Sample records for kokusai hyojun kaihatsu

  1. The use of JOIS through the CAPTAIN : Provision of simple searching methods

    NASA Astrophysics Data System (ADS)

    Takano, Katsuhiro

    JICST has started the services of two systems which enable to use JOIS through CAPTAIN in cooperation with A.M.S. Co. Ltd. and Kokusai Sogo Database K.K. They provide three types of searching methods which incorporate features of CAPTAIN. The first one is theme searching. You are allowed to search theme only by selecting subject area number of science and technology or theme numbers that have been registered on the CAPTAIN screen. The second one is instructed searching. You are allowed to search only by particular numbers or search terms according to the searching instructions appeared on the screen. The last one in direct searching. You are allowed to search by directly entering commands which correspond to JOIS commands. This paper outlines the systems which connect JOIS to CAPTAIN centering on these searching methods.

  2. When Ontogeny Matters: A New Japanese Species of Brittle Star Illustrates the Importance of Considering both Adult and Juvenile Characters in Taxonomic Practice

    PubMed Central

    Martynov, Alexander; Ishida, Yoshiaki; Irimura, Seiichi; Tajiri, Rie; O’Hara, Timothy; Fujita, Toshihiko


    Current taxonomy offers numerous approaches and methods for species delimitation and description. However, most of them are based on the adult characters and rarely suggest a dynamic representation of developmental transformations of taxonomically important features. Here we show how the underestimation of ontogenetic changes may result in long term lack of recognition of a new species of one of the most common ophiacanthid brittle stars (Echinodermata: Ophiuroidea) from the North Pacific. Based on vast material collected predominantly by various Japanese expeditions in the course of more than 50 years, and thorough study of appropriate type material, we revise the complex of three common species of the ophiuroid genus Ophiacantha which have been persistently confused with each other. The present study thus reveals the previously unrecognized new species Ophiacantha kokusai sp.nov. which is commonly distributed off the Pacific coast of Japan. The new species shows developmental differentiation from the closely related species Ophiacantha rhachophora H. L. Clark, 1911 and retains clearly expressed early juvenile features in the adult morphology. Another species, Ophiacantha clypeata Kyte, 1977, which had been separated from O. rhachophora, is in turn shown to be just a juvenile stage of another North Pacific species, Ophiacantha trachybactra H.L. Clark, 1911. For every species, detailed morphological data from both adult and juvenile specimens based on scanning electron microscopy are presented. A special grinding method showing complex internal features has been utilized for the first time. For all three species in this complex, a clear bathymetric differentiation is revealed: O. rhachophora predominantly inhabits shallow waters, 0–250 m, the new species O. kokusai lives deeper, at 250–600 m, and the third species, O. trachybactra, is found at 500–2,000 m. The present case clearly highlights the importance of considering developmental transformations, not

  3. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.


    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new