Negativity as the entanglement measure to probe the Kondo regime in the spin-chain Kondo model
NASA Astrophysics Data System (ADS)
Bayat, Abolfazl; Sodano, Pasquale; Bose, Sougato
2010-02-01
We study the entanglement of an impurity at one end of a spin chain with a block of spins using negativity as a true measure of entanglement to characterize the unique features of the gapless Kondo regime in the spin-chain Kondo model. For this spin chain in the Kondo regime we determine—with a true entanglement measure—the spatial extent of the Kondo screening cloud, we propose an ansatz for its ground state and demonstrate that the impurity spin is indeed maximally entangled with the cloud. To better evidence the peculiarities of the Kondo regime, we carry a parallel analysis of the entanglement properties of the Kondo spin-chain model in the gapped dimerized regime. Our study shows how a genuine entanglement measure stemming from quantum information theory can fully characterize also nonperturbative regimes accessible to certain condensed matter systems.
Size Effects in the Resistivity of Kondo and Spin-Glass Wires
NASA Astrophysics Data System (ADS)
van Haesendonck, Chris
1998-03-01
Recently, several experiments have focused on possible size effects for the Kondo scattering in thin-film structures of very dilute magnetic alloys (concentration ~ 100 ppm) (For an overview, see M.A. Blachly and N. Giordano, Phys. Rev. B 51), 12537 (1995).. Intuitively, one expects size effects to occur as soon as the sample dimensions become smaller than the size of the Kondo screening cloud which induces a compensation of the local magnetic moments below the Kondo temperature. Since the size of the Kondo cloud is predicted to be of the order of 1 μ m, one should be able to observe pronounced size effects in thin-film Kondo alloys which have been patterned by standard electron beam lithography. Experiments performed by other groups have indeed revealed an important reduction of the slope of the Kondo resistivity for samples with micrometer dimensions. These experiments also show that the size effects are affected by disorder. On the other hand, our experiments on AuFe wires, which have been prepared by flash evaporation as well as by ion implantation, indicate the absence of size effects for the Kondo scattering down to a width of 38 nm. Therefore, the existence of the Kondo cloud remains a controversial issue. The size effects have also been investigated for more concentrated spin-glass alloys (concentration ~ 1 at.%). The resistivity measurements of thin-film spin glasses indicate that intrinsic size effects may be present for length scales below 100 nm (K.R. Lane et al., Phys. Rev. B 51), 945 (1995); G. Neuttiens et al., Europhys. Lett. 34, 617 (1996).. Due to the damping of the RKKY interaction by elastic defect scattering, size effects in the spin-glass regime can be strongly affected by disorder.
Conductance of closed and open long Aharonov-Bohm-Kondo rings
NASA Astrophysics Data System (ADS)
Shi, Zheng; Komijani, Yashar
2017-02-01
We calculate the finite temperature linear dc conductance of a generic single-impurity Anderson model containing an arbitrary number of Fermi liquid leads, and apply the formalism to closed and open long Aharonov-Bohm-Kondo (ABK) rings. We show that, as with the short ABK ring, there is a contribution to the conductance from the connected four-point Green's function of the conduction electrons. At sufficiently low temperatures this contribution can be eliminated, and the conductance can be expressed as a linear function of the T matrix of the screening channel. For closed rings we show that at temperatures high compared to the Kondo temperature, the conductance behaves differently for temperatures above and below vF/L , where vF is the Fermi velocity and L is the circumference of the ring. For open rings, when the ring arms have both a small transmission and a small reflection, we show from the microscopic model that the ring behaves like a two-path interferometer, and that the Kondo temperature is unaffected by details of the ring. Our findings confirm that ABK rings are potentially useful in the detection of the size of the Kondo screening cloud, the π /2 scattering phase shift from the Kondo singlet, and the suppression of Aharonov-Bohm oscillations due to inelastic scattering.
Filling-enforced nonsymmorphic Kondo semimetals in two dimensions
NASA Astrophysics Data System (ADS)
Pixley, J. H.; Lee, SungBin; Brandom, B.; Parameswaran, S. A.
2017-08-01
We study the competition between Kondo screening and frustrated magnetism on the nonsymmorphic Shastry-Sutherland Kondo lattice at a filling of two conduction electrons per unit cell. This model is known to host a set of gapless partially Kondo screened phases intermediate between the Kondo-destroyed paramagnet and the heavy Fermi liquid. Based on crystal symmetries, we argue that (i) both the paramagnet and the heavy Fermi liquid are semimetals protected by a glide symmetry; and (ii) partial Kondo screening breaks the symmetry, removing this protection and allowing the partially Kondo screened phase to be deformed into a Kondo insulator via a Lifshitz transition. We confirm these results using large-N mean-field theory and then use nonperturbative arguments to derive a generalized Luttinger sum rule constraining the phase structure of two-dimensional nonsymmorphic Kondo lattices beyond the mean-field limit.
Self-sustained oscillations in nanoelectromechanical systems induced by Kondo resonance
NASA Astrophysics Data System (ADS)
Song, Taegeun; Kiselev, Mikhail N.; Kikoin, Konstantin; Shekhter, Robert I.; Gorelik, Leonid Y.
2014-03-01
We investigate the instability and dynamical properties of nanoelectromechanical systems represented by a single-electron device containing movable quantum dots attached to a vibrating cantilever via asymmetric tunnel contacts. The Kondo resonance in electron tunneling between the source and shuttle facilitates self-sustained oscillations originating from the strong coupling of mechanical and electronic/spin degrees of freedom. We analyze a stability diagram for the two-channel Kondo shuttling regime due to limitations given by the electromotive force acting on a moving shuttle, and find that the saturation oscillation amplitude is associated with the retardation effect of the Kondo cloud. The results shed light on possible ways to experimentally realize the Kondo-cloud dynamical probe by using high mechanical dissipation tunability as well as supersensitive detection of mechanical displacement.
Ensemble control of Kondo screening in molecular adsorbates
Maughan, Bret; Zahl, Percy; Sutter, Peter; ...
2017-04-06
Switching the magnetic properties of organic semiconductors on a metal surface has thus far largely been limited to molecule-by-molecule tip-induced transformations in scanned probe experiments. Here we demonstrate with molecular resolution that collective control of activated Kondo screening can be achieved in thin-films of the organic semiconductor titanyl phthalocyanine on Cu(110) to obtain tunable concentrations of Kondo impurities. Using low-temperature scanning tunneling microscopy and spectroscopy, we show that a thermally activated molecular distortion dramatically shifts surface–molecule coupling and enables ensemble-level control of Kondo screening in the interfacial spin system. This is accompanied by the formation of a temperature-dependent Abrikosov–Suhl–Kondo resonancemore » in the local density of states of the activated molecules. This enables coverage-dependent control over activation to the Kondo screening state. Finally, our study thus advances the versatility of molecular switching for Kondo physics and opens new avenues for scalable bottom-up tailoring of the electronic structure and magnetic texture of organic semiconductor interfaces at the nanoscale.« less
Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms
NASA Astrophysics Data System (ADS)
Kanász-Nagy, Márton; Ashida, Yuto; Shi, Tao; Moca, Cǎtǎlin Paşcu; Ikeda, Tatsuhiko N.; Fölling, Simon; Cirac, J. Ignacio; Zaránd, Gergely; Demler, Eugene A.
2018-04-01
We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the nonequilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maughan, Bret; Zahl, Percy; Sutter, Peter
Switching the magnetic properties of organic semiconductors on a metal surface has thus far largely been limited to molecule-by-molecule tip-induced transformations in scanned probe experiments. Here we demonstrate with molecular resolution that collective control of activated Kondo screening can be achieved in thin-films of the organic semiconductor titanyl phthalocyanine on Cu(110) to obtain tunable concentrations of Kondo impurities. Using low-temperature scanning tunneling microscopy and spectroscopy, we show that a thermally activated molecular distortion dramatically shifts surface–molecule coupling and enables ensemble-level control of Kondo screening in the interfacial spin system. This is accompanied by the formation of a temperature-dependent Abrikosov–Suhl–Kondo resonancemore » in the local density of states of the activated molecules. This enables coverage-dependent control over activation to the Kondo screening state. Finally, our study thus advances the versatility of molecular switching for Kondo physics and opens new avenues for scalable bottom-up tailoring of the electronic structure and magnetic texture of organic semiconductor interfaces at the nanoscale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M. B.; Garlea, V. O.; Gillon, B.
2017-01-23
One rare example of a Kondo lattice compound with ferromagnetic dominated RKKY interactions is Ybmore » $$_{14}$$MnSb$$_{11}$$. As a ferromagnetic semiconductor with $$T_c \\approx 53$$~K, it is also a potential compound for exploration of spintronic devices. This material is furthermore one of the most efficient high temperature thermoelectrics. We describe measurements which answer remaining questions regarding the energy scales of the exchange interactions, the valence and the magnetization density distribution in this system. We also find that the system consists of RKKY exchange coupled Mn$$^{2+}$$ sites with nearest and next nearest exchange interactions dominating the magnetic spectrum with no significant magnetization density localized on other atomic sites. The extended spread of a negative magnetization around each of the Mn ions supports a Kondo screening cloud scenario for Yb$$_{14}$$MnSb$$_{11}$$.« less
Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models
NASA Astrophysics Data System (ADS)
Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun
2018-03-01
The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.
Measurement of Valley Kondo Effect in a Si/SiGe Quantum Dot
NASA Astrophysics Data System (ADS)
Yuan, Mingyun; Yang, Zhen; Tang, Chunyang; Rimberg, A. J.; Joynt, R.; Savage, D. E.; Lagally, M. G.; Eriksson, M. A.
2013-03-01
The Kondo effect in Si/SiGe QDs can be enriched by the valley degree of freedom in Si. We have observed resonances showing temperature dependence characteristic of the Kondo effect in two consecutive Coulomb diamonds. These resonances exhibit unusual magnetic field dependence that we interpret as arising from Kondo screening of the valley degree of freedom. In one diamond two Kondo peaks due to screening of the valley index exist at zero magnetic field, revealing a zero-field valley splitting of Δ ~ 0.28 meV. In a non-zero magnetic field the peaks broaden and coalesce due to Zeeman splitting. In the other diamond, a single resonance at zero bias persists without Zeeman splitting for non-zero magnetic field, a phenomenon characteristic of valley non-conservation in tunneling. This research is supported by the NSA and ARO.
Synthetic topological Kondo insulator in a pumped optical cavity
NASA Astrophysics Data System (ADS)
Zheng, Zhen; Zou, Xu-Bo; Guo, Guang-Can
2018-02-01
Motivated by experimental advances on ultracold atoms coupled to a pumped optical cavity, we propose a scheme for synthesizing and observing the Kondo insulator in Fermi gases trapped in optical lattices. The synthetic Kondo phase arises from the screening of localized atoms coupled to mobile ones, which in our proposal is generated via the pumping laser as well as the cavity. By designing the atom-cavity coupling, it can engineer a nearest-neighbor-site Kondo coupling that plays an essential role for supporting topological Kondo phase. Therefore, the cavity-induced Kondo transition is associated with a nontrivial topological features, resulting in the coexistence of the superradiant and topological Kondo state. Our proposal can be realized with current technique, and thus has potential applications in quantum simulation of the topological Kondo insulator in ultracold atoms.
Tunable Kondo physics in a carbon nanotube double quantum dot.
Chorley, S J; Galpin, M R; Jayatilaka, F W; Smith, C G; Logan, D E; Buitelaar, M R
2012-10-12
We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impurity Kondo model. At zero magnetic field the interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune the crossover to a Kondo screened phase by application of a magnetic field. All results show good agreement with a numerical renormalization group study of the device.
From Kondo to local singlet state in graphene nanoribbons with magnetic impurities
NASA Astrophysics Data System (ADS)
Diniz, G. S.; Luiz, G. I.; Latgé, A.; Vernek, E.
2018-03-01
A detailed analysis of the Kondo effect of a magnetic impurity in a zigzag graphene nanoribbon is addressed. An adatom is coupled to the graphene nanoribbon via a hybridization amplitude Γimp in a hollow- or top-site configuration. In addition, the adatom is also weakly coupled to a metallic scanning tunnel microscope (STM) tip by a hybridization function Γtip that provides a Kondo screening of its magnetic moment. The entire system is described by an Anderson-like Hamiltonian whose low-temperature physics is accessed by employing the numerical renormalization-group approach, which allows us to obtain the thermodynamic properties used to compute the Kondo temperature of the system. We find two screening regimes when the adatom is close to the edge of the zigzag graphene nanoribbon: (1) a weak-coupling regime (Γimp≪Γtip ), in which the edge states produce an enhancement of the Kondo temperature TK, and (2) a strong-coupling regime (Γimp≫Γtip ), in which a local singlet is formed, to the detriment of the Kondo screening by the STM tip. These two regimes can be clearly distinguished by the dependence of their characteristic temperature T* on the coupling between the adatom and the carbon sites of the graphene nanoribbon Vimp. We observe that in the weak-coupling regime T* increases exponentially with Vimp2. Differently, in the strong-coupling regime, T* increases linearly with Vimp2.
Quantum quenches in a holographic Kondo model
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.
2017-04-01
We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.
Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi 2–δAs 2
Luo, Yongkang; Ronning, F.; Wakeham, N.; ...
2015-10-19
The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi 2–δAs 2 (δ ≈ 0.28) as its antiferromagnetic order is tunedmore » by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 e –/formular unit in CeNi 2–δAs 2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. Here, the small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.« less
Electric Dipolar Kondo Effect Emerging from a Vibrating Magnetic Ion
NASA Astrophysics Data System (ADS)
Hotta, Takashi; Ueda, Kazuo
2012-06-01
When a magnetic ion vibrates in a metal, it inevitably introduces a new channel of hybridization with conduction electrons, and in general, the vibrating ion induces an electric dipole moment. In such a situation, we find that magnetic and nonmagnetic Kondo effects alternatively occur due to the screening of the spin moment and electric dipole moment of the vibrating ion. In particular, the electric dipolar two-channel Kondo effect is found to occur for a weak Coulomb interaction. We also show that a magnetically robust heavy-electron state appears near the fixed point of the electric dipolar two-channel Kondo effect. We believe that the vibrating magnetic ion opens a new door in Kondo physics.
Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder
NASA Astrophysics Data System (ADS)
Peschke, Matthias; Rausch, Roman; Potthoff, Michael
2018-03-01
The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.
Equilibrium charge fluctuations of a charge detector and its effect on a nearby quantum dot
NASA Astrophysics Data System (ADS)
Ruiz-Tijerina, David; Vernek, Edson; Ulloa, Sergio
2014-03-01
We study the Kondo state of a spin-1/2 quantum dot (QD), in close proximity to a quantum point contact (QPC) charge detector near the conductance regime of the 0.7 anomaly. The electrostatic coupling between the QD and QPC introduces a remote gate on the QD level, which varies with the QPC gate voltage. Furthermore, models for the 0.7 anomaly [Y. Meir et al., PRL 89,196802(2002)] suggest that the QPC lodges a Kondo-screened level with charge-correlated hybridization, which may be also affected by capacitive coupling to the QD, giving rise to a competition between the two Kondo ground states. We model the QD-QPC system as two capacitively-coupled Kondo impurities, and explore the zero-bias transport of both the QD and the QPC for different local gate voltages and coupling strengths, using the numerical renormalization group and variational methods. We find that the capacitive coupling produces a remote gating effect, non-monotonic in the gate voltages, which reduces the gate voltage window for Kondo screening in either impurity, and which can also drive a quantum phase transition out of the Kondo regime. Our study is carried out for intermediate coupling strengths, and as such is highly relevant to experiments; particularly, to recent studies of decoherence effects on QDs. Supported by MWN/CIAM and NSF PIRE.
NASA Astrophysics Data System (ADS)
Lai, Hsin-Hua; Nica, Emilian; Si, Qimiao
Motivated by the properties of the heavy-fermion Ce3Pd20Si6 compound which exhibits both antiferro-magnetic (AFM) and antiferro-quadrupolar (AFQ) orders, we study a simplified quantum non-linear sigma model for spin-1 systems, with generalized multi-pole Kondo couplings to conduction electrons. We first consider the case when an SU(3) symmetry relates the spin and quadrupolar channels. We then analyze the effect of breaking the SU(3) symmetry, so that the interaction parameters in the spin and quadrupolar sectors are no longer equivalent, and different stages of Kondo screenings are allowed. A renormalization group analysis is used to analyze the interplay between the Kondo effect and the AFM/AFQ orders. Our work paves the way for understanding the global phase diagram in settings beyond the prototypical spin-1/2 cases. We also discuss similar considerations in the non-Kramers systems such as the heavy fermion compound PrV2Al20
Interaction effects in Aharonov-Bohm-Kondo rings
NASA Astrophysics Data System (ADS)
Komijani, Yashar; Yoshii, Ryosuke; Affleck, Ian
2013-12-01
We study the conductance through an Aharonov-Bohm ring, containing a quantum dot in the Kondo regime in one arm, at finite temperature and arbitrary electronic density. We develop a general method for this calculation based on changing the basis to the screening and nonscreening channels. We show that an unusual term appears in the conductance, involving the connected four-point Green's function of the conduction electrons. However, this term and the terms quadratic in the T matrix can be eliminated at sufficiently low temperatures, leading to an expression for the conductance linear in the Kondo T matrix. Explicit results are given for temperatures that are high compared to the Kondo temperature.
Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states.
Iftikhar, Z; Jezouin, S; Anthore, A; Gennser, U; Parmentier, F D; Cavanna, A; Pierre, F
2015-10-08
Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.
A holographic model of the Kondo effect
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Wu, Jackson
2013-12-01
We propose a model of the Kondo effect based on the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, also known as holography. The Kondo effect is the screening of a magnetic impurity coupled anti-ferromagnetically to a bath of conduction electrons at low temperatures. In a (1+1)-dimensional CFT description, the Kondo effect is a renormalization group flow triggered by a marginally relevant (0+1)-dimensional operator between two fixed points with the same Kac-Moody current algebra. In the large- N limit, with spin SU( N) and charge U(1) symmetries, the Kondo effect appears as a (0+1)-dimensional second-order mean-field transition in which the U(1) charge symmetry is spontaneously broken. Our holographic model, which combines the CFT and large- N descriptions, is a Chern-Simons gauge field in (2+1)-dimensional AdS space, AdS 3, dual to the Kac-Moody current, coupled to a holographic superconductor along an AdS 2 sub-space. Our model exhibits several characteristic features of the Kondo effect, including a dynamically generated scale, a resistivity with power-law behavior in temperature at low temperatures, and a spectral flow producing a phase shift. Our holographic Kondo model may be useful for studying many open problems involving impurities, including for example the Kondo lattice problem.
Sub-molecular modulation of a 4f driven Kondo resonance by surface-induced asymmetry
NASA Astrophysics Data System (ADS)
Warner, Ben; El Hallak, Fadi; Atodiresei, Nicolae; Seibt, Philipp; Prüser, Henning; Caciuc, Vasile; Waters, Michael; Fisher, Andrew J.; Blügel, Stefan; van Slageren, Joris; Hirjibehedin, Cyrus F.
2016-09-01
Coupling between a magnetic impurity and an external bath can give rise to many-body quantum phenomena, including Kondo and Hund's impurity states in metals, and Yu-Shiba-Rusinov states in superconductors. While advances have been made in probing the magnetic properties of d-shell impurities on surfaces, the confinement of f orbitals makes them difficult to access directly. Here we show that a 4f driven Kondo resonance can be modulated spatially by asymmetric coupling between a metallic surface and a molecule containing a 4f-like moment. Strong hybridization of dysprosium double-decker phthalocyanine with Cu(001) induces Kondo screening of the central magnetic moment. Misalignment between the symmetry axes of the molecule and the surface induces asymmetry in the molecule's electronic structure, spatially mediating electronic access to the magnetic moment through the Kondo resonance. This work demonstrates the important role that molecular ligands have in mediating electronic and magnetic coupling and in accessing many-body quantum states.
Building Complex Kondo Impurities by Manipulating Entangled Spin Chains.
Choi, Deung-Jang; Robles, Roberto; Yan, Shichao; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Gauyacq, Jean-Pierre; Lorente, Nicolás; Ternes, Markus; Loth, Sebastian
2017-10-11
The creation of molecule-like structures in which magnetic atoms interact controllably is full of potential for the study of complex or strongly correlated systems. Here, we create spin chains in which a strongly correlated Kondo state emerges from magnetic coupling of transition-metal atoms. We build chains up to ten atoms in length by placing Fe and Mn atoms on a Cu 2 N surface with a scanning tunneling microscope. The atoms couple antiferromagnetically via superexchange interaction through the nitrogen atom network of the surface. The emergent Kondo resonance is spatially distributed along the chain. Its strength can be controlled by mixing atoms of different transition metal elements and manipulating their spatial distribution. We show that the Kondo screening of the full chain by the electrons of the nonmagnetic substrate depends on the interatomic entanglement of the spins in the chain, demonstrating the prerequisites to build and probe spatially extended strongly correlated nanostructures.
NASA Astrophysics Data System (ADS)
Riseborough, P. S.; Lawrence, J. M.
2016-08-01
We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger’s theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach’s diagram, the Anderson lattice model, the Slave-Boson method, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riseborough, P. S.; Lawrence, Jon M.
Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less
Riseborough, P. S.; Lawrence, Jon M.
2016-07-04
Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less
The Kondo effect in ferromagnetic atomic contacts.
Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos
2009-04-30
Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.
A Non-Perturbative Treatment of Quantum Impurity Problems in Real Lattices
NASA Astrophysics Data System (ADS)
Allerdt, Andrew C.
Historically, the RKKY or indirect exchange, interaction has been accepted as being able to be described by second order perturbation theory. A typical universal expression is usually given in this context. This approach, however, fails to incorporate many body effects, quantum fluctuations, and other important details. In Chapter 2, a novel numerical approach is developed to tackle these problems in a quasi-exact, non-perturbative manner. Behind the method lies the main concept of being able to exactly map an n-dimensional lattice problem onto a 1-dimensional chain. The density matrix renormalization group algorithm is then employed to solve the newly cast Hamiltonian. In the following chapters, it is demonstrated that conventional RKKY theory does not capture the crucial physics. It is found that the Kondo effect, i.e. the screening of an impurity spin, tends to dominate over a ferromagnetic interaction between impurity spins. Furthermore, it is found that the indirect exchange interaction does not decay algebraically. Instead, there is a crossover upon increasing JK, where impurities favor forming their own independent Kondo states after just a few lattice spacings. This is not a trivial result, as one may naively expect impurities to interact when their conventional Kondo clouds overlap. The spin structure around impurities coupled to the edge of a 2D topological insulator is investigated in Chapter 7. Modeled after materials such as silicine, germanene, and stanene, it is shown with spatial resolution of the lattice that the specific impurity placement plays a key role. Effects of spin-orbit interactions are also discussed. Finally, in the last chapter, transition metal complexes are studied. This really shows the power and versatility of the method developed throughout the work. The spin states of an iron atom in the molecule FeN4C 10 are calculated and compared to DFT, showing the importance of inter-orbital coulomb interactions. Using dynamical DMRG, the density of states for the 3d-orbitals can also be obtained.
Two-point functions in a holographic Kondo model
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.
2017-03-01
We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i< O >2, which is characteristic of a Kondo resonance.
Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity
NASA Astrophysics Data System (ADS)
Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.
2018-05-01
We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.
NASA Astrophysics Data System (ADS)
Yanagisawa, Takashi
2015-07-01
We investigate the Kondo effect in Dirac systems, where Dirac electrons interact with the localized spin via the s-d exchange coupling. The Dirac electron in solid state has the linear dispersion and is described typically by the Hamiltonian such as Hk = vk · σ for the wave number k where σj are Pauli matrices. We derived the formula of the Kondo temperature TK by means of the Green's function theory for small J. The TK is determined from a singularity of Green's functions in the form TK ≃ bar{D}exp ( - const./ρ |J|) when the exchange coupling |J| is small where bar{D} = D/√{1 + D2/(2μ )2} for a cutoff D and ρ is the density of states at the Fermi surface. When |μ| ≪ D, TK is proportional to |μ|: TK ≃ |μ| exp(-const./ρ|J|). The Kondo screening will, however, disappear when the Fermi surface shrinks to a point called the Dirac point, that is, TK vanishes when the chemical potential μ is just at the Dirac point. The resistivity and the specific heat exhibit a log-T singularity in the range TK < T ≪ |μ|/kB. Instead, for T ˜ O(|μ|) or T > |μ|, they never show log-T.
Zero bias STS Kondo anomalies of Co impurities on Cu surfaces: do ab initio calculations work?
NASA Astrophysics Data System (ADS)
Baruselli, Pier Paolo; Smogunov, Alexander; Fabrizio, Michele; Requist, Ryan; Tosatti, Erio
2012-02-01
Transition metal atoms such as Co on Cu (111), (100), and (110) surfaces produce STS I-V spectra showing different zero bias Kondo anomalies [1] but these differences have been neither quantitatively predicted nor fully explained theoretically. We apply to this problem the DFT+NRG scheme of Lucignano et al [2], where one solves by NRG an Anderson model built from ab initio phase shifts provided by DFT. For Co/Cu(100) and Co/Cu(110) our calculations describe correctly the experimental trend of Kondo temperatures, and fairly the lineshapes too. By contrast, they fail to describe Co/Cu(111) where in particular the anti-lorentzian lineshape found in experiment remains unexplained. This failure underscores the role of surface states, probably relevant for Co/Cu(111) [3] but not correctly described by our thin slab calculations. Future efforts to quantitatively include Kondo screening by surface states are therefore called for. 1. N. Knorr et al PRL 88, 096804 (2002); M. Ternes et al 2009 J. Phys.: Cond. Matt. 21, 053001 (2009); A. Gumbsch et al PRB81, 165420 (2010). 2. P. Lucignano et al Nature Mat. 8, 563 (2009); P.P. Baruselli et al, Physica E, doi:10.1016/j.physe.2011.05.005. 3. C. Lin et al. PRB 71, 035417 (2005).
Bypassing the energy-time uncertainty in time-resolved photoemission
NASA Astrophysics Data System (ADS)
Randi, Francesco; Fausti, Daniele; Eckstein, Martin
2017-03-01
The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between the duration of the light pulses used in experiments and their frequency content. In standard time-resolved photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak, a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded interactions in superconducting systems.
Log-rise of the resistivity in the holographic Kondo model
NASA Astrophysics Data System (ADS)
Padhi, Bikash; Tiwari, Apoorv; Setty, Chandan; Phillips, Philip W.
2018-03-01
We study a single-channel Kondo effect using a recently developed [1-4] holographic large-N technique. In order to obtain resistivity of this model, we introduce a probe field. The gravity dual of a localized fermionic impurity in 1 +1 -dimensional host matter is constructed by embedding a localized two-dimensional Anti-de Sitter (AdS2 )-brane in the bulk of three-dimensional AdS3 . This helps us construct an impurity charge density which acts as a source to the bulk equation of motion of the probe gauge field. The functional form of the charge density is obtained independently by solving the equations of motion for the fields confined to the AdS2 -brane. The asymptotic solution of the probe field is dictated by the impurity charge density, which in turn affects the current-current correlation functions and hence the resistivity. Our choice of parameters tunes the near-boundary impurity current to be marginal, resulting in a log T behavior in the UV resistivity, as is expected for the Kondo problem. The resistivity at the IR fixed point turns out to be zero, signaling a complete screening of the impurity.
Molecular Kondo effect in flat-band lattices
NASA Astrophysics Data System (ADS)
Tran, Minh-Tien; Nguyen, Thuy Thi
2018-04-01
The Kondo effect of a single magnetic impurity embedded in the Lieb lattice is studied by the numerical renormalization group. When the band flatness is present in the local density of states at the impurity site, it quenches the participation of all dispersive electrons in the Kondo singlet formation and reduces the many-body Kondo problem to a two-electron molecular Kondo problem. A quantum entanglement of two spins, which is the two-electron molecular analog of the many-body Kondo singlet, is stable at low temperature, and the impurity contributions to thermodynamical and dynamical quantities are qualitatively different from that obtained in the many-body Kondo effect. The conditions for existence of the molecular Kondo effect in narrow band systems are also presented.
Interacting quantum dot coupled to a kondo spin: a universal Hamiltonian study.
Rotter, Stefan; Türeci, Hakan E; Alhassid, Y; Stone, A Douglas
2008-04-25
We study a Kondo spin coupled to a mesoscopic interacting quantum dot that is described by the "universal Hamiltonian." The problem is solved numerically by diagonalizing the system Hamiltonian in a good-spin basis and analytically in the weak and strong Kondo coupling limits. The ferromagnetic exchange interaction within the dot leads to a stepwise increase of the ground-state spin (Stoner staircase), which is modified nontrivially by the Kondo interaction. We find that the spin-transition steps move to lower values of the exchange coupling for weak Kondo interaction, but shift back up for sufficiently strong Kondo coupling. The interplay between Kondo and ferromagnetic exchange correlations can be probed with experimentally tunable parameters.
Laser-irradiated Kondo insulators: Controlling the Kondo effect and topological phases
NASA Astrophysics Data System (ADS)
Takasan, Kazuaki; Nakagawa, Masaya; Kawakami, Norio
2017-09-01
We investigate theoretically the nature of laser-irradiated Kondo insulators. Using Floquet theory and the slave-boson approach, we study a periodic Anderson model and derive an effective model that describes laser-irradiated Kondo insulators. In this model, we find two generic effects induced by laser light. One is dynamical localization, which suppresses hopping and hybridization. The other is laser-induced hopping and hybridization, which can be interpreted as synthetic spin-orbit coupling or a magnetic field. The first effect drastically changes the behavior of the Kondo effect. In particular, the Kondo effect under laser light qualitatively changes its character depending on whether the hybridization is on-site or off-site. The second effect triggers topological phase transitions. In topological Kondo insulators, linearly polarized laser light realizes phase transitions between trivial, weak topological, and strong topological Kondo insulators. Moreover, circularly polarized laser light breaks time-reversal symmetry and induces Weyl semimetallic phases. Our results make it possible to dynamically control the Kondo effect and topological phases in heavy-fermion systems. We also discuss experimental setups to detect the signatures.
Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots
NASA Astrophysics Data System (ADS)
Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping
2018-02-01
Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.
Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study
NASA Astrophysics Data System (ADS)
Cheng, Mengxing; Chowdhury, Tathagata; Mohammed, Aaron; Ingersent, Kevin
2017-07-01
We use the poor man's scaling approach to study the phase boundaries of a pair of quantum impurity models featuring a power-law density of states ρ (ɛ ) ∝|ɛ| r , either vanishing (for r >0 ) or diverging (for r <0 ) at the Fermi energy ɛ =0 , that gives rise to quantum phase transitions between local-moment and Kondo-screened phases. For the Anderson model with a pseudogap (i.e., r >0 ), we find the phase boundary for (a) 0
The Kondo effect in the presence of ferromagnetism.
Pasupathy, Abhay N; Bialczak, Radoslaw C; Martinek, Jan; Grose, Jacob E; Donev, Luke A K; McEuen, Paul L; Ralph, Daniel C
2004-10-01
We measured Kondo-assisted tunneling via C60 molecules in contact with ferromagnetic nickel electrodes. Kondo correlations persisted despite the presence of ferromagnetism, but the Kondo peak in the differential conductance was split by an amount that decreased (even to zero) as the moments in the two electrodes were turned from parallel to antiparallel alignment. The splitting is too large to be explained by a local magnetic field. However, the voltage, temperature, and magnetic field dependence of the signals agree with predictions for an exchange splitting of the Kondo resonance. The Kondo effect leads to negative values of magnetoresistance, with magnitudes much larger than the Julliere estimate.
Quantum impurity models for magnetic adsorbates on superconductor surfaces
NASA Astrophysics Data System (ADS)
Žitko, Rok
2018-05-01
Magnetic atoms adsorbed on surfaces have a quenched orbital moment while their ground-state spin multiplet is partially split as a consequence of the spin-orbit coupling which, even if intrinsically weak, has a large effect due to the abrupt change of the potential at the surface. Such metal adsorbates should be modelled using quantum impurity models that include the relevant internal degrees of freedom and the interaction terms, in particular the magnetic anisotropy and the Kondo exchange coupling. When adsorbed on superconducting surfaces, these impurities have complex spectra of sub-gap excitations due to magnetic anisotropy splitting and Kondo screening. Both anisotropy splitting and Zeeman splitting due to the external magnetic field are significantly renormalized by the coupling to the substrate electrons. In this work I discuss the quantum-to-classical crossover and the applicability of classical static-local-spin picture for discussing magnetic nanostructures on superconductors.
Kondo behavior and metamagnetic phase transition in the heavy-fermion compound CeBi2
NASA Astrophysics Data System (ADS)
Zhou, W.; Xu, C. Q.; Li, B.; Sankar, R.; Zhang, F. M.; Qian, B.; Cao, C.; Dai, J. H.; Lu, Jianming; Jiang, W. X.; Qian, Dong; Xu, Xiaofeng
2018-05-01
Heavy fermions represent an archetypal example of strongly correlated electron systems which, due to entanglement among different interactions, often exhibit exotic and fascinating physics involving Kondo screening, magnetism, and unconventional superconductivity. Here we report a comprehensive study on the transport and thermodynamic properties of a cerium-based heavy-fermion compound CeBi2 which undergoes an antiferromagnetic transition at TN˜3.3 K . Its high-temperature paramagnetic state is characterized by an enhanced heat capacity with Sommerfeld coefficient γ over 200 mJ mol-1K-2 . The magnetization in the magnetically ordered state features a metamagnetic transition. Remarkably, a large negative magnetoresistance associated with the magnetism was observed in a wide temperature and field-angle range. Collectively, CeBi2 may serve as an intriguing system to study the interplay between the f electrons and the itinerant Fermi sea.
Exchange field effect in the crystal-field ground state of Ce M Al 4 Si 2
Chen, K.; Strigari, F.; Sundermann, M.; ...
2016-09-06
The crystal-field ground-state wave functions of the tetragonal, magnetically ordering Kondo lattice materials CeMAl 4Si 2 (M = Rh, Ir, and Pt) are determined in this paper with low-temperature linearly polarized soft-x-ray absorption spectroscopy, and estimates for the crystal-field splittings are given from the temperature evolution of the linear dichroism. Values for the dominant exchange field in the magnetically ordered phases can be obtained from fitting the influence of magnetic order on the linear dichroism. The direction of the required exchange field is || c for the antiferromagnetic Rh and Ir compounds, with the corresponding strength of the order ofmore » λ ex ≈ 6 meV (65 K). Finally and furthermore, the presence of Kondo screening in the Rh and Ir compound is demonstrated on the basis of the absorption due to f 0 in the initial state.« less
Two-Channel Kondo Effect in a Modified Single Electron Transistor
NASA Astrophysics Data System (ADS)
Oreg, Yuval; Goldhaber-Gordon, David
2003-04-01
We suggest a simple system of two electron droplets which should display two-channel Kondo behavior at experimentally accessible temperatures. Stabilization of the two-channel Kondo fixed point requires fine control of the electrochemical potential in each droplet, which can be achieved by adjusting voltages on nearby gate electrodes. We study the conditions for obtaining this type of two-channel Kondo behavior, discuss the experimentally observable consequences, and explore the generalization to the multichannel Kondo case.
NASA Astrophysics Data System (ADS)
Fang, Tie-Feng; Guo, Ai-Min; Sun, Qing-Feng
2018-06-01
We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction U is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing a negative-U charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. 8, 395 (2017), 10.1038/s41467-017-00495-7].
SU(3) Orbital Kondo Effect with Ultracold Atoms
NASA Astrophysics Data System (ADS)
Nishida, Yusuke
2013-09-01
We propose a simple but novel scheme to realize the Kondo effect with ultracold atoms. Our system consists of a Fermi sea of spinless fermions interacting with an impurity atom of different species which is confined by an isotropic potential. The interspecies attraction can be tuned with an s-wave Feshbach resonance so that the impurity atom and a spinless fermion form a bound dimer that occupies a threefold-degenerate p orbital of the confinement potential. Many-body scatterings of this dimer and surrounding spinless fermions occur with exchanging their angular momenta and thus exhibit the SU(3) orbital Kondo effect. The associated Kondo temperature has a universal leading exponent given by TK∝exp[-π/(3apkF3)] that depends only on an effective p-wave scattering volume ap and a Fermi wave vector kF. We also elucidate a Kondo singlet formation at zero temperature and an anisotropic interdimer interaction mediated by surrounding spinless fermions. The Kondo effect thus realized in ultracold atom experiments may be observed as an increasing atom loss by lowering the temperature or with radio-frequency spectroscopy. Our scheme and its extension to a dense Kondo lattice will be useful to develop new insights into yet unresolved aspects of Kondo physics.
Kondo peak splitting and Kondo dip in single molecular magnet junctions
NASA Astrophysics Data System (ADS)
Niu, Pengbin; Shi, Yunlong; Sun, Zhu; Nie, Yi-Hang; Luo, Hong-Gang
2016-01-01
Many factors containing bias, spin-orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin-orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments.
Detecting Kondo Entanglement by Electron Conductance
NASA Astrophysics Data System (ADS)
Yoo, Gwangsu; Lee, S.-S. B.; Sim, H.-S.
2018-04-01
Quantum entanglement between an impurity spin and electrons nearby is a key property of the single-channel Kondo effects. We show that the entanglement can be detected by measuring electron conductance through a double quantum dot in an orbital Kondo regime. We derive a relation between the entanglement and the conductance, when the SU(2) spin symmetry of the regime is weakly broken. The relation reflects the universal form of many-body states near the Kondo fixed point. Using it, the spatial distribution of the entanglement—hence, the Kondo cloud—can be detected, with breaking of the symmetry spatially nonuniformly by electrical means.
Nanomechanical dissipation at a tip-induced Kondo onset
NASA Astrophysics Data System (ADS)
Baruselli, Pier Paolo; Fabrizio, Michele; Tosatti, Erio
2017-08-01
The onset or demise of Kondo effect in a magnetic impurity on a metal surface can be triggered, as sometimes observed, by the simple mechanical nudging of a tip. Such a mechanically driven quantum phase transition must reflect in a corresponding mechanical dissipation peak; yet, this kind of signature has not been focused upon so far. Aiming at the simplest theoretical modeling, we treat the impurity as an Anderson impurity model, the tip action as a hybridization switching, and solve the problem by numerical renormalization group. Studying this model as function of temperature and magnetic field we are able to isolate the Kondo contribution to dissipation. While that is, reasonably, of the order of the Kondo energy, its temperature evolution shows a surprisingly large tail even above the Kondo temperature. The detectability of Kondo mechanical dissipation in atomic force microscopy is also discussed.
NASA Astrophysics Data System (ADS)
Ncube, S.; Coleman, C.; de Sousa, A. S.; Nie, C.; Lonchambon, P.; Flahaut, E.; Strydom, A.; Bhattacharyya, S.
2018-06-01
Filling of carbon nanotubes has been tailored over years to modify the exceptional properties of the 1-dimensional conductor for magnetic property based applications. Hence, such a system exploits the spin and charge property of the electron, analogous to a quantum conductor coupled to magnetic impurities, which poses an interesting scenario for the study of Kondo physics and related phenomena. We report on the electronic transport properties of MWNTs filled with GdCl3 nanomagnets, which clearly show the co-existence of Kondo correlation and cotunelling within the superparamagnetic limit. The Fermi liquid description of the Kondo effect and the interpolation scheme are fitted to the resistance-temperature dependence yielding the onset of the Kondo scattering temperature and a Kondo temperature for this nanocomposite, respectively. Cotunneling of conduction electrons interfering with a Kondo type interaction has been verified from the exponential decay of the intensity of the fano shaped nonzero bias anomalous conductance peaks, which also show strong resonant features observed only in GdCl3 filled MWNT devices. Hence, these features are explained in terms of magnetic coherence and spin-flip effects along with the competition between the Kondo effect and co-tunneling. This study raises a new possibility of tailoring magnetic interactions for spintronic applications in carbon nanotube systems.
NASA Astrophysics Data System (ADS)
Yashiki, Satoshi; Ueda, Kazuo
2011-08-01
Effect of anharmonicity of a cage potential for a magnetic ion vibrating in a metal is investigated by the numerical renormalization group method. The cage potential is assumed to be one-dimensional and of the double-well type. In the absence of the Coulomb interaction, we find continuous crossover among the three limiting cases: Yu--Anderson-type Kondo regime, the double-well-type Kondo one, and the renormalized Fermi chain one. In the entire parameter space of the double-well potential, the ground state is described by a local Fermi liquid. In the Yu--Anderson-type Kondo regime, a quantum phase transition to the ground state with odd parity takes place passing through the two-channel Kondo fixed point when the Coulomb interaction increases. Therefore, the vibration of a magnetic ion in an oversized cage structure is a promising route to the two-channel Kondo effect.
Kondo effect with tunable spin-orbit interaction in LaTiO3/CeTiO3/SrTiO3 heterostructure.
Ghising, Pramod; Das, Debarchan; Das, Shubhankar; Hossain, Z
2018-07-18
We have fabricated epitaxial films of CeTiO 3 (CTO) on (0 0 1) oriented SrTiO 3 (STO) substrates, which exhibit highly insulating and diamagnetic properties. X-ray photoelectron spectroscopy was used to establish the 3+ valence state of the Ce and Ti ions. Furthermore, we have also fabricated δ (CTO) doped LaTiO 3 (LTO)/SrTiO 3 thin films which exhibit variety of interesting properties including Kondo effect and spin-orbit interaction (SOI) at low temperatures. The SOI shows a non-monotonic behaviour as the thickness of the CTO layer is increased and is reflected in the value of characteristic SOI field ([Formula: see text]) obtained from weak anti-localization fitting. The maximum value of [Formula: see text] is 1.00 T for δ layer thickness of 6 u.c. This non-monotonic behaviour of SOI is attributed to the strong screening of the confining potential at the interface. The screening effect is enhanced by the CTO layer thickness and the dielectric constant of STO which increases at low temperatures. Due to the strong screening, electrons confined at the interface are spread deeper into the STO bulk where it starts to populate the Ti [Formula: see text] subbands; consequently the Fermi level crosses over from [Formula: see text] to the [Formula: see text] subbands. At the crossover region of [Formula: see text] where there is orbital mixing, SOI goes through a maximum.
Collective Kondo effect in the Anderson-Hubbard lattice
NASA Astrophysics Data System (ADS)
Fazekas, P.; Itai, K.
1997-02-01
The periodic Anderson model is extended by switching on a Hubbard U for the conduction electrons. We use the Gutzwiller variational method to study the nearly integral valent limit. The lattice Kondo energy contains the U-dependent chemical potential of the Hubbard subsystem in the exponent, and the correlation-induced band narrowing in the prefactor. Both effects tend to suppress the Kondo scale, which can be understood to result from the blocking of hybridization. At half-filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator.
NASA Astrophysics Data System (ADS)
Sapkota, Keshab R.; Maloney, F. Scott; Wang, Wenyong
2018-04-01
In this work, we report unusual observations of Kondo effect and coexistence of Kondo effect and ferromagnetism in indium tin oxide (ITO) nanowires that were synthesized without incorporating any magnetic impurities. The temperature-dependent resistivity (ρ -T ) data exhibited an upturn below 80 K and then tended to saturate below 10 K. The ρ -T and magnetoresistance data were analyzed using the n -channel Kondo model, and from the obtained values of S =1 and n ˜1 , the nanowires were expected to be an underscreened Kondo system. A model was also proposed to explain the formation of localized S =1 spin centers in the ITO nanowires. This work could provide insights into the understanding of spin-related novel phenomena in metal oxide nanostructures.
How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder
Hamidian, Mohammad H.; Schmidt, Andrew R.; Firmo, Inês A.; Allan, Milan P.; Bradley, Phelim; Garrett, Jim D.; Williams, Travis J.; Luke, Graeme M.; Dubi, Yonatan; Balatsky, Alexander V.; Davis, J. C.
2011-01-01
Replacing a magnetic atom by a spinless atom in a heavy-fermion compound generates a quantum state often referred to as a “Kondo-hole”. No experimental imaging has been achieved of the atomic-scale electronic structure of a Kondo-hole, or of their destructive impact [Lawrence JM, et al. (1996) Phys Rev B 53:12559–12562] [Bauer ED, et al. (2011) Proc Natl Acad Sci. 108:6857–6861] on the hybridization process between conduction and localized electrons which generates the heavy-fermion state. Here we report visualization of the electronic structure at Kondo-holes created by substituting spinless thorium atoms for magnetic uranium atoms in the heavy-fermion system URu2Si2. At each thorium atom, an electronic bound state is observed. Moreover, surrounding each thorium atom we find the unusual modulations of hybridization strength recently predicted to occur at Kondo-holes [Figgins J, Morr DK (2011) Phys Rev Lett 107:066401]. Then, by introducing the “hybridization gapmap” technique to heavy-fermion studies, we discover intense nanoscale heterogeneity of hybridization due to a combination of the randomness of Kondo-hole sites and the long-range nature of the hybridization oscillations. These observations provide direct insight into both the microscopic processes of heavy-fermion forming hybridization and the macroscopic effects of Kondo-hole doping. PMID:22006302
Orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films
Zhu, L. J.; Nie, S. H.; Xiong, P.; ...
2016-02-24
The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades, no material system has been clearly identified to exhibit all three transport regimes characteristic of the two-channel Kondo effect in the same sample, leaving the interpretation of the experimental results a subject of debate. Here we present a transport study suggestive of a robust orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films, as evidenced by a magnetic field-independent resistivity upturn with a clear transition from logarithmic-more » to square-root temperature dependence and deviation from it in three distinct temperature regimes. Lastly, our results also provide an experimental indication of the presence of two-channel Kondo physics in a ferromagnet, pointing to considerable robustness of the orbital two-channel Kondo effect even in the presence of spin polarization of the conduction electrons.« less
Orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, L. J.; Nie, S. H.; Xiong, P.
The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades, no material system has been clearly identified to exhibit all three transport regimes characteristic of the two-channel Kondo effect in the same sample, leaving the interpretation of the experimental results a subject of debate. Here we present a transport study suggestive of a robust orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films, as evidenced by a magnetic field-independent resistivity upturn with a clear transition from logarithmic-more » to square-root temperature dependence and deviation from it in three distinct temperature regimes. Lastly, our results also provide an experimental indication of the presence of two-channel Kondo physics in a ferromagnet, pointing to considerable robustness of the orbital two-channel Kondo effect even in the presence of spin polarization of the conduction electrons.« less
Intra- and inter-shell Kondo effects in carbon nanotube quantum dots
NASA Astrophysics Data System (ADS)
Krychowski, Damian; Lipiński, Stanisław
2018-01-01
The linear response transport properties of carbon nanotube quantum dot in the strongly correlated regime are discussed. The finite-U mean field slave boson approach is used to study many-body effects. Magnetic field can rebuilt Kondo correlations, which are destroyed by the effect of spin-orbit interaction or valley mixing. Apart from the field induced revivals of SU(2) Kondo effects of different types: spin, valley or spin-valley, also more exotic phenomena appear, such as SU(3) Kondo effect. Threefold degeneracy occurs due to the effective intervalley exchange induced by short-range part of Coulomb interaction or due to the intershell mixing. In narrow gap nanotubes the full spin-orbital degeneracy might be recovered in the absence of magnetic field opening the condition for a formation of SU(4) Kondo resonance.
Kondo length in bosonic lattices
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
Interaction effect in the Kondo energy of the periodic Anderson-Hubbard model
NASA Astrophysics Data System (ADS)
Itai, K.; Fazekas, P.
1996-07-01
We extend the periodic Anderson model by switching on a Hubbard U for the conduction band. The nearly integral valent limit of the Anderson-Hubbard model is studied with the Gutzwiller variational method. The lattice Kondo energy shows U dependence both in the prefactor and the exponent. Switching on U reduces the Kondo scale, which can be understood to result from the blocking of hybridization. At half filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator. Our findings should be relevant for a number of correlated two-band models of recent interest.
Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model.
Hong, Jongbae
2011-07-13
We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.
Dilution and non-Fermi-liquid effects in the CePtIn Kondo lattice.
Ragel, F C; Plessis, P de V du; Strydom, A M
2009-01-28
Measurements of electrical resistivity (ρ(T)), magnetoresistivity (MR), magnetic susceptibility (χ(T)) and heat capacity (C(P)(T)) are presented for the (Ce(1-x)La(x))PtIn alloy system of which the CePtIn parent is a known dense Kondo compound that does not order magnetically down to 50 mK. χ(T) for alloys 0≤x≤0.8 exhibits Curie-Weiss behaviour. ρ(T) results indicate a transition from a dense Kondo behaviour for 0≤x≤0.2 to a single-ion Kondo region (0.3≤x≤0.8). The Kondo energy scale as given by T(K) values calculated from MR studies and by the temperature T(max)(ρ(mag)) where the magnetic contribution to ρ(T) exhibits a maximum value, is compared with theoretical models. It is shown that the experimental results not only depend on a volume effect as given by the compressible Kondo lattice model of Lavagna but in addition confirm the more complex behaviour recently presented by Burdin and Fulde for a Kondo alloy system in which the magnetic (Ce) and non-magnetic (La) atoms are distributed randomly. Non-Fermi-liquid behaviour is predicted by Burdin and Fulde at certain critical concentrations of the alloy system and experimental evidence for this is presented through χ(T), ρ(T) and C(P)(T) measurements.
Interplay of antiferromagnetism and Kondo effect in (Ce1-xLax) 8Pd24 Al
NASA Astrophysics Data System (ADS)
Bashir, A. K.; Tchoula Tchokonté, M. B.; Britz, D.; Strydom, A. M.; Kaczorowski, D.
2017-07-01
The interplay of antiferromagnetic (AFM) and Kondo effect in Ce8Pd24 Al with the dilution of Ce with La is investigated by means of electrical and thermal transport and magnetic properties measurements. X - ray diffraction studies confirm a cubic AuCu3 - type crystal structure with space group Pm 3 bar m for all compositions in the alloy series (Ce1-xLax) 8Pd24 Al (0 ≤ x ≤ 1) . Electrical resistivity, ρ (T) results show evolution from coherent Kondo lattice scattering with a well defined Kondo peak at Tmax to incoherent single-ion Kondo scattering with increasing La content x. Magnetoresistivity MR measurements on Ce dilute alloys are negative and analyzed based on the calculations by Schlottmann for the Bethe - ansatz in the framework of the Coqblin - Schrieffer model and yield values of the Kondo temperature TK and the effective moment of the Kondo ion μK. The decrease of Tmax and TK is described by the compressible Kondo lattice model. The thermoelectric power, S(T) measurements are interpreted within the phenomenological resonance model. The Lorentz number, L /L0 increases rapidly on cooling the samples and reaches a maximum value around 6 K. The magnetic susceptibility, χ (T) data at high temperature follow the Curie - Weiss behaviour and yield effective magnetic moments, μeff values across the series close to the value of 2.54 μB expected for the free Ce3+ - ion. The low temperature χ (T) shows an AFM anomaly associated with a Néel temperature TN for alloys in the range 0 ≤ x ≤ 0.2 . No metamagnetic transition was observed from the magnetization results, M (μ0 H) .
Knaak, Thomas; Gruber, Manuel; Lindström, Christoph; Bocquet, Marie-Laure; Heck, Jürgen; Berndt, Richard
2017-11-08
Magnetic sandwich complexes are of particular interest for molecular spintronics. Using scanning tunneling microscopy, we evidence the successful deposition of 1,3,5-tris(η 6 -borabenzene-η 5 -cyclopentadienylcobalt) benzene, a molecule composed of three connected magnetic sandwich units, on Cu(111). Scanning tunneling spectra reveal two distinct spatial-dependent narrow resonances close to the Fermi level for the trimer molecules as well as for molecular fragments composed of one and two magnetic units. With the help of density functional theory, these resonances are interpreted as two Kondo resonances originating from two distinct nondegenerate d-like orbitals. These Kondo resonances are found to have defined spatial extents dictated by the hybridization of the involved orbitals with that of the ligands. These results opens promising perspectives for investigating complex Kondo systems composed of several "Kondo" orbitals.
RKKY interaction in a chirally coupled double quantum dot system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heine, A. W.; Tutuc, D.; Haug, R. J.
2013-12-04
The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtainedmore » Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.« less
Kondo destruction in a quantum paramagnet with magnetic frustration
NASA Astrophysics Data System (ADS)
Zhang, Jiahao; Zhao, Hengcan; Lv, Meng; Hu, Sile; Isikawa, Yosikazu; Yang, Yi-feng; Si, Qimiao; Steglich, Frank; Sun, Peijie
2018-06-01
We report results of isothermal magnetotransport and susceptibility measurements at elevated magnetic fields B down to very low temperatures T on single crystals of the frustrated Kondo-lattice system CePdAl. They reveal a B*(T ) line within the paramagnetic part of the phase diagram. This line denotes a thermally broadened "small"-to-"large" Fermi-surface crossover which substantially narrows upon cooling. At B0 *=B*(T =0 ) =(4.6 ±0.1 ) T , this B*(T ) line merges with two other crossover lines, viz. Tp(B ) below and TFL(B ) above B0 *. Tp characterizes a frustration-dominated spin-liquid state, while TFL is the Fermi-liquid temperature associated with the lattice Kondo effect. Non-Fermi-liquid phenomena which are commonly observed near a "Kondo-destruction" quantum-critical point cannot be resolved in CePdAl. Our observations reveal a rare case where Kondo coupling, frustration, and quantum criticality are closely intertwined.
Magnetic properties of Co-doped Nb clusters
NASA Astrophysics Data System (ADS)
Diaz-Bachs, A.; Peters, L.; Logemann, R.; Chernyy, V.; Bakker, J. M.; Katsnelson, M. I.; Kirilyuk, A.
2018-04-01
Magnetic deflection experiments on isolated Co-doped Nb clusters demonstrate a strong size dependence of magnetic properties, with large magnetic moments in certain cluster sizes and fully nonmagnetic behavior of others. There are in principle two explanations for this behavior. Either the local moment at the Co site is absent or it is screened by the delocalized electrons of the cluster, i.e., the Kondo effect. In order to reveal the physical origin, first, we established the ground state geometry of the clusters by experimentally obtaining their vibrational spectra and comparing them with a density functional theory study. Then, we performed an analysis based on the Anderson impurity model. It appears that the nonmagnetic clusters are due to the absence of the local Co moment and not due to the Kondo effect. In addition, the magnetic behavior of the clusters can be understood from an inspection of their electronic structure. Here magnetism is favored when the effective hybridization around the chemical potential is small, while the absence of magnetism is signaled by a large effective hybridization around the chemical potential.
NASA Astrophysics Data System (ADS)
Chen, Kai; Sundermann, Martin; Strigari, Fabio; Kawabata, Jo; Takabatake, Toshiro; Tanaka, Arata; Bencok, Peter; Choueikani, Fadi; Severing, Andrea
2018-04-01
Here we present linear and circular polarized soft x-ray absorption spectroscopy (XAS) data at the Ce M4 ,5 edges of the electron (Ir) and hole-doped (Re) Kondo semiconductor CeOs2Al10 . Both substitutions have a strong impact on the unusual high Néel temperature TN=28.5 K, and also the direction of the ordered moment in case of Ir. The substitution dependence of the linear dichroism is weak thus validating the crystal-field description of CeOs2Al10 being representative for the Re and Ir substituted compounds. The impact of electron and hole doping on the hybridization between conduction and 4 f electrons is related to the amount of f0 in the ground state and reduction of x-ray magnetic circular dichroism. A relationship of c f -hybridization strength and enhanced TN is discussed. The direction and doping dependence of the circular dichroism strongly supports the idea of strong Kondo screening along the crystallographic a direction.
Tunneling conductance in superconductor-hybrid double quantum dots Josephson junction
NASA Astrophysics Data System (ADS)
Chamoli, Tanuj; Ajay
2018-05-01
The present work deals with the theoretical model study to analyse the tunneling conductance across a superconductor hybrid double quantum dots tunnel junction (S-DQD-S). Recently, there are many experimental works where the Josephson current across such nanoscopic junction is found to be dependent on nature of the superconducting electrodes, coupling of the hybrid double quantum dot's electronic states with the electronic states of the superconductors and nature of electronic structure of the coupled dots. For this, we have attempted a theoretical model containing contributions of BCS superconducting leads, magnetic coupled quantum dot states and coupling of superconducting leads with QDs. In order to include magnetic coupled QDs the contributions of competitive Kondo and Ruderman-Kittel- Kasuya-Yosida (RKKY) interaction terms are also introduced through many body effects in the model Hamiltonian at low temperatures (where Kondo temperature TK < superconducting transition temperature TC). Employing non-equilibrium Green's function approach within mean field approximation, we have obtained expressions for density of states (DOS) and analysed the same using numerical computation to underline the nature of DOS close to Fermi level in S-DQD-S junctions. On the basis of numerical computation, it is pointed out that indirect exchange interaction between impurities (QD) i.e. RKKY interaction suppresses the screening of magnetic QD due to Cooper pair electrons i.e. Kondo effect in the form of reduction in the magnitude of sharp DOS peak close to Fermi level which is in qualitative agreement with the experimental observations in such tunnel junctions. Tunneling conductance is proportional to DOS, hence we can analyse it's behaviour with the help of DOS.
NASA Astrophysics Data System (ADS)
Cheng, Yanting; Zhang, Ren; Zhang, Peng; Zhai, Hui
2017-12-01
The Kondo effect describes the spin-exchange interaction between localized impurities and itinerant fermions. The ultracold alkaline-earth atomic gas provides a natural platform for quantum simulation of the Kondo model, utilizing its long-lived clock state and the nuclear-spin exchange interaction between clock state and ground state. One of the key issue now is whether the Kondo temperature can be high enough to be reached in current experiments, for which we have proposed to use transverse confinement to confine atoms into a one-dimensional tube and to use the confinement-induced resonance to enhance Kondo coupling. In this work, we further consider the (1 +0 ) -dimensional scattering problem when the clock state is further confined by an axial harmonic confinement. We show that this axial confinement for the clock-state atoms not only plays a role for localizing them, but can also act as an additional control knob to reach the confinement-induced resonance. We show that, in the presence of both the transverse and the axial confinements, the confinement-induced resonance can be reached in the practical conditions and the Kondo effect can be attainable in this system.
Magnetic End States in a Strongly Interacting One-Dimensional Topological Kondo Insulator
Lobos, Alejandro M.; Dobry, Ariel O.; Galitski, Victor
2015-05-22
Topological Kondo insulators are strongly correlated materials where itinerant electrons hybridize with localized spins, giving rise to a topologically nontrivial band structure. Here, we use nonperturbative bosonization and renormalization-group techniques to study theoretically a one-dimensional topological Kondo insulator, described as a Kondo-Heisenberg model, where the Heisenberg spin-1/2 chain is coupled to a Hubbard chain through a Kondo exchange interaction in the p-wave channel (i.e., a strongly correlated version of the prototypical Tamm-Schockley model).We derive and solve renormalization-group equations at two-loop order in the Kondo parameter, and find that, at half filling, the charge degrees of freedom in the Hubbard chainmore » acquire a Mott gap, even in the case of a noninteracting conduction band (Hubbard parameter U = 0). Furthermore, at low enough temperatures, the system maps onto a spin-1/2 ladder with local ferromagnetic interactions along the rungs, effectively locking the spin degrees of freedom into a spin-1 chain with frozen charge degrees of freedom. This structure behaves as a spin-1 Haldane chain, a prototypical interacting topological spin model, and features two magnetic spin-1/2 end states for chains with open boundary conditions. In conclusion, our analysis allows us to derive an insightful connection between topological Kondo insulators in one spatial dimension and the well-known physics of the Haldane chain, showing that the ground state of the former is qualitatively different from the predictions of the naive mean-field theory.« less
Nonequilibrium Floquet States in Topological Kondo Insulators
2016-02-04
increase in an insulating crystal of SmB6. However, extrinsic heating effects are a potential source of the observation, which would act to reduce...the first known topological Kondo insulator , Samarium Hexaboride, we investigated the possibility of realizing a moving cascade of topological... insulator -to-metal transitions to obtain bulk-like conduction through the Kondo insulator . Experiments in collaboration with Prof. T. Yanagisawa at
Tunneling spectroscopy of Majorana-Kondo devices
NASA Astrophysics Data System (ADS)
Eriksson, Erik; Nava, Andrea; Mora, Christophe; Egger, Reinhold
2014-12-01
We study the local density of states (LDOS) in systems of Luttinger-liquid nanowires connected to a common mesoscopic superconducting island, in which Majorana bound states give rise to different types of topological Kondo effects. We show that electron interactions enhance the low-energy LDOS in the leads close to the island, with unusual exponents due to Kondo physics that can be probed in tunneling experiments.
Kondo interactions from band reconstruction in YbInCu 4
Jarrige, I.; Kotani, A.; Yamaoka, H.; ...
2015-03-27
We combine resonant inelastic X-ray scattering (RIXS) and model calculations in the Kondo lattice compound YbInCu₄, a system characterized by a dramatic increase in Kondo temperature and associated valence fluctuations below a first-order valence transition at T≃42 K. In this study, the bulk-sensitive, element-specific, and valence-projected charge excitation spectra reveal an unusual quasi-gap in the Yb-derived state density which drives an instability of the electronic structure and renormalizes the low-energy effective Hamiltonian at the transition. Our results provide long-sought experimental evidence for a link between temperature-driven changes in the low-energy Kondo scale and the higher-energy electronic structure of this system.
Aerosol climatology using a tunable spectral variability cloud screening of AERONET data
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Gobbi, Gian Paolo; Koren, Ilan
2005-01-01
Can cloud screening of an aerosol data set, affect the aerosol optical thickness (AOT) climatology? Aerosols, humidity and clouds are correlated. Therefore, rigorous cloud screening can systematically bias towards less cloudy conditions, underestimating the average AOT. Here, using AERONET data we show that systematic rejection of variable atmospheric optical conditions can generate such bias in the average AOT. Therefore we recommend (1) to introduce more powerful spectral variability cloud screening and (2) to change the philosophy behind present aerosol climatologies: Instead of systematically rejecting all cloud contaminations, we suggest to intentionally allow the presence of cloud contamination, estimate the statistical impact of the contamination and correct for it. The analysis, applied to 10 AERONET stations with approx. 4 years of data, shows almost no change for Rome (Italy), but up to a change in AOT of 0.12 in Beijing (PRC). Similar technique may be explored for satellite analysis, e.g. MODIS.
Neupane, M; Alidoust, N; Xu, S-Y; Kondo, T; Ishida, Y; Kim, D J; Liu, Chang; Belopolski, I; Jo, Y J; Chang, T-R; Jeng, H-T; Durakiewicz, T; Balicas, L; Lin, H; Bansil, A; Shin, S; Fisk, Z; Hasan, M Z
2013-01-01
The Kondo insulator SmB6 has long been known to exhibit low-temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art laser and synchrotron-based angle-resolved photoemission techniques. We observe clear in-gap states (up to ~4 meV), whose temperature dependence is contingent on the Kondo gap formation. In addition, our observed in-gap Fermi surface oddness tied with the Kramers' point topology, their coexistence with the two-dimensional transport anomaly in the Kondo hybridization regime, as well as their robustness against thermal recycling, taken together, collectively provide strong evidence for protected surface metallicity with a Fermi surface whose topology is consistent with the theoretically predicted topological Fermi surface. Our observations of systematic surface electronic structure provide the fundamental electronic parameters for the anomalous Kondo ground state of correlated electron material SmB6.
Entanglement in the Anisotropic Kondo Necklace Model
NASA Astrophysics Data System (ADS)
Mendoza-Arenas, J. J.; Franco, R.; Silva-Valencia, J.
We study the entanglement in the one-dimensional Kondo necklace model with exact diagonalization, calculating the concurrence as a function of the Kondo coupling J and an anisotropy η in the interaction between conduction spins, and we review some results previously obtained in the limiting cases η = 0 and 1. We observe that as J increases, localized and conduction spins get more entangled, while neighboring conduction spins diminish their concurrence; localized spins require a minimum concurrence between conduction spins to be entangled. The anisotropy η diminishes the entanglement for neighboring spins when it increases, driving the system to the Ising limit η = 1 where conduction spins are not entangled. We observe that the concurrence does not give information about the quantum phase transition in the anisotropic Kondo necklace model (between a Kondo singlet and an antiferromagnetic state), but calculating the von Neumann block entropy with the density matrix renormalization group in a chain of 100 sites for the Ising limit indicates that this quantity is useful for locating the quantum critical point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iain; Teshima, Hazuki; Nolan, Matt
2013-01-01
rateuria aurantia (ex Kondo and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondo 67(T) was initially (1958) identified as a member of 'Acetobacter aurantius', a name that was not considered for the approved list. Kondo 67(T) was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondo 67(T) is the first member of the genus Frateura whose genome sequencemore » has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less
SU(4) Kondo effect in double quantum dots with ferromagnetic leads
NASA Astrophysics Data System (ADS)
Weymann, Ireneusz; Chirla, Razvan; Trocha, Piotr; Moca, Cǎtǎlin Paşcu
2018-02-01
We investigate the spin-resolved transport properties, such as the linear conductance and the tunnel magnetoresistance, of a double quantum dot device attached to ferromagnetic leads and look for signatures of the SU (4 ) symmetry in the Kondo regime. We show that the transport behavior greatly depends on the magnetic configuration of the device, and the spin-SU(2) as well as the orbital and spin-SU(4) Kondo effects become generally suppressed when the magnetic configuration of the leads varies from the antiparallel to the parallel one. Furthermore, a finite spin polarization of the leads lifts the spin degeneracy and drives the system from the SU(4) to an orbital-SU(2) Kondo state. We analyze in detail the crossover and show that the Kondo temperature between the two fixed points has a nonmonotonic dependence on the degree of spin polarization of the leads. In terms of methods used, we characterize transport by using a combination of analytical and numerical renormalization group approaches.
NASA Astrophysics Data System (ADS)
Yamashita, Tetsuro; Miyazaki, Ryoichi; Aoki, Yuji; Ohara, Shigeo
2012-03-01
We have succeeded in synthesizing a new Yb-based Kondo lattice system, YbNi3X9 (X = Al, Ga). Our study reveals that YbNi3Al9 shows typical features of a heavy-fermion antiferromagnet with a Néel temperature of TN = 3.4 K. All of the properties reflect a competition between the Kondo effect and the crystalline electric field (CEF) effect. The moderate heavy-fermion state leads to an enhanced Sommerfeld coefficient of 100 mJ/(mol\\cdotK2), even if ordered antiferromagnetically. On the other hand, the isostructural gallide YbNi3Ga9 is an intermediate-valence system with a Kondo temperature of TK = 570 K. A large hybridization scale can overcome the CEF splitting energy, and a moderately heavy Fermi-liquid ground state with high local moment degeneracy should form at low temperatures. Note that the quality of single-crystalline YbNi3X9 is extremely high compared with those of other Yb-based Kondo lattice compounds. We conclude that YbNi3X9 is a suitable system for investigating the electronic structure of Yb-based Kondo lattice systems from a heavy-fermion system with an antiferromagnetically ordered ground state to an intermediate-valence system.
Tuning the Kondo effect in Yb(Fe 1-xCo x) 2Zn 20
Kong, Tai; Taufour, Valentin; Bud'ko, Sergey L.; ...
2017-04-03
We study the evolution of the Kondo effect in heavy fermion compounds, Yb(Fe 1-xCo x) 2Zn 20 (0 ≲ x ≲ 1), by means of temperature-dependent electric resistivity and speci c heat. The ground state of YbFe 2Zn 20 can be well described by a Kondo model with degeneracy N = 8 and a T K ~30 K. In the presence of a very similar total CEF splitting with YbFe 2Zn 20, the ground state of YbCo 2Zn 20 is close to a Kondo state with degeneracy N = 2 and a much lower TK ~ 2 K. Upon Comore » substitution, the coherence temperature of YbFe 2Zn 20 is suppressed, accompanied by an emerging Schottky-like feature in speci c heat associated with the thermal depopulation of CEF levels upon cooling. For 0.4 ≲ x ≲ 0.9, the ground state remains roughly the same which can be qualitatively understood by Kondo effect in the presence of CEF splitting. There is no clear indication of Kondo coherence observable in resistivity within this substitution range down to 500 mK. The coherence re-appears at around x≳ 0.9 and the coherence temperature increases with higher Co concentration levels.« less
NASA Astrophysics Data System (ADS)
Taylor, Thomas E.; O'Dell, Christopher W.; Frankenberg, Christian; Partain, Philip T.; Cronk, Heather Q.; Savtchenko, Andrey; Nelson, Robert R.; Rosenthal, Emily J.; Chang, Albert Y.; Fisher, Brenden; Osterman, Gregory B.; Pollock, Randy H.; Crisp, David; Eldering, Annmarie; Gunson, Michael R.
2016-03-01
The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols, i.e., contamination, within the instrument's field of view. Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 µm O2 A band, neglecting scattering by clouds and aerosols, which introduce photon path-length differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 µm (weak CO2 band) and 2.06 µm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which are sensitive to different features in the spectra, provides the basis for cloud screening of the OCO-2 data set.To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning of algorithmic threshold parameters that allows for processing of ≃ 20-25 % of all OCO-2 soundings, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April-May) for OCO-2 nadir-land, glint-land and glint-water observations.No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.
NASA Astrophysics Data System (ADS)
Taylor, T. E.; O'Dell, C. W.; Frankenberg, C.; Partain, P.; Cronk, H. Q.; Savtchenko, A.; Nelson, R. R.; Rosenthal, E. J.; Chang, A. Y.; Fisher, B.; Osterman, G.; Pollock, R. H.; Crisp, D.; Eldering, A.; Gunson, M. R.
2015-12-01
The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols within the instrument's field of view (FOV). Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 μm O2 A-band, neglecting scattering by clouds and aerosols, which introduce photon path-length (PPL) differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 μm (weak CO2 band) and 2.06 μm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which key off of different features in the spectra, provides the basis for cloud screening of the OCO-2 data set. To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning to allow throughputs of ≃ 30 %, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April-May) for OCO-2 nadir-land, glint-land and glint-water observations. No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.
Model for a Ferromagnetic Quantum Critical Point in a 1D Kondo Lattice
NASA Astrophysics Data System (ADS)
Komijani, Yashar; Coleman, Piers
2018-04-01
Motivated by recent experiments, we study a quasi-one-dimensional model of a Kondo lattice with ferromagnetic coupling between the spins. Using bosonization and dynamical large-N techniques, we establish the presence of a Fermi liquid and a magnetic phase separated by a local quantum critical point, governed by the Kondo breakdown picture. Thermodynamic properties are studied and a gapless charged mode at the quantum critical point is highlighted.
On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off.
Xiang, S; Xiao, S; Fuji, K; Shibuya, K; Endo, T; Yumoto, N; Morimoto, T; Aoki, N; Bird, J P; Ochiai, Y
2014-03-26
We investigate the linear and non-linear conductance of quantum point contacts (QPCs), in the region near pinch-off where Kondo physics has previously been connected to the appearance of the 0.7 feature. In studies of seven different QPCs, fabricated in the same high-mobility GaAs/AlGaAs heterojunction, the linear conductance is widely found to show the presence of the 0.7 feature. The differential conductance, on the other hand, does not generally exhibit the zero-bias anomaly (ZBA) that has been proposed to indicate the Kondo effect. Indeed, even in the small subset of QPCs found to exhibit such an anomaly, the linear conductance does not always follow the universal temperature-dependent scaling behavior expected for the Kondo effect. Taken collectively, our observations demonstrate that, unlike the 0.7 feature, the ZBA is not a generic feature of low-temperature QPC conduction. We furthermore conclude that the mere observation of the ZBA alone is insufficient evidence for concluding that Kondo physics is active. While we do not rule out the possibility that the Kondo effect may occur in QPCs, our results appear to indicate that its observation requires a very strict set of conditions to be satisfied. This should be contrasted with the case of the 0.7 feature, which has been apparent since the earliest experimental investigations of QPC transport.
Non-Kondo many-body physics in a Majorana-based Kondo type system
NASA Astrophysics Data System (ADS)
van Beek, Ian J.; Braunecker, Bernd
2016-09-01
We carry out a theoretical analysis of a prototypical Majorana system, which demonstrates the existence of a Majorana-mediated many-body state and an associated intermediate low-energy fixed point. Starting from two Majorana bound states, hosted by a Coulomb-blockaded topological superconductor and each coupled to a separate lead, we derive an effective low-energy Hamiltonian, which displays a Kondo-like character. However, in contrast to the Kondo model which tends to a strong- or weak-coupling limit under renormalization, we show that this effective Hamiltonian scales to an intermediate fixed point, whose existence is contingent upon teleportation via the Majorana modes. We conclude by determining experimental signatures of this fixed point, as well as the exotic many-body state associated with it.
Impurity-induced moments in underdoped cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaliullin, G.; Kilian, R.; Krivenko, S.
1997-11-01
We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potentialmore » approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. {copyright} {ital 1997} {ital The American Physical Society}« less
Kondo Impurities Coupled to a Helical Luttinger Liquid: RKKY-Kondo Physics Revisited.
Yevtushenko, Oleg M; Yudson, Vladimir I
2018-04-06
We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger liquids when the electron interaction is stronger than some critical value. In this novel regime, the Kondo effect overwhelms the RKKY interaction over all macroscopic interimpurity distances. This phenomenon is a direct consequence of the helicity (realized, for instance, at edges of a time-reversal invariant topological insulator) and does not take place in usual (nonhelical) Luttinger liquids.
Kondo effect in the seven-orbital Anderson model hybridized with Γ8 conduction electrons
NASA Astrophysics Data System (ADS)
Hotta, Takashi
2018-05-01
We clarify the two-channel Kondo effect in the seven-orbital Anderson model hybridized with Γ8 conduction electrons by employing a numerical renormalization group method. From the numerical analysis for the case with two local f electrons, corresponding to Pr3+ or U4+ ion, we confirm that a residual entropy of 0.5 log 2 , a characteristic of two-channel Kondo phenomena, appears for the local Γ3 non-Kramers doublet state. For further understanding on the Γ3 state, the effective model is constructed on the basis of a j-j coupling scheme. Then, we rediscover the two-channel s-d model concerning quadrupole degrees of freedom. Finally, we briefly introduce our recent result on the two-channel Kondo effect for the case with three local f electrons.
Fermi surfaces in Kondo insulators
NASA Astrophysics Data System (ADS)
Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.
2018-04-01
We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.
Kondo effect in single cobalt phthalocyanine molecules adsorbed on Au(111) monoatomic steps
NASA Astrophysics Data System (ADS)
Zhao, Aidi; Hu, Zhenpeng; Wang, Bing; Xiao, Xudong; Yang, Jinlong; Hou, J. G.
2008-06-01
The Kondo effect in single dehydrogenated cobalt phthalocyanine (CoPc) molecules adsorbed on Au(111) monoatomic steps was studied with a low temperature scanning tunneling microscope. The CoPc molecules adsorbed on Au(111) monoatomic steps show two typical configurations, which can be dehydrogenated to reveal Kondo effect. Moreover, the Kondo temperatures (TK) measured for different molecules vary in a large range from ~150 to ~550 K, increasing monotonically with decreasing Co-Au distance. A simple model consisting of a single Co 3dz2 orbital and a Au 6s orbital is considered and gives a qualitative explanation to the dependence. The large variation of TK is attributed to the variation of the interaction between the magnetic-active cobalt ion and the Au substrate resulted from different Co-Au distances.
Importance of conduction electron correlation in a Kondo lattice, Ce₂CoSi₃.
Patil, Swapnil; Pandey, Sudhir K; Medicherla, V R R; Singh, R S; Bindu, R; Sampathkumaran, E V; Maiti, Kalobaran
2010-06-30
Kondo systems are usually described by the interaction of the correlation induced local moments with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce₂CoSi₃, using high resolution photoemission spectroscopy and ab initio band structure calculations, where Co 3d electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal the signatures of Ce 4f states derived Kondo resonance features at the Fermi level and the dominance of Co 3d contributions at higher binding energies in the conduction band. The lineshape of the experimental Co 3d band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, U, among Co 3d electrons within the LDA + U method leads to a better representation of experimental results. The signature of an electron correlation induced satellite feature is also observed in the Co 2p core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.
Quantum quench of Kondo correlations in optical absorption
NASA Astrophysics Data System (ADS)
Weichselbaum, Andreas
2013-03-01
Absorption spectra of individual semiconductor quantum dots tunnel-coupled to a degenerate electron gas in the Kondo regime have recently become accessible to the experiment. The absorption of a single photon leads to an abrupt change in the system Hamiltonian, which can be tailored such that it results in a quantum quench of the Kondo correlations. This is accompanied by a clear signature in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between initial and final many-body wave functions and with power-law exponents that can be tuned by an applied magnetic field. We have modeled the experiment in terms of an Anderson impurity model undergoing an optically induced quench, and studied this Kondo exciton in detail using both analytical methods and the Numerical Renormalization Group (NRG). Our NRG results reproduce the measured absorption line shapes very well, showing that NRG is ideally suited for the study of Kondo excitons. In summary, the experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only. Co-authors: Andreas Weichselbaum, Markus Hanl, and Jan von Delft, Ludwig Maximilians University.
Two-channel Kondo physics from arsenic bond oscillations in zirconium arsenide selenide
NASA Astrophysics Data System (ADS)
Kirchner, Stefan; Cichorek, Tomasz; Bochenek, L.; Schmidt, Marcus; Niewa, Rainer; Czulucki, A.; Auffermann, G.; Steglich, Frank; Kniep, Ruediger
2015-03-01
The two-channel Kondo effect is a fascinating but extremely fragile many-body state that has been theoretically discussed extensively. we address metallic compounds of a specific (PbFCl) structure for which a - AT 1 / 2 term to ρ (T) is frequently observed, in line with the two-channel Kondo effect. The origin of this anomalous behavior has remained enigmatic since here, solely the interaction between electrons may account for this behavior, and the two-channel Kondo state is not expected to occur. By combining chemical and structural investigations with various physical property measurements we show that the magnetic field-independent - AT 1 / 2 term to the low-T resistivity observed over two decades in ZrAsxSey with 1.90 <= x + y <= 1.99 originates from vacancies in the layer exclusively built up by As. Furthermore, we can trace back the two-channel Kondo effect in this material to a dynamic Jahn-Teller effect operating at these vacancies. All physical properties of the investigated compounds support this conclusion. Our findings will be relevant also for other metallic systems with pnictogen-pnictogen bondings, e.g., cage-forming compounds like the skutterudites.
Kondo necklace model in approximants of Fibonacci chains
NASA Astrophysics Data System (ADS)
Reyes, Daniel; Tarazona, H.; Cuba-Supanta, G.; Landauro, C. V.; Espinoza, R.; Quispe-Marcatoma, J.
2017-11-01
The low energy behavior of the one dimensional Kondo necklace model with structural aperiodicity is studied using a representation for the localized and conduction electron spins, in terms of local Kondo singlet and triplet operators at zero temperature. A decoupling scheme on the double time Green's functions is used to find the dispersion relation for the excitations of the system. We determine the dependence between the structural aperiodicity modulation and the spin gap in a Fibonacci approximant chain at zero temperature and in the paramagnetic side of the phase diagram.
Quadrupolar Kondo effect in uranium heavy-electron materials?
NASA Technical Reports Server (NTRS)
Cox, D. L.
1987-01-01
The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.
Field-induced phase transition in Ce3M4Sn13 with M = Co, Rh, and Ru
NASA Astrophysics Data System (ADS)
Ślebarski, Andrzej; Goraus, Jerzy
2018-05-01
Large electronic specific heat coefficient, C (T) / T , suggests that the family of Ce3M4Sn13 heavy-fermions (HF) is near a magnetic quantum critical point (QCP). We analyze the 4 f contribution to the specific heat in terms of the single-ion Kondo resonance model. An unexpected change in the Kondo temperature TK versus magnetic field B signals a field-induced phase transition between the magnetically correlated HF phase and a single-ion Kondo impurity state.
Nonequilibrium Quasiparticle Distribution Induced by Kondo Defects
NASA Astrophysics Data System (ADS)
Kroha, J.; Zawadowski, A.
2002-04-01
It is shown that in resistive nanowires out of equilibrium containing either single- or two-channel Kondo impurities the distribution function f(E,U) obeys scaling behavior in terms of the quasiparticle energy E and the bias voltage U. The numerically calculated f(E,U) curves explain quantitatively recent experiments on Cu and Au nanowires. The systematics of the impurity concentration cimp extracted from the comparison between theory and results on various Cu and Au samples strongly suggests that in these systems the scaling arises from magnetic Kondo impurities.
Methods of editing cloud and atmospheric layer affected pixels from satellite data
NASA Technical Reports Server (NTRS)
Nixon, P. R. (Principal Investigator); Wiegand, C. L.; Richardson, A. J.; Johnson, M. P.
1982-01-01
Practical methods of computer screening cloud-contaminated pixels from data of various satellite systems are proposed. Examples are given of the location of clouds and representative landscape features in HCMM spectral space of reflectance (VIS) vs emission (IR). Methods of screening out cloud affected HCMM are discussed. The character of subvisible absorbing-emitting atmospheric layers (subvisible cirrus or SCi) in HCMM data is considered and radiosonde soundings are examined in relation to the presence of SCi. The statistical characteristics of multispectral meteorological satellite data in clear and SCi affected areas are discussed. Examples in TIROS-N and NOAA-7 data from several states and Mexico are presented. The VIS-IR cluster screening method for removing clouds is applied to a 262, 144 pixel HCMM scene from south Texas and northeast Mexico. The SCi that remain after cluster screening are sited out by applying a statistically determined IR limit.
Numerical renormalization group method for entanglement negativity at finite temperature
NASA Astrophysics Data System (ADS)
Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.
2018-04-01
We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
Photoemission Studies of Kondo Lattice Compounds YbNi3(Ga1-xAlx)9
NASA Astrophysics Data System (ADS)
Utsumi, Yuki; Sato, Hitoshi; Nagata, Heisuke; Kodama, Junichi; Ohara, Shigeo; Yamashita, Tetsuro; Mimura, Kojiro; Motonami, Satoru; Arita, Masashi; Ueda, Shigenori; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki
We have investigated the electronic structure of YbNi3 (Ga1-xAlx)9 (x = 0, 0.05, 0.10, 0.15) by means of hard x-ray (hν ˜ 6 keV) and low energy (hν ˜ 7 eV) photoemission spectroscopies (HAXPES and LEPES). Both Yb2+ and Yb3+ components are observed in the Yb 3d HAXPES spectra, which is an evidence of the valence fluctuation in YbNi3(Ga1-xAlx)9. A substitution of an Al ion for a Ga ion in YbNi3Ga9 changes the Yb ion into a trivalent state. The LEPES spectra of YbNi3Ga9 clearly exhibit the Kondo peak near the Fermi level (EF) and the Kondo temperature is estimated to be TK ˜ 550 K. With the Al substitution, the Kondo peak is shifted toward EF, indicating the decrease of TK
Long range order and two-fluid behavior in heavy electron materials
Shirer, Kent R.; Shockley, Abigail C.; Dioguardi, Adam P.; ...
2012-09-24
The heavy electron Kondo liquid is an emergent state of condensed matter that displays universal behavior independent of material details. Properties of the heavy electron liquid are best probed by NMR Knight shift measurements, which provide a direct measure of the behavior of the heavy electron liquid that emerges below the Kondo lattice coherence temperature as the lattice of local moments hybridizes with the background conduction electrons. Because the transfer of spectral weight between the localized and itinerant electronic degrees of freedom is gradual, the Kondo liquid typically coexists with the local moment component until the material orders at lowmore » temperatures. The two-fluid formula captures this behavior in a broad range of materials in the paramagnetic state. In order to investigate two-fluid behavior and the onset and physical origin of different long range ordered ground states in heavy electron materials, we have extended Knight shift measurements to URu 2Si 2, CeIrIn 5, and CeRhIn 5. In CeRhIn 5 we find that the antiferromagnetic order is preceded by a relocalization of the Kondo liquid, providing independent evidence for a local moment origin of antiferromagnetism. In URu 2Si 2 the hidden order is shown to emerge directly from the Kondo liquid and so is not associated with local moment physics. Lastly, our results imply that the nature of the ground state is strongly coupled with the hybridization in the Kondo lattice in agreement with phase diagram proposed by Yang and Pines.« less
NASA Astrophysics Data System (ADS)
Biagi, C. J.; Cummins, K. L.
2015-12-01
The growing possibility of inexpensive airborne observations of electric fields using one or more small UAVs increases the importance of understanding what can be determined about cloud electrification and associated electric fields outside cloud boundaries. If important information can be inferred from carefully selected flight paths outside of a cloud, then the aircraft and its instrumentation will be much cheaper to develop and much safer to operate. These facts have led us to revisit this long-standing topic using quasi-static, finite-element modeling inside and outside arbitrarily shaped clouds with a variety of internal charge distributions. In particular, we examine the effect of screening layers on electric fields outside of electrified clouds by comparing modeling results for charged clouds having electrical conductivities that are both equal to and lower than the surrounding clear air. The comparisons indicate that the spatial structure of the electric field is approximately the same regardless of the difference in the conductivities between the cloud and clear air and the formation of a screening layer, even for altitude-dependent electrical conductivities. This result is consistent with the numerical modeling results reported by Driscoll et al [1992]. The similarity of the spatial structure of the electric field outside of clouds with and without a screening layer suggests that "bulk" properties related to cloud electrification might be determined using measurements of the electric field at multiple locations in space outside the cloud, particularly at altitude. Finally, for this somewhat simplified model, the reduction in electric field magnitude outside the cloud due to the presence of a screening layer exhibits a simple dependence on the difference in conductivity between the cloud and clear air. These results are particularly relevant for studying clouds that are not producing lightning, such as developing thunderstorms and decaying anvils associated with mature storm systems.Driscoll K.T., R.J. Blakeslee, M.E. Baginski, 1992, A modeling study of the time-averaged electric currents in the vicinity of isolated thunderstorms, J. Geophys. Res., 97, D11, pp 11535-11551.
Chiral helimagnetic state in a Kondo lattice model with the Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi
2018-05-01
Monoaxial chiral magnets can form a noncollinear twisted spin structure called the chiral helimagnetic state. We study magnetic properties of such a chiral helimagnetic state, with emphasis on the effect of itinerant electrons. Modeling a monoaxial chiral helimagnet by a one-dimensional Kondo lattice model with the Dzyaloshinskii-Moriya interaction, we perform a variational calculation to elucidate the stable spin configuration in the ground state. We obtain a chiral helimagnetic state as a candidate for the ground state, whose helical pitch is modulated by the model parameters: the Kondo coupling, the Dzyaloshinski-Moriya interaction, and electron filling.
Voltage Quench Dynamics of a Kondo System.
Antipov, Andrey E; Dong, Qiaoyuan; Gull, Emanuel
2016-01-22
We examine the dynamics of a correlated quantum dot in the mixed valence regime. We perform numerically exact calculations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibration times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. The time-dependent current saturation temperature connects the equilibrium Kondo temperature to a substantially increased value at voltages outside of the linear response. These signatures are directly observable by experiments in the time domain.
Design and Development of ChemInfoCloud: An Integrated Cloud Enabled Platform for Virtual Screening.
Karthikeyan, Muthukumarasamy; Pandit, Deepak; Bhavasar, Arvind; Vyas, Renu
2015-01-01
The power of cloud computing and distributed computing has been harnessed to handle vast and heterogeneous data required to be processed in any virtual screening protocol. A cloud computing platorm ChemInfoCloud was built and integrated with several chemoinformatics and bioinformatics tools. The robust engine performs the core chemoinformatics tasks of lead generation, lead optimisation and property prediction in a fast and efficient manner. It has also been provided with some of the bioinformatics functionalities including sequence alignment, active site pose prediction and protein ligand docking. Text mining, NMR chemical shift (1H, 13C) prediction and reaction fingerprint generation modules for efficient lead discovery are also implemented in this platform. We have developed an integrated problem solving cloud environment for virtual screening studies that also provides workflow management, better usability and interaction with end users using container based virtualization, OpenVz.
Canopy water balance of windward and leeward Hawaiian cloud forests on Haleakalā, Maui, Hawai'i
Giambelluca, Thomas W.; DeLay, John K.; Nullet, Michael A.; Scholl, Martha A.; Gingerich, Stephen B.
2011-01-01
The contribution of intercepted cloud water to precipitation at windward and leeward cloud forest sites on the slopes of Haleakalā, Maui was assessed using two approaches. Canopy water balance estimates based on meteorological monitoring were compared with interpretations of fog screen measurements collected over a 2-year period at each location. The annual incident rainfall was 973 mm at the leeward site (Auwahi) and 2550 mm at the windward site (Waikamoi). At the leeward, dry forest site, throughfall was less than rainfall (87%), and, at the windward, wet forest site, throughfall exceeded rainfall (122%). Cloud water interception estimated from canopy water balance was 166 mm year−1 at Auwahi and 1212 mm year−1 at Waikamoi. Annual fog screen measurements of cloud water flux, corrected for wind-blown rainfall, were 132 and 3017 mm for the dry and wet sites respectively. Event totals of cloud water flux based on fog screen measurements were poorly correlated with event cloud water interception totals derived from the canopy water balance. Hence, the use of fixed planar fog screens to estimate cloud water interception is not recommended. At the wet windward site, cloud water interception made up 32% of the total precipitation, adding to the already substantial amount of rainfall. At the leeward dry site, cloud water interception was 15% of the total precipitation. Vegetation at the dry site, where trees are more exposed and isolated, was more efficient at intercepting the available cloud water than at the rainy site, but events were less frequent, shorter in duration and lower in intensity. A large proportion of intercepted cloud water, 74% and 83%, respectively for the two sites, was estimated to become throughfall, thus adding significantly to soil water at both sites
Chen, Ying-Hsien; Hung, Chi-Sheng; Huang, Ching-Chang; Hung, Yu-Chien
2017-01-01
Background Atrial fibrillation (AF) is a common form of arrhythmia that is associated with increased risk of stroke and mortality. Detecting AF before the first complication occurs is a recognized priority. No previous studies have examined the feasibility of undertaking AF screening using a telehealth surveillance system with an embedded cloud-computing algorithm; we address this issue in this study. Objective The objective of this study was to evaluate the feasibility of AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm. Methods We conducted a prospective AF screening study in a nonmetropolitan area using a single-lead electrocardiogram (ECG) recorder. All ECG measurements were reviewed on the telehealth surveillance system and interpreted by the cloud-computing algorithm and a cardiologist. The process of AF screening was evaluated with a satisfaction questionnaire. Results Between March 11, 2016 and August 31, 2016, 967 ECGs were recorded from 922 residents in nonmetropolitan areas. A total of 22 (2.4%, 22/922) residents with AF were identified by the physician’s ECG interpretation, and only 0.2% (2/967) of ECGs contained significant artifacts. The novel cloud-computing algorithm for AF detection had a sensitivity of 95.5% (95% CI 77.2%-99.9%) and specificity of 97.7% (95% CI 96.5%-98.5%). The overall satisfaction score for the process of AF screening was 92.1%. Conclusions AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm is feasible. PMID:28951384
Kondo physics from quasiparticle poisoning in Majorana devices
Plugge, S.; Tsvelik, A. M.; Zazunov, A.; ...
2016-03-24
Here, we present a theoretical analysis of quasiparticle poisoning in Coulomb-blockaded Majorana fermion systems tunnel-coupled to normal-conducting leads. Taking into account finite-energy quasiparticles, we derive the effective low-energy theory and present a renormalization group analysis. We find qualitatively new effects when a quasiparticle state with very low energy is localized near a tunnel contact. For M = 2 attached leads, such “dangerous” quasiparticle poisoning processes cause a spin S = 1/2 single-channel Kondo effect, which can be detected through a characteristic zero-bias anomaly conductance peak in all Coulomb blockade valleys. For more than two attached leads, the topological Kondo effectmore » of the unpoisoned system becomes unstable. A strong-coupling bosonization analysis indicates that at low energy the poisoned lead is effectively decoupled and hence, for M > 3, the topological Kondo fixed point re-emerges, though now it involves only M–1 leads. As a consequence, for M = 3, the low-energy fixed point becomes trivial corresponding to decoupled leads.« less
NASA Astrophysics Data System (ADS)
Pillay, Jason C.; McCulloch, Ian P.
2018-05-01
The effect of a local Kondo coupling and Hubbard interaction on the topological phase of the one-dimensional topological Kondo insulator (TKI) is numerically investigated using the infinite matrix-product state density-matrix renormalization group algorithm. The ground state of the TKI is a symmetry-protected topological (SPT) phase protected by inversion symmetry. It is found that on its own, the Hubbard interaction that tends to force fermions into a one-charge per site order is insufficient to destroy the SPT phase. However, when the local Kondo Hamiltonian term that favors a topologically trivial ground state with a one-charge per site order is introduced, the Hubbard interaction assists in the destruction of the SPT phase. This topological phase transition occurs in the charge sector where the correlation length of the charge excitation diverges while the correlation length of the spin excitation remains finite. The critical exponents, central charge, and the phase diagram separating the SPT phase from the topologically trivial phase are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueland, B. G.; Jo, N. H.; Sapkota, A.
The microscopic details of the suppression of antiferromagnetic order in the Kondo-lattice series Ce 1-xLa xCu 2Ge 2 due to nonmagnetic dilution by La are revealed through neutron diffraction results for x = 0:20, 0:40, 0:75, and 0:85. Magnetic Bragg peaks are found for 0:20 ≤ x ≤ 0:75, and both the Neel temperature, T N, and the ordered magnetic moment per Ce μ linearly decrease with increasing x. The reduction in μ points to strong hybridization of the increasingly diluted Ce 4f electrons, and we find a remarkable quadratic dependence of μ on the Kondo-coherence temperature. Here, we discussmore » our results in terms of local-moment- versus itinerant-type magnetism and mean-field theory, and show that Ce 1-xLa xCu 2Ge 2 provides an exceptional opportunity to quantitatively study the multiple magnetic interactions in a Kondo lattice.« less
Magnetothermopower of δ-doped LaTiO3/SrTiO3 interfaces in the Kondo regime
NASA Astrophysics Data System (ADS)
Das, Shubhankar; Joshi, P. C.; Rastogi, A.; Hossain, Z.; Budhani, R. C.
2014-08-01
Measurements of magnetothermopower [S (H,T)] of interfacial δ-doped LaTiO3/SrTiO3 (LTO/STO) heterostructure by an isostructural antiferromagnetic perovskite LaCrO3 are reported. The thermoelectric power of the pure LTO/STO interface at 300 K is ≈118 μV /K, but increases dramatically on δ doping. The observed linear temperature dependence of S (T) over the temperature range 100 to 300 K is in agreement with the theory of diffusion thermopower of a two-dimensional electron gas. The S (T) displays a distinct enhancement in the temperature range (T < 100 K) where the sheet resistance shows a Kondo-type minimum. We attributed this maximum in S (T) to Kondo scattering of conduction electron by localized impurity spins at the interface. The suppression of S by a magnetic field and the isotropic nature of the suppression in out-of-plane and in-plane field geometries further strengthen the Kondo-model-based interpretation of S (H,T).
Block entropy and quantum phase transition in the anisotropic Kondo necklace model
NASA Astrophysics Data System (ADS)
Mendoza-Arenas, J. J.; Franco, R.; Silva-Valencia, J.
2010-06-01
We study the von Neumann block entropy in the Kondo necklace model for different anisotropies η in the XY interaction between conduction spins using the density matrix renormalization group method. It was found that the block entropy presents a maximum for each η considered, and, comparing it with the results of the quantum criticality of the model based on the behavior of the energy gap, we observe that the maximum block entropy occurs at the quantum critical point between an antiferromagnetic and a Kondo singlet state, so this measure of entanglement is useful for giving information about where a quantum phase transition occurs in this model. We observe that the block entropy also presents a maximum at the quantum critical points that are obtained when an anisotropy Δ is included in the Kondo exchange between localized and conduction spins; when Δ diminishes for a fixed value of η, the critical point increases, favoring the antiferromagnetic phase.
Reduction of the ordered magnetic moment and its relationship to Kondo coherence in Ce1 -xLaxCu2Ge2
NASA Astrophysics Data System (ADS)
Ueland, B. G.; Jo, N. H.; Sapkota, A.; Tian, W.; Masters, M.; Hodovanets, H.; Downing, S. S.; Schmidt, C.; McQueeney, R. J.; Bud'ko, S. L.; Kreyssig, A.; Canfield, P. C.; Goldman, A. I.
2018-04-01
The microscopic details of the suppression of antiferromagnetic order in the Kondo-lattice series Ce1 -xLaxCu2Ge2 due to nonmagnetic dilution by La are revealed through neutron diffraction results for x =0.20 , 0.40, 0.75, and 0.85. Magnetic Bragg peaks are found for 0.20 ≤x ≤0.75 , and both the Néel temperature TN and the ordered magnetic moment per Ce μ linearly decrease with increasing x . The reduction in μ points to strong hybridization of the increasingly diluted Ce 4 f electrons, and we find a remarkable quadratic dependence of μ on the Kondo-coherence temperature. We discuss our results in terms of local-moment- versus itinerant-type magnetism and mean-field theory and show that Ce1 -xLaxCu2Ge2 provides an exceptional opportunity to quantitatively study the multiple magnetic interactions in a Kondo lattice.
Nonequilibrium Kondo effect in a magnetic field: auxiliary master equation approach
NASA Astrophysics Data System (ADS)
Fugger, Delia M.; Dorda, Antonius; Schwarz, Frauke; von Delft, Jan; Arrigoni, Enrico
2018-01-01
We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage ϕ and a magnetic field B. We investigate the interplay between the shift ({ω }B) of the Kondo peak in the spin-resolved density of states (DOS) and the one ({φ }B) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of B down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as {φ }B only for | g| {μ }BB\\gg {k}B{T}K. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.
Field-Induced Transitions in Anisotropic Kondo Lattice — Application to CeT2Al10 —
NASA Astrophysics Data System (ADS)
Kikuchi, Taku; Hoshino, Shintaro; Shibata, Naokazu; Kuramoto, Yoshio
2017-09-01
The magnetic properties of an anisotropic Kondo lattice are investigated under a magnetic field using dynamical mean field theory and the continuous-time quantum Monte Carlo method. The magnetic phase diagram is determined from the temperature dependence of both uniform and staggered magnetizations in magnetic fields. We find a spin-flop transition inside the antiferromagnetic (AF) phase, whose transition field increases with increasing Kondo coupling while the AF transition temperature decreases. These results cannot be described by a simple spin Hamiltonian and are consistent with the experimental results of the field-induced transition observed in CeT2Al10 (T = Ru, Os). The anisotropic susceptibilities of CeT2Al10 are reproduced in the whole temperature range by incorporating the effects of the crystalline electric field (CEF) in the anisotropic Kondo lattice. We also propose a possible explanation for the difference in anisotropies between the magnetic susceptibility and AF moments observed in experiments.
Ueland, B. G.; Jo, N. H.; Sapkota, A.; ...
2018-04-13
The microscopic details of the suppression of antiferromagnetic order in the Kondo-lattice series Ce 1-xLa xCu 2Ge 2 due to nonmagnetic dilution by La are revealed through neutron diffraction results for x = 0:20, 0:40, 0:75, and 0:85. Magnetic Bragg peaks are found for 0:20 ≤ x ≤ 0:75, and both the Neel temperature, T N, and the ordered magnetic moment per Ce μ linearly decrease with increasing x. The reduction in μ points to strong hybridization of the increasingly diluted Ce 4f electrons, and we find a remarkable quadratic dependence of μ on the Kondo-coherence temperature. Here, we discussmore » our results in terms of local-moment- versus itinerant-type magnetism and mean-field theory, and show that Ce 1-xLa xCu 2Ge 2 provides an exceptional opportunity to quantitatively study the multiple magnetic interactions in a Kondo lattice.« less
Kondo blockade due to quantum interference in single-molecule junctions
Mitchell, Andrew K.; Pedersen, Kim G. L.; Hedegård, Per; Paaske, Jens
2017-01-01
Molecular electronics offers unique scientific and technological possibilities, resulting from both the nanometre scale of the devices and their reproducible chemical complexity. Two fundamental yet different effects, with no classical analogue, have been demonstrated experimentally in single-molecule junctions: quantum interference due to competing electron transport pathways, and the Kondo effect due to entanglement from strong electronic interactions. Here we unify these phenomena, showing that transport through a spin-degenerate molecule can be either enhanced or blocked by Kondo correlations, depending on molecular structure, contacting geometry and applied gate voltages. An exact framework is developed, in terms of which the quantum interference properties of interacting molecular junctions can be systematically studied and understood. We prove that an exact Kondo-mediated conductance node results from destructive interference in exchange-cotunneling. Nonstandard temperature dependences and gate-tunable conductance peaks/nodes are demonstrated for prototypical molecular junctions, illustrating the intricate interplay of quantum effects beyond the single-orbital paradigm. PMID:28492236
Electronic Griffiths phase and quantum interference in disordered heavy-fermion systems
NASA Astrophysics Data System (ADS)
Gnida, Daniel
2018-02-01
We investigated the specific heat and electrical resistivity of disordered heavy-fermion systems Ce2Co0.8Si3.2 and Ce2Co0.4Rh0.4Si3.2 . Results show that pronounced non-Fermi-liquid behavior in these Kondo disordered compounds originates from approaching metal-insulator transition rather than from proximity to magnetic instability. Power-law divergence of the local Kondo temperature distribution, P (TK) , in the limit of TK→0 , and clear signature of the quantum interference corrections in the resistivity detected deep below the onset of Kondo coherent state, point to electronic Griffiths phase formation in the studied compounds.
NASA Astrophysics Data System (ADS)
Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.
2018-02-01
Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.
López, Rosa; Sánchez, David
2003-03-21
We investigate the nonequilibrium transport properties of a quantum dot when spin flip processes compete with the formation of a Kondo resonance in the presence of ferromagnetic leads. Based upon the Anderson Hamiltonian in the strongly interacting limit, we predict a splitting of the differential conductance when the spin flip scattering amplitude is of the order of the Kondo temperature. We discuss how the relative orientation of the lead magnetizations strongly influences the electronic current and the shot noise in a nontrivial way. Furthermore, we find that the zero-bias tunneling magnetoresistance becomes negative with increasing spin flip scattering amplitude.
Yeo, S; Nakatsuji, S; Bianchi, A D; Schlottmann, P; Fisk, Z; Balicas, L; Stampe, P A; Kennedy, R J
2003-07-25
The phase diagram of FeSi(1-x)Ge(x), obtained from magnetic, thermal, and transport measurements on single crystals, shows a discontinuous transition from Kondo insulator to ferromagnetic metal with x at a critical concentration, x(c) approximately 0.25. The gap of the insulating phase strongly decreases with x. The specific heat gamma coefficient appears to track the density of states of a Kondo insulator. The phase diagram is consistent with an insulator-metal transition induced by a reduction of the hybridization with x in conjunction with disorder on the Si/Ge ligand site.
Spin Current through a Quantum Dot in the Presence of an Oscillating Magnetic Field
NASA Astrophysics Data System (ADS)
Zhang, Ping; Xue, Qi-Kun; Xie, X. C.
2003-11-01
Nonequilibrium spin transport through an interacting quantum dot is analyzed. The coherent spin oscillations in the dot provide a generating source for spin current. In the interacting regime, the Kondo effect is influenced in a significant way by the presence of the processing magnetic field. In particular, when the precession frequency is tuned to resonance between spin-up and spin-down states of the dot, Kondo singularity for each spin splits into a superposition of two resonance peaks. The Kondo-type cotunneling contribution is manifested by a large enhancement of the pumped spin current in the strong coupling low temperature regime.
NASA Astrophysics Data System (ADS)
Koga, M.; Matsumoto, M.; Kusunose, H.
2018-05-01
We study a local antisymmetric spin-orbit (ASO) coupling effect on a triangular-triple-quantum-dot (TTQD) system as a theoretical proposal for a new application of the Kondo physics to nanoscale devices. The electric polarization induced by the Kondo effect is strongly correlated with the spin configurations and molecular orbital degrees of freedom in the TTQD. In particular, an abrupt sign reversal of the emergent electric polarization is associated with a quantum critical point in a magnetic field, which can also be controlled by the ASO coupling that changes the mixing weight of different orbital components in the TTQD ground state.
NASA Astrophysics Data System (ADS)
Gloos, Kurt; Tuuli, Elina
2012-12-01
We have investigated break junctions of normal non-magnetic metals as well as ferromagnets at low temperatures. The point contacts with radii 0.15—15 nm showed zero-bias anomalies which can be attributed to Kondo scattering at a single Kondo impurity at the contact or to the switching of a single conducting channel. The Kondo temperatures derived from the width of the anomalies varied between 10 and 1000 K. These results agree well with literature data on atomic-size contacts of the ferromagnets as well as with spear-anvil type contacts on a wide variety of metals.
Pressure Dependence Transport Studies of the Possible Charge Kondo Effect in Tl-doped PbTe
NASA Astrophysics Data System (ADS)
Kurosaki, Yosuke; Shinagawa, Jun; Matsushita, Yana; Geballe, Ted; Fisher, Ian; Brown, Stuart
2006-03-01
Pb1-xTlxTe is noteworthy for a high superconducting transition temperature relative to carrier concentration, as well as normal state properties consistent with a charge-Kondo effect. Recent experiments also demonstrate that the onset of an observable superconducting Tc with Tl concentration at x˜0.3% coincides with features characteristic of charge Kondo [1], including dρ/dT<0 at low temperatures and an unusual linear variation of the resistivity ρ(T)=ρ0+AT at higher temperatures. Together, these observations are consistent with an association between the two phenomena [2]. We report the effect of applied pressures up to P˜1.5GPa on ρ(T), Tc, and the Hall number pH≡RH-1 for x= 0.3%, 0.8%, and 1.3%. Tc is reduced sharply with pressure, dTc/dP=400-500mK/GPa as the low temperature Kondo- like upturn in ρ(T) is weakened. Also, dA/dP<0 and dpH/dP>0. These observations are discussed in the context of the proposed charge-Kondo model for Pb1-xTlxTe. [1] Y. Matsushita, H. Bluhm, T.H. Geballe and I.R. Fisher, Phys.Rev.Lett. 94, 157002(2005).[2] M. Dzero and J. Schmalian, Phys.Rev.Lett. 94, 157003 (2005). This work is supported by NSF frant DMR-0520552.
Chen, Ying-Hsien; Hung, Chi-Sheng; Huang, Ching-Chang; Hung, Yu-Chien; Hwang, Juey-Jen; Ho, Yi-Lwun
2017-09-26
Atrial fibrillation (AF) is a common form of arrhythmia that is associated with increased risk of stroke and mortality. Detecting AF before the first complication occurs is a recognized priority. No previous studies have examined the feasibility of undertaking AF screening using a telehealth surveillance system with an embedded cloud-computing algorithm; we address this issue in this study. The objective of this study was to evaluate the feasibility of AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm. We conducted a prospective AF screening study in a nonmetropolitan area using a single-lead electrocardiogram (ECG) recorder. All ECG measurements were reviewed on the telehealth surveillance system and interpreted by the cloud-computing algorithm and a cardiologist. The process of AF screening was evaluated with a satisfaction questionnaire. Between March 11, 2016 and August 31, 2016, 967 ECGs were recorded from 922 residents in nonmetropolitan areas. A total of 22 (2.4%, 22/922) residents with AF were identified by the physician's ECG interpretation, and only 0.2% (2/967) of ECGs contained significant artifacts. The novel cloud-computing algorithm for AF detection had a sensitivity of 95.5% (95% CI 77.2%-99.9%) and specificity of 97.7% (95% CI 96.5%-98.5%). The overall satisfaction score for the process of AF screening was 92.1%. AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm is feasible. ©Ying-Hsien Chen, Chi-Sheng Hung, Ching-Chang Huang, Yu-Chien Hung, Juey-Jen Hwang, Yi-Lwun Ho. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 26.09.2017.
A simple biota removal algorithm for 35 GHz cloud radar measurements
NASA Astrophysics Data System (ADS)
Kalapureddy, Madhu Chandra R.; Sukanya, Patra; Das, Subrata K.; Deshpande, Sachin M.; Pandithurai, Govindan; Pazamany, Andrew L.; Ambuj K., Jha; Chakravarty, Kaustav; Kalekar, Prasad; Krishna Devisetty, Hari; Annam, Sreenivas
2018-03-01
Cloud radar reflectivity profiles can be an important measurement for the investigation of cloud vertical structure (CVS). However, extracting intended meteorological cloud content from the measurement often demands an effective technique or algorithm that can reduce error and observational uncertainties in the recorded data. In this work, a technique is proposed to identify and separate cloud and non-hydrometeor echoes using the radar Doppler spectral moments profile measurements. The point and volume target-based theoretical radar sensitivity curves are used for removing the receiver noise floor and identified radar echoes are scrutinized according to the signal decorrelation period. Here, it is hypothesized that cloud echoes are observed to be temporally more coherent and homogenous and have a longer correlation period than biota. That can be checked statistically using ˜ 4 s sliding mean and standard deviation value of reflectivity profiles. The above step helps in screen out clouds critically by filtering out the biota. The final important step strives for the retrieval of cloud height. The proposed algorithm potentially identifies cloud height solely through the systematic characterization of Z variability using the local atmospheric vertical structure knowledge besides to the theoretical, statistical and echo tracing tools. Thus, characterization of high-resolution cloud radar reflectivity profile measurements has been done with the theoretical echo sensitivity curves and observed echo statistics for the true cloud height tracking (TEST). TEST showed superior performance in screening out clouds and filtering out isolated insects. TEST constrained with polarimetric measurements was found to be more promising under high-density biota whereas TEST combined with linear depolarization ratio and spectral width perform potentially to filter out biota within the highly turbulent shallow cumulus clouds in the convective boundary layer (CBL). This TEST technique is promisingly simple in realization but powerful in performance due to the flexibility in constraining, identifying and filtering out the biota and screening out the true cloud content, especially the CBL clouds. Therefore, the TEST algorithm is superior for screening out the low-level clouds that are strongly linked to the rainmaking mechanism associated with the Indian Summer Monsoon region's CVS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, C.
1993-02-01
We study the screening of a central Abelian dyon by a surrounding dyon cloud in a two potential theory of electromagnetism. A generalized formula for the Debye screening length is obtained and a Thomas - Fermi Model for a charged cloud surrounding a central Dyonic Core is studied. 20 refs.
A cloud-based system for automatic glaucoma screening.
Fengshou Yin; Damon Wing Kee Wong; Ying Quan; Ai Ping Yow; Ngan Meng Tan; Gopalakrishnan, Kavitha; Beng Hai Lee; Yanwu Xu; Zhuo Zhang; Jun Cheng; Jiang Liu
2015-08-01
In recent years, there has been increasing interest in the use of automatic computer-based systems for the detection of eye diseases including glaucoma. However, these systems are usually standalone software with basic functions only, limiting their usage in a large scale. In this paper, we introduce an online cloud-based system for automatic glaucoma screening through the use of medical image-based pattern classification technologies. It is designed in a hybrid cloud pattern to offer both accessibility and enhanced security. Raw data including patient's medical condition and fundus image, and resultant medical reports are collected and distributed through the public cloud tier. In the private cloud tier, automatic analysis and assessment of colour retinal fundus images are performed. The ubiquitous anywhere access nature of the system through the cloud platform facilitates a more efficient and cost-effective means of glaucoma screening, allowing the disease to be detected earlier and enabling early intervention for more efficient intervention and disease management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.
2013-09-11
Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR)more » and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.« less
Large-scale virtual screening on public cloud resources with Apache Spark.
Capuccini, Marco; Ahmed, Laeeq; Schaal, Wesley; Laure, Erwin; Spjuth, Ola
2017-01-01
Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against [Formula: see text]2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open source from GitHub (https://github.com/mcapuccini/spark-vs).Graphical abstract.
Cloud screening Coastal Zone Color Scanner images using channel 5
NASA Technical Reports Server (NTRS)
Eckstein, B. A.; Simpson, J. J.
1991-01-01
Clouds are removed from Coastal Zone Color Scanner (CZCS) data using channel 5. Instrumentation problems require pre-processing of channel 5 before an intelligent cloud-screening algorithm can be used. For example, at intervals of about 16 lines, the sensor records anomalously low radiances. Moreover, the calibration equation yields negative radiances when the sensor records zero counts, and pixels corrupted by electronic overshoot must also be excluded. The remaining pixels may then be used in conjunction with the procedure of Simpson and Humphrey to determine the CZCS cloud mask. These results plus in situ observations of phytoplankton pigment concentration show that pre-processing and proper cloud-screening of CZCS data are necessary for accurate satellite-derived pigment concentrations. This is especially true in the coastal margins, where pigment content is high and image distortion associated with electronic overshoot is also present. The pre-processing algorithm is critical to obtaining accurate global estimates of pigment from spacecraft data.
Chiral Spin Order in Kondo-Heisenberg Systems
NASA Astrophysics Data System (ADS)
Tsvelik, A. M.; Yevtushenko, O. M.
2017-12-01
We demonstrate that low dimensional Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel-Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates, the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our finding paves the way towards pioneering experimental realizations of the chiral spin liquid in systems with spontaneously broken time-reversal symmetry.
Quantum phase transition and destruction of Kondo effect in pressurized SmB 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yazhou; Wu, Qi; Rosa, Priscila Ferrari Silveira
SmB 6 has been a well-known Kondo insulator for decades, but recently attracts extensive new attention as a candidate topological system. Studying SmB 6 under pressure provides an opportunity to acquire the much-needed understanding about the effect of electron correlations on both the metallic surface state and bulk insulating state. Here we do so by studying the evolution of two transport gaps (low temperature gap E l and high temperature gap E h) associated with the Kondo effect by measuring the electrical resistivity under high pressure and low temperature (0.3 K) conditions. We associate the gaps with the bulk Kondomore » hybridization, and from their evolution with pressure we demonstrate an insulator-to-metal transition at ~4 GPa. At the transition pressure, a large change in the Hall number and a divergence tendency of the electron-electron scattering coefficient provide evidence for a destruction of the Kondo entanglement in the ground state. In conclusion, our results raise the new prospect for studying topological electronic states in quantum critical materials settings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn; Zheng, Xiao, E-mail: xz58@ustc.edu.cn
2016-01-21
The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It ismore » confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.« less
Quantum phase transition and destruction of Kondo effect in pressurized SmB 6
Zhou, Yazhou; Wu, Qi; Rosa, Priscila Ferrari Silveira; ...
2017-10-24
SmB 6 has been a well-known Kondo insulator for decades, but recently attracts extensive new attention as a candidate topological system. Studying SmB 6 under pressure provides an opportunity to acquire the much-needed understanding about the effect of electron correlations on both the metallic surface state and bulk insulating state. Here we do so by studying the evolution of two transport gaps (low temperature gap E l and high temperature gap E h) associated with the Kondo effect by measuring the electrical resistivity under high pressure and low temperature (0.3 K) conditions. We associate the gaps with the bulk Kondomore » hybridization, and from their evolution with pressure we demonstrate an insulator-to-metal transition at ~4 GPa. At the transition pressure, a large change in the Hall number and a divergence tendency of the electron-electron scattering coefficient provide evidence for a destruction of the Kondo entanglement in the ground state. In conclusion, our results raise the new prospect for studying topological electronic states in quantum critical materials settings.« less
Magnetic-field-induced mixed-level Kondo effect in two-level systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Arturo; Ngo, Anh T.; Ulloa, Sergio E.
2016-10-17
We consider a two-orbital impurity system with intra-and interlevel Coulomb repulsion that is coupled to a single conduction channel. This situation can generically occur in multilevel quantum dots or in systems of coupled quantum dots. For finite energy spacing between spin-degenerate orbitals, an in-plane magnetic field drives the system from a local-singlet ground state to a "mixed-level" Kondo regime, where the Zeeman-split levels are degenerate for opposite-spin states. We use the numerical renormalization group approach to fully characterize this mixed-level Kondo state and discuss its properties in terms of the applied Zeeman field, temperature, and system parameters. Under suitable conditions,more » the total spectral function is shown to develop a Fermi-level resonance, so that the linear conductance of the system peaks at a finite Zeeman field while it decreases as a function of temperature. These features, as well as the local moment and entropy contribution of the impurity system, are commensurate with Kondo physics, which can be studied in suitably tuned quantum dot systems.« less
Quantum quench of Kondo correlations in optical absorption.
Latta, C; Haupt, F; Hanl, M; Weichselbaum, A; Claassen, M; Wuester, W; Fallahi, P; Faelt, S; Glazman, L; von Delft, J; Türeci, H E; Imamoglu, A
2011-06-29
The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single semiconductor quantum dot tunnel-coupled to a degenerate electron gas which show that absorption of a single photon leads to an abrupt change in the system Hamiltonian and a quantum quench of Kondo correlations. By inferring the characteristic power-law exponents from the experimental absorption line shapes, we find a unique signature of the quench in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between the initial and final many-body wavefunctions. We show that the power-law exponent that determines the degree of orthogonality can be tuned using an external magnetic field, which unequivocally demonstrates that the observed absorption line shape originates from Kondo correlations. Our experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernek, E.; Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP 13560-970; Büsser, C. A.
2014-03-31
A double quantum dot device, connected to two channels that only interact through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. Using a two-impurity Anderson model, and realistic parameter values [S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)], it is shown that, by applying a moderate magnetic field and independently adjusting the gate potential of each quantum dot at half-filling, a spin-orbital SU(2) Kondo state can be achieved where the Kondo resonance originates from spatially separated parts of themore » device. Our results clearly link this spatial separation effect to currents with opposing spin polarizations in each channel, i.e., the device acts as a spin filter. In addition, an experimental probe of this polarization effect is suggested, pointing to the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.« less
Superconductivity from a non-Fermi-liquid metal: Kondo fluctuation mechanism in slave-fermion theory
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok
2010-03-01
We propose Kondo fluctuation mechanism of superconductivity, differentiated from the spin-fluctuation theory as the standard model for unconventional superconductivity in the weak-coupling approach. Based on the U(1) slave-fermion representation of an effective Anderson lattice model, where localized spins are described by the Schwinger boson theory and hybridization or Kondo fluctuations weaken antiferromagnetic correlations of localized spins, we found an antiferromagnetic quantum critical point from an antiferromagnetic metal to a heavy-fermion metal in our recent study. The Kondo-induced antiferromagnetic quantum critical point was shown to be described by both conduction electrons and fermionic holons interacting with critical spin fluctuations given by deconfined bosonic spinons with a spin quantum number 1/2. Surprisingly, such critical modes turned out to be described by the dynamical exponent z=3 , giving rise to the well-known non-Fermi-liquid physics such as the divergent Grüneisen ratio with an exponent 2/3 and temperature-linear resistivity in three dimensions. We find that the z=3 antiferromagnetic quantum critical point becomes unstable against superconductivity, where critical spinon excitations give rise to pairing correlations between conduction electrons and between fermionic holons, respectively, via hybridization fluctuations. Such two kinds of pairing correlations result in multigap unconventional superconductivity around the antiferromagnetic quantum critical point of the slave-fermion theory, where s -wave pairing is not favored generically due to strong correlations. We show that the ratio between each superconducting gap for conduction electrons Δc and holons Δf and the transition temperature Tc is 2Δc/Tc˜9 and 2Δf/Tc˜O(10-1) , remarkably consistent with CeCoIn5 . A fingerprint of the Kondo mechanism is emergence of two kinds of resonance modes in not only spin but also charge fluctuations, where the charge resonance mode at an antiferromagnetic wave vector originates from d -wave pairing of spinless holons. We discuss how the Kondo fluctuation theory differs from the spin-fluctuation approach.
NASA Astrophysics Data System (ADS)
Vernek, Edson; Ruiz-Tijerina, David; da Silva, Luis D.; Egues, José Carlos
2015-09-01
Quantum dot attached to topological wires has become an interesting setup to study Majorana bound state in condensed matter[1]. One of the major advantage of using a quantum dot for this purpose is that it provides a suitable manner to study the interplay between Majorana bound states and the Kondo effect. Recently we have shown that a non-interacting quantum dot side-connected to a 1D topological superconductor and to metallic normal leads can sustain a Majorana mode even when the dot is empty. This is due to the Majorana bound state of the wire leaking into the quantum dot. Now we investigate the system for the case in which the quantum dot is interacting[3]. We explore the signatures of a Majorana zero-mode leaking into the quantum dot, using a recursive Green's function approach. We then study the Kondo regime using numerical renormalization group calculations. In this regime, we show that a "0.5" contribution to the conductance appears in system due to the presence of the Majorana mode, and that it persists for a wide range of the dot parameters. In the particle-hole symmetric point, in which the Kondo effect is more robust, the total conductance reaches 3e^2/2h, clearly indicating the coexistence of a Majorana mode and the Kondo resonance in the dot. However, the Kondo effect is suppressed by a gate voltage that detunes the dot from its particle-hole symmetric point as well as by a Zeeman field. The Majorana mode, on the other hand, is almost insensitive to both of them. We show that the zero-bias conductance as a function of the magnetic field follows a well-known universal curve. This can be observed experimentally, and we propose that this universality followed by a persistent conductance of 0.5,e^2/h are evidence for the presence of Majorana-Kondo physics. This work is supported by the Brazilians agencies FAPESP, CNPq and FAPEMIG. [1] A. Y. Kitaev, Ann.Phys. {bf 303}, 2 (2003). [2] E. Vernek, P.H. Penteado, A. C. Seridonio, J. C. Egues, Phys. Rev. B {bf 89}, 165314 (2014). [3] David A. Ruiz-Tijerina, E. Vernek, Luis G. G. V. Dias da Silva, J. C. Egues, arXiv:1412.1851 [cond-mat.mes-hall].
Automated cloud screening of AVHRR imagery using split-and-merge clustering
NASA Technical Reports Server (NTRS)
Gallaudet, Timothy C.; Simpson, James J.
1991-01-01
Previous methods to segment clouds from ocean in AVHRR imagery have shown varying degrees of success, with nighttime approaches being the most limited. An improved method of automatic image segmentation, the principal component transformation split-and-merge clustering (PCTSMC) algorithm, is presented and applied to cloud screening of both nighttime and daytime AVHRR data. The method combines spectral differencing, the principal component transformation, and split-and-merge clustering to sample objectively the natural classes in the data. This segmentation method is then augmented by supervised classification techniques to screen clouds from the imagery. Comparisons with other nighttime methods demonstrate its improved capability in this application. The sensitivity of the method to clustering parameters is presented; the results show that the method is insensitive to the split-and-merge thresholds.
Assertions of Japanese Websites for and Against Cancer Screening: a Text Mining Analysis
Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masahumi; Kato, Mio; Kiuchi, Takahiro
2017-04-01
Background: Cancer screening rates are lower in Japan than in Western countries such as the United States and the United Kingdom. While health professionals publish pro-cancer-screening messages online to encourage proactive seeking for screening, anti-screening activists use the same medium to warn readers against following guidelines. Contents of pro- and anti-cancer-screening sites may contribute to readers’ acceptance of one or the other position. We aimed to use a text-mining method to examine frequently appearing contents on sites for and against cancer screening. Methods: We conducted online searches in December 2016 using two major search engines in Japan (Google Japan and Yahoo! Japan). Targeted websites were classified as “pro”, “anti”, or “neutral” depending on their claims, with the author(s) classified as “health professional”, “mass media”, or “layperson”. Text-mining analyses were conducted, and statistical analysis was performed using the chi-square test. Results: Of the 169 websites analyzed, the top-three most frequently appearing content topics in pro sites were reducing mortality via cancer screening, benefits of early detection, and recommendations for obtaining detailed examination. The top three most frequent in anti-sites were harm from radiation exposure, non-efficacy of cancer screening, and lack of necessity of early detection. Anti-sites also frequently referred to a well-known Japanese radiologist, Makoto Kondo, who rejects the standard forms of cancer care. Conclusion: Our findings should enable authors of pro-cancer-screening sites to write to counter misleading anti-cancer-screening messages and facilitate dissemination of accurate information. Creative Commons Attribution License
Tunable quantum criticality and super-ballistic transport in a "charge" Kondo circuit.
Iftikhar, Z; Anthore, A; Mitchell, A K; Parmentier, F D; Gennser, U; Ouerghi, A; Cavanna, A; Mora, C; Simon, P; Pierre, F
2018-05-03
Quantum phase transitions (QPTs) are ubiquitous in strongly-correlated materials. However the microscopic complexity of these systems impedes the quantitative understanding of QPTs. Here, we observe and thoroughly analyze the rich strongly-correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. Notably, an unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated phenomena. Copyright © 2018, American Association for the Advancement of Science.
Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes
NASA Astrophysics Data System (ADS)
Cheng, YongXi; Li, ZhenHua; Wei, JianHua; Nie, YiHang; Yan, YiJing
2018-04-01
Based on the hierarchical equations of motion approach, we study the time-dependent transport properties of a strongly correlated quantum dot system in the Kondo regime (KR), mixed valence regime (MVR), and empty orbital regime (EOR). We find that the transient current in KR shows the strongest nonlinear response and the most distinct oscillation behaviors. Both behaviors become weaker in MVR and diminish in EOR. To understand the physical insight, we examine also the corresponding dot occupancies and the spectral functions, with their dependence on the Coulomb interaction, temperature, and applied step bias voltage. The above nonlinear and oscillation behaviors could be understood as the interplay between dynamical Kondo resonance and single electron resonant-tunneling.
Chiral Spin Order in Kondo-Heisenberg systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsvelik, A. M.; Yevtushenko, O. M.
We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less
Emery-Kivelson solution of the two-channel Kondo problem
NASA Astrophysics Data System (ADS)
Sengupta, Anirvan M.; Georges, Antoine
1994-04-01
We consider the two-channel Kondo model in the Emery-Kivelson approach, and calculate the total susceptibility enhancement due to the impurity χimp=χ-χbulk. We find that χimp exactly vanishes at the solvable point, in a completely analogous way to the singular part of the specific heat Cimp. A perturbative calculation around the solvable point yields the generic behavior χimp~log(1/T), Cimp~T logT and the known universal value of the Wilson ratio RW=8/3. From this calculation, the Kondo temperature can be identified and is found to behave as the inverse square of the perturbation parameter. The small-field, zero-temperature behavior χimp~log(1/h) is also recovered.
Charge Fractionalization in the Two-Channel Kondo Effect
NASA Astrophysics Data System (ADS)
Landau, L. Aviad; Cornfeld, Eyal; Sela, Eran
2018-05-01
The phenomenon of charge fractionalization describes the emergence of novel excitations with fractional quantum numbers, as predicted in strongly correlated systems such as spin liquids. We elucidate that precisely such an unusual effect may occur in the simplest possible non-Fermi liquid, the two-channel Kondo effect. To bring this concept down to experimental test, we study nonequilibrium transport through a device realizing the charge two-channel Kondo critical point in a recent experiment by Iftikhar et al. [Nature (London) 526, 233 (2015), 10.1038/nature15384]. The shot noise at low voltages is predicted to result in a universal Fano factor e*/e =1 /2 . This allows us to experimentally identify elementary transport processes of emergent fermions carrying half-integer charge.
Kondo-like zero-bias conductance anomaly in a three-dimensional topological insulator nanowire
Cho, Sungjae; Zhong, Ruidan; Schneeloch, John A.; ...
2016-02-25
Zero-bias anomalies in topological nanowires have recently captured significant attention, as they are possible signatures of Majorana modes. Yet there are many other possible origins of zero-bias peaks in nanowires—for example, weak localization, Andreev bound states, or the Kondo effect. Here, we discuss observations of differential-conductance peaks at zero-bias voltage in non-superconducting electronic transport through a 3D topological insulator (Bi 1.33Sb 0.67)Se 3 nanowire. The zero-bias conductance peaks show logarithmic temperature dependence and often linear splitting with magnetic fields, both of which are signatures of the Kondo effect in quantum dots. As a result, we characterize the zero-bias peaks andmore » discuss their origin.« less
Chiral Spin Order in Kondo-Heisenberg systems
Tsvelik, A. M.; Yevtushenko, O. M.
2017-12-15
We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less
NASA Astrophysics Data System (ADS)
Nelson, R. R.; Taylor, T.; O'Dell, C.; Cronk, H. Q.; Partain, P.; Frankenberg, C.; Eldering, A.; Crisp, D.; Gunson, M. R.; Chang, A.; Fisher, B.; Osterman, G. B.; Pollock, H. R.; Savtchenko, A.; Rosenthal, E. J.
2015-12-01
Effective cloud and aerosol screening is critically important to the Orbiting Carbon Observatory-2 (OCO-2), which can accurately determine column averaged dry air mole fraction of carbon dioxide (XCO2) only when scenes are sufficiently clear of scattering material. It is crucial to avoid sampling biases, in order to maintain a globally unbiased XCO2 record for inversion modeling to determine sources and sinks of carbon dioxide. This work presents analysis from the current operational B7 data set, which is identifying as clear approximately 20% of the order one million daily soundings. Of those soundings that are passed to the L2 retrieval algorithm, we find that almost 80% are yielding XCO2 estimates that converge. Two primary preprocessor algorithms are used to cloud screen the OCO-2 soundings. The A-Band Preprocessor (ABP) uses measurements in the Oxygen-A band near 0.76 microns (mm) to determine scenes with large photon path length modifications due to scattering by aerosol and clouds. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) algorithm (IDP) computes ratios of retrieved CO2 (and H2O) in the 1.6mm (weak CO2) and 2.0mm (strong CO2) spectral bands to determine scenes with spectral differences, indicating contamination by scattering materials. We demonstrate that applying these two algorithms in tandem provides robust cloud screening of the OCO-2 data set. We compare the OCO-2 cloud screening results to collocated Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask data and show that agreement between the two sensors is approximately 85-90%. A detailed statistical analysis is performed on a winter and spring 16-day repeat cycle for the nadir-land, glint-land and glint-water viewing geometries. No strong seasonal, spatial or footprint dependencies are found, although the agreement tends to be worse at high solar zenith angles and for snow and ice covered surfaces.
Using deep recurrent neural network for direct beam solar irradiance cloud screening
NASA Astrophysics Data System (ADS)
Chen, Maosi; Davis, John M.; Liu, Chaoshun; Sun, Zhibin; Zempila, Melina Maria; Gao, Wei
2017-09-01
Cloud screening is an essential procedure for in-situ calibration and atmospheric properties retrieval on (UV-)MultiFilter Rotating Shadowband Radiometer [(UV-)MFRSR]. Previous study has explored a cloud screening algorithm for direct-beam (UV-)MFRSR voltage measurements based on the stability assumption on a long time period (typically a half day or a whole day). To design such an algorithm requires in-depth understanding of radiative transfer and delicate data manipulation. Recent rapid developments on deep neural network and computation hardware have opened a window for modeling complicated End-to-End systems with a standardized strategy. In this study, a multi-layer dynamic bidirectional recurrent neural network is built for determining the cloudiness on each time point with a 17-year training dataset and tested with another 1-year dataset. The dataset is the daily 3-minute cosine corrected voltages, airmasses, and the corresponding cloud/clear-sky labels at two stations of the USDA UV-B Monitoring and Research Program. The results show that the optimized neural network model (3-layer, 250 hidden units, and 80 epochs of training) has an overall test accuracy of 97.87% (97.56% for the Oklahoma site and 98.16% for the Hawaii site). Generally, the neural network model grasps the key concept of the original model to use data in the entire day rather than short nearby measurements to perform cloud screening. A scrutiny of the logits layer suggests that the neural network model automatically learns a way to calculate a quantity similar to total optical depth and finds an appropriate threshold for cloud screening.
Anomalous three-dimensional bulk ac conduction within the Kondo gap of SmB 6 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurita, N. J.; Morris, C. M.; Koohpayeh, S. M.
The Kondo insulator SmB 6 has long been known to display anomalous transport behavior at low temperatures, T < 5 K. In this temperatures range, a plateau is observed in the dc resistivity, contrary to the exponential divergence expected for a gapped system. Some recent theoretical calculations suggest that SmB 6 may be the first topological Kondo insulator (TKI) and propose that the residual conductivity is due to topological surface states which reside within the Kondo gap. Since the TKI prediction many experiments have claimed to observe high mobility surface states within a perfectly insulating hybridization gap. We investigate themore » low energy optical conductivity within the hybridization gap of single crystals of SmB 6 via time domain terahertz spectroscopy. Samples grown by both optical floating zone and aluminum flux methods are investigated to probe for differences originating from sample growth techniques. We find that both samples display significant three-dimensional bulk conduction originating within the Kondo gap. Although SmB 6 may be a bulk dc insulator, it shows significant bulk ac conduction that is many orders of magnitude larger than any known impurity band conduction. The nature of these in-gap states and their coupling with the low energy spin excitons of SmB 6 is discussed. In addition, the well-defined conduction path geometry of our optical experiments allows us to show that any surface states, which lie below our detection threshold if present, must have a sheet resistance of R / square ≥ 1000 Ω .« less
Spin and charge transport through carbon based systems
NASA Astrophysics Data System (ADS)
Jung, Suyong
In this thesis, we investigate spin-dependent transport through ferromagnet-contacted single-walled carbon nanotubes (SWCNTs), in which charge transport shows the Fabry-Perot (FP) interference effect, the Kondo effect and the Coulomb blockade effect at low temperatures. Hysteric magnetoresistance (MR) is observed in all three transport regimes, which can be controlled by both the external magnetic field and the gate voltage. The MR in the FP interference regime can be well understood by a model considering the intrinsic electronic structure of SWCNTs and the quantum interference effect. In the strongly interacting Kondo regime, the Kondo effect is not suppressed by the presence of nearby ferromagnetism. Several observed MR features including the non-splitted zero-bias Kondo peak and positive MR switching can be explained by the strong Kondo effect and weak ferromagnetism in the leads. In the Coulomb blockade regime, several effects that can be associated with the magneto-Coulomb effect have been observed, and isolated spin accumulation and transport through the SWCNT quantum dot have been realized by a four-probe non-local measurements. We also studied charge transport behavior through organic semiconductor pentacene thin film transistors (OTFTs) in the limit of single- or a few molecular layers of pentacene films. The charge transport in these devices can be well explained by the multiple trapping and release model. The structural disorders induced by the physical and chemical causes, such as grain boundaries, interactions with gate insulator, metal contacts and ambient conditions can be responsible for the localized trap states in the ultrathin layer OTFTs, which are further confirmed by the electric force microscopy (EFM) measurements.
Anomalous three-dimensional bulk ac conduction within the Kondo gap of SmB 6 single crystals
Laurita, N. J.; Morris, C. M.; Koohpayeh, S. M.; ...
2016-10-21
The Kondo insulator SmB 6 has long been known to display anomalous transport behavior at low temperatures, T < 5 K. In this temperatures range, a plateau is observed in the dc resistivity, contrary to the exponential divergence expected for a gapped system. Some recent theoretical calculations suggest that SmB 6 may be the first topological Kondo insulator (TKI) and propose that the residual conductivity is due to topological surface states which reside within the Kondo gap. Since the TKI prediction many experiments have claimed to observe high mobility surface states within a perfectly insulating hybridization gap. We investigate themore » low energy optical conductivity within the hybridization gap of single crystals of SmB 6 via time domain terahertz spectroscopy. Samples grown by both optical floating zone and aluminum flux methods are investigated to probe for differences originating from sample growth techniques. We find that both samples display significant three-dimensional bulk conduction originating within the Kondo gap. Although SmB 6 may be a bulk dc insulator, it shows significant bulk ac conduction that is many orders of magnitude larger than any known impurity band conduction. The nature of these in-gap states and their coupling with the low energy spin excitons of SmB 6 is discussed. In addition, the well-defined conduction path geometry of our optical experiments allows us to show that any surface states, which lie below our detection threshold if present, must have a sheet resistance of R / square ≥ 1000 Ω .« less
Očko, M.; Zadro, K.; Drobac, Đ.; ...
2016-11-16
Here, in order to study Kondo ferromagnetism of CePt, we have investigated the transport properties, resistivity and thermopower, of the Ce xY 1-xPt alloy system from 2 K to 320 K. The extracted magnetic contribution to the total resistivity cannot be scaled to the concentration and is much higher than in the Ce xLa 1-xPt alloy system. The maximum of the magnetic contribution of the resistivity moves to lower temperatures with decreasing the Ce content while the temperature of the minimum of the thermopower does not change with concentration. These two facts seem to be in contradiction. Usually one assumesmore » that these extrema represent the Kondo temperature. To the contrary, we show that the Kondo temperature increases with decreasing Ce content. The most intriguing observation in this alloy system is the linear relationship between the Curie temperature and the concentration of the Ce ions and, moreover, that it is the same as in Ce xLa 1-xPt. Lastly, this fact is in contradiction with the conventional picture of small moment Kondo magnetism.« less
Green's function approach to the Kondo effect in nanosized quantum corrals
NASA Astrophysics Data System (ADS)
Li, Q. L.; Wang, R.; Xie, K. X.; Li, X. X.; Zheng, C.; Cao, R. X.; Miao, B. F.; Sun, L.; Wang, B. G.; Ding, H. F.
2018-04-01
We present a theoretical study of the Kondo effect for a magnetic atom placed inside nanocorrals using Green's function calculations. Based on the standard mapping of the Anderson impurity model to a one-dimensional chain model, we formulate a weak-coupling theory to study the Anderson impurities in a hosting bath with a surface state. With further taking into account the multiple scattering effect of the surrounding atoms, our calculations show that the Kondo resonance width of the atom placed at the center of the nanocorral can be significantly tuned by the corral size, in good agreement with recent experiments [Q. L. Li et al., Phys. Rev. B 97, 035417 (2018), 10.1103/PhysRevB.97.035417]. The method can also be applied to the atom placed at an arbitrary position inside the corral where our calculation shows that the Kondo resonance width also oscillates as the function of its separation from the corral center. The prediction is further confirmed by the low-temperature scanning tunneling microscopy studies where a one-to-one correspondence is found. The good agreement with the experiments validates the generality of the method to the system where multiadatoms are involved.
Theory of scanning tunneling spectroscopy: from Kondo impurities to heavy fermion materials
NASA Astrophysics Data System (ADS)
Morr, Dirk K.
2017-01-01
Kondo systems ranging from the single Kondo impurity to heavy fermion materials present us with a plethora of unconventional properties whose theoretical understanding is still one of the major open problems in condensed matter physics. Over the last few years, groundbreaking scanning tunneling spectroscopy (STS) experiments have provided unprecedented new insight into the electronic structure of Kondo systems. Interpreting the results of these experiments—the differential conductance and the quasi-particle interference spectrum—however, has been complicated by the fact that electrons tunneling from the STS tip into the system can tunnel either into the heavy magnetic moment or the light conduction band states. In this article, we briefly review the theoretical progress made in understanding how quantum interference between these two tunneling paths affects the experimental STS results. We show how this theoretical insight has allowed us to interpret the results of STS experiments on a series of heavy fermion materials providing detailed knowledge of their complex electronic structure. It is this knowledge that is a conditio sine qua non for developing a deeper understanding of the fascinating properties exhibited by heavy fermion materials, ranging from unconventional superconductivity to non-Fermi-liquid behavior in the vicinity of quantum critical points.
Han, Fei; Wan, Xiangang; Phelan, Daniel; ...
2015-07-13
ZrCuSi 2-type CePd 1-xBi 2 crystals were obtained from excess Bi flux. Magnetic susceptibility measurements reveal that CePd 1-xBi 2 is a highly anisotropic antiferromagnet with transition temperature at 6 K, and a magnetic-field-induced metamagnetic transition at 5 T. An enhanced Sommerfeld coefficient of γ of 0.199 J-mol-Ce -1K -2 obtained from specific heat measurements suggests a moderate Kondo effect in CePd 1-xBi 2. In addition to the antiferromagnetic peak the resistivity curve shows a shoulder-like behavior which could be attributed to the presence of Kondo effect and crystal-electric-field effects in this compound. Magnetoresistance and Hall effect measurements suggest anmore » interplay between Kondo and crystal-electric-field effects which reconstructs the Fermi surface topology of CePd 1-xBi 2 around 75 K. Electronic structure calculations reveal the Pd vacancies are important to the magnetic structure and enhance the crystal-electric-field effects which quench the orbital moment of Ce at low temperatures.« less
Heat current through an artificial Kondo impurity beyond linear response
NASA Astrophysics Data System (ADS)
Sierra, Miguel A.; Sánchez, David
2018-03-01
We investigate the heat current of a strongly interacting quantum dot in the presence of a voltage bias in the Kondo regime. Using the slave-boson mean-field theory, we discuss the behavior of the energy flow and the Joule heating. We find that both contributions to the heat current display interesting symmetry properties under reversal of the applied dc bias. We show that the symmetries arise from the behavior of the dot transmission function. Importantly, the transmission probability is a function of both energy and voltage. This allows us to analyze the heat current in the nonlinear regime of transport. We observe that nonlinearities appear already for voltages smaller than the Kondo temperature. Finally, we suggest to use the contact and electric symmetry coefficients as a way to measure pure energy currents.
Influence of kondo effect on the specific heat jump of anisotropic superconductors
NASA Astrophysics Data System (ADS)
Yoksan, S.
1986-01-01
A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. We give explicit expressions for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally.
NASA Technical Reports Server (NTRS)
Ramirez, Daniel Perez; Lyamani, H.; Olmo, F. J.; Whiteman, D. N.; Navas-Guzman, F.; Alados-Arboledas, L.
2012-01-01
This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.
The effect of cloud screening on MAX-DOAS aerosol retrievals.
NASA Astrophysics Data System (ADS)
Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; De Backer, Hugo; De Bock, Veerle; Laffineur, Quentin; Vlemmix, Tim
2014-05-01
In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under strong non-clear-sky conditions, causing strong data quality degradation and uncertainties on the retrievals. Here we present the result of our cloud-screening method, using the colour index (CI), on aerosol retrievals from MAX-DOAS measurements (AOD and vertical profiles). We focus on two large data sets, from the Brussels and Beijing area. Using the CI we define 3 different sky conditions: bad (=full thick cloud cover/extreme aerosols), mediocre (=thin clouds/aerosols) and good (=clear sky). We also flag the presence of broken/scattered clouds. We further compare our cloud-screening method with results from cloud-cover fractions derived from thermic infrared measurements. In general, our method shows good results to qualify the sky and cloud conditions of MAX-DOAS measurements, without the need for other external cloud-detection systems. Removing data under bad-sky and broken-cloud conditions results in a strongly improved agreement, in both correlation and slope, between the MAX-DOAS aerosol retrievals and data from other instruments (e.g. AERONET, Brewer). With the improved AOD retrievals, the seasonal and diurnal variations of the aerosol content and vertical distribution at both sites can be investigated in further detail. By combining with additional information derived by other instruments (Brewer, lidar, ...) operated at the stations, we will further study the observed aerosol characteristics, and their influence on and by meteorological conditions such as clouds and/or the boundary layer height.
NASA Astrophysics Data System (ADS)
Yang, Hyunsoo
2006-03-01
The fundamental origin of tunneling magnetoresistance in magnetic tunnel junctions (MTJs) is the spin-polarized tunneling current, which can be measured directly using superconducting tunneling spectroscopy (STS). The STS technique was first developed by Meservey and Tedrow using aluminum superconducting electrodes. Al has been widely used because of its low spin orbit scattering. However, measurements must be made at low temperatures (<0.4 K) because of the low superconducting transition temperature of Al. Here, we demonstrate that superconducting electrodes formed from NbN can be used to measure tunneling spin polarization (TSP) at higher temperatures up to ˜1.2K. The tunneling magnetoresistance and polarization of the tunneling current in MTJs is highly sensitive to the detailed structure of the tunneling barrier. Using MgO tunnel barriers we find TSP values as high as 90% at 0.25K. The TMR is, however, depressed by insertion of ultra thin layers of both non-magnetic and magnetic metals in the middle of the MgO barrier. For ultra-thin, discontinuous magnetic layers of CoFe, we find evidence of Kondo assisted tunneling, from increased conductance at low temperatures (<50K) and bias voltage (<20 mV). Over the same temperature and bias voltage regimes the tunneling magnetoresistance is strongly depressed. We present other evidence of Kondo resonance including the logarithmic temperature dependence of the zero bias conductance peak. We infer the Kondo temperature from both the spectra width of this conductance peak as well as the temperature dependence of the TMR depression. The Kondo temperature is sensitive to the thickness of the inserted CoFe layer and decreases with increased CoFe thickness. * performed in collaboration with S-H. Yang, C. Kaiser, and S. Parkin.
A cloud detection scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT)
NASA Astrophysics Data System (ADS)
Wang, Xi; Guo, Zheng; Huang, Yipeng; Fan, Hongjie; Li, Wanbiao
2017-01-01
Cloud detection is an essential preprocessing step for retrieving carbon dioxide from satellite observations of reflected sunlight. During the pre-launch study of the Chinese Carbon Dioxide Observation Satellite (TANSAT), a cloud-screening scheme was presented for the Cloud and Aerosol Polarization Imager (CAPI), which only performs measurements in five channels located in the visible to near-infrared regions of the spectrum. The scheme for CAPI, based on previous cloudscreening algorithms, defines a method to regroup individual threshold tests for each pixel in a scene according to the derived clear confidence level. This scheme is proven to be more effective for sensors with few channels. The work relies upon the radiance data from the Visible and Infrared Radiometer (VIRR) onboard the Chinese FengYun-3A Polar-orbiting Meteorological Satellite (FY-3A), which uses four wavebands similar to that of CAPI and can serve as a proxy for its measurements. The scheme has been applied to a number of the VIRR scenes over four target areas (desert, snow, ocean, forest) for all seasons. To assess the screening results, comparisons against the cloud-screening product from MODIS are made. The evaluation suggests that the proposed scheme inherits the advantages of schemes described in previous publications and shows improved cloud-screening results. A seasonal analysis reveals that this scheme provides better performance during warmer seasons, except for observations over oceans, where results are much better in colder seasons.
Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I
2015-04-24
We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.
Quantum critical scaling and fluctuations in Kondo lattice materials
Yang, Yi-feng; Pines, David; Lonzarich, Gilbert
2017-01-01
We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308
Bell pair creation in current of Kondo-correlated dot
NASA Astrophysics Data System (ADS)
Sakano, Rui; Oguri, Akira; Nishikawa, Yunori; Abe, Eisuke
Recently, local-Fermi-liquid properties in non-linear currents and shot noises through the Kondo dot have been investigated both theoretically and experimentally. We suggest a new entangled-electron-pair generator utilizing mechanism of quasiparticle-pair creation which has been observed as enhancement of shot noise in the quantum dot. Using the renormalized perturbation theory for an orbital-degenerate impurity Anderson model and the full counting statistics, we calculate the Clauser-Horne-Shimony-Holt type Bell's correlator for currents through correlated two different channels of a Kondo correlated dot. It is shown that residual exchange-interactions of the local-Fermi-liquid create spin-entangled quasiparticle-pairs in nonlinear current and this results in violation of the Bell's inequality. This work was partially supported by JSPS KAKENHI Grant Numbers JP26220711, JP26400319, JP15K05181 and JP16K17723.
Quantum corrections to conductivity in graphene with vacancies
NASA Astrophysics Data System (ADS)
Araujo, E. N. D.; Brant, J. C.; Archanjo, B. S.; Medeiros-Ribeiro, G.; Alves, E. S.
2018-06-01
In this work, different regions of a graphene device were exposed to a 30 keV helium ion beam creating a series of alternating strips of vacancy-type defects and pristine graphene. From magnetoconductance measurements as function of temperature, density of carriers and density of strips we show that the electron-electron interaction is important to explain the logarithmic quantum corrections to the Drude conductivity in graphene with vacancies. It is known that vacancies in graphene behave as local magnetic moments that interact with the conduction electrons and leads to a logarithmic correction to the conductance through the Kondo effect. However, our work shows that it is necessary to account for the non-homogeneity of the sample to avoid misinterpretations about the Kondo physics due the difficulties in separating the electron-electron interaction from the Kondo effect.
Information scrambling at an impurity quantum critical point
NASA Astrophysics Data System (ADS)
Dóra, Balázs; Werner, Miklós Antal; Moca, Cǎtǎlin Paşcu
2017-10-01
The two-channel Kondo impurity model realizes a local non-Fermi-liquid state with finite residual entropy. The competition between the two channels drives the system to an impurity quantum critical point. We show that the out-of-time-ordered (OTO) commutator for the impurity spin reveals markedly distinct behavior depending on the low-energy impurity state. For the one-channel Kondo model with Fermi-liquid ground state, the OTO commutator vanishes for late times, indicating the absence of the butterfly effect. For the two channel case, the impurity OTO commutator is completely temperature independent and saturates quickly to its upper bound 1/4, and the butterfly effect is maximally enhanced. These compare favorably to numerics on spin chain representation of the Kondo model. Our results imply that a large late time value of the OTO commutator does not necessarily diagnose quantum chaos.
Single-molecule quantum dot as a Kondo simulator
NASA Astrophysics Data System (ADS)
Hiraoka, R.; Minamitani, E.; Arafune, R.; Tsukahara, N.; Watanabe, S.; Kawai, M.; Takagi, N.
2017-06-01
Structural flexibility of molecule-based systems is key to realizing the novel functionalities. Tuning the structure in the atomic scale enables us to manipulate the quantum state in the molecule-based system. Here we present the reversible Hamiltonian manipulation in a single-molecule quantum dot consisting of an iron phthalocyanine molecule attached to an Au electrode and a scanning tunnelling microscope tip. We precisely controlled the position of Fe2+ ion in the molecular cage by using the tip, and tuned the Kondo coupling between the molecular spins and the Au electrode. Then, we realized the crossover between the strong-coupling Kondo regime and the weak-coupling regime governed by spin-orbit interaction in the molecule. The results open an avenue to simulate low-energy quantum many-body physics and quantum phase transition through the molecular flexibility.
Hc2(0) and the Kondo Effect in FeSe0.1Te0.9 Epitaxial Films
NASA Astrophysics Data System (ADS)
Cornell, Nicholas; Zakhidov, Anvar; Jaime, Marcelo; Huang, Jijie; Wang, Hayan; Salamon, Myron
2015-03-01
High-quality, [001]-oriented epitaxial films of FeSe0.1Te0.9 have been grown on SrTiO3. They are found to have increased critical temperatures and critical fields relative to both bulk samples and thin films of the sister compound, FeSe0.5Te0.5. Critical field values in excess of 114 T have been reported based on WHH theory. In addition to these improved properties, most samples show resistance minima above Tc, reminiscent of the Kondo effect, presumably from excess Fe. We report results of a high field investigation of these thin films that reveals an empirical zero-temperature value of Hc2(0) ~ 46 T along [001], significantly less than the WHH estimate, but still exceeding the maximum strong coupling correction to the Pauli limit. Large negative magnetoresistance above the critical field confirms the presence of Kondo behavior in the normal state and persists without saturation up to 60 T. Why the measured critical field exceeds the paramagnetic limit remains a question. However, a Kondo temperature that exceeds the superconducting Tc can lead to overestimated WHH upper critical fields and could explain the wide variation in Tc and Hc2 among the ``11'' iron chalcogenides.
Anomalous Kondo transport in a single-electron transistor driven by microwave field
NASA Astrophysics Data System (ADS)
Cao, Zhan; Chen, Cheng; Chen, Fu-Zhou; Luo, Hong-Gang
2014-03-01
The Kondo transport in a single-electron transistor continues to provide unexpected physics due to the interplay between magnetic field and microwave applied, as shown in a recent experiment(B. Hemingway et al., arXiv:1304.0037). For a given microwave frequency, the Kondo differential conductance shows an anomalous magnetic field dependence, and a very sharp peak is observed for certain field applied. Additionally, the microwave frequency is found to be larger of about one order than the corresponding Zeeman energy. These two features are not understood in the current theory. Here we propose a phenomenological mechanism to explain these observations. When both magnetic field and microwave are applied in the SET, if the frequency matches the (renormalized) Zeeman energy, it is assumed that the microwave is able to induce spin-ip in the single-electron transistor, which leads to two consequences. One is the dot level shifts down and the other is the renormalization of the Zeeman energy. This picture can not only explain qualitatively the main findings in the experiment but also further stimulate the related experimental study of the Kondo transport. Additional microwave modulation may provide a novel way to explore the functional of the SET in nanotechnology and quantum information processing.
NASA Astrophysics Data System (ADS)
Mozaffari, Shirin; Guchhait, Samaresh; Markert, John T.
2017-10-01
We report the effects of oxygen pressure during growth (PO2 ) on the electronic and magnetic properties of PrAlO3 films grown on TiO2 -terminated SrTiO3 substrates. Resistivity measurements show an increase in the sheet resistance as PO2 is increased. The saturation of the sheet resistance down to 0.3 K is consistent with Kondo theory for PO2 ≥slant 10-5 torr. Resistivity data fits indicate Kondo temperatures of 16-18 K. For the 10-4 sample, we measured a moderate positive magnetoresistance (MR) due to a strong spin-orbit (SO) interaction at low magnetic fields that evolves into a larger negative MR at high fields due to the Kondo effect. Analysis of the MR data permitted the extraction of the SO interaction critical field for the PO2=10-5 torr interface ( H_SO=1.25 T). We observed high positive MR for the least oxygenated sample, where a fraction of the n-type carriers are derived from oxygen vacancies and possible cation interdiffusion; for this 6×10-6 torr sample, Hall effect data indicate a thick conducting layer. Its extremely high MR (˜400% ) is attributed to classical behavior due to a distribution of mobilities.
NASA Astrophysics Data System (ADS)
Xiong, Yong-Chen; Huang, Hai-Ming; Zhao, Wen-Lei; Laref, Amel
2017-10-01
Quantum dot system provides an ideal platform for quantum information processing, within which to demonstrate the quantum states is one of the most important issue for quantum simulation and quantum computation. In this paper, we report a peculiar electron state in a parallel triple dot device where the Ruderman-Kittel-Kasuya-Yosida interaction is invalid when the level differences of the dots sweep into appropriate regime. This extraordinary tendency then results in an antiferromagnetic spin coupling between two of the dots and may lead to zero or full conductance, relying deeply on the relation of the two level spacings. e.g. when the level differences are kept equal, the Kondo effect is totally suppressed although the dots are triply occupied, since in this case a local inter-dot transport loop is found to play an important role in the transmission coefficient. By contrast, when the differences are retained symmetric, the Kondo peak reaches nearly to its unitary limit, owing to that the inter-dot transport process is significantly suppressed. To approach these problems, voltage controllable quantum phase transitions of Kosterlitz-Thouless type and first order are shown, and possible pictures related to the many-body effect and the effective Kondo model are given.
Hybridization in Kondo lattice heavy fermions via quasiparticle scattering spectroscopy (QPS)
NASA Astrophysics Data System (ADS)
Narasiwodeyar, Sanjay; Dwyer, Matt; Greene, Laura; Park, Wan Kyu; Bauer, Eric; Tobash, Paul; Baumbach, Ryan; Ronning, Filip; Sarrao, John; Thompson, Joe; Canfield, Paul
2014-03-01
Band renormalization in a Kondo lattice via hybridization of the conduction band with localized states has been a hot topic over the last several years. In part, this has to do with recently reignited interest in the hidden order problem in URu2Si2. Despite recent developments regarding the electronic structure in this compound, it remains to be resolved whether the hidden order phase transition is related to the opening of a hybridization gap. Our quasiparticle scattering spectroscopy (QPS) has shown they are not related directly. This can be understood naturally since in principle band renormalization does not involve symmetry breaking. To deepen our understanding, we extend to other Kondo lattice compounds. For instance, when applied to YbAl3, a vegetable heavy-fermion system, QPS reveals conductance signatures for hybridization in a Kondo lattice such as asymmetric Fano background along with characteristic energy scales. Presenting new results on these materials, we will discuss a broader picture. The work at UIUC is supported by the NSF DMR 12-06766, the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science, and the work done at Ames Lab. was supported under Contract No. DE-AC02-07CH11358.
Magnetic properties of rare-earth sulfide YbAgS2
NASA Astrophysics Data System (ADS)
Iizuka, Ryosuke; Numakura, Ryosuke; Michimura, Shinji; Katano, Susumu; Kosaka, Masashi
2018-05-01
We have succeeded in synthesizing single-phase polycrystalline samples of YbAgS2 belonging to the tetragonal system with space group I41 md . YbAgS2 shows an antiferromagnetic transition at TN = 6.6 K . The effective magnetic moment is in good agreement with the theoretical value for Yb3+ free ion. A broad anomaly is observed just above TN in the temperature dependence of magnetic susceptibility. The entropy released at TN is only about half of Rln2 expected for a Kramers doublet ground state. We consider that these phenomena are due to the existence of short-range magnetic correlations rather than the partial screening of the Yb moments by conduction electrons via the Kondo effect.
Observation of an emergent coherent state in the iron-based superconductor KFe 2 As 2
Yang, Run; Yin, Zhiping; Wang, Yilin; ...
2017-11-14
The ab-plane optical properties of KFe 2As 2 single crystals have been measured over a wide temperature and frequency range. Below T*≃155 K, where this material undergoes an incoherentcoherent crossover, a new coherent response emerges in the optical conductivity. A spectral weight analysis suggests that this new feature originates from high-energy bound states. Below about ≃75 K the scattering rate for this new feature is quadratic in temperature, indicating a Fermiliquid response. Theoretical calculations suggest this crossover is dominated by the d xy orbital. Our results indicate Kondo-type screening is the likely mechanism for the incoherent-coherent crossover in hole-overdoped KFemore » 2As 2.« less
Dynamical spin accumulation in large-spin magnetic molecules
NASA Astrophysics Data System (ADS)
Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej
2018-01-01
The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.
Non-Fermi-Liquid Behavior in Transport Through Co-Doped Au Chains
NASA Astrophysics Data System (ADS)
Di Napoli, S.; Weichselbaum, A.; Roura-Bas, P.; Aligia, A. A.; Mokrousov, Y.; Blügel, S.
2013-05-01
We calculate the conductance as a function of temperature G(T) through Au monatomic chains containing one Co atom as a magnetic impurity, and connected to two conducting leads with a fourfold symmetry axis. Using the information derived from ab initio calculations, we construct an effective model H^eff that hybridizes a 3d7 quadruplet at the Co site with two 3d8 triplets through the hopping of 5dxz and 5dyz electrons of Au. The quadruplet is split by spin anisotropy due to spin-orbit coupling. Solving H^eff with the numerical renormalization group we find that at low temperatures G(T)=a-bT and the ground state impurity entropy is ln(2)/2, a behavior similar to the two-channel Kondo model. Stretching the chain leads to a non-Kondo phase, with the physics of the underscreened Kondo model at the quantum critical point.
Electronic inhomogeneity in a Kondo lattice
Bauer, E. D.; Yang, Yi-feng; Capan, C.; Urbano, R. R.; Miclea, C. F.; Sakai, H.; Ronning, F.; Graf, M. J.; Balatsky, A. V.; Movshovich, R.; Bianchi, A. D.; Reyes, A. P.; Kuhns, P. L.; Thompson, J. D.; Fisk, Z.
2011-01-01
Inhomogeneous electronic states resulting from entangled spin, charge, and lattice degrees of freedom are hallmarks of strongly correlated electron materials; such behavior has been observed in many classes of d-electron materials, including the high-Tc copper-oxide superconductors, manganites, and most recently the iron–pnictide superconductors. The complexity generated by competing phases in these materials constitutes a considerable theoretical challenge—one that still defies a complete description. Here, we report a manifestation of electronic inhomogeneity in a strongly correlated f-electron system, using CeCoIn5 as an example. A thermodynamic analysis of its superconductivity, combined with nuclear quadrupole resonance measurements, shows that nonmagnetic impurities (Y, La, Yb, Th, Hg, and Sn) locally suppress unconventional superconductivity, generating an inhomogeneous electronic “Swiss cheese” due to disrupted periodicity of the Kondo lattice. Our analysis may be generalized to include related systems, suggesting that electronic inhomogeneity should be considered broadly in Kondo lattice materials.
Interaction quench dynamics in the Kondo model in the presence of a local magnetic field.
Heyl, M; Kehrein, S
2010-09-01
In this work we investigate the quench dynamics in the Kondo model on the Toulouse line in the presence of a local magnetic field. It is shown that this setup can be realized by either applying the local magnetic field directly or by preparing the system in a macroscopically spin-polarized initial state. In the latter case, the magnetic field results from a subtlety in applying the bosonization technique where terms that are usually referred to as finite-size corrections become important in the present non-equilibrium setting. The transient dynamics are studied by analyzing exact analytical results for the local spin dynamics. The timescale for the relaxation of the local dynamical quantities turns out to be exclusively determined by the Kondo scale. In the transient regime, one observes damped oscillations in the local correlation functions with a frequency set by the magnetic field.
Specific heat and magnetic susceptibility of CeNiSn doped with Rh.
Slebarski, A; Maple, M B; Fijałkowski, M; Goraus, J
2010-04-28
CeNiSn is known as a semimetallic system with a small pseudogap at the Fermi energy. We investigate the effect of Rh doping on the Kondo insulator CeNiSn by means of measurements of ac magnetic susceptibility and specific heat. We show that the formation of the Kondo insulator narrow gap in CeNi(1 - x)Rh(x)Sn is associated with disorder-induced f-electron localization. For doped CeNiSn with x ≤ 0.06, the electrical resistivity data follow an activation and variable range hopping behaviour at low T, consistent with weak disorder and localization, while C/T is large, which is not a common feature of Kondo insulators. For x > 0.06, the system is metallic and exhibits non-Fermi liquid behaviour with magnetic susceptibility χ ∼ T( - n) with n ∼ 0.4 and electrical resistivity ρ ∼ T.
Assessment of Cloud Screening with Apparent Surface Reflectance in Support of the ICESat-2 Mission
NASA Technical Reports Server (NTRS)
Yang, Yuekui; Marshak, Alexander; Palm, Stephen P.; Wang, Zhuosen; Schaaf, Crystal
2011-01-01
The separation of cloud and clear scenes is usually one of the first steps in satellite data analysis. Before deriving a geophysical product, almost every satellite mission requires a cloud mask to label a scene as either clear or cloudy through a cloud detection procedure. For clear scenes, products such as surface properties may be retrieved; for cloudy scenes, scientist can focus on studying the cloud properties. Hence the quality of cloud detection directly affects the quality of most satellite operational and research products. This is certainly true for the Ice, Cloud, and land Elevation Satellite-2 (lCESat-2), which is the successor to the ICESat-l. As a top priority mission, ICESat-2 will continue to provide measurements of ice sheets and sea ice elevation on a global scale. Studies have shown that clouds can significantly affect the accuracy of the retrieved results. For example, some of the photons (a photon is a basic unit of light) in the laser beam will be scattered by cloud particles on its way. So instead of traveling in a straight line, these photons are scattered sideways and have traveled a longer path. This will result in biases in ice sheet elevation measurements. Hence cloud screening must be done and be done accurately before the retrievals.
An evaluation of atmospheric corrections to advanced very high resolution radiometer data
Meyer, David; Hood, Joy J.
1993-01-01
A data set compiled to analyze vegetation indices is used to evaluate the effect of atmospheric correction to AVHRR measurement in the solar spectrum. Such corrections include cloud screening and "clear sky" corrections. We used the "clouds from AVHRR" (CLAVR) method for cloud detection and evaluated its performance over vegetated targets. Clear sky corrections, designed to reduce the effects of molecular scattering and absorption due to ozone, water vapor, carbon dioxide, and molecular oxygen, were applied to data values determine to be cloud free. Generally, it was found that the screening and correction of the AVHRR data did not affect the maximum NDVI compositing process adversely, while at the same time improving estimates of the land-surface radiances over a compositing period.
Tuning the Kondo effect in thin Au films by depositing a thin layer of Au on molecular spin-dopants.
Ataç, D; Gang, T; Yilmaz, M D; Bose, S K; Lenferink, A T M; Otto, C; de Jong, M P; Huskens, J; van der Wiel, W G
2013-09-20
We report on the tuning of the Kondo effect in thin Au films containing a monolayer of cobalt(II) terpyridine complexes by altering the ligand structure around the Co(2+) ions by depositing a thin Au capping layer on top of the monolayer on Au by magnetron sputtering (more energetic) and e-beam evaporation (softer). We show that the Kondo effect is slightly enhanced with respect to that of the uncapped film when the cap is deposited by evaporation, and significantly enhanced when magnetron sputtering is used. The Kondo temperature (TK) increases from 3 to 4.2/6.2 K for the evaporated/sputtered caps. X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy investigation showed that the organic ligands remain intact upon Au e-beam evaporation; however, sputtering inflicts significant change in the Co(2+) electronic environment. The location of the monolayer-on the surface or embedded in the film-has a small effect. However, the damage of Co-N bonds induced by sputtering has a drastic effect on the increase of the impurity-electron interaction. This opens up the way for tuning of the magnetic impurity states, e.g. spin quantum number, binding energy with respect to the host Fermi energy, and overlap via the ligand structure around the ions.
An AVHRR Cloud Classification Database Typed by Experts
1993-10-01
analysis. Naval Research Laboratory, Monterey, CA. 110 pp. Gallaudet , Timothy C. and James J. Simpson, 1991: Automated cloud screening of AVHRR imagery...1987) and Saunders and Kriebel (1988a,b) have used threshold techniques to classify clouds. Gallaudet and Simpson (1991) have used split-and-merge
Using sky radiances measured by ground based AERONET Sun-Radiometers for cirrus cloud detection
NASA Astrophysics Data System (ADS)
Sinyuk, A.; Holben, B. N.; Eck, T. F.; Slutsker, I.; Lewis, J. R.
2013-12-01
Screening of cirrus clouds using observations of optical depth (OD) only has proven to be a difficult task due mostly to some clouds having temporally and spatially stable OD. On the other hand, the sky radiances measurements which in AERONET protocol are taken throughout the day may contain additional cloud information. In this work the potential of using sky radiances for cirrus cloud detection is investigated. The detection is based on differences in the angular shape of sky radiances due to cirrus clouds and aerosol (see Figure). The range of scattering angles from 3 to 6 degrees was selected due to two primary reasons: high sensitivity to cirrus clouds presence, and close proximity to the Sun. The angular shape of sky radiances was parametrized by its curvature, which is a parameter defined as a combination of the first and second derivatives as a function of scattering angle. We demonstrate that a slope of the logarithm of curvature versus logarithm of scattering angle in this selected range of scattering angles is sensitive to cirrus cloud presence. We also demonstrate that restricting the values of the slope below some threshold value can be used for cirrus cloud screening. The threshold value of the slope was estimated using collocated measurements of AERONET data and MPLNET lidars.
Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study
Kovaleva, N. N.; Kugel, K. I.; Bazhenov, A. V.; Fursova, T. N.; Löser, W.; Xu, Y.; Behr, G.; Kusmartsev, F. V.
2012-01-01
Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors. PMID:23189239
Upper critical field and Kondo effects in Fe(Te 0.9Se 0.1) thin films by pulsed field measurements
Salamon, Myron B.; Cornell, Nicholas; Jaime, Marcelo; ...
2016-02-10
The transition temperatures of epitaxial films of Fe(Te 0:9Se 0:1) are remarkably insensitive to applied magnetic field, leading to predictions of upper critical fields B c2(T = 0) in excess of 100 T. Using pulsed magnetic fields, we find B c2(0) to be on the order of 45 T, similar to values in bulk material and still in excess of the paramagnetic limit. The same films show strong magnetoresistance in fields above B c2(T), consistent with the observed Kondo minimum seen above T c. Fits to the temperature dependence in the context of the WHH model, using the experimental valuemore » of the Maki parameter, require an effective spin-orbit relaxation parameter of order unity. Lastly, we suggest that Kondo localization plays a similar role to spin-orbit pair breaking in making WHH fits to the data.« less
NASA Astrophysics Data System (ADS)
Di Napoli, S.; Roura-Bas, P.; Weichselbaum, Andreas; Aligia, A. A.
2014-09-01
We calculate the differential conductance as a function of temperature and bias voltage, G (T,V), through Au monatomic chains with a substitutional Co atom as a magnetic impurity, connected to a fourfold symmetric lead. The system was recently proposed as a possible scenario for observation of the overscreened Kondo physics. Stretching the chain, the system could be tuned through a quantum critical point (QCP) with three different regimes: overscreened, underscreened, and non-Kondo phases. We present calculations of the impurity spectral function by using the numerical renormalization group for the three different regimes characterizing the QCP. Nontrivial behavior of the spectral function is reported near the QCP. Comparison with results using the noncrossing approximation (NCA) shows that the latter is reliable in the overscreened regime, when the anisotropy is larger than the Kondo temperature. For these parameters, which correspond to realistic previous estimates, G (T,V) calculated within NCA exhibits clear signatures of the non-Fermi-liquid behavior within the overscreened regime.
Weyl-Kondo semimetal in heavy-fermion systems
NASA Astrophysics Data System (ADS)
Lai, Hsin-Hua; Grefe, Sarah E.; Paschen, Silke; Si, Qimiao
2018-01-01
Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy-fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here, we advance a Weyl-Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy-fermion semimetal Ce3Bi4Pd3. Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations and open up an avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Fei; Wan, Xiangang; Phelan, Daniel
ZrCuSi 2-type CePd 1-xBi 2 crystals were obtained from excess Bi flux. Magnetic susceptibility measurements reveal that CePd 1-xBi 2 is a highly anisotropic antiferromagnet with transition temperature at 6 K, and a magnetic-field-induced metamagnetic transition at 5 T. An enhanced Sommerfeld coefficient of γ of 0.199 J-mol-Ce -1K -2 obtained from specific heat measurements suggests a moderate Kondo effect in CePd 1-xBi 2. In addition to the antiferromagnetic peak the resistivity curve shows a shoulder-like behavior which could be attributed to the presence of Kondo effect and crystal-electric-field effects in this compound. Magnetoresistance and Hall effect measurements suggest anmore » interplay between Kondo and crystal-electric-field effects which reconstructs the Fermi surface topology of CePd 1-xBi 2 around 75 K. Electronic structure calculations reveal the Pd vacancies are important to the magnetic structure and enhance the crystal-electric-field effects which quench the orbital moment of Ce at low temperatures.« less
Chemical substitution study on magnetism and superconductivity in Ce1-xSmxCoIn5
NASA Astrophysics Data System (ADS)
Jang, Sooyoung; White, B. D.; Yazici, D.; Wong, A. S.; Maple, M. B.
2015-03-01
We have investigated the system Ce1-xSmxCoIn5 (0 < x < 1) by means of x-ray diffraction, electrical resistivity, specific heat, and magnetization measurements. We observe a crossover from a coherent Kondo lattice exhibiting superconductivity to a single-ion impurity Kondo effect coexisting with magnetic order on the Sm-rich side of the phase diagram. The superconducting transition temperature, Tc, and Kondo lattice coherence temperature, Tcoh, are suppressed near x ~ 0.2 and x ~ 0.5, respectively, which is consistent with the effect of substitution with other rare-earth (RE) ions on CeCoIn5. After Tcoh is suppressed to 0 K, a single-ion impurity Kondo effect is observed for 0.5 < x <= 0.85. The compound SmCoIn5 exhibits three distinct magnetic phase transitions at roughly 8, 10, and 12 K, which are presumably associated with magnetic order; similar features are observed in the related compound SmIn3. These transition temperatures are gradually suppressed by Ce substitution and completely vanish near x ~ 0.2. We establish the phase diagram of the system Ce1-xSmxCoIn5 and compare our results with those obtained from chemical substitution studies of CeCoIn5 involving other RE ions. Research at UCSD was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Material Science and Engineering under Grant No. DE-FG02-04-ER46105.
NASA Astrophysics Data System (ADS)
Yang, C. L.; Tsuda, S.; Umeo, K.; Yamane, Y.; Onimaru, T.; Takabatake, T.; Kikugawa, N.; Terashima, T.; Uji, S.
2017-07-01
CeRhSn with a quasikagome lattice of Ce atoms in the hexagonal c plane has been expected to be in close vicinity to a zero-field quantum criticality derived from magnetic frustration. We have studied how the ground state changes with substitution of Pd for Rh in CeR h1 -xP dxSn (x ≤0.75 ) by measuring the specific heat C , magnetic susceptibilities χdc and χac, magnetization M , electrical resistivity ρ, and magnetoresistance. For x =0 , the field dependence of χac at T =0.03 K shows a peak at B ∥a =3.5 T , confirming the spin-flop crossover in the field applied along the hard axis. The temperature dependence of χac shows a broad maximum at 0.1 K whereas C /T continues to increase down to 0.08 K. For x ≧0.1 ,ρ (T ) is dominated by incoherent Kondo scattering and both C /T and χac(T ) exhibit peaks, indicating the development of an antiferromagnetic order. The ordering temperature rises to 2.5 K as x is increased to 0.75. Our results indicate that the ground state in the quasikagome Kondo lattice CeR h1 -xP dxSn leaves the quantum critical point at x =0 with increasing x as a consequence of suppression of both the magnetic frustration and Kondo effect.
NASA Astrophysics Data System (ADS)
Valkov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.
2017-05-01
The spin-fermion model, which is an effective low-energy realization of the three-band Emery model after passing to the Wannier representation for the px and py orbitals of the subsystem of oxygen ions, reduces to the generalized Kondo lattice model. A specific feature of this model is the existence of spin-correlated hoppings of the current carriers between distant cells. Numerical calculations of the spectrum of spin-electron excitations highlight the important role of the long-range spin-correlated hoppings.
Many-body instabilities and mass generation in slow Dirac materials
NASA Astrophysics Data System (ADS)
Triola, Christopher; Zhu, Jian-Xin; Migliori, Albert; Balatsky, Alexander V.
2015-07-01
Some Kondo insulators are expected to possess topologically protected surface states with linear Dirac spectrum: the topological Kondo insulators. Because the bulk states of these systems typically have heavy effective electron masses, the surface states may exhibit extraordinarily small Fermi velocities that could force the effective fine structure constant of the surface states into the strong coupling regime. Using a tight-binding model, we study the many-body instabilities of these systems and identify regions of parameter space in which the system exhibits spin density wave and charge density wave order.
Resonant pair tunneling in double quantum dots.
Sela, Eran; Affleck, Ian
2009-08-21
We present exact results on the nonequilibrium current fluctuations for 2 quantum dots in series throughout a crossover from non-Fermi liquid to Fermi liquid behavior described by the 2 impurity Kondo model. The result corresponds to resonant tunneling of carriers of charge 2e for a critical interimpurity coupling. At low energy scales, the result can be understood from a Fermi liquid approach that we develop and use to also study nonequilibrium transport in an alternative double dot realization of the 2 impurity Kondo model under current experimental study.
Characterizing sampling and quality screening biases in infrared and microwave limb sounding
NASA Astrophysics Data System (ADS)
Millán, Luis F.; Livesey, Nathaniel J.; Santee, Michelle L.; von Clarmann, Thomas
2018-03-01
This study investigates orbital sampling biases and evaluates the additional impact caused by data quality screening for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Aura Microwave Limb Sounder (MLS). MIPAS acts as a proxy for typical infrared limb emission sounders, while MLS acts as a proxy for microwave limb sounders. These biases were calculated for temperature and several trace gases by interpolating model fields to real sampling patterns and, additionally, screening those locations as directed by their corresponding quality criteria. Both instruments have dense uniform sampling patterns typical of limb emission sounders, producing almost identical sampling biases. However, there is a substantial difference between the number of locations discarded. MIPAS, as a mid-infrared instrument, is very sensitive to clouds, and measurements affected by them are thus rejected from the analysis. For example, in the tropics, the MIPAS yield is strongly affected by clouds, while MLS is mostly unaffected. The results show that upper-tropospheric sampling biases in zonally averaged data, for both instruments, can be up to 10 to 30 %, depending on the species, and up to 3 K for temperature. For MIPAS, the sampling reduction due to quality screening worsens the biases, leading to values as large as 30 to 100 % for the trace gases and expanding the 3 K bias region for temperature. This type of sampling bias is largely induced by the geophysical origins of the screening (e.g. clouds). Further, analysis of long-term time series reveals that these additional quality screening biases may affect the ability to accurately detect upper-tropospheric long-term changes using such data. In contrast, MLS data quality screening removes sufficiently few points that no additional bias is introduced, although its penetration is limited to the upper troposphere, while MIPAS may cover well into the mid-troposphere in cloud-free scenarios. We emphasize that the results of this study refer only to the representativeness of the respective data, not to their intrinsic quality.
Doped YbRh2Si2: not only ferromagnetic correlations but ferromagnetic order.
Lausberg, S; Hannaske, A; Steppke, A; Steinke, L; Gruner, T; Pedrero, L; Krellner, C; Klingner, C; Brando, M; Geibel, C; Steglich, F
2013-06-21
YbRh2Si2 is a prototypical system for studying unconventional antiferromagnetic quantum criticality. However, ferromagnetic correlations are present which can be enhanced via isoelectronic cobalt substitution for rhodium in Yb(Rh(1-x)Co(x))2Si2. So far, the magnetic order with increasing x was believed to remain antiferromagnetic. Here, we present the discovery of ferromagnetism for x = 0.27 below T(C) = 1.30 K in single crystalline samples. Unexpectedly, ordering occurs along the c axis, the hard crystalline electric field direction, where the g factor is an order of magnitude smaller than in the basal plane. Although the spontaneous magnetization is only 0.1 μB/Yb it corresponds to the full expected saturation moment along c taking into account partial Kondo screening.
Multipolar Kondo effect in a S10-P32 mixture of 173Yb atoms
NASA Astrophysics Data System (ADS)
Kuzmenko, Igor; Kuzmenko, Tetyana; Avishai, Yshai; Jo, Gyu-Boong
2018-02-01
Whereas in the familiar Kondo effect the exchange interaction is dipolar, there are systems in which the exchange interaction is multipolar, as has been realized in a recent experiment. Here, we study multipolar Kondo effect in a Fermi gas of cold 173Yb atoms. Making use of different ac polarizabilities of the electronic ground state Yb (S10 ) and the long-lived metastable state Yb*(P32 ), it is suggested that the latter atoms can be localized and serve as a dilute concentration of magnetic impurities while the former ones remain itinerant. The exchange mechanism between the itinerant Yb and the localized Yb* atoms is analyzed and shown to be antiferromagnetic. The quadrupole and octupole interactions act to enhance the Kondo temperature TK that is found to be experimentally accessible. The bare exchange Hamiltonian needs to be decomposed into dipole (d), quadrupole (q), and octupole (o) interactions in order to retain its form under renormalization group (RG) analysis, in which the corresponding exchange constants (λd,λq, and λo) flow independently. Numerical solution of the RG scaling equations reveals a few finite fixed points. Arguments are presented that the Fermi-liquid fixed point at low temperature is unstable, indicating that the impurity is overscreened, which suggests a non-Fermi-liquid phase. The impurity contributions to the specific heat, entropy, and the magnetic susceptibility are calculated in the weak coupling regime (T ≫TK ), and are compared with the analogous results obtained for the standard case of dipolar exchange interaction (the s -d Hamiltonian).
Design of an off-axis visual display based on a free-form projection screen to realize stereo vision
NASA Astrophysics Data System (ADS)
Zhao, Yuanming; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong
2017-10-01
A free-form projection screen is designed for an off-axis visual display, which shows great potential in applications such as flight training for providing both accommodation and convergence cues for pilots. The method based on point cloud is proposed for the design of the free-form surface, and the design of the point cloud is controlled by a program written in the macro-language. In the visual display based on the free-form projection screen, when the error of the screen along Z-axis is 1 mm, the error of visual distance at each filed is less than 1%. And the resolution of the design for full field is better than 1‧, which meet the requirement of resolution for human eyes.
Coexistence of metallic and insulating channels in compressed YbB6
NASA Astrophysics Data System (ADS)
Ying, Jianjun; Tang, Lingyun; Chen, Fei; Chen, Xianhui; Struzhkin, Viktor V.
2018-03-01
It remains controversial whether compressed YbB6 material is a topological insulator or a Kondo topological insulator. We performed high-pressure transport, x-ray diffraction (XRD), x-ray absorption spectroscopy, and Raman-scattering measurements on YbB6 samples in search for its topological Kondo phase. Both high-pressure powder XRD and Raman measurements show no trace of structural phase transitions in YbB6 up to 50 GPa. The nonmagnetic Yb2 + gradually change to magnetic Yb3 + above 18 GPa concomitantly with the increase in resistivity. However, the transition to the insulating state occurs only around 30 GPa, accompanied by the increase in the shear stress, and anomalies in the pressure dependence of the Raman T2 g mode and in the B atomic position. The resistivity at high pressures can be described by a model taking into account coexisting insulating and metallic channels with the activation energy for the insulating channel about 30 meV. We argue that YbB6 may become a topological Kondo insulator at high pressures above 35 GPa.
Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6
NASA Astrophysics Data System (ADS)
Hartstein, M.; Toews, W. H.; Hsu, Y.-T.; Zeng, B.; Chen, X.; Hatnean, M. Ciomaga; Zhang, Q. R.; Nakamura, S.; Padgett, A. S.; Rodway-Gant, G.; Berk, J.; Kingston, M. K.; Zhang, G. H.; Chan, M. K.; Yamashita, S.; Sakakibara, T.; Takano, Y.; Park, J.-H.; Balicas, L.; Harrison, N.; Shitsevalova, N.; Balakrishnan, G.; Lonzarich, G. G.; Hill, R. W.; Sutherland, M.; Sebastian, Suchitra E.
2018-02-01
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. Here we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB6 positioned close to the insulator-metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.
NASA Astrophysics Data System (ADS)
Takeuchi, Takashi; Hayashi, Kyosuke; Umeo, Kazunori; Takabatake, Toshiro
2018-05-01
We report magnetic, transport, and specific-heat measurements for single crystals of the antiferromagnetic (AFM) Kondo semiconductor alloy series Ce(Ru1-xOsx)2Al10 (0 ≤ x ≤ 1), which crystallize into an orthorhombic structure. The specific-heat and resistivity data show that the isoelectronic substitution does not damage the hybridization gap or the AFM transition. The Kondo temperature TK increases linearly with x, whereas the Néel temperature TN exhibits a maximum value of 29.2 K for x = 0.71. Under increasing uniaxial pressure P || a, TN increases for x = 0 but decreases for x = 1, while TK increases in the entire range of x. Under P || b, in contrast, TN increases steadily in the whole range of x while TK remains unchanged for each x. The strongly anisotropic change in TN indicates the presence of another mechanism to enhance TN in this system in addition to the anisotropic hybridization of the 4f state with conduction bands.
Unconventional Fermi surface associated with novel quasiparticles in the Kondo insulator SmB6
NASA Astrophysics Data System (ADS)
Sebastian, Suchitra
The search for a Fermi surface in the absence of a Fermi liquid has endured for decades. We present evidence for the realisation of such a state in the Kondo Insulator SmB6, which is an extreme example of Fermi liquid breakdown. Experimental results are presented from complementary techniques including quantum oscillations, specific heat capacity, thermal conductivity, and oscillatory entropy down to low temperatures. An experimental comparison is made with alternative theoretical models that associate novel quasiparticles with the unconventional Fermi surface we uncover in SmB6. A new paradigm for the realisation of a Fermi surface in the absence of conventional quasiparticles is proposed in the vicinity of a Kondo insulator transition. This work was performed in collaboration with M. Hartstein, W. H. Toews, Y.-T. Hsu, B. Zeng, X. Chen, M. Ciomaga Hatnean, Q. R. Zhang, S. Nakamura, A. S. Padgett, G. Rodway-Gant, J. Berk, M. K. Kingston, G. H. Zhang, M. K. Chan, S. Yamashita, T. Sakakibara, Y. Takano, J. -H. Park, L. Balicas, N. Harrison, N. Shitsevalova, G. Balakrishnan, G. G. Lonzarich, R. W. Hill, and M. Sutherland.
Li, Yang; Ngo, Anh T.; DiLullo, Andrew; ...
2017-10-16
An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less
Single- or multi-flavor Kondo effect in graphene
NASA Astrophysics Data System (ADS)
Zhu, Zhen-Gang; Ding, Kai-He; Berakdar, Jamal
2010-06-01
Based on the tight-binding formalism, we investigate the Anderson and the Kondo model for an adatom magnetic impurity above graphene. Different impurity positions are analyzed. Employing a partial-wave representation we study the nature of the coupling between the impurity and the conducting electrons. The components from the two Dirac points are mixed while interacting with the impurity. Two configurations are considered explicitly: the adatom is above one atom (ADA), the other case is the adatom above the center the honeycomb (ADC). For ADA the impurity is coupled with one flavor for both A and B sublattice and both Dirac points. For ADC the impurity couples with multi-flavor states for a spinor state of the impurity. We show, explicitly for a 3d magnetic atom, dz2, (dxz,dyz), and (dx2- y2,dxy) couple respectively with the Γ1, Γ5(E1), and Γ6(E2) representations (reps) of C6v group in ADC case. The bases for these reps of graphene are also derived explicitly. For ADA we calculate the Kondo temperature.
Song, J.; Bi, W.; Haskel, D.; ...
2017-05-15
Four-point electrical resistivity measurements were carried out on Nd metal and dilute magnetic alloys containing up to 1 at.% Nd in superconducting Y for temperatures 1.5–295 K under pressures to 210 GPa. The magnetic ordering temperature T o of Nd appears to rise steeply under pressure, increasing ninefold to 180 K at 70 GPa before falling rapidly. Y(Nd) alloys display both a resistivity minimum and superconducting pair breaking ΔT c as large as 38 K/at.% Nd. The present results give evidence that for pressures above 30–40 GPa, the exchange coupling J between Nd ions and conduction electrons becomes negative, thusmore » activating Kondo physics in this highly correlated electron system. Furthermore, the rise and fall of T o and ΔT c with pressure can be accounted for in terms of an increase in the Kondo temperature.« less
NASA Astrophysics Data System (ADS)
Zhang, Jingdi; Yong, Jie; Takeuchi, Ichiro; Greene, Richard L.; Averitt, Richard D.
2018-04-01
We utilize terahertz time domain spectroscopy to investigate thin films of the heavy fermion compound Sm B6 , a prototype Kondo insulator. Temperature-dependent terahertz (THz) conductivity measurements reveal a rapid decrease in the Drude weight and carrier scattering rate at ˜T*=20 K , well below the hybridization gap onset temperature (100 K). Moreover, a low-temperature conductivity plateau (below 20 K) suggests the emergence of a surface state with an effective electron mass of 0.1 me . The conductivity dynamics following optical excitation is also measured and interpreted using Rothwarf-Taylor (R-T) phenomenology, yielding a hybridization gap energy of 17 meV. However, R-T modeling of the conductivity dynamics reveals a deviation from the expected thermally excited quasiparticle density at temperatures below 20 K, indicative of another channel opening up in the low-energy electrodynamics. Taken together, these results are consistent with the onset of a surface state well below the crossover temperature (100 K) after long-range coherence of the f -electron Kondo lattice is established.
CeRuPO: A rare example of a ferromagnetic Kondo lattice
NASA Astrophysics Data System (ADS)
Krellner, C.; Kini, N. S.; Brüning, E. M.; Koch, K.; Rosner, H.; Nicklas, M.; Baenitz, M.; Geibel, C.
2007-09-01
We have determined the physical ground state properties of the compounds CeRuPO and CeOsPO by means of magnetic susceptibility χ(T) , specific heat C(T) , electrical resistivity ρ(T) , and thermopower S(T) measurements. χ(T) reveals a trivalent 4f1 cerium state in both compounds. For CeRuPO a pronounced decrease of ρ(T) below 50K indicates the onset of coherent Kondo scattering, which is confirmed by enhanced S(T) . The temperature and magnetic field dependence of χ(T) and C(T) evidence ferromagnetic (FM) order at TC=15K . Thus, CeRuPO seems to be one of the rare examples of a FM Kondo lattice. In contrast, CeOsPO shows antiferromagnetic order at TN=4.5K despite only minor changes in lattice parameters and electronic configuration. Additional P31 NMR results support these scenarios. LSDA+U calculations evidence a quasi-two-dimensional electronic band structure, reflecting a strong covalent bonding within the CeO and RuP layers and a weak ioniclike bonding between the layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, J.; Bi, W.; Haskel, D.
Four-point electrical resistivity measurements were carried out on Nd metal and dilute magnetic alloys containing up to 1 at.% Nd in superconducting Y for temperatures 1.5–295 K under pressures to 210 GPa. The magnetic ordering temperature T o of Nd appears to rise steeply under pressure, increasing ninefold to 180 K at 70 GPa before falling rapidly. Y(Nd) alloys display both a resistivity minimum and superconducting pair breaking ΔT c as large as 38 K/at.% Nd. The present results give evidence that for pressures above 30–40 GPa, the exchange coupling J between Nd ions and conduction electrons becomes negative, thusmore » activating Kondo physics in this highly correlated electron system. Furthermore, the rise and fall of T o and ΔT c with pressure can be accounted for in terms of an increase in the Kondo temperature.« less
Park, Wan Kyu; Sun, Lunan; Noddings, Alexander; Kim, Dae-Jeong; Fisk, Zachary; Greene, Laura H
2016-06-14
Samarium hexaboride (SmB6), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring protected surface states. However, corroborative spectroscopic evidence is still lacking, unlike in the weakly correlated counterparts, including Bi2Se3 Here, we report results from planar tunneling that unveil the detailed spectroscopic properties of SmB6 The tunneling conductance obtained on the (001) and (011) single crystal surfaces reveals linear density of states as expected for two and one Dirac cone(s), respectively. Quite remarkably, it is found that these topological states are not protected completely within the bulk hybridization gap. A phenomenological model of the tunneling process invoking interaction of the surface states with bulk excitations (spin excitons), as predicted by a recent theory, provides a consistent explanation for all of the observed features. Our spectroscopic study supports and explains the proposed picture of the incompletely protected surface states in this topological Kondo insulator SmB6.
Park, Wan Kyu; Sun, Lunan; Noddings, Alexander; Kim, Dae-Jeong; Fisk, Zachary; Greene, Laura H.
2016-01-01
Samarium hexaboride (SmB6), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring protected surface states. However, corroborative spectroscopic evidence is still lacking, unlike in the weakly correlated counterparts, including Bi2Se3. Here, we report results from planar tunneling that unveil the detailed spectroscopic properties of SmB6. The tunneling conductance obtained on the (001) and (011) single crystal surfaces reveals linear density of states as expected for two and one Dirac cone(s), respectively. Quite remarkably, it is found that these topological states are not protected completely within the bulk hybridization gap. A phenomenological model of the tunneling process invoking interaction of the surface states with bulk excitations (spin excitons), as predicted by a recent theory, provides a consistent explanation for all of the observed features. Our spectroscopic study supports and explains the proposed picture of the incompletely protected surface states in this topological Kondo insulator SmB6. PMID:27233936
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Ngo, Anh T.; DiLullo, Andrew
An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less
Improved Cloud and Snow Screening in MAIAC Aerosol Retrievals Using Spectral and Spatial Analysis
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Laszlo, I.; Kokrkin, S.
2012-01-01
An improved cloud/snow screening technique in the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is described. It is implemented as part of MAIAC aerosol retrievals based on analysis of spectral residuals and spatial variability. Comparisons with AERONET aerosol observations and a large-scale MODIS data analysis show strong suppression of aerosol optical thickness outliers due to unresolved clouds and snow. At the same time, the developed filter does not reduce the aerosol retrieval capability at high 1 km resolution in strongly inhomogeneous environments, such as near centers of the active fires. Despite significant improvement, the optical depth outliers in high spatial resolution data are and will remain the problem to be addressed by the application-dependent specialized filtering techniques.
A Method for the Automatic Detection of Insect Clutter in Doppler-Radar Returns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke,E.; Kollias, P.; Johnson, K.
2006-06-12
The accurate detection and removal of insect clutter from millimeter wavelength cloud radar (MMCR) returns is of high importance to boundary layer cloud research (e.g., Geerts et al., 2005). When only radar Doppler moments are available, it is difficult to produce a reliable screening of insect clutter from cloud returns because their distributions overlap. Hence, screening of MMCR insect clutter has historically involved a laborious manual process of cross-referencing radar moments against measurements from other collocated instruments, such as lidar. Our study looks beyond traditional radar moments to ask whether analysis of recorded Doppler spectra can serve as the basismore » for reliable, automatic insect clutter screening. We focus on the MMCR operated by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) facility in Oklahoma. Here, archiving of full Doppler spectra began in September 2003, and during the warmer months, a pronounced insect presence regularly introduces clutter into boundary layer returns.« less
Superfluid response in heavy fermion superconductors
NASA Astrophysics Data System (ADS)
Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang
2017-10-01
Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.
NASA Astrophysics Data System (ADS)
Pérez Daroca, Diego; Roura-Bas, Pablo; Aligia, Armando A.
2018-04-01
We study the low-temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.
Interplay between Kondo suppression and Lifshitz transitions in YbRh2Si2 at high magnetic fields.
Pfau, H; Daou, R; Lausberg, S; Naren, H R; Brando, M; Friedemann, S; Wirth, S; Westerkamp, T; Stockert, U; Gegenwart, P; Krellner, C; Geibel, C; Zwicknagl, G; Steglich, F
2013-06-21
We investigate the magnetic field dependent thermopower, thermal conductivity, resistivity, and Hall effect in the heavy fermion metal YbRh2Si2. In contrast to reports on thermodynamic measurements, we find in total three transitions at high fields, rather than a single one at 10 T. Using the Mott formula together with renormalized band calculations, we identify Lifshitz transitions as their origin. The predictions of the calculations show that all experimental results rely on an interplay of a smooth suppression of the Kondo effect and the spin splitting of the flat hybridized bands.
Many-body instabilities and mass generation in slow Dirac materials
NASA Astrophysics Data System (ADS)
Triola, Christopher; Zhu, Jianxin; Migliori, Albert; Balatsky, Alexander
2015-03-01
Some Kondo insulators are expected to possess topologically protected surface states with linear Dirac spectrum, the topological Kondo insulators. Because the bulk states of these systems typically have heavy effective electron masses, the surface states may exhibit extraordinarily small Fermi velocities that could force the effective fine structure constant of the surface states into the strong coupling regime. Using a tight-binding model we study the many-body instabilities of these systems and identify regions of parameter space for which antiferromagnetic, ferromagnetic and charge density wave instabilities occur. Work Supported by USDOE BES E304.
Spin-dependent transport through an interacting quantum dot.
Zhang, Ping; Xue, Qi-Kun; Wang, Yupeng; Xie, X C
2002-12-31
We study the nonequilibrium spin transport through a quantum dot coupled to the magnetic electrodes. A formula for the spin-dependent current is obtained and is applied to discuss the linear conductance and magnetoresistance in the interacting regime. We show that the Kondo resonance and the correlation-induced spin splitting of the dot levels may be systematically controlled by internal magnetization in the electrodes. As a result, when the electrodes are in parallel magnetic configuration, the linear conductance is characterized by two spin-resolved peaks. Furthermore, the presence of the spin-flip process in the dot splits the Kondo resonance into three peaks.
NASA Astrophysics Data System (ADS)
Polyakov, Evgeny A.; Rubtsov, Alexey N.
2018-02-01
When conducting the numerical simulation of quantum transport, the main obstacle is a rapid growth of the dimension of entangled Hilbert subspace. The Quantum Monte Carlo simulation techniques, while being capable of treating the problems of high dimension, are hindered by the so-called "sign problem". In the quantum transport, we have fundamental asymmetry between the processes of emission and absorption of environment excitations: the emitted excitations are rapidly and irreversibly scattered away. Whereas only a small part of these excitations is absorbed back by the open subsystem, thus exercising the non-Markovian self-action of the subsystem onto itself. We were able to devise a method for the exact simulation of the dominant quantum emission processes, while taking into account the small backaction effects in an approximate self-consistent way. Such an approach allows us to efficiently conduct simulations of real-time dynamics of small quantum subsystems immersed in non-Markovian bath for large times, reaching the quasistationary regime. As an example we calculate the spatial quench dynamics of Kondo cloud for a bozonized Kodno impurity model.
NASA Technical Reports Server (NTRS)
Mathews, M. L.
1983-01-01
The development of the cloud indicator index (CII) for use with METSAT's advanced very high resolution radiometer (AVHRR) is described. The CII is very effective at identification of clouds. Also, explored are different solar correction and standard techniques and the impact of these corrections have on the information content of AVHRR data.
NASA Astrophysics Data System (ADS)
Tsai, Tsung-Ying; Chang, Kai-Wei; Chen, Calvin Yu-Chian
2011-06-01
The rapidly advancing researches on traditional Chinese medicine (TCM) have greatly intrigued pharmaceutical industries worldwide. To take initiative in the next generation of drug development, we constructed a cloud-computing system for TCM intelligent screening system (iScreen) based on TCM Database@Taiwan. iScreen is compacted web server for TCM docking and followed by customized de novo drug design. We further implemented a protein preparation tool that both extract protein of interest from a raw input file and estimate the size of ligand bind site. In addition, iScreen is designed in user-friendly graphic interface for users who have less experience with the command line systems. For customized docking, multiple docking services, including standard, in-water, pH environment, and flexible docking modes are implemented. Users can download first 200 TCM compounds of best docking results. For TCM de novo drug design, iScreen provides multiple molecular descriptors for a user's interest. iScreen is the world's first web server that employs world's largest TCM database for virtual screening and de novo drug design. We believe our web server can lead TCM research to a new era of drug development. The TCM docking and screening server is available at http://iScreen.cmu.edu.tw/.
Tsai, Tsung-Ying; Chang, Kai-Wei; Chen, Calvin Yu-Chian
2011-06-01
The rapidly advancing researches on traditional Chinese medicine (TCM) have greatly intrigued pharmaceutical industries worldwide. To take initiative in the next generation of drug development, we constructed a cloud-computing system for TCM intelligent screening system (iScreen) based on TCM Database@Taiwan. iScreen is compacted web server for TCM docking and followed by customized de novo drug design. We further implemented a protein preparation tool that both extract protein of interest from a raw input file and estimate the size of ligand bind site. In addition, iScreen is designed in user-friendly graphic interface for users who have less experience with the command line systems. For customized docking, multiple docking services, including standard, in-water, pH environment, and flexible docking modes are implemented. Users can download first 200 TCM compounds of best docking results. For TCM de novo drug design, iScreen provides multiple molecular descriptors for a user's interest. iScreen is the world's first web server that employs world's largest TCM database for virtual screening and de novo drug design. We believe our web server can lead TCM research to a new era of drug development. The TCM docking and screening server is available at http://iScreen.cmu.edu.tw/.
DFT treatment of transport through Anderson junction: exact results and approximations
NASA Astrophysics Data System (ADS)
Burke, Kieron
2012-02-01
Since the pioneering break-junction experiments of Reed and Tour measuring the conductance of dithiolated benzene between gold leads, many researchers in physics and chemistry have been calculating conductance for such systems using density functional theory (DFT). Off resonance, the predicted current is often 10-100 times larger than that measured. This error is often ascribed to the application of ground-state DFT to a non-equilibrium problem. I will argue that, in fact, this is largely due to errors in the density functional approximations in popular use, rather than necessarily errors in the methodology. A stark illustration of this principle is the ability of DFT to reproduce the exact transmission through an Anderson junction at zero-temperature and weak bias, including the Kondo plateau, but only if the exact ground-state density functional is used. In fact, this case can be used to reverse-engineer the exact functional for this problem. Popular approximations can also be tested, including both smooth and discontinuous functionals of the density, as well as symmetry-broken approaches. [4pt] [1] Kondo effect given exactly by density functional theory, J. P. Bergfield, Z. Liu, K. Burke, and C. A. Stafford, arXiv:1106.3104; [0pt] [2] Broadening of the Derivative Discontinuity in Density Functional Theory, F. Evers, and P. Schmitteckert, arXiv:1106.3658; [0pt] [3] DFT-based transport calculations, Friedel's sum rule and the Kondo effect, P. Tr"oster, P. Schmitteckert, and F. Evers, arXiv:1106.3669; [0pt] [4] Towards a description of the Kondo effect using time-dependent density functional theory, G. Stefanucci, and S. Kurth, arXiv:1106.3728.
Single-site properties of U impurities doped in La2Zn17 (abstract)
NASA Astrophysics Data System (ADS)
Suzuki, H.; Anzai, K.; Takagi, S.
1997-04-01
Thermodynamic and transport properties of heavy Fermion (HF) U compounds show similar behavior to HF Ce compounds. Although most of the magnetic properties of HF Ce compounds can be qualitatively understood on the basis of the impurity Kondo model, no such consensus for HF U compounds has been reached. In addition to this, the single-site properties of U impurities are not understood so well, in contrast to the case of Ce impurities. Recent works for dilute U systems reported new features as are not seen in dilute Ce systems. We have investigated a dilute-U2Zn17 system of (La1-zUz)2Zn17 in order to reveal the single U ion site properties of this system by preparing single crystals. The impurity contributions to various physical quantities such as ρimp(T), χimp(T), and Cimp(T) can be scaled by the U concentration between z=0.025 and 0.05, and the system is considered as in the dilute limit still for z=0.05. The electrical resistivity shows the typical impurity-Kondo upturn at low temperatures. The electronic specific-heat coefficient is strongly enhanced (γimp≈1.5 J/K2 mole U) and about 4 times as large as that for dense U2Zn17. Suppressions of the Kondo effect by the magnetic field are seen in γimp(H) and magnetoresistance. The relatively large anisotropy in χimp(T) indicates an existence of the crystal field. These features of this system will be explained in terms of the Kondo effect in the presence of the crystal field.
Origin of the quasiparticle peak in the spectral density of Cr(001) surfaces
NASA Astrophysics Data System (ADS)
Peters, L.; Jacob, D.; Karolak, M.; Lichtenstein, A. I.; Katsnelson, M. I.
2017-12-01
In the spectral density of Cr(001) surfaces, a sharp resonance close to the Fermi level is observed in both experiment and theory. For the physical origin of this peak, two mechanisms were proposed: a single-particle dz2 surface state renormalized by electron-phonon coupling and an orbital Kondo effect due to the degenerate dx z/dy z states. Despite several experimental and theoretical investigations, the origin is still under debate. In this work, we address this problem by two different approaches of the dynamical mean-field theory: first, by the spin-polarized T -matrix fluctuation exchange approximation suitable for weakly and moderately correlated systems; second, by the noncrossing approximation derived in the limit of weak hybridization (i.e., for strongly correlated systems) capturing Kondo-type processes. By using recent continuous-time quantum Monte Carlo calculations as a benchmark, we find that the high-energy features, everything except the resonance, of the spectrum are captured within the spin-polarized T -matrix fluctuation exchange approximation. More precisely, the particle-particle processes provide the main contribution. For the noncrossing approximation, it appears that spin-polarized calculations suffer from spurious behavior at the Fermi level. Then, we turned to non-spin-polarized calculations to avoid this unphysical behavior. By employing two plausible starting hybridization functions, it is observed that the characteristics of the resonance are crucially dependent on the starting point. It appears that only one of these starting hybridizations could result in an orbital Kondo resonance in the presence of a strong magnetic field like in the Cr(001) surface. It is for a future investigation to first resolve the unphysical behavior within the spin-polarized noncrossing approximation and then check for an orbital Kondo resonance.
Parity-violating hybridization in heavy Weyl semimetals
NASA Astrophysics Data System (ADS)
Chang, Po-Yao; Coleman, Piers
2018-04-01
We introduce a simple model to describe the formation of heavy Weyl semimetals in noncentrosymmetric heavy fermion compounds under the influence of a parity-mixing, onsite hybridization. A key aspect of interaction-driven heavy Weyl semimetals is the development of surface Kondo breakdown, which is expected to give rise to a temperature-dependent reconfiguration of the Fermi arcs and the Weyl cyclotron orbits which connect them via the chiral bulk states. Our theory predicts a strong temperature-dependent transformation in the quantum oscillations at low temperatures. In addition to the effects of surface Kondo breakdown, the renormalization effects in heavy Weyl semimetals will appear in a variety of thermodynamic and transport measurements.
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
NASA Astrophysics Data System (ADS)
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy
2018-03-01
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.
An effect of Sm vacancies on the hybridization gap in topological Kondo insulator candidate SmB6
NASA Astrophysics Data System (ADS)
Valentine, Michael E.; Koohpayeh, Seyed; Phelan, W. Adam; McQueen, Tyrel M.; Rosa, Priscila F. S.; Fisk, Zachary; Drichko, Natalia
2018-05-01
A necessary element for the predicted topological state in Kondo insulator SmB6 is the hybridization gap which opens in this compound at low temperatures. In this work, we present a comparative study of the in-gap density of states due to Sm vacancies by Raman scattering spectroscopy and heat capacity for samples where the number of Sm vacancies is equal to or below 1%. We demonstrate that hybridization gap is very sensitive to the presence of Sm vacancies. At the amount of vacancies above 1% the gap fills in with impurity states and low temperature heat capacity is enhanced.
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...
2018-03-06
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events
Breakdown of the coherence effects and Fermi liquid behavior in YbAl3 nanoparticles
NASA Astrophysics Data System (ADS)
Echevarria-Bonet, C.; Rojas, D. P.; Espeso, J. I.; Rodríguez Fernández, J.; Rodríguez Fernández, L.; Bauer, E.; Burdin, S.; Magalhães, S. G.; Fernández Barquín, L.
2018-04-01
A change in the Kondo lattice behavior of bulk YbAl3 has been observed when the alloy is shaped into nanoparticles (≈12 nm). Measurements of the electrical resistivity show inhibited coherence effects and deviation from the standard Fermi liquid behavior (T 2-dependence). These results are interpreted as being due to the effect of the disruption of the periodicity of the array of Kondo ions provoked by the size reduction process. Additionally, the ensemble of randomly placed nanoparticles also triggers an extra source of electronic scattering at very low temperatures (≈15 K) due to quantum interference effects.
Strong correlation effects in theoretical STM studies of magnetic adatoms
NASA Astrophysics Data System (ADS)
Dang, Hung T.; dos Santos Dias, Manuel; Liebsch, Ansgar; Lounis, Samir
2016-03-01
We present a theoretical study for the scanning tunneling microscopy (STM) spectra of surface-supported magnetic nanostructures, incorporating strong correlation effects. As concrete examples, we study Co and Mn adatoms on the Cu(111) surface, which are expected to represent the opposite limits of Kondo physics and local moment behavior, using a combination of density functional theory and both quantum Monte Carlo and exact diagonalization impurity solvers. We examine in detail the effects of temperature T , correlation strength U , and impurity d electron occupancy Nd on the local density of states. We also study the effective coherence energy scale, i.e., the Kondo temperature TK, which can be extracted from the STM spectra. Theoretical STM spectra are computed as a function of STM tip position relative to each adatom. Because of the multiorbital nature of the adatoms, the STM spectra are shown to consist of a complicated superposition of orbital contributions, with different orbital symmetries, self-energies, and Kondo temperatures. For a Mn adatom, which is close to half-filling, the STM spectra are featureless near the Fermi level. On the other hand, the quasiparticle peak for a Co adatom gives rise to strongly position-dependent Fano line shapes.
Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB 6
Hartstein, M.; Toews, W. H.; Hsu, Y. -T.; ...
2017-10-23
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. In this paper, we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB 6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including amore » sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Finally, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB 6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.« less
Singular Valence Fluctuations at a Kondo Destroyed Quantum Critical Point
NASA Astrophysics Data System (ADS)
Pixley, Jedediah; Kirchner, Stefan; Ingersent, Kevin; Si, Qimiao
2012-02-01
Recent experiments on the heavy fermion superconductor beta-YbAlB4 have indicated that this compound satisfies quantum critical scaling [1]. Motivated by the observation of mixed valency in this material [2], we study the Kondo destruction physics in the mixed-valence regime [3] of a particle-hole asymmetric Anderson impurity model with a pseudogapped density of states. In the vicinity of the quantum critical point we determine the finite temperature spin and charge susceptibilities by utilizing a continuous time quantum Monte Carlo method [4] and the numerical renormalization group. We show that this mixed-valence quantum critical point displays a Kondo breakdown effect. Furthermore, we find that both dynamic spin and charge susceptibilities obey frequency over temperature scaling, and that the static charge susceptibility diverges with a universal exponent. Possible implications of our results for beta-YbAlB4 are discussed. [1] Matsumoto et al, Science 331, 316 (2011). [2] Okawaet al, Physical Review Letters 104, 247201 (2010). [3] J. H. Pixley, S. Kirchner, Kevin Ingersent and Q. Si, arXiv:1108.5227v1 (2011). [4] M. Glossop, S. Kirchner, J. H. Pixley and Q. Si, Phys. Rev. Lett. 107, 076404 (2011).
1984-07-01
aerosols and sub pixel-sized clouds all tend to increase Channel 1 with respect to Channel 2 and reduce the computed VIN. Further, the Guide states that... computation of the VIN. Large scale cloud contamination of pixels, while diffi- cult to correct for, can at least be monitored and affected pixels...techniques have been developed for computer cloud screening. See, for example, Horvath et al. (1982), Gray and McCrary (1981a) and Nixon et al. (1983
Polarization Catastrophe Contributing to Rotation and Tornadic Motion in Cumulo-Nimbus Clouds
NASA Astrophysics Data System (ADS)
Handel, P. H.
2007-05-01
When the concentration of sub-micron ice particles in a cloud exceeds 2.5E21 per cubic cm, divided by the squared average number of water molecules per crystallite, the polarization catastrophe occurs. Then all ice crystallites nucleated on aerosol dust particles align their dipole moments in the same direction, and a large polarization vector field is generated in the cloud. Often this vector field has a radial component directed away from the vertical axis of the cloud. It is induced by the pre-existing electric field caused by the charged screening layers at the cloud surface, the screening shell of the cloud. The presence of a vertical component of the magnetic field of the earth creates a density of linear momentum G=DxB in the azimuthal direction, where D=eE+P is the electric displacement vector and e is the vacuum permittivity. This linear momentum density yields an angular momentum density vector directed upward in the nordic hemisphere, if the polarization vector points away from the vertical axis of the cloud. When the cloud becomes colloidally unstable, the crystallites grow beyond the size limit at which they still could carry a large ferroelectric saturation dipole moment, and the polarization vector quickly disappears. Then the cloud begins to rotate with an angular momentum that has the same direction. Due to the large average number of water molecules in a crystallite, the polarization catastrophe (PC) is present in practically all clouds, and is compensated by masking charges. In cumulo-nimbus (thunder-) clouds the collapse of the PC is rapid, and the masking charges lead to lightning, and in the upper atmosphere also to sprites, elves, and blue jets. In stratus clouds, however, the collapse is slow, and only leads to reverse polarity in dissipating clouds (minus on the bottom), as compared with growing clouds (plus on the bottom, because of the excess polarization charge). References: P.H. Handel: "Polarization Catastrophe Theory of Cloud Electricity", J. Geophysical Research 90, 5857-5863 (1985). P.H. Handel and P.B. James: "Polarization Catastrophe Model of Static Electrification and Spokes in the B-Ring of Saturn", Geophys. Res. Lett. 10, 1-4 (1983).
NASA Technical Reports Server (NTRS)
Darzi, Michael; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
1992-01-01
Methods for detecting and screening cloud contamination from satellite derived visible and infrared data are reviewed in this document. The methods are applicable to past, present, and future polar orbiting satellite radiometers. Such instruments include the Coastal Zone Color Scanner (CZCS), operational from 1978 through 1986; the Advanced Very High Resolution Radiometer (AVHRR); the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), scheduled for launch in August 1993; and the Moderate Resolution Imaging Spectrometer (IMODIS). Constant threshold methods are the least demanding computationally, and often provide adequate results. An improvement to these methods are the least demanding computationally, and often provide adequate results. An improvement to these methods is to determine the thresholds dynamically by adjusting them according to the areal and temporal distributions of the surrounding pixels. Spatial coherence methods set thresholds based on the expected spatial variability of the data. Other statistically derived methods and various combinations of basic methods are also reviewed. The complexity of the methods is ultimately limited by the computing resources. Finally, some criteria for evaluating cloud screening methods are discussed.
Estai, Mohamed; Kanagasingam, Yogesan; Xiao, Di; Vignarajan, Janardhan; Huang, Boyan; Kruger, Estie; Tennant, Marc
2016-09-01
It is widely considered that telemedicine can make positive contributions to dental practice. This study aimed to evaluate a cloud-based telemedicine application for screening for oral diseases. A telemedicine system, based on a store-and-forward method, was developed to work as a platform for data storage. An Android application was developed to facilitate entering demographic details and capturing oral photos. As a proof-of-concept, six volunteers were enrolled in a trial to obtain oral images using smartphone cameras. Following an onsite oral examination, images of participants' teeth were obtained by a trained dental assistant. Oral images were directly uploaded from the smartphone to a cloud-based server via broadband network. The assessments of oral images by offsite dentists were compared with those carried out via face-to-face oral examinations. A complete set of 30 oral images was obtained from all six participants. Out of 192 teeth reviewed, the proportion of ungradable teeth was 8%. Sensitivity and specificity of teledental screening were 57% and 100% respectively. The inter-grader agreement estimated for two examination modalities and between two teledental graders was 70% and 62% respectively. Findings indicate that the proposed system for screening of oral diseases can be implemented to provide a valid and reliable alternative to traditional oral screening. This study provided evidence that a robust system for store-and-forward screening for dental problems can be developed, and leads to the need for further testing of its robustness to confirm the accuracy and reliability of the teledentistry system. © The Author(s) 2015.
Electrical structure in two thunderstorm anvil clouds
NASA Technical Reports Server (NTRS)
Marshall, Thomas C.; Rust, W. David; Winn, William P.; Gilbert, Kenneth E.
1989-01-01
Electrical structures in two thunderstorm anvil clouds (or 'anvils'), one in New Mexico, the other in Oklahoma, were investigated, using measurements of electric field by balloon-carried instruments and a one-dimensional model to calculate the time and spatial variations of electrical parameters in the clear air below the anvil. The electric field soundings through the two thunderstorm anvils showed similar charge structures; namely, negatively charged screening layers on the top and the bottom surfaces, a layer of positive charge in the interior, and one or two layers of zero charge. It is suggested that the positive charge originated in the main positive charge region normally found at high altitudes in the core of thunderclouds, and the negatively charged layers probably formed as screening layers, resulting from the discontinuity in the electrical conductivity at the cloud boundaries.
Cloud masking and removal in remote sensing image time series
NASA Astrophysics Data System (ADS)
Gómez-Chova, Luis; Amorós-López, Julia; Mateo-García, Gonzalo; Muñoz-Marí, Jordi; Camps-Valls, Gustau
2017-01-01
Automatic cloud masking of Earth observation images is one of the first required steps in optical remote sensing data processing since the operational use and product generation from satellite image time series might be hampered by undetected clouds. The high temporal revisit of current and forthcoming missions and the scarcity of labeled data force us to cast cloud screening as an unsupervised change detection problem in the temporal domain. We introduce a cloud screening method based on detecting abrupt changes along the time dimension. The main assumption is that image time series follow smooth variations over land (background) and abrupt changes will be mainly due to the presence of clouds. The method estimates the background surface changes using the information in the time series. In particular, we propose linear and nonlinear least squares regression algorithms that minimize both the prediction and the estimation error simultaneously. Then, significant differences in the image of interest with respect to the estimated background are identified as clouds. The use of kernel methods allows the generalization of the algorithm to account for higher-order (nonlinear) feature relations. After the proposed cloud masking and cloud removal, cloud-free time series at high spatial resolution can be used to obtain a better monitoring of land cover dynamics and to generate more elaborated products. The method is tested in a dataset with 5-day revisit time series from SPOT-4 at high resolution and with Landsat-8 time series. Experimental results show that the proposed method yields more accurate cloud masks when confronted with state-of-the-art approaches typically used in operational settings. In addition, the algorithm has been implemented in the Google Earth Engine platform, which allows us to access the full Landsat-8 catalog and work in a parallel distributed platform to extend its applicability to a global planetary scale.
NASA Astrophysics Data System (ADS)
Ikegawa, Shinichi; Horinouchi, Takeshi
2016-06-01
Accurate wind observation is a key to study atmospheric dynamics. A new automated cloud tracking method for the dayside of Venus is proposed and evaluated by using the ultraviolet images obtained by the Venus Monitoring Camera onboard the Venus Express orbiter. It uses multiple images obtained successively over a few hours. Cross-correlations are computed from the pair combinations of the images and are superposed to identify cloud advection. It is shown that the superposition improves the accuracy of velocity estimation and significantly reduces false pattern matches that cause large errors. Two methods to evaluate the accuracy of each of the obtained cloud motion vectors are proposed. One relies on the confidence bounds of cross-correlation with consideration of anisotropic cloud morphology. The other relies on the comparison of two independent estimations obtained by separating the successive images into two groups. The two evaluations can be combined to screen the results. It is shown that the accuracy of the screened vectors are very high to the equatorward of 30 degree, while it is relatively low at higher latitudes. Analysis of them supports the previously reported existence of day-to-day large-scale variability at the cloud deck of Venus, and it further suggests smaller-scale features. The product of this study is expected to advance the dynamics of venusian atmosphere.
An effect of Sm vacancies on the hybridization gap in topological Kondo insulator candidate SmB 6
Valentine, Michael E.; Koohpayeh, Seyed; Phelan, W. Adam; ...
2017-11-22
A necessary element for the predicted topological state in Kondo insulator SmB 6 is the hybridization gap which opens in this compound at low temperatures. Here, in this work, we present a comparative study of the in-gap density of states due to Sm vacancies by Raman scattering spectroscopy and heat capacity for samples where the number of Sm vacancies is equal to or below 1%. We demonstrate that hybridization gap is very sensitive to the presence of Sm vacancies. Lastly, at the amount of vacancies above 1% the gap fills in with impurity states and low temperature heat capacity ismore » enhanced.« less
Kobayashi-Kondo-Maskawa-'t Hooft interaction in pentaquarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitrasinovic, V.
2005-05-01
We review critically the predictions of pentaquarks in the quark model, in particular, those based on the flavor-spin-dependent (Glozman-Riska) hyperfine interaction and the color-spin (one-gluon-exchange Fermi-Breit) one. We include the antiquark interactions and find that: (1) the exotic SU(3) multiplets are not substantially affected in the flavor-spin model, whereas some of the nonexotic multiplets are; and (2) the variational upper bound on the {xi}{sup --}-{theta}{sup +} mass difference in the color-spin hyperfine interaction model is substantially reduced. This leads us to the U{sub A}(1) symmetry breaking Kobayashi-Kondo-Maskawa-'tHooft interaction. We discuss some of its phenomenological consequences for pentaquarks.
NASA Astrophysics Data System (ADS)
Kotliar, Gabriel
2005-01-01
Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.
An effect of Sm vacancies on the hybridization gap in topological Kondo insulator candidate SmB 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentine, Michael E.; Koohpayeh, Seyed; Phelan, W. Adam
A necessary element for the predicted topological state in Kondo insulator SmB 6 is the hybridization gap which opens in this compound at low temperatures. Here, in this work, we present a comparative study of the in-gap density of states due to Sm vacancies by Raman scattering spectroscopy and heat capacity for samples where the number of Sm vacancies is equal to or below 1%. We demonstrate that hybridization gap is very sensitive to the presence of Sm vacancies. Lastly, at the amount of vacancies above 1% the gap fills in with impurity states and low temperature heat capacity ismore » enhanced.« less
Field dependence of the magnon dispersion in the Kondo lattice CeCu2 up to 12 T
NASA Astrophysics Data System (ADS)
Schedler, R.; Witte, U.; Rotter, M.; Loewenhaupt, M.; Schmidt, W.
2005-05-01
CeCu2 can be classified as a Kondo lattice which shows antiferromagnetic (AF) order below TN=3.5K [R. Trump et al., J. Appl. Phys. 69, 4699 (1991)]. The orthorhombic crystal and the simple AF magnetic structure with two magnetic moments in the primitive unit cell requires two magnon modes which are observed in zero and low magnetic fields and well described by spin wave theory. However, at higher fields, at and above 3T, an unexpected, additional magnetic excitation is observed. In contrast to the two low-energy magnon modes, it exhibits a steeper (factor 2) field dependence and a flat dispersion. Its origin is unclear.
Study of electrical transport properties of (U 1- xY x)RuP 2Si 2
NASA Astrophysics Data System (ADS)
Radha, S.; Park, J.-G.; Roy, S. B.; Coles, B. R.; Nigam, A. K.; McEwen, K. A.
1996-02-01
Electrical resistivity and magnetoresistance ( {δϱ}/{ϱ}) measurements on a series of (U 1- xY x)Ru 2Si 2 (0 ⩽ x ⩽ 0.9) compounds in the temperature range 4.2-300 K and in magnetic fields up to 45 kOe are reported. The resistivity measurements do not show any signature of antiferromagnetism for x > 0.5. The compound URu 2Si 2 exhibits a large, positive ( {δϱ}/{ϱ}) presumably due to destruction of Kondo coherence as well as due to antiferromagnetism. The presence of even 5% Y at U-site weakens the Kondo coherence and reduces the magnetoresistance considerably.
NASA Technical Reports Server (NTRS)
Taylor, Thomas E.; O'Dell, Christopher W.; Frankenberg, Christian; Partain, Philip; Cronk, Heather W.; Savtchenko, Andrey; Nelson, Robert R.; Rosenthal, Emily J.; Chang, Albert; Crisp, David;
2015-01-01
The retrieval of the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2 ) from satellite measurements of reflected sunlight in the near-infrared can be biased due to contamination by clouds and aerosols within the instrument's field of view (FOV). Therefore, accurate aerosol and cloud screening of soundings is required prior to their use in the computationally expensive XCO2 retrieval algorithm. Robust cloud screening methods have been an important focus of the retrieval algorithm team for the National Aeronautics and Space Administration (NASA) Orbiting Carbon Observatory-2 (OCO-2), which was successfully launched into orbit on July 2, 2014. Two distinct spectrally-based algorithms have been developed for the purpose of cloud clearing OCO-2 soundings. The A-Band Preprocessor (ABP) performs a retrieval of surface pressure using measurements in the 0.76 micron O2 A-band to distinguish changes in the expected photon path length. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) (IDP) algorithm is a non- scattering routine that operates on the O2 A-band as well as two CO2 absorption bands at 1.6 m (weak CO2 band) and 2.0 m (strong CO2 band) to provide band-dependent estimates of CO2 and H2O. Spectral ratios of retrieved CO2 and H2O identify measurements contaminated with cloud and scattering aerosols. Information from the two preprocessors is feed into a sounding selection tool to strategically down select from the order one million daily soundings collected by OCO-2 to a manageable number (order 10 to 20%) to be processed by the OCO-2 L2 XCO2 retrieval algorithm. Regional biases or errors in the selection of clear-sky soundings will introduce errors in the final retrieved XCO2 values, ultimately yielding errors in the flux inversion models used to determine global sources and sinks of CO2. In this work collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, are used as a reference to access the accuracy and strengths and weaknesses of the OCO-2 screening algorithms. The combination of the ABP and IDP algorithms is shown to provide very robust and complimentary cloud filtering as compared to the results from MODIS and CALIOP. With idealized algorithm tuning to allow throughputs of 20-25%, correct classification of scenes, i.e., accuracies, are found to be ' 80-90% over several orbit repeat cycles in both the win ter and spring time for the three main viewing configurations of OCO-2; nadir-land, glint-land and glint-water. Investigation unveiled no major spatial or temporal dependencies, although slight differences in the seasonal data sets do exist and classification tends to be more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice. An in depth analysis on both a simulated data set and real OCO-2 measurements against CALIOP highlight the strength of the ABP in identifying high, thin clouds while it often misses clouds near the surface even when the optical thickness is greater than 1. Fortunately, by combining the ABP with the IDP, the number of thick low clouds passing the preprocessors is partially mitigated.
Mechanism of a strange metal state near a heavy-fermion quantum critical point
NASA Astrophysics Data System (ADS)
Chang, Yung-Yeh; Paschen, Silke; Chung, Chung-Hou
2018-01-01
Unconventional metallic or strange metal (SM) behavior with non-Fermi liquid (NFL) properties, generic features of heavy-fermion systems near quantum phase transitions, are yet to be understood microscopically. A paradigmatic example is the magnetic field-tuned quantum critical heavy-fermion metal YbRh2Si2 , revealing a possible SM state over a finite range of fields at low temperatures when substituted with Ge. Above a critical field, the SM state gives way to a heavy Fermi liquid with Kondo correlation. The NFL behavior, most notably a linear-in-temperature electrical resistivity and a logarithmic-in-temperature followed by a power-law singularity in the specific heat coefficient at low temperatures, still lacks a definite understanding. We propose the following mechanism as origin of the experimentally observed behavior: a quasi-2 d fluctuating short-ranged resonating-valence-bond spin liquid competing with the Kondo correlation. Applying a field-theoretical renormalization group analysis on an effective field theory beyond a large-N approach to an antiferromagnetic Kondo-Heisenberg model, we identify the critical point and explain remarkably well the SM behavior. Our theory goes beyond the well-established framework of quantum phase transitions and serves as a basis to address open issues in quantum critical heavy-fermion systems.
Direct observation of surface-state thermal oscillations in SmB6 oscillators
NASA Astrophysics Data System (ADS)
Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing
2018-01-01
SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.
Kondo Effect of U Impurities in Dilute (YU)2Zn17
NASA Astrophysics Data System (ADS)
Takagi, Shigeru; Suzuki, Hiroyuki; Anzai, Kousuke
2001-10-01
Extending previous work on single-site properties of U ions in (LaU)2Zn17, we have investigated, from ρ(T), χ(T) and Cp(T) on single crystals, (Y1-xUx)2Zn17 with x=0.025 and 0.050, which has almost the same unit-cell volume as an antiferromagnetic heavy-electron compound U2Zn17. Remarkable features in the dilute-impurity limit have been clarified, which include Kondo behavior of ρ(T), large and almost isotropic χimp(T), and strongly enhanced Cimp(T)/T with gigantic γimp=2.02 2.05 J/K2·mole-U as T→0 due to a low characteristic energy-scale of the system. It is shown that gross features of the data are explained in terms of the conventional Kondo effect in the presence of the crystal field with the U3+ \\varGamma6 doublet ground state. It is also shown that the variation of γ with the unit-cell volume in related systems is not explained as a volume effect on TK and that even the behavior of fictitious “paramagnetic” U2Zn17 is not described as a collection of U impurities in dilute (YU)2Zn17.
Universality class of non-Fermi-liquid behavior in mixed-valence systems
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu
1996-01-01
A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper oxides. Using the Abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong-coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed-valence quantum critical point separating two different Fermi-liquid phases, i.e., the Kondo phase and the empty orbital phase. In the mixed-valence quantum critical regime, the local moment is only partially quenched and x-ray edge singularities are generated. Around the quantum critical point, a type of non-Fermi-liquid behavior is predicted with an extra specific heat Cimp~T1/4 and a singular spin susceptibility χimp~T-3/4. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5-x (x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.
Heavy fermion and Kondo lattice behavior in the itinerant ferromagnet CeCrGe3.
Das, Debarchan; Gruner, T; Pfau, H; Paramanik, U B; Burkhardt, U; Geibel, C; Hossain, Z
2014-03-12
Physical properties of polycrystalline CeCrGe3 and LaCrGe3 have been investigated by x-ray absorption spectroscopy, magnetic susceptibility χ(T), isothermal magnetization M(H), electrical resistivity ρ(T), specific heat C(T) and thermoelectric power S(T) measurements. These compounds are found to crystallize in the hexagonal perovskite structure (space group P63/mmc), as previously reported. The ρ(T), χ(T) and C(T) data confirm the bulk ferromagnetic ordering of itinerant Cr moments in LaCrGe3 and CeCrGe3 with TC = 90 K and 70 K respectively. In addition, a weak anomaly is also observed near 3 K in the C(T) data of CeCrGe3. The T dependences of ρ and finite values of Sommerfeld coefficient γ obtained from the specific heat measurements confirm that both the compounds are of metallic character. Further, the T dependence of ρ of CeCrGe3 reflects a Kondo lattice behavior. An enhanced γ of 130 mJ mol(-1) K(-2) together with the Kondo lattice behavior inferred from the ρ(T) establish CeCrGe3 as a moderate heavy fermion compound with a quasi-particle mass renormalization factor of ∼45.
A combinatorial screen of the CLOUD uncovers a synergy targeting the androgen receptor.
Licciardello, Marco P; Ringler, Anna; Markt, Patrick; Klepsch, Freya; Lardeau, Charles-Hugues; Sdelci, Sara; Schirghuber, Erika; Müller, André C; Caldera, Michael; Wagner, Anja; Herzog, Rebecca; Penz, Thomas; Schuster, Michael; Boidol, Bernd; Dürnberger, Gerhard; Folkvaljon, Yasin; Stattin, Pär; Ivanov, Vladimir; Colinge, Jacques; Bock, Christoph; Kratochwill, Klaus; Menche, Jörg; Bennett, Keiryn L; Kubicek, Stefan
2017-07-01
Approved drugs are invaluable tools to study biochemical pathways, and further characterization of these compounds may lead to repurposing of single drugs or combinations. Here we describe a collection of 308 small molecules representing the diversity of structures and molecular targets of all FDA-approved chemical entities. The CeMM Library of Unique Drugs (CLOUD) covers prodrugs and active forms at pharmacologically relevant concentrations and is ideally suited for combinatorial studies. We screened pairwise combinations of CLOUD drugs for impairment of cancer cell viability and discovered a synergistic interaction between flutamide and phenprocoumon (PPC). The combination of these drugs modulates the stability of the androgen receptor (AR) and resensitizes AR-mutant prostate cancer cells to flutamide. Mechanistically, we show that the AR is a substrate for γ-carboxylation, a post-translational modification inhibited by PPC. Collectively, our data suggest that PPC could be repurposed to tackle resistance to antiandrogens in prostate cancer patients.
Cloud Chemistry in the United States: Problems and Prospects
NASA Astrophysics Data System (ADS)
Carlton, A. G.; Barth, M. C.; Lance, S.; Fahey, K.; McNeill, V. F.; Weber, R. J.
2017-12-01
Clouds cover 60% of the Earth's surface at a given time and are the primary means by which atmospheric trace species are lofted from the polluted boundary layer to the free troposphere. Clouds also play an important role as atmospheric aqueous phase reactors, scavenging soluble gas phase precursors and providing a medium for oxidation reactions that yield lower volatility products that contribute to increased aerosol mass when cloud drops evaporate. On a global average, most sulfate particles are formed during cloud processing, and organic particles known to form through aqueous phase pathways are found above clouds. However, atmospheric chemistry observations are generally biased for clear sky conditions. For example, aircraft field deployments typically avoid clouds. Satellite retrievals impacted by clouds are often screened from the final data products. This hinders knowledge of cloud chemistry and the impacts on tropospheric composition. In this work, we explore temporal and geospatial trends in trace species related to cloud processing in the U.S. with a focus on organic chemistry. We apply 3-dimensional and 0-dimensional models to recent campaigns and mountaintop cloud sampling sites, and compare to measurements.
Morgan, Matthew B; Young, Elizabeth; Harada, Scott; Winkler, Nicole; Riegert, Joanna; Jones, Tony; Hu, Nan; Stein, Matthew
2017-12-01
In screening mammography, accessing prior examination images is crucial for accurate diagnosis and avoiding false-positives. When women visit multiple institutions for their screens, these "outside" examinations must be retrieved for comparison. Traditionally, prior images are obtained by faxing requests to other institutions and waiting for standard mail (film or CD-ROM), which can greatly delay report turnaround times. Recently, advancements in cloud-based image transfer technology have opened up more efficient options for examination transfer between institutions. The objective of this study was to evaluate the effect of cloud-based image transfer on mammography department workflow, time required to obtain prior images, and report turnaround times. Sixty screening examinations requiring prior images were placed into two groups (30 each). The control group used the standard institutional protocol for requesting prior images: faxing requests and waiting for mailed examinations. The experimental group used a cloud-based transfer for both requesting and receiving examinations. The mean number of days between examination request and examination receipt was measured for both groups and compared. The mean number of days from examination request to receipt was 6.08 days (SD 3.50) in the control group compared with 3.16 days (SD 3.95) in the experimental group. Using a cloud-based image transfer to obtain prior mammograms resulted in an average reduction of 2.92 days (P = .0361; 95% confidence interval 0.20-5.65) between examination request and receipt. This improvement in system efficiency is relevant for interpreting radiologists working to improve reporting times and for patients anxious to receive their mammography results. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Cloud computing approaches to accelerate drug discovery value chain.
Garg, Vibhav; Arora, Suchir; Gupta, Chitra
2011-12-01
Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.
Methods of editing cloud and atmospheric layer affected pixels from satellite data
NASA Technical Reports Server (NTRS)
Nixon, P. R. (Principal Investigator); Wiegand, C. L.; Richardson, A. J.; Johnson, M. P.; Goodier, B. G.
1981-01-01
The location and migration of cloud, land and water features were examined in spectral space (reflective VIS vs. emissive IR). Daytime HCMM data showed two distinct types of cloud affected pixels in the south Texas test area. High altitude cirrus and/or cirrostratus and "subvisible cirrus" (SCi) reflected the same or only slightly more than land features. In the emissive band, the digital counts ranged from 1 to over 75 and overlapped land features. Pixels consisting of cumulus clouds, or of mixed cumulus and landscape, clustered in a different area of spectral space than the high altitude cloud pixels. Cumulus affected pixels were more reflective than land and water pixels. In August the high altitude clouds and SCi were more emissive than similar clouds were in July. Four-channel TIROS-N data were examined with the objective of developing a multispectral screening technique for removing SCi contaminated data.
EyeMIAS: a cloud-based ophthalmic image reading and auxiliary diagnosis system
NASA Astrophysics Data System (ADS)
Wu, Di; Zhao, Heming; Yu, Kai; Chen, Xinjian
2018-03-01
Relying solely on ophthalmic equipment is unable to meet the present health needs. It is urgent to find an efficient way to provide a quick screening and early diagnosis on diabetic retinopathy and other ophthalmic diseases. The purpose of this study is to develop a cloud-base system for medical image especially ophthalmic image to store, view and process and accelerate the screening and diagnosis. In this purpose the system with web application, upload client, storage dependency and algorithm support is implemented. After five alpha tests, the system bore the thousands of large traffic access and generated hundreds of reports with diagnosis.
Crystal structure and physical properties of a novel Kondo antiferromagnet: U3Ru4Al12
NASA Astrophysics Data System (ADS)
Pasturel, M; Tougait, O; Potel, M; Roisnel, T; Wochowski, K; Noël, H; Troć, R
2009-03-01
A novel ternary compound U3Ru4Al12 has been identified in the U-Ru-Al ternary diagram. Single-crystal x-ray diffraction indicates a hexagonal Gd3Ru4Al12-type structure for this uranium-based intermetallic. While this structure type usually induces geometrically a spin-glass behaviour, an antiferromagnetic ordering is observed at TN = 8.4 K in the present case. The reduced effective magnetic moment of U atoms (μeff = 2.6 µB) can be explained by Kondo-like interactions and crystal field effects that have been identified by a logarithmic temperature dependence of the electrical resistivity, negative values of the magnetoresistivity and particular shape of the Seebeck coefficient.
Luo, Yongkang; Chen, Hua; Dai, Jianhui; ...
2015-02-25
Motivated by the high sensitivity to Fermi surface topology and scattering mechanisms in magnetothermoelectric transport, we have measured the thermopower and Nernst effect on the (011) plane of the proposed topological Kondo insulator SmB 6. These experiments, together with electrical resistivity and Hall effect measurements, suggest that the (011) plane also harbors a metallic surface with an effective mass on the order of 10–10 2 m 0. The surface and bulk conductances are well distinguished in these measurements and are categorized into metallic and nondegenerate semiconducting regimes, respectively. As a result, electronic correlations play an important role in enhancing scatteringmore » and also contribute to the heavy surface state.« less
NASA Astrophysics Data System (ADS)
Hayashi, K.; Umeo, K.; Takeuchi, T.; Kawabata, J.; Muro, Y.; Takabatake, T.
2017-12-01
We have measured the strain, magnetization, and specific heat of the antiferromagnetic (AFM) Kondo semiconductors Ce T2A l10 (T =Ru and Os) under uniaxial pressures applied along the orthorhombic axes. We found a linear dependence of TN on the b -axis parameter for both compounds under uniaxial pressure P ∥b and hydrostatic pressure. This relation indicates that the distance between the Ce-T layers along the b axis is the key structural parameter determining TN. Furthermore, the pressure dependence of the spin-flop transition field indicates that Ce-Ce interchain interactions stabilize the AFM state with the ordered moments pointing to the c axis.
Fractionalized Fermi liquids and exotic superconductivity in the Kitaev-Kondo lattice
NASA Astrophysics Data System (ADS)
Seifert, Urban F. P.; Meng, Tobias; Vojta, Matthias
2018-02-01
Fractionalized Fermi liquids (FL*) have been introduced as non-Fermi-liquid metallic phases, characterized by coexisting electron-like charge carriers and local moments which form a fractionalized spin liquid. Here we investigate a Kondo lattice model on the honeycomb lattice with Kitaev interactions among the local moments, a concrete model hosting FL* phases based on Kitaev's Z2 spin liquid. We characterize the FL* phases via perturbation theory, and we employ a Majorana-fermion mean-field theory to map out the full phase diagram. Most remarkably we find nematic triplet superconducting phases which mask the quantum phase transition between fractionalized and conventional Fermi liquid phases. Their pairing structure is inherited from the Kitaev spin liquid; i.e., superconductivity is driven by Majorana glue.
Tanaka, Hirotaka; Kondo, Takumasa
2015-01-01
Abstract A new soft scale (Hemiptera: Coccoidea: Coccidae) species, Pulvinaria caballeroramosae Tanaka & Kondo, sp. n., is described from specimens collected on twigs of Ficus soatensis Dugand (Moraceae) in Bogota, Colombia. The new species resembles Pulvinaria drymiswinteri Kondo & Gullan, described from Chile on Drimys winteri J.R. Forst. & G. Forst. (Winteraceae), but differs in the distribution of preopercular pores on the dorsum, the presence of dorsal tubular ducts, dorsal microducts, and reticulation on the anal plates; and in its feeding habits, i.e., Pulvinaria caballeroramosae feeds on the twigs whereas Pulvinaria drymiswinteri feeds on the leaves of its host. A key to the Colombian species of Pulvinaria Targioni Tozzetti is provided. PMID:25829845
Quality assessment and improvement of the EUMETSAT Meteosat Surface Albedo Climate Data Record
NASA Astrophysics Data System (ADS)
Lattanzio, A.; Fell, F.; Bennartz, R.; Trigo, I. F.; Schulz, J.
2015-10-01
Surface albedo has been identified as an important parameter for understanding and quantifying the Earth's radiation budget. EUMETSAT generated the Meteosat Surface Albedo (MSA) Climate Data Record (CDR) currently comprising up to 24 years (1982-2006) of continuous surface albedo coverage for large areas of the Earth. This CDR has been created within the Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM) framework. The long-term consistency of the MSA CDR is high and meets the Global Climate Observing System (GCOS) stability requirements for desert reference sites. The limitation in quality due to non-removed clouds by the embedded cloud screening procedure is the most relevant weakness in the retrieval process. A twofold strategy is applied to efficiently improve the cloud detection and removal. The first step consists of the application of a robust and reliable cloud mask, taking advantage of the information contained in the measurements of the infrared and visible bands. Due to the limited information available from old radiometers, some clouds can still remain undetected. A second step relies on a post-processing analysis of the albedo seasonal variation together with the usage of a background albedo map in order to detect and screen out such outliers. The usage of a reliable cloud mask has a double effect. It enhances the number of high-quality retrievals for tropical forest areas sensed under low view angles and removes the most frequently unrealistic retrievals on similar surfaces sensed under high view angles. As expected, the usage of a cloud mask has a negligible impact on desert areas where clear conditions dominate. The exploitation of the albedo seasonal variation for cloud removal has good potentialities but it needs to be carefully addressed. Nevertheless it is shown that the inclusion of cloud masking and removal strategy is a key point for the generation of the next MSA CDR release.
Cooperative magnetic behaviour in the new valence fluctuating compound Ce2Rh3Ge
NASA Astrophysics Data System (ADS)
Falkowski, M.; Strydom, A. M.
2015-10-01
In this study we report the physical properties of the new ternary compound Ce2Rh3Ge that crystallizes in the rhombohedral, triple hexagonal MgCu2-type of structure. The electronic ground state properties of Ce2Rh3Ge were characterized by magnetic susceptibility, specific heat, electrical resistivity and thermal transport measurements. The results indicate the presence of short range magnetic interaction, probably of ferromagnetic origin below T C = 4 K. The shape of χ -1(T) deviates from the Curie-Weiss behavior with a broad minimum at about T\\min{{χ-1}} = 450 K reminiscent of valence fluctuating cerium systems. At T = 10 K, the magnetic part of the resistivity ρ 4 f (T) exhibits a shallow minimum followed by increase of resistivity ρ(T) \\propto -lnT, which hints at a substantial Kondo screening effect. Ce2Rh3Ge belongs to a small group of strongly correlated cerium compounds in which the two competing effects of Kondo and RKKY interactions produce long-range magnetic order from strongly hybridized and intermediate-valent 4 f spins. At sufficiently low temperatures Ce2Rh3Ge scales well with the Kadowaki-Woods ratio A/γ 2 and the value of the Wilson ratio χ(T → 0)/γ found for this compound classifies it as a mixed-valence compound. The presence of valence fluctuation and magnetic order it is rare for these attributes to be found simultaneously in same compound, in same temperature range. In our opinion a novelty of presented results of Ce2Rh3Ge is that this compound adds a new member to a small but growing class of systems bearing a strongly mixed- or intermediate-valent 4 f magnetic moment, but in which the lattice of spins nevertheless end up finding it possible to order magnetically.
Large-scale high-throughput computer-aided discovery of advanced materials using cloud computing
NASA Astrophysics Data System (ADS)
Bazhirov, Timur; Mohammadi, Mohammad; Ding, Kevin; Barabash, Sergey
Recent advances in cloud computing made it possible to access large-scale computational resources completely on-demand in a rapid and efficient manner. When combined with high fidelity simulations, they serve as an alternative pathway to enable computational discovery and design of new materials through large-scale high-throughput screening. Here, we present a case study for a cloud platform implemented at Exabyte Inc. We perform calculations to screen lightweight ternary alloys for thermodynamic stability. Due to the lack of experimental data for most such systems, we rely on theoretical approaches based on first-principle pseudopotential density functional theory. We calculate the formation energies for a set of ternary compounds approximated by special quasirandom structures. During an example run we were able to scale to 10,656 CPUs within 7 minutes from the start, and obtain results for 296 compounds within 38 hours. The results indicate that the ultimate formation enthalpy of ternary systems can be negative for some of lightweight alloys, including Li and Mg compounds. We conclude that compared to traditional capital-intensive approach that requires in on-premises hardware resources, cloud computing is agile and cost-effective, yet scalable and delivers similar performance.
Quantum oscillations in the heavy-fermion compound YbPtBi
Mun, E.; Bud'ko, S. L.; Lee, Y.; ...
2015-08-01
We present quantum oscillations observed in the heavy-fermion compound YbPtBi in magnetic fields far beyond its field-tuned, quantum critical point. Quantum oscillations are observed in magnetic fields as low as 60 kOe at 60 mK and up to temperatures as high as 3 K, which confirms the very high quality of the samples as well as the small effective mass of the conduction carriers far from the quantum critical point. Although the electronic specific heat coefficient of YbPtBi reaches ~7.4 J/molK 2 in zero field, which is one of the highest effective mass values among heavy-fermion systems, we suppress itmore » quickly by an applied magnetic field. The quantum oscillations were used to extract the quasiparticle effective masses of the order of the bare electron mass, which is consistent with the behavior observed in specific heat measurements. Furthermore, such small effective masses at high fields can be understood by considering the suppression of Kondo screening.« less
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Techniques that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that rely on visible, near-infrared, and thermal infrared channels. The availability of thermal channels to aid in cloud screening for aerosol properties is an important additional piece of information that has not always been incorporated into sensor designs. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles that are currently available from space-based observations, and show selected cases in which aerosol particles are observed to modify the cloud optical properties.
Solution of effective Hamiltonian of impurity hopping between two sites in a metal
NASA Astrophysics Data System (ADS)
Ye, Jinwu
1998-03-01
We analyze in detail all the possible fixed points of the effective Hamiltonian of a non-magnetic impurity hopping between two sites in a metal obtained by Moustakas and Fisher(MF). We find a line of non-fermi liquid fixed points which continuously interpolates between the 2-channel Kondo fixed point(2CK) and the one channel, two impurity Kondo (2IK) fixed point. There is one relevant direction with scaling dimension 1/2 and one leading irrelevant operator with dimension 3/2. There is also one marginal operator in the spin sector moving along this line. The additional non-fermi liquid fixed point found by MF has the same symmetry as the 2IK, it has two relevant directions with scaling dimension 1/2, therefore also unstable. The system is shown to flow to a line of fermi-liquid fixed points which continuously interpolates between the non-interacting fixed point and the 2 channel spin-flavor Kondo fixed point (2CSFK) discussed by the author previously. The effect of particle-hole symmetry breaking is discussed. The effective Hamiltonian in the external magnetic field is analysed. The scaling functions for the physical measurable quantities are derived in the different regimes; their predictions for the experiments are given. Finally the implications are given for a non-magnetic impurity hopping around three sites with triangular symmetry discussed by MF.
Spin fluctations and heavy fermions in the Kondo lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaliullin, G.G.
1994-09-01
This paper studies the spectrum of the spin and electronic excitations of the Kondo lattice at low temperatures. To avoid unphysical states, the Mattis {open_quotes}drone{close_quotes}-fermion representation for localized spins is employed. First, the known Fermi liquid properties of a single impurity are examined. The behavior of the correlator between a localized spin and the electron spin density at large distances shows that the effective interaction between electrons on the Fermi level and low-energy localized spin fluctuations scales as {rho}{sup {minus}1}, where {rho} is the band-state density. This fact is developed into a renormalization of the band spectrum in a periodicmore » lattice. If the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between localized spins is much smaller than the Kondo fluctuation frequency {omega}{sub k}, the temperature of the crossover to the single-parameter Fermi liquid mode is determined by {omega}{sub k}. When the RKKY interaction becomes of order {omega}{sub k}, there is a new scale {omega}{sub sf}, the energy of the (antiferromagnetic) paramagnon mode, with {omega}{sub sf}{much_lt}{omega}{sub k}. Here the coherent Fermi liquid regime is realized only below a temperature T{sub coh} of order {omega}{sub sf}, while above T{sub coh} quasiparticle damping exhibits a linear temperature dependence. Finally, the nuclear-spin relaxation rate is calculated. 42 refs.« less
Large Thermopower of δ-doped LaTiO3/SrTiO3 Interfaces and it's Field Dependence
NASA Astrophysics Data System (ADS)
Budhani, R. C.; Das, Shubhankar; Joshi, P. C.; Rastogi, A.; Hossain, Z.
2015-03-01
We will present the magneto-thermopower (S(T, H)) of interfacial delta doped LaTiO3/SrTiO3 heterostructure by an iso-structural antiferromagnetic perovskite LaCrO3. The thermoelectric power of 2-dimensional electron gas (2DEG) of pure LaTiO3/SrTiO3 at 300 K is ~ 118 μV/K, but increases dramatically to 337 μV/K on inserting 5 uc LaCrO3 at the interface. The negative sign of the thermoelectric power confirms the electron as major carriers in these interfaces. A linear temperature dependence of S(T) has been observed in the temperature range 100 K to 300 K which is in agreement with the theory of diffusion thermopower of 2DEG. The S(T) shows a distinct enhancement at temperature <100 K, where a Kondo-type minimum has been observed in sheet resistance. We attribute this maximum in S(T) to Kondo scattering of conduction electron by localized impurity spin at the interface. The S in this temperature range is suppressed significantly (<= 20%) by moderate magnetic field (<= 13 T) applied either perpendicular or parallel to the film surface. The isotropic nature of the suppression of S by magnetic field further strengthen the Kondo based interpretation of S(T, H). We acknowledge IIT Kanpur and CSIR India for funding this research work.
Kondo temperature and Heavy Fermion behavior in Yb1-xYxCuAl series of alloys
NASA Astrophysics Data System (ADS)
Rojas, D. P.; Gandra, F. G.; Medina, A. N.; Fernández Barquín, L.; Gómez Sal, J. C.
2018-05-01
Results on x-ray diffraction, electrical resistivity, specific heat and magnetization on the Yb1-xYxCuAl series of compounds are reported. The analysis of the x-ray data shows the increase of the unit cell volume with the Y dilution. The electrical resistivity shows an evolution from Kondo lattice regime for x ≤ 0.6 to single impurity behavior for x = 0.8 and 0.94. The electronic coefficient γ shows values of Heavy Fermion systems along the series for 0 ≤ x < 1 . On the other hand, dc magnetic susceptibility measurements show typical curves of intermediate valence systems with a maximum around 25 K. Below this maximum, the values of low temperature susceptibility (χ (0)) decrease with the increase of Y content. From the dependence of χ (0) and γ upon Y substitution, an increase of 12% of the Kondo temperature (TK) for x = 0.8 alloy respect to the reference YbCuAl (x = 0) is estimated. This is further supported by the evolution of the temperature of the maximum in the magnetic contribution of the specific heat. The overall results can be explained by the increase of the hybridization as consequence of negative pressure effects obtained by the chemical substitution of Yb by Y, thus leading to the increase of TK, in agreement with the Doniach's diagram.
Long-range spin coherence in a strongly coupled all-electronic dot-cavity system
NASA Astrophysics Data System (ADS)
Ferguson, Michael Sven; Oehri, David; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Blatter, Gianni; Zilberberg, Oded
2017-12-01
We present a theoretical analysis of spin-coherent electronic transport across a mesoscopic dot-cavity system. Such spin-coherent transport has been recently demonstrated in an experiment with a dot-cavity hybrid implemented in a high-mobility two-dimensional electron gas [C. Rössler et al., Phys. Rev. Lett. 115, 166603 (2015), 10.1103/PhysRevLett.115.166603] and its spectroscopic signatures have been interpreted in terms of a competition between Kondo-type dot-lead and molecular-type dot-cavity singlet formation. Our analysis brings forward all the transport features observed in the experiments and supports the claim that a spin-coherent molecular singlet forms across the full extent of the dot-cavity device. Our model analysis includes (i) a single-particle numerical investigation of the two-dimensional geometry, its quantum-coral-type eigenstates, and associated spectroscopic transport features, (ii) the derivation of an effective interacting model based on the observations of the numerical and experimental studies, and (iii) the prediction of transport characteristics through the device using a combination of a master-equation approach on top of exact eigenstates of the dot-cavity system, and an equation-of-motion analysis that includes Kondo physics. The latter provides additional temperature scaling predictions for the many-body phase transition between molecular- and Kondo-singlet formation and its associated transport signatures.
Fractionalized Fermi liquid in a Kondo-Heisenberg model
Tsvelik, A. M.
2016-10-10
The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron density. Here, I use a nonperturbative approach where the strongest interactions are taken into account by means of exact solution, and corrections are controllable. The resulting metallic state represents a fractionalized Fermi liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations, in agreement with the general requirements formulated by T. Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003)]. Furthermore, the system undergoes amore » phase transition to an ordered phase (charge density wave or superconducting), at the transition temperature which is parametrically small in comparison to the quasiparticle Fermi energy.« less
Interaction Driven Subgap Spin Exciton in the Kondo Insulator SmB 6
Fuhrman, W. T.; Leiner, Jonathan C.; Nikolić, P.; ...
2015-01-21
In this paper, using inelastic neutron scattering, we map a 14 meV coherent resonant mode in the topological Kondo insulator SmB 6 and describe its relation to the low energy insulating band structure. The resonant intensity is confined to the X and R high symmetry points, repeating outside the first Brillouin zone and dispersing less than 2 meV, with a 5d-like magnetic form factor. We present a slave-boson treatment of the Anderson Hamiltonian with a third neighbor dominated hybridized band structure. This approach produces a spin exciton below the charge gap with features that are consistent with the observed neutronmore » scattering. Finally, we find that maxima in the wave vector dependence of the inelastic neutron scattering indicate band inversion.« less
Momentum-dependent hybridization gap and dispersive in-gap state of the Kondo semiconductor SmB6
NASA Astrophysics Data System (ADS)
Miyazaki, Hidetoshi; Hajiri, Tetsuya; Ito, Takahiro; Kunii, Satoru; Kimura, Shin-ichi
2012-08-01
We report the temperature-dependent three-dimensional angle-resolved photoemission spectra of the Kondo semiconductor SmB6. We found a difference in the temperature dependence of the peaks at the X and Γ points, due to hybridization between the Sm 5d conduction band and the nearly localized Sm 4f state. The peak intensity at the X point has the same temperature dependence as the valence transition below 120 K, while that at the Γ point is consistent with the magnetic excitation at Q=(0.5,0.5,0.5) below 30 K. This suggests that the hybridization with the valence transition mainly occurs near the X point, and the initial state of the magnetic excitation is located near the Γ point.
Quantum phase transition and protected ideal transport in a Kondo chain
Tsvelik, A. M.; Yevtushenko, O. M.
2015-11-30
We study the low energy physics of a Kondo chain where electrons from a one-dimensional band interact with magnetic moments via an anisotropic exchange interaction. It is demonstrated that the anisotropy gives rise to two different phases which are separated by a quantum phase transition. In the phase with easy plane anisotropy, Z2 symmetry between sectors with different helicity of the electrons is broken. As a result, localization effects are suppressed and the dc transport acquires (partial) symmetry protection. This effect is similar to the protection of the edge transport in time-reversal invariant topological insulators. The phase with easy axismore » anisotropy corresponds to the Tomonaga-Luttinger liquid with a pronounced spin-charge separation. The slow charge density wave modes have no protection against localizatioin.« less
One-dimensional Kondo lattice model at quarter filling
NASA Astrophysics Data System (ADS)
Xavier, J. C.; Miranda, E.
2008-10-01
We revisit the problem of the quarter-filled one-dimensional Kondo lattice model, for which the existence of a dimerized phase and a nonzero charge gap had been reported by Xavier [Phys. Rev. Lett. 90, 247204 (2003)]. Recently, some objections were raised claiming that the system is neither dimerized nor has a charge gap. In the interest of clarifying this important issue, we show that these objections are based on results obtained under conditions in which the dimer order is artificially suppressed. We use the incontrovertible dimerized phase of the Majumdar-Ghosh point of the J1-J2 Heisenberg model as a paradigm with which to illustrate this artificial suppression. Finally, by means of extremely accurate density-matrix renormalization-group calculations, we show that the charge gap is indeed nonzero in the dimerized phase.
Shot Noise in a Quantum Dot with the Finite Coulomb Interaction
NASA Astrophysics Data System (ADS)
Cao, Xian-Sheng
2011-09-01
We study the shot noise in a quantum dot which coupled to metallic leads using the equation of motion of nonequilibrium Green's function technique at Kondo temperature T K . We compute the out of equilibrium density of states, the current and the shot noise. We find that the value of shot noise in the finite coulomb interaction case is smaller than one at Kondo temperature T K when variation of ɛ d values of the QD energy in the absence of the external magnetic field. We also find that the values of S(0)/ V are almost insusceptible to U when eV d under 2, while the values of S(0)/ V appear slightly branch off when the value of eV d approach to 6.
NASA Astrophysics Data System (ADS)
Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.
2017-11-01
Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.
A Catalog of Distances to Molecular Clouds from Pan-STARRS1
NASA Astrophysics Data System (ADS)
Schlafly, Eddie; Green, G.; Finkbeiner, D. P.; Rix, H.
2014-01-01
We present a catalog of distances to molecular clouds, derived from PanSTARRS-1 photometry. We simultaneously infer the full probability distribution function of reddening and distance of the stars towards these clouds using the technique of Green et al. (2013) (see neighboring poster). We fit the resulting measurements using a simple dust screen model to infer the distance to each cloud. The result is a large, homogeneous catalog of distances to molecular clouds. For clouds with heliocentric distances greater than about 200 pc, typical statistical uncertainties in the distances are 5%, with systematic uncertainty stemming from the quality of our stellar models of about 10%. We have applied this analysis to many of the most well-studied clouds in the δ > -30° sky, including Orion, California, Taurus, Perseus, and Cepheus. We have also studied the entire catalog of Magnani, Blitz, and Mundy (1985; MBM), though for about half of those clouds we can provide only upper limits on the distances. We compare our distances with distances from the literature, when available, and find good agreement.
FUNCTION GENERATOR FOR ANALOGUE COMPUTERS
Skramstad, H.K.; Wright, J.H.; Taback, L.
1961-12-12
An improved analogue computer is designed which can be used to determine the final ground position of radioactive fallout particles in an atomic cloud. The computer determines the fallout pattern on the basis of known wind velocity and direction at various altitudes, and intensity of radioactivity in the mushroom cloud as a function of particle size and initial height in the cloud. The output is then displayed on a cathode-ray tube so that the average or total luminance of the tube screen at any point represents the intensity of radioactive fallout at the geographical location represented by that point. (AEC)
Ground-based observations of aerosol-cloud interactions in the North East of the United States
NASA Astrophysics Data System (ADS)
Li, S.; Joseph, E.; Min, Q.
2015-12-01
Five years ground-based observations (2006 to 2010) of aerosol and cloud properties derived from passive radiometric sensors deployed at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University were used to examine aerosol indirect effect on cloud optical depth (COD), liquid water path (LWP), cloud droplet effective radius (Re) and cloud droplet number concentration (Nd). A higher frequency of clouds with small Re (<7µm) was found during summer of 2006 and 2007 along with higher frequency of abundant aerosol loading (AOD>0.5). The five-year data are screened for summer boundary layer clouds only and are separated into clean and polluted cases based on aerosol particulate matter with aerodynamic diameter≤2.5µm (PM2.5) value. Evidence of aerosol indirect effect on cloud microphysics is found where for the polluted cases the mean (and median) values of Nd distributions were elevated while the mean (and median) values of Re were decreased as compared to those for the clean cases under various LWP ranges. Relatively, the aerosol indirect effects on modifying cloud microphysical properties are found more significant with large LWP than with small LWP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yifeng; Urbano, Ricardo; Nicholas, Curro
2009-01-01
We report Knight shift experiments on the superconducting heavy electron material CeCoIn{sub 5} that allow one to track with some precision the behavior of the heavy electron Kondo liquid in the superconducting state with results in agreement with BCS theory. An analysis of the {sup 115}In nuclear quadrupole resonance (NQR) spin-lattice relaxation rate T{sub 1}{sup -1} measurements under pressure reveals the presence of 2d magnetic quantum critical fluctuations in the heavy electron component that are a promising candidate for the pairing mechanism in this material. Our results are consistent with an antiferromagnetic quantum critical point (QCP) located at slightly negativemore » pressure in CeCoIn{sub 5} and provide additional evidence for significant similarities between the heavy electron materials and the high T{sub c} cuprates.« less
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-08-01
We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.
NASA Astrophysics Data System (ADS)
Hou, Jie; Wang, Yu; Eguchi, Keitaro; Nanjo, Chihiro; Takaoka, Tsuyoshi; Sainoo, Yasuyuki; Awaga, Kunio; Komeda, Tadahiro
2018-05-01
We report scanning tunneling microscope (STM) observation of vanadyl tetrakis(thiadiazole) porphyrazine (VOTTDPz) molecules, which is a family molecule of phthalocyanine (Pc) but without Csbnd H termination in the perimeter, deposited on Au(1 1 1) surface. Well-ordered film corresponding to 4 × 4 superstructure with respect to Au(1 1 1) surface is formed, in which the centers of the molecules are separated by 1.12 nm, which is much smaller than that observed for a VOPc molecule on Au(1 1 1), due to the absence of Csbnd H termination. At the same time, the azimuthal angles of neighboring molecules rotate with each other by 30°. A contrast variation of bright and dark molecules is observed, which are interpreted as O-up and O-down molecules, respectively, based on the density functional theory simulation. Spin-polarized local density of states calculation shows spin-polarized V 3d state, which is delocalized over the ring. Spin detection is executed by measuring Kondo resonance in the tunneling spectroscopy near the Fermi level, which is caused by the interaction of an isolated spin and conduction electron of the substrate. We detected asymmetric and weak Kondo peak for out-of-plane outer magnetic field of 0 T, which becomes strong and symmetric peak at 5 T, which is understood by the shift of the spin center of the Kondo resonance from V 3d to delocalized π state in ring with the magnetic field.
Development of a cloud-screening method for MAX-DOAS measurements
NASA Astrophysics Data System (ADS)
Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; Vlemmix, Tim
2013-04-01
In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under (partially) cloudy conditions, causing data quality degradation and higher uncertainties on the retrievals. A high aerosol load and/or a strong cloud cover can introduce additional photon absorption or multiple scattering. The first effect strongly impacts the retrieved differential slant columns (DSCDs) of the trace gases, leading to an underestimation of the atmospheric column density. Multiple scattering, on the other hand, becomes important for low clouds with a high optical depth, and cause a strong increase in the retrieved trace gas DSCDs. The presence of thin clouds can furthermore introduce a degeneracy in the retrieved aerosol optical depth, since they will have similar effect on the MAX-DOAS measurements. In this case, only information on the trace gas DSCDs can be successfully retrieved. If the cloud cover consists of broken or scattered clouds, the MAX-DOAS method becomes very unstable, since the different elevation angels will probe regions of the sky with strongly deviating properties. Here we present a method to qualify the sky and cloud conditions, using the colour index and O4 DSCDs, as derived from the MAX-DOAS measurements. The colour index is defined as the ratio of the intensities at the short- and long-wavelength part of the visible spectral range, typically at 400 nm and 670 nm. For increasing optical thickness due to clouds or aerosols, the colour index values decrease and values for different elevation angles converge. In the case of broken clouds, the colour index shows a strong and rapid temporal variation, which is easily detectable. Additional information is derived from the O4 DSCD measurements, since they are quite sensitive to the change of the light paths due to scattering at different altitudes. For example, thick clouds at low altitude show a very strong increase in the DSCD values due to scattering, combined with a low colour index value due to the intensity screening. In general, our method shows promising results to qualify the sky and cloud conditions of MAX- DOAS measurements, without the need for other external cloud-detection systems such as Brewer instruments or pyrheliometers.
Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.
Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki
2014-11-01
Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.
Zhavoronkov, Alex; Buzdin, Anton A.; Garazha, Andrey V.; Borisov, Nikolay M.; Moskalev, Alexey A.
2014-01-01
The major challenges of aging research include absence of the comprehensive set of aging biomarkers, the time it takes to evaluate the effects of various interventions on longevity in humans and the difficulty extrapolating the results from model organisms to humans. To address these challenges we propose the in silico method for screening and ranking the possible geroprotectors followed by the high-throughput in vivo and in vitro validation. The proposed method evaluates the changes in the collection of activated or suppressed signaling pathways involved in aging and longevity, termed signaling pathway cloud, constructed using the gene expression data and epigenetic profiles of young and old patients' tissues. The possible interventions are selected and rated according to their ability to regulate age-related changes and minimize differences in the signaling pathway cloud. While many algorithmic solutions to simulating the induction of the old into young metabolic profiles in silico are possible, this flexible and scalable approach may potentially be used to predict the efficacy of the many drugs that may extend human longevity before conducting pre-clinical work and expensive clinical trials. PMID:24624136
A Systematic Literature Mapping of Risk Analysis of Big Data in Cloud Computing Environment
NASA Astrophysics Data System (ADS)
Bee Yusof Ali, Hazirah; Marziana Abdullah, Lili; Kartiwi, Mira; Nordin, Azlin; Salleh, Norsaremah; Sham Awang Abu Bakar, Normi
2018-05-01
This paper investigates previous literature that focusses on the three elements: risk assessment, big data and cloud. We use a systematic literature mapping method to search for journals and proceedings. The systematic literature mapping process is utilized to get a properly screened and focused literature. With the help of inclusion and exclusion criteria, the search of literature is further narrowed. Classification helps us in grouping the literature into categories. At the end of the mapping, gaps can be seen. The gap is where our focus should be in analysing risk of big data in cloud computing environment. Thus, a framework of how to assess the risk of security, privacy and trust associated with big data and cloud computing environment is highly needed.
Introduction and analysis of several FY3C-MWHTS cloud/rain screening methods
NASA Astrophysics Data System (ADS)
Li, Xiaoqing
2017-04-01
Data assimilation of satellite microwave sounders are very important for numerical weather prediction. Fengyun-3C (FY-3C),launched in September, 2013, has two such sounders: MWTS (MicroWave Temperature Sounder) and MWHTS (MicroWave Humidity and Temperature Sounder). These data should be quality-controlled before assimilation and cloud/rain detection is one of the crucial steps. This paper introduced different cloud/rain detection methods based on MWHTS, VIRR (Visible and InfraRed Radiometer) and MWRI (Microwave Radiation Imager) observations. We designed 6 cloud/rain detection combinations and then analyzed the application effect of these schemes. The difference between observations and model simulations for FY-3C MWHTS channels were calculated as a parameter for analysis. Both RTTOV and CRTM were used to fast simulate radiances of MWHTS channels.
NMR studies of non-Fermi-liquid behavior in disordered Kondo systems
NASA Astrophysics Data System (ADS)
Liu, Chia-Ying
A number of heavy-fermion alloys have been discovered to have non-Fermi-liquid (NFL) properties in contrast to the Fermi-liquid behavior expected for normal metals. Since nuclear magnetic resonance (NMR) studies in the heavy-fermion UCusb{5-x}Pdsb{x} by our group, the "Kondo disorder" model has been recognized as one of the possible origins of NFL behavior. This dissertation describes the use of NMR to study NFL behavior in the two heavy-fermion systems Ce(Rusb{1-x}Rhsb{x})sb2Sisb2 (x = 0.5) and Usb{1-x}Thsb{x}Pdsb2Alsb3\\ (x > 0.6). The cerium compound is disordered on non-f atoms (ligand disordered), whereas the uranium system is disordered on the f sublattice. Both exhibit complex phase diagrams and NFL behavior. sp{29}Si powder-pattern NMR spectra from a randomly-oriented powder sample of CeRhRuSisb2 show broad linewidths at low temperature, consistent with disorder-induced NFL behavior. The spectra from a field-aligned sample further confirm that these broad linewidths are due to distributions of local susceptibilities. The NMR widths are in good agreement with the distribution P(Tsb{K}) of Kondo temperatures Tsb{K} derived from the previous analysis of Graf et al., Phys. Rev. Lett. 78, 3769 (1997), including a "hole" in P(Tsb{K}) for small Tsb{K}\\ lbrack P(Tsb{K} = 0) = 0rbrack which describes the return to Fermi-liquid behavior below 1 K observed in the specific heat. The Kondo disorder model successfully explains the NMR linewidth and the NFL behavior in CeRhRuSisb2 either with or without consideration of RKKY interaction between Ce moments. In Usb{1-x}Thsb{x}Pdsb2Alsb3 (x = 0.7, 0.8, 0.9) the sp{27}Al NMR spectra in unaligned powders were initially thought to indicate a metallugical problem, namely, the existence of a second phase. After careful comparison of the behavior of Knight shifts in different concentrations, those extra lines were recognized as impurity satellites instead of coming from a second phase. These impurity satellites are due to specific U near-neighbor configurations to Al sites and appear clearly in the field-aligned spectra. The intensities of the impurity satellites are proportional to the probabilities of finding occupied U sites in specific near-neighbor shells around an Al site. Comparison of the calculated and observed satellite intensities allows us to reconstruct the spectra taken from field-aligned powders with the c axis both perpendicular and parallel to the external field. The narrow linewidths observed at low temperatures suggests that "Kondo disorder" is not the cause of NFL behavior in these alloys. Several theoretical models have been proposed to explain the source of the NFL behavior in Usb{1-x}Thsb{x}Pdsb2Alsb3.
NASA Technical Reports Server (NTRS)
Uthe, Edward E.
1990-01-01
SRI has assembled an airborne lidar/radiometric instrumentation suite for mapping cirrus cloud distribution and analyzing cirrus cloud optical properties. Operation of upward viewing infrared radiometers from an airborne platform provides the optimum method of measuring high altitude cold cloud radiative properties with minimum interference from the thermal emission by the earth's surface and lower atmospheric components. Airborne installed sensors can also operate over large regional areas including water, urban, and mountain surfaces and above lower atmospheric convective clouds and haze layers. Currently available sensors installed on the SRI Queen Air aircraft are illustrated. Lidar and radiometric data records are processed for real time viewing on a color video screen. A cirrus cloud data example is presented as a black and white reproduction of a color display of data at the aircraft altitude of 12,000 ft, the 8 to 14 micron atmospheric radiation background was equivalent to a blackbody temperature of about -60 C and, therefore, the radiometer did not respond strongly to low density cirrus cloud concentrations detected by the lidar. Cloud blackbody temperatures (observed by radiometer) are shown plotted against midcloud temperatures (derived from lidar observed cloud heights and supporting temperature profiles) for data collected on 30 June and 28 July.
Nuclear spin relaxation in Au/sup 51/V: spin dynamics of a Kondo alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narath, A.; Follstaedt, D.
1977-01-01
The temperature dependent spin dynamics of vanadium impurities in the Kondo alloy AuV (theta/sub K/ approximately equal to 300K) have been studied by means of measurements of /sup 51/V transverse relaxation rates (T/sub 2//sup -1/) for the temperature range 1 to 260 K and vanadium concentrations of 0.2 and 0.5 at.%. Contrary to published reports, we find the quantity T/sub 2/T to increase markedly with increasing temperature. Its magnitude at 260 K (15(+-5) msec-K) exceeds the limiting low-temperature value by a factor of 10. The observed increase in T/sub 2/T indicates a large reduction in the impurity spin-correlation time, e.g.,more » tau/sub e/(theta/sub K/)/tau/sub e/(0) approximately equal to 0.2.« less
Universal and measurable entanglement entropy in the spin-boson model.
Kopp, Angela; Le Hur, Karyn
2007-06-01
We study the entanglement between a qubit and its environment from the spin-boson model with Ohmic dissipation. Through a mapping to the anisotropic Kondo model, we derive the entropy of entanglement of the spin E(alpha,Delta,h), where alpha is the dissipation strength, Delta is the tunneling amplitude between qubit states, and h is the level asymmetry. For 1-alpha>Delta/omegac and (Delta,h)
Intermediate valence to Kondo behaviour in Ce(Pt1-xIrx)2Si2 (0≤x≤1)
NASA Astrophysics Data System (ADS)
Tchoula Tchokonté, M. B.; du Plessis, P. de V.; Kaczorowski, D.
2009-10-01
Measurements of X-ray diffraction (XRD), resistivity ( ρ(T)), magnetic susceptibility ( χ(T)) and magnetization ( σ(μ0H)) are reported for the polycrystalline Ce(Pt1-xIrx)2Si2 alloy system. The unit cell volume derived from the XRD results deviates from Vegard's rule around x=0.2-0.3. χ(T) measurements show a Curie-Weiss behaviour at high temperatures for the x= 0, 0.1 and 0.2 alloys whereas the alloys with x≥0.4 exhibit broad maxima in χ(T) at intermediate temperature (e.g. at 170 K for x=0.4). The latter behaviour due to valence fluctuations as described by Sales and Wohlleben. ρ(T) data indicate Kondo lattice behaviour for x≤0.2 and fluctuating valency for x≥0.3. σ(μ0H) data indicate metamagnetic behaviour for the x=0.4 alloy.
Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl 4Si 2 and CeIrAl 4Si 2
Ghimire, N. J.; Calder, S.; Janoschek, M.; ...
2015-06-01
In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl 4Si 2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions T N1 and T N2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition T N2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl 4Si 2 and CeIrAl 4Si 2 were determined to be 1.14(2) and 1.41(3) μB/Ce,more » respectively, and are parallel to the crystallographic c-axis in agreement with magnetic susceptibility measurements.« less
Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin-orbit interactions
NASA Astrophysics Data System (ADS)
Das, Shubhankar; Rastogi, A.; Wu, Lijun; Zheng, Jin-Cheng; Hossain, Z.; Zhu, Yimei; Budhani, R. C.
2014-08-01
We present a study of δ doping at the LaTiO3/SrTiO3 interface with isostructural antiferromagnetic perovskite LaCrO3 that dramatically alters the properties of the two-dimensional electron gas at the interface. The effects include a reduction in sheet-carrier density, prominence of the low-temperature resistivity minimum, enhancement of weak antilocalization below 10 K, and observation of a strong anisotropic magnetoresistance (MR). The positive and negative MR for out-of-plane and in-plane fields, respectively, and the field and temperature dependencies of MR suggest Kondo scattering by localized Ti3+ moments renormalized by spin-orbit interaction at T < 10 K, with the increased δ-layer thickness. Electron-energy-loss spectroscopy and density functional calculations provide convincing evidence of blocking of electron transfer from LTO to STO by the δ layer.
NASA Astrophysics Data System (ADS)
Riera, Jose
2014-03-01
Motivated by emergent phenomena at oxide surfaces and heterostructures, particularly those involving transition metal oxides with perovskite crystal structure such as LaTiO3/SrTiO3, we examine the Kondo lattice model in the presence of a Rashba spin-orbit coupling (RSOC). Using an array of numerical techniques, under the assumption that the electrons on localized orbitals may be treated as classical continuum spins, we compute various charge, spin and transport properties on square clusters and on ladders at zero and finite temperatures. The main goal is to determine magnetic and transport signatures due to the RSOC. The same model can be used to study at an effective level the combined effect on magnetic and transport properties of Rashba and ferromagnetic moments, such as the ones present at LMnO3/SrMnO3 interfaces. Support from CONICET (ARGENTINA).
Two-dimensional Fermi surfaces in Kondo insulating SmB6
NASA Astrophysics Data System (ADS)
Li, Gang
There has been renewed interest in Samarium Hexaboride, which is a strongly correlated heavy Fermion material. Hybridization between itinerant electrons and localized orbitals lead to an opening of charge gap at low temperature. However, the resistivity of SmB6 does not diverge at low temperature. Former studies suggested that this residual conductance is contributed by various origins. Recent theoretical developments suggest that the particular symmetry of energy bands of SmB6 may host a topologically non-trivial surface state, i.e., a topological Kondo insulator. To probe the Fermiology of the possible metallic surface state, we use sensitive torque magnetometry to detect the de Haas van Alphen (dHvA) effect due to Landau level quantization on flux-grown crystals, down to He-3 temperature and up to 45 Tesla. Our angular and temperature dependent data suggest two-dimensional Fermi Surfaces lie in both crystalline (001) and (101) surface planes of SmB6.
Low energy properties of the Kondo chain in the RKKY regime
D. H. Schimmel; Tsvelik, A. M.; Yevtushenko, O. M.
2016-05-03
We study the Kondo chain in the regime of high spin concentration where the low energy physics is dominated by the Ruderman–Kittel–Kasuya–Yosida interaction. As has been recently shown (Tsvelik and Yevtushenko 2015 Phys. Rev. Lett. 115 216402), this model has two phases with drastically different transport properties depending on the anisotropy of the exchange interaction. In particular, the helical symmetry of the fermions is spontaneously broken when the anisotropy is of the easy plane type. This leads to a parametrical suppression of the localization effects. In the present paper we substantially extend the previous theory, in particular, by analyzing amore » competition of forward- and backward- scattering, including into the theory short range electron interactions and calculating spin correlation functions. In conclusion, we discuss applicability of our theory and possible experiments which could support the theoretical findings.« less
Evolution of quantum criticality in CeNi(9-x)Cu(x)Ge(4).
Peyker, L; Gold, C; Scheidt, E-W; Scherer, W; Donath, J G; Gegenwart, P; Mayr, F; Unruh, T; Eyert, V; Bauer, E; Michor, H
2009-06-10
Crystal structure, specific heat, thermal expansion, magnetic susceptibility and electrical resistivity studies of the heavy fermion system CeNi(9-x)Cu(x)Ge(4) (0≤x≤1) reveal a continuous tuning of the ground state by Ni/Cu substitution from an effectively fourfold-degenerate non-magnetic Kondo ground state of CeNi(9)Ge(4) (with pronounced non-Fermi-liquid features) towards a magnetically ordered, effectively twofold-degenerate ground state in CeNi(8)CuGe(4) with T(N) = 175 ± 5 mK. Quantum critical behavior, [Formula: see text], is observed for [Formula: see text]. Hitherto, CeNi(9-x)Cu(x)Ge(4) represents the first system where a substitution-driven quantum phase transition is connected not only with changes of the relative strength of the Kondo effect and RKKY interaction, but also with a reduction of the effective crystal field ground state degeneracy.
Seebeck effect on a weak link between Fermi and non-Fermi liquids
NASA Astrophysics Data System (ADS)
Nguyen, T. K. T.; Kiselev, M. N.
2018-02-01
We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.
Ncube, S; Coleman, C; Strydom, A; Flahaut, E; de Sousa, A; Bhattacharyya, S
2018-05-23
We report on the enhancement of magnetic properties of multiwalled carbon nanotubes (MWNTs) functionalized with a gadolinium based supramolecular complex. By employing a newly developed synthesis technique we find that the functionalization method of the nanocomposite enhances the strength of magnetic interaction leading to a large effective moment of 15.79 µ B and non-superparamagnetic behaviour unlike what has been previously reported. Saturating resistance at low temperatures is fitted with the numerical renormalization group formula verifying the Kondo effect for magnetic impurities on a metallic electron system. Magnetoresistance shows devices fabricated from aligned gadolinium functionalized MWNTs (Gd-Fctn-MWNTs) exhibit spin-valve switching behaviour of up to 8%. This study highlights the possibility of enhancing magnetic interactions in carbon systems through chemical modification, moreover we demonstrate the rich physics that might be useful for developing spin based quantum computing elements based on one-dimensional (1D) channels.
Substitutional alloy of Ce and Al
Zeng, Qiao-Shi; Ding, Yang; Mao, Wendy L.; Luo, Wei; Blomqvist, Andreas; Ahuja, Rajeev; Yang, Wenge; Shu, Jinfu; Sinogeikin, Stas V.; Meng, Yue; Brewe, Dale L.; Jiang, Jian-Zhong; Mao, Ho-kwang
2009-01-01
The formation of substitutional alloys has been restricted to elements with similar atomic radii and electronegativity. Using high-pressure at 298 K, we synthesized a face-centered cubic disordered alloy of highly dissimilar elements (large Ce and small Al atoms) by compressing the Ce3Al intermetallic compound >15 GPa or the Ce3Al metallic glass >25 GPa. Synchrotron X-ray diffraction, Ce L3-edge absorption spectroscopy, and ab initio calculations revealed that the pressure-induced Kondo volume collapse and 4f electron delocalization of Ce reduced the differences between Ce and Al and brought them within the Hume-Rothery (HR) limit for substitutional alloying. The alloy remained after complete release of pressure, which was also accompanied by the transformation of Ce back to its ambient 4f electron localized state and reversal of the Kondo volume collapse, resulting in a non-HR alloy at ambient conditions. PMID:19188608
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, J.; Bi, W.; Haskel, D.
Four-point electrical resistivity measurements were carried out on Nd metal and dilute magnetic alloys containing up to 1 at.% Nd in superconducting Y for temperatures 1.5-295 K under pressures to 210 GPa. The magnetic ordering temperature To of Nd appears to rise steeply under pressure, increasing ninefold to 180 K at 70 GPa before falling rapidly. Y( Nd) alloys display both a resistivity minimum and superconducting pair breaking Delta T-c as large as 38 K/at.% Nd. The present results give evidence that for pressures above 30-40 GPa, the exchange coupling J between Nd ions and conduction electrons becomes negative, thusmore » activating Kondo physics in this highly correlated electron system. The rise and fall of T-o and Delta T-c with pressure can be accounted for in terms of an increase in the Kondo temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weymann, Ireneusz, E-mail: weymann@amu.edu.pl
2015-05-07
We analyze the spin-dependent linear-response transport properties of double quantum dots strongly coupled to external ferromagnetic leads. By using the numerical renormalization group method, we determine the dependence of the linear conductance and tunnel magnetoresistance on the degree of spin polarization of the leads and the position of the double dot levels. We focus on the transport regime where the system exhibits the SU(4) Kondo effect. It is shown that the presence of ferromagnets generally leads the suppression of the linear conductance due to the presence of an exchange field. Moreover, the exchange field gives rise to a transition frommore » the SU(4) to the orbital SU(2) Kondo effect. We also analyze the dependence of the tunnel magnetoresistance on the double dot levels' positions and show that it exhibits a very nontrivial behavior.« less
Screening of biosurfactants from cloud microorganisms
NASA Astrophysics Data System (ADS)
Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre
2015-04-01
The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.
NASA Astrophysics Data System (ADS)
Renard, Pascal; Canet, Isabelle; Sancelme, Martine; Wirgot, Nolwenn; Deguillaume, Laurent; Delort, Anne-Marie
2016-09-01
A total of 480 microorganisms collected from 39 clouds sampled at the Puy de Dôme station (alt. 1465 m; 45°46'19'' N, 2°57'52'' E; Massif Central, France) were isolated and identified. This unique collection was screened for biosurfactant (surfactants of microbial origin) production by measuring the surface tension (σ) of the crude extracts, comprising the supernatants of the pure cultures, using the pendant drop technique. The results showed that 41 % of the tested strains were active producers (σ < 55 mN m-1), with 7 % being extremely active (σ < 30 mN m-1). The most efficient biosurfactant producers (σ < 45 mN m-1) belong to a few bacterial genera (Pseudomonas and Xanthomonas) from the Υ-Proteobacteria class (78 %) and a yeast genus (Udeniomyces) from the Basidiomycota phylum (11 %). Some Bacillus strains from the Firmicutes phylum were also active but represented a small fraction of the collected population. Strains from the Actinobacteria phylum in the collection examined in the present study showed moderate biosurfactant production (45<σ < 55 mN m-1). Pseudomonas (Υ-Proteobacteria), the most frequently detected genus in clouds, with some species issued from the phyllosphere, was the dominant group for the production of biosurfactants. We observed some correlations between the chemical composition of cloud water and the presence of biosurfactant-producing microorganisms, suggesting the "biogeography" of this production. Moreover, the potential impact of the production of biosurfactants by cloud microorganisms on atmospheric processes is discussed.
2007-02-01
determined by its neighbors’ correspondence. Thus, the algorithm consists of four main steps: ICP registration of the base and nipple regions of the...the nipple and the base of the breast, as a location for accurately determining initial correspondence. However, due to the compression, the nipple of...cloud) is translated and lies at a different angle than the nipple of the pendant breast (the source point cloud). By minimizing the average distance
Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo 2Ga 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Le; Fu, Zhaoming; Sun, Jianping
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo 2Ga 8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K 2 atmore » 1 K, suggesting that CeCo 2Ga 8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature–pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo 2Ga 8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh 2Si 2 family. The study of the quasi-one-dimensional CeCo 2Ga 8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.« less
NASA Astrophysics Data System (ADS)
Maurya, A.; Thamizhavel, A.; Dhar, S. K.; Provino, A.; Pani, M.; Costa, G. A.
2017-03-01
Single crystals of the new compound CeCu0.18Al0.24Si1.58 have been grown by high-temperature solution growth method using a eutectic Al-Si mixture as flux. This compound is derived from the binary CeSi2 (tetragonal α-ThSi2-type, Pearson symbol tI12, space group I41/amd) obtained by partial substitution of Si by Cu and Al atoms but showing full occupation of the Si crystal site (8e). While CeSi2 is a well-known valence-fluctuating paramagnetic compound, the CeCu0.18Al0.24Si1.58 phase orders ferromagnetically at TC=9.3 K. At low temperatures the easy-axis of magnetization is along the a-axis, which re-orients itself along the c-axis above 30 K. The presence of hysteresis in the magnetization curve, negative temperature coefficient of resistivity at high temperatures, reduced jump in the heat capacity and a relatively lower entropy released up to the ordering temperature, and enhanced Sommerfeld coefficient (≈100 mJ/mol K2) show that CeCu0.18Al0.24Si1.58 is a Kondo lattice ferromagnetic, moderate heavy fermion compound. Analysis of the high temperature heat capacity data in the paramagnetic region lets us infer that the crystal electric field split doublet levels are located at 178 and 357 K, respectively, and Kondo temperature (8.4 K) is of the order of TC in CeCu0.18Al0.24Si1.58.
Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo2Ga8
NASA Astrophysics Data System (ADS)
Wang, Le; Fu, Zhaoming; Sun, Jianping; Liu, Min; Yi, Wei; Yi, Changjiang; Luo, Yongkang; Dai, Yaomin; Liu, Guangtong; Matsushita, Yoshitaka; Yamaura, Kazunari; Lu, Li; Cheng, Jin-Guang; Yang, Yi-feng; Shi, Youguo; Luo, Jianlin
2017-07-01
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo2Ga8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K2 at 1 K, suggesting that CeCo2Ga8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature-pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo2Ga8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh2Si2 family. The study of the quasi-one-dimensional CeCo2Ga8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.
Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo 2Ga 8
Wang, Le; Fu, Zhaoming; Sun, Jianping; ...
2017-07-04
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo 2Ga 8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K 2 atmore » 1 K, suggesting that CeCo 2Ga 8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature–pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo 2Ga 8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh 2Si 2 family. The study of the quasi-one-dimensional CeCo 2Ga 8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.« less
Starting points for the study of non-Fermi liquid-like properties of FeCrAs
NASA Astrophysics Data System (ADS)
O'Brien, Patrick James
FeCrAs exhibits non-Fermi liquid-like behavior because of its odd combination of thermodynamic, transport, and magnetic properties. In particular, the resistivity of FeCrAs is not characteristic of a metal or an insulator and so remains a mystery. In this thesis, we seek a model to describe its properties. In FeCrAs, local moments reside on the Cr sites, and there is some conduction. We study the simplest possible model on the kagome lattice that features local moments and itinerant electrons, the kagome Kondo Lattice Model. We present the phase diagram of this model, which features a host of complex spin orders, one of which is the √3 x √3, the experimentally observed magnetic ground state in FeCrAs. The kagome Kondo Lattice Model, having one itinerant d-orbital band on the kagome lattice, does not fully capture the microscopic physics of FeCrAs. The kagome Kondo Lattice Model also will not de- scribe the mutilation of the Fermi surface. To investigate the microscopic properties, we calculated LDA and LDA+U results. These results and GGA results from another group all exhibit high d-orbital density of states at the Fermi energy as well as low p-orbital density of states at the Fermi energy. The DFT results motivated us to construct a model based on the chemistry and full geometry of the FeCrAs crystal. The model we construct is an effective hopping model consisting of only d-orbital operators that we call the Optimal Overlap Hopping Model (OOHM). We calculate the band structure that results from the OOHM, and this band structure can be compared to ARPES measurements. As an example of how one can use the OOHM, we calculate a dynamic spin structure factor from within the OOHM, and we compare it to neutron scattering data. We consider both the OOHM and the Kondo Lattice Model on the kagome lattice as starting points from which we can launch studies of FeCrAs, and we present the existing theories for FeCrAs on a metallicity spectrum to illustrate the various perspectives from which FeCrAs is studied.
NASA Astrophysics Data System (ADS)
Herper, H. C.; Ahmed, T.; Wills, J. M.; Di Marco, I.; Björkman, T.; Iuşan, D.; Balatsky, A. V.; Eriksson, O.
2017-08-01
Recent progress in materials informatics has opened up the possibility of a new approach to accessing properties of materials in which one assays the aggregate properties of a large set of materials within the same class in addition to a detailed investigation of each compound in that class. Here we present a large scale investigation of electronic properties and correlated magnetism in Ce-based compounds accompanied by a systematic study of the electronic structure and 4 f -hybridization function of a large body of Ce compounds. We systematically study the electronic structure and 4 f -hybridization function of a large body of Ce compounds with the goal of elucidating the nature of the 4 f states and their interrelation with the measured Kondo energy in these compounds. The hybridization function has been analyzed for more than 350 data sets (being part of the IMS database) of cubic Ce compounds using electronic structure theory that relies on a full-potential approach. We demonstrate that the strength of the hybridization function, evaluated in this way, allows us to draw precise conclusions about the degree of localization of the 4 f states in these compounds. The theoretical results are entirely consistent with all experimental information, relevant to the degree of 4 f localization for all investigated materials. Furthermore, a more detailed analysis of the electronic structure and the hybridization function allows us to make precise statements about Kondo correlations in these systems. The calculated hybridization functions, together with the corresponding density of states, reproduce the expected exponential behavior of the observed Kondo temperatures and prove a consistent trend in real materials. This trend allows us to predict which systems may be correctly identified as Kondo systems. A strong anticorrelation between the size of the hybridization function and the volume of the systems has been observed. The information entropy for this set of systems is about 0.42. Our approach demonstrates the predictive power of materials informatics when a large number of materials is used to establish significant trends. This predictive power can be used to design new materials with desired properties. The applicability of this approach for other correlated electron systems is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redfield, Seth; Linsky, Jeffrey L., E-mail: sredfield@wesleyan.edu, E-mail: jlinsky@jila.colorado.edu
Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield and Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry and Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that themore » multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests.« less
NASA Technical Reports Server (NTRS)
Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Smirnov, Alexander
2013-01-01
In this study, aerosol optical depths over oceans are analyzed from satellite and surface perspectives. Multiangle Imaging SpectroRadiometer (MISR) aerosol retrievals are investigated and validated primarily against Maritime Aerosol Network (MAN) observations. Furthermore, AErosol RObotic NETwork (AERONET) data from 19 island and coastal sites is incorporated in this study. The 270 MISRMAN comparison points scattered across all oceans were identified. MISR on average overestimates aerosol optical depths (AODs) by 0.04 as compared to MAN; the correlation coefficient and root-mean-square error are 0.95 and 0.06, respectively. A new screening procedure based on retrieval region characterization is proposed, which is capable of substantially reducing MISR retrieval biases. Over 1000 additional MISRAERONET comparison points are added to the analysis to confirm the validity of the method. The bias reduction is effective within all AOD ranges. Setting a clear flag fraction threshold to 0.6 reduces the bias to below 0.02, which is close to a typical ground-based measurement uncertainty. Twelve years of MISR data are analyzed with the new screening procedure. The average over ocean AOD is reduced by 0.03, from 0.15 to 0.12. The largest AOD decrease is observed in high latitudes of both hemispheres, regions with climatologically high cloud cover. It is postulated that the screening procedure eliminates spurious retrieval errors associated with cloud contamination and cloud adjacency effects. The proposed filtering method can be used for validating aerosol and chemical transport models.
NASA Astrophysics Data System (ADS)
Grosvenor, D. P.; Wood, R.
2012-12-01
As part of one of the Climate Process Teams (CPTs) we have been testing the implementation of a new cloud parameterization into the CAM5 and AM3 GCMs. The CLUBB parameterization replaces all but the deep convection cloud scheme and uses an innovative PDF based approach to diagnose cloud water content and turbulence. We have evaluated the base models and the CLUBB parameterization in the SE Pacific stratocumulus region using a suite of satellite observation metrics including: Liquid Water Path (LWP) measurements from AMSRE; cloud fractions from CloudSat/CALIPSO; droplet concentrations (Nd) and Cloud Top Temperatures from MODIS; CloudSat precipitation; and relationships between Estimated Inversion Strength (calculated from AMSRE SSTs, Cloud Top Temperatures from MODIS and ECMWF re-analysis fields) and cloud fraction. This region has the advantage of an abundance of in-situ aircraft observations taken during the VOCALS campaign, which is facilitating the diagnosis of the model problems highlighted by the model evaluation. This data has also been recently used to demonstrate the reliability of MODIS Nd estimates. The satellite data needs to be filtered to ensure accurate retrievals and we have been careful to apply the same screenings to the model fields. For example, scenes with high cloud fractions and with output times near to the satellite overpass times can be extracted from the model for a fair comparison with MODIS Nd estimates. To facilitate this we have been supplied with instantaneous model output since screening would not be possible based on time averaged data. We also have COSP satellite simulator output, which allows a fairer comparison between satellite and model. For example, COSP cloud fraction is based upon the detection threshold of the satellite instrument in question. These COSP fields are also used for the model output filtering just described. The results have revealed problems with both the base models and the versions with the CLUBB parameterization. The CAM5 model produces realistic near-coast cloud cover, but too little further west in the stratocumulus to cumulus regions. The implementation of CLUBB has vastly improved this situation with cloud cover that is very similar to that observed. CLUBB also improves the Nd field in CAM5 by producing realistic near-coast increases and by removing high Nd values associated with the detrainment of droplets by cumulus clouds. AM3 has a lack of stratocumulus cloud near the South American coast and has much lower droplet concentrations than observed. VOCALS measurements showed that sulfate mass loadings were generally too high in both base models, whereas CCN concentrations were too low. This suggests a problem with the mass distribution partitioning of sulfate that is being investigated. Diurnal and seasonal comparisons have been very illuminating. CLUBB produces very little diurnal variation in LWP, but large variations in precipitation rates. This is likely to point to problems that are now being addressed by the modeling part of the CPT team, creating an iterative workflow process between the model developers and the model testers, which should facilitate efficient parameterization improvement. We will report on the latest developments of this process.
First results from the THOR experiment imaging thunderstorm activity from the ISS.
NASA Astrophysics Data System (ADS)
Chanrion, Olivier; Neubert, Torsten; Mogensen, Andreas; Yair, Yoav; Stendel, Martin; Larsen, Niels
2016-04-01
Video imaging from the THOR experiment conducted on International Space Station by the Danish astronaut Andreas Mogensen has been analyzed. The observations we report in this paper were taken with a color camera from the vantage point of the Cupola, tracking thunderstorm activity over the Bay of Bengal. Among many lightning, the observations contain a sprite, a blue jet and numerous small blue discharge regions at the top of a tall cumulonimbus cloud. The latter are interpreted as electric discharges between layers at the uppermost layers of the cloud and to the screening layer formed at the very edge between the cloud and the surrounding atmosphere. The observations are the first of their kind and give new insights into the charge structure at the top of clouds in the tropical tropopause regions, a region that is difficult to observe and to access.
Fermionology in the Kondo-Heisenberg model: the case of CeCoIn5
NASA Astrophysics Data System (ADS)
Zhong, Yin; Zhang, Lan; Lu, Han-Tao; Luo, Hong-Gang
2015-09-01
The Fermi surface of heavy electron systems plays a fundamental role in understanding their variety of puzzling phenomena, for example, quantum criticality, strange metal behavior, unconventional superconductivity and even enigmatic phases with yet unknown order parameters. The spectroscopy measurement of the typical heavy fermion superconductor CeCoIn5 has demonstrated multi-Fermi surface structure, which has not been studied in detail theoretically in a model system like the Kondo-Heisenberg model. In this work, we take a step toward such a theoretical model by revisiting the Kondo-Heisenberg model. It is found that the usual self-consistent calculation cannot reproduce the fermionology of the experimental observation of the system due to the sign binding between the hopping of the conduction electrons and the mean-field valence-bond order. To overcome such inconsistency, the mean-field valence-bond order is considered as a free/fitting parameter to correlate them with real-life experiments as performed in recent experiments [M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Nat. Phys. 9, 468 (2013); J. Van Dyke, F. Massee, M.P. Allan, J.C. Davis, C. Petrovic, D.K. Morr, Proc. Natl. Acad. Sci. 111, 11663 (2014)], which also explicitly reflects the intrinsic dispersion of local electrons observed in experimental measurements. Given the fermionology, the calculated effective mass enhancement, entropy, superfluid density and Knight shift are all in qualitative agreement with the experimental results of CeCoIn5, which confirms our assumption. Our result supports a d_{x^2 - y^2 }-wave pairing structure in the heavy fermion material CeCoIn5.
Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.
Steglich, Frank; Wirth, Steffen
2016-08-01
This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a 'conventional', itinerant QCP can be well understood within Landau's paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an 'unconventional', local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.
NASA Astrophysics Data System (ADS)
Wysokiński, Marcin M.; Kaczmarczyk, Jan; Spałek, Jozef
2015-09-01
The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave function (GWF) is applied to the Anderson lattice model. This approach allows for a systematic evaluation of the expectation values with full Gutzwiller wave function in finite-dimensional systems. It introduces results extending in an essential manner those obtained by means of the standard Gutzwiller approximation (GA), which is variationally exact only in infinite dimensions. Within the DE-GWF approach we discuss the principal paramagnetic properties and their relevance to heavy-fermion systems. We demonstrate the formation of an effective, narrow f band originating from atomic f -electron states and subsequently interpret this behavior as a direct itineracy of f electrons; it represents a combined effect of both the hybridization and the correlations induced by the Coulomb repulsive interaction. Such a feature is absent on the level of GA, which is equivalent to the zeroth order of our expansion. Formation of the hybridization- and electron-concentration-dependent narrow f band rationalizes the common assumption of such dispersion of f levels in the phenomenological modeling of the band structure of CeCoIn5. Moreover, it is shown that the emerging f -electron direct itineracy leads in a natural manner to three physically distinct regimes within a single model that are frequently discussed for 4 f - or 5 f -electron compounds as separate model situations. We identify these regimes as (i) the mixed-valence regime, (ii) Kondo/almost-Kondo insulating regime, and (iii) the Kondo-lattice limit when the f -electron occupancy is very close to the f -state half filling,
RRh2Al10 (R = Ce, Yb): New intermetallic compounds in the 1 : 2 : 10 stoichiometry series
NASA Astrophysics Data System (ADS)
Strydom, A. M.; Djoumessi, R. F.; Blinova, M.; Tursina, A.; Nesterenko, S.; Avzuragova, V.
2018-05-01
The orthorhombic, space group Cmcm YbFe2Al10 structure type series of compounds are known to form with practically the entire series of rare-earth elements R, but only with the three d - electron elements Fe, Ru, and Os. The Ce-derivatives in particular have been of much interest since the first reports of their highly unusual physical properties. Classified as Kondo insulators, CeRu2Al10 and CeOs2Al10 controversially order magnetically and with uncharacteristically high Néel temperatures of ≃ 28 K. CeFe2Al10 on the other hand shows pronounced semiconducting and Kondo features but remains paramagnetic. As part of our ongoing studies into the rich physics of this class of materials we have succeeded in synthesizing new members of the 1:2:10 stoichiometry involving the chemical element Rh for the first time. CeRh2Al10 is found to crystallize in the tetragonal system with space group I41 / amd . Yb Rh2Al10 on the other hand forms in the serial Cmcm orthorhombic structure type. We discuss important similarities between the two types. At 5.310 Å the shortest Ce-Ce distance is, likewise to the situation in CeRu2Al10 and CeOs2Al10 , also well above the Hill limit of 3.40 Å. Despite the cage-like structure and large rare-earth separation distances, this study reveals the onset of long-range magnetic ordering in CeRh2Al10 at 3.9 K. The magnetic ordering develops out of an incoherent Kondo state that dominates the electrical resistivity below about 40 K.
NASA Astrophysics Data System (ADS)
Calbó, Josep; Long, Charles N.; González, Josep-Abel; Augustine, John; McComiskey, Allison
2017-11-01
Cloud and aerosol are two manifestations of what it is essentially the same physical phenomenon: a suspension of particles in the air. The differences between the two come from the different composition (e.g., much higher amount of condensed water in particles constituting a cloud) and/or particle size, and also from the different number of such particles (10-10,000 particles per cubic centimeter depending on conditions). However, there exist situations in which the distinction is far from obvious, and even when broken or scattered clouds are present in the sky, the borders between cloud/not cloud are not always well defined, a transition area that has been coined as the ;twilight zone;. The current paper presents a discussion on the definition of cloud and aerosol, the need for distinguishing or for considering the continuum between the two, and suggests a quantification of the importance and frequency of such ambiguous situations, founded on several ground-based observing techniques. Specifically, sensitivity analyses are applied on sky camera images and broadband and spectral radiometric measurements taken at Girona (Spain) and Boulder (Co, USA). Results indicate that, at these sites, in more than 5% of the daytime hours the sky may be considered cloudless (but containing aerosols) or cloudy (with some kind of optically thin clouds) depending on the observing system and the thresholds applied. Similarly, at least 10% of the time the extension of scattered or broken clouds into clear areas is problematic to establish, and depends on where the limit is put between cloud and aerosol. These findings are relevant to both technical approaches for cloud screening and sky cover categorization algorithms and radiative transfer studies, given the different effect of clouds and aerosols (and the different treatment in models) on the Earth's radiation balance.
Artificial Red Cells with Polyhemoglobin Membranes.
1981-09-01
4,4’-diaminobiphenyl-2,2’-disulfonic acid to improve the dispersability of his nylon cells, but their intravascular persistence was short. (24) Kondo...Group, decaglycerol decaoleate, HLB 2.0 * Cholesterol, Aldrich Chemical Co., HLB 2.0 " Alcolec PG, American Lecithin Co., purified soy phosphatides
Heavy Fermion Materials and Quantum Phase Transitions Workshop on Frontiers of the Kondo Effect
2016-02-12
Stefan Kirchner (Max Planck) discussed the role of quantum criticality on the superconducting condensation in heavy-fermion superconductors , and...Collin Broholm (Johns Hopkins) discussed magnetic excitations of heavy fermion superconductors . The workshop concluded with a wide-ranging talk by
The Supervision Partnership as a Phase of Attachment
ERIC Educational Resources Information Center
Koehn, Amanda J.; Kerns, Kathryn A.
2016-01-01
The supervision partnership in middle childhood was proposed by Waters, Kondo-Ikemura, Posada, and Richters as the last phase of parent-child attachment. The present study elaborates this concept by proposing three components of the supervision partnership: "availability and accessibility," "willingness to communicate," and…
Kondo physics in non-local metallic spin transport devices.
O'Brien, L; Erickson, M J; Spivak, D; Ambaye, H; Goyette, R J; Lauter, V; Crowell, P A; Leighton, C
2014-05-29
The non-local spin-valve is pivotal in spintronics, enabling separation of charge and spin currents, disruptive potential applications and the study of pressing problems in the physics of spin injection and relaxation. Primary among these problems is the perplexing non-monotonicity in the temperature-dependent spin accumulation in non-local ferromagnetic/non-magnetic metal structures, where the spin signal decreases at low temperatures. Here we show that this effect is strongly correlated with the ability of the ferromagnetic to form dilute local magnetic moments in the NM. This we achieve by studying a significantly expanded range of ferromagnetic/non-magnetic combinations. We argue that local moments, formed by ferromagnetic/non-magnetic interdiffusion, suppress the injected spin polarization and diffusion length via a manifestation of the Kondo effect, thus explaining all observations. We further show that this suppression can be completely quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer.
NASA Technical Reports Server (NTRS)
Abbe, D.
1984-01-01
CoAl and FeAl compounds are developed along two directions. Magnetic susceptibility and specific heat at low temperature on (NiCo)Al and (CoFe)Al ternary alloys are in good agreement with band calculations. Results on magnetization and specific heat under field at low temperature on nonstoichiometric compounds show clearly the importance of the nearest neighbor effects. In the case of CoAl, the isolated cobalt atoms substituting aluminum are characterized by a Kondo behavior, and, for FeAl, the isolated extra iron atoms are magnetic and polarize the matrix. Moreover, for the two compounds, clusters of higher order play a considerable part in the magnetic properties for CoAl, these clusters also seem to be characterized by a Kondo behavior, for FeAl, these clusters whose moment is higher than in the case of isolated atoms, could be constituted of excess parts of iron atoms.
Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea
NASA Astrophysics Data System (ADS)
Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Keizer, J. G.; Hamhuis, G. J.; Nötzel, R.; Silov, A. Yu.; Koenraad, P. M.
2010-07-01
Many-body interactions give rise to fascinating physics such as the X-ray Fermi-edge singularity in metals, the Kondo effect in the resistance of metals with magnetic impurities and the fractional quantum Hall effect. Here we report the observation of striking many-body effects in the optical spectra of a semiconductor quantum dot interacting with a degenerate electron gas. A semiconductor quantum dot is an artificial atom, the properties of which can be controlled by means of a tunnel coupling between a metallic contact and the quantum dot. Previous studies concern mostly the regime of weak tunnel coupling, whereas here we investigate the regime of strong coupling, which markedly modifies the optical spectra. In particular we observe two many-body exciton states: Mahan and hybrid excitons. These experimental results open the route towards the observation of a tunable Kondo effect in excited states of semiconductors and are of importance for the technological implementation of quantum dots in devices for quantum information processing.
Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei
2016-01-01
There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378
Quantum transport through a deformable molecular transistor
NASA Astrophysics Data System (ADS)
Cornaglia, P. S.; Grempel, D. R.; Ness, H.
2005-02-01
The linear transport properties of a model molecular transistor with electron-electron and electron-phonon interactions were investigated analytically and numerically. The model takes into account phonon modulation of the electronic energy levels and of the tunneling barrier between the molecule and the electrodes. When both effects are present they lead to asymmetries in the dependence of the conductance on gate voltage. The Kondo effect is observed in the presence of electron-phonon interactions. There are important qualitative differences between the cases of weak and strong coupling. In the first case the standard Kondo effect driven by spin fluctuations occurs. In the second case, it is driven by charge fluctuations. The Fermi-liquid relation between the spectral density of the molecule and its charge is altered by electron-phonon interactions. Remarkably, the relation between the zero-temperature conductance and the charge remains unchanged. Therefore, there is perfect transmission in all regimes whenever the average number of electrons in the molecule is an odd integer.
Song, Qi; Mi, Jian; Zhao, Dan; ...
2016-11-11
There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observemore » the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB 6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Moreover, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6.« less
Transport properties of coupled quantum dots in the presence of phonons
NASA Astrophysics Data System (ADS)
Martins, G.; Al-Hassanieh, K.
2005-03-01
Here is presented the numerical study of the effect of Holstein phonons in the transport properties of two coupled quantum dots (QDs) in the Kondo regime. For the QDs we use the Anderson impurity model and each QD is coupled to a different Holstein mode. At T=0, in the absence of phonons, and with 1 electron per dot, the usual splitting of the Kondo resonance is observed.^1 When the QDs are coupled to the phonons, there is a reduction of the effective Coulomb repulsion, which is explained through a canonical transformation. In addition, the conductance at the electron-hole symmetric gate potential is not affected by the phonons. This is caused by the modulation of the coupling factors.^2 The difference between the effects of phonons in lithographic QDs and in molecular conductors is also discussed. 1- C.A. Büsser et al, Phys. Rev. B 62, 9907 (2000). 2- K.A. Al-Hassanieh, C.A. Büsser, G.B. Martins, Adriana Moreo and Elbio Dagotto (preprint)
Tuning the ground state of the Kondo lattice in UT Bi2 (T = Ag, Au) single crystals
NASA Astrophysics Data System (ADS)
Rosa, Priscila; Luo, Yongkang; Pagliuso, Pascoal; Bauer, Eric; Thompson, Joe; Fisk, Zachary
2015-03-01
Motivated by the interesting magnetic anisotropy found in the Ce-based heavy fermion family Ce TX2 (T = transition metal, X = pnictogen), here we study the novel U-based parent compounds U TBi2 (T = Ag, Au) by combining magnetization, electrical resistivity, and heat-capacity measurements. The single crystals, synthesized by the self-flux method, also crystallize in the tetragonal HfCuSi2-type structure (space group P4/nmm). Interestingly, although UAgBi2 is a low- γ antiferromagnet below TN = 181 K, UAuBi2 is a moderately heavy uniaxial ferromagnet below Tc = 22 K. Nevertheless, both compounds display the easy-magnetization direction along the c-axis and a large magnetocrystalline anisotropy. Our results point out to an incoherent Kondo behaviour in the paramagnetic state and an intricate competition between crystal field effects and two anisotropic exchange interactions, which lead to the remarkable difference in the observed ground states.
Tailoring decoherence in nanomagnets by geometrical design
NASA Astrophysics Data System (ADS)
Delgado, Fernando; FernáNdez-Rossier, JoaquíN.
Magnetic atoms on surfaces suffer relaxation and decoherence, which limit their possible applications in both classical storage and quantum computation. Kondo exchange interaction is usually the dominant source of relaxation. Hence, for a single magnetic impurity, the product of density of states at the Fermi level and the Kondo coupling controls relaxation and decoherence together with the renormalization of the magnetic anisotropy. Here we show that in the case of small arrays of magnetic adatoms, which can be build by STM manipulation, relaxation and decoherence are controlled in addition by the product of Fermi wavenumber and inter-spin distance, giving place to interesting interference phenomena similar to those appearing in optics. This is nothing else that the dissipative counterpart of the RKKY oscillation. In addition, we explore different configurations to reduce the spin decoherence of antiferromagnetic spin arrays opening a route to engineer spin relaxation and decoherence in atomically designed spin structures. Financial support by Spanish Government through Grants FIS2013-473228 and MAT2015-66888-C3-2-R.
Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions
NASA Astrophysics Data System (ADS)
Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.
2014-10-01
Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.
Routes to heavy-fermion superconductivity
NASA Astrophysics Data System (ADS)
Steglich, F.; Stockert, O.; Wirth, S.; Geibel, C.; Yuan, H. Q.; Kirchner, S.; Si, Q.
2013-07-01
Superconductivity in lanthanide- and actinide-based heavy-fermion (HF) metals can have different microscopic origins. Among others, Cooper pair formation based on fluctuations of the valence, of the quadrupole moment or of the spin of the localized 4f/5f shell have been proposed. Spin-fluctuation mediated superconductivity in CeCu2Si2 was demonstrated by inelastic neutron scattering to exist in the vicinity of a spin-density-wave (SDW) quantum critical point (QCP). The isostructural HF compound YbRh2Si2 which is prototypical for a Kondo-breakdown QCP has so far not shown any sign of superconductivity down to T ≈ 10 mK. In contrast, results of de-Haas-van-Alphen experiments by Shishido et al. (J. Phys. Soc. Jpn. 74, 1103 (2005)) suggest superconductivity in CeRhIn5 close to an antiferromagnetic QCP beyond the SDW type, at which the Kondo effect breaks down. For the related compound CeCoIn5 however, a field-induced QCP of SDW type is extrapolated to exist inside the superconducting phase.
NASA Astrophysics Data System (ADS)
Hassan Kayali, Mohammad; Safie, Nurhizam; Mukhtar, Muriati
2016-11-01
Cloud computing is a new paradigm shift in information technology. Most of the studies in the cloud are business related while the studies in cloud based e-learning are few. The field is still in its infancy and researchers have used several adoption theories to discover the dimensions of this field. The purpose of this paper is to review and integrate the literature to understand the current situation of the cloud based e-learning adoption. A total of 312 articles were extracted from Science direct, emerald, and IEEE. Screening processes were applied to select only the articles that are related to the cloud based e-learning. A total of 231 removed because they are related to business organization. Next, a total of 63 articles were removed because they are technical articles. A total of 18 articles were included in this paper. A frequency analysis was conducted on the paper to identify the most frequent factors, theories, statistical software, respondents, and countries of the studies. The findings showed that usefulness and ease of use are the most frequent factors. TAM is the most prevalent adoption theories in the literature. The mean of the respondents in the reviewed studies is 377 and Malaysia is the most researched countries in terms of cloud based e-learning. Studies of cloud based e-learning are few and more empirical studies are needed.
NASA Astrophysics Data System (ADS)
Huang, J.; Hsu, C.; Tsay, S.; Jeong, M.; Holben, B.; Berkoff, T.; Welton, E. J.
2010-12-01
Cirrus clouds, particularly subvisual high thin cirrus with low optical thickness, are difficult to be screened out in the operational aerosol retrieval algorithms. In this study, we jointly used ground measurements (AERONET, aerosol robotic network; MPLNET, micro-pulse lidar network) and satellite data (MODIS, moderate resolution imaging spectroradiometer; CALIPSO, cloud-aerosol lidar and infrared pathfinder satellite observations) to closely examine the susceptibility of satellite retrieved and ground measured aerosol optical thickness (AOT) to cirrus contamination. Special cases were selected at Phimai (102.56°E, 15.18°N, also known as Pimai), Thailand, during the Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment (BASE-ASIA) campaign (February-May 2006). By taking advantage of space-borne and ground lidars in detecting cirrus clouds, we conducted the statistical analysis by matching up concurrent cirrus and aerosol observations at four levels: MPLNET vs AERONET, MPLNET vs MODIS, CALIPSO vs AERONET, and CALIPSO vs MODIS. Results suggest that the susceptibility of current operational AERONET and MODIS AOT products to cirrus features strong regional and seasonal variability, particularly in cirrus prevailing regions. The values of AOT and aerosol particle size appear to be larger for cirrus-susceptible cases than those for confidently non-cirrus cases, a possible signature of cirrus contamination. To further assess cirrus-screening algorithms, we tested 8 MODIS-derived cirrus screening parameters against lidar observations for their performance and robustness on cirrus screening: apparent reflectance at 1.38μm (R1.38), cirrus reflectance at 0.66μm (CR0.66), CR0.66 cirrus flag, reflectance ratio between 1.38μm and 0.66μm (RR1.38/0.66), reflectance ratio between 1.38μm and 1.24μm (RR1.38/1.24), brightness temperature difference between 8.6μm and 11μm (BTD8.6-11), brightness temperature difference between 11μm and 12μm (BTD11-12), and cloud phase infrared approach (CPIR). The quantitative findings from the study suggest that particular caution and careful evaluations on cirrus contamination in the satellite and ground AOT measurements should be exercised before they are used for aerosol related climatic forcing studies.
A new Information publishing system Based on Internet of things
NASA Astrophysics Data System (ADS)
Zhu, Li; Ma, Guoguang
2018-03-01
A new information publishing system based on Internet of things is proposed, which is composed of four level hierarchical structure, including the screen identification layer, the network transport layer, the service management layer and the publishing application layer. In the architecture, the screen identification layer has realized the internet of screens in which geographically dispersed independent screens are connected to the internet by the customized set-top boxes. The service management layer uses MQTT protocol to implement a lightweight broker-based publish/subscribe messaging mechanism in constrained environments such as internet of things to solve the bandwidth bottleneck. Meanwhile the cloud-based storage technique is used to storage and manage the promptly increasing multimedia publishing information. The paper has designed and realized a prototype SzIoScreen, and give some related test results.
1991-03-29
laboratory. In addition, weather conditions (i.e., cloud cover, pre- cipitation, air temperature, and wind speed and direction), water clarity, and...carried over a 25-foot grid in this area. The weather at the time of emissions screening was mostly sunny with high clouds . The wind was 3 to 5 knots...TRIBUTARY TO HUTCHINSON CREEK SOIL GOMMIG ANGLED 300 FROM VERTICAL Ae o * SOL. 90011GM VERTICAL 0 100, o SURFACE SOIL SAMPLE AU. VALUES ARE IN mg/Kg MONITORIG
NASA Astrophysics Data System (ADS)
Zaikin, A. E.; Levin, A. V.; Petrov, A. L.
1995-02-01
A surface optical-discharge plasma was formed in a metal vapour under normal conditions by steady-state irradiation with a cw CO2 laser delivering radiation of moderate (2-4.5 MW cm-2) intensity. This plasma strongly screened the irradiated surface. Under the selected experimental conditions the optical discharge was not a continuous (steady-state) process. The plasma cloud was displaced along the beam out of the waist to a region where the laser radiation intensity was almost an order of magnitude less than the threshold for excitation of the optical-discharge plasma in the vapour. A strong screening of the metal surface, which could even completely stop evaporation of the metal, was observed. Self-oscillations of the optical-discharge plasma were observed for the first time in a vapour interacting with cw CO2 radiation: this was attributed to screening of the target surface. Within one period of the self-oscillations there were additional hf plasma pulsations which led to stratification of the plasma cloud. The results obtained were interpreted.
Consistency of Global Modis Aerosol Optical Depths over Ocean on Terra and Aqua Ceres SSF Datasets
NASA Technical Reports Server (NTRS)
Ignatov, Alexander; Minnis, Patrick; Miller, Walter F.; Wielicki, Bruce A.; Remer, Lorraine
2006-01-01
Aerosol retrievals over ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side-by-side. The primary M product is generated by sub-setting and remapping the multi-spectral (0.47-2.1 micrometer) MODIS produced oceanic aerosol (MOD04/MYD04 for Terra/Aqua) onto CERES footprints. M*D04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary AVHRR-like A product is generated in only two MODIS bands 1 and 6 (on Aqua, bands 1 and 7). The A processing uses the CERES cloud screening algorithm, and NOAA/NESDIS glint identification, and single-channel aerosol retrieval algorithms. The M and A products have been documented elsewhere and preliminarily compared using 2 weeks of global Terra CERES SSF Edition 1A data in which the M product was based on MOD04 collection 3. In this study, the comparisons between the M and A aerosol optical depths (AOD) in MODIS band 1 (0.64 micrometers), tau(sub 1M) and tau(sub 1A) are re-examined using 9 days of global CERES SSF Terra Edition 2A and Aqua Edition 1B data from 13 - 21 October 2002, and extended to include cross-platform comparisons. The M and A products on the new CERES SSF release are generated using the same aerosol algorithms as before, but with different preprocessing and sampling procedures, lending themselves to a simple sensitivity check to non-aerosol factors. Both tau(sub 1M) and tau(sub 1A) generally compare well across platforms. However, the M product shows some differences, which increase with ambient cloud amount and towards the solar side of the orbit. Three types of comparisons conducted in this study - cross-platform, cross-product, and cross-release confirm the previously made observation that the major area for improvement in the current aerosol processing lies in a more formalized and standardized sampling (and most importantly, cloud screening) whereas optimization of the aerosol algorithm is deemed to be an important yet less critical element.
Small-Scale Surf Zone Geometric Roughness
2017-12-01
and an image of the tie points can be seen (Figure 6). 23 Figure 6. Screen Shot of Alignment Process On the left side is the workspace which...rest of the points, producing the 3D surface. 24 Figure 7. Screen Shot of Dense Cloud Process On the left side is the workspace which...maximum 200 words) Measurements of small-scale (O(mm)) geometric roughness (kf) associated with breaking wave foam were obtained within the surf zone on
Composition and assembly of a spectral and agronomic data base for 1980 spring small grain segments
NASA Technical Reports Server (NTRS)
Helmer, D.; Krantz, J.; Kinsler, M.; Tomkins, M.
1983-01-01
A data set was assembled which consolidates the LANDSAT spectral data, ground truth observation data, and analyst cloud screening data for 28 spring small grain segments collected during the 1980 crop year.
Consistency of two global MODIS aerosol products over ocean on Terra and Aqua CERES SSF datasets
NASA Astrophysics Data System (ADS)
Ignatov, Alexander; Minnis, Patrick; Wielicki, Bruce; Loeb, Norman G.; Remer, Lorraine A.; Kaufman, Yoram J.; Miller, Walter F.; Sun-Mack, Sunny; Laszlo, Istvan; Geier, Erika B.
2004-12-01
MODIS aerosol retrievals over ocean from Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side by side. The primary M product is generated by subsetting and remapping the multi-spectral (0.44 - 2.1 μm) MOD04 aerosols onto CERES footprints. MOD04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary (AVHRR-like) A product is generated in only two MODIS bands: 1 and 6 on Terra, and ` and 7 on Aqua. The A processing uses NASA/LaRC cloud-screening and NOAA/NESDIS single channel aerosol algorthm. The M and A products have been documented elsewhere and preliminarily compared using two weeks of global Terra CERES SSF (Edition 1A) data in December 2000 and June 2001. In this study, the M and A aerosol optical depths (AOD) in MODIS band 1 and (0.64 μm), τ1M and τ1A, are further checked for cross-platform consistency using 9 days of global Terra CERES SSF (Edition 2A) and Aqua CERES SSF (Edition 1A) data from 13 - 21 October 2002.
Paratachardina pseudolobata (Cocccoidea: Kerriidae): bionomics in Florida
USDA-ARS?s Scientific Manuscript database
Observations on the bionomics of lobate lac scale, Paratachardina pseudolobata Kondo & Gullan in Florida are reported. Lobate lac scale infests primarily the branches and main stems of <2 cm in dia; rarely were they found on stems larger than 4 cm in dia or on leaves and never on roots. They produce...
Common Gamma-ray Glows above Thunderclouds
NASA Astrophysics Data System (ADS)
Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid
2013-04-01
Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.
Wang, Likun; Yang, Luhe; Peng, Zuohan; Lu, Dan; Jin, Yan; McNutt, Michael; Yin, Yuxin
2015-01-01
With the burgeoning development of cloud technology and services, there are an increasing number of users who prefer cloud to run their applications. All software and associated data are hosted on the cloud, allowing users to access them via a web browser from any computer, anywhere. This paper presents cisPath, an R/Bioconductor package deployed on cloud servers for client users to visualize, manage, and share functional protein interaction networks. With this R package, users can easily integrate downloaded protein-protein interaction information from different online databases with private data to construct new and personalized interaction networks. Additional functions allow users to generate specific networks based on private databases. Since the results produced with the use of this package are in the form of web pages, cloud users can easily view and edit the network graphs via the browser, using a mouse or touch screen, without the need to download them to a local computer. This package can also be installed and run on a local desktop computer. Depending on user preference, results can be publicized or shared by uploading to a web server or cloud driver, allowing other users to directly access results via a web browser. This package can be installed and run on a variety of platforms. Since all network views are shown in web pages, such package is particularly useful for cloud users. The easy installation and operation is an attractive quality for R beginners and users with no previous experience with cloud services.
Cloud Tolerance of Remote-Sensing Technologies to Measure Land Surface Temperature
NASA Technical Reports Server (NTRS)
Holmes, Thomas R. H.; Hain, Christopher R.; Anderson, Martha C.; Crow, Wade T.
2016-01-01
Conventional methods to estimate land surface temperature (LST) from space rely on the thermal infrared(TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive microwave(MW) observations. The MW-LST product is informed by six polar-orbiting satellites to create a global record with up to eight observations per day for each 0.25resolution grid box. For days with sufficient observations, a continuous diurnal temperature cycle (DTC) was fitted. The main characteristics of the DTC were scaled to match those of a geostationary TIR-LST product. This paper tests the cloud tolerance of the MW-LST product. In particular, we demonstrate its stable performance with respect to flux tower observation sites (four in Europe and nine in the United States), over a range of cloudiness conditions up to heavily overcast skies. The results show that TIR based LST has slightly better performance than MW-LST for clear-sky observations but suffers an increasing negative bias as cloud cover increases. This negative bias is caused by incomplete masking of cloud-covered areas within the TIR scene that affects many applications of TIR-LST. In contrast, for MW-LST we find no direct impact of clouds on its accuracy and bias. MW-LST can therefore be used to improve TIR cloud screening. Moreover, the ability to provide LST estimates for cloud-covered surfaces can help expand current clear-sky-only satellite retrieval products to all-weather applications.
2015-01-01
Background With the burgeoning development of cloud technology and services, there are an increasing number of users who prefer cloud to run their applications. All software and associated data are hosted on the cloud, allowing users to access them via a web browser from any computer, anywhere. This paper presents cisPath, an R/Bioconductor package deployed on cloud servers for client users to visualize, manage, and share functional protein interaction networks. Results With this R package, users can easily integrate downloaded protein-protein interaction information from different online databases with private data to construct new and personalized interaction networks. Additional functions allow users to generate specific networks based on private databases. Since the results produced with the use of this package are in the form of web pages, cloud users can easily view and edit the network graphs via the browser, using a mouse or touch screen, without the need to download them to a local computer. This package can also be installed and run on a local desktop computer. Depending on user preference, results can be publicized or shared by uploading to a web server or cloud driver, allowing other users to directly access results via a web browser. Conclusions This package can be installed and run on a variety of platforms. Since all network views are shown in web pages, such package is particularly useful for cloud users. The easy installation and operation is an attractive quality for R beginners and users with no previous experience with cloud services. PMID:25708840
NASA Astrophysics Data System (ADS)
Gacal, G. F. B.; Tan, F.; Antioquia, C. T.; Lagrosas, N.
2014-12-01
Cloud detection during nighttime poses a real problem to researchers because of a lack of optimum sensors that can specifically detect clouds during this time of the day. Hence, lidars and satellites are currently some of the instruments that are being utilized to determine cloud presence in the atmosphere. These clouds play a significant role in the night weather system for the reason that they serve as barriers of thermal radiation from the Earth and thereby reflecting this radiation back to the Earth. This effectively lowers the rate of decreasing temperature in the atmosphere at night. The objective of this study is to detect cloud occurrences at nighttime for the purpose of studying patterns of cloud occurrence and the effects of clouds on local weather. In this study, a commercial camera (Canon Powershot A2300) is operated continuously to capture nighttime clouds. The camera is situated inside a weather-proof box with a glass cover and is placed on the rooftop of the Manila Observatory building to gather pictures of the sky every 5min to observe cloud dynamics and evolution in the atmosphere. To detect pixels with clouds, the pictures are converted from its native JPEG to grayscale format. The pixels are then screened for clouds by looking at the values of pixels with and without clouds. In grayscale format, pixels with clouds have greater pixel values than pixels without clouds. Based on the observations, 0.34 of the maximum pixel value is enough to discern pixels with clouds from pixels without clouds. Figs. 1a & 1b are sample unprocessed pictures of cloudless night (May 22-23, 2014) and cloudy skies (May 23-24, 2014), respectively. Figs.1c and 1d show percentage of occurrence of nighttime clouds on May 22-23 and May 23-24, 2014, respectively. The cloud occurrence in a pixel is defined as the ratio of the number times when the pixel has clouds to the total number of observations. Fig. 1c shows less than 50% cloud occurrence while Fig. 1d shows cloud occurrence more than what is shown in Fig. 1c. These graphs show the capability of the camera to detect and measure the cloud occurrence at nighttime. Continuous collection of nighttime pictures is currently implemented. In regions where there is a dearth of scientific data, the measured nighttime cloud occurrence will serve as a baseline for future cloud studies in this part of the world.
NASA Astrophysics Data System (ADS)
Karlsson, Karl-Göran; Håkansson, Nina
2018-02-01
The sensitivity in detecting thin clouds of the cloud screening method being used in the CM SAF cloud, albedo and surface radiation data set from AVHRR data (CLARA-A2) cloud climate data record (CDR) has been evaluated using cloud information from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite. The sensitivity, including its global variation, has been studied based on collocations of Advanced Very High Resolution Radiometer (AVHRR) and CALIOP measurements over a 10-year period (2006-2015). The cloud detection sensitivity has been defined as the minimum cloud optical thickness for which 50 % of clouds could be detected, with the global average sensitivity estimated to be 0.225. After using this value to reduce the CALIOP cloud mask (i.e. clouds with optical thickness below this threshold were interpreted as cloud-free cases), cloudiness results were found to be basically unbiased over most of the globe except over the polar regions where a considerable underestimation of cloudiness could be seen during the polar winter. The overall probability of detecting clouds in the polar winter could be as low as 50 % over the highest and coldest parts of Greenland and Antarctica, showing that a large fraction of optically thick clouds also remains undetected here. The study included an in-depth analysis of the probability of detecting a cloud as a function of the vertically integrated cloud optical thickness as well as of the cloud's geographical position. Best results were achieved over oceanic surfaces at mid- to high latitudes where at least 50 % of all clouds with an optical thickness down to a value of 0.075 were detected. Corresponding cloud detection sensitivities over land surfaces outside of the polar regions were generally larger than 0.2 with maximum values of approximately 0.5 over the Sahara and the Arabian Peninsula. For polar land surfaces the values were close to 1 or higher with maximum values of 4.5 for the parts with the highest altitudes over Greenland and Antarctica. It is suggested to quantify the detection performance of other CDRs in terms of a sensitivity threshold of cloud optical thickness, which can be estimated using active lidar observations. Validation results are proposed to be used in Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulation Package (COSP) simulators for cloud detection characterization of various cloud CDRs from passive imagery.
Atmospheric Science Data Center
2013-12-19
UAEMIAAE Aerosol product. ( File version details ) File version F07_0015 has better ... properties. File version F08_0016 has improved cloud screening procedure resulting in better aerosol optical depth. ... Coverage: August - October 2004 File Format: HDF-EOS Tools: FTP Access: Data Pool ...
Methods of editing cloud and atmospheric layer affected pixels from satellite data
NASA Technical Reports Server (NTRS)
Nixon, P. R. (Principal Investigator); Wiegand, C. L.; Richardson, A. J.; Johnson, M. P.
1981-01-01
Plotted transects made from south Texas daytime HCMM data show the effect of subvisible cirrus (SCI) clouds in the emissive (IR) band but the effect is unnoticable in the reflective (VIS) band. The depression of satellite indicated temperatures ws greatest in the center of SCi streamers and tapered off at the edges. Pixels of uncontaminated land and water features in the HCMM test area shared identical VIS and IR digital count combinations with other pixels representing similar features. A minimum of 0.015 percent repeats of identical VIS-IR combinations are characteristic of land and water features in a scene of 30 percent cloud cover. This increases to 0.021 percent of more when the scene is clear. Pixels having shared VIS-IR combinations less than these amounts are considered to be cloud contaminated in the cluster screening method. About twenty percent of SCi was machine indistinguishable from land features in two dimensional spectral space (VIS vs IR).
Characterizing Sorghum Panicles using 3D Point Clouds
NASA Astrophysics Data System (ADS)
Lonesome, M.; Popescu, S. C.; Horne, D. W.; Pugh, N. A.; Rooney, W.
2017-12-01
To address demands of population growth and impacts of global climate change, plant breeders must increase crop yield through genetic improvement. However, plant phenotyping, the characterization of a plant's physical attributes, remains a primary bottleneck in modern crop improvement programs. 3D point clouds generated from terrestrial laser scanning (TLS) and unmanned aerial systems (UAS) based structure from motion (SfM) are a promising data source to increase the efficiency of screening plant material in breeding programs. This study develops and evaluates methods for characterizing sorghum (Sorghum bicolor) panicles (heads) in field plots from both TLS and UAS-based SfM point clouds. The TLS point cloud over experimental sorghum field at Texas A&M farm in Burleston County TX were collected using a FARO Focus X330 3D laser scanner. SfM point cloud was generated from UAS imagery captured using a Phantom 3 Professional UAS at 10m altitude and 85% image overlap. The panicle detection method applies point cloud reflectance, height and point density attributes characteristic of sorghum panicles to detect them and estimate their dimensions (panicle length and width) through image classification and clustering procedures. We compare the derived panicle counts and panicle sizes with field-based and manually digitized measurements in selected plots and study the strengths and limitations of each data source for sorghum panicle characterization.
NASA Astrophysics Data System (ADS)
Eck, T. F.; Holben, B. N.; Kim, J.; Choi, M.; Giles, D. M.; Schafer, J.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Sorokin, M. G.; Kraft, J.; Beyersdorf, A. J.; Anderson, B. E.; Thornhill, K. L., II; Crawford, J. H.
2017-12-01
The focus of our investigation is of major fine mode aerosol pollution events in South Korea, particularly when cloud fraction is high. This work includes the analysis of AERONET data utilizing the Spectral Deconvolution Algorithm to enable detection of fine mode aerosol optical depth (AOD) near to clouds. Additionally we analyze the newly developed AERONET V3 data sets that have significant changes to cloud screening algorithms. Comparisons of aerosol optical depth are made between AERONET Versions 2 and 3 for both long-term climatology data and for specific 2016 cases, especially in May and June 2016 during the KORUS-AQ field campaign. In general the Version 3 cloud screening allows many more fine mode AOD observations to reach Level 2 when cloud amount is high, as compared to Version 2, thereby enabling more thorough analysis of these types of cases. Particular case studies include May 25-26, 2016 when cloud fraction was very high over much of the peninsula, associated with a frontal passage and advection of pollution from China. Another interesting case is June 9, 2016 when there was fog over the West Sea, and this seems to have affected aerosol properties well downwind over the Korean peninsula. Both of these days had KORUS-AQ research aircraft flights that provided observations of aerosol absorption, particle size distributions and vertical profiles of extinction. AERONET retrievals and aircraft in situ measurements both showed high single scattering albedo (weak absorption) on these cloudy days. We also investigate the relationship between aerosol fine mode radius and AOD and the relationship between aerosol single scattering albedo and fine mode particle radius from the AERONET almucantar retrievals for the interval of April through June 2016 for 17 AERONET sites in South Korea. Strongly increasing fine mode radius (leading to greater scattering efficiency) as fine mode AOD increased is one factor contributing to a trend of increasing single scattering albedo as fine AOD increased. Additionally, the new AERONET Hybrid sky radiance scan retrievals that allow for inversions to be made at much smaller solar zenith angles are analyzed and compared to almucantar retrievals.
Assessing reanalysis quality with early sounders Nimbus-4 IRIS (1970) and Nimbus-6 HIRS (1975)
NASA Astrophysics Data System (ADS)
Poli, Paul; Brunel, Pascal
2018-07-01
This paper revisits the data collected by early sounders Nimbus-4 IRIS (1970) and Nimbus-6 HIRS (1975), after recovery of ageing tapes by NASA GES DISC. New quality controls are proposed to screen out erroneous or suspicious mission data, based on instrument health status data records and other inspection of the data. Radiative transfer coefficients are derived for the fast computation of clear-sky radiative transfer simulations. Atmospheric profiles from ERA-40 and ERA-20C reanalyses are used in input. These spatio-temporally complete datasets are interpolated to each sounding location, using the closest estimate in time. A modern cloud detection method derived for current hyperspectral sounders is applied to IRIS and yields maps of cloud cover that are in line with current knowledge of cloud climatology. For clear scenes, the standard deviation of brightness temperature differences between IRIS observations and simulations from ERA-20C is around 1 K for the lower-peaking temperature channels of the 15 μm CO2 band, and lower than 1 K for simulations from ERA-40. The IRIS and HIRS instrumental data records are projected in a common sub-space to alleviate issues with different field-of-view resolutions and spectral resolutions. A proxy cloud detection scheme screens out clouds in the same manner in both data records. Considering the month of August, common to both missions, a detailed analysis of the departures from observations suggests that ERA-40 suffers from spurious tropospheric warming, possibly caused by changes in the observation input during the 1970s including a known error in ERA-40 radiance assimilation bias correction. This result, confirmed by considering a climate model integration, demonstrates that it is possible to exploit early sounder data records to derive detailed insight from reanalyses, such as attempting to qualify separately random and systematic errors in reanalyses, even at times when few other independent observation data are available.
Bhavani, Selvaraj Rani; Senthilkumar, Jagatheesan; Chilambuchelvan, Arul Gnanaprakasam; Manjula, Dhanabalachandran; Krishnamoorthy, Ramasamy; Kannan, Arputharaj
2015-03-27
The Internet has greatly enhanced health care, helping patients stay up-to-date on medical issues and general knowledge. Many cancer patients use the Internet for cancer diagnosis and related information. Recently, cloud computing has emerged as a new way of delivering health services but currently, there is no generic and fully automated cloud-based self-management intervention for breast cancer patients, as practical guidelines are lacking. We investigated the prevalence and predictors of cloud use for medical diagnosis among women with breast cancer to gain insight into meaningful usage parameters to evaluate the use of generic, fully automated cloud-based self-intervention, by assessing how breast cancer survivors use a generic self-management model. The goal of this study was implemented and evaluated with a new prototype called "CIMIDx", based on representative association rules that support the diagnosis of medical images (mammograms). The proposed Cloud-Based System Support Intelligent Medical Image Diagnosis (CIMIDx) prototype includes two modules. The first is the design and development of the CIMIDx training and test cloud services. Deployed in the cloud, the prototype can be used for diagnosis and screening mammography by assessing the cancers detected, tumor sizes, histology, and stage of classification accuracy. To analyze the prototype's classification accuracy, we conducted an experiment with data provided by clients. Second, by monitoring cloud server requests, the CIMIDx usage statistics were recorded for the cloud-based self-intervention groups. We conducted an evaluation of the CIMIDx cloud service usage, in which browsing functionalities were evaluated from the end-user's perspective. We performed several experiments to validate the CIMIDx prototype for breast health issues. The first set of experiments evaluated the diagnostic performance of the CIMIDx framework. We collected medical information from 150 breast cancer survivors from hospitals and health centers. The CIMIDx prototype achieved high sensitivity of up to 99.29%, and accuracy of up to 98%. The second set of experiments evaluated CIMIDx use for breast health issues, using t tests and Pearson chi-square tests to assess differences, and binary logistic regression to estimate the odds ratio (OR) for the predictors' use of CIMIDx. For the prototype usage statistics for the same 150 breast cancer survivors, we interviewed 114 (76.0%), through self-report questionnaires from CIMIDx blogs. The frequency of log-ins/person ranged from 0 to 30, total duration/person from 0 to 1500 minutes (25 hours). The 114 participants continued logging in to all phases, resulting in an intervention adherence rate of 44.3% (95% CI 33.2-55.9). The overall performance of the prototype for the good category, reported usefulness of the prototype (P=.77), overall satisfaction of the prototype (P=.31), ease of navigation (P=.89), user friendliness evaluation (P=.31), and overall satisfaction (P=.31). Positive evaluations given by 100 participants via a Web-based questionnaire supported our hypothesis. The present study shows that women felt favorably about the use of a generic fully automated cloud-based self- management prototype. The study also demonstrated that the CIMIDx prototype resulted in the detection of more cancers in screening and diagnosing patients, with an increased accuracy rate.
Multidisciplinary Strategies in the Prevention and Early Detection of Ovarian Cancer
2001-09-01
J. Obstet. Gynecol., 64. Beyene, Y., and Martin, M. C. Menopausal experiences and bone density of Mayan 161: 905-910, 1989. women in Yucatan , Mexico...USA, 95, 12334-12339 40 Sasagawa, T., Suzuki, K., Shiota, T., Kondo, T. and Okita, M. (1998) Journal of Nutritional Science & Vitaminology 44, 809-818
Two-Channel Kondo Physics due to As Vacancies in the Layered Compound ZrAs1.58Se0.39
NASA Astrophysics Data System (ADS)
Kirchner, Stefan; Cichorek, T.; Bochenek, L.; Schmidt, M.; Niewa, R.; Czuluccki, A.; Auffermann, G.; Steglich, F.; Kniep, R.
We address the origin of the magnetic-field independent - | A | T 1 / 2 term observed in the low-temperature resistivity of several As-based metallic systems of the PbFCl structure type. For the layered compound ZrAs1.58Se0.39, we show that vacancies in the square nets of As give rise to the low-temperature transport anomaly over a wide temperature regime of almost two decades in temperature. This low-temperature behavior is in line with the non-magnetic version of the two-channel Kondo effect, whose origin we ascribe to a dynamic Jahn-Teller effect operating at the vacancy-carrying As layer with a C4 symmetry. The pair-breaking nature of the dynamical defects in the square nets of As explains the low superconducting transition temperature Tc 0 . 14 K of ZrAs1.58Se0.39, as compared to the free-of-vacancies homologue ZrP1.54S0.46 (Tc 3 . 7 K). Our findings should be relevant to a wide class of metals with disordered pnictogen layers.
Two-Channel Kondo Physics due to As Vacancies in the Layered Compound ZrAs1.58 Se0.39
NASA Astrophysics Data System (ADS)
Cichorek, T.; Bochenek, L.; Schmidt, M.; Czulucki, A.; Auffermann, G.; Kniep, R.; Niewa, R.; Steglich, F.; Kirchner, S.
2016-09-01
We address the origin of the magnetic-field-independent -|A |T1 /2 term observed in the low-temperature resistivity of several As-based metallic systems of the PbFCl structure type. For the layered compound ZrAs1.58 Se0.39 , we show that vacancies in the square nets of As give rise to the low-temperature transport anomaly over a wide temperature regime of almost two decades in temperature. This low-temperature behavior is in line with the nonmagnetic version of the two-channel Kondo effect, whose origin we ascribe to a dynamic Jahn-Teller effect operating at the vacancy-carrying As layer with a C4 symmetry. The pair-breaking nature of the dynamical defects in the square nets of As explains the low superconducting transition temperature Tc≈0.14 K of ZrAs1.58 Se0.39 compared to the free-of-vacancies homologue ZrP1.54 S0.46 (Tc≈3.7 K ). Our findings should be relevant to a wide class of metals with disordered pnictogen layers.
Unusual Kondo-hole effect and crystal-field frustration in Nd-doped CeRhIn 5
Rosa, Priscila Ferrari Silveira; Oostra, Aaron; Thompson, Joe David; ...
2016-07-05
In this research, we investigate single crystals of Ce 1₋xNd xRhIn 5 by means of x-ray-diffraction, microprobe, magnetic susceptibility, heat capacity, and electrical resistivity measurements. Our data reveal that the antiferromagnetic transition of CeRhIn 5, at Tmore » $$Ce\\atop{N}$$=3.8 K, is linearly suppressed with x Nd. We associate this effect with the presence of a “Kondo hole” created by Nd substitution. The extrapolation of T$$Ce\\atop{N}$$ to zero temperature, however, occurs at x c~0.3, which is below the two-dimensional percolation limit found in Ce 1₋xLa xRhIn 5. This result strongly suggests the presence of a crystal-field induced magnetic frustration. Near x Nd~0.2, the Ising antiferromagnetic order from Nd 3+ ions is stabilized and T$$Nd\\atop{N}$$ increases up to 11 K in NdRhIn 5. Finally, our results shed light on the effects of magnetic doping in heavy-fermion antiferromagnets and stimulate the study of such systems under applied pressure.« less
Low-temperature thermal transport in the Kondo insulator SmB6
NASA Astrophysics Data System (ADS)
Boulanger, Marie-Eve; Laliberté, F.; Badoux, S.; Doiron-Leyraud, N.; Taillefer, L.; Phelan, W. A.; Koopayeh, S. M.; McQueen, T. M.
The striking observation of quantum oscillations in the Kondo insulator SmB6 suggests that there may be chargeless fermionic excitations at low temperature in the bulk of this material. One way to detect such putative excitations is through their ability to carry entropy, which a measurement of thermal transport should in principle detect as a non-zero residual linear term in the T = 0 limit, i.e. κ0 / T > 0 . Here we report low-temperature measurements of the thermal conductivity κ in SmB6, down to 50 mK, performed on various single crystals in magnetic fields up to 15 T. By extrapolating, we obtain κ0 / T at each field. We observe no residual linear term at any field, i.e. κ0 / T = 0 at all H, in agreement with a previous study. In other words, we do not detect mobile fermionic excitations. However, unlike in the prior study, we observe a large enhancement of κ (T) with increasing field. We discuss possible interpretations of this field dependence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartstein, M.; Toews, W. H.; Hsu, Y. -T.
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. In this paper, we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB 6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including amore » sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Finally, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB 6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.« less
NASA Astrophysics Data System (ADS)
Meza, Giovany A.; Riera, José A.
2014-08-01
Motivated by emergent phenomena at oxide surfaces and interfaces, particularly those involving transition metal oxides with perovskite crystal structure such as LaTiO3/SrTiO3, we examine the ferromagnetic Kondo lattice model (FKLM) in the presence of a Rashba spin-orbit coupling (RSOC). Using numerical techniques, under the assumption that the electrons on localized orbitals may be treated as classical continuum spins, we compute various charge, spin, and transport properties on square clusters at zero temperature. We find that the main effect of the RSOC is the destruction of the ferromagnetic state present in the FKLM at low electron fillings, with the consequent suppression of conductivity. In addition, near half filling the RSOC leads to a departure of the antiferromagnetic state of the FKLM with a consequent reduction to the intrinsic tendency to electronic phase separation. The interplay between phase separation on one side, and magnetic and transport properties on the other, is carefully analyzed as a function of the RSOC/hopping ratio.
Chemical substitution study on magnetism and superconductivity in Ce1-x SmxCoIn5
NASA Astrophysics Data System (ADS)
Pouse, N.; Jang, S.; White, B.; Ran, S.; Maple, M. B.; Almasan, C. C.
We report electrical resistivity, magnetization, and specific heat measurement measurements on the Ce1- x SmxCoIn5 system for 0 <= x <= 1. Superconductivity in CeCoIn5 is suppressed with increasing Sm concentrations up to x = 0.1, above which there is no evidence for superconductivity from measurements down to 50 mK; antiferromagnetic ordering in SmCoIn5 persists deep into the Ce-rich side, and is not completely suppressed until x = 0.25. We have observed the development of a low-temperature upturn in electrical resistivity for 0.70 <= x <= 0.85 which is consistent with behavior for a single-ion impurity Kondo effect and suggests that the substitution of Sm for Ce causes a change of the relative strength of competing Kondo and Ruderman-Kittel-Kasuya-Yosida energy scales. Research at UCSD is supported by the US DOE BES under Grant No. DE-FG02-04-ER46105, the US NSF under Grant No. DMR-1206553, and research at Kent State U. is supported by NSF under Grant No. DMR-1505826.
Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito; ...
2017-11-02
Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less
NASA Astrophysics Data System (ADS)
Lima, M. S. L.; ElMassalami, M.; Deguchi, K.; Takeya, H.; Takano, Y.
2018-03-01
Thermal evolution of resistivity, ρ(T, x), of as-prepared samples of Fe1+δ Te1‑x S x (δ ≈ 0, x ≤ 0.2 = solubility limit) demonstrate a granular log-in-T character within Ts < T <300K, a Kondo-like resistive contribution within Tc < T < Ts and granular superconductivity at low temperature (Ts = structural transition point of Fe1+δ Te, Tc =superconducting transition point). We attribute the log-in-T character as well as the nonbulk superconducting features of as-prepared samples to their granular superconductor nature. Annealing in oxygen removes Kondo-like contribution, annihilates pair-breaking centres and establishes bulk superconductivity but, in contrast, the high-temperature granular log-in-T character is hardly influenced. This analysis was successfully extended to the isomorphous Fe1+δ Te1‑x Se x as well as to other types of post-synthesis sample-treatment (e.g. annealing in different gas ambient or soaking in particular liquids).
Korytár, Richard; Lorente, Nicolás
2011-09-07
We have developed a multi-orbital approach to compute the electronic structure of a quantum impurity using the non-crossing approximation. The calculation starts with a mean-field evaluation of the system's electronic structure using a standard quantum chemistry code; here we use density functional theory (DFT). We transformed the one-electron structure into an impurity Hamiltonian by using maximally localized Wannier functions. Hence, we have developed a method to study the Kondo effect in systems based on an initial one-electron calculation. We have applied our methodology to a copper phthalocyanine molecule chemisorbed on Ag(100), and we have described its spectral function for three different cases where the molecule presents a single spin or two spins with ferro- and anti-ferromagnetic exchange couplings. We find that the use of broken-symmetry mean-field theories such as Kohn-Sham DFT cannot deal with the complexity of the spin of open-shell molecules on metal surfaces and extra modeling is needed. © 2011 IOP Publishing Ltd
Quasiparticle scattering spectroscopy (QPS) of Kondo lattice heavy fermions
NASA Astrophysics Data System (ADS)
Greene, L. H.; Narasiwodeyar, S. M.; Banerjee, P.; Park, W. K.; Bauer, E. D.; Tobash, P. H.; Baumbach, R. E.; Ronning, F.; Sarrao, J. L.; Thompson, J. D.
2013-03-01
Point-contact spectroscopy (PCS) is a powerful technique to study electronic properties via measurements of non-linear current-voltage characteristic across a ballistic junction. It has been frequently adopted to investigate novel and/or unconventional superconductors by detecting the energy-dependent Andreev scattering. PCS of non-superconducting materials has been much rarely reported. From our recent studies on heavy fermions, we have frequently observed strongly bias-dependent and asymmetric conductance behaviors. Based on a Fano resonance model in a Kondo lattice, we attribute them to energy-dependent quasiparticle scattering off hybridized renormalized electronic states, dubbing it QPS. We will present our QPS results on several heavy-fermion systems and discuss QPS as a novel technique to probe the bulk spectroscopic properties of the electronic structure. For instance, it reveals that the hybridization gap in URu2Si2 opens well above the hidden order transition. The work at UIUC is supported by the U.S. DOE under Award No. DE-FG02-07ER46453 and the NSF DMR 12-06766, and the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science.
NASA Astrophysics Data System (ADS)
Merker, L.; Kirchner, S.; Muñoz, E.; Costi, T. A.
2014-08-01
The Comment of A. A. Aligia claims that the superperturbation theory (SPT) approach [E. Muñoz, C. J. Bolech, and S. Kirchner, Phys. Rev. Lett. 110, 016601 (2013), 10.1103/PhysRevLett.110.016601] formulated using dual fermions [A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 033101 (2008), 10.1103/PhysRevB.77.033101] and used by us to compare with numerical renormalization group (NRG) results for the conductance [L. Merker, S. Kirchner, E. Muñoz, and T. A. Costi, Phys. Rev. B 87, 165132 (2013), 10.1103/PhysRevB.87.165132], fails to correctly extend the results of the symmetric Anderson impurity model (SIAM) for general values of the local level Ed in the Kondo regime. We answer this criticism. We also compare new NRG results for cB, with cB calculated directly from the low-field conductance, with new higher-order SPT calculations for this quantity, finding excellent agreement for all Ed and for U /πΔ extending into the strong coupling regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito
Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less
NASA Astrophysics Data System (ADS)
Shimizu, Yasunobu; Matsumoto, Yuji; Aoki, Kosuke; Kimura, Noriaki; Aoki, Haruyoshi
2012-04-01
We have performed an extensive study on the electronic transport properties of CexLa1-xRu2Si2. At zero field or under the fields parallel to the hard axis of magnetization, the residual resistivity, magnetoresistivity and Hall resistivity are found to be most enhanced around x = 0.85 in the antiferromagnetic state. On the other hand, the high magnetic field along the easy axis is effective to suppress the enhancement. The coherence temperature derived from the temperature variation of Hall coefficient becomes equal to the antiferromagnetic transition temperature at x = 0.85, indicating that the competition between the coherence of the Kondo singlet and the long range magnetic order is responsible for the enhancement. The competition is likely to affect also the magnetic properties in the antiferromagnetic state. The comparison with the de Haas--van Alphen effect measurements suggests that the enhancement is likely to be due to the increase in scattering. The present results are compared with the theory by Hattori and Miyake.
Magnetic and electronic properties of Nd--La and Ce--La alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, T.S.
1979-05-01
The electrical resistivity, thermoelectric power and magnetic susceptibility on Nd single crystals and polycrystalline dhcp Nd--La and Ce--La alloys have been measured at low temperatures. The measurements on the Nd--La alloys show features at the Neel temperatures and also show additional magnetic ordering phenomena. Some of these other features are dependent on the thermal history of the sample. Magnetic field studies are needed to correlate these features with observed neutron diffraction effects. Several magnetic features are seen in the Ce--La alloy system also, although the measurements are plagued with the problem of fcc contamination. In addition, alloys containing Ce showmore » Kondo effects. The logarithmic term in the resistivity is explained well by the theory of Liu et al. which uses a mean field to approximate the 4f-4f interactions in the nondilute alloys. The large peak in the thermopower of Ce--La alloys is explained well by the theory of Bhattacharjee and Coqblin which incorporates Kondo scattering from excited crystal field levels.« less
Yan, Hong; Zhang, Zhaoting; Wang, Shuanhu; Zhang, Hongrui; Chen, Changle; Jin, Kexin
2017-11-08
Modulating transport behaviors of two-dimensional electron gases are of critical importance for applications of the next-generation multifunctional oxide electronics. In this study, transport behaviors of LaAlO 3 /SrTiO 3 heterointerfaces modified through the Ni dopant and the light irradiation have been investigated. Through the Ni dopant, the resistances increase significantly and a resistance upturn phenomenon due to the Kondo effect is observed at T < 40 K. Under a 360 nm light irradiation, the interfaces exhibit a persistent photoconductivity and a suppressed Kondo effect at low temperature due to the increased mobility measured through the photo-Hall method. Moreover, the relative changes in resistance of interfaces induced by light are increased from 800 to 6600% at T = 12 K with increasing the substitution of Ni, which is discussed by the band bending and the lattice effect due to the Ni dopant. This work paves the way for better controlling the emerging properties of complex oxide heterointerfaces and would be helpful for photoelectric device applications based on all-oxides.
Coherent energy scale revealed by ultrafast dynamics of UX3 (X = Al, Sn, Ga) single crystals
NASA Astrophysics Data System (ADS)
Nair, Saritha K.; Zhu, J.-X.; Sarrao, J. L.; Taylor, A. J.; Chia, Elbert E. M.
2012-09-01
The temperature dependence of relaxation dynamics of UX3 (X = Al, Ga, Sn) compounds is studied using the time-resolved pump-probe technique in reflectance geometry. For UGa3, our data are consistent with the formation of a spin density wave gap as evidenced from the quasidivergence of the relaxation time τ near the Néel temperature TN. For UAl3 and USn3, the relaxation dynamics shows a change from single-exponential to two-exponential behavior below a particular temperature, suggestive of coherence formation of the 5f electrons with the conduction band electrons. This particular temperature can be attributed to the spin fluctuation temperature Tsf, a measure of the strength of Kondo coherence. Our Tsf is consistent with other data such as resistivity and susceptibility measurements. The temperature dependence of the relaxation amplitude and time of UAl3 and USn3 were also fitted by the Rothwarf-Taylor model. Our results show that ultrafast optical spectroscopy is sensitive to c-f Kondo hybridization in the f-electron systems.
Design Patterns to Achieve 300x Speedup for Oceanographic Analytics in the Cloud
NASA Astrophysics Data System (ADS)
Jacob, J. C.; Greguska, F. R., III; Huang, T.; Quach, N.; Wilson, B. D.
2017-12-01
We describe how we achieve super-linear speedup over standard approaches for oceanographic analytics on a cluster computer and the Amazon Web Services (AWS) cloud. NEXUS is an open source platform for big data analytics in the cloud that enables this performance through a combination of horizontally scalable data parallelism with Apache Spark and rapid data search, subset, and retrieval with tiled array storage in cloud-aware NoSQL databases like Solr and Cassandra. NEXUS is the engine behind several public portals at NASA and OceanWorks is a newly funded project for the ocean community that will mature and extend this capability for improved data discovery, subset, quality screening, analysis, matchup of satellite and in situ measurements, and visualization. We review the Python language API for Spark and how to use it to quickly convert existing programs to use Spark to run with cloud-scale parallelism, and discuss strategies to improve performance. We explain how partitioning the data over space, time, or both leads to algorithmic design patterns for Spark analytics that can be applied to many different algorithms. We use NEXUS analytics as examples, including area-averaged time series, time averaged map, and correlation map.
Remote Sensing of Tropical Ecosystems: Atmospheric Correction and Cloud Masking Matter
NASA Technical Reports Server (NTRS)
Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Sellers, Piers J.; Hall, Forrest G.; Wang, Yujie
2012-01-01
Tropical rainforests are significant contributors to the global cycles of energy, water and carbon. As a result, monitoring of the vegetation status over regions such as Amazonia has been a long standing interest of Earth scientists trying to determine the effect of climate change and anthropogenic disturbance on the tropical ecosystems and its feedback on the Earth's climate. Satellite-based remote sensing is the only practical approach for observing the vegetation dynamics of regions like the Amazon over useful spatial and temporal scales, but recent years have seen much controversy over satellite-derived vegetation states in Amazônia, with studies predicting opposite feedbacks depending on data processing technique and interpretation. Recent results suggest that some of this uncertainty could stem from a lack of quality in atmospheric correction and cloud screening. In this paper, we assess these uncertainties by comparing the current standard surface reflectance products (MYD09, MYD09GA) and derived composites (MYD09A1, MCD43A4 and MYD13A2 - Vegetation Index) from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to results obtained from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. MAIAC uses a new cloud screening technique, and novel aerosol retrieval and atmospheric correction procedures which are based on time-series and spatial analyses. Our results show considerable improvements of MAIAC processed surface reflectance compared to MYD09/MYD13 with noise levels reduced by a factor of up to 10. Uncertainties in the current MODIS surface reflectance product were mainly due to residual cloud and aerosol contamination which affected the Normalized Difference Vegetation Index (NDVI): During the wet season, with cloud cover ranging between 90 percent and 99 percent, conventionally processed NDVI was significantly depressed due to undetected clouds. A smaller reduction in NDVI due to increased aerosol levels was observed during the dry season, with an inverse dependence of NDVI on aerosol optical thickness (AOT). NDVI observations processed with MAIAC showed highly reproducible and stable inter-annual patterns with little or no dependence on cloud cover, and no significant dependence on AOT (p less than 0.05). In addition to a better detection of cloudy pixels, MAIAC obtained about 20-80 percent more cloud free pixels, depending on season, a considerable amount for land analysis given the very high cloud cover (75-99 percent) observed at any given time in the area. We conclude that a new generation of atmospheric correction algorithms, such as MAIAC, can help to dramatically improve vegetation estimates over tropical rain forest, ultimately leading to reduced uncertainties in satellite-derived vegetation products globally.
New particle formation events as a source for cloud condensation nuclei in an urban environment
NASA Astrophysics Data System (ADS)
Wonaschütz, Anna; Burkart, Julia; Wagner, Robert; Reischl, Georg; Steiner, Gerhard; Hitzenberger, Regina
2014-05-01
Nucleation and growth events have been observed in many remote, urban and rural environments. The new particles can contribute significantly to cloud condensation nuclei concentrations, after growing into the appropriate size range (Kerminen et al., 2012). Several studies have attempted to quantify this contribution (e.g. Asmi et al., 2011, Matsui et al., 2013), but only a limited number of them to date have used simultaneous measurements of CCN concentrations and particle size distributions for this purpose (e.g. Levin et al., 2012). In this study, a data set from an urban background station, consisting of 22 months of size distribution and 12 months of CCN concentration measurements (Burkart et al., 2011, Burkart et al., 2012) with 10 months of overlapping measurements is combined to explore the variability of CCN concentrations, their possible causes, and the contribution of nucleation and growth events to CCN concentrations. Consistent with observations in many other locations, nucleation and growth events occur on 30% of all days in spring and summer, on 11% of days in fall and on 4% of days in winter. This suggests a potentially large source of CCN from nucleation and growth events, particularly in the warm season. We acknowledge funding from FWF (Austrian Science Fund) P19515-N20 References: Asmi E., Kivekas, N., Kerminen, V. M., Komppula, M., Hyvarinen, A. P., Hatakka, J., Viisanen, Y., and Lihavainen, H.: Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010, Atmos. Chem. Phys., 11, 12959-12972, doi: 10.5194/acp-11-12959-2011, 2011 Burkart J., Steiner, G., Reischl, G., and Hitzenberger, R.: Long-term study of cloud condensation nuclei (CCN) acticvation of the atmospheric aerosol in Vienna, Atmos. Environ., 45, 5751-5759, doi: 10.1016/j.atmosenv.2011.07.022, 2011. Burkart J., Hitzenberger, R., Reischl, G., Bauer, H., Leder, K., and Puxbaum, H.: Activation of "synthetic ambient" aerosols - relation to chemical composition of particles < 100 nm, Atmos. Environ., 54, 583-591, doi: 10.1016/j.atmosenv.2012.01.063, 2012. Kerminen V.-M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., Asmi, E., Laakso, L., Lihavainen, H., Swietlicki, E., Svenningsson, B., Asmi, A., Pandis, S. N., Kulmala, M., and Petäjä, T.: Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results, Atmos. Chem. Phys., 12, 12037-12059, doi: 10.5194/acp-12-12037-2012, 2012. Levin, E. J. T., Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Sullivan, R. C., Atwood, S. A., Ortega, J., DeMott, P. J., and Smith, J. N.: An annual cycle of size-resolved aerosol hygroscopicity at a forested site in Colorado, J. Geophys. Res., 117, 06201, doi:10.1029/2011JD016854, 2012. Matsui, H., Koike, M., Kondo, Y., Takegawa, N., Wiedensohler, A., Fast, J. D., and Zaveri, R. A.: Impact of new particle formation on the concentrations of aerosols and cloud condensation nuclei around Beijing, J. Geophys. Res., 116, 19208, doi:10.1029/2011JD016025, 2011.
Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics
NASA Astrophysics Data System (ADS)
Steglich, Frank; Wirth, Steffen
2016-08-01
This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a ‘conventional’, itinerant QCP can be well understood within Landau’s paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an ‘unconventional’, local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.
Non-equilibrium STLS approach to transport properties of single impurity Anderson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir
In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in themore » non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.« less
Knight-shift anomalies in heavy-electron materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, E.; Cox, D.L.
1998-08-01
We have studied the Knight shift K({rvec r},T) and magnetic susceptibility {chi}(T) of heavy-electron materials, modeled by the infinite-U Anderson model with the noncrossing approximation method. A systematic study of K({rvec r},T) and {chi}(T) for different Kondo temperatures T{sub 0} (which depends on the hybridization width {Gamma}) shows a low-temperature anomaly (nonlinear relation between K and {chi}) which increases as the Kondo temperature T{sub 0} and distance r increase. We carried out an incoherent lattice sum by adding the K({rvec r}) of a few hundred shells of rare-earth atoms around a nucleus and compare the numerically calculated results with themore » experimental results. For CeSn{sub 3}, which is a concentrated heavy-electron material, both the {sup 119}Sn NMR Knight shift and positive muon Knight shift are studied. Also, lattice coherence effects by conduction-electron scattering at every rare-earth site are included using the average-T-matrix approximation. The calculated magnetic susceptibility and {sup 119}Sn NMR Knight shift show excellent agreement with experimental results for both incoherent and coherent calculations. The positive muon Knight shifts are calculated for both possible positions of muon (center of the cubic unit cell and middle of Ce-Ce bond axis). Our numerical results show a low-temperature anomaly for the muons of the correct magnitude but we can only find agreement with experiment if we take a weighted average of the two sites in a calculation with lattice coherence present. For YbCuAl, the measured {sup 27}Al NMR Knight shift shows an anomaly with opposite sign to the CeSn{sub 3} compound. Our calculations agree very well with the experiments. For the proposed quadrupolar Kondo alloy Y{sub 0.8}U{sub 0.2}Pd{sub 3}, our {sup 89}Y NMR Knight-shift calculation do not show the observed Knight-shift anomaly. {copyright} {ital 1998} {ital The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Falkowski, M.; Krychowski, D.; Strydom, A. M.
2016-11-01
An in-depth study of thermal and electron transport properties including thermal conductivity κ(T), thermoelectric power S(T), and electrical resistivity ρ(T) of the heavy fermion Kondo lattice Ce6Pd12In5 and its nonmagnetic reference compound La6Pd12In5 is presented. The absolute κ(T) value of Ce6Pd12In5 is smaller that than of La6Pd12In5, which indicates that conduction electron-4f electron scattering has a large impact on the reduction of thermal conductivity. The isolated 4f electron contributions to the electrical resistivity ρ 4 f (T), electronic thermal resistivity displayed in the form W e l , 4 f (T) .T, and thermoelectric power S 4 f (T) reveal a low- and high-temperature -lnT behaviour characteristic of Kondo systems with strong crystal-electric field (CEF) interactions. The analysis of phonon scattering processes of lattice thermal conductivity κph(T) in (Ce, La)6Pd12In5 was performed over the whole accessible temperature range according to the Callaway model. In the scope of a theoretical approach based on the perturbation type calculation, we were able to describe our experimental data of ρ 4 f (T) and W e l , 4 f (T) .T by using the model incorporating simultaneously the Kondo effect in the presence of the CEF splitting, as it is foreseen in the framework of the Cornut-Coqblin and Bhattacharjee-Coqblin theory. Considering the fact that there are not many cases of similar studies at all, we also show the numerical calculations of temperature-dependent behaviour of spin-disorder resistivity ρs(T), magnetic resistivity ρ 4 f (T), and occupation number ⟨ N i ⟩ due to the various types of degeneracy of the ground state multiplet of Ce 3 + (J = 5/2).
Cloud Detection of Optical Satellite Images Using Support Vector Machine
NASA Astrophysics Data System (ADS)
Lee, Kuan-Yi; Lin, Chao-Hung
2016-06-01
Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection accuracy of the proposed method is better than related methods.
NASA Astrophysics Data System (ADS)
Redfield, Seth; Linsky, Jeffrey L.
2015-10-01
Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield & Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry & Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that the multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS AR-09525.01A. These observations are associated with programs #11568.
Long-term observation of aerosol-cloud relationships in the Mid-Atlantic of the United States
NASA Astrophysics Data System (ADS)
Li, S.; Joseph, E.; Min, Q.; Yin, B.
2014-07-01
Long-term ground-based observations (2006 to 2010) of aerosol and cloud properties derived from passive radiometric sensors deployed at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University were used to examine aerosol indirect effect on cloud optical depth (COD), liquid water path (LWP), cloud droplets effective radius (Re) and cloud droplets number concentration (Nd). A higher frequency of clouds with large COD (> 20) and small Re (< 7 m) was found during summer of 2006 and 2007 along with higher frequency of abundant aerosol loading. The five-year data are screened for summer months only and are separated into clean and polluted cases based on aerosol particulate matter with aerodynamic diameter ≤ 2.5 m (PM2.5) value. Evidence of aerosol indirect effect is found where for polluted cases the mean and median values of COD and Nd distributions were elevated while the mean and median values of Re were decreased. Further reinforcing this conclusion is the result that the mean and median values of LWP distributions did not show prominent difference between clean and polluted cases, this implies that differences between the two cases of influential factors on cloud properties were relatively controlled. Moreover aerosol indirect effects were found insignificant when LWP was small but significant when LWP was large through the analysis of sensitivity of Nd to LWP under different aerosol loading and the measurements of aerosol size distribution.
NASA Astrophysics Data System (ADS)
Oishi, Y.; Kamei, A.; Murakami, K.; Dupuy, E.; Yokota, Y.; Hiraki, K.; Ninomiya, K.; Saito, M.; Yoshida, Y.; Morino, I.; Nakajima, T. Y.; Yokota, T.; Matsunaga, T.
2013-12-01
Greenhouse gases Observing SATellite (GOSAT) was launched in 2009 to measure the global atmospheric CO2 and CH4 concentrations. GOSAT is equipped with two sensors: the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI). The presence of clouds in the instantaneous field-of-view (IFOV) of the FTS leads to incorrect estimates of the CO2 or CH4 concentration. To deal with this problem, the FTS data which are suspected to be cloud-contaminated must be identified and rejected. As a result, there are very few remaining FTS data in the region of tropical rainforest such as the Amazon. In the meanwhile the feasibility studies of GOSAT-2 started for more precise monitoring of atmospheric greenhouse gases than GOSAT in 2011. To improve the accuracy of estimates of the column-averaged dry air mole fraction of atmospheric CO2 (XCO2), we need to understand the present situation about cloud screening in the rain forest regions and to examine the cloud-contaminated data whose processing might be possible with improvement of instruments or algorithms. In this study we evaluated the impact of thin clouds on estimates of the XCO2 using an atmospheric radiative transfer code, which can simulate the spectrum at the top of the atmosphere under thin cloud conditions. First, we decided the input parameters, among which relative position of the sun and satellite to observation point, surface reflectance using cloud-free GOSAT data products in the Amazon, FTS L1B data products (radiance spectral data), FTS L2 data products (CO2 column abundance data), and CAI L3 data products (clear-sky reflectance data). The evaluation was performed by comparing depths of the CO2 absorption lines in output radiation spectra with varying CO2 concentrations and cloud conditions, cloud type, cloud optical depth, and cloud top altitude. We will present our latest results.
Khair, Aditya S
2018-01-23
The deformation of the electric double layer around a charged colloidal particle during sedimentation or electrophoresis in a binary, symmetric electrolyte is studied. The surface potential of the particle is assumed to be small compared to the thermal voltage scale. Additionally, the Debye length is assumed to be large compared to the particle size. These assumptions enable a linearization of the electrokinetic equations. The particle appears as a point charge in this thick-double-layer limit; the distribution of charge in the diffuse cloud surrounding it is determined by a balance of advection due to the particle motion, Brownian diffusion of ions, and electrostatic screening of the particle by the cloud. The ability of advection to deform the charge cloud from its equilibrium state is parametrized by a Péclet number, Pe. For weak advection (Pe ≪ 1), the cloud is only slightly deformed. In contrast, the cloud can be completely stripped from the particle at Pe ≫ 1; consequently, electrokinetic effects on the particle motion vanish in this regime. Therefore, in sedimentation the drag limits to Stokes' law for an uncharged particle as Pe → ∞. Likewise, the particle velocity for electrophoresis approaches Huckel's result. The strongly deformed cloud at large Pe is predicted to generate a concomitant increase in the sedimentation field in a dilute settling suspension.
NASA Astrophysics Data System (ADS)
Gacal, G. F. B.; Lagrosas, N.
2017-12-01
Cloud detection nowadays is primarily achieved by the utilization of various sensors aboard satellites. These include MODIS Aqua, MODIS Terra, and AIRS with products that include nighttime cloud fraction. Ground-based instruments are, however, only secondary to these satellites when it comes to cloud detection. Nonetheless, these ground-based instruments (e.g., LIDARs, ceilometers, and sky-cameras) offer significant datasets about a particular region's cloud cover values. For nighttime operations of cloud detection instruments, satellite-based instruments are more reliably and prominently used than ground-based ones. Therefore if a ground-based instrument for nighttime operations is operated, it ought to produce reliable scientific datasets. The objective of this study is to do a comparison between the results of a nighttime ground-based instrument (sky-camera) and that of MODIS Aqua and MODIS Terra. A Canon Powershot A2300 is placed ontop of Manila Observatory (14.64N, 121.07E) and is configured to take images of the night sky at 5min intervals. To detect pixels with clouds, the pictures are converted to grayscale format. Thresholding technique is used to screen pixels with cloud and pixels without clouds. If the pixel value is greater than 17, it is considered as a cloud; otherwise, a noncloud (Gacal et al., 2016). This algorithm is applied to the data gathered from Oct 2015 to Oct 2016. A scatter plot between satellite cloud fraction in the area covering the area 14.2877N, 120.9869E, 14.7711N and 121.4539E and ground cloud cover is graphed to find the monthly correlation. During wet season (June - November), the satellite nighttime cloud fraction vs ground measured cloud cover produce an acceptable R2 (Aqua= 0.74, Terra= 0.71, AIRS= 0.76). However, during dry season, poor R2 values are obtained (AIRS= 0.39, Aqua & Terra = 0.01). The high correlation during wet season can be attributed to a high probability that the camera and satellite see the same clouds. However during dry season, the satellite sees high altitude clouds and the camera can not detect these clouds from the ground as it relies on city lights reflected from low level clouds. With this acknowledged disparity, the ground-based camera has the advantage of detecting haze and thin clouds near the ground that are hardly or not detected by the satellites.
A novel data storage logic in the cloud
Mátyás, Bence; Szarka, Máté; Járvás, Gábor; Kusper, Gábor; Argay, István; Fialowski, Alice
2016-01-01
Databases which store and manage long-term scientific information related to life science are used to store huge amount of quantitative attributes. Introduction of a new entity attribute requires modification of the existing data tables and the programs that use these data tables. The solution is increasing the virtual data tables while the number of screens remains the same. The main objective of the present study was to introduce a logic called Joker Tao (JT) which provides universal data storage for cloud-based databases. It means all types of input data can be interpreted as an entity and attribute at the same time, in the same data table. PMID:29026521
NASA Technical Reports Server (NTRS)
Lee, Steven (Editor)
1987-01-01
The major topics covered were a discussion of the structure of relational data base systems and features of the Britton Lee Relational Data Base Management System (RDBMS); a discussion of the workshop's objectives, approach, and research scenarios; and an overview of the Atmospheres Node User's Guide, which details the datasets stored on the Britton Lee, the structure of the query and data analysis system, and examples of the exact menu screens encountered. Also discussed were experience with the system, review of the system performance, and a strategy to produce queries and performance data retrievals of mutual interest. The goals were defined as examining correlations between cloud occurrence, water vapor abundance, and surface properties.
A novel data storage logic in the cloud.
Mátyás, Bence; Szarka, Máté; Járvás, Gábor; Kusper, Gábor; Argay, István; Fialowski, Alice
2016-01-01
Databases which store and manage long-term scientific information related to life science are used to store huge amount of quantitative attributes. Introduction of a new entity attribute requires modification of the existing data tables and the programs that use these data tables. The solution is increasing the virtual data tables while the number of screens remains the same. The main objective of the present study was to introduce a logic called Joker Tao (JT) which provides universal data storage for cloud-based databases. It means all types of input data can be interpreted as an entity and attribute at the same time, in the same data table.
Regional Monitoring of Cervical Cancer.
Crisan-Vida, Mihaela; Lupse, Oana Sorina; Stoicu-Tivadar, Lacramioara; Salvari, Daniela; Catanet, Radu; Bernad, Elena
2017-01-01
Cervical cancer is one of the most important causes of death in women in fertile age in Romania. In order to discover high-risk situations in the first stages of the disease it is important to enhance prevention actions, and ICT, respectively cloud computing and Big Data currently support such activities. The national screening program uses an information system that based on data from different medical units gives feedback related to the women healthcare status and provides statistics and reports. In order to ensure the continuity of care it is updated with HL7 CDA support and cloud computing. The current paper presents the solution and several results.
Arnold, Robert W; Jacob, Jack; Matrix, Zinnia
2012-01-01
Screening by neonatologists and staging by ophthalmologists is a cost-effective intervention, but inadvertent missed examinations create a high liability. Paper tracking, bedside schedule reminders, and a computer scheduling and reminder program were compared for speed of input and retrospective missed examination rate. A neonatal intensive care unit (NICU) process was then programmed for cloud-based distribution for inpatient and outpatient retinopathy of prematurity monitoring. Over 11 years, 367 premature infants in one NICU were prospectively monitored. The initial paper system missed 11% of potential examinations, the Windows server-based system missed 2%, and the current cloud-based system missed 0% of potential inpatient and outpatient examinations. Computer input of examinations took the same or less time than paper recording. A computer application with a deliberate NICU process improved the proportion of eligible neonates getting their scheduled eye examinations in a timely manner. Copyright 2012, SLACK Incorporated.
2015-01-01
Background The Internet has greatly enhanced health care, helping patients stay up-to-date on medical issues and general knowledge. Many cancer patients use the Internet for cancer diagnosis and related information. Recently, cloud computing has emerged as a new way of delivering health services but currently, there is no generic and fully automated cloud-based self-management intervention for breast cancer patients, as practical guidelines are lacking. Objective We investigated the prevalence and predictors of cloud use for medical diagnosis among women with breast cancer to gain insight into meaningful usage parameters to evaluate the use of generic, fully automated cloud-based self-intervention, by assessing how breast cancer survivors use a generic self-management model. The goal of this study was implemented and evaluated with a new prototype called “CIMIDx”, based on representative association rules that support the diagnosis of medical images (mammograms). Methods The proposed Cloud-Based System Support Intelligent Medical Image Diagnosis (CIMIDx) prototype includes two modules. The first is the design and development of the CIMIDx training and test cloud services. Deployed in the cloud, the prototype can be used for diagnosis and screening mammography by assessing the cancers detected, tumor sizes, histology, and stage of classification accuracy. To analyze the prototype’s classification accuracy, we conducted an experiment with data provided by clients. Second, by monitoring cloud server requests, the CIMIDx usage statistics were recorded for the cloud-based self-intervention groups. We conducted an evaluation of the CIMIDx cloud service usage, in which browsing functionalities were evaluated from the end-user’s perspective. Results We performed several experiments to validate the CIMIDx prototype for breast health issues. The first set of experiments evaluated the diagnostic performance of the CIMIDx framework. We collected medical information from 150 breast cancer survivors from hospitals and health centers. The CIMIDx prototype achieved high sensitivity of up to 99.29%, and accuracy of up to 98%. The second set of experiments evaluated CIMIDx use for breast health issues, using t tests and Pearson chi-square tests to assess differences, and binary logistic regression to estimate the odds ratio (OR) for the predictors’ use of CIMIDx. For the prototype usage statistics for the same 150 breast cancer survivors, we interviewed 114 (76.0%), through self-report questionnaires from CIMIDx blogs. The frequency of log-ins/person ranged from 0 to 30, total duration/person from 0 to 1500 minutes (25 hours). The 114 participants continued logging in to all phases, resulting in an intervention adherence rate of 44.3% (95% CI 33.2-55.9). The overall performance of the prototype for the good category, reported usefulness of the prototype (P=.77), overall satisfaction of the prototype (P=.31), ease of navigation (P=.89), user friendliness evaluation (P=.31), and overall satisfaction (P=.31). Positive evaluations given by 100 participants via a Web-based questionnaire supported our hypothesis. Conclusions The present study shows that women felt favorably about the use of a generic fully automated cloud-based self- management prototype. The study also demonstrated that the CIMIDx prototype resulted in the detection of more cancers in screening and diagnosing patients, with an increased accuracy rate. PMID:25830608
Global Free-tropospheric NO2 Abundances Derived Using a Cloud Slicing Technique from AURA OMI
NASA Technical Reports Server (NTRS)
Choi, S.; Joiner, J.; Choi, Y.; Duncan, B.N.; Vasilkov, A.; Krotkov, N.; Bucsela, E.J.
2014-01-01
We derive free-tropospheric NO2 volume mixing ratios (VMRs) by applying a cloud-slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top of the atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud-slicing data indicates signatures of lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the global modeling initiative (GMI) for cloudy conditions (cloud optical depth less than10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx.
NASA Astrophysics Data System (ADS)
Lantz, K. O.; Long, C. S.; Buller, D.; Berwick, M.; Buller, M.; Kane, I.; Shane, J.
2012-12-01
The UV Index (UVI) is a measure of the skin-damaging UV radiation levels at the Earth's surface. Clouds, haze, air pollution, total ozone, surface elevation, and ground reflectivity affect the levels of UV radiation reaching the ground. The global UV Index was developed as a simple tool to educate the public for taking precautions when exposed to UV radiation to avoid sun-burning, which has been linked to the development of skin cancer. The purpose of this study was to validate an algorithm to modify a cloud-free UV Index forecast for cloud conditions as observed by adults in real-time. The cloud attenuation algorithm is used in a smart-phone application to modify a clear-sky UV Index forecast. In the United States, the Climate Prediction Center of the National Oceanic and Atmospheric Administration's (NOAA) issues a daily UV Index Forecast. The NOAA UV Index is an hourly forecast for a 0.5 x 0.5 degree area and thus has a degree of uncertainty. Cloud cover varies temporally and spatially over short times and distances as weather conditions change and can have a large impact on the UV radiation. The smart-phone application uses the cloud-based UV Index forecast as the default but allows the user to modify a cloud-free UV Index forecast when the predicted sky conditions do not match observed conditions. Eighty four (n=84) adults were recruited to participate in the study through advertisements posted online and in a university e-newsletter. Adults were screened for eligibility (i.e., 18 or older, capable to traveling to test site, had a smart phone with a data plan to access online observation form). A sky observation measure was created to assess cloud fraction. The adult volunteers selected from among four photographs the image that best matched the cloud conditions they observed. Images depicted no clouds (clear sky), thin high clouds, partly cloudy sky, and thick clouds (sky completely overcast). When thin high clouds or partly cloudy images were selected, adults estimated the percentage of the sky covered by clouds. Cloud fraction was calculated by assigning 0% if the clear-sky image was selected, 100% if the overcast thick cloud image was selected, and 10% to 90% as indicated by adults, if high thin clouds or partly cloudy images were selected. The observed cloud fraction from the adult volunteers was compared to the cloud fraction determined by a Total Sky Imager. A cloud modification factor based on the observed cloud fraction was applied to the cloud-free UV Index forecast. This result was compared to the NOAA cloudy sky UV Index forecast and to the concurrent UV Index measurements from three broadband UV radiometers and a Brewer spectrophotometer calibrated using NIST traceable standards.
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-12-01
We investigate the necessary conditions for the emergence of complex, noncoplanar magnetic configurations in a Kondo lattice model with classical local moments on the geometrically frustrated Shastry-Sutherland lattice and their evolution in an external magnetic field. We demonstrate that topologically nontrivial spin textures, including a new canted flux state, with nonzero scalar chirality arise dynamically from realistic short-range interactions. Our results establish that a finite Dzyaloshinskii-Moriya (DM) interaction is necessary for the emergence of these novel magnetic states when the system is at half filling, for which the ground state is insulating. We identify the minimal set of DM vectors that are necessary for the stabilization of chiral magnetic phases. The noncoplanarity of such structures can be tuned continually by applying an external magnetic field. This is the first part in a series of two papers; in the following paper the effects of frustration, thermal fluctuations, and magnetic field on the emergence of novel noncollinear states at metallic filling of itinerant electrons are discussed. Our results are crucial in understanding the magnetic and electronic properties of the rare-earth tetraboride family of frustrated magnets with separate spin and charge degrees of freedom.
Kondo lattice and antiferromagnetic behavior in quaternary CeTAl 4Si 2 (T = Rh, Ir) single crystals
Maurya, Arvind; Kulkarni, Ruta; Thamizhavel, Arumugam; ...
2016-02-26
Here, we have explored in detail the anisotropic magnetic properties of CeRhAl 4Si 2 and CeIrAl 4Si 2, which undergo two antiferromagnetic transitions, at T N1 = 12.6 and 15.5 K, followed by a second transition at T N2 = 9.4 and 13.8 K, respectively, with the [001]-axis as the relatively easy axis of magnetization. The electrical resistivity at ambient and applied pressure provides evidence of Kondo interaction in both compounds, further supported by a reduced value of the entropy associated with the magnetic ordering. The Sommerfeld coefficient γ is inferred to be 195.6 and 49.4 mJ/(mol K 2) formore » CeRhAl 4Si 2 and CeIrAl 4Si 2, respectively, classifying these materials as moderate heavy-fermion compounds. The crystal electric field energy levels are derived from the peak seen in the Schottky heat capacity. Furthermore, we have also performed electronic structure calculations by using the local spin density approximation + U [LSDA+U] approach, which provide physical insights on the observed magnetic behavior of these two compounds.« less
Spin dynamics and Kondo physics in optical tweezers
NASA Astrophysics Data System (ADS)
Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.
2016-05-01
We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Kondo lattice heavy fermion behavior in CeRh2Ga2
NASA Astrophysics Data System (ADS)
Anand, V. K.; Adroja, D. T.; Bhattacharyya, A.; Klemke, B.; Lake, B.
2017-04-01
The physical properties of an intermetallic compound CeRh2Ga2 have been investigated by magnetic susceptibility χ (T) , isothermal magnetization M(H), heat capacity {{C}\\text{p}}(T) , electrical resistivity ρ (T) , thermal conductivity κ (T) and thermopower S(T) measurements. CeRh2Ga2 is found to crystallize with CaBe2Ge2-type primitive tetragonal structure (space group P4/nmm). No evidence of long range magnetic order is seen down to 1.8 K. The χ (T) data show paramagnetic behavior with an effective moment {μ\\text{eff}}≈ 2.5~{μ\\text{B}} /Ce indicating Ce3+ valence state of Ce ions. The ρ (T) data exhibit Kondo lattice behavior with a metallic ground state. The low-T {{C}\\text{p}}(T) data yield an enhanced Sommerfeld coefficient γ =130(2) mJ/mol K2 characterizing CeRh2Ga2 as a moderate heavy fermion system. The high-T {{C}\\text{p}}(T) and ρ (T) show an anomaly near 255 K, reflecting a phase transition. The κ (T) suggests phonon dominated thermal transport with considerably higher values of Lorenz number L(T) compared to the theoretical Sommerfeld value L 0.
Density-Functional Theory description of transport in the single-electron transistor
NASA Astrophysics Data System (ADS)
Zawadzki, Krissia; Oliveira, Luiz N.
The Kondo effect governs the low-temperature transport properties of the single electron transistor (SET), a quantum dot bridging two electron gases. In the weak coupling limit, for odd dot occupation, the gate-potential profile of the conductance approaches a step, known as the Kondo plateau. The plateau and other SET properties being well understood on the basis of the Anderson model, more realistic (i. e., DFT) descriptions of the device are now desired. This poses a challenge, since the SET is strongly correlated. DFT computations that reproduce the conductance plateau have been reported, e. g., by, which rely on the exact functional provided by the Bethe-Ansatz solution for the Anderson model. Here, sticking to DFT tradition, we employ a functional derived from a homogeneous system: the parametrization of the Lieb-Wu solution for the Hubbard model due to. Our computations reproduce the plateau and yield other results in accurate agreement with the exact diagonalization of the Anderson Hamiltonian. The prospects for extensions to realistic descriptions of two-dimensional nanostructured devices will be discussed. Luiz N. Oliveira thanks CNPq (312658/2013-3) and Krissia Zawadzki thanks CNPq (140703/2014-4) for financial support.
Observation of a well-defined hybridization gap and in-gap states on the SmB6 (001) surface
NASA Astrophysics Data System (ADS)
Sun, Zhixiang; Maldonado, Ana; Paz, Wendel S.; Inosov, Dmytro S.; Schnyder, Andreas P.; Palacios, J. J.; Shitsevalova, Natalya Yu.; Filipov, Vladimir B.; Wahl, Peter
2018-06-01
The rise of topology in condensed-matter physics has generated strong interest in identifying novel quantum materials in which topological protection is driven by electronic correlations. Samarium hexaboride is a Kondo insulator for which it has been proposed that a band inversion between 5 d and 4 f bands gives rise to topologically protected surface states. However, unambiguous proof of the existence and topological nature of these surface states is still missing, and its low-energy electronic structure is still not fully established. Here we present a study of samarium hexaboride by ultralow-temperature scanning tunneling microscopy and spectroscopy. We obtain clear atomically resolved topographic images of the sample surface. Our tunneling spectra reveal signatures of a hybridization gap with a size of about 8 meV and with a reduction of the differential conductance inside the gap by almost half, and surprisingly, several strong resonances below the Fermi level. The spatial variations of the energy of the resonances point toward a microscopic variation of the electronic states by the different surface terminations. High-resolution tunneling spectra acquired at 100 mK reveal a splitting of the Kondo resonance, possibly due to the crystal electric field.
Thermoelectricity in correlated narrow-gap semiconductors
NASA Astrophysics Data System (ADS)
Tomczak, Jan M.
2018-05-01
We review many-body effects, their microscopic origin, as well as their impact on thermoelectricity in correlated narrow-gap semiconductors. Members of this class—such as FeSi and FeSb2—display an unusual temperature dependence in various observables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie–Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators—such as Ce3Bi4Pt3 for which we present new results—and propose a general classification of paramagnetic insulators. From the latter, FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we explore new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.
Tunnel magnetoresistance for coherent spin-flip processes on an interacting quantum dot.
Rudziński, W
2009-01-28
Spin-polarized electronic tunneling through a quantum dot coupled to ferromagnetic electrodes is investigated within a nonequilibrium Green function approach. An interplay between coherent intradot spin-flip transitions, tunneling processes and Coulomb correlations on the dot is studied for current-voltage characteristics of the tunneling junction in parallel and antiparallel magnetic configurations of the leads. It is found that due to the spin-flip processes electric current in the antiparallel configuration tends to the current characteristics in the parallel configuration, thus giving rise to suppression of the tunnel magnetoresistance (TMR) between the threshold bias voltages at which the dot energy level becomes active in tunneling. Also, the effect of a negative differential conductance in symmetrical junctions, splitting of the conductance peaks, significant modulation of TMR peaks around the threshold bias voltages as well as suppression of the diode-like behavior in asymmetrical junctions is discussed in the context of coherent intradot spin-flip transitions. It is also shown that TMR may be inverted at selected gate voltages, which qualitatively reproduces the TMR behavior predicted recently for temperatures in the Kondo regime, and observed experimentally beyond the Kondo regime for a semiconductor InAs quantum dot coupled to nickel electrodes.
Puzzle maker in SmB6: accompany-type valence fluctuation state
NASA Astrophysics Data System (ADS)
Wu, Qi; Sun, Liling
2017-11-01
In recent years, studying the Kondo insulator SmB6, a strongly correlated electron material that has been puzzling the community for decades, has again become an attractive topic due to the discovery of its unusual metallic surface state coexisting with the bulk insulating state. Many efforts have been made to understand the microphysics in SmB6, but some puzzles that have been hotly debated and argued have not been solved. In this article, based on the latest progress made in our high-pressure studies on SmB6 and the accumulating results reported by other groups, we propose a notion named the ‘accompany-type valence fluctuation state’, which possibly coexists with the bulk Kondo insulating ground state of SmB6. We expect that this notion could be taken as a common starting point for understanding in a unified way most of the low-temperature phenomena observed by different experimental investigations on SmB6, thus promoting the deciphering of the puzzles. We also expect that this notion could attract rigorous theoretical interpretation and further experimental investigation, or stimulate better thinking on the physics in SmB6.
Madej, Katarzyna; Persona, Karolina; Wandas, Monika; Gomółka, Ewa
2013-10-18
A complex extraction system with the use of cloud-point extraction technique (CPE) was developed for sequential isolation of basic and acidic/neutral medicaments from human plasma/serum, screened by HPLC/DAD method. Eight model drugs (paracetamol, promazine, chlorpromazine, amitriptyline, salicyclic acid, opipramol, alprazolam and carbamazepine) were chosen for the study of optimal CPE conditions. The CPE technique consists in partition of an aqueous sample with addition of a surfactant into two phases: micelle-rich phase with the isolated compounds and water phase containing a surfactant below the critical micellar concentration, mainly under influence of temperature change. The proposed extraction system consists of two chief steps: isolation of basic compounds (from pH 12) and then isolation of acidic/neutral compounds (from pH 6) using surfactant Triton X-114 as the extraction medium. Extraction recovery varied from 25.2 to 107.9% with intra-day and inter-day precision (RSD %) ranged 0.88-1087 and 5.32-17.96, respectively. The limits of detection for the studied medicaments at λ 254nm corresponded to therapeutic or low toxic plasma concentration levels. Usefulness of the proposed CPE-HPLC/DAD method for toxicological drug screening was tested via its application to analysis of two serum samples taken from patients suspected of drug overdosing. Published by Elsevier B.V.
Telehealth solutions to enable global collaboration in rheumatic heart disease screening.
Lopes, Eduardo Lv; Beaton, Andrea Z; Nascimento, Bruno R; Tompsett, Alison; Dos Santos, Julia Pa; Perlman, Lindsay; Diamantino, Adriana C; Oliveira, Kaciane Kb; Oliveira, Cassio M; Nunes, Maria do Carmo P; Bonisson, Leonardo; Ribeiro, Antônio Lp; Sable, Craig
2018-02-01
Background The global burden of rheumatic heart disease is nearly 33 million people. Telemedicine, using cloud-server technology, provides an ideal solution for sharing images performed by non-physicians with cardiologists who are experts in rheumatic heart disease. Objective We describe our experience in using telemedicine to support a large rheumatic heart disease outreach screening programme in the Brazilian state of Minas Gerais. Methods The Programa de Rastreamento da Valvopatia Reumática (PROVAR) is a prospective cross-sectional study aimed at gathering epidemiological data on the burden of rheumatic heart disease in Minas Gerais and testing of a non-expert, telemedicine-supported model of outreach rheumatic heart disease screening. The primary goal is to enable expert support of remote rheumatic heart disease outreach through cloud-based sharing of echocardiographic images between Minas Gerais and Washington. Secondary goals include (a) developing and sharing online training modules for non-physicians in echocardiography performance and interpretation and (b) utilising a secure web-based system to share clinical and research data. Results PROVAR included 4615 studies that were performed by non-experts at 21 schools and shared via cloud-telemedicine technology. Latent rheumatic heart disease was found in 251 subjects (4.2% of subjects: 3.7% borderline and 0.5% definite disease). Of the studies, 50% were preformed on full functional echocardiography machines and transmitted via Digital Imaging and Communications in Medicine (DICOM) and 50% were performed on handheld echocardiography machines and transferred via a secure Dropbox connection. The average time between study performance date and interpretation was 10 days. There was 100% success in initial image transfer. Less than 1% of studies performed by non-experts could not be interpreted. Discussion A sustainable, low-cost telehealth model, using task-shifting with non-medical personal in low and middle income countries can improve access to echocardiography for rheumatic heart disease.
Pyles, Lee; Hemmati, Pouya; Pan, J; Yu, Xiaoju; Liu, Ke; Wang, Jing; Tsakistos, Andreas; Zheleva, Bistra; Shao, Weiguang; Ni, Quan
2017-04-01
A system for collection, distribution, and long distant, asynchronous interpretation of cardiac auscultation has been developed and field-tested in rural China. We initiated a proof-of-concept test as a critical component of design of a system to allow rural physicians with little experience in evaluation of congenital heart disease (CHD) to obtain assistance in diagnosis and management of children with significant heart disease. The project tested the hypothesis that acceptable screening of heart murmurs could be accomplished using a digital stethoscope and internet cloud transmittal to deliver phonocardiograms to an experienced observer. Of the 7993 children who underwent school-based screening in the Menghai District of Yunnan Province, Peoples Republic of China, 149 had a murmur noted by a screener. They had digital heart sounds and phonocardiograms collected with the HeartLink tele auscultation system, and underwent echocardiography by a cardiology resident from the First Affiliated Hospital of Kunming Medical University. The digital phonocardiograms, stored on a cloud server, were later remotely reviewed by a board-certified American pediatric cardiologist. Fourteen of these subjects were found to have CHD confirmed by echocardiogram. Using the HeartLink system, the pediatric cardiologist identified 11 of the 14 subjects with pathological murmurs, and missed three subjects with atrial septal defects, which were incorrectly identified as venous hum or Still's murmur. In addition, ten subjects were recorded as having pathological murmurs, when no CHD was confirmed by echocardiography during the field study. The overall test accuracy was 91% with 78.5% sensitivity and 92.6% specificity. This proof-of-concept study demonstrated the feasibility of differentiating pathologic murmurs due to CHD from normal functional heart murmurs with the HeartLink system. This field study is an initial step to develop a cost-effective CHD screening strategy in low-resource settings with a shortage of trained medical professionals and pediatric heart programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Andrew E.; Soares, Alexei S.; Owen, Robin L.
Haptic interfaces have become common in consumer electronics. They enable easy interaction and information entry without the use of a mouse or keyboard. Our work illustrates the application of a haptic interface to crystallization screening in order to provide a natural means for visualizing and selecting results. By linking this to a cloud-based database and web-based application program interface, the same application shifts the approach from `point and click' to `touch and share', where results can be selected, annotated and discussed collaboratively. Furthermore, in the crystallographic application, given a suitable crystallization plate, beamline and robotic end effector, the resulting informationmore » can be used to close the loop between screening and X-ray analysis, allowing a direct and efficient `screen to beam' approach. The application is not limited to the area of crystallization screening; `touch and share' can be used by any information-rich scientific analysis and geographically distributed collaboration.« less
Observation of finite-wavelength screening in high-energy-density matter
Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; ...
2015-04-23
A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressedmore » plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.« less
Bruno, Andrew E.; Soares, Alexei S.; Owen, Robin L.; ...
2016-11-11
Haptic interfaces have become common in consumer electronics. They enable easy interaction and information entry without the use of a mouse or keyboard. Our work illustrates the application of a haptic interface to crystallization screening in order to provide a natural means for visualizing and selecting results. By linking this to a cloud-based database and web-based application program interface, the same application shifts the approach from `point and click' to `touch and share', where results can be selected, annotated and discussed collaboratively. Furthermore, in the crystallographic application, given a suitable crystallization plate, beamline and robotic end effector, the resulting informationmore » can be used to close the loop between screening and X-ray analysis, allowing a direct and efficient `screen to beam' approach. The application is not limited to the area of crystallization screening; `touch and share' can be used by any information-rich scientific analysis and geographically distributed collaboration.« less
NASA Technical Reports Server (NTRS)
Xi, B.; Minnis, P.
2006-01-01
Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of cloud fraction and radiative forcing between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layered low (0-3 km), middle (3-6 km), and high clouds (more than 6 km) using ARM SCG ground-based paired lidar-radar measurements. Shortwave (SW) and longwave (LW) fluxes are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties of approximately 10 Wm(exp -2). The annual averages of total, and single-layered low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Both total and low cloud amounts peak during January and February and reach a minimum during July and August, high clouds occur more frequently than other types of clouds with a peak in summer. The average annual downwelling surface SW fluxes for total and low clouds (151 and 138 Wm(exp-2), respectively) are less than those under middle and high clouds (188 and 201 Wm(exp -2), respectively), but the downwelling LW fluxes (349 and 356 Wm(exp -2)) underneath total and low clouds are greater than those from middle and high clouds (337 and 333 Wm(exp -2)). Low clouds produce the largest LW warming (55 Wm(exp -2) and SW cooling (-91 Wm(exp -2)) effects with maximum and minimum absolute values in spring and summer, respectively. High clouds have the smallest LW warming (17 Wm(exp -2)) and SW cooling (-37 Wm(exp -2)) effects at the surface. All-sky SW CRF decreases and LW CRF increases with increasing cloud fraction with mean slopes of -0.984 and 0.616 Wm(exp -2)%(exp -1), respectively. Over the entire diurnal cycle, clouds deplete the amount of surface insolation more than they add to the downwelling LW flux. The calculated CRFs do not appear to be significantly affected by uncertainties in data sampling and clear-sky screening. Traditionally, cloud radiative forcing includes, not only the radiative impact of the hydrometeors, but also the changes in the environment. Taken together over the ARM SCF, changes in humidity and surface albedo between clear and cloudy conditions offset approximately 20% of the NET radiative forcing caused by the cloud hydrometeors alone. Variations in water vapor, on average, account for 10% and 83% of the SW and LW CRFs, respectively, in total cloud cover conditions. The error analysis further reveals that the cloud hydrometeors dominate the SW CRF, while water vapor changes are most important for LW flux changes in cloudy skies. Similar studies over other locales are encouraged where water and surface albedo changes from clear to cloudy conditions may be much different than observed over the ARM SCF.
NASA Astrophysics Data System (ADS)
Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.
2018-03-01
The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.
Papier-mach(in)e: Thinking with "Sticky" Paper in the Cloud
ERIC Educational Resources Information Center
Enriquez-Gibson, Judith
2015-01-01
There is nothing less about paper and its use when it comes to academic study as we experience increasingly converging media spaces and functionalities of online applications within the screens of our laptops, mobile phones and tablet devices. The paper persists, and the paperless office, classroom and pedagogy become nothing but pure rhetoric.…
Reading "Sky" and Seeing a Cloud: On the Relevance of Events for Perceptual Simulation
ERIC Educational Resources Information Center
Ostarek, Markus; Vigliocco, Gabriella
2017-01-01
Previous research has shown that processing words with an up/down association (e.g., bird, foot) can influence the subsequent identification of visual targets in congruent location (at the top/bottom of the screen). However, as facilitation and interference were found under similar conditions, the nature of the underlying mechanisms remained…
Relevance of Kondo physics for the temperature dependence of the bulk modulus in plutonium
Janoschek, Marc; Lander, Gerry; Lawrence, Jon M.; ...
2017-01-10
The recent PNAS paper by Migliori et al. (1) attempts to explain the unusually strong temperature dependence of the bulk modulus of fcc plutonium (δ-Pu) by use of the disordered local moment (DLM) model. It is our opinion that this approach does not correctly incorporate the dynamic magnetism of δ-Pu. We provide the following note as commentary.
Atomic-Scale Study of Plastic-Yield Criterion in Nanocrystalline Cu at High Strain Rates
2010-02-01
vol. 53, pp. 3193– 3205. 25. E. Moshe, S. Eliezer, E. Dekel , A. Ludmirsky, Z. Henis, M. Werdiger, I.B. Goldberg, N. Eliaz, and D. Eliezer: J. Appl...Kondo, and M. Yoshida: J. Appl. Phys., 2001, vol. 89, pp. 3520–22. 29. E. Moshe, S. Eliezer, E. Dekel , Z. Henis, A. Ludmirsky, I.B. Goldberg, and D
ONR Far East Scientific Bulletin, Volume 7, Number 4, October-December 1982,
1982-12-01
transition metal compounds (2), - ESR and relaxation (3), - rare earth and actinides (3), - magnetics and superconductivity (3), - transition metal...34Itinerant Electron Magnetism ," by T. Moriya, - "Organic Superconductivity ," by D. Jerome, and - "Recent Developments in Solid Earth Sciences," by...compounds, low dimension systems, random systems, surface magnetism , magnetism and superconductivity , Kondo problem, diamagnetism and nuclear
Scalable Spin-Qubit Circuits with Quantum Dots
2006-12-31
Kondo entanglement” Phys. Rev. B 75, 035332 (2007). 14. W. A. Coish, Vitaly N . Golovach, J. Carlos Egues, Daniel Loss, “Measurement, control, and...Spin-orbit interaction in symmetric wells and cycloidal orbits without magnetic fields”, cond-mat/0607218. 16. Mircea Trif, Vitaly N . Golovach, Daniel...195-199 (2006); Supplementary Information. 22. Vitaly N . Golovach, Massoud Borhani, Daniel Loss, “Electric Dipole Induced Spin Resonance in Quantum
Tsuda, T; Mino, Y; Yamamoto, E; Matsuoka, H; Babazono, A; Shigemi, J; Miyai, M
1997-07-01
Kondo's "Incidence of Minamata Disease in Communities along the Agano River, Niigata, Japan (Jap. J. Hyg. 51:599-611;1996)" is critically reviewed. The data of the article were obtained from most of the residents living in the Agano river villages where Minamata disease was discovered in June, 1965. However, sampling proportions were much different between in the population base and in the cases. The method of identification of cases from the data and the reason for the difference were not clearly demonstrated. The citations of reference articles are insufficient despite the fact that other epidemiologic studies on methyl-mercury poisoning have been reported not only in Japan, but also around the world. His "analysis of the recognized patients" is erroneous. Both the sampling scheme of information of hair mercury and the modeling of the analysis are based on Kondo's arbitrary interpretation, not on epidemiologic theory. His "analysis of the rejected applicants" is also erroneous. His calculations of the attributable proportion are incorrect and self-induced in both the assignments of data and analysis of data. Kondo has failed to study the epidemiologic theories in light of changes in the field. Therefore, his article is lacking in epidemiologic theory, a logical base and scientific inference. In Japan, epidemiologic methodology has rarely been used in studies on Minamata Disease in either Kumamoto and Niigata. The government has used neurologically specific diagnosis based on combinations of symptoms to judge the causality between each of symptoms and methyl-mercury poisoning. Epidemiologic data obtained in Minamata, Kumamoto in 1971 indicate that the criteria set by the government in 1977 have produced much more false-negative patients than false-positive patients. As a result, a huge number of symptomatic patients, including those with peripheral neuropathy or with constriction of the visual field, did not receive any help or compensation until 1995. The authors emphasize that the causal relationship between each symptom and methyl-mercury exposure should be reevaluated epidemiologically in Japan.
Metal spintronics: Tunneling spectroscopy in junctions with magnetic and superconducting electrodes
NASA Astrophysics Data System (ADS)
Yang, Hyunsoo
Recent advances in generating, manipulating and detecting spin-polarized electrons and their electrical current make possible entirely new classes of spin-based sensor, logic and storage devices. An important such device is the magnetic tunnel junction (MTJ) which has been under intensive study in recent years: important applications include nonvolatile memory cells for high performance magnetic random access memory (MRAMs), and magnetic field sensors for high density hard disk drive read heads. Many aspects of the tunneling magnetoresistance (TMR) phenomenon are poorly understood although it is clear that the fundamental origin of TMR is the spin-polarization of the tunneling current. Thus, the measurement of the magnitude and sign of the tunneling spin polarization (TSP) is very important to help the further understanding of TMR. Recently, an extremely high TMR value, of up to 350% at room temperature, has been reported in practical MTJ devices. These MTJs are fabricated with highly oriented crystalline MgO(100) tunnel barriers by straightforward magnetron sputter deposition at room temperature. In parallel with this observation, we report extremely high TSP values exceeding 90% from CoFe/MgO tunnel spin injectors. These TSP values rival the highest polarization values previously reported using exotic half-metallic oxide ferromagnets. The spin polarization of electrons extracted from ferromagnetic films can be probed by a variety of techniques. Amongst these techniques, STS is perhaps the most relevant with respect to TMR but until now all measurements have been made with Al superconducting films which have low superconducting transition temperatures (Tc) so that the measurements must be made at temperatures below 400mK. We demonstrate the use of superconducting electrodes formed from NbN which has a much higher Tc (˜16K) than Al. The use of NbN allows measurements of TSP at higher temperatures above 1K. We have observed the phenomenon of Kondo-assisted tunneling in planar magnetic tunnel junctions. We demonstrate not only an increased conductance at low bias but also show that the tunneling magnetoresistance is quenched in the Kondo regime. The Kondo effect may be a useful means of detecting and possibly manipulating the spins of individual electrons in nanodots.
NASA Astrophysics Data System (ADS)
Minnett, P. J.; Liu, Y.; Kilpatrick, K. A.
2016-12-01
Sea-surface temperature (SST) measurements by satellites in the northern hemisphere high latitudes confront several difficulties. Year-round prevalent clouds, effects near ice edges, and the relative small difference between SST and low-level cloud temperatures lead to a significant loss of infrared observations regardless of the more frequent polar satellite overpasses. Recent research (Liu and Minnett, 2016) identified sampling issues in the Level 3 NASA MODIS SST products when 4km observations are aggregated into global grids at different time and space scales, particularly in the Arctic, where a binary decision cloud mask designed for global data is often overly conservative at high latitudes and results in many gaps and missing data. This under sampling of some Arctic regions results in a warm bias in Level 3 products, likely a result of warmer surface temperature, more distant from the ice edge, being identified more frequently as cloud free. Here we present an improved method for cloud detection in the Arctic using a majority vote from an ensemble of four classifiers trained based on an Alternative Decision Tree (ADT) algorithm (Freund and Mason 1999, Pfahringer et. al. 2001). This new cloud classifier increases sampling of clear pixel by 50% in several regions and generally produces cooler monthly average SST fields in the ice-free Arctic, while still retaining the same error characteristics at 1km resolution relative to in situ observations. SST time series of 12 years of MODIS (Aqua and Terra) and more recently VIIRS sensors are compared and the improvements in errors and uncertainties resulting from better cloud screening for Level 3 gridded products are assessed and summarized.
NASA Astrophysics Data System (ADS)
Petrucci, B.; Huc, M.; Feuvrier, T.; Ruffel, C.; Hagolle, O.; Lonjou, V.; Desjardins, C.
2015-10-01
For the production of Level2A products during Sentinel-2 commissioning in the Technical Expertise Center Sentinel-2 in CNES, CESBIO proposed to adapt the Venus Level-2 , taking advantage of the similarities between the two missions: image acquisition at a high frequency (2 days for Venus, 5 days with the two Sentinel-2), high resolution (5m for Venus, 10, 20 and 60m for Sentinel-2), images acquisition under constant viewing conditions. The Multi-Mission Atmospheric Correction and Cloud Screening (MACCS) tool was born: based on CNES Orfeo Toolbox Library, Venμs processor which was already able to process Formosat2 and VENμS data, was adapted to process Sentinel-2 and Landsat5-7 data; since then, a great effort has been made reviewing MACCS software architecture in order to ease the add-on of new missions that have also the peculiarity of acquiring images at high resolution, high revisit and under constant viewing angles, such as Spot4/Take5 and Landsat8. The recursive and multi-temporal algorithm is implemented in a core that is the same for all the sensors and that combines several processing steps: estimation of cloud cover, cloud shadow, water, snow and shadows masks, of water vapor content, aerosol optical thickness, atmospheric correction. This core is accessed via a number of plug-ins where the specificity of the sensor and of the user project are taken into account: products format, algorithmic processing chaining and parameters. After a presentation of MACCS architecture and functionalities, the paper will give an overview of the production facilities integrating MACCS and the associated specificities: the interest for this tool has grown worldwide and MACCS will be used for extensive production within the THEIA land data center and Agri-S2 project. Finally the paper will zoom on the use of MACCS during Sentinel-2 In Orbit Test phase showing the first Level-2A products.
An Effective Algorithm Research of Scenario Voxelization Organization and Occlusion Culling
NASA Astrophysics Data System (ADS)
Lai, Guangling; Ding, Lu; Qin, Zhiyuan; Tong, Xiaochong
2016-11-01
Compared with the traditional triangulation approaches, the voxelized point cloud data can reduce the sensitivity of scenario and complexity of calculation. While on the base of the point cloud data, implementation scenario organization could be accomplishment by subtle voxel, but it will add more memory consumption. Therefore, an effective voxel representation method is very necessary. At present, the specific study of voxel visualization algorithm is less. This paper improved the ray tracing algorithm by the characteristics of voxel configuration. Firstly, according to the scope of point cloud data, determined the scope of the pixels on the screen. Then, calculated the light vector came from each pixel. Lastly, used the rules of voxel configuration to calculate all the voxel penetrated through by light. The voxels closest to viewpoint were named visible ones, the rest were all obscured ones. This experimental showed that the method could realize voxelization organization and voxel occlusion culling of implementation scenario efficiently, and increased the render efficiency.
The Potential of Clear Sky Carbon Dioxide Satellite Retrievals
NASA Astrophysics Data System (ADS)
Nelson, R.; O'Dell, C.
2013-12-01
It has been shown that neglecting scattering and absorption by aerosols and thin clouds can lead to significant errors in retrievals of the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from space-based measurements of near-infrared reflected sunlight. These clear sky retrievals, which assume no aerosol effects, are desirable because of their high computational efficiency relative to common full physics retrievals. Further, clear sky retrievals may be able to make higher quality measurements relative to the full physics approach because they may introduce fewer potential biases under certain circumstances. These biases can appear when we try to retrieve clouds and aerosols in the full physics methods when there are none actually present. Recent work has shown that intelligent pre-screening can remove soundings with large light-path modifications over ocean surfaces. In this work, we test the hypothesis that intelligent pre-screening of soundings may be successfully used over land surfaces as well as oceans, which would allow clear sky retrievals to be applicable over all surfaces. We also test the hypothesis that major light path modification effects associated with aerosols can be identified based on spectral tests at 0.76, 1.6, and 2 microns. This presentation summarizes our study of both simulated data and satellite observations from the GOSAT instrument in order to assess the effectiveness of using a clear sky retrieval algorithm coupled with intelligent pre-screening to accurately measure carbon dioxide from space-borne instruments.
Forms of the Materials Shared between a Teacher and a Pupil
ERIC Educational Resources Information Center
Klubal, Libor; Kostolányová, Katerina
2016-01-01
Methods of using ICT is hereby amended. We merge from the original model of work on one computer to the model of cloud services and mobile touch screen devices use. Way of searching for and delivering of information between a pupil and a teacher is closely related with this matter as well. This work detects common and preferred procedures of…
WE-FG-201-04: Cloud-Based Collaboration for Radiotherapy Clinical Trials, Research and Training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palta, J.
Many low- and middle-income countries lack the resources and services to manage cancer, from screening and diagnosis to radiation therapy planning, treatment and quality assurance. The challenges in upgrading or introducing the needed services are enormous, and include severe shortages in equipment and trained staff. In this symposium, we will describe examples of technology and scientific research that have the potential to impact all these areas. These include: (1) the development of high-quality/low-cost colposcopes for cervical cancer screening, (2) the application of automated radiotherapy treatment planning to reduce staffing shortages, (3) the development of a novel radiotherapy treatment unit, andmore » (4) utilizing a cloud-based infrastructure to facilitate collaboration and QA. Learning Objectives: Understand some of the issues in cancer care in low- resource environments, including shortages in staff and equipment, and inadequate physical infrastructure for advanced radiotherapy. Understand the challenges in developing and deploying diagnostic and treatment devices and services for low-resource environments. Understand some of the emerging technological solutions for cancer management in LMICs. NCI; L. Court, NIH, Varian, Elekta; I. Feain, Ilana Feain is founder and CTO of Nano-X Pty Ltd.« less
The Use of Computers as a Design Tool.
1980-01-01
design programs for the technical management of complex fighter development projects. AIAA Paper No. 70-364, March 1970 22. J. Kondo: Application of...the scope and effectiveness of their use are sometimes considered suspect, especially by managers and decision makers who must depend, to some...uncertainty and the fact that the measured and calculated data cannot be easily combined often leave the project manager or designer SPIRAL PORTION
2014-01-01
1,2 1 Center for Nanophysics & Advanced Materials , University of Maryland, College Park, Maryland 20742, USA 2 Department of physics, University of...Maryland, College Park, Maryland 20742, USA 3 Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 4...Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA 5 Department of Materials Science & Engineering
Theoretical Studies of Magnetic Systems. Final Report, August 1, 1994 - November 30, 1997
DOE R&D Accomplishments Database
Gor`kov, L. P.; Novotny, M. A.; Schrieffer, J. R.
1997-01-01
During the grant period the authors have studied five areas of research: (1) low dimensional ferrimagnets; (2) lattice effects in the mixed valence problem; (3) spin compensation in the one dimensional Kondo lattice; (4) the interaction of quasi particles in short coherence length superconductors; and (5) novel effects in angle resolved photoemission spectra from nearly antiferromagnetic materials. Progress in each area is summarized.
NASA Astrophysics Data System (ADS)
Allerdt, Andrew; Feiguin, A. E.; Martins, G. B.
2017-07-01
We calculate exact zero-temperature real-space properties of a substitutional magnetic impurity coupled to the edge of a zigzag silicenelike nanoribbon. Using a Lanczos transformation [A. Allerdt et al., Phys. Rev. B 91, 085101 (2015), 10.1103/PhysRevB.91.085101] and the density-matrix renormalization-group method, we obtain a realistic description of stanene and germanene that includes the bulk and the edges as boundary one-dimensional helical metallic states. Our results for substitutional impurities indicate that the development of a Kondo state and the structure of the spin correlations between the impurity and the electron spins in the metallic edge state depend considerably on the location of the impurity. More specifically, our real-space resolution allows us to conclude that there is a sharp distinction between the impurity being located at a crest or a trough site at the zigzag edge. We also observe, as expected, that the spin correlations are anisotropic due to an emerging Dzyaloshinskii-Moriya interaction with the conduction electrons and that the edges scatter from the impurity and "snake" or circle around it. Our estimates for the Kondo temperature indicate that there is a very weak enhancement due to the presence of spin-orbit coupling.
Spin-orbit interaction in Kondo regime of δ-doped LaTiO3/SrTiO3 interface
NASA Astrophysics Data System (ADS)
Das, Shubhankar; Rastogi, A.; Hossain, Z.; Budhani, R. C.
2014-03-01
The formation of a 2-dimensional electron gas (2DEG) at the interface of LaTiO3/SrTiO3 (LTO/STO) has evoked a keen interest in the condensed matter physics community due to the observation of many collective electronic phenomena in the 2DEG. In order to address some puzzling issues related to the mechanism of 2DEG formation at the LTO/STO interface and to identify the dominant scattering process that control the nature of Magnetoresistance (MR) in this system, we have used a novel approach of delta (δ) doping with iso-structural perovskite LaCrO3 at the interface, which dramatically alters the properties of 2DEG. We have observed a reduction in the sheet carrier density with doping thickness, prominence of the resistivity upturn at low temperatures seen in LTO/STO 2DEG, shift of resistivity minimum towards higher temperature, enhancement of weak anti-localization (WAL) below 10K and strong anisotropic magnetoresistance. The observed in-plane MR is attributed to Kondo-type scattering by localized Ti3+ moments which gets normalized by spin-orbit interaction at T < 10K. With increasing the Cr3+ ions concentration at the interface, WAL effect becomes more prominent below 10K.
Li, Yufan; Ma, Qinli; Huang, S. X.; Chien, C. L.
2018-01-01
The advent of topological insulators (TIs), a novel class of materials that harbor a metallic spin-chiral surface state coexisting with band-insulating bulk, opens up new possibilities for spintronics. One promising route is current-induced switching of an adjacent magnetic layer via spin-orbit torque (SOT), arising from the large spin-orbit coupling intrinsically possessed by TIs. The Kondo insulator SmB6 has been recently proposed to be a strongly correlated TI, supported by the observation of a metallic surface state in bulk SmB6, as evidenced by the thickness independence of the low-temperature resistance plateau. We report the synthesis of epitaxial (001) SmB6/Si thin films and a systematic thickness-dependent electrical transport study. Although the low-temperature resistance plateau is observed for all films from 50 to 500 nm in thickness, the resistance is distinctively thickness-dependent and does not support the notion of surface conduction and interior insulation. On the other hand, we demonstrate that SmB6 can generate a large SOT to switch an adjacent ferromagnetic layer, even at room temperature. The effective SOT generated from SmB6 is comparable to that from β-W, one of the strongest SOT materials. PMID:29376125
NASA Astrophysics Data System (ADS)
Mukuda, Hidekazu; Matsumura, Takashi; Maki, Shota; Yashima, Mitsuharu; Kitaoka, Yoshio; Miyake, Kazumasa; Murakami, Hironaru; Giraldo-Gallo, Paula; Geball, Theodore H.; Fisher, Ian R.
2018-02-01
We report the results of a 125Te NMR study of single crystalline Pb1-xTlxTe (x = 0, 0.35, 1.0%) as a window on the novel electronic states associated with the thallium impurities in PbTe. The Knight shift is enhanced as x increases, corresponding to an increase in the average density of states (DOS) coupled to a strong spatial variation in the local DOS surrounding each Tl dopant. Remarkably, for the superconducting composition (x = 1.0%), the 125Te nuclear spin relaxation rate (1/T1T) for Te ions that are close to the Tl dopants is unexpectedly enhanced in the normal state below a characteristic temperature of ˜10 K, below which the resistivity experiences an upturn. Such a simultaneous upturn in both the resistivity and (1/T1T) was not suppressed in the high magnetic field. We suggest that these observations are consistently accounted for by dynamical charge fluctuations in the absence of paramagnetism, which is anticipated by the charge Kondo scenario associated with the Tl dopants. In contrast, such anomalies were not detected in the non-superconducting samples (x = 0 and 0.35%), suggesting a connection between dynamical valence fluctuations and the occurrence of superconductivity in Pb1-xTlxTe.
Bulk Rotational Symmetry Breaking in Kondo Insulator SmB 6
Xiang, Z.; Lawson, B.; Asaba, T.; ...
2017-09-25
The Kondo insulator samarium hexaboride (SmB 6) has been intensely studied in recent years as a potential candidate of a strongly correlated topological insulator. One of the most exciting phenomena observed in SmB 6 is the clear quantum oscillations appearing in magnetic torque at a low temperature despite the insulating behavior in resistance. These quantum oscillations show multiple frequencies and varied effective masses. The origin of quantum oscillation is, however, still under debate with evidence of both two-dimensional Fermi surfaces and three-dimensional Fermi surfaces. Here, we carry out angle-resolved torque magnetometry measurements in a magnetic field up to 45 Tmore » and a temperature range down to 40 mK. With the magnetic field rotated in the (010) plane, the quantum oscillation frequency of the strongest oscillation branch shows a fourfold rotational symmetry. However, in the angular dependence of the amplitude of the same branch, this fourfold symmetry is broken and, instead, a twofold symmetry shows up, which is consistent with the prediction of a two-dimensional Lifshitz-Kosevich model. No deviation of Lifshitz-Kosevich behavior is observed down to 40 mK. Our results suggest the existence of multiple light-mass surface states in SmB 6, with their mobility significantly depending on the surface disorder level.« less
Effect of Zn-site substitution with Ga on non-Fermi liquid behavior in PrIr2Zn20
NASA Astrophysics Data System (ADS)
Yamada, R. J.; Onimaru, T.; Uenishi, K.; Yamane, Y.; Wakiya, K.; Matsumoto, K. T.; Umeo, K.; Takabatake, T.
2018-05-01
PrIr2Zn20 exhibits an antiferroquadrupolar (AFQ) order at TQ = 0.11 K, above which temperature the electrical resistivity ρ(T) shows an upward curvature and the magnetic specific heat divided by temperature Cm/T follows - lnT dependence. The non-Fermi Liquid (NFL) behaviors have suggested formation of a quadrupole Kondo lattice. In the present work, we have studied the effect of Ga substitution for Zn on the NFL behavior by the measurements of the specific heat C, the magnetic susceptibility χ, and ρ of PrIr2Zn20-xGax (0 ≤ x ≤ 0.25). With increasing x, the characteristic temperature T0 defined as the temperature where the magnetic entropy Sm reaches (3/4)Rln2 is increased by a factor of 3.5. Similarly, another characteristic temperature TR below which ρ(T) starts decreasing with the upward curvature increases with x by a factor of 1.2. The increments of both T0 and TR may be attributed to the possible split of the Γ3 doublet by symmetry lowering of the Pr sites. Otherwise, the quadrupole Kondo lattice would be stabilized by the enhanced c-f hybridization due to the increment of the 4p electronic density and/or the chemical pressure effect.
Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions.
Bayat, Abolfazl
2017-01-20
The emergence of a diverging length scale in many-body systems at a quantum phase transition implies that total entanglement has to reach its maximum there. In order to fully characterize this, one has to consider multipartite entanglement as, for instance, bipartite entanglement between individual particles fails to signal this effect. However, quantification of multipartite entanglement is very hard, and detecting it may not be possible due to the lack of accessibility to all individual particles. For these reasons it will be more sensible to partition the system into relevant subsystems, each containing a few to many spins, and study entanglement between those constituents as a coarse-grain picture of multipartite entanglement between individual particles. In impurity systems, famously exemplified by two-impurity and two-channel Kondo models, it is natural to divide the system into three parts, namely, impurities and the left and right bulks. By exploiting two tripartite entanglement measures, based on negativity, we show that at impurity quantum phase transitions the tripartite entanglement diverges and shows scaling behavior. While the critical exponents are different for each tripartite entanglement measure, they both provide very similar critical exponents for the two-impurity and the two-channel Kondo models, suggesting that they belong to the same universality class.
Wakeham, N.; Rosa, P. F. S.; Wang, Y. Q.; ...
2016-07-12
We have investigated the low temperature conducting state of two Kondo insulators, SmB 6 and Ce 3Bi 4Pt 3, which have been theoretically predicted to host topological surface states. Through comparison of the speci c heat of as-grown and powdered single crystals of SmB 6, we show that the residual term that is linear in temperature is not dominated by any surface state contribution, but rather is a bulk property. In Ce 3Bi 4Pt 3, we find that the Hall coefficient is independent of sample thickness, which indicates that conduction at low temperatures is dominated by the bulk of themore » sample, and not by a surface state. The low temperature resistivity of Ce 3Bi 4Pt 3 is found to monotonically decrease with low concentrations of disorder introduced through ion-irradiation. This is in contrast to SmB 6, which is again indicative of the contrasting origins of the low temperature conduction. In SmB 6, we also show that the effect of low concentrations of irradiation damage of the surface with Fe + ions is qualitatively consistent with damage with non-magnetic ions.« less
Impurity quadrupole Kondo ground state in a dilute Pr system Y1-xPrxIr2Zn20
NASA Astrophysics Data System (ADS)
Yamane, Yu; Onimaru, Takahiro; Uenishi, Kazuto; Wakiya, Kazuhei; Matsumoto, Keisuke T.; Umeo, Kazunori; Takabatake, Toshiro
2018-05-01
The electrical resistivity ρ and specific heat C of a dilute Pr system Y1-xPrxIr2Zn20 for 0 ≤ x ≤ 0.44 were measured to study the phenomena arising from active quadrupoles of the Pr3+ ion with 4f2 configuration. On cooling, ρ's of all samples monotonically decrease, while the residual resistivity ratio ρ(300 K)/ρ(3 K) drastically decreases with x. In the whole range x ≤ 0.44, the magnetic contribution to the specific heat divided by temperature Cm/T shows a broad maximum at around 10 K, which can be reproduced by a two-level model with a first-excited triplet separated by 30 K from a ground state doublet. This indicates that the crystalline electric field ground state of the Pr ions remains in the Γ3 doublet for the cubic Td point group. On cooling, the Cm/T data for x = 0.085 and 0.44 approach constant values at T<0.3 K as expected from the random two-level model. By contrast, Cm/T for x = 0.044 increases continuously down to 0.08 K, suggesting a non-Fermi liquid state due to the impurity quadrupole Kondo effect.
NASA Astrophysics Data System (ADS)
Bossé, G.; Pan, LiDong; Li, Yize S.; Greene, L. H.; Eckstein, J.; Armitage, N. P.
2016-02-01
We present THz range optical conductivity data of a thin film of the near quantum critical heavy-fermion compound CeFe2Ge2 . Our complex conductivity measurements find a deviation from conventional Drude-like transport in a temperature range previously reported to exhibit unconventional behavior. We calculate the frequency-dependent effective mass and scattering rate using an extended Drude model analysis. We find the inelastic scattering rate can be described by a temperature-dependent power law ωn (T ), where n (T ) approaches ˜1.0 ±0.2 at 1.5 K. This is compared to the ρ ˜T1.5 behavior claimed in dc resistivity data and the ρ ˜T2 expected from Fermi-liquid theory. In addition to a low-temperature mass renormalization, we find an anomalous mass renormalization that persists to high temperature. We attribute this to a Hund's coupling in the Fe states in a manner similar to that recently proposed in the ferropnictides. CeFe2Ge2 appears to be a very interesting system where one may study the interplay between the usual 4 f lattice Kondo effect and this Hund's enhanced Kondo effect in the 3 d states.
Kondo, T; Gullan, P J; Cook, L G
2016-05-17
The eriococcid genus Capulinia Signoret currently comprises four Neotropical species (the type species C. sallei Signoret, C. crateraformis Hempel, C. jaboticabae Ihering and an undescribed species recognised in the literature) and one species from New Zealand (C. orbiculata Hoy). All species feed on plants in the family Myrtaceae and the undescribed species is a pest of guava, Psidium guajava, in Venezuela and Colombia. Here we describe the pest species based on the adult female and first-instar nymph and name it Capulinia linarosae Kondo & Gullan sp. n. We provide a summary of published information on the biology and pest status of C. linarosae by translating the Spanish literature. We also describe the adult female and first-instar nymph of a new Argentine species that we name as C. luma Kondo & Gullan sp. n. after its host Luma apiculata. In addition, we redescribe the adult female of C. jaboticabae and include notes on C. crateraformis, C. orbiculata and C. sallei. We provide a revised generic diagnosis and keys to all Capulinia species based on adult females and, where available, first-instar nymphs, as well as a revised key to South American eriococcid genera. Phylogenetic analyses of 18S rDNA place Capulinia within the "Gondwanan" clade of eriococcids, mostly likely within the Myrtaceae-feeding group.
NASA Technical Reports Server (NTRS)
Choi, S.; Joiner, J.; Choi, Y.; Duncan, B. N.; Bucsela, E.
2014-01-01
We derive free-tropospheric NO2 volume mixing ratios (VMRs) and stratospheric column amounts of NO2 by applying a cloud slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top-of-the-atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. Estimates of stratospheric column NO2 are obtained by extrapolating the linear fits to the tropopause. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud slicing data indicates signatures of uplifted and transported anthropogenic NO2 in the middle troposphere as well as lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the Global Modeling Initiative (GMI) for cloudy conditions (cloud optical thicknesses > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx. Stratospheric column NO2 obtained from cloud slicing agrees well with other independently-generated estimates, providing further confidence in the free-tropospheric results.
Biological aerosol particles in the atmosphere and their impact on clouds (BIOCLOUDS)
NASA Astrophysics Data System (ADS)
Amato, Pierre; Attard, Eleonore; Deguillaume, Laurent; Delort, Anne-Marie; Flossmann, Andrea; Good, Nicholas; Joly, Muriel; Koop, Thomas; Möhler, Ottmar; Monier, Marie; Morris, Cindy; Oehm, Caroline; Pöschl, Ulrich; Sancelme, Martine
2015-04-01
The project BIOCLOUDS aimed at investigating and quantifying the role of bioaerosols in tropospheric clouds. We focused on the studies on microorganisms, mainly bacteria. To reach our objective we (1) isolated and identified INA bacterial strains in cloud waters, (2) studied in more details IN properties of bacteria isolated from cloud waters in laboratories and cloud chamber, (3) used new data as input to cloud models. 1. Isolation and Identification of INA bacterial strains in cloud waters Cloud water samples were collected at the puy de Dôme station under sterile conditions, microorganisms were cultured on agar plates and further identified by DNA sequencing coding for16SrRNA. 257 bacterial strains isolated from 25 cloud events were screened and 44 isolates were selected as they belonged to Pseudomonas, Xanthomonas and Erwinia genera which are potential INA candidates. Using the classical "Droplet Freezing method" as ice nucleation test, 7 strains were shown INA+. Their cumulative IN frequency profiles were established and showed that some of them are very efficient, for example the strain Pseudomonas syringae 13b74 started to nucleate a t-3°C and 4% of the cells were active at- 5°C. 2. Further laboratory investigations of IN properties of cloud bacterial strains All the experiments presented in this section were carried out with 3 Pseudomonas syringae strains. We tested the influence of O3, NO, UV and pH, which are atmospheric markers of anthropogenic activity, on the IN activity of the Pseudomonas strains. It was clearly shown that pH had a main influence, acidic pHs decreased the IN activity of the strains. This suggests a negative impact of human emissions on the natural capacity of bacteria to precipitate with rain. The 3 Pseudomas strains were sprayed in the AIDA cloud chamber. The survival of these strains with time before cloud formation was measured and will be used in the future to parameterize models for bacterial transport. After cloud formation, IN activity of bacteria was followed with time, our results suggest that bacteria are precipitated in the cloud chamber as a result of their IN activity. Also the coating of bacteria with sulfates decreased their IN activity, pointing out the negative potential anthropogenic influence on IN bacteria activity. 3. Modeling study to see if any impact of bacteria on cloud development and/or precipitation is realistic. Modeling studies were performed with DESCAM (Detailed SCAvenging Model) using as an input the new data from the different campaigns in AIDA. M. VAÏTILINGOM et al. Atmospheric Environment, 2012, 56, 88-100. E. ATTARD et al. Atmospheric Chemistry and Physics, 2012, 12, 10667-10677. M. JOLY et al. Atmospheric Environment, 2013, 70, 392-400.
NASA Astrophysics Data System (ADS)
Oishi, Yu; Ishida, Haruma; Nakajima, Takashi Y.; Nakamura, Ryosuke; Matsunaga, Tsuneo
2018-05-01
The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO2 and CH4 concentrations. GOSAT is equipped with two sensors: the Thermal And Near infrared Sensor for carbon Observations (TANSO)-Fourier transform spectrometer (FTS) and TANSO-Cloud and Aerosol Imager (CAI). The presence of clouds in the instantaneous field of view of the FTS leads to incorrect estimates of the concentrations. Thus, the FTS data suspected to have cloud contamination must be identified by a CAI cloud discrimination algorithm and rejected. Conversely, overestimating clouds reduces the amount of FTS data that can be used to estimate greenhouse gas concentrations. This is a serious problem in tropical rainforest regions, such as the Amazon, where the amount of useable FTS data is small because of cloud cover. Preparations are continuing for the launch of the GOSAT-2 in fiscal year 2018. To improve the accuracy of the estimates of greenhouse gases concentrations, we need to refine the existing CAI cloud discrimination algorithm: Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1). A new cloud discrimination algorithm using a support vector machine (CLAUDIA3) was developed and presented in another paper. Although the use of visual inspection of clouds as a standard for judging is not practical for screening a full satellite data set, it has the advantage of allowing for locally optimized thresholds, while CLAUDIA1 and -3 use common global thresholds. Thus, the accuracy of visual inspection is better than that of these algorithms in most regions, with the exception of snow- and ice-covered surfaces, where there is not enough spectral contrast to identify cloud. In other words, visual inspection results can be used as truth data for accuracy evaluation of CLAUDIA1 and -3. For this reason visual inspection can be used for the truth metric for the cloud discrimination verification exercise. In this study, we compared CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types, and evaluated the accuracy of CLAUDIA3-CAI by comparing both CLAUDIA1-CAI and CLAUDIA3-CAI with visual inspection (400 × 400 pixels) of the same CAI images in tropical rainforests. Comparative results between CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types indicated that CLAUDIA3-CAI had a tendency to identify bright surface and optically thin clouds. However, CLAUDIA3-CAI had a tendency to misjudge the edges of clouds compared with CLAUDIA1-CAI. The accuracy of CLAUDIA3-CAI was approximately 89.5 % in tropical rainforests, which is greater than that of CLAUDIA1-CAI (85.9 %) for the test cases presented here.
On-Board Cryospheric Change Detection By The Autonomous Sciencecraft Experiment
NASA Astrophysics Data System (ADS)
Doggett, T.; Greeley, R.; Castano, R.; Cichy, B.; Chien, S.; Davies, A.; Baker, V.; Dohm, J.; Ip, F.
2004-12-01
The Autonomous Sciencecraft Experiment (ASE) is operating on-board Earth Observing - 1 (EO-1) with the Hyperion hyper-spectral visible/near-IR spectrometer. ASE science activities include autonomous monitoring of cryopsheric changes, triggering the collection of additional data when change is detected and filtering of null data such as no change or cloud cover. This would have application to the study of cryospheres on Earth, Mars and the icy moons of the outer solar system. A cryosphere classification algorithm, in combination with a previously developed cloud algorithm [1] has been tested on-board ten times from March through August 2004. The cloud algorithm correctly screened out three scenes with total cloud cover, while the cryosphere algorithm detected alpine snow cover in the Rocky Mountains, lake thaw near Madison, Wisconsin, and the presence and subsequent break-up of sea ice in the Barrow Strait of the Canadian Arctic. Hyperion has 220 bands ranging from 400 to 2400 nm, with a spatial resolution of 30 m/pixel and a spectral resolution of 10 nm. Limited on-board memory and processing speed imposed the constraint that only partially processed Level 0.5 data with dark image subtraction and gain factors applied, but not full radiometric calibration. In addition, a maximum of 12 bands could be used for any stacked sequence of algorithms run for a scene on-board. The cryosphere algorithm was developed to classify snow, water, ice and land, using six Hyperion bands at 427, 559, 661, 864, 1245 and 1649 nm. Of these, only 427 nm does overlap with the cloud algorithm. The cloud algorithm was developed with Level 1 data, which introduces complications because of the incomplete calibration of SWIR in Level 0.5 data, including a high level of noise in the 1377 nm band used by the cloud algorithm. Development of a more robust cryosphere classifier, including cloud classification specifically adapted to Level 0.5, is in progress for deployment on EO-1 as part of continued ASE operations. [1] Griffin, M.K. et al., Cloud Cover Detection Algorithm For EO-1 Hyperion Imagery, SPIE 17, 2003.
An Analysis of Two Thunderstorms Producing Five Negative Sprites on 12 September 2014
NASA Astrophysics Data System (ADS)
Boggs, L.; Liu, N.; Splitt, M. E.; Lazarus, S. M.; Cummer, S. A.; Rassoul, H.
2015-12-01
We present a detailed analysis of the thunderstorms and the parent lightning discharge morphologies of five confirmed negative sprites taking place in two different thunderstorms. These two thunderstorms took place in east-central and south Florida on 12 September 2014. We utilized several lightning location networks, remote magnetic field measurements, dual polarization radar, and balloon borne soundings in our analysis. Each parent discharge was immediately preceded by intra-cloud (IC) discharges between the mid-level negative and upper positive charge regions. This either allowed a second upward negative leader to escape the upper positive charge region, or encouraged a downward negative leader to be initiated and connect with ground. The discharges found in this study support the findings of Lu et al., 2012 [JGR,117, D04212, 2012] that negative sprite-parent lightning consists primarily of hybrid intra-cloud negative cloud-to-ground (IC-NCG) and bolt-from-the-blue (BFB) lightning. Our work finds these unique discharges form in thunderstorms that have an excess of mid-level negative charge and weakened upper positive charge. Due to this charge structure, these unusual discharges transfer more charge to the ground than typical negative cloud-to-ground discharges. Our study suggests that the key difference separating bolt-from-the-blue and gigantic jet discharges is an asymmetric charge structure. This acts to bring the negative leader exiting the thundercloud closer to the lateral positive screening layer, encouraging the negative leader to turn towards ground. This investigation reveals IC discharges that involve multiple convective cells and come to ground as a negative CG discharge, a breed of hybrid IC-NCG discharges, also transfer more negative charge to ground than typical negative CG discharges and are able to initiate negative sprites. From this work, the charge structures mentioned above resulted from tall, intense convective cells with low CG flash rates with high wind shear in the mid to upper regions of the cloud. This acted to create a large reservoir of mid-level negative charge and create a general asymmetry to the charge structure. The wind shear in the upper regions also acted to weaken the upper positive charge by turbulent mixing with the upper negative screening charge layer.
SIMPLEX: Cloud-Enabled Pipeline for the Comprehensive Analysis of Exome Sequencing Data
Fischer, Maria; Snajder, Rene; Pabinger, Stephan; Dander, Andreas; Schossig, Anna; Zschocke, Johannes; Trajanoski, Zlatko; Stocker, Gernot
2012-01-01
In recent studies, exome sequencing has proven to be a successful screening tool for the identification of candidate genes causing rare genetic diseases. Although underlying targeted sequencing methods are well established, necessary data handling and focused, structured analysis still remain demanding tasks. Here, we present a cloud-enabled autonomous analysis pipeline, which comprises the complete exome analysis workflow. The pipeline combines several in-house developed and published applications to perform the following steps: (a) initial quality control, (b) intelligent data filtering and pre-processing, (c) sequence alignment to a reference genome, (d) SNP and DIP detection, (e) functional annotation of variants using different approaches, and (f) detailed report generation during various stages of the workflow. The pipeline connects the selected analysis steps, exposes all available parameters for customized usage, performs required data handling, and distributes computationally expensive tasks either on a dedicated high-performance computing infrastructure or on the Amazon cloud environment (EC2). The presented application has already been used in several research projects including studies to elucidate the role of rare genetic diseases. The pipeline is continuously tested and is publicly available under the GPL as a VirtualBox or Cloud image at http://simplex.i-med.ac.at; additional supplementary data is provided at http://www.icbi.at/exome. PMID:22870267
NASA Technical Reports Server (NTRS)
Omar, Ali H.; Liu, Z.; Tackett, J.; Vaughan, M.; Trepte, C.; Winker, D.; H. Yu,
2015-01-01
The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol, between 2006-2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on the morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National D'études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.
Global surface-based cloud observation for ISCCP
NASA Technical Reports Server (NTRS)
1994-01-01
Visual observations of cloud cover are hindered at night due to inadequate illumination of the clouds. This usually leads to an underestimation of the average cloud cover at night, especially for the amounts of middle and high clouds, in climatologies on surface observations. The diurnal cycles of cloud amounts, if based on all the surface observations, are therefore in error, but they can be obtained more accurately if the nighttime observations are screened to select those made under sufficient moonlight. Ten years of nighttime weather observations from the northern hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 degrees or from a partial moon at higher elevation, or twilight from the sun less than 9 degrees below the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. Cloud cover is greater at night than during the day over the open oceans far from the continents, particularly in summer. However, near noon maxima are still evident in the coastal regions, so that the global annual average oceanic cloud cover is still slightly greater during the day than at night, by 0.3%. Over land, where daytime maxima are still obtained but with reduced amplitude, average cloud cover is 3.3% greater during the daytime. The diurnal cycles of total cloud cover we obtain are compared with those of ISCCP for a few regions; they are generally in better agreement if the moonlight criterion is imposed on the surface observations. Using the moonlight criterion, we have analyzed ten years (1982-1991) of surface weather observations over land and ocean, worldwide, for total cloud cover and for the frequency of occurrence of clear sky, fog and precipitation The global average cloud cover (average of day and night) is about 2% higher if we impose the moonlight criterion than if we use all observations. The difference is greater in winter than in summer, because of the fewer hours of darkness in the summer. The amplitude of the annual cycle of total cloud cover over the Arctic Ocean and at the South Pole is diminished by a few percent when the moonlight criterion is imposed. The average cloud cover for 1982-1991 is found to be 55% for northern hemisphere land, 53% for southern hemisphere land, 66% for northern hemisphere ocean, and 70% for southern hemisphere ocean, giving a global average of 64%. The global average for daytime is 64.6% for nighttime 63.3%.
Huang, Ping-Tzan; Jong, Tai-Lang; Li, Chien-Ming; Chen, Wei-Ling; Lin, Chia-Hung
2017-08-01
Blood leakage and blood loss are serious complications during hemodialysis. From the hemodialysis survey reports, these life-threatening events occur to attract nephrology nurses and patients themselves. When the venous needle and blood line are disconnected, it takes only a few minutes for an adult patient to lose over 40% of his / her blood, which is a sufficient amount of blood loss to cause the patient to die. Therefore, we propose integrating a flexible sensor and self-organizing algorithm to design a cloud computing-based warning device for blood leakage detection. The flexible sensor is fabricated via a screen-printing technique using metallic materials on a soft substrate in an array configuration. The self-organizing algorithm constructs a virtual direct current grid-based alarm unit in an embedded system. This warning device is employed to identify blood leakage levels via a wireless network and cloud computing. It has been validated experimentally, and the experimental results suggest specifications for its commercial designs. The proposed model can also be implemented in an embedded system.
Amland, Robert C; Lyons, Jason J; Greene, Tracy L; Haley, James M
2015-10-01
To examine the diagnostic accuracy of a two-stage clinical decision support system for early recognition and stratification of patients with sepsis. Observational cohort study employing a two-stage sepsis clinical decision support to recognise and stratify patients with sepsis. The stage one component was comprised of a cloud-based clinical decision support with 24/7 surveillance to detect patients at risk of sepsis. The cloud-based clinical decision support delivered notifications to the patients' designated nurse, who then electronically contacted a provider. The second stage component comprised a sepsis screening and stratification form integrated into the patient electronic health record, essentially an evidence-based decision aid, used by providers to assess patients at bedside. Urban, 284 acute bed community hospital in the USA; 16,000 hospitalisations annually. Data on 2620 adult patients were collected retrospectively in 2014 after the clinical decision support was implemented. 'Suspected infection' was the established gold standard to assess clinical decision support clinimetric performance. A sepsis alert activated on 417 (16%) of 2620 adult patients hospitalised. Applying 'suspected infection' as standard, the patient population characteristics showed 72% sensitivity and 73% positive predictive value. A postalert screening conducted by providers at bedside of 417 patients achieved 81% sensitivity and 94% positive predictive value. Providers documented against 89% patients with an alert activated by clinical decision support and completed 75% of bedside screening and stratification of patients with sepsis within one hour from notification. A clinical decision support binary alarm system with cross-checking functionality improves early recognition and facilitates stratification of patients with sepsis.
Solution of the effective Hamiltonian of impurity hopping between two sites in a metal
NASA Astrophysics Data System (ADS)
Ye, Jinwu
1997-07-01
We analyze in detail all the possible fixed points of the effective Hamiltonian of a nonmagnetic impurity hopping between two sites in a metal obtained by Moustakas and Fisher (MF). We find a line of non-Fermi liquid fixed points which continuously interpolates between the two-channel Kondo fixed point (2CK) and the one-channel, two-impurity Kondo (2IK) fixed point. There is one relevant direction with scaling dimension 12 and one leading irrelevant operator with dimension 32. There is also one marginal operator in the spin sector moving along this line. The marginal operator, combined with the leading irrelevant operator, will generate the relevant operator. For the general position on this line, the leading low-temperature exponents of the specific heat, the hopping susceptibility and the electron conductivity Cimp,χhimp,σ(T) are the same as those of the 2CK, but the finite-size spectrum depends on the position on the line. No universal ratios can be formed from the amplitudes of the three quantities except at the 2CK point on this line where the universal ratios can be formed. At the 2IK point on this line, σ(T)~2σu(1+aT3/2), no universal ratio can be formed either. The additional non-Fermi-liquid fixed point found by MF has the same symmetry as the 2IK, it has two relevant directions with scaling dimension 12, and is therefore also unstable. The leading low-temperature behaviors are Cimp~T,χhimp~lnT,σ(T)~2σu(1+aT3/2) no universal ratios can be formed. The system is shown to flow to a line of Fermi-liquid fixed points which continuously interpolates between the noninteracting fixed point and the two-channel spin-flavor Kondo fixed point discussed by the author previously. The effect of particle-hole symmetry breaking is discussed. The effective Hamiltonian in the external magnetic field is analyzed. The scaling functions for the physical measurable quantities are derived in the different regimes; their predictions for the experiments are given. Finally the implications are given for a nonmagnetic impurity hopping around three sites with triangular symmetry discussed by MF.
Kondo Physics at Interfaces in Metallic Non-Local Spin Transport Devices
NASA Astrophysics Data System (ADS)
Leighton, Chris
2015-03-01
Despite the maturity of metallic spintronics there remain large gaps in our understanding of spin transport in metals, particularly with injection of spins across ferromagnetic/non-magnetic (FM/NM) interfaces, and their subsequent diffusion and relaxation. Unresolved issues include the limits of applicability of Elliott-Yafet spin relaxation, quantification of the influence of defects, surfaces, and interfaces on spin relaxation at nanoscopic dimensions, and the importance of magnetic and spin-orbit scattering. The non-local spin-valve is an enabling device in this context as, in addition to offering potentially disruptive applications, it allows for the separation of charge and spin currents. One particularly perplexing issue in metallic non-local spin valves is the widely observed non-monotonicity in the T-dependent spin accumulation, where the spin signal actually decreases at low T, in contrast to simple expectations. In this work, by studying an expanded range of FM/NM combinations (encompassing Ni80Fe20, Ni, Fe, Co, Cu, and Al), we demonstrate that this effect is not a property of a given FM or NM, but rather of the FM/NM pair. The non-monotonicity is in fact strongly correlated with the ability of the FM to form a dilute local magnetic moment in the NM. We show that local moments, resulting in this case from the ppm-level tail of the FM/NM interdiffusion profile, suppress the injected spin polarization and diffusion length via a novel manifestation of the Kondo effect, explaining all observations associated with the low T downturn in spin accumulation. We further show: (a) that this effect can be promoted by thermal annealing, at which point the conventional charge transport Kondo effect is simultaneously detected in the NM, and (b) that this suppression in spin accumulation can be quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer. Important implications for room temperature devices will be discussed. Work supported by: Seagate Technology, NSF MRSEC (DMR-0819885), Marie Curie International Outgoing Fellowship, 7th European Community Framework Programme (No. 299376). Work at SNS, ORNL, supported by DOE. Work in collaboration with: L. O'Brien, J. Watts, D. Spivak, M. Erickson, H. Ambaye, R.J. Goyette, V. Lauter, P.A. Crowell.
Strongly correlated surface states
NASA Astrophysics Data System (ADS)
Alexandrov, Victor A.
Everything has an edge. However trivial, this phrase has dominated theoretical condensed matter in the past half a decade. Prior to that, questions involving the edge considered to be more of an engineering problem rather than a one of fundamental science: it seemed self-evident that every edge is different. However, recent advances proved that many surface properties enjoy a certain universality, and moreover, are 'topologically' protected. In this thesis I discuss a selected range of problems that bring together topological properties of surface states and strong interactions. Strong interactions alone can lead to a wide spectrum of emergent phenomena: from high temperature superconductivity to unconventional magnetic ordering; interactions can change the properties of particles, from heavy electrons to fractional charges. It is a unique challenge to bring these two topics together. The thesis begins by describing a family of methods and models with interactions so high that electrons effectively disappear as particles and new bound states arise. By invoking the AdS/CFT correspondence we can mimic the physical systems of interest as living on the surface of a higher dimensional universe with a black hole. In a specific example we investigate the properties of the surface states and find helical spin structure of emerged particles. The thesis proceeds from helical particles on the surface of black hole to a surface of samarium hexaboride: an f-electron material with localized magnetic moments at every site. Interactions between electrons in the bulk lead to insulating behavior, but the surfaces found to be conducting. This observation motivated an extensive research: weather the origin of conduction is of a topological nature. Among our main results, we confirm theoretically the topological properties of SmB6; introduce a new framework to address similar questions for this type of insulators, called Kondo insulators. Most notably we introduce the idea of Kondo band banding (KBB): a modification of edges and their properties due to interactions. We study (chapter 5) a simplified 1D Kondo model, showing that the topology of its ground state is unstable to KBB. Chapter 6 expands the study to 3D: we argue that not only KBB preserves the topology but it could also explain the experimentally observed anomalously high Fermi velocity at the surface as the case of large KBB effect.
From Kondo lattices to Kondo superlattices
NASA Astrophysics Data System (ADS)
Shimozawa, Masaaki; Goh, Swee K.; Shibauchi, Takasada; Matsuda, Yuji
2016-07-01
The realization of new classes of ground states in strongly correlated electron systems continues to be a major issue in condensed matter physics. Heavy fermion materials, whose electronic structure is essentially three-dimensional, are one of the most suitable systems for obtaining novel electronic states because of their intriguing properties associated with many-body effects. Recently, a state-of-the-art molecular beam epitaxy technique was developed to reduce the dimensionality of heavy electron systems by fabricating artificial superlattices that include heavy fermion compounds; this approach can produce a new type of electronic state in two-dimensional (2D) heavy fermion systems. In artificial superlattices of the antiferromagnetic heavy fermion compound CeIn3 and the conventional metal LaIn3, the magnetic order is suppressed by a reduction in the thickness of the CeIn3 layers. In addition, the 2D confinement of heavy fermions leads to enhancement of the effective electron mass and deviation from the standard Fermi liquid electronic properties, which are both associated with the dimensional tuning of quantum criticality. In the superconducting superlattices of the heavy fermion superconductor CeCoIn5 and nonmagnetic metal YbCoIn5, signatures of superconductivity are observed even at the thickness of one unit-cell layer of CeCoIn5. The most remarkable feature of this 2D heavy fermion superconductor is that the thickness reduction of the CeCoIn5 layers changes the temperature and angular dependencies of the upper critical field significantly. This result is attributed to a substantial suppression of the Pauli pair-breaking effect through the local inversion symmetry breaking at the interfaces of CeCoIn5 block layers. The importance of the inversion symmetry breaking in this system has also been supported by site-selective nuclear magnetic resonance spectroscopy, which can resolve spectroscopic information from each layer separately, even within the same CeCoIn5 block layer. In addition, recent experiments involving CeCoIn5/YbCoIn5 superlattices have shown that the degree of the inversion symmetry breaking and, in turn, the Rashba splitting are controllable, offering the prospect of achieving even more fascinating superconducting states. Thus, these Kondo superlattices pave the way for the exploration of unconventional metallic and superconducting states.
Bolaños-Díaz, Rafael; Tejada, Romina A; Beltrán, Jessica; Escobedo-Palza, Seimer
2016-01-01
To determine the cost-effectiveness of human papillomavirus (HPV) vaccination and cervical lesion screening versus screening alone for the prevention of uterine cervical cancer (UCC). This cost-effectiveness evaluation from the perspective of the Ministry of Health employed a Markov model with a 70-year time horizon and three alternatives for UCC prevention (screening alone, screening + bivalent vaccine, and screening + quadrivalent vaccine) in a hypothetical cohort of 10-year-old girls. Our model, which was particularly sensitive to variations in coverage and in the prevalence of persistent infection by oncologic genotypes not included in the vaccine, revealed that HPV vaccination and screening is more cost-effective than screening alone, assuming a payment availability from S/ 2 000 (US dollars (USD) 1 290.32) per subject. In the deterministic analysis, the bivalent vaccine was marginally more cost-effective than the quadrivalent vaccine (S/ 48 [USD 30.97] vs. S/ 166 [USD 107.10] per quality-adjusted life-year, respectively). However, in the probabilistic analysis, both interventions generated clouds of overlapping points and were thus cost-effective and interchangeable, although the quadrivalent vaccine tended to be more cost-effective. Assuming a payment availability from S/ 2000 [USD 1,290.32], screening and vaccination were more cost-effective than screening alone. The difference in cost-effectiveness between the two vaccines lacked probabilistic robustness, and therefore the vaccines can be considered interchangeable from a cost-effectiveness perspective.
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses.
Montenegro-Burke, J Rafael; Phommavongsay, Thiery; Aisporna, Aries E; Huan, Tao; Rinehart, Duane; Forsberg, Erica; Poole, Farris L; Thorgersen, Michael P; Adams, Michael W W; Krantz, Gregory; Fields, Matthew W; Northen, Trent R; Robbins, Paul D; Niedernhofer, Laura J; Lairson, Luke; Benton, H Paul; Siuzdak, Gary
2016-10-04
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process. Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism.
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses
2016-01-01
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process. Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism. PMID:27560777
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses
Montenegro-Burke, J. Rafael; Phommavongsay, Thiery; Aisporna, Aries E.; ...
2016-08-25
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process.more » Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism.« less
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montenegro-Burke, J. Rafael; Phommavongsay, Thiery; Aisporna, Aries E.
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process.more » Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism.« less
Strange metal from local quantum chaos
NASA Astrophysics Data System (ADS)
Ben-Zion, Daniel; McGreevy, John
2018-04-01
How to make a model of a non-Fermi-liquid metal with efficient current dissipation is a long-standing problem. Results from holographic duality suggest a framework where local critical fermionic degrees of freedom provide both a source of decoherence for the Landau quasiparticle, and a sink for its momentum. This leads us to study a Kondo lattice type model with SYK models in place of the spin impurities. We find evidence for a stable phase at intermediate couplings.
Non-Fermi liquid and heavy fermion behavior in CexLa1-xB6 with quadrupolar moments
NASA Astrophysics Data System (ADS)
Nakamura, Shintaro; Yamamoto, Harufumi; Endo, Motoki; Aoki, Haruyoshi; Kimura, Noriaki; Nojima, Tsutomu; Kunii, Satoru
2006-05-01
The electrical resistivity of the cubic Kondo system CexLa1-xB6 ( x=0.1-0.65) has been measured. Non-Fermi liquid behavior is found in paramagnetic phase I over the wide Ce concentration range. Heavy fermion behavior is found in ordered phases of Ce0.65La0.35B6. The mass enhancement of quasiparticles in this compound is strongly dependent of the magnetic field.
TQUID Magnetometer and Artificial Neural Circuitry Based on a Topological Kondo Insulator
2016-05-01
phenomena in this surface-bulk system. Sufficient Joule heating , induced by an external DC current, can heat the bulk into a less insulating state, and...are the surface and bulk resistances with insulating gap Δ; H = H0(/0)3 and are the heat capacity dominated by phonons and...0, while Δ is the energy gap in the insulating bulk; is the temperature independent heat transfer rate trough external leads, which plays the
Cell Therapy To Obtain Spinal Fusion
2010-07-01
23(5):267-76. 32. Oshima Y, Sato K, Tashiro F, Miyazaki J, Nishida K, Hiraki Y, Tano Y, Shukunami C 2004 Anti-angiogenic action of the C-terminal...H, Tokunaga K, Hatano H, Kondo J, Hiraki Y, Yamamoto T, Duong le T, Endo N 2003 Expression of the cartilage derived anti-angiogenic factor...57. 35. Shukunami C, Iyama K, Inoue H, Hiraki Y 1999 Spatiotemporal pattern of the mouse chondromodulin-I gene expression and its regulatory role in
First-principles study of the Kondo physics of a single Pu impurity in a Th host
Zhu, Jian -Xin; Albers, R. C.; Haule, K.; ...
2015-04-23
Based on its condensed-matter properties, crystal structure, and metallurgy, which includes a phase diagram with six allotropic phases, plutonium is one of the most complicated pure elements in its solid state. Its anomalous properties, which are indicative of a very strongly correlated state, are related to its special position in the periodic table, which is at the boundary between the light actinides that have itinerant 5f electrons and the heavy actinides that have localized 5f electrons. As a foundational study to probe the role of local electronic correlations in Pu, we use the local-density approximation together with a continuous-time quantummore » Monte Carlo simulation to investigate the electronic structure of a single Pu atom that is either substitutionally embedded in the bulk and or adsorbed on the surface of a Th host. This is a simpler case than the solid phases of Pu metal. With the Pu impurity atom we have found a Kondo resonance peak, which is an important signature of electronic correlations, in the local density of states around the Fermi energy. We show that the peak width of this resonance is narrower for Pu atoms at the surface of Th than for those in the bulk due to a weakened Pu - 5f hybridization with the ligands at the surface.« less
Thermopower of CexR1-xB6 (R=La, Pr and Nd)
NASA Astrophysics Data System (ADS)
Kim, Moo‑Sung; Nakai, Yuki; Tou, Hideki; Sera, Masafumi; Iga, Fumitoshi; Takabatake, Toshiro; Kunii, Satoru
2006-06-01
The thermopower, S, of CexR1-xB6 (R=La, Pr, Nd) was investigated. S with a positive sign shows a typical behavior observed in the Ce Kondo system, an increase with decreasing temperature at high temperatures and a maximum at low temperatures. The S values of all the systems at high temperatures are roughly linearly dependent on the Ce concentration, indicating the conservation of the single-impurity character of the Kondo effect in a wide x range. However, the maximum value of S, Smax, and the temperature, Tmax, at which Smax is observed exhibit different x dependences between CexLa1-xB6 and CexR1-xB6 (R=Pr, Nd). In CexLa1-xB6, Tmax, which is ˜8 K in CeB6, decreases with decreasing x and converges to ˜1 K in a very dilute alloy and Smax shows an increase below x ˜ 0.1 after decreasing with decreasing x. In CexR1-xB6 (R=Pr, Nd), Tmax shows a weak x dependence but Smax shows a roughly linear decrease in x. These results are discussed from the standpoint of the chemical pressure effect and the Ce-Ce interaction. S in the long-range ordered phase shows very different behaviors between CexPr1-xB6 and CexNd1-xB6.
NASA Astrophysics Data System (ADS)
Sposetti, C. N.; Manuel, L. O.; Roura-Bas, P.
2016-08-01
The Anderson impurity model is studied by means of the self-consistent hybridization expansions in its noncrossing (NCA) and one-crossing (OCA) approximations. We have found that for the one-channel spin-1 /2 particle-hole symmetric Anderson model, the NCA results are qualitatively wrong for any temperature, even when the approximation gives the exact threshold exponents of the ionic states. Actually, the NCA solution describes an overscreened Kondo effect, because it is the same as for the two-channel infinite-U single-level Anderson model. We explicitly show that the NCA is unable to distinguish between these two very different physical systems, independently of temperature. Using the impurity entropy as an example, we show that the low-temperature values of the NCA entropy for the symmetric case yield the limit Simp(T =0 ) →ln√{2 }, which corresponds to the zero temperature entropy of the overscreened Kondo model. Similar pathologies are predicted for any other thermodynamic property. On the other hand, we have found that the OCA approach lifts the artificial mapping between the models and restores correct properties of the ground state, for instance, a vanishing entropy at low enough temperatures Simp(T =0 ) →0 . Our results indicate that the very well known NCA should be used with caution close to the symmetric point of the Anderson model.
NASA Astrophysics Data System (ADS)
Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques
2009-03-01
Valence instability and its critical fluctuations have attracted much attention recently in the heavy-electron systems. Valence fluctuations are essentially charge fluctuations, and it is highly non-trivial how the quantum critical point (QCP) as well as the critical end point is controlled by the magnetic field. To clarify this fundamental issue, we have studied the mechanism of how the critical points of the first-order valence transitions are controlled by the magnetic field [1]. We show that the critical temperature is suppressed to be the QCP by the magnetic field and unexpectedly the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be a cooperative phenomenon of Zeeman effect and Kondo effect, which creates a distinct energy scale from the Kondo temperature. This mechanism explains a peculiar magnetic response in CeIrIn5 and metamagnetic transition in YbXCu4 for X=In as well as a sharp contrast between X=Ag and Cd. We present the novel phenomena under the magnetic field to discuss significance of the proximity of the critical points of the first-order valence transition. [1] S. Watanabe et al. PRL100, (2008) 236401.
1001 Ways to run AutoDock Vina for virtual screening
NASA Astrophysics Data System (ADS)
Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.
2016-03-01
Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.
1001 Ways to run AutoDock Vina for virtual screening.
Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D
2016-03-01
Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.
Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities.
Ticoş, C M; Wang, Zhehui; Wurden, G A; Kline, J L; Montgomery, D S; Dorf, L A; Shukla, P K
2008-04-18
Simultaneous acceleration of hundreds of dust particles to hypervelocities by collimated plasma flows ejected from a coaxial gun is demonstrated. Graphite and diamond grains with radii between 5 and 30 microm, and flying at speeds up to 3.7 km/s, have been recorded with a high-speed camera. The observations agree well with a model for plasma-drag acceleration of microparticles much larger than the plasma screening length.
NASA Technical Reports Server (NTRS)
Warren, Wayne H., Jr.
1990-01-01
A list of 1186 ultraviolet-excess objects (designated KUV) was compiled as a result of a search conducted with the 105-cm Schmidt telescope of the Kiso station of the Tokyo Astronomical Observatory. This document describes the machine readable version of the KUV survey list and presents a sample listing showing the logical records as they are recorded in the machine readable catalog. The KUV data include equatorial coordinates, magnitudes, color indices, and identifications for previously cataloged objects.
Practical Advances in Petroleum Processing
NASA Astrophysics Data System (ADS)
Hsu, Chang S.; Robinson, Paul R.
"This comprehensive book by Robinson and Hsu will certainly become the standard text book for the oil refining business...[A] must read for all who are associated with oil refining." - Dr. Walter Fritsch, Senior Vice President Refining, OMV "This book covers a very advanced horizon of petroleum processing technology. For all refiners facing regional and global environmental concerns, and for those who seek a more sophisticated understanding of the refining of petroleum resources, this book has been long in coming." - Mr. Naomasa Kondo, Cosmo Oil Company, Ltd.
Walker, Melissa J; Dorrestein, Annabel; Camacho, Jasmin J; Meckler, Lauren A; Silas, Kirk A; Hiller, Thomas; Haelewaters, Danny
2018-01-01
The Darién province in eastern Panama is one of the most unexplored and biodiverse regions in the world. The Chucantí Nature Reserve, in Serranía de Majé, consists of a diverse tropical cloud forest ecosystem. The aim of this research was to explore and study host associations of a tripartite system of bats, ectoparasitic flies on bats (Diptera, Streblidae), and ectoparasitic fungi (Ascomycota, Laboulbeniales) that use bat flies as hosts. We captured bats at Chucantí, screened each bat for presence of bat flies, and screened collected bat flies for presence of Laboulbeniales. We mistnetted for 68 mistnet hours and captured 227 bats representing 17 species. We captured Micronycteris schmidtorum, a species previously unreported in Darién. In addition, we encountered the rarely collected Platyrrhinus dorsalis, representing the westernmost report for this species. Of all captured bats, 148 carried bat flies (65%). The number of sampled bat flies was 437, representing 16 species. One species represents a new country record (Trichobius anducei) and five species represent first reports for Darién (Basilia anceps, Anatrichobius scorzai, Nycterophilia parnelli, T. johnsonae, T. parasiticus). All 74 bat fly species currently reported in Panama are presented in tabulated form. Of all screened bat flies, 30 bore Laboulbeniales fungi (7%). Based on both morphology and large ribosomal subunit (LSU) sequence data, we delimited 7 species of Laboulbeniales: Gloeandromyces nycteribiidarum (newly reported for Panama), G. pageanus, G. streblae, Nycteromyces streblidinus, and 3 undescribed species. Of the 30 infected flies, 21 were Trichobius joblingi. This species was the only host on which we observed double infections of Laboulbeniales. © M.J. Walker et al., published by EDP Sciences, 2018.
REVIEW ARTICLE: On correlation effects in electron spectroscopies and the GW approximation
NASA Astrophysics Data System (ADS)
Hedin, Lars
1999-10-01
The GW approximation (GWA) extends the well-known Hartree-Fock approximation (HFA) for the self-energy (exchange potential), by replacing the bare Coulomb potential v by the dynamically screened potential W, e.g. Vex = iGv is replaced by icons/Journals/Common/Sigma" ALT="Sigma" ALIGN="TOP"/>GW = iGW. Here G is the one-electron Green's function. The GWA like the HFA is self-consistent, which allows for solutions beyond perturbation theory, like say spin-density waves. In a first approximation, iGW is a sum of a statically screened exchange potential plus a Coulomb hole (equal to the electrostatic energy associated with the charge pushed away around a given electron). The Coulomb hole part is larger in magnitude, but the two parts give comparable contributions to the dispersion of the quasi-particle energy. The GWA can be said to describe an electronic polaron (an electron surrounded by an electronic polarization cloud), which has great similarities to the ordinary polaron (an electron surrounded by a cloud of phonons). The dynamical screening adds new crucial features beyond the HFA. With the GWA not only bandstructures but also spectral functions can be calculated, as well as charge densities, momentum distributions, and total energies. We will discuss the ideas behind the GWA, and generalizations which are necessary to improve on the rather poor GWA satellite structures in the spectral functions. We will further extend the GWA approach to fully describe spectroscopies like photoemission, x-ray absorption, and electron scattering. Finally we will comment on the relation between the GWA and theories for strongly correlated electronic systems. In collecting the material for this review, a number of new results and perspectives became apparent, which have not been published elsewhere.
Walker, Melissa J.; Dorrestein, Annabel; Camacho, Jasmin J.; Meckler, Lauren A.; Silas, Kirk A.; Hiller, Thomas; Haelewaters, Danny
2018-01-01
The Darién province in eastern Panama is one of the most unexplored and biodiverse regions in the world. The Chucantí Nature Reserve, in Serranía de Majé, consists of a diverse tropical cloud forest ecosystem. The aim of this research was to explore and study host associations of a tripartite system of bats, ectoparasitic flies on bats (Diptera, Streblidae), and ectoparasitic fungi (Ascomycota, Laboulbeniales) that use bat flies as hosts. We captured bats at Chucantí, screened each bat for presence of bat flies, and screened collected bat flies for presence of Laboulbeniales. We mistnetted for 68 mistnet hours and captured 227 bats representing 17 species. We captured Micronycteris schmidtorum, a species previously unreported in Darién. In addition, we encountered the rarely collected Platyrrhinus dorsalis, representing the westernmost report for this species. Of all captured bats, 148 carried bat flies (65%). The number of sampled bat flies was 437, representing 16 species. One species represents a new country record (Trichobius anducei) and five species represent first reports for Darién (Basilia anceps, Anatrichobius scorzai, Nycterophilia parnelli, T. johnsonae, T. parasiticus). All 74 bat fly species currently reported in Panama are presented in tabulated form. Of all screened bat flies, 30 bore Laboulbeniales fungi (7%). Based on both morphology and large ribosomal subunit (LSU) sequence data, we delimited 7 species of Laboulbeniales: Gloeandromyces nycteribiidarum (newly reported for Panama), G. pageanus, G. streblae, Nycteromyces streblidinus, and 3 undescribed species. Of the 30 infected flies, 21 were Trichobius joblingi. This species was the only host on which we observed double infections of Laboulbeniales. PMID:29633707
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Spinhirne, James D.; Campbell, James R.; Berkoff, Timothy A.; Bates, David; Starr, David OC. (Technical Monitor)
2001-01-01
The determination of the vertical distribution of aerosols and clouds over the ocean is needed for accurate retrievals of ocean color from satellites observations. The presence of absorbing aerosol layers, especially at altitudes above the boundary layer, has been shown to influence the calculation of ocean color. Also, satellite data must be correctly screened for the presence of clouds, particularly cirrus, in order to measure ocean color. One instrument capable of providing this information is a lidar, which uses pulses of laser light to profile the vertical distribution of aerosol and cloud layers in the atmosphere. However, lidar systems prior to the 1990s were large, expensive, and not eye-safe which made them unsuitable for cruise deployments. During the 1990s the first small, autonomous, and eye-safe lidar system became available: the micro-pulse lidar, or MPL. The MPL is a compact and eye-safe lidar system capable of determining the range of aerosols and clouds by firing a short pulse of laser light (523 nm) and measuring the time-of-flight from pulse transmission to reception of a returned signal. The returned signal is a function of time, converted into range using the speed of light, and is proportional to the amount of light backscattered by atmospheric molecules (Rayleigh scattering), aerosols, and clouds. The MPL achieves ANSI eye-safe standards by sending laser pulses at low energy (micro-J) and expanding the beam to 20.32 cm in diameter. A fast pulse-repetition-frequency (2500 Hz) is used to achieve a good signal-to-noise, despite the low output energy. The MPL has a small field-of-view (< 100 micro-rad) and signals received with the instrument do not contain multiple scattering effects. The MPL has been used successfully at a number of long-term sites and also in several field experiments around the world.
Röhm, Martina; Carle, Stefan; Maigler, Frank; Flamm, Johannes; Kramer, Viktoria; Mavoungou, Chrystelle; Schmid, Otmar; Schindowski, Katharina
2017-10-30
Aerosolized administration of biopharmaceuticals to the airways is a promising route for nasal and pulmonary drug delivery, but - in contrast to small molecules - little is known about the effects of aerosolization on safety and efficacy of biopharmaceuticals. Proteins are sensitive against aerosolization-associated shear stress. Tailored formulations can shield proteins and enhance permeation, but formulation development requires extensive screening approaches. Thus, the aim of this study was to develop a cell-based in vitro technology platform that includes screening of protein quality after aerosolization and transepithelial permeation. For efficient screening, a previously published aerosolization-surrogate assay was used in a design of experiments approach to screen suitable formulations for an IgG and its antigen-binding fragment (Fab) as exemplary biopharmaceuticals. Efficient, dose-controlled aerosol-cell delivery was performed with the ALICE-CLOUD system containing RPMI 2650 epithelial cells at the air-liquid interface. We could demonstrate that our technology platform allows for rapid and efficient screening of formulations consisting of different excipients (here: arginine, cyclodextrin, polysorbate, sorbitol, and trehalose) to minimize aerosolization-induced protein aggregation and maximize permeation through an in vitro epithelial cell barrier. Formulations reduced aggregation of native Fab and IgG relative to vehicle up to 50% and enhanced transepithelial permeation rate up to 2.8-fold. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
CATS Version 2 Aerosol Feature Detection and Applications for Data Assimilation
NASA Technical Reports Server (NTRS)
Nowottnick, Ed; Yorks, John; McGill, Matt; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Selmer, Patrick; Kupchock, Andrew; Pauly, Rebecca
2017-01-01
Using GEOS-5, we are developing a 1D ENS approach for assimilating CATS near real time observations of total attenuated backscatter at 1064 nm: a) After performing a 1-ENS assimilation of a cloud-free profile, the GEOS-5 analysis closely followed observed total attenuated backscatter. b) Vertical localization length scales were varied for the well-mixed PBL and the free troposphere After assimilating a cloud free segment of a CATS granule, the fine detail of a dust event was obtained in the GEOS-5 analysis for both total attenuated backscatter and extinction. Future Work: a) Explore horizontal localization and test within a cloudy aerosol layer. b) Address noisy analysis increments in the free troposphere where both CATS and GEOS-5 aerosol loadings are low. c) Develop a technique to screen CATS ground return from profiles. d) "Dynamic" lidar ratio that will evolve in conjunction with simulated aerosol mixtures.
Measurement of amyloid formation by turbidity assay-seeing through the cloud.
Zhao, Ran; So, Masatomo; Maat, Hendrik; Ray, Nicholas J; Arisaka, Fumio; Goto, Yuji; Carver, John A; Hall, Damien
2016-01-01
Detection of amyloid growth is commonly carried out by measurement of solution turbidity, a low-cost assay procedure based on the intrinsic light scattering properties of the protein aggregate. Here, we review the biophysical chemistry associated with the turbidimetric assay methodology, exploring the reviewed literature using a series of pedagogical kinetic simulations. In turn, these simulations are used to interrogate the literature concerned with in vitro drug screening and the assessment of amyloid aggregation mechanisms.
Sensemaking of Narratives: Informing the Capabilities Development Process
2014-06-01
experiences. Narratives provide meaning across a wide range of disciplines, particularly from the fields of social sciences, such as anthropology and...stated that the GBOSS ―helped the civilians on the blimp to coordinate with us when we‘d find a smoke cloud and they could get eyes on it when we...Radar (STS-1400) menu in the tree view (left side of the screen displaying all of the sensors available to each system) and ensure the colored rectangle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitrasinovic, V.; Toki, H.; Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047
2006-02-15
We make a critical comparison of several versions of instanton-induced interactions present in the literature, all based on ITEP group's extension to three colours and flavours of 't Hooft's effective lagrangian, with the predictions of the phenomenological Kobayashi-Kondo-Maskawa (KKM) chiral quark lagrangian. We analyze the effects of all versions of the effective U {sub A} (1) symmetry breaking interactions on light hadron spectra in the non-relativistic constituent quark model. We show that the KKMT force, when used as a residual hyperfine interaction reproduces the correct ordering of pseudoscalar and vector mesons even without explicitly taking chiral symmetry into account. Moreover,more » the nucleon spectra are also correctly reproduced, only the Roper resonance remains too high, albeit lower than usual, at 1660 MeV. The latter's lower than expected mass is not due to a small excitation energy, as in the Glozman-Riska (GR) model, but to a combination of colour, flavour, and spatial wave function properties that enhance the relevant matrix elements. The KKMT interaction explicitly depends on flavour and spin of the quarks, but unlike the GR flavour-spin one it has a firm footing in QCD. In the process we provide several technical advances, in particular we show the first explicit derivation of the three-body Fierz transformation and apply it to the KKM interaction. We also discuss the ambiguities associated with the colour degree of freedom.« less
Kondo effect in systems with dynamical symmetries
NASA Astrophysics Data System (ADS)
Kuzmenko, T.; Kikoin, K.; Avishai, Y.
2004-05-01
This paper is devoted to a systematic exposure of the Kondo physics in quantum dots for which the low-energy spin excitations consist of a few different spin multiplets |SiMi>. Under certain conditions (to be explained below), some of the lowest energy levels ESi are nearly degenerate. The dot in its ground state cannot then be regarded as a simple quantum top, in the sense that beside its spin operator other dot (vector) operators Rn are needed (in order to fully determine its quantum states), which have nonzero matrix elements between states of different spin multiplets
Balseiro, C A; Usaj, G; Sánchez, M J
2010-10-27
We study non-equilibrium electron transport through a quantum impurity coupled to metallic leads using the equation of motion technique at finite temperature T. Assuming that the interactions are taking place solely in the impurity and focusing on the infinite Hubbard limit, we compute the out of equilibrium density of states and the differential conductance G(2)(T, V) in order to test several scaling laws. We find that G(2)(T, V)/G(2)(T, 0) is a universal function of both eV/T(K) and T/T(K), T(K) being the Kondo temperature. The effect of an in-plane magnetic field on the splitting of the zero bias anomaly in the differential conductance is also analyzed. For a Zeeman splitting Δ, the computed differential conductance peak splitting depends only on Δ/T(K), and for large fields approaches the value of 2Δ. Besides studying the traditional two leads setup, we also consider other configurations that mimic recent experiments, namely, an impurity embedded in a mesoscopic wire and the presence of a third weakly coupled lead. In these cases, a double peak structure of the Kondo resonance is clearly obtained in the differential conductance while the amplitude of the highest peak is shown to decrease as ln(eV/T(K)). Several features of these results are in qualitative agreement with recent experimental observations reported on quantum dots.
Probing the magnetic ground state of single crystalline Ce3TiSb5
NASA Astrophysics Data System (ADS)
Matin, M.; Kulkarni, R.; Thamizhavel, A.; Dhar, S. K.; Provino, A.; Manfrinetti, P.
2017-04-01
Motivated by the report of superconductivity in R3TiSb5 (R = La and Ce) and possibly Nd3TiSb5 at ∼4 K, we grew single crystals of La3TiSb5 and Ce3TiSb5 by the high-temperature solution method using Sn as a flux. While in both compounds we observed a superconducting transition at 3.7 K for resistivity and low-field magnetization, our data conclusively show that it arose from residual Sn flux present in the single crystals. In particular, the heat capacity data do not present any of the anomalies expected from a bulk superconducting transition. The anisotropic magnetic properties of Ce3TiSb5, crystallizing in a hexagonal P63/mcm structure, were studied in detail. We find that the Ce ions in Ce3TiSb5 form a Kondo lattice and exhibited antiferromagnetic ordering at 5.5 K with a reduced moment and a moderately normalized Sommerfeld coefficient of 598 mJ/mol K2. The characteristic single-ion Kondo energy scale was found to be ∼8 K. The magnetization data were subjected to a crystal electric field (CEF) analysis. The experimentally observed Schottky peak in the 4f-electron heat capacity of Ce3TiSb5 was reproduced fairly well by the energy levels derived from the CEF analysis.
Karthikeyan, Muthukumarasamy; Pandit, Yogesh; Pandit, Deepak; Vyas, Renu
2015-01-01
Virtual screening is an indispensable tool to cope with the massive amount of data being tossed by the high throughput omics technologies. With the objective of enhancing the automation capability of virtual screening process a robust portal termed MegaMiner has been built using the cloud computing platform wherein the user submits a text query and directly accesses the proposed lead molecules along with their drug-like, lead-like and docking scores. Textual chemical structural data representation is fraught with ambiguity in the absence of a global identifier. We have used a combination of statistical models, chemical dictionary and regular expression for building a disease specific dictionary. To demonstrate the effectiveness of this approach, a case study on malaria has been carried out in the present work. MegaMiner offered superior results compared to other text mining search engines, as established by F score analysis. A single query term 'malaria' in the portlet led to retrieval of related PubMed records, protein classes, drug classes and 8000 scaffolds which were internally processed and filtered to suggest new molecules as potential anti-malarials. The results obtained were validated by docking the virtual molecules into relevant protein targets. It is hoped that MegaMiner will serve as an indispensable tool for not only identifying hidden relationships between various biological and chemical entities but also for building better corpus and ontologies.
Self-nanoemulsifying drug delivery systems of tamoxifen citrate: design and optimization.
Elnaggar, Yosra S R; El-Massik, Magda A; Abdallah, Ossama Y
2009-10-01
Tamoxifen citrate is an antiestrogen for peroral breast cancer treatment. The drug delivery encounters problems of poor water solubility and vulnerability to enzymatic degradation in both intestine and liver. In the current study, tamoxifen citrate self-nanoemulsifying drug delivery systems (SNEDDS) were prepared in an attempt to circumvent such obstacles. Preliminary screening was carried out to select proper ingredient combinations. All surfactants screened were recognized for their bioactive aspects. Ternary phase diagrams were then constructed and an optimum system was designated. Three tamoxifen SNEDDS were then compared for optimization. The systems were assessed for robustness to dilution, globule size, cloud point, surface morphology and drug release. An optimum system composed of tamoxifen citrate (1.6%), Maisine 35-1 (16.4%), Caproyl 90 (32.8%), Cremophor RH40 (32.8%) and propylene glycol (16.4%) was selected. The system was robust to different dilution volumes and types. It possessed a mean globule size of 150 nm and a cloud point of 80 degrees C. Transmission electron microscopy demonstrated spherical particle morphology. The drug release from the selected formulation was significantly higher than other SNEDDS and drug suspension, as well. Realizing drug incorporation into an optimized nano-sized SNEDD system that encompasses a bioactive surfactant, our results proposed that the prepared system could be promising to improve oral efficacy of the tamoxifen citrate.
Design study of an YBCO-coated beam screen for the super proton-proton collider bending magnets
NASA Astrophysics Data System (ADS)
Gan, Pingping; Zhu, Kun; Fu, Qi; Li, Haipeng; Lu, Yuanrong; Easton, Matt; Liu, Yudong; Tang, Jingyu; Xu, Qingjin
2018-04-01
In order to reduce the beam impedance and refrigeration power dramatically, we have designed a high temperature superconductor (HTS) coated beam screen to screen the cold chamber walls of the super proton-proton collider bending magnets from beam-induced heat loads. It employs an absorber, inspired by the future circular collider studies, to absorb the immense synchrotron radiation power of 12.8 W/m emitted from the 37.5 TeV proton beams. Such a structure has the advantage of decreasing the electron cloud effect and improving the beam vacuum. We have compared the critical magnetic field and current density and accessibility of two potential HTS materials for the beam screen, TlBa2Ca2Cu3O9-δ (Tl-1223) and Yttrium Barium Copper Oxide (YBCO) and finally chose YBCO for coating. The beam screen is tentatively designed to work at 55-70 K because of the limited development of the YBCO material. The thermal analysis with oxygen cooling fluid indicates that the YBCO conductor can maintain its superconductivity even if the synchrotron radiation hits the YBCO-coated surface and the mechanical analysis shows that the structure has the ability to resist the Lorenz force during magnet quenches.