (e.g., predefined entity types) is a major challenge in processing such data. Most existing entity typing systems are limited to certain domains, genres, and languages. In this article, we propose a novel unsupervised entity-typing framework by combining symbolic and distributional semantics. We start from learning three types of representations for each entity mention: general semantic representation, specific context representation, and knowledge representation based on knowledge bases. Then we develop a novel joint hierarchical clustering and linking algorithm to type all mentions using these representations. This framework does not rely on any annotated data, predefined typing schema, or handcrafted features; therefore, it can be quickly adapted to a new domain, genre, and/or language. Experiments on genres (news and discussion forum) show comparable performance with state-of-the-art supervised typing systems trained from a large amount of labeled data. Results on various languages (English, Chinese, Japanese, Hausa, and Yoruba) and domains (general and biomedical) demonstrate the portability of our framework. PMID:28328252
Identifying knowledge activism in worker health and safety representation: A cluster analysis.
Hall, Alan; Oudyk, John; King, Andrew; Naqvi, Syed; Lewchuk, Wayne
2016-01-01
Although worker representation in OHS has been widely recognized as contributing to health and safety improvements at work, few studies have examined the role that worker representatives play in this process. Using a large quantitative sample, this paper seeks to confirm findings from an earlier exploratory qualitative study that worker representatives can be differentiated by the knowledge intensive tactics and strategies that they use to achieve changes in their workplace. Just under 900 worker health and safety representatives in Ontario completed surveys which asked them to report on the amount of time they devoted to different types of representation activities (i.e., technical activities such as inspections and report writing vs. political activities such as mobilizing workers to build support), the kinds of conditions or hazards they tried to address through their representation (e.g., housekeeping vs. modifications in ventilation systems), and their reported success in making positive improvements. A cluster analysis was used to determine whether the worker representatives could be distinguished in terms of the relative time devoted to different activities and the clusters were then compared with reference to types of intervention efforts and outcomes. The cluster analysis identified three distinct groupings of representatives with significant differences in reported types of interventions and in their level of reported impact. Two of the clusters were consistent with the findings in the exploratory study, identified as knowledge activism for greater emphasis on knowledge based political activity and technical-legal representation for greater emphasis on formalized technical oriented procedures and legal regulations. Knowledge activists were more likely to take on challenging interventions and they reported more impact across the full range of interventions. This paper provides further support for the concepts of knowledge activism and technical-legal representation when differentiating the strategic orientations and impact of worker health and safety representatives, with important implications for education, political support and recruitment. © 2015 Wiley Periodicals, Inc.
Laverack, G
2008-12-01
This article addresses the questions of why some communities have more ability than others, why some communities are more capable at accessing resources, at influencing decision makers, are better organised and are better able at mobilising themselves towards empowerment. The difference in ability can be attributed to the level of knowledge, skills and competencies or capacity that a community has and which it can draw upon to address its concerns about the lives and health of its members. This article discusses a qualitative tool that has been extensively used in health promotion programmes to build community capacity and empowerment. The article defines the key concepts and unpacks capacity building into nine specific 'domains'. The article goes on to describe how the 'tool' can be implemented by practitioners to build and measure capacity and empowerment. The article provides an actual example from practice on the use of an innovative form of visual representation of the findings of the measurement.
Cacioppo, Stephanie; Fontang, Frederic; Patel, Nisa; Decety, Jean; Monteleone, George; Cacioppo, John T.
2014-01-01
Studying the way athletes predict actions of their peers during fast-ball sports, such as a tennis, has proved to be a valuable tool for increasing our knowledge of intention understanding. The working model in this area is that the anticipatory representations of others' behaviors require internal predictive models of actions formed from pre-established and shared representations between the observer and the actor. This model also predicts that observers would not be able to read accurately the intentions of a competitor if the competitor were to perform the action without prior knowledge of their intention until moments before the action. To test this hypothesis, we recorded brain activity from 25 male tennis players while they performed a novel behavioral tennis intention inference task, which included two conditions: (i) one condition in which they viewed video clips of a tennis athlete who knew in advance where he was about to act/serve (initially intended serves) and (ii) one condition in which they viewed video clips of that same athlete when he did not know where he was to act/serve until the target was specified after he had tossed the ball into the air to complete his serve (non-initially intended serves). Our results demonstrated that (i) tennis expertise is related to the accuracy in predicting where another server intends to serve when that server knows where he intends to serve before (but not after) he tosses the ball in the air; and (ii) accurate predictions are characterized by the recruitment of both cortical areas within the human mirror neuron system (that is known to be involved in higher-order (top-down) processes of embodied cognition and shared representation) and subcortical areas within brain regions involved in procedural memory (caudate nucleus). Interestingly, inaccurate predictions instead recruit areas known to be involved in low-level (bottom-up) computational processes associated with the sense of agency and self-other distinction. PMID:25339886
[Social representations on HIV/AIDS among adolescentes: implications for nursing care].
Thiengo, Maria Aparecida; de Oliveira, Denize Cristina; Rodrigues, Benedita Maria Rêgo Deusdará
2005-03-01
With the objective of discussing the implications of the social representations of HIV/AIDS for the interpersonal relations and the practices for protection among adolescents, 15 semidirective interviews were carried out with adolescents, both with and without HIV, assisted at a Hospital School in Rio de Janeiro. The software ALCESTE 4.5 was used for the data analysis. It was observed that the social representation of AIDS is structured around cognitions connected to prevention, revealing a contradiction between the knowledge and the practices reported by the group. It is suggested that the nursing practices should be directed towards the reduction of the distance between practices, representations and scientific knowledge.
van Elk, Michiel; van Schie, Hein; Bekkering, Harold
2014-06-01
Our capacity to use tools and objects is often considered one of the hallmarks of the human species. Many objects greatly extend our bodily capabilities to act in the physical world, such as when using a hammer or a saw. In addition, humans have the remarkable capability to use objects in a flexible fashion and to combine multiple objects in complex actions. We prepare coffee, cook dinner and drive our car. In this review we propose that humans have developed declarative and procedural knowledge, i.e. action semantics that enables us to use objects in a meaningful way. A state-of-the-art review of research on object use is provided, involving behavioral, developmental, neuropsychological and neuroimaging studies. We show that research in each of these domains is characterized by similar discussions regarding (1) the role of object affordances, (2) the relation between goals and means in object use and (3) the functional and neural organization of action semantics. We propose a novel conceptual framework of action semantics to address these issues and to integrate the previous findings. We argue that action semantics entails both multimodal object representations and modality-specific sub-systems, involving manipulation knowledge, functional knowledge and representations of the sensory and proprioceptive consequences of object use. Furthermore, we argue that action semantics are hierarchically organized and selectively activated and used depending on the action intention of the actor and the current task context. Our framework presents an integrative account of multiple findings and perspectives on object use that may guide future studies in this interdisciplinary domain. Copyright © 2013 Elsevier B.V. All rights reserved.
Generative Representations for Computer-Automated Evolutionary Design
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2006-01-01
With the increasing computational power of computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design systems is the representation with which they encode designs. If the representation cannot encode a certain design, then the design system cannot produce it. To be able to produce new types of designs, and not just optimize pre-defined parameterizations, evolutionary design systems must use generative representations. Generative representations are assembly procedures, or algorithms, for constructing a design thereby allowing for truly novel design solutions to be encoded. In addition, by enabling modularity, regularity and hierarchy, the level of sophistication that can be evolved is increased. We demonstrate the advantages of generative representations on two different design domains: the evolution of spacecraft antennas and the evolution of 3D objects.
1990-06-01
the form of structured objects was first pioneered by Marvin Minsky . In his seminal article " A Framework for Representing Knowl- edge" he introduced... Minsky felt that the existing methods of knowledge representation were too finely grained and he proposed that knowledge is more than just a...not work" in realistic, complex domains. ( Minsky , 1981, pp. 95-128) According to Minsky "A frame is a data-structure for representing a stereo- typed
An, Gary
2009-01-01
The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.
Deep Logic Networks: Inserting and Extracting Knowledge From Deep Belief Networks.
Tran, Son N; d'Avila Garcez, Artur S
2018-02-01
Developments in deep learning have seen the use of layerwise unsupervised learning combined with supervised learning for fine-tuning. With this layerwise approach, a deep network can be seen as a more modular system that lends itself well to learning representations. In this paper, we investigate whether such modularity can be useful to the insertion of background knowledge into deep networks, whether it can improve learning performance when it is available, and to the extraction of knowledge from trained deep networks, and whether it can offer a better understanding of the representations learned by such networks. To this end, we use a simple symbolic language-a set of logical rules that we call confidence rules-and show that it is suitable for the representation of quantitative reasoning in deep networks. We show by knowledge extraction that confidence rules can offer a low-cost representation for layerwise networks (or restricted Boltzmann machines). We also show that layerwise extraction can produce an improvement in the accuracy of deep belief networks. Furthermore, the proposed symbolic characterization of deep networks provides a novel method for the insertion of prior knowledge and training of deep networks. With the use of this method, a deep neural-symbolic system is proposed and evaluated, with the experimental results indicating that modularity through the use of confidence rules and knowledge insertion can be beneficial to network performance.
An ontological knowledge framework for adaptive medical workflow.
Dang, Jiangbo; Hedayati, Amir; Hampel, Ken; Toklu, Candemir
2008-10-01
As emerging technologies, semantic Web and SOA (Service-Oriented Architecture) allow BPMS (Business Process Management System) to automate business processes that can be described as services, which in turn can be used to wrap existing enterprise applications. BPMS provides tools and methodologies to compose Web services that can be executed as business processes and monitored by BPM (Business Process Management) consoles. Ontologies are a formal declarative knowledge representation model. It provides a foundation upon which machine understandable knowledge can be obtained, and as a result, it makes machine intelligence possible. Healthcare systems can adopt these technologies to make them ubiquitous, adaptive, and intelligent, and then serve patients better. This paper presents an ontological knowledge framework that covers healthcare domains that a hospital encompasses-from the medical or administrative tasks, to hospital assets, medical insurances, patient records, drugs, and regulations. Therefore, our ontology makes our vision of personalized healthcare possible by capturing all necessary knowledge for a complex personalized healthcare scenario involving patient care, insurance policies, and drug prescriptions, and compliances. For example, our ontology facilitates a workflow management system to allow users, from physicians to administrative assistants, to manage, even create context-aware new medical workflows and execute them on-the-fly.
ERIC Educational Resources Information Center
Martschinke, Sabine
1996-01-01
Examines types of graphical representation as to their suitability for knowledge acquisition in primary grades. Uses the concept of mental models to clarify the relationship between external presentation and internal representation of knowledge. Finds that students who learned with highly elaborated and highly structured pictures displayed the…
Understanding visualization: a formal approach using category theory and semiotics.
Vickers, Paul; Faith, Joe; Rossiter, Nick
2013-06-01
This paper combines the vocabulary of semiotics and category theory to provide a formal analysis of visualization. It shows how familiar processes of visualization fit the semiotic frameworks of both Saussure and Peirce, and extends these structures using the tools of category theory to provide a general framework for understanding visualization in practice, including: Relationships between systems, data collected from those systems, renderings of those data in the form of representations, the reading of those representations to create visualizations, and the use of those visualizations to create knowledge and understanding of the system under inspection. The resulting framework is validated by demonstrating how familiar information visualization concepts (such as literalness, sensitivity, redundancy, ambiguity, generalizability, and chart junk) arise naturally from it and can be defined formally and precisely. This paper generalizes previous work on the formal characterization of visualization by, inter alia, Ziemkiewicz and Kosara and allows us to formally distinguish properties of the visualization process that previous work does not.
NASA Technical Reports Server (NTRS)
Greenspan, Sol; Feblowitz, Mark
1992-01-01
ACME is an experimental environment for investigating new approaches to modeling and analysis of system requirements and designs. ACME is built on and extends object-oriented conceptual modeling techniques and knowledge representation and reasoning (KRR) tools. The most immediate intended use for ACME is to help represent, understand, and communicate system designs during the early stages of system planning and requirements engineering. While our research is ostensibly aimed at software systems in general, we are particularly motivated to make an impact in the telecommunications domain, especially in the area referred to as Intelligent Networks (IN's). IN systems contain the software to provide services to users of a telecommunications network (e.g., call processing services, information services, etc.) as well as the software that provides the internal infrastructure for providing the services (e.g., resource management, billing, etc.). The software includes not only systems developed by the network proprietors but also by a growing group of independent service software providers.
Pulawski, Wojciech; Jamroz, Michal; Kolinski, Michal; Kolinski, Andrzej; Kmiecik, Sebastian
2016-11-28
The CABS coarse-grained model is a well-established tool for modeling globular proteins (predicting their structure, dynamics, and interactions). Here we introduce an extension of the CABS representation and force field (CABS-membrane) to the modeling of the effect of the biological membrane environment on the structure of membrane proteins. We validate the CABS-membrane model in folding simulations of 10 short helical membrane proteins not using any knowledge about their structure. The simulations start from random protein conformations placed outside the membrane environment and allow for full flexibility of the modeled proteins during their spontaneous insertion into the membrane. In the resulting trajectories, we have found models close to the experimental membrane structures. We also attempted to select the correctly folded models using simple filtering followed by structural clustering combined with reconstruction to the all-atom representation and all-atom scoring. The CABS-membrane model is a promising approach for further development toward modeling of large protein-membrane systems.
Berger, Dominique; Rochigneux, Jean-Claude; Bernard, Sandie; Morand, Josette; Mougniotte, Alain
2015-01-01
In France, the National Education system has attributed an important health and sex education role to its teachers, based on a global and positive vision of sexuality Parents, teachers, public services and specialized resources each have a role to play in sex education for children and adolescents so that each young person can receive an education allowing him or her to enjoy a healthy sexuality. This study investigated the individual representations of sexuality, declared practices and knowledge of junior high schoolchildren and Section d'Enseignement G6n6ral et Professionnel Adapt6 (SEGPA) students, a structure for children with serious learning difficulties. The study methodology was based on administration of questionnaires (n = 524) to the two cohorts concerned. The secondary objective was to compare these two populations and identify the specificities of SEGPA pupils. The conclusions of this study should allow adults in charge of sex education in junior high schools and SEGPA to adapt sex education tools.
The impact of CmapTools utilization towards students' conceptual change on optics topic
NASA Astrophysics Data System (ADS)
Rofiuddin, Muhammad Rifqi; Feranie, Selly
2017-05-01
Science teachers need to help students identify their prior ideas and modify them based on scientific knowledge. This process is called as conceptual change. One of essential tools to analyze students' conceptual change is by using concept map. Concept Maps are graphical representations of knowledge that are comprised of concepts and the relationships between them. Constructing concept map is implemented by adapting the role of technology to support learning process, as it is suitable with Educational Ministry Regulation No.68 year 2013. Institute for Human and Machine Cognition (IHMC) has developed CmapTools, a client-server software for easily construct and visualize concept maps. This research aims to investigate secondary students' conceptual change after experiencing five-stage conceptual teaching model by utilizing CmapTools in learning Optics. Weak experimental method through one group pretest-posttest design is implemented in this study to collect preliminary and post concept map as qualitative data. Sample was taken purposively of 8th grade students (n= 22) at one of private schools Bandung, West Java. Conceptual change based on comparison of preliminary and post concept map construction is assessed based on rubric of concept map scoring and structure. Results shows significance conceptual change differences at 50.92 % that is elaborated into concept map element such as prepositions and hierarchical level in high category, cross links in medium category and specific examples in low category. All of the results are supported with the students' positive response towards CmapTools utilization that indicates improvement of motivation, interest, and behavior aspect towards Physics lesson.
NASA Astrophysics Data System (ADS)
Sowanto; Kusumah, Y. S.
2018-05-01
This research was conducted based on the problem of a lack of students’ mathematical representation ability as well as self-efficacy in accomplishing mathematical tasks. To overcome this problem, this research used situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP). This research investigated students’ improvement of mathematical representation ability who were taught under situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP) and regular method that viewed from the whole students’ prior knowledge (high, average, and low level). In addition, this research investigated the difference of students’ self-efficacy after learning was given. This research belongs to quasi experiment research using non-equivalent control group design with purposive sampling. The result of this research showed that students’ enhancement in their mathematical representation ability taught under SBL assisted by GSP was better than the regular method. Also, there was no interaction between learning methods and students prior knowledge in student’ enhancement of mathematical representation ability. There was significant difference of students’ enhancement of mathematical representation ability taught under SBL assisted by GSP viewed from students’ prior knowledge. Furthermore, there was no significant difference in terms of self-efficacy between those who were taught by SBL assisted by GSP with the regular method.
In defense of abstract conceptual representations.
Binder, Jeffrey R
2016-08-01
An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge.
Mann, G; Birkmann, C; Schmidt, T; Schaeffler, V
1999-01-01
Introduction Present solutions for the representation and retrieval of medical information from online sources are not very satisfying. Either the retrieval process lacks of precision and completeness the representation does not support the update and maintenance of the represented information. Most efforts are currently put into improving the combination of search engines and HTML based documents. However, due to the current shortcomings of methods for natural language understanding there are clear limitations to this approach. Furthermore, this approach does not solve the maintenance problem. At least medical information exceeding a certain complexity seems to afford approaches that rely on structured knowledge representation and corresponding retrieval mechanisms. Methods Knowledge-based information systems are based on the following fundamental ideas. The representation of information is based on ontologies that define the structure of the domain's concepts and their relations. Views on domain models are defined and represented as retrieval schemata. Retrieval schemata can be interpreted as canonical query types focussing on specific aspects of the provided information (e.g. diagnosis or therapy centred views). Based on these retrieval schemata it can be decided which parts of the information in the domain model must be represented explicitly and formalised to support the retrieval process. As representation language propositional logic is used. All other information can be represented in a structured but informal way using text, images etc. Layout schemata are used to assign layout information to retrieved domain concepts. Depending on the target environment HTML or XML can be used. Results Based on this approach two knowledge-based information systems have been developed. The 'Ophthalmologic Knowledge-based Information System for Diabetic Retinopathy' (OKIS-DR) provides information on diagnoses, findings, examinations, guidelines, and reference images related to diabetic retinopathy. OKIS-DR uses combinations of findings to specify the information that must be retrieved. The second system focuses on nutrition related allergies and intolerances. Information on allergies and intolerances of a patient are used to retrieve general information on the specified combination of allergies and intolerances. As a special feature the system generates tables showing food types and products that are tolerated or not tolerated by patients. Evaluation by external experts and user groups showed that the described approach of knowledge-based information systems increases the precision and completeness of knowledge retrieval. Due to the structured and non-redundant representation of information the maintenance and update of the information can be simplified. Both systems are available as WWW based online knowledge bases and CD-ROMs (cf. http://mta.gsf.de topic: products).
ERIC Educational Resources Information Center
Terry, Nicole Patton
2014-01-01
Children's spoken nonmainstream American English (NMAE) dialect use and their knowledge about phonological representations of word pronunciations were assessed in a sample of 105 children in kindergarten through second grade. Children were given expressive and receptive tasks with dialect-sensitive stimuli. Students who produced many NMAE…
Meta-Representation in an Algebra I Classroom
ERIC Educational Resources Information Center
Izsak, Andrew; Caglayan, Gunhan; Olive, John
2009-01-01
We describe how 1 Algebra I teacher and her 8th-grade students used meta-representational knowledge when generating and evaluating equations to solve word problems. Analyzing data from a sequence of 4 lessons, we found that the teacher and her students used criteria for evaluating equations, in addition to other types of knowledge (e.g., different…
ERIC Educational Resources Information Center
Adadan, Emine; Oner, Diler
2014-01-01
This multiple case study investigated how two preservice chemistry teachers' pedagogical content knowledge (PCK) representations of behavior of gases progressed in the context of a semester-long chemistry teaching methods course. The change in the participants' PCK components was interpreted with respect to the theoretical PCK learning…
ERIC Educational Resources Information Center
Weinstock, Michael
2009-01-01
Experts in cognitive domains differ from non-experts in how they represent problems and knowledge, and in their epistemic understandings of tasks in their domain of expertise. This study investigates whether task-specific epistemic understanding also underlies the representation of knowledge on an everyday reasoning task on which the competent…
ERIC Educational Resources Information Center
Yilmaz, Yasemin; Durmus, Soner; Yaman, Hakan
2018-01-01
This study investigated the pattern problems posed by middle school mathematics preservice teachers using multiple representations to determine both their pattern knowledge levels and their abilities to transfer this knowledge to students. The design of the study is the survey method, one of the quantitative research methods. The study group was…
Representations of the Nature of Scientific Knowledge in Turkish Biology Textbooks
ERIC Educational Resources Information Center
Irez, Serhat
2016-01-01
Considering the impact of textbooks on learning, this study set out to assess representations of the nature of scientific knowledge in Turkish 9th grade biology textbooks. To this end, the ten most commonly used 9th grade biology textbooks were analyzed. A qualitative research approach was utilized and the textbooks were analyzed using…
ERIC Educational Resources Information Center
Pastor-Sanchez, Juan-Antonio; Martinez Mendez, Francisco Javier; Rodriguez-Munoz, Jose Vicente
2009-01-01
Introduction: This paper presents an analysis of the Simple Knowledge Organization System (SKOS) compared with other alternatives for thesaurus representation in the Semantic Web. Method: Based on functional and structural changes of thesauri, provides an overview of the current context in which lexical paradigm is abandoned in favour of the…
The Ability of Young Korean Children to Use Spatial Representations
ERIC Educational Resources Information Center
Kim, Minsung; Bednarz, Robert; Kim, Jaeyil
2012-01-01
The National Research Council emphasizes using tools of representation as an essential element of spatial thinking. However, it is debatable at what age the use of spatial representation for spatial thinking skills should begin. This study investigated whether young Korean children possess the potential to understand map-like representation using…
Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load
ERIC Educational Resources Information Center
Yung, Hsin I.; Paas, Fred
2015-01-01
Visual representation has been recognized as a powerful learning tool in many learning domains. Based on the assumption that visual representations can support deeper understanding, we examined the effects of visual representations on learning performance and cognitive load in the domain of mathematics. An experimental condition with visual…
Resilience to the contralateral visual field bias as a window into object representations
Garcea, Frank E.; Kristensen, Stephanie; Almeida, Jorge; Mahon, Bradford Z.
2016-01-01
Viewing images of manipulable objects elicits differential blood oxygen level-dependent (BOLD) contrast across parietal and dorsal occipital areas of the human brain that support object-directed reaching, grasping, and complex object manipulation. However, it is unknown which object-selective regions of parietal cortex receive their principal inputs from the ventral object-processing pathway and which receive their inputs from the dorsal object-processing pathway. Parietal areas that receive their inputs from the ventral visual pathway, rather than from the dorsal stream, will have inputs that are already filtered through object categorization and identification processes. This predicts that parietal regions that receive inputs from the ventral visual pathway should exhibit object-selective responses that are resilient to contralateral visual field biases. To test this hypothesis, adult participants viewed images of tools and animals that were presented to the left or right visual fields during functional magnetic resonance imaging (fMRI). We found that the left inferior parietal lobule showed robust tool preferences independently of the visual field in which tool stimuli were presented. In contrast, a region in posterior parietal/dorsal occipital cortex in the right hemisphere exhibited an interaction between visual field and category: tool-preferences were strongest contralateral to the stimulus. These findings suggest that action knowledge accessed in the left inferior parietal lobule operates over inputs that are abstracted from the visual input and contingent on analysis by the ventral visual pathway, consistent with its putative role in supporting object manipulation knowledge. PMID:27160998
24 CFR 4001.116 - Representations and prohibitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Representations and prohibitions... Eligibility Requirements and Underwriting Procedures § 4001.116 Representations and prohibitions. (a... actual knowledge furnished material information known to be false for the purpose of obtaining the...
24 CFR 4001.116 - Representations and prohibitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Representations and prohibitions... Eligibility Requirements and Underwriting Procedures § 4001.116 Representations and prohibitions. (a... actual knowledge furnished material information known to be false for the purpose of obtaining the...
24 CFR 4001.116 - Representations and prohibitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Representations and prohibitions... Eligibility Requirements and Underwriting Procedures § 4001.116 Representations and prohibitions. (a... actual knowledge furnished material information known to be false for the purpose of obtaining the...
The Influence of Action Perception on Object Recognition: A Developmental Study
ERIC Educational Resources Information Center
Mounoud, Pierre; Duscherer, Katia; Moy, Guenael; Perraudin, Sandrine
2007-01-01
Two experiments explored the existence and the development of relations between action representations and object representations. A priming paradigm was used in which participants viewed an action pantomime followed by the picture of a tool, the tool being either associated or unassociated with the preceding action. Overall, we observed that the…
ERIC Educational Resources Information Center
Shahjahan, Riyad A.; Morgan, Clara; Nguyen, David J.
2015-01-01
Amid growing debates around international assessment tools in educational policy, few have critically examined how students themselves are cast in policy tool production processes and discourse. Drawing on Stuart Hall's concept of representation, we show how higher education (HE) "students" are constructed, fixed and normalized by the…
ERIC Educational Resources Information Center
Santos-Trigo, Manuel; Espinosa-Perez, Hugo; Reyes-Rodriguez, Aaron
2006-01-01
Technological tools have the potential to offer students the possibility to represent information and relationships embedded in problems and concepts in ways that involve numerical, algebraic, geometric, and visual approaches. In this paper, the authors present and discuss an example in which an initial representation of a mathematical object…
Klimanavigator - Climate Navigator - Gateway to climate knowledge in Germany
NASA Astrophysics Data System (ADS)
Schuck-Zöller, Susanne
2013-04-01
Objective More than 50 German research institutions and networks are represented on www.klimanavigator.de, a common platform, where information about their work, and the latest findings from climate research and adaptation can be found. Thus Klimanavigator as a gateway to climate knowledge provides a information portal for those who have to respond to climate change. The internet portal gives an overview of the present state of research and is estimated as a decision support tool for appropriate mitigation and adaptation measures. Target Groups The portal collects the German climate research institutions to publish their scientific knowledge in a non-scientific language. Economists, policymakers, administration and the media are bound to find the names of scientific experts and institutions by an elaborated research tool. Methodology The chapter "Dossiers" is edited by the Klimanavigator-Coordinator CSC. It gathers information to a special issue looked upon from various points of view. Publications of outstanding German scientists are presented side by side, current knowledge is being synthesized, scientifically reviewed and disseminated. The latest news from climate and adaptation research is presented in an own chapter, dedicated to the press releases of the portal members. Via RSS-feed the press releases are collected from the different partner institutions. Thirdly, portraits of the member institutions, that are individually edited by themselves, draw a map of science in Germany and help to find appropriate cooperation partners. For the future further development is being planned. Common Management Klimanavigator is being managed by the partners in common. The main decisions concerning the concept and shape of the portal are made by the partners' assembly. An elected editorial committee decides about the content between the assemblies. The Climate Service Center (part of the Helmholtz-Zentrum Geesthacht) concentrates on facilitating the cooperation, and delivering the technical support. Results/Outcome/Products Map and navigator of climate and adaptation science in Germany Representation of science in Germany and Germany as a country of science Synthesis of knowledge Network of science institutions and projects Decision support tool
NASA Technical Reports Server (NTRS)
Colombano, Silvano; Norvig, Peter (Technical Monitor)
2000-01-01
Few human endeavors can be viewed both as extremely successful and unsuccessful at the same time. This is typically the case when goals have not been well defined or have been shifting in time. This has certainly been true of Artificial Intelligence (AI). The nature of intelligence has been the object of much thought and speculation throughout the history of philosophy. It is in the nature of philosophy that real headway is sometimes made only when appropriate tools become available. Similarly the computer, coupled with the ability to program (at least in principle) any function, appeared to be the tool that could tackle the notion of intelligence. To suit the tool, the problem of the nature of intelligence was soon sidestepped in favor of this notion: If a probing conversation with a computer could not be distinguished from a conversation with a human, then AI had been achieved. This notion became known as the Turing test, after the mathematician Alan Turing who proposed it in 1950. Conceptually rich and interesting, these early efforts gave rise to a large portion of the field's framework. Key to AI, rather than the 'number crunching' typical of computers until then, was viewed as the ability to manipulate symbols and make logical inferences. To facilitate these tasks, AI languages such as LISP and Prolog were invented and used widely in the field. One idea that emerged and enabled some success with real world problems was the notion that 'most intelligence' really resided in knowledge. A phrase attributed to Feigenbaum, one of the pioneers, was 'knowledge is the power.' With this premise, the problem is shifted from 'how do we solve problems' to 'how do we represent knowledge.' A good knowledge representation scheme could allow one to draw conclusions from given premises. Such schemes took forms such as rules,frames and scripts. It allowed the building of what became known as expert systems or knowledge based systems (KBS).
Immediate tool incorporation processes determine human motor planning with tools
Ganesh, G.; Yoshioka, T.; Osu, R.; Ikegami, T.
2014-01-01
Human dexterity with tools is believed to stem from our ability to incorporate and use tools as parts of our body. However tool incorporation, evident as extensions in our body representation and peri-personal space, has been observed predominantly after extended tool exposures and does not explain our immediate motor behaviours when we change tools. Here we utilize two novel experiments to elucidate the presence of additional immediate tool incorporation effects that determine motor planning with tools. Interestingly, tools were observed to immediately induce a trial-by-trial, tool length dependent shortening of the perceived limb lengths, opposite to observations of elongations after extended tool use. Our results thus exhibit that tools induce a dual effect on our body representation; an immediate shortening that critically affects motor planning with a new tool, and the slow elongation, probably a consequence of skill related changes in sensory-motor mappings with the repeated use of the tool. PMID:25077612
Functional Analysis of Metabolomics Data.
Chagoyen, Mónica; López-Ibáñez, Javier; Pazos, Florencio
2016-01-01
Metabolomics aims at characterizing the repertory of small chemical compounds in a biological sample. As it becomes more massive and larger sets of compounds are detected, a functional analysis is required to convert these raw lists of compounds into biological knowledge. The most common way of performing such analysis is "annotation enrichment analysis," also used in transcriptomics and proteomics. This approach extracts the annotations overrepresented in the set of chemical compounds arisen in a given experiment. Here, we describe the protocols for performing such analysis as well as for visualizing a set of compounds in different representations of the metabolic networks, in both cases using free accessible web tools.
Expressing Biomedical Ontologies in Natural Language for Expert Evaluation.
Amith, Muhammad; Manion, Frank J; Harris, Marcelline R; Zhang, Yaoyun; Xu, Hua; Tao, Cui
2017-01-01
We report on a study of our custom Hootation software for the purposes of assessing its ability to produce clear and accurate natural language phrases from axioms embedded in three biomedical ontologies. Using multiple domain experts and three discrete rating scales, we evaluated the tool on clarity of the natural language produced, fidelity of the natural language produced from the ontology to the axiom, and the fidelity of the domain knowledge represented by the axioms. Results show that Hootation provided relatively clear natural language equivalents for a select set of OWL axioms, although the clarity of statements hinges on the accuracy and representation of axioms in the ontology.
Getting Mental Models and Computer Models to Cooperate
NASA Technical Reports Server (NTRS)
Sheridan, T. B.; Roseborough, J.; Charney, L.; Mendel, M.
1984-01-01
A qualitative theory of supervisory control is outlined wherein the mental models of one or more human operators are related to the knowledge representations within automatic controllers (observers, estimators) and operator decision aids (expert systems, advice-givers). Methods of quantifying knowledge and the calibration of one knowledge representation to another (human, computer, or objective truth) are discussed. Ongoing experiments in the use of decision aids for exploring one's own objective function or exploring system constraints and control strategies are described.
Concepts, Control, and Context: A Connectionist Account of Normal and Disordered Semantic Cognition
2018-01-01
Semantic cognition requires conceptual representations shaped by verbal and nonverbal experience and executive control processes that regulate activation of knowledge to meet current situational demands. A complete model must also account for the representation of concrete and abstract words, of taxonomic and associative relationships, and for the role of context in shaping meaning. We present the first major attempt to assimilate all of these elements within a unified, implemented computational framework. Our model combines a hub-and-spoke architecture with a buffer that allows its state to be influenced by prior context. This hybrid structure integrates the view, from cognitive neuroscience, that concepts are grounded in sensory-motor representation with the view, from computational linguistics, that knowledge is shaped by patterns of lexical co-occurrence. The model successfully codes knowledge for abstract and concrete words, associative and taxonomic relationships, and the multiple meanings of homonyms, within a single representational space. Knowledge of abstract words is acquired through (a) their patterns of co-occurrence with other words and (b) acquired embodiment, whereby they become indirectly associated with the perceptual features of co-occurring concrete words. The model accounts for executive influences on semantics by including a controlled retrieval mechanism that provides top-down input to amplify weak semantic relationships. The representational and control elements of the model can be damaged independently, and the consequences of such damage closely replicate effects seen in neuropsychological patients with loss of semantic representation versus control processes. Thus, the model provides a wide-ranging and neurally plausible account of normal and impaired semantic cognition. PMID:29733663
ERIC Educational Resources Information Center
Rosengrant, David
2011-01-01
Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists. These representations include: pictures, free-body diagrams, energy bar charts, electrical circuits, and, more recently, computer simulations and…
ERIC Educational Resources Information Center
Hartweg, Kimberly Sipes
2011-01-01
To build on prior knowledge and mathematical understanding, middle school students need to be given the opportunity to make connections among a variety of representations. Graphs, tables, algebraic formulas, and models are just a few examples of representations that can help students explore quantitative relationships. As a mathematics educator,…
SPLICER - A GENETIC ALGORITHM TOOL FOR SEARCH AND OPTIMIZATION, VERSION 1.0 (MACINTOSH VERSION)
NASA Technical Reports Server (NTRS)
Wang, L.
1994-01-01
SPLICER is a genetic algorithm tool which can be used to solve search and optimization problems. Genetic algorithms are adaptive search procedures (i.e. problem solving methods) based loosely on the processes of natural selection and Darwinian "survival of the fittest." SPLICER provides the underlying framework and structure for building a genetic algorithm application. These algorithms apply genetically-inspired operators to populations of potential solutions in an iterative fashion, creating new populations while searching for an optimal or near-optimal solution to the problem at hand. SPLICER 1.0 was created using a modular architecture that includes a Genetic Algorithm Kernel, interchangeable Representation Libraries, Fitness Modules and User Interface Libraries, and well-defined interfaces between these components. The architecture supports portability, flexibility, and extensibility. SPLICER comes with all source code and several examples. For instance, a "traveling salesperson" example searches for the minimum distance through a number of cities visiting each city only once. Stand-alone SPLICER applications can be used without any programming knowledge. However, to fully utilize SPLICER within new problem domains, familiarity with C language programming is essential. SPLICER's genetic algorithm (GA) kernel was developed independent of representation (i.e. problem encoding), fitness function or user interface type. The GA kernel comprises all functions necessary for the manipulation of populations. These functions include the creation of populations and population members, the iterative population model, fitness scaling, parent selection and sampling, and the generation of population statistics. In addition, miscellaneous functions are included in the kernel (e.g., random number generators). Different problem-encoding schemes and functions are defined and stored in interchangeable representation libraries. This allows the GA kernel to be used with any representation scheme. The SPLICER tool provides representation libraries for binary strings and for permutations. These libraries contain functions for the definition, creation, and decoding of genetic strings, as well as multiple crossover and mutation operators. Furthermore, the SPLICER tool defines the appropriate interfaces to allow users to create new representation libraries. Fitness modules are the only component of the SPLICER system a user will normally need to create or alter to solve a particular problem. Fitness functions are defined and stored in interchangeable fitness modules which must be created using C language. Within a fitness module, a user can create a fitness (or scoring) function, set the initial values for various SPLICER control parameters (e.g., population size), create a function which graphically displays the best solutions as they are found, and provide descriptive information about the problem. The tool comes with several example fitness modules, while the process of developing a fitness module is fully discussed in the accompanying documentation. The user interface is event-driven and provides graphic output in windows. SPLICER is written in Think C for Apple Macintosh computers running System 6.0.3 or later and Sun series workstations running SunOS. The UNIX version is easily ported to other UNIX platforms and requires MIT's X Window System, Version 11 Revision 4 or 5, MIT's Athena Widget Set, and the Xw Widget Set. Example executables and source code are included for each machine version. The standard distribution media for the Macintosh version is a set of three 3.5 inch Macintosh format diskettes. The standard distribution medium for the UNIX version is a .25 inch streaming magnetic tape cartridge in UNIX tar format. For the UNIX version, alternate distribution media and formats are available upon request. SPLICER was developed in 1991.
Povinelli, Daniel J; Reaux, James E; Frey, Scott H
2010-01-01
Considerable attention has been devoted to behaviors in which tools are used to perform actions in extrapersonal space by extending the reach. Evidence suggests that these behaviors result in an expansion of the body schema and peripersonal space. However, humans often use tools to perform tasks within peripersonal space that cannot be accomplished with the hands. In some of these instances (e.g., cooking), a tool is used as a substitute for the hand in order to pursue actions that would otherwise be hazardous. These behaviors suggest that even during the active use of tools, we maintain non-isomorphic representations that distinguish between our hands and handheld tools. Understanding whether such representations are a human specialization is of potentially great relevance to understand the evolutionary history of technological behaviors including the controlled use of fire. We tested six captive adult chimpanzees to determine whether they would elect to use a tool, rather than their hands, when acting in potentially hazardous vs. nonhazardous circumstances located within reach. Their behavior suggests that, like humans, chimpanzees represent the distinction between the hand vs. tool even during active use. We discuss the implications of this evidence for our understanding of tool use and its evolution.
ERIC Educational Resources Information Center
Moss, Jarrod; Kotovsky, Kenneth; Cagan, Jonathan
2006-01-01
As engineers gain experience and become experts in their domain, the structure and content of their knowledge changes. Two studies are presented that examine differences in knowledge representation among freshman and senior engineering students. The first study examines recall of mechanical devices and chunking of components, and the second…
Invisible Brain: Knowledge in Research Works and Neuron Activity.
Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun
2016-01-01
If the market has an invisible hand, does knowledge creation and representation have an "invisible brain"? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an "invisible brain" or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism.
Invisible Brain: Knowledge in Research Works and Neuron Activity
Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun
2016-01-01
If the market has an invisible hand, does knowledge creation and representation have an “invisible brain”? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an “invisible brain” or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism. PMID:27439199
Different categories of living and non-living sound-sources activate distinct cortical networks
Engel, Lauren R.; Frum, Chris; Puce, Aina; Walker, Nathan A.; Lewis, James W.
2009-01-01
With regard to hearing perception, it remains unclear as to whether, or the extent to which, different conceptual categories of real-world sounds and related categorical knowledge are differentially represented in the brain. Semantic knowledge representations are reported to include the major divisions of living versus non-living things, plus more specific categories including animals, tools, biological motion, faces, and places—categories typically defined by their characteristic visual features. Here, we used functional magnetic resonance imaging (fMRI) to identify brain regions showing preferential activity to four categories of action sounds, which included non-vocal human and animal actions (living), plus mechanical and environmental sound-producing actions (non-living). The results showed a striking antero-posterior division in cortical representations for sounds produced by living versus non-living sources. Additionally, there were several significant differences by category, depending on whether the task was category-specific (e.g. human or not) versus non-specific (detect end-of-sound). In general, (1) human-produced sounds yielded robust activation in the bilateral posterior superior temporal sulci independent of task. Task demands modulated activation of left-lateralized fronto-parietal regions, bilateral insular cortices, and subcortical regions previously implicated in observation-execution matching, consistent with “embodied” and mirror-neuron network representations subserving recognition. (2) Animal action sounds preferentially activated the bilateral posterior insulae. (3) Mechanical sounds activated the anterior superior temporal gyri and parahippocampal cortices. (4) Environmental sounds preferentially activated dorsal occipital and medial parietal cortices. Overall, this multi-level dissociation of networks for preferentially representing distinct sound-source categories provides novel support for grounded cognition models that may underlie organizational principles for hearing perception. PMID:19465134
2013-01-01
Background In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale “physiome” projects such as the EU’s Virtual Physiological Human (VPH) and NIH’s Virtual Physiological Rat (VPR). Results Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the “rules” by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm’s law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke’s law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. Conclusions We have developed the OPB and annotation methods to represent the meaning—the biophysical semantics—of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes. PMID:24295137
A Comparison Between Reported and Enacted Pedagogical Content Knowledge (PCK) About Graphs of Motion
NASA Astrophysics Data System (ADS)
Mazibe, Ernest N.; Coetzee, Corene; Gaigher, Estelle
2018-04-01
This paper reports a case study of four grade 10 physical sciences teachers' PCK about graphs of motion. We used three data collection strategies, namely teachers' written accounts, captured by the content representation (CoRe) tool, interviews and classroom observations. We conceptualised the PCK displayed in the CoRe tool and the interviews as reported PCK and the PCK demonstrated during teaching as enacted PCK. These two manifestations of PCK were compared to establish the extent of agreement between reported and enacted PCK. We adopted the topic-specific PCK (TSPCK) model as the framework that guided this study. This model describes TSPCK in terms of five components of teacher knowledge. Guided by the model, we designed two rubrics to assess these manifestations of TSPCK on a four-point scale. The results of this study indicated that the reported PCK was not necessarily a reflection of the PCK enacted during teaching. The levels of PCK in the components were seldom higher in the enacted PCK, but tended to be similar or lower than in the reported PCK. The study implies that the enactment of PCK should be emphasised in teacher education.
Vaughn, Brian E.; Waters, Theodore E. A.; Steele, Ryan D.; Roisman, Glenn I.; Bost, Kelly K.; Truitt, Warren; Waters, Harriet S.; Booth-LaForce, Cathryn
2016-01-01
Although attachment theory claims that early attachment representations reflecting the quality of the child’s “lived experiences” are maintained across developmental transitions, evidence that has emerged over the last decade suggests that the association between early relationship quality and adolescents’ attachment representations is fairly modest in magnitude. We used aspects of parenting beyond sensitivity over childhood and adolescence and early security to predict adolescents’ scripted attachment representations. At age 18 years, 673 participants from the NICHD Study of Early Child Care and Youth Development (SECCYD) completed the Attachment Script Assessment (ASA) from which we derived an assessment of secure base script knowledge. Measures of secure base support from childhood through age 15 years (e.g., parental monitoring of child activity, father presence in the home) were selected as predictors and accounted for an additional 8% of the variance in secure base script knowledge scores above and beyond direct observations of sensitivity and early attachment status alone, suggesting that adolescents’ scripted attachment representations reflect multiple domains of parenting. Cognitive and demographic variables also significantly increased predicted variance in secure base script knowledge by 2% each. PMID:27032953
Jelks, Na'Taki Osborne; Hawthorne, Timothy L; Dai, Dajun; Fuller, Christina H; Stauber, Christine
2018-04-22
We utilized a participatory mapping approach to collect point locations, photographs, and descriptive data about select built environment stressors identified and prioritized by community residents living in the Proctor Creek Watershed, a degraded, urban watershed in Northwest Atlanta, Georgia. Residents (watershed researchers) used an indicator identification framework to select three watershed stressors that influence urban livability: standing water, illegal dumping on land and in surface water, and faulty stormwater infrastructure. Through a community⁻university partnership and using Geographic Information Systems and digital mapping tools, watershed researchers and university students designed a mobile application (app) that enabled them to collect data associated with these stressors to create a spatial narrative, informed by local community knowledge, that offers visual documentation and representation of community conditions that negatively influence the environment, health, and quality of life in urban areas. By elevating the local knowledge and lived experience of community residents and codeveloping a relevant data collection tool, community residents generated fine-grained, street-level, actionable data. This process helped to fill gaps in publicly available datasets about environmental hazards in their watershed and helped residents initiate solution-oriented dialogue with government officials to address problem areas. We demonstrate that community-based knowledge can contribute to and extend scientific inquiry, as well as help communities to advance environmental justice and leverage opportunities for remediation and policy change.
Jelks, Na’Taki Osborne; Hawthorne, Timothy L.; Fuller, Christina H.; Stauber, Christine
2018-01-01
We utilized a participatory mapping approach to collect point locations, photographs, and descriptive data about select built environment stressors identified and prioritized by community residents living in the Proctor Creek Watershed, a degraded, urban watershed in Northwest Atlanta, Georgia. Residents (watershed researchers) used an indicator identification framework to select three watershed stressors that influence urban livability: standing water, illegal dumping on land and in surface water, and faulty stormwater infrastructure. Through a community–university partnership and using Geographic Information Systems and digital mapping tools, watershed researchers and university students designed a mobile application (app) that enabled them to collect data associated with these stressors to create a spatial narrative, informed by local community knowledge, that offers visual documentation and representation of community conditions that negatively influence the environment, health, and quality of life in urban areas. By elevating the local knowledge and lived experience of community residents and codeveloping a relevant data collection tool, community residents generated fine-grained, street-level, actionable data. This process helped to fill gaps in publicly available datasets about environmental hazards in their watershed and helped residents initiate solution-oriented dialogue with government officials to address problem areas. We demonstrate that community-based knowledge can contribute to and extend scientific inquiry, as well as help communities to advance environmental justice and leverage opportunities for remediation and policy change. PMID:29690570
Observation versus classification in supervised category learning.
Levering, Kimery R; Kurtz, Kenneth J
2015-02-01
The traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle. We compare classification learning to a supervised observational learning task in which learners are shown labeled examples but make no classification response. The goals of this work sit at two levels: (1) testing for differences in the nature of the category representations that arise from two basic learning modes; and (2) evaluating the generative/discriminative continuum as a theoretical tool for understand learning modes and their outcomes. Specifically, we view the guess-and-correct cycle as consistent with a more discriminative approach and therefore expected it to lead to narrower category knowledge. Across two experiments, the observational mode led to greater sensitivity to distributional properties of features and correlations between features. We conclude that a relatively subtle procedural difference in supervised category learning substantially impacts what learners come to know about the categories. The results demonstrate the value of the generative/discriminative continuum as a tool for advancing the psychology of category learning and also provide a valuable constraint for formal models and associated theories.
Dissociations in mathematical knowledge: case studies in Down's syndrome and Williams syndrome.
Robinson, Sally J; Temple, Christine M
2013-02-01
A study is reported of mathematical vocabulary and factual mathematical knowledge in PQ, a 22 year old with Down's syndrome (DS) who has a verbal mental age (MA) of 9 years 2 months and ST, a 15 year old with Williams syndrome (WS) who has a verbal MA of 9 years 6 months, matched to typically developing controls. The number of mathematical words contained within PQ's lexical stores was significantly reduced as reflected by performance on lexical decision. PQ was also impaired at both naming from descriptions and describing mathematical words. These results contrast with normal lexical decision and item descriptions for concrete words reported recently for PQ (Robinson and Temple, 2010). PQ's recall of mathematical facts was also impaired, whilst his recall of general knowledge facts was normal. This performance in DS indicates a deficit in both lexical representation and semantic knowledge for mathematical words and mathematical facts. In contrast, ST, the teenager with WS had good accuracy on lexical decision, naming and generating definitions for mathematical words. This contrasted with the atypical performance with concrete words recently reported for ST (Robinson and Temple, 2009). Knowledge of addition facts and general knowledge facts was also unimpaired for ST, though knowledge of multiplication facts was weak. Together the cases form a double dissociation and provide support for the distinct representation of mathematical and concrete items within the lexical-semantic system during development. The dissociations between mathematical and general factual knowledge also indicate that different types of factual knowledge may be selectively impaired during development. There is further support for a modular structure within which mathematical vocabulary and mathematical knowledge have distinct representations. This supports the case for the independent representation of factual and language-based knowledge within the semantic system during development. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Delgato, Margaret H.
The purpose of this investigation was to determine the extent to which multicultural science education, including indigenous knowledge representations, had been infused within the content of high school biology textbooks. The study evaluated the textbook as an instructional tool and framework for multicultural science education instruction by comparing the mainstream content to indigenous knowledge perspectives portrayed in the student and teacher editions of 34 textbooks adopted in Florida within the last four adoption cycles occurring from 1990 to 2006. The investigation involved a content analysis framed from a mixed methods approach. Emphasis was placed, in consideration of the research questions and practicality of interpreting text with the potential for multiple meanings, within qualitative methods. The investigation incorporated five strategies to assess the extent of multicultural content: (1) calculation of frequency of indigenous representations through the use of a tally; (2) assessment of content in the teacher editions by coding the degree of incorporation of multicultural content; (3) development of an archaeology of statements to determine the ways in which indigenous representations were incorporated into the content; (4) use of the Evaluation Coefficient Analysis (ECO) to determine extent of multicultural terminologies within content; and (5) analysis of visuals and illustrations to gauge percentages of depictions of minority groups. Results indicated no solid trend in an increase of inclusion of multicultural content over the last four adoption cycles. Efforts at most reduced the inclusion of indigenous representations and other multicultural content to the level of the teacher edition distributed among the teacher-interleafed pages or as annotations in the margins. Degree of support of multicultural content to the specific goals and objectives remained limited across all four of the adoption cycles represented in the study. Emphasis on standardized testing appeared in the six textbooks representing the most recent adoption cycle. Recommendations included increased efforts to identify quality of content by including input from scholars in the field of multicultural education as well as indigenous peoples in the creation of textbook content. Recommendations also included further clarification of the definition of science within multicultural science education frameworks, indigenous knowledge as compared to Western science and pseudoscienc e, and scientific literacy as a central focus to a multicultural science education meant to address the needs of an increasingly diverse student population and prime-age workforce.
ERIC Educational Resources Information Center
Kordaki, Maria
2015-01-01
This study focuses on the role of multiple solution tasks (MST) incorporating multiple learning tools and representation systems (MTRS) in encouraging each student to develop multiple perspectives on the learning concepts under study and creativity of thought. Specifically, two types of MST were used, namely tasks that allowed and demanded…
Jaswal, Sheila S; O'Hara, Patricia B; Williamson, Patrick L; Springer, Amy L
2013-01-01
Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of structural representation tools into both laboratory and homework activities. First, early in the course we introduce the use of readily available open-source software for visualizing protein structure, coincident with modules on amino acid and peptide bond properties. Second, we use these same software tools in lectures and incorporate images and other structure representations in homework tasks. Third, we require a capstone project in which teams of students examine a protein-nucleic acid complex and then use the software tools to illustrate for their classmates the salient features of the structure, relating how the structure helps explain biological function. To ensure engagement with a range of software and database features, we generated a detailed template file that can be used to explore any structure, and that guides students through specific applications of many of the software tools. In presentations, students demonstrate that they are successfully interpreting structural information, and using representations to illustrate particular points relevant to function. Thus, over the semester students integrate information about structural features of biological macromolecules into the larger discussion of the chemical basis of function. Together these assignments provide an accessible introduction to structural representation tools, allowing students to add these methods to their biochemical toolboxes early in their scientific development. © 2013 by The International Union of Biochemistry and Molecular Biology.
Improving Collaboration by Standardization Efforts in Systems Biology
Dräger, Andreas; Palsson, Bernhard Ø.
2014-01-01
Collaborative genome-scale reconstruction endeavors of metabolic networks would not be possible without a common, standardized formal representation of these systems. The ability to precisely define biological building blocks together with their dynamic behavior has even been considered a prerequisite for upcoming synthetic biology approaches. Driven by the requirements of such ambitious research goals, standardization itself has become an active field of research on nearly all levels of granularity in biology. In addition to the originally envisaged exchange of computational models and tool interoperability, new standards have been suggested for an unambiguous graphical display of biological phenomena, to annotate, archive, as well as to rank models, and to describe execution and the outcomes of simulation experiments. The spectrum now even covers the interaction of entire neurons in the brain, three-dimensional motions, and the description of pharmacometric studies. Thereby, the mathematical description of systems and approaches for their (repeated) simulation are clearly separated from each other and also from their graphical representation. Minimum information definitions constitute guidelines and common operation protocols in order to ensure reproducibility of findings and a unified knowledge representation. Central database infrastructures have been established that provide the scientific community with persistent links from model annotations to online resources. A rich variety of open-source software tools thrives for all data formats, often supporting a multitude of programing languages. Regular meetings and workshops of developers and users lead to continuous improvement and ongoing development of these standardization efforts. This article gives a brief overview about the current state of the growing number of operation protocols, mark-up languages, graphical descriptions, and fundamental software support with relevance to systems biology. PMID:25538939
A generative tool for building health applications driven by ISO 13606 archetypes.
Menárguez-Tortosa, Marcos; Martínez-Costa, Catalina; Fernández-Breis, Jesualdo Tomás
2012-10-01
The use of Electronic Healthcare Records (EHR) standards in the development of healthcare applications is crucial for achieving the semantic interoperability of clinical information. Advanced EHR standards make use of the dual model architecture, which provides a solution for clinical interoperability based on the separation of the information and knowledge. However, the impact of such standards is biased by the limited availability of tools that facilitate their usage and practical implementation. In this paper, we present an approach for the automatic generation of clinical applications for the ISO 13606 EHR standard, which is based on the dual model architecture. This generator has been generically designed, so it can be easily adapted to other dual model standards and can generate applications for multiple technological platforms. Such good properties are based on the combination of standards for the representation of generic user interfaces and model-driven engineering techniques.
Spacecraft command verification: The AI solution
NASA Technical Reports Server (NTRS)
Fesq, Lorraine M.; Stephan, Amy; Smith, Brian K.
1990-01-01
Recently, a knowledge-based approach was used to develop a system called the Command Constraint Checker (CCC) for TRW. CCC was created to automate the process of verifying spacecraft command sequences. To check command files by hand for timing and sequencing errors is a time-consuming and error-prone task. Conventional software solutions were rejected when it was estimated that it would require 36 man-months to build an automated tool to check constraints by conventional methods. Using rule-based representation to model the various timing and sequencing constraints of the spacecraft, CCC was developed and tested in only three months. By applying artificial intelligence techniques, CCC designers were able to demonstrate the viability of AI as a tool to transform difficult problems into easily managed tasks. The design considerations used in developing CCC are discussed and the potential impact of this system on future satellite programs is examined.
Autism Spectrum Disorder in Anorexia Nervosa: An Updated Literature Review.
Westwood, Heather; Tchanturia, Kate
2017-07-01
There is growing interest in the relationship between anorexia nervosa (AN) and autism spectrum disorder (ASD). This review aimed to synthesise the most recent research on this topic to identify gaps in current knowledge, directions for future research and reflect on implications for treatment. Eight studies assessing the presence of ASD in AN were identified in the literature along with three studies examining the impact of symptoms of ASD on treatment outcome. Research with young people and using parental-report measures suggest lower rates of co-morbidity than previous adult studies. The wide range of diagnostic tools, methodologies and populations studied make it difficult to determine the prevalence of ASD in AN. Despite this, studies consistently report over-representation of symptoms of ASD in AN. Co-morbid AN and ASD may require more intensive treatment or specifically tailored interventions. Future longitudinal research and female-specific diagnostic tools would help elucidate the relationship between these two disorders.
Linking Publications to Instruments, Field Campaigns, Sites and Working Groups: The ARM Experience
NASA Astrophysics Data System (ADS)
Lehnert, K.; Parsons, M. A.; Ramachandran, R.; Fils, D.; Narock, T.; Fox, P. A.; Troyan, D.; Cialella, A. T.; Gregory, L.; Lazar, K.; Liang, M.; Ma, L.; Tilp, A.; Wagener, R.
2017-12-01
For the past 25 years, the ARM Climate Research Facility - a US Department of Energy scientific user facility - has been collecting atmospheric data in different climatic regimes using both in situ and remote instrumentation. Configuration of the facility's components has been designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols. Placing a premium on long-term continuous data collection resulted in terabytes of data having been collected, stored, and made accessible to any interested person. All data is accessible via the ARM.gov website and the ARM Data Discovery Tool. A team of metadata professionals assign appropriate tags to help facilitate searching the databases for desired data. The knowledge organization tools and concepts are used to create connections between data, instruments, field campaigns, sites, and measurements are familiar to informatics professionals. Ontology, taxonomy, classification, and thesauri are among the customized concepts put into practice for ARM's purposes. In addition to the multitude of data available, there have been approximately 3,000 journal articles that utilize ARM data. These have been linked to specific ARM web pages. Searches of the complete ARM publication database can be done using a separate interface. This presentation describes how ARM data is linked to instruments, sites, field campaigns, and publications through the application of standard knowledge organization tools and concepts.
Goodwin, Robin; Kozlova, Alexandra; Nizharadze, George; Polyakova, Galina
2004-05-01
The two studies reported here focus on knowledge and representations of HIV/AIDS (study 1) plus sexual behaviour and hedonistic values (study 2) among 14-17-year-old school children and similar aged shelter children. Results indicate that shelter children are more sexually active, less knowledgeable about means of HIV transmission and are more likely to hold stereotyped representations of those most at risk of infection. Russian respondents were the most sexually active, a finding which could at least be partly explained by their higher levels of hedonistic values. These findings are discussed in the context of a climate of continuing social change in this region.
NASA Astrophysics Data System (ADS)
Maksimov, N. V.; Tikhomirov, G. V.; Golitsyna, O. L.
2017-01-01
The main problems and circumstances that influence the processes of creating effective knowledge management systems were described. These problems particularly include high species diversity of instruments for knowledge representation, lack of adequate lingware, including formal representation of semantic relationships. For semantic data descriptions development a conceptual model of the subject area and a conceptual-lexical system should be designed on proposals of ISO-15926 standard. It is proposed to conduct an information integration of educational and production processes on the basis of information systems technologies. Integrated knowledge management system information environment combines both traditional information resources and specific information resources of subject domain including task context and implicit/tacit knowledge.
NASA Astrophysics Data System (ADS)
Gebre, Engida H.; Polman, Joseph L.
2016-12-01
This study presents descriptive analysis of young adults' use of multiple representations in the context of science news reporting. Across one semester, 71 high school students, in a socioeconomically diverse suburban secondary school in Midwestern United States, participated in activities of researching science topics of their choice and producing infographic-based science news for possible online publication. An external editor reviewed their draft infographics and provided comments for subsequent revision. Students also provided peer feedback to the draft version of infographics using an online commentary tool. We analysed the nature of representations students used as well as the comments from peer and the editor feedback. Results showed both students' capabilities and challenges in learning with representations in this context. Students frequently rely on using certain kinds of representations that are depictive in nature, and supporting their progress towards using more abstract representations requires special attention and identifying learning gaps. Results also showed that students were able to determine representational adequacy in the context of providing peer feedback. The study has implication for research and instruction using infographics as expressive tools to support learning.
[The brain and its representations in early modern Europe].
Mandressi, Rafael
2011-01-01
The history of the representations of the brain is broadly the history of the brain itself, since observations and ideas which concern it are closely linked, and are even depending on each other. These representations are images, but are also materials produced by manipulating, cutting, fixing the brain; they are also the descriptions of these objects. The interpretations, structured by the representations, ultimately organize the knowledge.
Boronat, Consuelo B; Buxbaum, Laurel J; Coslett, H Branch; Tang, Kathy; Saffran, Eleanor M; Kimberg, Daniel Y; Detre, John A
2005-05-01
A prominent account of conceptual knowledge proposes that information is distributed over visual, tactile, auditory, motor and verbal-declarative attribute domains to the degree to which these features were activated when the knowledge was acquired [D.A. Allport, Distributed memory, modular subsystems and dysphagia, In: S.K. Newman, R. Epstein (Eds.), Current perspectives in dysphagia, Churchill Livingstone, Edinburgh, 1985, pp. 32-60]. A corollary is that when drawing upon this knowledge (e.g., to answer questions), particular aspects of this distributed information is re-activated as a function of the requirements of the task at hand [L.J. Buxbaum, E.M. Saffran, Knowledge of object manipulation and object function: dissociations in apraxic and non-apraxic subjects. Brain and Language, 82 (2002) 179-199; L.J. Buxbaum, T. Veramonti, M.F. Schwartz, Function and manipulation tool knowledge in apraxia: knowing 'what for' but not 'how', Neurocase, 6 (2000) 83-97; W. Simmons, L. Barsalou, The similarity-in-topography principle: Reconciling theories of conceptual deficits, Cognitive Neuropsychology, 20 (2003) 451-486]. This account predicts that answering questions about object manipulation should activate brain regions previously identified as components of the distributed sensory-motor system involved in object use, whereas answering questions about object function (that is, the purpose that it serves) should activate regions identified as components of the systems supporting verbal-declarative features. These predictions were tested in a functional magnetic resonance imaging (fMRI) study in which 15 participants viewed picture or word pairs denoting manipulable objects and determined whether the objects are manipulated similarly (M condition) or serve the same function (F condition). Significantly greater and more extensive activations in the left inferior parietal lobe bordering the intraparietal sulcus were seen in the M condition with pictures and, to a lesser degree, words. These findings are consistent with the known role of this region in skilled object use [K.M. Heilman, L.J. Gonzalez Rothi, Apraxia, In: K.M. Heilman, E. Valenstein (Eds.), Clinical Neuropsychology, Oxford University Press, New York, 1993, pp. 141-150] as well as previous fMRI results [M. Kellenbach, M. Brett, K. Patterson, Actions speak louder than functions: the importance of manipulability and action in tool representation, Journal of Cognitive Neuroscience, 15 (2003) 30-46] and behavioral findings in brain-lesion patients [L.J. Buxbaum, E.M. Saffran, Knowledge of object manipulation and object function: dissociations in apraxic and non-apraxic subjects, Brain and Language, 82 (2002) 179-199]. No brain regions were significantly more activated in the F than M condition. These data suggest that brain regions specialized for sensory-motor function are a critical component of distributed representations of manipulable objects.
24 CFR 257.116 - Representations and prohibitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Representations and prohibitions... Representations and prohibitions. (a) Underwriting and appraisal standards. In order for the H4H program mortgage... willfully and with actual knowledge furnished material information known to be false for the purpose of...
Teacher's Representational Fluency in a Context of Technology Use
ERIC Educational Resources Information Center
Rocha, Helena
2016-01-01
This study focuses on teacher's Knowledge for Teaching Mathematics with Technology (KTMT), paying a special attention to teacher's representational fluency. It intends to characterize how the teacher uses and integrates the different representations provided by the graphing calculator on the process of teaching and learning functions at the high…
24 CFR 257.116 - Representations and prohibitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Representations and prohibitions... Representations and prohibitions. (a) Underwriting and appraisal standards. In order for the H4H program mortgage... willfully and with actual knowledge furnished material information known to be false for the purpose of...
24 CFR 257.116 - Representations and prohibitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Representations and prohibitions... Representations and prohibitions. (a) Underwriting and appraisal standards. In order for the H4H program mortgage... willfully and with actual knowledge furnished material information known to be false for the purpose of...
24 CFR 257.116 - Representations and prohibitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Representations and prohibitions... Representations and prohibitions. (a) Underwriting and appraisal standards. In order for the H4H program mortgage... willfully and with actual knowledge furnished material information known to be false for the purpose of...
24 CFR 257.116 - Representations and prohibitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Representations and prohibitions... Representations and prohibitions. (a) Underwriting and appraisal standards. In order for the H4H program mortgage... willfully and with actual knowledge furnished material information known to be false for the purpose of...
The Microevolution of Mathematical Representations in Children's Activity.
ERIC Educational Resources Information Center
Meira, Luciano
1995-01-01
Discusses children's design of mathematical representations on paper. Suggests that the design of displays during problem solving shapes one's mathematical activity and sense making in crucial ways, and that knowledge of mathematical representations is not simply recalled and applied to problem solving, but also emerges out of one's interactions…
Developing Expert Systems for the Analysis of Syntactic and Semantic Patterns.
ERIC Educational Resources Information Center
Hellwig, Harold H.
Noting that expert computer systems respond to various contexts in terms of knowledge representation, this paper explains that heuristic rules of production, procedural representation, and frame representation have been adapted to such areas as medical diagnosis, signal interpretation, design and planning of electrical circuits and computer system…
Conditions for the Effectiveness of Multiple Visual Representations in Enhancing STEM Learning
ERIC Educational Resources Information Center
Rau, Martina A.
2017-01-01
Visual representations play a critical role in enhancing science, technology, engineering, and mathematics (STEM) learning. Educational psychology research shows that adding visual representations to text can enhance students' learning of content knowledge, compared to text-only. But should students learn with a single type of visual…
Drawings as Representations of Children's Conceptions
ERIC Educational Resources Information Center
Ehrlen, Karin
2009-01-01
Drawings are often used to obtain an idea of children's conceptions. Doing so takes for granted an unambiguous relation between conceptions and their representations in drawings. This study was undertaken to gain knowledge of the relation between children's conceptions and their representation of these conceptions in drawings. A theory of…
Knowledge Representation and Care Planning for Population Health Management.
Merahn, Steven
2015-01-01
The traditional organizing principles of medical knowledge may be insufficient to allow for problem representations that are relevant to solution development in emerging models of care such as population health management. Operational classification and central management of clinical and quality objectives and associated strategies will allow for productive innovation in care design and better support goal-directed collaboration among patients and their health resource communities.
Similarity networks as a knowledge representation for space applications
NASA Technical Reports Server (NTRS)
Bailey, David; Thompson, Donna; Feinstein, Jerald
1987-01-01
Similarity networks are a powerful form of knowledge representation that are useful for many artificial intelligence applications. Similarity networks are used in applications ranging from information analysis and case based reasoning to machine learning and linking symbolic to neural processing. Strengths of similarity networks include simple construction, intuitive object storage, and flexible retrieval techniques that facilitate inferencing. Therefore, similarity networks provide great potential for space applications.
ERIC Educational Resources Information Center
Callaghan, Tara C.; Rochat, Philippe; Corbit, John
2012-01-01
Three- to 5-year-old children's knowledge that pictures have a representational function for others was investigated using a pictorial false-belief task. In Study 1, children passed the task at around 4 years old, and performance was correlated with standard false-belief and pictorial symbol tasks. In Study 2, the performance of children from two…
Hatsek, Avner; Shahar, Yuval; Taieb-Maimon, Meirav; Shalom, Erez; Klimov, Denis; Lunenfeld, Eitan
2010-01-01
Clinical guidelines have been shown to improve the quality of medical care and to reduce its costs. However, most guidelines exist in a free-text representation and, without automation, are not sufficiently accessible to clinicians at the point of care. A prerequisite for automated guideline application is a machine-comprehensible representation of the guidelines. In this study, we designed and implemented a scalable architecture to support medical experts and knowledge engineers in specifying and maintaining the procedural and declarative aspects of clinical guideline knowledge, resulting in a machine comprehensible representation. The new framework significantly extends our previous work on the Digital electronic Guidelines Library (DeGeL) The current study designed and implemented a graphical framework for specification of declarative and procedural clinical knowledge, Gesher. We performed three different experiments to evaluate the functionality and usability of the major aspects of the new framework: Specification of procedural clinical knowledge, specification of declarative clinical knowledge, and exploration of a given clinical guideline. The subjects included clinicians and knowledge engineers (overall, 27 participants). The evaluations indicated high levels of completeness and correctness of the guideline specification process by both the clinicians and the knowledge engineers, although the best results, in the case of declarative-knowledge specification, were achieved by teams including a clinician and a knowledge engineer. The usability scores were high as well, although the clinicians' assessment was significantly lower than the assessment of the knowledge engineers.
Unpacking Exoplanet Detection Using Pedagogical Discipline Representations (PDRs)
NASA Astrophysics Data System (ADS)
Prather, Edward E.; Chambers, Timothy G.; Wallace, Colin Scott; Brissenden, Gina
2017-01-01
Successful educators know the importance of using multiple representations to teach the content of their disciplines. We have all seen the moments of epiphany that can be inspired when engaging with just the right representation of a difficult concept. The formal study of the cognitive impact of different representations on learners is now an active area of education research. The affordances of a particular representation are defined as the elements of disciplinary knowledge that students are able to access and reason about using that representation. Instructors with expert pedagogical content knowledge teach each topic using representations with complementary affordances, maximizing their students’ opportunity to develop fluency with all aspects of the topic. The work presented here examines how we have applied the theory of affordances to the development of pedagogical discipline representation (PDR) in an effort to provide access to, and help non-science-majors engage in expert-like reasoning about, general relativity as applied to detection of exoplanets. We define a pedagogical discipline representation (PDR) as a representation that has been uniquely tailored for the purpose of teaching a specific topic within a discipline. PDRs can be simplified versions of expert representations or can be highly contextualized with features that purposefully help unpack specific reasoning or concepts, and engage learners’ pre-existing mental models while promoting and enabling critical discourse. Examples of PDRs used for instruction and assessment will be provided along with preliminary results documenting the effectiveness of their use in the classroom.
The impact of social inequalities on children's knowledge and representation of health and cancer.
Régnier Denois, Véronique; Bourmaud, Aurelie; Nekaa, Mabrouk; Bezzaz, Céline; Bousser, Véronique; Kalecinski, Julie; Dumesnil, Julia; Tinquaut, Fabien; Berger, Dominique; Chauvin, Franck
2018-05-28
Reducing inequalities in the field of cancer involves studying the knowledge and mental representations of cancer among children. A qualitative study was conducted on 191 children aged 9 to 12 using the "write and draw" technique to get spontaneous mental representations of "healthy things", "unhealthy things" and "cancer". We grouped the voluntary schools according to two deprivation levels. In response to the request to "write or draw anything you think keeps you healthy", the main responses categories were physical activity, healthy food and basic needs. Smoking, drinking alcohol, sedentary lifestyles/lack of sport were identified as "unhealthy". The first theme associated with "cancer" is the "cancer site" implying children have a segmented perception of cancer. Deprived children have radically different views about the key items representing cancer: they are more likely to believe the illness is systematically deadly. They are less likely to believe it is a treatable illness. They are less likely to associate cancer with risky behaviors, particularly alcohol consumption. Social inequalities affect representations of cancer and health literacy from early childhood. Prevention programs taking into account these representations need to be introduced at school. What is Known: • Social inequalities for cancer mortality are observed in all European countries and are particularly pronounced in France. • Reducing these inequalities in prevention programs implies studying the knowledge and mental representations of cancer among children. What is New: • This study identified representations of cancer in young children according to social level. • At age 9, children living in deprived areas are less able to produce content in discussions about cancer and have narrower mental representations and a more fatalistic view.
Archetype-based semantic integration and standardization of clinical data.
Moner, David; Maldonado, Jose A; Bosca, Diego; Fernandez, Jesualdo T; Angulo, Carlos; Crespo, Pere; Vivancos, Pedro J; Robles, Montserrat
2006-01-01
One of the basic needs for any healthcare professional is to be able to access to clinical information of patients in an understandable and normalized way. The lifelong clinical information of any person supported by electronic means configures his/her Electronic Health Record (EHR). This information is usually distributed among several independent and heterogeneous systems that may be syntactically or semantically incompatible. The Dual Model architecture has appeared as a new proposal for maintaining a homogeneous representation of the EHR with a clear separation between information and knowledge. Information is represented by a Reference Model which describes common data structures with minimal semantics. Knowledge is specified by archetypes, which are formal representations of clinical concepts built upon a particular Reference Model. This kind of architecture is originally thought for implantation of new clinical information systems, but archetypes can be also used for integrating data of existing and not normalized systems, adding at the same time a semantic meaning to the integrated data. In this paper we explain the possible use of a Dual Model approach for semantic integration and standardization of heterogeneous clinical data sources and present LinkEHR-Ed, a tool for developing archetypes as elements for integration purposes. LinkEHR-Ed has been designed to be easily used by the two main participants of the creation process of archetypes for clinical data integration: the Health domain expert and the Information Technologies domain expert.
Syntactic levels, lexicalism, and ellipsis: The jury is still out.
Hartsuiker, Robert J; Bernolet, Sarah
2017-01-01
Structural priming data are sometimes compatible with several theoretical views, as shown here for three key theoretical claims. One reason is that prime sentences affect multiple representational levels driving syntactic choice. Additionally, priming is affected by further cognitive functions (e.g., memory). We therefore see priming as a useful tool for the investigation of linguistic representation but not the only tool.
Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis.
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2014-11-01
For the last decade, it has been shown that neuroimaging can be a potential tool for the diagnosis of Alzheimer's Disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), and also fusion of different modalities can further provide the complementary information to enhance diagnostic accuracy. Here, we focus on the problems of both feature representation and fusion of multimodal information from Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). To our best knowledge, the previous methods in the literature mostly used hand-crafted features such as cortical thickness, gray matter densities from MRI, or voxel intensities from PET, and then combined these multimodal features by simply concatenating into a long vector or transforming into a higher-dimensional kernel space. In this paper, we propose a novel method for a high-level latent and shared feature representation from neuroimaging modalities via deep learning. Specifically, we use Deep Boltzmann Machine (DBM)(2), a deep network with a restricted Boltzmann machine as a building block, to find a latent hierarchical feature representation from a 3D patch, and then devise a systematic method for a joint feature representation from the paired patches of MRI and PET with a multimodal DBM. To validate the effectiveness of the proposed method, we performed experiments on ADNI dataset and compared with the state-of-the-art methods. In three binary classification problems of AD vs. healthy Normal Control (NC), MCI vs. NC, and MCI converter vs. MCI non-converter, we obtained the maximal accuracies of 95.35%, 85.67%, and 74.58%, respectively, outperforming the competing methods. By visual inspection of the trained model, we observed that the proposed method could hierarchically discover the complex latent patterns inherent in both MRI and PET. Copyright © 2014 Elsevier Inc. All rights reserved.
Hierarchical Feature Representation and Multimodal Fusion with Deep Learning for AD/MCI Diagnosis
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2014-01-01
For the last decade, it has been shown that neuroimaging can be a potential tool for the diagnosis of Alzheimer’s Disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), and also fusion of different modalities can further provide the complementary information to enhance diagnostic accuracy. Here, we focus on the problems of both feature representation and fusion of multimodal information from Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). To our best knowledge, the previous methods in the literature mostly used hand-crafted features such as cortical thickness, gray matter densities from MRI, or voxel intensities from PET, and then combined these multimodal features by simply concatenating into a long vector or transforming into a higher-dimensional kernel space. In this paper, we propose a novel method for a high-level latent and shared feature representation from neuroimaging modalities via deep learning. Specifically, we use Deep Boltzmann Machine (DBM)1, a deep network with a restricted Boltzmann machine as a building block, to find a latent hierarchical feature representation from a 3D patch, and then devise a systematic method for a joint feature representation from the paired patches of MRI and PET with a multimodal DBM. To validate the effectiveness of the proposed method, we performed experiments on ADNI dataset and compared with the state-of-the-art methods. In three binary classification problems of AD vs. healthy Normal Control (NC), MCI vs. NC, and MCI converter vs. MCI non-converter, we obtained the maximal accuracies of 95.35%, 85.67%, and 74.58%, respectively, outperforming the competing methods. By visual inspection of the trained model, we observed that the proposed method could hierarchically discover the complex latent patterns inherent in both MRI and PET. PMID:25042445
Reasoning about procedural knowledge
NASA Technical Reports Server (NTRS)
Georgeff, M. P.
1985-01-01
A crucial aspect of automated reasoning about space operations is that knowledge of the problem domain is often procedural in nature - that is, the knowledge is often in the form of sequences of actions or procedures for achieving given goals or reacting to certain situations. In this paper a system is described that explicitly represents and reasons about procedural knowledge. The knowledge representation used is sufficiently rich to describe the effects of arbitrary sequences of tests and actions, and the inference mechanism provides a means for directly using this knowledge to reach desired operational goals. Furthermore, the representation has a declarative semantics that provides for incremental changes to the system, rich explanatory capabilities, and verifiability. The approach also provides a mechanism for reasoning about the use of this knowledge, thus enabling the system to choose effectively between alternative courses of action.
NASA Astrophysics Data System (ADS)
Roberts, Lisa Elisabeth N.
Current policy and research have led the field of science education towards a model of "science as practice." In the past decade, several research programs on model-based reasoning practices in education have articulated key dimensions of practice, including constructing and defending models, comparing models to empirical data, using representations to identify patterns in data and use those as inscriptions to buttress arguments. This study presents a detailed case of how the use of a physical microcosm and children's self-directed representations of an ecosystem constrained and afforded student sense-making in an urban elementary classroom. The case analyzed the experiences of a 10-year old fifth grade student, Jorge, and the variation in his expressed understanding of ecosystems as he interacted with academic tasks, along with models and representations, to design, observe and explain an ecological microcosm. The study used a conceptual framework that brings together theories of situated cognition and Doyle's work on academic task to explain how and why Jorge's perception and communication of dimensions of ecosystem structure, function, and behavior appear to "come in and out of focus," influenced by the affordances of the tools and resources available, the academic task as given by the teacher, and Jorge's own experiences and knowledge of phenomena related to ecosystems. Findings from this study suggest that elementary students' ability or inability to address particular ecological concepts in a given task relate less to gaps in their understanding and more to the structure of academic tasks and learning contexts. The process of a student interacting with curriculum follows a dynamic trajectory and leads to emergent outcomes. As a result of the complex interactions of task, tools, and his own interests and agency, Jorge's attunement to the role of water in ecosystems comes in and out of focus throughout the unit. The instructional constraint of needing to integrate the FOSS Water Cycle curriculum into the Bottle Biology Project became an affordance for Jorge to ask questions, observe, and theorize about the role of water and the water cycle in an ecosystem. The practice of modeling a closed ecosystem made salient to Jorge the boundaries of a system and the conservation of water within that system. The closed ecosystem model also presented constraints to students' sense making about the role of interactions when students lack domain knowledge in ecology. Relying on students' own talk, photographs and representations as explanations of phenomena in the Bio Bottle, without establishing norms of representational conventions and communication, resulted in missed opportunities for Jorge to reinforce his sense making during the activity and to develop conventions of scientific representation. Findings from this study can be used to inform the design and implementation of learning environments and curricular activities for elementary and middle school students that address all three dimensions of the Next Generation Science Standards: a) developing conceptual understanding of key concepts in the domain of ecology, b) the cross-cutting concept of systems, and c) multiple practices that ecologists use in developing and evaluating models that explain ecosystem structures, functions, and change over time.
LIS Professionals as Knowledge Engineers.
ERIC Educational Resources Information Center
Poulter, Alan; And Others
1994-01-01
Considers the role of library and information science professionals as knowledge engineers. Highlights include knowledge acquisition, including personal experience, interviews, protocol analysis, observation, multidimensional sorting, printed sources, and machine learning; knowledge representation, including production rules and semantic nets;…
Herrera-Hernandez, Maria C; Lai-Yuen, Susana K; Piegl, Les A; Zhang, Xiao
2016-10-26
This article presents the design of a web-based knowledge management system as a training and research tool for the exploration of key relationships between Western and Traditional Chinese Medicine, in order to facilitate relational medical diagnosis integrating these mainstream healing modalities. The main goal of this system is to facilitate decision-making processes, while developing skills and creating new medical knowledge. Traditional Chinese Medicine can be considered as an ancient relational knowledge-based approach, focusing on balancing interrelated human functions to reach a healthy state. Western Medicine focuses on specialties and body systems and has achieved advanced methods to evaluate the impact of a health disorder on the body functions. Identifying key relationships between Traditional Chinese and Western Medicine opens new approaches for health care practices and can increase the understanding of human medical conditions. Our knowledge management system was designed from initial datasets of symptoms, known diagnosis and treatments, collected from both medicines. The datasets were subjected to process-oriented analysis, hierarchical knowledge representation and relational database interconnection. Web technology was implemented to develop a user-friendly interface, for easy navigation, training and research. Our system was prototyped with a case study on chronic prostatitis. This trial presented the system's capability for users to learn the correlation approach, connecting knowledge in Western and Traditional Chinese Medicine by querying the database, mapping validated medical information, accessing complementary information from official sites, and creating new knowledge as part of the learning process. By addressing the challenging tasks of data acquisition and modeling, organization, storage and transfer, the proposed web-based knowledge management system is presented as a tool for users in medical training and research to explore, learn and update relational information for the practice of integrated medical diagnosis. This proposal in education has the potential to enable further creation of medical knowledge from both Traditional Chinese and Western Medicine for improved care providing. The presented system positively improves the information visualization, learning process and knowledge sharing, for training and development of new skills for diagnosis and treatment, and a better understanding of medical diseases. © IMechE 2016.
López-Gil, Juan-Miguel; Gil, Rosa; García, Roberto
2016-01-01
This work presents a Web ontology for modeling and representation of the emotional, cognitive and motivational state of online learners, interacting with university systems for distance or blended education. The ontology is understood as a way to provide the required mechanisms to model reality and associate it to emotional responses, but without committing to a particular way of organizing these emotional responses. Knowledge representation for the contributed ontology is performed by using Web Ontology Language (OWL), a semantic web language designed to represent rich and complex knowledge about things, groups of things, and relations between things. OWL is a computational logic-based language such that computer programs can exploit knowledge expressed in OWL and also facilitates sharing and reusing knowledge using the global infrastructure of the Web. The proposed ontology has been tested in the field of Massive Open Online Courses (MOOCs) to check if it is capable of representing emotions and motivation of the students in this context of use. PMID:27199796
Garbarini, Francesca; Fossataro, Carlotta; Berti, Anna; Gindri, Patrizia; Romano, Daniele; Pia, Lorenzo; della Gatta, Francesco; Maravita, Angelo; Neppi-Modona, Marco
2015-04-01
Previous evidence has shown that active tool-use can reshape one's own body schema, extend peripersonal space and modulate the representation of related body parts. Here we investigate the effect of tool-use training on length representation of the contralesional forearm in brain-damaged hemiplegic patients who manifested a pathological embodiment of other people body parts. Four patients and 20 aged-matched healthy-controls were asked to estimate the mid-point of their contralesional forearm before and after 15 min of tool-use training (i.e. retrieving targets with a garbage plier). In the case of patients, training was always performed by the examiner's (alien) arm acting in two different positions, aligned (where the pathological embodiment occurs; E+ condition) or misaligned (where the pathological embodiment does not occur; E- condition) relative to the patients' shoulder. Healthy controls performed tool-use training either with their own arm (action condition) or observing the examiner's arm performing the task (observation condition), handling (observation with-tool condition) or not (observation without-tool condition) a similar tool. Crucially, in the E+ condition, when patients were convinced to perform the tool-use training with their own paralyzed arm, a significant overestimation effect was found (as in the Action condition with normal subjects): patients mislocated their forearm midpoint more proximally to the hand in the post- than in the pre-training phase. Conversely, in the E- condition, they did not show any overestimation effect, similarly to healthy subjects in the observation condition (neither in the with-tool nor in the without-tool condition significant overestimation effects were found). These findings show the existence of a tight link between spatial, motor and bodily representations and provide strong evidence that a pathological sense of body ownership can extend to intentional motor processes and modulate the sensory map of action-related body parts. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Namdar, Bahadir; Shen, Ji
2016-05-01
Using multiple representations and argumentation are two fundamental processes in science. With the advancements of information communication technologies, these two processes are blended more so than ever before. However, little is known about how these two processes interact with each other in student learning. Hence, we conducted a design-based study in order to distill the relationship between these two processes. Specifically, we designed a learning unit on nuclear energy and implemented it with a group of preservice middle school teachers. The participants used a web-based knowledge organization platform that incorporated three representational modes: textual, concept map, and pictorial. The participants organized their knowledge on nuclear energy by searching, sorting, clustering information through the use of these representational modes and argued about the nuclear energy issue. We found that the use of multiple representations and argumentation interacted with each other in a complex way. Based on our findings, we argue that the complexity can be unfolded in two aspects: (a) the use of multiple representations mediates argumentation in different forms and for different purposes; (b) the type of argumentation that leads to refinement of the use of multiple representations is often non-mediated and drawn from personal experience.
Grilli, Matthew D
2017-11-01
Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.
SIRE: A Simple Interactive Rule Editor for NICBES
NASA Technical Reports Server (NTRS)
Bykat, Alex
1988-01-01
To support evolution of domain expertise, and its representation in an expert system knowledge base, a user-friendly rule base editor is mandatory. The Nickel Cadmium Battery Expert System (NICBES), a prototype of an expert system for the Hubble Space Telescope power storage management system, does not provide such an editor. In the following, a description of a Simple Interactive Rule Base Editor (SIRE) for NICBES is described. The SIRE provides a consistent internal representation of the NICBES knowledge base. It supports knowledge presentation and provides a user-friendly and code language independent medium for rule addition and modification. The SIRE is integrated with NICBES via an interface module. This module provides translation of the internal representation to Prolog-type rules (Horn clauses), latter rule assertion, and a simple mechanism for rule selection for its Prolog inference engine.
A knowledge platform to inform on the effects of trawling on benthic communities
NASA Astrophysics Data System (ADS)
Muntadas, Alba; Lample, Michel; Demestre, Montserrat; Ballé-Béganton, Johanna; de Juan, Silvia; Maynou, Francesc; Bailly, Denis
2018-02-01
For a successful implementation of an Ecosystem Approach to Fisheries (EAF) management, it is necessary that all stakeholders involved in fisheries management are aware of the implications of fishing impacts on ecosystems and agree with the adopted measures to mitigate these impacts. In this context, there is a need for tools to share knowledge on the ecosystem effects of fisheries among these stakeholders. When managing bottom trawl fisheries under an EAF framework, one of the main concerns is the direct and indirect consequences of trawling impacts on benthic ecosystems. We developed a platform using the ExtendSim® software with a user-friendly interface that combines a simulation model based on existing knowledge, data collection and representation of predicted trawling impacts on the seabed. The platform aims to be a deliberation support tool for fisheries' stakeholders and, simultaneously, raise public awareness of the need for good benthic community knowledge to appropriately inform EAF management plans. The simulation procedure assumes that trawling affects benthic communities with an intensity that depends on the level of fishing effort exerted on benthic communities and on the habitat characteristics (i.e. sediment grain size). Data to build the simulation comes from epifaunal samples from 18 study sites located in Mediterranean continental shelves subjected to different levels of fishing effort. In this work, we present the simulation outputs of a 50% fishing effort increase (and decrease) in four of the study sites which cover different habitats and different levels of fishing effort. We discuss the platform strengths and weaknesses and potential future developments.
ERIC Educational Resources Information Center
Sedig, Kamran; Liang, Hai-Ning
2006-01-01
Computer-based mathematical cognitive tools (MCTs) are a category of external aids intended to support and enhance learning and cognitive processes of learners. MCTs often contain interactive visual mathematical representations (VMRs), where VMRs are graphical representations that encode properties and relationships of mathematical concepts. In…
Modal Representations and Their Role in the Learning Process: A Theoretical and Pragmatic Analysis
ERIC Educational Resources Information Center
Gunel, Murat; Yesildag-Hasancebi, Funda
2016-01-01
In the construction and sharing of scientific knowledge, modal representations such as text, graphics, pictures, and mathematical expressions are commonly used. Due to the increasing importance of their role in the production and communication of science, modal representations have become a topic of growing interest in science education research…
The Representation of Abstract Words: Why Emotion Matters
ERIC Educational Resources Information Center
Kousta, Stavroula-Thaleia; Vigliocco, Gabriella; Vinson, David P.; Andrews, Mark; Del Campo, Elena
2011-01-01
Although much is known about the representation and processing of concrete concepts, knowledge of what abstract semantics might be is severely limited. In this article we first address the adequacy of the 2 dominant accounts (dual coding theory and the context availability model) put forward in order to explain representation and processing…
29 CFR 1912.9 - Representation on section 7(b) committees.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Representation on section 7(b) committees. 1912.9 Section... Representation on section 7(b) committees. (a) Any advisory committee appointed by the Assistant Secretary under... appoint who are qualified by knowledge and experience to make a useful contribution to the work of the...
29 CFR 1912.9 - Representation on section 7(b) committees.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Representation on section 7(b) committees. 1912.9 Section... Representation on section 7(b) committees. (a) Any advisory committee appointed by the Assistant Secretary under... appoint who are qualified by knowledge and experience to make a useful contribution to the work of the...
29 CFR 1912.9 - Representation on section 7(b) committees.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Representation on section 7(b) committees. 1912.9 Section... Representation on section 7(b) committees. (a) Any advisory committee appointed by the Assistant Secretary under... appoint who are qualified by knowledge and experience to make a useful contribution to the work of the...
Comparing Tactile Maps and Haptic Digital Representations of a Maritime Environment
ERIC Educational Resources Information Center
Simonnet, Mathieu; Vieilledent, Steephane; Jacobson, R. Daniel; Tisseau, Jacques
2011-01-01
A map exploration and representation exercise was conducted with participants who were totally blind. Representations of maritime environments were presented either with a tactile map or with a digital haptic virtual map. We assessed the knowledge of spatial configurations using a triangulation technique. The results revealed that both types of…
ERIC Educational Resources Information Center
Fedorenko, Evelina; Nieto-Castanon, Alfonso; Kanwisher, Nancy
2012-01-01
Work in theoretical linguistics and psycholinguistics suggests that human linguistic knowledge forms a continuum between individual lexical items and abstract syntactic representations, with most linguistic representations falling between the two extremes and taking the form of lexical items stored together with the syntactic/semantic contexts in…
ERIC Educational Resources Information Center
Koubek, Richard J.
The roles of training, problem representation, and individual differences on performance of both automated (simple) and controlled (complex) process tasks were studied. The following hypotheses were tested: (1) training and cognitive style affect the representation developed; (2) training and cognitive style affect the development and performance…
ERIC Educational Resources Information Center
Cook, Michelle Patrick
2006-01-01
Visual representations are essential for communicating ideas in the science classroom; however, the design of such representations is not always beneficial for learners. This paper presents instructional design considerations providing empirical evidence and integrating theoretical concepts related to cognitive load. Learners have a limited…
Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory
NASA Technical Reports Server (NTRS)
Linde, Charlotte
2005-01-01
Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.
The Role of Metarepresentation in the Production and Resolution of Referring Expressions.
Horton, William S; Brennan, Susan E
2016-01-01
In this paper we consider the potential role of metarepresentation-the representation of another representation, or as commonly considered within cognitive science, the mental representation of another individual's knowledge and beliefs-in mediating definite reference and common ground in conversation. Using dialogues from a referential communication study in which speakers conversed in succession with two different addressees, we highlight ways in which interlocutors work together to successfully refer to objects, and achieve shared conceptualizations. We briefly review accounts of how such shared conceptualizations could be represented in memory, from simple associations between label and referent, to "triple co-presence" representations that track interlocutors in an episode of referring, to more elaborate metarepresentations that invoke theory of mind, mutual knowledge, or a model of a conversational partner. We consider how some forms of metarepresentation, once created and activated, could account for definite reference in conversation by appealing to ordinary processes in memory. We conclude that any representations that capture information about others' perspectives are likely to be relatively simple and subject to the same kinds of constraints on attention and memory that influence other kinds of cognitive representations.
Fuentes, Christina T; Runa, Catarina; Blanco, Xenxo Alvarez; Orvalho, Verónica; Haggard, Patrick
2013-01-01
Despite extensive research on face perception, few studies have investigated individuals' knowledge about the physical features of their own face. In this study, 50 participants indicated the location of key features of their own face, relative to an anchor point corresponding to the tip of the nose, and the results were compared to the true location of the same individual's features from a standardised photograph. Horizontal and vertical errors were analysed separately. An overall bias to underestimate vertical distances revealed a distorted face representation, with reduced face height. Factor analyses were used to identify separable subconfigurations of facial features with correlated localisation errors. Independent representations of upper and lower facial features emerged from the data pattern. The major source of variation across individuals was in representation of face shape, with a spectrum from tall/thin to short/wide representation. Visual identification of one's own face is excellent, and facial features are routinely used for establishing personal identity. However, our results show that spatial knowledge of one's own face is remarkably poor, suggesting that face representation may not contribute strongly to self-awareness.
NASA Astrophysics Data System (ADS)
Carneiro, D. L. C. M.
2014-10-01
Science dissemination has unquestioned role on intermediate science and society and it is a wide subject of research in education, considering that the construction of knowledge flows in different spaces, and, consequently, produces and disseminates representations. It presents as a motivator for reflection and as a necessary tool to prevent that knowledge do not become synonymous with domination and power. Thereby, the Astronomy assumes a remarkable role as a trigger of scientific dissemination process, due to its interdisciplinary character. From this viewpoint and the theoretical and methodological framework of the Theory of Social Representations (TRS), grounded by Serge Moscovici, this research, qualitative in nature, seek to answer: What are the social representations about scientific dissemination of Brazilian researchers that act in the field of astronomy? The work was based on Longhini, Gomide and Fernandes (2013) research, which delineate the Brazilian scientific community involved in Astronomy, identifying two groups of researchers with different training paths: one with postgraduate in education and related fields, and other with postgraduate in Physics or Astronomy. Thus, this study had the subquestion: Does the researchers of these groups have different conceptions about the practices of science dissemination? A sample was composed of six subjects, three of each formative course, who participated in semi-structured interviews analyzed following the steps outlined by Spink (2012). The results show that the science dissemination is part of the researches schedule's, with a positive image relative to promote scientific knowledge to population and similar on practical approach between the two groups. Point to two social representations of science dissemination: one for society in general, moved by passion, anchored in values and beliefs, in satisfaction of seeing the results that their actions bring to people's lives; and the other to their pairs. Regarding the first, the core of this work, emerge gaps that hinder the practice of science dissemination, such as lack of professionalism and difficulty of using language accessible to the lay public; the lack of appreciation, so far, of the area and the bureaucracy required in the execution of projects, which come from institutions and sponsoring agencies, and the negative representation about the media, in general, are added to the list of obstacles, inferring that science dissemination is a paradigm in construction. Other considerations are that astronomy is not part of basic education systematic way or the media in general and, not infrequently, in these areas, this science presents with misconceptions. And there is an intersection between science education and science dissemination, wherein the researcher must approach to the elementary school teachers and the population. There is an indication of expanding non-formal spaces of education and the creation of a specific policy for Astronomy. In short, the found representations ponder some of the concerns currently present in society and that are echoed in the theoretical framework of this study, demonstrating that, in Brazil, despite advances, in general, science dissemination, science education, and, specifically, Astronomy Education, are in a social fragility context.
ERIC Educational Resources Information Center
Sommerville, Jessica A.; Bernstein, Daniel M.; Meltzoff, Andrew N.
2013-01-01
A novel task, using a continuous spatial layout, was created to investigate the degree to which (in centimeters) 3-year-old children's ("N" = 63), 5-year-old children's ("N" = 60), and adults' ("N" = 60) own privileged knowledge of the location of an object biased their representation of a…
Moran, Mika R; Eizenberg, Efrat; Plaut, Pnina
2017-06-06
The literature on environmental walkability to date has mainly focused on walking and related health outcomes. While previous studies suggest associations between walking and spatial knowledge, the associations between environmental walkability and spatial knowledge is yet to be explored. The current study addresses this lacuna in research by exploring children's mental representations of their home-school (h-s) route, vis.
ERIC Educational Resources Information Center
West, Andrew
2011-01-01
The purpose of this study was to explore and identify the experiences that informed the development of three veteran (15+ years of teaching experience) 9th grade physics teachers' specialized knowledge, or PCK, for using representations to teach the topics of energy transformation and transfer. Through the lens of phenomenography, the study…
Knowledge representation in metabolic pathway databases.
Stobbe, Miranda D; Jansen, Gerbert A; Moerland, Perry D; van Kampen, Antoine H C
2014-05-01
The accurate representation of all aspects of a metabolic network in a structured format, such that it can be used for a wide variety of computational analyses, is a challenge faced by a growing number of researchers. Analysis of five major metabolic pathway databases reveals that each database has made widely different choices to address this challenge, including how to deal with knowledge that is uncertain or missing. In concise overviews, we show how concepts such as compartments, enzymatic complexes and the direction of reactions are represented in each database. Importantly, also concepts which a database does not represent are described. Which aspects of the metabolic network need to be available in a structured format and to what detail differs per application. For example, for in silico phenotype prediction, a detailed representation of gene-protein-reaction relations and the compartmentalization of the network is essential. Our analysis also shows that current databases are still limited in capturing all details of the biology of the metabolic network, further illustrated with a detailed analysis of three metabolic processes. Finally, we conclude that the conceptual differences between the databases, which make knowledge exchange and integration a challenge, have not been resolved, so far, by the exchange formats in which knowledge representation is standardized.