Science.gov

Sample records for konsultante dace balode

  1. Technological mainstreams of the Civilisation of Daces

    NASA Astrophysics Data System (ADS)

    Vartic, Andrei

    1998-12-01

    The author is investigating and describing the main technological skills and knowledges of Daces (Y-th Century B.C.- 2-nd Century A.C.), including Mining and the work in Gold, some aspects of Food technologies, Clothing. Another part of the book concerns timing and its measurement, ancient Calendars and, particularly the Calendar in Sarmizegetusa Sanctuary

  2. An ecohydraulic model to identify and monitor Moapa dace habitat.

    PubMed

    Hatten, James R; Batt, Thomas R; Scoppettone, Gary G; Dixon, Christopher J

    2013-01-01

    Moapa dace (Moapa coriacea) is a critically endangered thermophilic minnow native to the Muddy River ecosystem in southeastern Nevada, USA. Restricted to temperatures between 26.0 and 32.0 °C, these fish are constrained to the upper two km of the Muddy River and several small tributaries fed by warm springs. Habitat alterations, nonnative species invasion, and water withdrawals during the 20th century resulted in a drastic decline in the dace population and in 1979 the Moapa Valley National Wildlife Refuge (Refuge) was created to protect them. The goal of our study was to determine the potential effects of reduced surface flows that might result from groundwater pumping or water diversions on Moapa dace habitat inside the Refuge. We accomplished our goal in several steps. First, we conducted snorkel surveys to determine the locations of Moapa dace on three warm-spring tributaries of the Muddy River. Second, we conducted hydraulic simulations over a range of flows with a two-dimensional hydrodynamic model. Third, we developed a set of Moapa dace habitat models with logistic regression and a geographic information system. Fourth, we estimated Moapa dace habitat over a range of flows (plus or minus 30% of base flow). Our spatially explicit habitat models achieved classification accuracies between 85% and 91%, depending on the snorkel survey and creek. Water depth was the most significant covariate in our models, followed by substrate, Froude number, velocity, and water temperature. Hydraulic simulations showed 2-11% gains in dace habitat when flows were increased by 30%, and 8-32% losses when flows were reduced by 30%. To ensure the health and survival of Moapa dace and the Muddy River ecosystem, groundwater and surface-water withdrawals and diversions need to be carefully monitored, while fully implementing a proactive conservation strategy.

  3. An ecohydraulic model to identify and monitor moapa dace habitat

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Scoppettone, Gayton G.; Dixon, Christopher J.

    2013-01-01

    Moapa dace (Moapa coriacea) is a critically endangered thermophilic minnow native to the Muddy River ecosystem in southeastern Nevada, USA. Restricted to temperatures between 26.0 and 32.0°C, these fish are constrained to the upper two km of the Muddy River and several small tributaries fed by warm springs. Habitat alterations, nonnative species invasion, and water withdrawals during the 20th century resulted in a drastic decline in the dace population and in 1979 the Moapa Valley National Wildlife Refuge (Refuge) was created to protect them. The goal of our study was to determine the potential effects of reduced surface flows that might result from groundwater pumping or water diversions on Moapa dace habitat inside the Refuge. We accomplished our goal in several steps. First, we conducted snorkel surveys to determine the locations of Moapa dace on three warm-spring tributaries of the Muddy River. Second, we conducted hydraulic simulations over a range of flows with a two-dimensional hydrodynamic model. Third, we developed a set of Moapa dace habitat models with logistic regression and a geographic information system. Fourth, we estimated Moapa dace habitat over a range of flows (plus or minus 30% of base flow). Our spatially explicit habitat models achieved classification accuracies between 85% and 91%, depending on the snorkel survey and creek. Water depth was the most significant covariate in our models, followed by substrate, Froude number, velocity, and water temperature. Hydraulic simulations showed 2-11% gains in dace habitat when flows were increased by 30%, and 8-32% losses when flows were reduced by 30%. To ensure the health and survival of Moapa dace and the Muddy River ecosystem, groundwater and surface-water withdrawals and diversions need to be carefully monitored, while fully implementing a proactive conservation strategy.

  4. Malate dehydrogenase isozymes in the longnose dace, Rhinichthys cataractae.

    PubMed

    Starzyk, R M; Merritt, R B

    1980-08-01

    The interspecies homology of dace supernatant (A2,AB,B2) and mitochondrial (C2) malate dehydrogenase isozymes has been established through cell fractionation and tissue distribution studies. Isolated supernatant malate dehydrogenase (s-MDH) isozymes show significant differences in Michaelis constants for oxaloacetate and in pH optima. Shifts in s-MDH isozyme pH optima with temperature may result in immediate compensation for increase in ectotherm body pH with decrease in temperature, but duplicate s-MDH isozymes are probably maintained through selection for tissue specific regulation of metabolism.

  5. Experimental evaluation of rainbow trout Oncorhynchus mykiss predation on longnose dace Rhinichthys cataractae

    USGS Publications Warehouse

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.

    2014-01-01

    Laboratory and in-stream enclosure experiments were used to determine whether rainbow trout Oncorhynchus mykiss influence survival of longnose dace Rhinichthys cataractae. In the laboratory, adult rainbow trout preyed on longnose dace in 42% of trials and juvenile rainbow trout did not prey on longnose dace during the first 6 h after rainbow trout introduction. Survival of longnose dace did not differ in the presence of adult rainbow trout previously exposed to active prey and those not previously exposed to active prey ( = 0.28, P = 0.60). In field enclosures, the number of longnose dace decreased at a faster rate in the presence of rainbow trout relative to controls within the first 72 h, but did not differ between moderate and high densities of rainbow trout (F2,258.9 = 3.73, P = 0.03). Additionally, longnose dace were found in 7% of rainbow trout stomachs after 72 h in enclosures. Rainbow trout acclimated to the stream for longer periods had a greater initial influence on the number of longnose dace remaining in enclosures relative to those acclimated for shorter periods regardless of rainbow trout density treatment (F4,148.5 = 2.50, P = 0.04). More research is needed to determine how predation rates will change in natural environments, under differing amounts of habitat and food resources and in the context of whole assemblages. However, if rainbow trout are introduced into the habitat of longnose dace, some predation on longnose dace is expected, even when rainbow trout have no previous experience with active prey.

  6. Comparative responses of speckled dace and cutthroat trout to air-supersaturated water

    SciTech Connect

    Nebeker, A.V.; Hauck, A.K.; Baker, F.D.; Weitz, S.L.

    1980-11-01

    Speckled dace (Rhinichthys osculus) are more tolerant of air-supersaturated water than adult or juvenile cutthroat trout (Salmo clarki). Speckled dace were tested in concentrations from 110 to 142% saturation and had a 96-hour median lethal concentration (LC50) of 140%, a 7-day LC50 of 137%, and 2-week LC50's of 129 and 131% saturation. The estimated mean threshold concentration, based on time to 50% death (TM50), was 123% saturation. The speckled dace also exhibited consistent external signs of gas bubble disease. Cutthroat trout were tested from 111 to 130% saturation and had 96-hour LC50's of 119 and 120% (adults) and 119 and 119% (juveniles) saturation. Estimated mean threshold concentrations (from TM50 values) were 117% (adults) and 114% (juveniles) saturation. Signs of gas bubble disease exhibited by the cutthroat trout were similar to those seen with other salmonids examined in earlier studies.

  7. Isolation and characterization of 21 polymorphic microsatellite loci in the Japanese dace (Tribolodon hakonensis)

    USGS Publications Warehouse

    Koizumi, Noriyuki; Quinn, Thomas W.; Park, Myeongsoo; Fike, Jennifer A.; Nishida, Kazuya; Takemura, Takeshi; Watabe, Keiji; Mori, Atsushi

    2011-01-01

    Twenty one polymorphic microsatellite loci for the Japanese dace (Tribolodon hakonensis) were isolated and characterized. The number of observed alleles per locus in 32 individuals ranged from 3 to 30. The observed and expected heterozygosities ranged from 0.125 to 0.969 and from 0.175 to 0.973, respectively. All loci conformed to Hardy–Weinberg equilibrium, no linkage disequilibrium was observed between pairs of loci and no loci showed evidence of null alleles. These microsatellite loci will be useful for investigating the intraspecific genetic variation and population structure of this species.

  8. A stochastic population model to evaluate Moapa dace (Moapa coriacea) population growth under alternative management scenarios

    USGS Publications Warehouse

    Perry, Russell W.; Jones, Edward; Scoppettone, G. Gary

    2015-07-14

    Increasing or decreasing the total carrying capacity of all stream segments resulted in changes in equilibrium population size that were directly proportional to the change in capacity. However, changes in carrying capacity to some stream segments but not others could result in disproportionate changes in equilibrium population sizes by altering density-dependent movement and survival in the stream network. These simulations show how our IBM can provide a useful management tool for understanding the effect of restoration actions or reintroductions on carrying capacity, and, in turn, how these changes affect Moapa dace abundance. Such tools are critical for devising management strategies to achieve recovery goals.

  9. Environmental correlates, plasticity, and repeatability of differences in performance among blacknose dace (Rhinichthys atratulus) populations across a gradient of urbanization.

    PubMed

    Nelson, Jay A; Gotwalt, Portia S; Simonetti, Christopher A; Snodgrass, Joel W

    2008-01-01

    Urbanization alters stream and watershed hydrology so that fish from urban stream systems are confronted with extreme flows during storms and runoff events. To test whether residence in urban streams is associated with altered swimming ability, we compared sprint and endurance swimming performances of eight populations of blacknose dace (Rhinichthys atratulus) from different watersheds along an urban/rural gradient. Watershed impervious surface cover, a measure of urbanization, was significantly correlated with sprint performance in dace from all stream types and endurance swimming performance (U(crit)) when only fish from urban streams were analyzed. Three estimators of water flow in a stream system, watershed area, mean annual discharge, and base-flow current speed, were all related to U(crit) in fish from nonurban streams. The U(crit) was significantly repeatable after 6 mo in the laboratory, but dace populations with exceptional U(crit) values lost ability under no-flow, "detraining" conditions. Sprint performance changed substantially in individual dace after 10 wk under no-flow conditions and was a significant function of the animal's original performance. Animals with high sprint performance tended to lose ability, whereas those with poor performance gained ability. Interpopulation differences in both sprint and endurance swimming were robust over multiple years of collection from the same sites. PMID:18040970

  10. Effect of temperature on the effectiveness of artificial reproduction of dace [Cyprinidae (Leuciscus leuciscus (L.))] under laboratory and field conditions.

    PubMed

    Nowosad, Joanna; Targońska, Katarzyna; Chwaluczyk, Rafał; Kaszubowski, Rafał; Kucharczyk, Dariusz

    2014-10-01

    This study sought to determine the effect of water temperature on the effectiveness of artificial reproduction of dace brooders under laboratory and field conditions. Three temperatures were tested in the laboratory: 9.5, 12 and 14.5 °C (± 0.1 °C). The water temperature under field conditions was 11.0 ± 0.3 °C (Czarci Jar Fish Farm) and 13.2 ± 1.4 °C (Janowo Fish Farm). The study showed that artificial reproduction of dace is possible in all the temperature ranges under study and an embryo survival rate of over 87% can be achieved. Dace has also been found to be very sensitive to rapid temperature changes, even within the temperature ranges optimal for the species. Such changes have an adverse effect on the outcome of the reproduction process, such as a decrease in the percentage of reproducing females, a decrease in the pseudo-gonado-somatic index (PGSI) and a decrease in the embryo survival rate.

  11. Does predation risk influence habitat use by northern redbelly dace Phoxinus eos at different spatial scales?

    PubMed

    Dupuch, A; Magnan, P; Bertolo, A; Dill, L M; Proulx, M

    2009-05-01

    This study investigated the relationship between spatial variations in predation risk and abundance of northern redbelly dace Phoxinus eos at both macroscale (littoral v. pelagic zones) and microscale (structured v. open water habitats in the littoral zone) of Canadian Shield lakes. Minnow traps were placed in both structured and open water habitats in the littoral zone of 13 Canadian Shield lakes, and estimates of the relative predation risk of P. eos in both the pelagic and the littoral zones were obtained from tethering experiments. Results showed that (1) the mean abundance of P. eos in the littoral zone was positively correlated with the relative predation risk in the pelagic zone, (2) P. eos preferentially used structured over open water habitats in the littoral zone and (3) this preference was not related to the relative predation risk in the littoral zone but decreased as the relative predation risk increased in the pelagic zone. At the lake level, these results support the hypothesis that P. eos enter the littoral zone to avoid pelagic piscivores. At the littoral zone level, the results do not necessarily contradict the widely accepted view that P. eos preferentially use structured over open habitats to reduce their predation risk, but suggest that flexibility in antipredator tactics (e.g. shelter use v. shoaling) could explain the spatial distribution of P. eos between structured and open water habitats. PMID:20735640

  12. Threshold responses of Blackside Dace (Chrosomus cumberlandensis) and Kentucky Arrow Darter (Etheostoma spilotum) to stream conductivity

    USGS Publications Warehouse

    Hitt, Nathaniel P.; Floyd, Michael; Compton, Michael; McDonald, Kenneth

    2016-01-01

    Chrosomus cumberlandensis (Blackside Dace [BSD]) and Etheostoma spilotum (Kentucky Arrow Darter [KAD]) are fish species of conservation concern due to their fragmented distributions, their low population sizes, and threats from anthropogenic stressors in the southeastern United States. We evaluated the relationship between fish abundance and stream conductivity, an index of environmental quality and potential physiological stressor. We modeled occurrence and abundance of KAD in the upper Kentucky River basin (208 samples) and BSD in the upper Cumberland River basin (294 samples) for sites sampled between 2003 and 2013. Segmented regression indicated a conductivity change-point for BSD abundance at 343 μS/cm (95% CI: 123–563 μS/cm) and for KAD abundance at 261 μS/cm (95% CI: 151–370 μS/cm). In both cases, abundances were negligible above estimated conductivity change-points. Post-hoc randomizations accounted for variance in estimated change points due to unequal sample sizes across the conductivity gradients. Boosted regression-tree analysis indicated stronger effects of conductivity than other natural and anthropogenic factors known to influence stream fishes. Boosted regression trees further indicated threshold responses of BSD and KAD occurrence to conductivity gradients in support of segmented regression results. We suggest that the observed conductivity relationship may indicate energetic limitations for insectivorous fishes due to changes in benthic macroinvertebrate community composition.

  13. Does predation risk influence habitat use by northern redbelly dace Phoxinus eos at different spatial scales?

    PubMed

    Dupuch, A; Magnan, P; Bertolo, A; Dill, L M; Proulx, M

    2009-05-01

    This study investigated the relationship between spatial variations in predation risk and abundance of northern redbelly dace Phoxinus eos at both macroscale (littoral v. pelagic zones) and microscale (structured v. open water habitats in the littoral zone) of Canadian Shield lakes. Minnow traps were placed in both structured and open water habitats in the littoral zone of 13 Canadian Shield lakes, and estimates of the relative predation risk of P. eos in both the pelagic and the littoral zones were obtained from tethering experiments. Results showed that (1) the mean abundance of P. eos in the littoral zone was positively correlated with the relative predation risk in the pelagic zone, (2) P. eos preferentially used structured over open water habitats in the littoral zone and (3) this preference was not related to the relative predation risk in the littoral zone but decreased as the relative predation risk increased in the pelagic zone. At the lake level, these results support the hypothesis that P. eos enter the littoral zone to avoid pelagic piscivores. At the littoral zone level, the results do not necessarily contradict the widely accepted view that P. eos preferentially use structured over open habitats to reduce their predation risk, but suggest that flexibility in antipredator tactics (e.g. shelter use v. shoaling) could explain the spatial distribution of P. eos between structured and open water habitats.

  14. Pluvial Drainage Patterns and Holocene Desiccation Influenced the Genetic Architecture of Relict Dace, Relictus solitarius (Teleostei: Cyprinidae)

    PubMed Central

    Houston, Derek D.; Evans, R. Paul; Shiozawa, Dennis K.

    2015-01-01

    Changing drainage patterns have played a significant role in the evolution of western North American aquatic taxa. Relict dace, Relictus solitarius, is a Great Basin endemic cyprinid with a native range that is restricted to four valleys in eastern Nevada. Relictus solitarius now occupies spring systems that are the remnants of Pleistocene-era pluvial lakes, although it may have occurred in the area for much longer. Here we use mitochondrial DNA sequence data to assess range-wide genetic diversity of R. solitarius, and to estimate divergence times to determine whether pluvial drainages played an important role in shaping intraspecific genetic diversity. Genetic diversification within R. solitarius began during the early to mid-Pleistocene, separating populations within two sets of valleys (Butte/Ruby and Goshute/Steptoe). Additional diversification in each of the two sets of valleys occurred more recently, in the mid- to late-Pleistocene. Holocene desiccation has further isolated populations, and each population sampled contains unique mtDNA haplotypes. Pluvial drainage patterns did contribute to the genetic structure observed within R. solitarius, but most of the intraspecific diversification does not appear to be associated with the Last Glacial Maximum. Holocene desiccation has also contributed to the observed genetic structure. The relict dace populations we sampled are all unique, and we recommend that future management efforts should strive to preserve as much of the genetic diversity as possible. PMID:26394395

  15. In situ bioassays of brook trout (salvelinus fontinalis) and blacknose dace (rhinichthys atratulus) in adirondack streams affected by episodic acidification

    SciTech Connect

    Simonin, H.A.; Kretser, W.A.; Bath, D.W.; Olson, M.; Gallagher, J.

    1993-01-01

    In situ bioassays were conducted using native Adirondack brook trout and blacknose dace in four headwater streams. Conductivity, pH, temperature, and stage height were monitored continuously, and water samples for laboratory analysis were collected during hydrologic episodes. Fish survived well during baseflow conditions, but during periods of spring snowmelt or large precipitation events, survival was poor. Bioassay fish that had been in the stream 15-24 d survived episodes better than fish that had either not become acclimatized or recovered from handling. Duration of exposure to acidic episodes was critical. Extended periods of poor water quality resulted in fish mortality and may be more important to native populations than short acidic episodes.

  16. Postglacial recolonization of eastern Blacknose Dace,Rhinichthys atratulus(Teleostei: Cyprinidae), through the gateway of New England

    PubMed Central

    Tipton, Michelle L; Gignoux-Wolfsohn, Sarah; Stonebraker, Phoebe; Chernoff, Barry

    2011-01-01

    During the last ice age, much of North America far south as 40°N was covered by glaciers (Hewitt 2000). About 20,000 years ago, as the glaciers retreated, the hydrologic landscape changed dramatically creating waterways for fish dispersal. The number of populations responsible for recolonization and the regions from which they recolonized are unknown for many freshwater fishes living in New England and southeastern Canada. The Blacknose Dace,Rhinichthys atratulus, is one of the freshwater fish species that recolonized this region. We hypothesize that the earliest deglaciated region, modern-day Connecticut, was recolonized byR. atratulusvia a single founding event by a single population. In this paper, we test this hypothesis phylogenetically with regard to the major drainage basins within Connecticut. The mitochondrial DNA exhibits low nucleotide diversity, high haplotype diversity, and a dominant haplotype found across the state. A small percentage of individuals in the Housatonic drainage basin, however, share a haplotype with populations in New York drainage basins, a haplotype not found elsewhere in Connecticut's drainage basins. We calculated a range for the rate of divergence for NADH dehydrogenase subunit 2 (nd2) and control region (ctr) of 4.43–6.76% and 3.84–8.48% per million years (my), respectively. While this range is higher than the commonly accepted rate of 2% for mitochondrial DNA, these results join a growing list of publications finding high rates of divergence for various taxa (Peterson and Masel 2009). The data support the conclusion that Connecticut as a whole was recolonized initially by a single founding event that came from a single refugium. Subsequently, the Housatonic basin alone experienced a secondary recolonization event. PMID:22393505

  17. [Anankastic phenomena in psychiatry (predestination and dace in mental life)].

    PubMed

    Rojas Malpica, Carlos Alberto

    2012-01-01

    The purpose of this communication is to compare behavioral mineralization occurring in mental illness to the freshness and plasticity behavior in health. The epistemological fundamentals of this paper include the theories of chaos and complexity of Edgar Morin, the concept of autopoiesis developed from the theory of systems, the latest discoveries on the neurobiology of consciousness and their associations with Darwinian psychiatry and also, following Lain Entralgo, recreating the Greek concept of ananke to describe the behavior fixation in an anachronistic place of the physis in mental illness. It provides some empirical evidence to support the proposal, and all this is rigorously examined with hermeneutic phenomenology and its theoretical possibilities. This leads to an epistemological rethinking of clinical and therapeutic proposal aimed at the subject and the recovery of his or her freedom.

  18. FATHEAD MINNOW AND PEARL DACE PILOT AT CANADIAN EXPERIMENTAL LAKES AREA

    EPA Science Inventory

    There is increasing concern about the potential impact of EDCs on aquatic organisms. Among the EDCs found in aquatic habitats are synthetic estrogens, which are used in contraceptives and other pharmaceuticals. These chemicals enter waterways through sewage treatment plants and s...

  19. A stochastic population model to evaluate Moapa dace (Moapa coriacea) population growth under alternative management scenarios

    USGS Publications Warehouse

    Perry, Russell W.; Jones, Edward; Scoppettone, G. Gary

    2015-07-14

    Increasing or decreasing the total carrying capacity of all stream segments resulted in changes in equilibrium population size that were directly proportional to the change in capacity. However, changes in carrying capacity to some stream segments but not others could result in disproportionate changes in equilibrium population sizes by altering density-dependent movement and survival in the stream network. These simulations show how our IBM can provide a useful management tool for understanding the effect of restoration actions or reintroductions on carrying capacity, and, in tur

  20. VITELLOGENIN GENE EXPRESSION IN FATHEAD MINNOWS AND PEARL DACE FROM CONTROL (NON-DOSED) AND LAKES DOSED WITH EE2 IN THE CANADIAN EXPERIMENTAL LAKES AREA

    EPA Science Inventory

    A whole-lake endocrine disruption experiment was conducted by Fisheries and Oceans Canada at the Experimental Lakes Area (ELA) in northwestern Ontario for three years beginning in 2001. This experiment examined population, organismal, biochemical and cellular-level effects in la...

  1. Group foraging by a stream minnow: shoals or aggregations?

    USGS Publications Warehouse

    Freeman, Mary C.; Grossman, G.D.

    1992-01-01

    The importance of social attraction in the formation of foraging groups was examined for a stream-dwelling cyprinid, the rosyside dace, Clinostomus funduloides. Dace arrivals and departures at natural foraging sites were monitored and tested for (1) tendency of dace to travel in groups, and (2) dependency of arrival and departure rates on group size. Dace usually entered and departed foraging sites independently of each other. Group size usually affected neither arrival rate nor departure probability. Thus, attraction among dace appeared weak; foraging groups most often resulted from dace aggregating in preferred foraging sites. The strongest evidence of social attraction was during autumn, when dace departure probability often decreased with increasing group size, possibly in response to increased threat of predation by a seasonally occurring predator. Dace also rarely avoided conspecifics, except when an aggressive individual defended a foraging site. Otherwise, there was little evidence of exploitative competition among dace for drifting prey or of foraging benefits in groups, because group size usually did not affect individual feeding rates. These results suggest that the benefits of group foraging demonstrated under laboratory conditions in other studies may not always apply to field conditions.

  2. 76 FR 63359 - Endangered and Threatened Wildlife and Plants; Proposed Designation of Critical Habitat for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... published in the Federal Register on August 9, 2011 (76 FR 48722). See also the discussion of habitat in the... depends. Sedimentation could negatively affect the chucky madtom by reducing growth rates, disease... nutrification, and excessive algal growths. Laurel Dace The laurel dace (Chrosomus saylori) is endemic to...

  3. Computationally efficient calibration of WATCLASS Hydrologic models using surrogate optimization

    NASA Astrophysics Data System (ADS)

    Kamali, M.; Ponnambalam, K.; Soulis, E. D.

    2007-07-01

    In this approach, exploration of the cost function space was performed with an inexpensive surrogate function, not the expensive original function. The Design and Analysis of Computer Experiments(DACE) surrogate function, which is one type of approximate models, which takes correlation function for error was employed. The results for Monte Carlo Sampling, Latin Hypercube Sampling and Design and Analysis of Computer Experiments(DACE) approximate model have been compared. The results show that DACE model has a good potential for predicting the trend of simulation results. The case study of this document was WATCLASS hydrologic model calibration on Smokey-River watershed.

  4. The effect of fixative on total length of small-bodied stream fishes

    USGS Publications Warehouse

    Brinkley, P.D.; Fischer, John R.; Paukert, C.P.

    2008-01-01

    Longnose dace (Rhinichthys cataractae), red shiner (Cyprinella lutrensis), and green sunfish (Lepomis cyanellus) were fixed in 5% and 10% formalin and 70% and 95% ethyl alcohol to determine fixative effects on total length (TL). Total length reduced over the first 24h for all species (P<0.0001) but then stabilized. Longnose dace and green sunfish TL reduction was less for 5% formalin than for either 70% or 95% ethanol (both P<0.0001), whereas the fixative solution had no effect on red shiner TL (P=0.347). A greater percentage of change in TL was observed in green sunfish and red shiner than in longnose dace, suggesting that body form (compressiform vs. fusiform) may affect shrinkage rate among adult stream fishes.

  5. Synergistic Antiproliferative Effects of a New Cucurbitacin B Derivative and Chemotherapy Drugs on Lung Cancer Cell Line A549.

    PubMed

    Marostica, Lucas Lourenço; Silva, Izabella Thaís; Kratz, Jadel Müller; Persich, Lara; Geller, Fabiana Cristina; Lang, Karen Luise; Caro, Miguel Soriano Balparda; Durán, Fernando Javier; Schenkel, Eloir Paulo; Simões, Cláudia Maria Oliveira

    2015-10-19

    Nonsmall cell lung cancer (NSCLC) represents an important cause of mortality worldwide due to its aggressiveness and growing resistance to currently available therapy. Cucurbitacins have emerged as novel potential anticancer agents showing strong antiproliferative effects and can be promising candidates for combined treatments with clinically used anticancer agents. This study investigates the synergistic antiproliferative effects of a new semisynthetic derivative of cucurbitacin B (DACE) with three chemotherapy drugs: cisplatin (CIS), irinotecan (IRI), and paclitaxel (PAC) on A549 cells. The most effective combinations were selected for studies of the mechanism of action. Using an in silico tool, DACE seems to act by a different mechanism of action when compared with that of different classes of drugs already used in clinical settings. DACE also showed potent synergic effects with drugs, and the most potent combinations induced G2/M cell cycle arrest by modulating survivin and p53 expression, disruption of F-actin cytoskeleton, and cell death by apoptosis. These treatments completely inhibited the clonogenic potential and did not reduce the proliferation of nontumoral lung cells (MRC-5). DACE also showed relevant antimigratory and anti-invasive effects, and combined treatments modulated cell migration signaling pathways evolved with metastasis progression. The effects of DACE associated with drugs was potentiated by the oxidant agent l-buthionine-sulfoximine (BSO), and attenuated by N-acetilcysteine (NAC), an antioxidant agent. The antiproliferative effects induced by combined treatments were attenuated by a pan-caspase inhibitor, indicating that the effects of these treatments are dependent on caspase activity. Our data highlight the therapeutic potential of DACE used in combination with known chemotherapy drugs and offer important insights for the development of more effective and selective therapies against lung cancer.

  6. Who Loves Prescriptivism and Why? Some Aspects of Language Correctness in Latvia

    ERIC Educational Resources Information Center

    Strelevica-Ošina, Dace

    2016-01-01

    Taking into account the crosscultural differences in prescriptive attitudes in various linguistic communities, a theory of three types of prescriptivism--human-oriented, language-oriented, and error-oriented prescriptivism--has been offered [Strelevica-Ošina, Dace. [2011] 2012. "Kapec mes gribam, lai valoda ir pareiza? Ieskats preskriptivisma…

  7. MODELED RESIDENTIAL CHLORPYRIFOS EXPOSURE AND DOSE TO CHILDREN VIA DERMAL SURFACE RESIDUE CONTACT AND NON-DIETARY INGESTION

    EPA Science Inventory

    A physically-based stochastic model has been applied to estimate residential chlorpyrifos exposure and dace to children via the non-dietary ingestion and dermal residue contact pathways. Time-location-activity data for 2825 children were sampled from national surveys to generat...

  8. Evaluation of protected, threatened, and endangered fish species in Upper Bear Creek watershed

    SciTech Connect

    Ryon, M.G.

    1998-07-01

    The East Bear Creek Site for the proposed centralized waste facility on the US Department of Energy`s Oak Ridge Reservation was evaluated for potential rare, threatened or endangered (T and E) fish species in the six primary tributaries and the main stem of Bear Creek that are within or adjacent to the facility footprint. These tributaries and portion of Bear Creek comprise the upper Bear Creek watershed. One T and E fish species, the Tennessee dace (Phoxinus tennesseensis), was located in these streams. The Tennessee dace is listed by the State of Tennessee as being in need of management, and as such its habitat is afforded some protection. Surveys indicated that Tennessee dace occupy the northern tributaries NT-1, NT-4, and NT-5, as well as Bear Creek. Several specimens of the dace were gravid females, indicating that the streams may function as reproductive habitat for the species. The implications of impacts on the species are discussed and mitigation objectives are included.

  9. INFLUENCE OF HUMAN ACTIVITIES ON LANDSCAPE AND HABITAT FACTORS CONTROLLING PACIFIC NORTHWEST COASTAL STREAM FISH ASSEMBLAGES

    EPA Science Inventory

    Fish assemblages in the Oregon-Washington coast range consist primarily of coldwater taxa of salmonids, cottids, dace, and Pacific giant salamander. This region has a dynamic natural disturbance regime, where mass failures, debris torrents, fire, and tree-fall are driven by clim...

  10. Drugs with anticholinergic effects and cognitive impairment, falls and all-cause mortality in older adults: A systematic review and meta-analysis

    PubMed Central

    Ruxton, Kimberley; Woodman, Richard J; Mangoni, Arduino A

    2015-01-01

    Aim The aim was to investigate associations between drugs with anticholinergic effects (DACEs) and cognitive impairment, falls and all-cause mortality in older adults. Methods A literature search using CINAHL, Cochrane Library, Embase and PubMed databases was conducted for randomized controlled trials, prospective and retrospective cohort and case-control studies examining the use of DACEs in subjects ≥65 years with outcomes on falls, cognitive impairment and all-cause mortality. Retrieved articles were published on or before June 2013. Anticholinergic exposure was investigated using drug class, DACE scoring systems (anticholinergic cognitive burden scale, ACB; anticholinergic drug scale, ADS; anticholinergic risk scale, ARS; anticholinergic component of the drug burden index, DBIAC) or assessment of individual DACEs. Meta-analyses were performed to pool the results from individual studies. Results Eighteen studies fulfilled the inclusion criteria (total 124 286 participants). Exposure to DACEs as a class was associated with increased odds of cognitive impairment (OR 1.45, 95% CI 1.16, 1.73). Olanzapine and trazodone were associated with increased odds and risk of falls (OR 2.16, 95% CI 1.05, 4.44; RR 1.79, 95% CI 1.60, 1.97, respectively), but amitriptyline, paroxetine and risperidone were not (RR 1.73, 95% CI 0.81, 2.65; RR 1.80, 95% CI 0.81, 2.79; RR 1.39, 95% CI 0.59, 3.26, respectively). A unit increase in the ACB scale was associated with a doubling in odds of all-cause mortality (OR 2.06, 95% CI 1.82, 2.33) but there were no associations with the DBIAC (OR 0.88, 95% CI 0.55, 1.42) or the ARS (OR 3.56, 95% CI 0.29, 43.27). Conclusions Certain individual DACEs or increased overall DACE exposure may increase the risks of cognitive impairment, falls and all-cause mortality in older adults. PMID:25735839

  11. Diel periodicity of drift of larval fishes in tributaries of Lake Ontario

    USGS Publications Warehouse

    Johnson, J.H.; McKenna, J.E., Jr.

    2007-01-01

    Diel patterns of downstream drift were examined during mid-June in three tributaries of Lake Ontario. Larval fishes were collected in drift nets that were set in each stream for 72 consecutive hours and emptied at 4-h intervals. Fantail darter (Ethostoma flabellare) and blacknose dace (Rhinichthys atractulus) were the two most abundant native stream fishes and were two of the three species collected in the ichthyoplankton drift. Fantail darter larvae comprised 100%, 98.9%, and 70.2% of the ichthyoplankton in the three streams. Most larval fishes (96%) drifted at night with peak catches occurring at 2400h in Orwell Brook and Trout Brook and 0400h in Little Sandy Creek. Based on stream temperatures, peak spawning and larval drift of blacknose dace probably occurred later in the season.

  12. Response of fish populations to natural channel design restoration in streams of the Catskill Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Warren, D.R.; Ernst, A.G.; Mulvihill, C.I.

    2008-01-01

    Many streams and rivers throughout North America have been extensively straightened, widened, and hardened since the middle 1800s, but related effects on aquatic ecosystems have seldom been monitored, described, or published. Beginning in the early 1990s, reach-level restoration efforts began to base projects on natural channel design (NCD) techniques and Rosgen's (1994b, 1996) river classification system in an effort to duplicate or mimic stable reference reach geomorphology. Four reaches in three streams of the Catskill Mountains, New York, were restored from 2000 to 2002 using NCD techniques to decrease bed and bank erosion rates, decrease sediment loads, and improve water quality. The effects of restoration on the health of fish assemblages were assessed through a before-after, control-impact (BACI) study design to quantify the net changes in population and community indices at treatment reaches relative to index changes at unaltered reference reaches from 1999 to 2004. After restoration, community richness and biomass at treatment reaches increased by more than one-third. Changes in fish communities were caused mainly by shifts in dominant species populations; fish community biomass and total fish abundance were generally dominated by daces or daces and sculpins before restoration and by one or more salmonid species after restoration. Density and biomass of eastern blacknose dace Rhinichthys atratulus, longnose dace R. cataractae, and slimy sculpin Cottus cognatus did not change appreciably, whereas net salmonid density and biomass increased substantially after restoration. These changes were driven primarily by large increases in populations of brown trout Salmo trutta. The findings demonstrate that the structure, function, and ultimately the health of resident fish populations and communities can be improved, at least over the short term, through NCD restoration in perturbed streams of the Catskill Mountains. ?? Copyright by the American Fisheries Society

  13. Relative abundance and distribution of fishes within an established Area of Critical Environmental Concern, of the Amargosa River Canyon and Willow Creek, Inyo and San Bernardino Counties, California

    USGS Publications Warehouse

    Scoppettone, G. Gary; Hereford, Mark E.; Rissler, Peter H.; Johnson, Danielle M.; Salgado, Antonio

    2011-01-01

    The Amargosa River Canyon of San Bernardino and Inyo County, California, has been designated by the Bureau of Land Management as an Area of Critical Environmental Concern, due in part to its unique flora and fauna. As a task of the Area of Critical Environmental Concern implementation plan, a survey of native fishes was conducted from June 21 to August 12, 2010. Geographic Information System tools were used to map sampling locations, which were spaced at 50-meter intervals. Global Positioning Systems were used to locate sampling stations, and stations with adequate water for successful trapping were sampled with baited minnow traps. Amargosa River pupfish (Cyprinodon nevadensis amargosae) and speckled dace (Rhinichthys osculus spp.) were widespread throughout Armargosa River Canyon. Throughout the study area 8,558 pupfish were captured at 194 stations; 3,472 speckled dace were captured at 210 stations; 238 red-swamp crayfish (Procambarus clarkia) were captured at 83 stations; and 1,095 western mosquitofish (Gambusia affinus) were captured at 110 stations. Pupfish were most abundant in open water habitat with native riparian vegetation, and they were significantly less abundant where the stream was completely covered by cattails or where saltcedar (Tamarix sp.) dominated the riparian corridor. There was no relationship between stream cover and speckled dace distribution. Non-native western mosquitofish and red-swamp crayfish densities were significantly higher in stream reaches dominated by saltcedar. The continued spread of saltcedar threatens to negatively affect pupfish and potentially reduce speckled dace abundance throughout the Amargosa River Canyon. This study can serve as baseline information for observing native fish populations in the future, as related to potential changes to the Amargosa River Canyon ecosystem.

  14. An evaluation of the efficiency of minnow traps for estimating the abundance of minnows in desert spring systems

    USGS Publications Warehouse

    Peterson, James T.; Scheerer, Paul D.; Clements, Shaun

    2015-01-01

    Desert springs are sensitive aquatic ecosystems that pose unique challenges to natural resource managers and researchers. Among the most important of these is the need to accurately quantify population parameters for resident fish, particularly when the species are of special conservation concern. We evaluated the efficiency of baited minnow traps for estimating the abundance of two at-risk species, Foskett Speckled Dace Rhinichthys osculus ssp. and Borax Lake Chub Gila boraxobius, in desert spring systems in southeastern Oregon. We evaluated alternative sample designs using simulation and found that capture–recapture designs with four capture occasions would maximize the accuracy of estimates and minimize fish handling. We implemented the design and estimated capture and recapture probabilities using the Huggins closed-capture estimator. Trap capture probabilities averaged 23% and 26% for Foskett Speckled Dace and Borax Lake Chub, respectively, but differed substantially among sample locations, through time, and nonlinearly with fish body size. Recapture probabilities for Foskett Speckled Dace were, on average, 1.6 times greater than (first) capture probabilities, suggesting “trap-happy” behavior. Comparison of population estimates from the Huggins model with the commonly used Lincoln–Petersen estimator indicated that the latter underestimated Foskett Speckled Dace and Borax Lake Chub population size by 48% and by 20%, respectively. These biases were due to variability in capture and recapture probabilities. Simulation of fish monitoring that included the range of capture and recapture probabilities observed indicated that variability in capture and recapture probabilities in time negatively affected the ability to detect annual decreases by up to 20% in fish population size. Failure to account for variability in capture and recapture probabilities can lead to poor quality data and study inferences. Therefore, we recommend that fishery researchers and

  15. High diet overlap between native small-bodied fishes and nonnative fathead minnow in the Colorado River, Grand Canyon, Arizona

    USGS Publications Warehouse

    Seegert, Sarah E. Zahn; Rosi-Marshall, Emma J.; Baxter, Colden V.; Kennedy, Theodore A.; Hall, Robert O.; Cross, Wyatt F.

    2014-01-01

    River regulation may mediate the interactions among native and nonnative species, potentially favoring nonnative species and contributing to the decline of native populations. We examined food resource use and diet overlap among small-bodied fishes in the Grand Canyon section of the Colorado River as a first step in evaluating potential resource competition. We compared the diets of the predominant small-bodied fishes (native Speckled Dace Rhinichthys osculus, juvenile Flannelmouth Sucker Catostomus latipinnis, and juvenile Bluehead Sucker C. discobolus, and nonnative Fathead Minnow Pimephales promelas) across seasons at four sites downstream of Glen Canyon Dam using nonmetric multidimensional scaling and Schoener's similarity index. The diets of these fishes included diatoms, amorphous detritus, aquatic invertebrates (especially simuliid and chironomid larvae), terrestrial invertebrates, and terrestrial vegetation. Diets varied with season and were affected by high turbidity. Fish consumed more amorphous detritus and terrestrial vegetation during the summer monsoon season (July–September), when turbidity was higher. The diets of all species overlapped, but there was large variation in the degree of overlap. The diets of juvenile suckers and Fathead Minnows were most similar, while Speckled Dace had relatively distinct diets. The differences took the form of higher proportions of diatoms and amorphous detritus in the diets of Bluehead Suckers and Fathead Minnows and higher proportions of simuliids and chironomids in those of Speckled Dace. If food resources are or become limiting, diet overlap suggests that competition may occur among native and nonnative species, which could have implications for the population dynamics of these fishes and for the management of the Colorado River ecosystem in Grand Canyon.

  16. Nature of the Surface-Exposed Cytochrome-Electrode Interactions in Electroactive Biofilms of Desulfuromonas acetoxidans.

    PubMed

    Alves, A; Ly, H K; Hildebrandt, P; Louro, R O; Millo, D

    2015-06-25

    Metal-respiring bacteria are microorganisms capable of oxidizing organic pollutants present in wastewater and transferring the liberated electrons to an electrode. This ability has led to their application as catalysts in bioelectrochemical systems (BESs), a sustainable technology coupling bioremediation to electricity production. Crucial for the functioning of these BESs is a complex protein architecture consisting of several surface-exposed multiheme proteins, called outer membrane cytochromes, wiring the cell metabolism to the electrode. Although the role of these proteins has been increasingly understood, little is known about the protein-electrode interactions and their impact on the performance of BESs. In this study, we used surface-enhanced resonance Raman spectroscopy in combination with electrochemical techniques to unravel the nature of the protein-electrode interaction for the outer membrane cytochrome OmcB from Desulfuromonas acetoxidans (Dace). Comparing the spectroelectrochemical properties of OmcB bound directly to the electrode surface with those of the same protein embedded inside an electroactive biofilm, we have shown that the surface-exposed cytochromes of Dace biofilms are in direct contact with the electrode surface. Even if direct binding causes protein denaturation, the biofilm possesses the ability to minimize the extent of the damage maximizing the amount of cells in direct electrical communication with the electrode.

  17. Analysis of potential factors allowing coexistence in a sexual/asexual minnow complex.

    PubMed

    Barron, James N; Lawson, Troy J; Jensen, Philip A

    2016-03-01

    The northern redbelly dace (Chrosomus eos) and the finescale dace (C. neogaeus) have hybridized to produce an all-female, asexual hybrid (C. eos-neogaeus) that reproduces by sperm-limited parthenogenesis (gynogenesis). However, in this system, gynogenesis is not 100 % efficient; triploid females are occasionally formed which reproduce as sexuals, producing nuclear males and females of the paternal species (generally C. eos). Thus, the asexual lineage continually produces occasional males that can serve as a sperm source. Because (almost) all hybrid offspring are females, the hybrid population has the potential to grow more quickly and even outcompete the sexuals, thus eliminating their own sperm source. The current research uses behavioral testing, ovarian analyses, and modeling to examine three hypotheses for the maintenance of the sexual/asexual complex: male discrimination against hybrid females, fecundity differences between sexual and asexual females, and production of nuclear male sexuals from the asexual lineage. Results suggest that males do not discriminate against asexual females, and that both sexual and asexual females have similar fecundities, eliminating these hypotheses as potential coexistence mechanisms. However, computer simulations of population growth support the hypothesis that occasional triploidy within the hybrid population supplies enough breeding males to maintain the sexual/asexual complex. PMID:26650583

  18. Fish abundance, distribution, and habitat use

    NASA Astrophysics Data System (ADS)

    Hoffnagle, Timothy L.; Valdez, Richard A.; Speas, David W.

    The 1996 controlled flood in the Colorado River, Grand Canyon, was designed, in part, to improve conditions for juvenile native fishes by reshaping habitat and displacing non-native fishes. We examined changes in abundance and distributions of native and non-native fishes immediately before and after the controlled flood and recovery of affected species 2.5 and 6 months after. Catch-per-unit-effort (CPUE) of humpback chub and flannelmouth sucker did not differ in pre- versus post-flood periods. CPUE of plains killifish, bluehead sucker and fathead minnow decreased following the flood, and CPUE of speckled dace and rainbow trout increased. Juvenile humpback chub remained primarily along talus shorelines at all discharges, while at higher discharges, speckled dace shifted from mid-channel riffles to debris fans and talus and fathead minnows used primarily vegetated shorelines. There was evidence of some downstream displacement of plains killifish, fathead minnows and rainbow trout. Catch rates of all species showed seasonal variation following the flood, with summer recruitment of young-of-the-year, particularly fathead minnows and plains killifish. Although short-term reductions in catch rates of fathead minnows and plains killifish occurred, these populations returned to pre-flood densities by 6 months after the flood. Catch rates of all species before and after the flood were similar to those recorded in previous years. We determined that the controlled flood did not significantly alter native fish distributions or abundances through Grand Canyon.

  19. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    NASA Astrophysics Data System (ADS)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  20. Observations of the distributions of five fish species in a small Appalachian stream

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.; Moore, S.E.

    2002-01-01

    The notion has been growing that resident stream fishes exhibit a greater capacity for movement than was previously thought. In this study, we recorded the distributions of four resident fish species (longnose dace Rhinichthys cataractae, blacknose dace R. atratulus, mottled sculpin Cottus bairdi, and rainbow trout Oncorhynchus mykiss) and one nonresident species (central stoneroller Campostoma anomalum) in Rock Creek, a small tributary of Cosby Creek in Great Smoky Mountains National Park, over the period 1979a??1995. During this study, 1,998 individuals of resident species were collected from stream sections considered to be within a common area of distribution for each species. Forty-five individuals of resident and nonresident species were captured upstream of these areas, and eight of these fish were considered to be larger than individuals considered typical for each species. Small mammal dispersal theory concepts were used to classify and describe fish movements outside of common areas of distribution. These movements were identified as important in maintaining population connectivity within stream drainages, contributing to reducing the potential for local extinctions of populations and to the recolonization of unoccupied habitats. This study highlights the need for continued study of fish movements in stream drainages and for development of appropriate resource management strategies based partly on the spatial dynamics of fish populations and communities.

  1. Coexistence of Fish Species in a Large Lowland River: Food Niche Partitioning between Small-Sized Percids, Cyprinids and Sticklebacks in Submersed Macrophytes

    PubMed Central

    Dukowska, Małgorzata; Grzybkowska, Maria

    2014-01-01

    In the spring and summer of each year, large patches of submersed aquatic macrophytes overgrow the bottom of the alluvial Warta River downstream of a large dam reservoir owing to water management practices. Environmental variables, macroinvertebrates (zoobenthos and epiphytic fauna, zooplankton) and fish abundance and biomass were assessed at this biologically productive habitat to learn intraseasonal dynamics of food types, and their occurrence in the gut contents of small-sized roach, dace, perch, ruffe and three-spined stickleback. Gut fullness coefficient, niche breadth and niche overlap indicated how the fishes coexist in the macrophytes. Chironomidae dominated in the diet of the percids. However, ruffe consumed mostly benthic chironomids, while perch epiphytic chironomids and zooplankton. The diet of dace resembled that in fast flowing water although this rheophilic species occurred at unusual density there. The generalist roach displayed the lowest gut fullness coefficient values and widest niche breadth; consequently, intraspecific rather than interspecific competition decided the fate of roach. Three-spined stickleback differed from the other fishes by consuming epiphytic simuliids and fish eggs. The diet overlap between fishes reaching higher gut fullness coefficient values was rather low when the food associated with the submersed aquatic macrophytes was most abundant; this is congruent with the niche overlap hypothesis that maximal tolerable niche overlap can be higher in less intensely competitive conditions. PMID:25365420

  2. Analysis of potential factors allowing coexistence in a sexual/asexual minnow complex.

    PubMed

    Barron, James N; Lawson, Troy J; Jensen, Philip A

    2016-03-01

    The northern redbelly dace (Chrosomus eos) and the finescale dace (C. neogaeus) have hybridized to produce an all-female, asexual hybrid (C. eos-neogaeus) that reproduces by sperm-limited parthenogenesis (gynogenesis). However, in this system, gynogenesis is not 100 % efficient; triploid females are occasionally formed which reproduce as sexuals, producing nuclear males and females of the paternal species (generally C. eos). Thus, the asexual lineage continually produces occasional males that can serve as a sperm source. Because (almost) all hybrid offspring are females, the hybrid population has the potential to grow more quickly and even outcompete the sexuals, thus eliminating their own sperm source. The current research uses behavioral testing, ovarian analyses, and modeling to examine three hypotheses for the maintenance of the sexual/asexual complex: male discrimination against hybrid females, fecundity differences between sexual and asexual females, and production of nuclear male sexuals from the asexual lineage. Results suggest that males do not discriminate against asexual females, and that both sexual and asexual females have similar fecundities, eliminating these hypotheses as potential coexistence mechanisms. However, computer simulations of population growth support the hypothesis that occasional triploidy within the hybrid population supplies enough breeding males to maintain the sexual/asexual complex.

  3. Relative distribution and abundance of fishes and crayfish in 2010 and 2014 prior to saltcedar (Tamarix ssp.) removal in the Amargosa River Canyon, southeastern California

    USGS Publications Warehouse

    Hereford, Mark E.

    2016-07-22

    The Amargosa River Canyon, located in the Mojave Desert of southeastern California, contains the longest perennial reach of the Amargosa River. Because of its diverse flora and fauna, it has been designated as an Area of Critical Environmental Concern and a Wild and Scenic River by the Bureau of Land Management. A survey of fishes conducted in summer 2010 indicated that endemic Amargosa River pupfish (Cyprinodon nevadensis amargosae) and speckled dace (Rhinichthys osculus spp.) were abundant and occurred throughout the Amargosa River Canyon. The 2010 survey reported non-native red swamp crayfish (Procambarus clarkii) and western mosquitofish (Gambusia affinis) captures were significantly higher, whereas pupfish captures were lower, in areas dominated by non-native saltcedar (Tamarix ssp.). Based on the 2010 survey, it was hypothesized that the invasion of saltcedar could result in a decrease in native species. In an effort to maintain and enhance native fish populations, the Bureau of Land Management removed saltcedar from a 1,550 meter reach of stream on the Amargosa River in autumn 2014 and autumn 2015. Prior to the removal of saltcedar, a survey of fishes and crayfish using baited minnow traps was conducted in the treatment reach to serve as a baseline for future comparisons with post-saltcedar removal surveys. During the 2014 survey, 1,073 pupfish and 960 speckled dace were captured within the treatment reach. Catch per unit effort of pupfish and speckled dace in the treatment reach was less in 2014 than in 2010, although differences could be owing to seasonal variation in capture probability. Non-native mosquitofish catch per unit effort decreased from 2010 to 2014; however, the catch per unit effort of crayfish increased from 2010 to 2014. Future monitoring efforts of this reach should be conducted at the same time period to account for potential seasonal fluctuations of abundance and distribution of fishes and crayfish. A more robust study design that

  4. Relative distribution and abundance of fishes and crayfish in 2010 and 2014 prior to saltcedar (Tamarix ssp.) removal in the Amargosa River Canyon, southeastern California

    USGS Publications Warehouse

    Hereford, Mark E.

    2016-01-01

    The Amargosa River Canyon, located in the Mojave Desert of southeastern California, contains the longest perennial reach of the Amargosa River. Because of its diverse flora and fauna, it has been designated as an Area of Critical Environmental Concern and a Wild and Scenic River by the Bureau of Land Management. A survey of fishes conducted in summer 2010 indicated that endemic Amargosa River pupfish (Cyprinodon nevadensis amargosae) and speckled dace (Rhinichthys osculus spp.) were abundant and occurred throughout the Amargosa River Canyon. The 2010 survey reported non-native red swamp crayfish (Procambarus clarkii) and western mosquitofish (Gambusia affinis) captures were significantly higher, whereas pupfish captures were lower, in areas dominated by non-native saltcedar (Tamarix ssp.). Based on the 2010 survey, it was hypothesized that the invasion of saltcedar could result in a decrease in native species. In an effort to maintain and enhance native fish populations, the Bureau of Land Management removed saltcedar from a 1,550 meter reach of stream on the Amargosa River in autumn 2014 and autumn 2015. Prior to the removal of saltcedar, a survey of fishes and crayfish using baited minnow traps was conducted in the treatment reach to serve as a baseline for future comparisons with post-saltcedar removal surveys. During the 2014 survey, 1,073 pupfish and 960 speckled dace were captured within the treatment reach. Catch per unit effort of pupfish and speckled dace in the treatment reach was less in 2014 than in 2010, although differences could be owing to seasonal variation in capture probability. Non-native mosquitofish catch per unit effort decreased from 2010 to 2014; however, the catch per unit effort of crayfish increased from 2010 to 2014. Future monitoring efforts of this reach should be conducted at the same time period to account for potential seasonal fluctuations of abundance and distribution of fishes and crayfish. A more robust study design that

  5. Physical, chemical, and biological characteristics of selected headwater streams along the Allegheny Front, Blair County, Pennsylvania, July 2011–September 2013

    USGS Publications Warehouse

    Low, Dennis J.; Brightbill, Robin A.; Eggleston, Heather L.; Chaplin, Jeffrey J.

    2016-02-29

    Biotic health was characterized at 10 of 12 stream sites; the two sites excluded were established late in the study period (May 2013) for refinement of water quality in the headwaters of Poplar Run and the location of Marcellus Formation gas wells. On the basis of the Maryland Index of Biotic Integrity (MdIBI) for fish assemblages, 8 of 10 streams can be considered in fair health. Tipton Run had the highest MdIBI score (3.75) and the greatest number of native species. South Poplar Run had the lowest MdIBI score (1.75); pollution tolerant blacknose dace was dominant. On the basis of the Pennsylvania Department of Environmental Protection macroinvertebrate index of biotic integrity, 9 of 10 streams were characterized as attaining, with scores as high as 88.9 at Tipton Run. Only Sugar Run was characterized as impaired, with a score of 40.4.

  6. [Infection with opistorchis larvae in the fish family cyprinidae in the Ob-Irtysh River basin in the Tyumen region].

    PubMed

    2012-01-01

    Fishes, such as ide (Leuciscus idus), dace (Leuciscus leuciscus), carpbream (Abramis brama), roach (Rutilus rutilus), and muvarica (Alburnus alburnus), with different frequency and rate of invasion and abundance index were infested with larvae of O. felineus, M. bilis, and P. truncatum. There were the highest rates of fish infection with P. truncatum larvae in the subtaiga zone (the south of the region) and with O. felineus metacercariae in the northern subtaiga and taiga zones. In research, experimental, and clinical studies, the nosological entity opisthorchiasis is a parasitic cenosis consisting of 2-3 co-members requiring their specific identification, which allows therapeutic measures to be more effectively implemented among the population of a hyperendemic focus.

  7. Mercury accumulation in biota of Thunder Creek, Saskatchewan

    SciTech Connect

    Munro, D.J.; Gummer, W.D.

    1980-12-01

    Collection of biological organisms was undertaken to investigate the bioaccumulation of mercury in the food chain, the results of which are reported. Two sites were selected on Thunder Creek; the control or background site, site number 2, is located approximately 2.5 km upstream, from site number 1. The selection of organisms for analysis was based on the presence and abundance of each at both locations. Only crayfish (Orconcetes virilis) pearl dace (Semotilus margarita) and brook stickleback (Culaea inconstans) were found to be sufficiently abundant. The importance of the data obtained is the significant difference in concentration between the upstream and downstream sites on Thunder Creek. This difference shows that more mercury is available to the biological community at site number 1 than at site number 2 confirming that mercury in the contaminated sediments is being methylated and taken up into the food chain.

  8. Relative abundance and distribution of fishes and crayfish at Ash Meadows National Wildlife Refuge, Nye County, Nevada, 2007-08

    USGS Publications Warehouse

    Scoppettone, G. Gary; Rissler, Peter; Johnson, Danielle; Hereford, Mark

    2011-01-01

    This study provides baseline data of native and non-native fish populations in Ash Meadows National Wildlife Refuge (NWR), Nye County, Nevada, that can serve as a gauge in native fish enhancement efforts. In support of Carson Slough restoration, comprehensive surveys of Ash Meadows NWR fishes were conducted seasonally from fall 2007 through summer 2008. A total of 853 sampling stations were created using Geographic Information Systems and National Agricultural Imagery Program. In four seasons of sampling, Amargosa pupfish (genus Cyprinodon) was captured at 388 of 659 stations. The number of captured Amargosa pupfish ranged from 5,815 (winter 2008) to 8,346 (summer 2008). The greatest success in capturing Amargosa pupfish was in warm water spring-pools with temperature greater than 25 degrees C, headwaters of warm water spring systems, and shallow (depths less than 10 centimeters) grassy marshes. In four seasons of sampling, Ash Meadows speckled dace (Rhinichthys osculus nevadesis) was captured at 96 of 659 stations. The number of captured Ash Meadows speckled dace ranged from 1,009 (summer 2008) to 1,552 (winter 2008). The greatest success in capturing Ash Meadows speckled dace was in cool water spring-pools with temperature less than 20 degrees C and in the high flowing water outflows. Among 659 sampling stations within the range of Amargosa pupfish, red swamp crayfish (Procambarus clarkii) was collected at 458 stations, western mosquitofish (Gambusia affinis) at 374 stations, and sailfin molly (Poecilia latipinna) at 128 stations. School Springs was restored during the course of this study. Prior to restoration of School Springs, maximum Warm Springs Amargosa pupfish (Cyprinodon nevadensis pectoralis) captured from the six springs of the Warm Springs Complex was 765 (fall 2007). In four seasons of sampling, Warm Springs Amargosa pupfish were captured at 85 of 177 stations. The greatest success in capturing Warm Springs Amargosa pupfish when co-occurring with red

  9. Physical, chemical, and biological characteristics of selected headwater streams along the Allegheny Front, Blair County, Pennsylvania, July 2011–September 2013

    USGS Publications Warehouse

    Low, Dennis J.; Brightbill, Robin A.; Eggleston, Heather L.; Chaplin, Jeffrey J.

    2016-02-29

    Biotic health was characterized at 10 of 12 stream sites; the two sites excluded were established late in the study period (May 2013) for refinement of water quality in the headwaters of Poplar Run and the location of Marcellus Formation gas wells. On the basis of the Maryland Index of Biotic Integrity (MdIBI) for fish assemblages, 8 of 10 streams can be considered in fair health. Tipton Run had the highest MdIBI score (3.75) and the greatest number of native species. South Poplar Run had the lowest MdIBI score (1.75); pollution tolerant blacknose dace was dominant. On the basis of the Pennsylvania Department of Environmental Protection macroinvertebrate index of biotic integrity, 9 of 10 streams wer

  10. Potential population and assemblage influences of non-native trout on native nongame fish in Nebraska headwater streams

    USGS Publications Warehouse

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve

    2014-01-01

    Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.

  11. Eradication of invasive Tamarix ramosissima along a desert stream increases native fish density

    USGS Publications Warehouse

    Kennedy, T.A.; Finlay, J.C.; Hobbie, S.E.

    2005-01-01

    Spring ecosystems of the western United States have high conservation value, particularly because of the highly endemic, and often endangered, fauna that they support. Refuges now protect these habitats from many of the human impacts that once threatened them, but invasive species often persist. Invasive saltcedar is ubiquitous along streams, rivers, and spring ecosystems of the western United States, yet the impact of saltcedar invasion on these ecosystems, or ecosystem response to its removal, have rarely been quantified. Along Jackrabbit Spring, a springbrook in Nevada that supports populations of two endangered fish (Ash Meadows pupfish and Ash Meadows speckled dace) as well as several exotic aquatic consumers, we quantified the response of aquatic consumers to largescale saltcedar removal and identified the mechanism underlying consumer response to the removal. Clearing saltcedar from the riparian zone increased densities of native pupfish and exotic screw snails, but decreased the density of exotic crayfish. Positive effects of saltcedar removal on pupfish and snails occurred because saltcedar heavily shades the stream, greatly reducing the availability of algae for herbivores. This was confirmed by analyses of potential organic matter sources and consumer 13C: pupfish and snails, along with native dace and exotic mosquitofish, relied heavily on algae-derived carbon and not saltcedar-derived carbon. By contrast, crayfish ??13C values mirrored algae ??13C during summer, but in winter indicated reliance on allochthonous saltcedar litter that dominated organic inputs in saltcedar reaches and on algae-derived carbon where saltcedar was absent. The seasonal use of saltcedar by crayfish likely explains its negative response to saltcedar removal. Clearing saltcedar effectively restored the springbrook of Jackrabbit Spring to the conditions characteristic of native vegetation sites. Given the high conservation value of spring ecosystems and the potential conservation

  12. Habitat restoration as a means of controlling non-native fish in a Mojave desert Oasis

    USGS Publications Warehouse

    Scoppettone, G.G.; Rissler, P.H.; Gourley, C.; Martinez, C.

    2005-01-01

    Non-native fish generally cause native fish decline, and once non-natives are established, control or elimination is usually problematic. Because non-native fish colonization has been greatest in anthropogenically altered habitats, restoring habitat similar to predisturbance conditions may offer a viable means of non-native fish control. In this investigation we identified habitats favoring native over non-native fish in a Mojave Desert oasis (Ash Meadows) and used this information to restore one of its major warm water spring systems (Kings Pool Spring). Prior to restoration, native fishes predominated in warm water (25-32??C) stream and spring-pool habitat, whereas non-natives predominated in cool water (???23??C) spring-pool and marsh/slack water habitat. Native Amargosa pupfish (Cyprinodon nevadensis) and Ash Meadows speckled dace (Rhinichthys osculus nevadensis) inhabited significantly faster mean water column velocities (MWCV) and greater total depth (TD) than non-native Sailfin molly (Poecilia latipinna) and Mosquitofish (Gambusia affinis) in warm water stream habitat, and Ash Meadows speckled dace inhabited significantly faster water than non-natives in cool water stream habitat. Modification of the outflow of Kings Pool Spring from marsh to warm water stream, with MWCV, TD, and temperature favoring native fish, changed the fish composition from predominantly non-native Sailfin molly and Mosquitofish to predominantly Ash Meadows pupfish. This result supports the hypothesis that restoring spring systems to a semblance of predisturbance conditions would promote recolonization of native fishes and deter non-native fish invasion and proliferation. ?? 2005 Society for Ecological Restoration International.

  13. Fish species of greatest conservation need in wadeable Iowa streams: current status and effectiveness of Aquatic Gap Program distribution models

    USGS Publications Warehouse

    Sindt, Anthony R.; Pierce, Clay; Quist, Michael C.

    2012-01-01

    Effective conservation of fish species of greatest conservation need (SGCN) requires an understanding of species–habitat relationships and distributional trends. Thus, modeling the distribution of fish species across large spatial scales may be a valuable tool for conservation planning. Our goals were to evaluate the status of 10 fish SGCN in wadeable Iowa streams and to test the effectiveness of Iowa Aquatic Gap Analysis Project (IAGAP) species distribution models. We sampled fish assemblages from 86 wadeable stream segments in the Mississippi River drainage of Iowa during 2009 and 2010 to provide contemporary, independent fish species presence–absence data. The frequencies of occurrence in stream segments where species were historically documented varied from 0.0% for redfin shiner Lythrurus umbratilis to 100.0% for American brook lampreyLampetra appendix, with a mean of 53.0%, suggesting that the status of Iowa fish SGCN is highly variable. Cohen's kappa values and other model performance measures were calculated by comparing field-collected presence–absence data with IAGAP model–predicted presences and absences for 12 fish SGCN. Kappa values varied from 0.00 to 0.50, with a mean of 0.15. The models only predicted the occurrences of banded darterEtheostoma zonale, southern redbelly dace Phoxinus erythrogaster, and longnose daceRhinichthys cataractae more accurately than would be expected by chance. Overall, the accuracy of the twelve models was low, with a mean correct classification rate of 58.3%. Poor model performance probably reflects the difficulties associated with modeling the distribution of rare species and the inability of the large-scale habitat variables used in IAGAP models to explain the variation in fish species occurrences. Our results highlight the importance of quantifying the confidence in species distribution model predictions with an independent data set and the need for long-term monitoring to better understand the

  14. Spatial variation in fish assemblages across a beaver-influenced successional landscape

    USGS Publications Warehouse

    Schlosser, I.J.; Kallemeyn, L.W.

    2000-01-01

    Beavers are increasingly viewed as 'ecological engineers,' having broad effects on physical, chemical, and biological attributes of north-temperate landscapes. We examine the influence of both local successional processes associated with beaver activity and regional geomorphic boundaries on spatial variation in fish assemblages along the Kabetogama Peninsula in Voyageurs National Park, northern Minnesota, USA. Fish abundance and species richness exhibited considerable variation among drainages along the peninsula. Geological barriers to fish dispersal at outlets of some drainages has reduced fish abundance and species richness. Fish abundance and species richness also varied within drainages among local environments associated with beaver pond succession. Fish abundance was higher in upland ponds than in lowland ponds, collapsed ponds, or streams, whereas species richness was highest in collapsed ponds and streams. Cluster analyses based on fish abundance at sites classified according to successional environment indicated that four species (northern redbelly dace, Phoxinus eos; brook stickleback, Culaea inconstans; finescale dace, P. neogaeus; and fathead minnow, Pimephales promelas), were predominant in all successional environments. Several less abundant species were added in collapsed ponds and streams, with smaller size classes of large lake species (e.g., black crappie, Pomoxis nigromaculatus; smallmouth bass, Micropertus dolomieui; yellow perch, Perca flavescens; and burbot, Lota lota) being a component of these less abundant species. The addition of smaller size classes of large lake species indicates that dispersal of early life-history stages from Kabetogama Lake played a role in determining the species richness and composition of less abundant species in successional environments on the peninsula. Furthermore, collapsed-pond and stream environments closer to Kabetogama Lake had higher species richness than similar successional sites located farther from

  15. Road crossing designs and their impact on fish assemblages of Great Plains streams

    USGS Publications Warehouse

    Bouska, Wesley W.; Paukert, Craig P.

    2010-01-01

    A mark-recapture field study was conducted to determine fish passage at 5 concrete box culverts and 5 low-water crossings (concrete slabs vented by culverts) as well as 10 control sites (below a natural riffle) in Flint Hills streams of northeastern Kansas. Additionally, we tested the upstream passage of four fish species native to Great Plains streams (Topeka shiner Notropis topeka, green sunfish Lepomis cyanellus, red shiner Cyprinella lutrensis, and southern redbelly dace Phoxinus erythrogaster) through three simulated crossing designs (box culverts, round corrugated culverts, and natural rock riffles) at water velocities of 0.1 to 1.1 m/s in an experimental stream. The field study indicated that cyprinids were twice as likely to move upstream of box culverts than low-water crossings and 1.4 times as likely to move upstream of control reaches than any crossing type. The best models indicated that the proportion of cyprinids that moved upstream increased with decreased culvert slope and length, perching, and increased culvert width. Our controlled experiment indicated that fish can move through velocities up to 1.1 m/s in a 1.86-m simulated stream and that the proportion of fish that moved upstream did not differ among crossing designs for southern redbelly dace, green sunfish, or Topeka shiner; however, natural rock riffles had lower proportional movements (mean = 0.19) than the box (0.38) or corrugated culvert designs (0.43) for red shiners. Water velocity did not affect the proportional upstream movement of any species except that of Topeka shiners, which increased with water velocity. Crossing design alone may not determine fish passage, and water velocities up to 1.1 m/s may not affect the passage of many Great Plains fishes. Barriers to fish movement may be the result of other factors (e.g., perching, slope, and crossing length). The use of properly designed and installed crossings has promise in conserving Great Plains stream fishes.

  16. Efficient design of experiments for complex response surfaces with application to etching uniformity in a plasma reactor

    NASA Astrophysics Data System (ADS)

    Tatavalli Mittadar, Nirmal

    Plasma etching uniformity across silicon wafers is of paramount importance in the semiconductor industry. The complexity of plasma etching, coupled with lack of instrumentation to provide real-time process information (that could be used for feedback control), necessitate that optimal conditions for uniform etching must be designed into the reactor and process recipe. This is often done empirically using standard design of experiments which, however, are very costly and time consuming. The objective of this study was to develop a general purpose efficient design strategy that requires a minimum number of experiments, and can handle complex constraints in the presence of uncertainties. Traditionally, Response Surface Methodology (RSM) is used in these applications to design experiments to determine the optimal value of decision variables or inputs. We demonstrated that standard RSM, when applied to the problem of plasma etching uniformity, has the following drawbacks (1) inefficient search due to process nonlinearities, (2) lack of converge to the optimum, and, (3) inability to handle complex inequality constraints. We developed a four-phase Efficient Design Strategy (EDS) based on the DACE paradigm (Design and Analysis of Computer Experiments) and Bayesian search algorithms. The four phases of EDS are: (1) exploration of the design space by maximizing information, (2) exploration of the design space for feasible points by maximizing probability of constraint satisfaction, (3) optimization of the objective and (4) constrained local search. We also designed novel algorithms to switch between the different phases. The choice of model parameters for DACE predictors is usually determined by the Maximum Likelihood Estimation (MLE) method. Depending on the dataset, MLE could result in unrealistic predictors that show a peak-and-dip behavior. To solve this problem we developed techniques to detect the presence of peak-and-dip behavior and a new scheme based on Maximum a

  17. Connectivity and conditional models of access and abundance of species in stream networks.

    PubMed

    Chelgren, Nathan D; Dunham, Jason B

    2015-07-01

    Barriers to passage of aquatic organisms at stream road crossings are a major cause of habitat fragmentation in stream networks. Accordingly, large investments have been made to restore passage at these crossings, but often without estimation of population-level benefits. Here, we describe a broad-scale approach to quantifying the effectiveness of passage restoration in terms interpretable at population levels, namely numbers of fish and length of stream gained through restoration, by sampling abundance in a study design that accounts for variable biogeographic species pools, variable stream and barrier configurations, and variable probabilities of capture and detectability for multiple species. We modified an existing zero-inflated negative-binomial model to estimate the probability of site access, abundance conditional on access, and capture probability of individual fish. Therein, we modeled probability of access as a function of gradient, stream road-crossing type, and downstream access by fish simultaneously with a predictive model for abundance at sites accessible to fish. Results indicated that replacement of barriers with new crossing designs intended to allow for greater movement was associated with dramatically higher probability of access for all fishes, including migratory Pacific salmon, trout, sculpin, and lamprey. Conversely, existing non-replaced crossings negatively impacted fish distributions. Assuming no downstream constraints on access, we estimated the potential length of stream restored by the program ranged between 7.33 (lamprey) and 15.28 km (small coastal cutthroat and rainbow trout). These contributions represented a fraction of the total length available upstream (187 km) of replaced crossings. When limited ranges of species were considered, the estimated contributions of culvert replacement were reduced (1.65-km range, for longnose dace to 12.31 km for small coastal cutthroat and rainbow trout). Numbers of fish contributed ranged from

  18. Geomorphic and Fish Genetics Constraints on Late Cenozoic Long Wavelength Topographic Evolution of the Hangay Mountains, Central Mongolia

    NASA Astrophysics Data System (ADS)

    Wegmann, K. W.; Tamra, M.; Sabaj Pérez, M.; Lopresti, M.; Cole, M. B.; Gosse, J. C.; Smith, S. G.; Bayasgalan, G.; Ancuta, L. D.; McDannell, K. T.; Gallen, S. F.

    2014-12-01

    The Hangay Mountains stand 1.5 - 2 km above adjacent lowlands and the timing and cause of their high elevation is debated. As part of a broad collaborative project, we synthesize several data sets that collectively suggest the Hangay increased in elevation during the mid-to-late Miocene, while topographic relief, one metric commonly associated with active mountain ranges, remained largely unchanged. The topographic crest of the Hangay forms the drainage divide between the Selenga River and internal drainage of the Mongolian Depression of Lakes (MDL) and northern Gobi. Synthetic drainage divides for the Hangay were created by filtering digital topography in the spectral domain (50 - 200 km wavelengths) using a 2D-FFT function. The co-location of the synthetic and modern divides suggests that the Hangay divide is in a stable, equilibrium configuration. This assumption is corroborated by chi-maps of steady-state river channel elevations that exhibit nearly equal values across water divides. An exception to both of these metrics occurs in the northwest Hangay where the Bulnay fault crosses a low divide between the western Selenga basin and the MDL. Recent basalt vesicle paleoaltimetry results allow for ~1 km of surface uplift of the central Hangay in the past ~ 10 Ma. These same basalt flows in-filled late Miocene valleys cut into basement with a minimum of 800 m of local relief; similar to the amount of modern, post-glacial relief along the drainage divide. mtDNA analyses from > 250 combined Stone Loaches (Barbatula), Grayling (Thymallus), and Eurasian Dace (Leuciscus) samples from both sides of the continental drainage divide are supportive of Miocene surface uplift. Molecular genetic differences between the loach populations across the divide suggest that they separated from a common ancestor between 20 and 11 Ma. This date is consistent with the timing of surface uplift and valley incision preserved in the Miocene basalt flows. The dace and grayling populations on

  19. Connectivity and conditional models of access and abundance of species in stream networks.

    PubMed

    Chelgren, Nathan D; Dunham, Jason B

    2015-07-01

    Barriers to passage of aquatic organisms at stream road crossings are a major cause of habitat fragmentation in stream networks. Accordingly, large investments have been made to restore passage at these crossings, but often without estimation of population-level benefits. Here, we describe a broad-scale approach to quantifying the effectiveness of passage restoration in terms interpretable at population levels, namely numbers of fish and length of stream gained through restoration, by sampling abundance in a study design that accounts for variable biogeographic species pools, variable stream and barrier configurations, and variable probabilities of capture and detectability for multiple species. We modified an existing zero-inflated negative-binomial model to estimate the probability of site access, abundance conditional on access, and capture probability of individual fish. Therein, we modeled probability of access as a function of gradient, stream road-crossing type, and downstream access by fish simultaneously with a predictive model for abundance at sites accessible to fish. Results indicated that replacement of barriers with new crossing designs intended to allow for greater movement was associated with dramatically higher probability of access for all fishes, including migratory Pacific salmon, trout, sculpin, and lamprey. Conversely, existing non-replaced crossings negatively impacted fish distributions. Assuming no downstream constraints on access, we estimated the potential length of stream restored by the program ranged between 7.33 (lamprey) and 15.28 km (small coastal cutthroat and rainbow trout). These contributions represented a fraction of the total length available upstream (187 km) of replaced crossings. When limited ranges of species were considered, the estimated contributions of culvert replacement were reduced (1.65-km range, for longnose dace to 12.31 km for small coastal cutthroat and rainbow trout). Numbers of fish contributed ranged from

  20. A mechanism for efficient swimming

    NASA Astrophysics Data System (ADS)

    Haj-Hariri, Hossein; Saadat, Mehdi; Brandes, Aaron; Saraiya, Vishaal; Bart-Smith, Hilary

    2015-11-01

    We present experimental measurements of hydrodynamic performance as well as wake visualization for a freely swimming 3D foil with pure pitching motion. The foil is constrained to move in its axial direction. It is shown that the iso-lines for speed and input power (or economy) coincide in the dimensional frequency versus amplitude plane, up to a critical amplitude. The critical amplitude is independent from swimming speed. It is shown that all swimming gaits (combination of frequency and amplitude) share a single value for Strouhal number (for amplitudes below the critical amplitude), when plotted in non-dimensional frequency vs. amplitude plane. Additionally, it is shown that the swimming gaits with amplitudes equal to the critical amplitude are energetically superior to others. This finding provides a fundamental mechanism for an important observation made by Bainbridge (1958) namely, most fish (such as trout, dace, goldfish, cod and dolphins) maintain constant tail-beat amplitude during cruise, and their speed is correlated linearly with their tail-beat frequency. The results also support prior findings of Saadat and Haj-Hariri (2013). Supported by ONR MURI Grant N00014-14-1-0533.

  1. Random versus fixed-site sampling when monitoring relative abundance of fishes in headwater streams of the upper Colorado River basin

    USGS Publications Warehouse

    Quist, M.C.; Gerow, K.G.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the upper Colorado River basin (UCRB) have declined in distribution and abundance due to habitat degradation and interactions with normative fishes. Consequently, monitoring populations of both native and nonnative fishes is important for conservation of native species. We used data collected from Muddy Creek, Wyoming (2003-2004), to compare sample size estimates using a random and a fixed-site sampling design to monitor changes in catch per unit effort (CPUE) of native bluehead suckers Catostomus discobolus, flannelmouth suckers C. latipinnis, roundtail chub Gila robusta, and speckled dace Rhinichthys osculus, as well as nonnative creek chub Semotilus atromaculatus and white suckers C. commersonii. When one-pass backpack electrofishing was used, detection of 10% or 25% changes in CPUE (fish/100 m) at 60% statistical power required 50-1,000 randomly sampled reaches among species regardless of sampling design. However, use of a fixed-site sampling design with 25-50 reaches greatly enhanced the ability to detect changes in CPUE. The addition of seining did not appreciably reduce required effort. When detection of 25-50% changes in CPUE of native and nonnative fishes is acceptable, we recommend establishment of 25-50 fixed reaches sampled by one-pass electrofishing in Muddy Creek. Because Muddy Creek has habitat and fish assemblages characteristic of other headwater streams in the UCRB, our results are likely to apply to many other streams in the basin. ?? Copyright by the American Fisheries Society 2006.

  2. Episodic acidification of small streams in the northeastern united states: Effects on fish populations

    USGS Publications Warehouse

    Baker, J.P.; Van Sickle, J.; Gagen, C.J.; DeWalle, David R.; Sharpe, W.E.; Carline, R.F.; Baldigo, Barry P.; Murdoch, Peter S.; Bath, D.W.; Kretser, W.A.; Simonin, H.A.; Wigington, P.J.

    1996-01-01

    As part of the Episodic Response Project (ERP), we studied the effects of episodic acidification on fish in 13 small streams in the northeastern United States: four streams in the Adirondack region of New York, four streams in the Catskills, New York, and five streams in the northern Appalachian Plateau, Pennsylvania. In situ bioassays with brook trout (Salvelinus fontinalis) and a forage fish species (blacknose dace (Rhinichthys atratulus], mottled sculpin (Cottus bairdi), or slimy sculpin (Cottus cognatus), depending on the region) measured direct toxicity. Movements of individual brook trout, in relation to stream chemistry, were monitored using radiotelemetry. Electrofishing surveys assessed fish community status and the density and biomass of brook trout in each stream. During low flow, all streams except one had chemical conditions considered suitable for the survival and reproduction of most fish species (median pH 6.0-7.2 during low flow; inorganic Al 100-200 ??g/L. We conclude that episodic acidification can have long-term effects on fish communities in small streams.

  3. Mercury contamination in the vicinity of a derelict chlor-alkali plant Part II: contamination of the aquatic and terrestrial food chain and potential risks to the local population.

    PubMed

    Ullrich, Susanne M; Ilyushchenko, Mikhail A; Tanton, Trevor W; Uskov, Grigory A

    2007-08-01

    This study investigated the environmental impact and level of risk associated with mercury (Hg) contamination near a derelict chlor-alkali plant in Pavlodar, Northern Kazakhstan. Several species of fish were sampled from the highly polluted Lake Balkyldak and the nearby river Irtysh, to assess the extent of Hg bioaccumulation in the aquatic food chain and potential human health risks. A small number of bovine tissue samples, water samples, soil and plant samples from a nearby village were also investigated in order to make a preliminary assessment of potential impacts on the terrestrial food chain. Mercury levels in fish caught from Lake Balkyldak ranged from 0.16 to 2.2 mg kg(-1) and the majority of fish exceeded current human health criteria for Hg. Interspecies comparisons indicated that Hg is accumulated in the order dace>carp>tench. Site-specific bioaccumulation factors (BAF) were calculated for THg, and were estimated for MeHg. Fish from the river Irtysh and floodplain oxbow lakes contained between 0.075 and 0.159 mg kg(-1) of Hg and can be regarded as uncontaminated. Soils were found to be impacted by past atmospheric emissions of Hg. Cattle grazing in the surroundings of the factory are exposed to Hg from contaminated soils, plants and surface water, but the consumption of contaminated fish from the lake appears to be the main route of exposure for humans. PMID:17433415

  4. Acute toxicity of zinc to several aquatic species native to the Rocky Mountains.

    PubMed

    Brinkman, Stephen F; Johnston, Walter D

    2012-02-01

    National water-quality criteria for the protection of aquatic life are based on toxicity tests, often using organisms that are easy to culture in the laboratory. Species native to the Rocky Mountains are poorly represented in data sets used to derive national water-quality criteria. To provide additional data on the toxicity of zinc, several laboratory acute-toxicity tests were conducted with a diverse assortment of fish, benthic invertebrates, and an amphibian native to the Rocky Mountains. Tests with fish were conducted using three subspecies of cutthroat trout (Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, greenback cutthroat trout O. clarkii stomias, and Rio Grande cutthroat trout O. clarkii virginalis), mountain whitefish (Prosopium williamsoni), mottled sculpin (Cottus bairdi), longnose dace (Rhinichthys cataractae), and flathead chub (Platygobio gracilis). Aquatic invertebrate tests were conducted with mayflies (Baetis tricaudatus, Drunella doddsi, Cinygmula sp. and Ephemerella sp.), a stonefly (Chloroperlidae), and a caddis fly (Lepidostoma sp.). The amphibian test was conducted with tadpoles of the boreal toad (Bufo boreas). Median lethal concentrations (LC(50)s) ranged more than three orders of magnitude from 166 μg/L for Rio Grande cutthroat trout to >67,000 μg/L for several benthic invertebrates. Of the organisms tested, vertebrates were the most sensitive, and benthic invertebrates were the most tolerant. PMID:21811884

  5. Aquatic and terrestrial organic matter in the diet of stream consumers: implications for mercury bioaccumulation.

    PubMed

    Jardine, Timothy D; Kidd, Karen A; Rasmussen, Joseph B

    2012-04-01

    The relative contribution of aquatic vs. terrestrial organic matter to the diet of consumers in fluvial environments and its effects on bioaccumulation of contaminants such as mercury (Hg) remain poorly understood. We used stable isotopes of carbon and nitrogen in a gradient approach (consumer isotope ratio vs. periphyton isotope ratio) across temperate streams that range in their pH to assess consumer reliance on aquatic (periphyton) vs. terrestrial (riparian vegetation) organic matter, and whether Hg concentrations in fish and their prey were related to these energy sources. Taxa varied in their use of the two sources, with grazing mayflies (Heptageniidae), predatory stoneflies (Perlidae), one species of water strider (Metrobates hesperius), and the fish blacknose dace (Rhinichthys atratulus) showing strong connections to aquatic sources, while Aquarius remigis water striders and brook trout (Salvelinus fontinalis) showed a weak link to in-stream production. The aquatic food source for consumers, periphyton, had higher Hg concentrations in low-pH waters, and pH was a much better predictor of Hg in predatory invertebrates that relied mainly on this food source vs. those that used terrestrial C. These findings suggest that stream biota relying mainly on dietary inputs from the riparian zone will be partially insulated from the effects of water chemistry on Hg availability. This has implications for the development of a whole-system understanding of nutrient and material cycling in streams, the choice of taxa in contaminant monitoring studies, and in understanding the fate of Hg in stream food webs. PMID:22645815

  6. Localized effects of coal mine drainage on fish assemblages in a Cumberland Plateau stream in Tennessee

    SciTech Connect

    Schorr, M.S.; Backer, J.C.

    2006-03-15

    The upper watershed of North Chickamauga Creek (NCC), a fourth-order tributary to the Tennessee River, Tennessee, has been impacted by decades of acid mine drainage (AMD) from abandoned coal mines. We assessed fish assemblages, pH, conductivity, and sediment coverage at 12 study reaches (six AMD sites and six reference sites) in the Cumberland Plateau region of the NCC system, May-September 1998. Stream pH increased (3.6 to 6.0) and conductivity decreased (296 to 49 {mu}S/cm) downstream of the AMD-impacted area; however, no discernable gradient was observed in sediment cover. Elevated conductivity at AMD-impacted sites reflected increased concentrations of dissolved metals and other inorganic ions. Reference sites exhibited higher pH (6.0-6.4) and lower conductivity (13-28 {mu}S/cm). Acidified reaches were characterized by low fish species richness and abundance; no fish were observed at sites where the mean pH was {lt} 5. Centrarchids (mostly bluegill (Lepomis macrochirus) and green sunfish (L. cyanellus)) comprised {gt} 90 % of the catch at AMD sites, whereas cypriniids (creek chub (Semotilus atromaculatus) and blacknose dace (Rhinichthys atratulus)) accounted for {gt} 90 % of the catch at reference sites. Findings from this study document the negative effects of acid drainage from coal mines on fish assemblages in a Cumberland Plateau stream.

  7. The fishes of George Washington Carver National Monument, Missouri, 2003

    USGS Publications Warehouse

    Justus, B.G.; Petersen, James C.

    2005-01-01

    Fish were collected at six sites at George Washington Carver National Monument by seining and electrofishing during a base-flow period on July 17-18, 2003. Approximately 700 fish were collected and identified at the six sampling sites. Those individuals represented 17 species (and 1 hybrid) and 13 genera. The number of species collected at the five stream sites ranged from 9 to 12; a hybrid sunfish and 4 species were collected from a pond. Fish collected at stream sites were typical of small headwater streams and no species collected in this study are federally-listed threatened or endangered species. The three most common species were the southern redbelly dace, central stoneroller, and green sunfish. Some differences existed between the assemblages (groups of species) collected in 2003 and in the previous inventories. Four of the 17 fish species collected in this inventory previously had not been collected at the monument. However, 11 species collected in one or more of the previous inventories were not collected in this effort. There is no indication that a change in environmental conditions is responsible for the absence of these species; more likely reasons are seasonal variability, extirpation, low population density, and misidentification. Four species collected at George Washington Carver National Monument may be of special interest to National Park Service managers and others. The cardinal shiner and stippled darter are endemic to the Ozark Plateaus. The Arkansas darter is considered a species of conservation concern by the State of Missouri. The grass carp is an introduced species.

  8. Biology of Amur sleeper (Perccottus glehni) in the Delta of the Selenga River, Buryatia, Russia

    USGS Publications Warehouse

    Litvinov, Alexander G.; O'Gorman, Robert

    1996-01-01

    We determined the fecundity, growth, diet, and density of the Amur sleeper (Perccottus glehni) in the Selenga River Delta on Lake Baikal during 1986-1991 to better understand how this invading exotic will affect Baikal's endemic fishes. We also compared the Amur sleeper's diet with that of other fishes living in the delta. The largest Amur sleepers were about 200 mm long and weighed 200 g; the oldest were age 7. All females were mature at age 2. Fecundity ranged from 884 eggs at age 1 to 37,056 eggs at age 7. Highest densities of Amur sleepers were found in oxbow lakes where densities sometimes exceeded 4,000 fish per ha. The bulk of the diet of Amur sleeper age 2 and older was chironomids, fish, and fish eggs. Chironomids were also important in the diet of the commercially valuable Siberian roach (Rutilus rutilus lacustris) and Siberian dace (Leuciscus leuciscus baicalensis). Thus the Amur sleeper may cause population declines of these important endemic fishes through resource competition and predation on their juvenile life stages. However, Amur sleepers were the species of fish most frequently eaten by Eurasian perch (Perca fluviatilis) and northern pike (Esox lucius). So, maintaining vigorous populations of these two predators may well be an effective strategy for limiting the size of Amur sleeper populations.

  9. Effects of summer drawdown on the fishes and larval chironomids in Beulah Reservoir, Oregon

    USGS Publications Warehouse

    Rose, Brien P.; Mesa, Matthew G.

    2013-01-01

    Summer drawdown of Beulah Reservoir, Oregon, could adversely affect fish and invertebrate production, limit sport fishing opportunities, and hinder the recovery of threatened species. To assess the impacts of drawdown, we sampled fish and Chironomidae larvae in Beulah Reservoir in the springs of 2006 to 2008. The reservoir was reduced to 68% of full pool in 2006 and to run-of-river level in 2007. From spring 2006 to spring 2007, the catch per unit effort (CPUE) of fyke nets decreased significantly for dace [Rhinichthys spp.] and northern pikeminnow [Ptychocheilus oregonensis], increased significantly for suckers [Catastomus spp.] and white crappies [Pomoxis nigromaculatus], and was similar for redside shiners [Richardsonius balteatus]. CPUE of gillnets either increased significantly or remained similar depending on genera, and the size structure of redside shiners, suckers, and white crappies changed appreciably. From 2007 to 2008, the CPUE of northern pikeminnow, redside shiners, suckers, and white crappies decreased significantly depending on gear and the size structure of most fishes changed. Springtime densities of chironomid larvae in the water column were significantly higher in 2006 than in 2008, but other comparisons were similar. The densities of benthic chironomids were significantly lower in substrates that were frequently dewatered compared to areas that were partially or usually not dewatered. Individuals from frequently dewatered areas were significantly smaller than those from other areas and the densities of benthic chironomids in 2008 were significantly lower than other years. Summer drawdown can reduce the catch and alter the size structure of fishes and chironomid larvae in Beulah Reservoir.

  10. Review of fish diversity in the Lake Huron basin

    USGS Publications Warehouse

    Roseman, E.F.; Schaeffer, J.S.; Steen, P.J.

    2009-01-01

    Lake Huron has a rich aquatic habitat diversity that includes shallow embayments, numerous tributaries, shallow mid-lake reef complexes, archipelagos, and profundal regions. These habitats provide support for warm, cool, and cold water fish communities. Diversity of fishes in Lake Huron reflects post-glaciation colonization events, current climate conditions, accidental and intentional introductions of non-indigenous species, and extinctions. Most extinction events have been largely associated with habitat alterations, exploitation of fisheries, and interactions with non-indigenous species. The most recent historical survey of extirpated and imperiled species conducted in the late 1970s identified 79 fish species in Lake Huron proper and about 50 additional species in tributaries. Of those 129 species, 20 are now considered extirpated or imperiled. Extirpated species include Arctic grayling, paddlefish, weed shiner, deepwater cisco, blackfin cisco, shortnose cisco, and kiyi. Six species have declined appreciably due to loss of clear-water stream habitat: the river redhorse, river darter, black redhorse, pugnose shiner, lake chubsucker, redside dace, eastern sand darter, and channel darter. While numerous agencies, universities, and other organizations routinely monitor nearshore and offshore fish distribution and abundance, there is a need for more rigorous examination of the distribution and abundance of less-common species to better understand their ecology. This information is critical to the development of management plans aimed at ecosystem remediation and restoration.

  11. Aquatic and terrestrial organic matter in the diet of stream consumers: implications for mercury bioaccumulation.

    PubMed

    Jardine, Timothy D; Kidd, Karen A; Rasmussen, Joseph B

    2012-04-01

    The relative contribution of aquatic vs. terrestrial organic matter to the diet of consumers in fluvial environments and its effects on bioaccumulation of contaminants such as mercury (Hg) remain poorly understood. We used stable isotopes of carbon and nitrogen in a gradient approach (consumer isotope ratio vs. periphyton isotope ratio) across temperate streams that range in their pH to assess consumer reliance on aquatic (periphyton) vs. terrestrial (riparian vegetation) organic matter, and whether Hg concentrations in fish and their prey were related to these energy sources. Taxa varied in their use of the two sources, with grazing mayflies (Heptageniidae), predatory stoneflies (Perlidae), one species of water strider (Metrobates hesperius), and the fish blacknose dace (Rhinichthys atratulus) showing strong connections to aquatic sources, while Aquarius remigis water striders and brook trout (Salvelinus fontinalis) showed a weak link to in-stream production. The aquatic food source for consumers, periphyton, had higher Hg concentrations in low-pH waters, and pH was a much better predictor of Hg in predatory invertebrates that relied mainly on this food source vs. those that used terrestrial C. These findings suggest that stream biota relying mainly on dietary inputs from the riparian zone will be partially insulated from the effects of water chemistry on Hg availability. This has implications for the development of a whole-system understanding of nutrient and material cycling in streams, the choice of taxa in contaminant monitoring studies, and in understanding the fate of Hg in stream food webs.

  12. Beyond U(crit): matching swimming performance tests to the physiological ecology of the animal, including a new fish 'drag strip'.

    PubMed

    Nelson, J A; Gotwalt, P S; Reidy, S P; Webber, D M

    2002-10-01

    Locomotor performance of animals is of considerable interest from management, physiological, ecological and evolutionary perspectives. Yet, despite the extensive commercial exploitation of fishes and interest in the health of various fish stocks, the relationships between performance capacity, natural selection, ecology and physiology are poorly known for fishes. One reason may be the technical challenges faced when trying to measure various locomotor capacities in aquatic species, but we will argue that the slow pace of developing new species-appropriate swim tests is also hindering progress. A technique developed for anadromous salmonids (the U(crit) procedure) has dominated the fish exercise physiology field and, while accounting for major advances in the field, has often been used arbitrarily. Here we propose criteria swimming tests should adhere to and report on several attempts to match swimming tests to the physiological ecology of the animal. Sprint performance measured with a laser diode/photocell timed 'drag strip' is a new method employing new technology and is reported on in some detail. A second new test involves accelerating water past the fish at a constant rate in a traditional swim tunnel/respirometer. These two performance tests were designed to better understand the biology of a bentho-pelagic marine fish, the Atlantic cod (Gadus morhua). Finally, we report on a modified incremental velocity test that was developed to better understand the biology of the blacknose dace (Rhinichthys atratulus), a Nearctic, lotic cyprinid.

  13. [Accumulation of radionuclides in food chains of the Yenisei River after the nuclear power plant shutdown at the mining-and-chemical enterprise].

    PubMed

    Zotina, T A; Trofimova, E A; Karpov, A D; Bolsunovskiĭ, A Ia

    2014-01-01

    Accumulation of artificial and natural radionuclides in the chains of food webs leading to non-predatory and piscivorous fish of the Yenisei River was investigated during one year before and three years after the shutdown of a nuclear power plant at the Mining-and-Chemical Combine (2009-2012). The activity of artificial radionuclides in the samples of biota ofthe Yenisei River (aquatic moss, gammarids, dace, grayling, pike) was estimated. The concentration of radionuclides with induced activity (51Cr, 54Mn, 58Co, 60Co, 65Zn, 141, 144Ce, 152, 154Eu, 239Np) decreased in the biomass of biota after the shutdown of the nuclear power plant; the concentration of 137Cs did not. Analysis of the accumulation factors (C(F)) allows us to expect the effective accumulation of 137Cs in the terminal level of the food web of the Yenisei River--pike (C(F) = 2.0-9.4), i.e. biomagnifications of radiocesium. Accumulation of artificial, radionuclides in non-predatory fish from gammarids was not effective (C(F) < 1). An effective accumulation of 40K is possible in muscles of non-predatory and piscivorous fish species from food (C(F) = 2:6-3.1 and 1.3-1.4, respectively). C(Fs) of K and 40K were equal in all trophic pairs, but C(Fs) of 40K and 137Cs differed considerably. PMID:25775829

  14. Tuning Complex Computer Codes to Data and Optimal Designs

    NASA Astrophysics Data System (ADS)

    Park, Jeong Soo

    Modern scientific researchers often use complex computer simulation codes for theoretical investigations. We model the response of computer simulation code as the realization of a stochastic process. This approach, design and analysis of computer experiments (DACE), provides a statistical basis for analysing computer data, for designing experiments for efficient prediction and for comparing computer-encoded theory to experiments. An objective of research in a large class of dynamic systems is to determine any unknown coefficients in a theory. The coefficients can be determined by "tuning" the computer model to the real data so that the tuned code gives a good match to the real experimental data. Three design strategies for computer experiments are considered: data-adaptive sequential A-optimal design, maximum entropy design and optimal Latin-hypercube design. The following "code tuning" methodologies are proposed: nonlinear least squares, joint MLE, "separated" joint MLE and Bayesian method. The performance of these methods have been studied in several toy models. In the application to nuclear fusion devices, a cheaper emulator of the simulation code (BALDUR) has been constructed, and the transport coefficients were estimated from data of two tokamaks (ASDEX and PDX). Tuning complex computer codes to data using some statistical estimation methods and a cheap emulator of the code along with careful designs of computer experiments, with applications to nuclear fusion devices, is the topic of this thesis.

  15. Commercial Motor Vehicle Driver Positive Airway Pressure Therapy Adherence in a Sleep Center

    PubMed Central

    Colvin, Loretta J.; Dace, Gayla A.; Colvin, Ryan M.; Ojile, Joseph; Collop, Nancy

    2016-01-01

    Study Objectives: To assess positive airway pressure (PAP) therapy adherence in commercial motor vehicle (CMV) drivers presenting to a sleep center. Methods: A retrospective chart review of 120 drivers evaluated for obstructive sleep apnea OSA and 53 initiated on PAP therapy in a single sleep center over a one-year period (2012); PAP therapy data were collected up to 1 year. Results: Early PAP usage best predicted adherence up to 1 year (p < 0.0001) compared to patient factors, OSA disease characteristics, and treatment elements analyzed. The proportion of participants adherent to therapy was 68.0% at 1 week, decreasing to 39.6% at 1 year, with 31.1% lost to follow-up by 1 year. In the group categorized based on adherence at week 1, 80.6% were adherent at 1 month, decreasing to 52.8% at 1 year. For the group non-adherent at 1 week, 29.4% were adherent at 1 month, decreasing to 11.7% at 1 year. Participants were predominantly male (75.8%), middle-aged (median 50.5 years), and African American (71.7%). Of those referred to the sleep center, 86.7% had OSA (median apnea-hypopnea index [AHI] or respiratory event index [REI] 20.1), with 51.0% of the OSA group having an AHI or REI > 20 and initiating PAP therapy. Conclusions: Early PAP utilization patterns predicted one year adherence for our CMV driver population within a sleep clinic setting. OSA testing of these CMV drivers after occupational health referral identifies high proportions of undiagnosed OSA, with approximately half requiring PAP therapy based on current published treatment recommendations. Citation: Colvin LJ, Dace GA, Colvin RM, Ojile J, Collop N. Commercial motor vehicle driver positive airway pressure therapy adherence in a sleep center. J Clin Sleep Med 2016;12(4):477–485. PMID:26715403

  16. Drainage basin security of hazardous chemical fluxe in the Yodo River basin.

    PubMed

    Matsui, S

    2004-01-01

    The Yodo River basin consists of three major tributary basins (and other small river basins) namely Uji, Katsura and Kizu, which overlap respectively Shiga, Kvoto and Nara prefectures' administrative areas. Lake Biwa, the largest lake in Japan, drains water through the Uji river. The water quality of the lake, in terms of BOD, continuously improved over the last decade. However, the quality in terms of COD did not show any improvement in spite of a large amount of infrastructure finance being introduced. Eutrophication of the lake still continues, showing no improvement in the nitrogen concentration level. Non-point as well as point source control is not strong enough. There is a gap between BOD and COD evaluations of the lake water quality. Hazardous chemical fluxes are estimated based upon PRTR reports of Japan (2001). PCBs are still discharged into the lake, although the report of Shiga Prefecture showed zero discharge. Dace fish monitoring clearly showed that PCB contamination of the fish had not changed since the 1980s in spite of a ban on use and production of PCBs in the 1970s. There is still leakage of PCBs into the lake. The major exposure of dioxins to Japanese is fish rather than meat and eggs. The risk of water contamination must take into consideration not only drinking water safety but also ecological magnification of food chains in water. The ecological health aspect of hazardous chemicals is also important, such as organotins with imposex of sea snails. Finally, public participation in hazardous chemical management is very important using the method of risk communication based upon the annual report of PRTR in Japan. PMID:15195438

  17. Detection of conspecific alarm cues by juvenile salmonids under neutral and weakly acidic conditions: laboratory and field tests.

    PubMed

    Leduc, Antoine O H C; Kelly, Jocelyn M; E Brown, Grant

    2004-04-01

    A variety of fishes possess damage-released chemical alarm cues, which play a critical role in the detection and avoidance of potential predation threats. Recently, we have demonstrated that the ability of fathead minnows ( Pimephales promelas) and finescale dace ( Phoxinus neogaeus) to detect and respond to conspecific alarm cues is significantly reduced under weakly acidic conditions (pH 6.0). Rainbow trout ( Oncorhynchus mykiss) and brook charr ( Salvelinus fontinalis) possess an analogous alarm cue system. However, it is unknown if the trout alarm cue system is likewise affected by relatively small changes in pH. In addition, previous studies have not verified this phenomenon under natural conditions. We conducted laboratory and field trials to examine the potential effects of acute exposure to weakly acidic (pH 6.0) conditions on the detection and response of conspecific alarm cues by juvenile trout. Our laboratory results demonstrate that while juvenile rainbow trout exhibit significant increases in antipredator behaviour under normal pH conditions (pH 7.0-7.2), they do not respond to the presence of conspecific chemical alarm cues (i.e. response is not different from controls) under weakly acidic conditions. Similarly, a wild strain of brook charr in their natural streams near Sudbury, Ontario, failed to detect conspecific alarm cues in a weakly acidic stream (mean pH 6.11) while they responded to these cues in a neutral stream (mean pH of 6.88). This is the first demonstration that relatively small changes in ambient pH can influence alarm responses under natural conditions. These data suggest significant, sub-lethal effects of acid precipitation on natural waterways.

  18. Why do parasitized hosts look different? Resolving the "chicken-egg" dilemma.

    PubMed

    Blanchet, Simon; Méjean, Lionel; Bourque, Jean-François; Lek, Sovan; Thomas, Frédéric; Marcogliese, David J; Dodson, Julian J; Loot, Géraldine

    2009-05-01

    Phenotypic differences between infected and non-infected hosts are often assumed to be the consequence of parasite infection. However, pre-existing differences in hosts' phenotypes may promote differential susceptibility to infection. The phenotypic variability observed within the host population may therefore be a cause rather than a consequence of infection. In this study, we aimed at disentangling the causes and the consequences of parasite infection by calculating the value of a phenotypic trait (i.e., the growth rate) of the hosts both before and after infection occurred. That procedure was applied to two natural systems of host-parasite interactions. In the first system, the infection level of an ectoparasite (Tracheliastes polycolpus) decreases the growth rate of its fish host (the rostrum dace, Leuciscus leuciscus). Reciprocally, this same phenotypic trait before infection modulated the future level of host sensitivity to the direct pathogenic effect of the parasite, namely the level of fin degradation. In the second model, causes and consequences linked the growth rate of the fish host (the rainbow smelt, Osmerus mordax) and the level of endoparasite infection (Proteocephalus tetrastomus). Indeed, the host's growth rate before infection determined the number of parasites later in life, and the parasite biovolume then decreased the host's growth rate of heavily infected hosts. We demonstrated that reciprocal effects between host phenotypes and parasite infection can occur simultaneously in the wild, and that the observed variation in the host phenotype population was not necessarily a consequence of parasite infection. Disentangling the causality of host-parasite interactions should contribute substantially to evaluating the role of parasites in ecological and evolutionary processes.

  19. Monitoring ecological recovery in a stream impacted by contaminated groundwater

    SciTech Connect

    Southworth, G.R.; Cada, G.F.; Kszos, L.A.; Peterson, M.J.; Smith, J.G.

    1997-11-01

    Past in-ground disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. A biological monitoring program initiated in 1984 has evaluated the effectiveness of the extensive remedial actions undertaken to address contamination sources. Elements of the monitoring program included toxicity testing with fish and invertebrates, bioaccumulation monitoring, and instream monitoring of streambed invertebrate and fish communities. In the mid 1980`s, toxicity tests on stream water indicated that the headwaters of the stream were acutely toxic to fish and aquatic invertebrates as a result of infiltration of a metal-enriched groundwater from ponds used to dispose of acid wastes. Over a twelve year period, measurable toxicity in the headwaters decreased, first becoming non-toxic to larval fish but still toxic to invertebrates, then becoming intermittently toxic to invertebrates. By 1997, episodic toxicity was infrequent at the site that was acutely toxic at the start of the study. Recovery in the fish community followed the pattern of the toxicity tests. Initially, resident fish populations were absent from reaches where toxicity was measured, but as toxicity to fish larvae disappeared, the sites in upper Bear Creek were colonized by fish. The Tennessee dace, an uncommon species receiving special protection by the State of Tennessee, became a numerically important part of the fish population throughout the upper half of the creek, making Bear Creek one of the most significant habitats for this species in the region. Although by 1990 fish populations were comparable to those of similar size reference streams, episodic toxicity in the headwaters coincided with a recruitment failure in 1996. Bioaccumulation monitoring indicated the presence of PCBs and mercury in predatory fish in Bear Creek, and whole forage fish contained elevated levels of cadmium, lead, lithium, nickel, mercury, and uranium.

  20. Nonnative fish control in the Colorado River in Grand Canyon, Arizona: An effective program or serendipitous timing?

    USGS Publications Warehouse

    Coggins,, Lewis G.; Yard, Michael D.; Pine, William E.

    2011-01-01

    The federally endangered humpback chub Gila cypha in the Colorado River within Grand Canyon is currently the focus of a multiyear program of ecosystem-level experimentation designed to improve native fish survival and promote population recovery as part of the Glen Canyon Dam Adaptive Management Program. A key element of this experiment was a 4-year effort to remove nonnative fishes from critical humpback chub habitat, thereby reducing potentially negative interactions between native and nonnative fishes. Over 36,500 fish from 15 species were captured in the mechanical removal reach during 2003–2006. The majority (64%) of the catch consisted of nonnative fish, including rainbow trout Oncorhynchus mykiss (19,020), fathead minnow Pimephales promelas (2,569), common carp Cyprinus carpio (802), and brown trout Salmo trutta (479). Native fish (13,268) constituted 36% of the total catch and included flannelmouth suckers Catostomus latipinnis (7,347), humpback chub (2,606), bluehead suckers Catostomus discobolus (2,243), and speckled dace Rhinichthys osculus (1,072). The contribution of rainbow trout to the overall species composition fell steadily throughout the study period from a high of approximately 90% in January 2003 to less than 10% in August 2006. Overall, the catch of nonnative fish exceeded 95% in January 2003 and fell to less than 50% after July 2005. Our results suggest that removal efforts were successful in rapidly shifting the fish community from one dominated numerically by nonnative species to one dominated by native species. Additionally, increases in juvenile native fish abundance within the removal reach suggest that removal efforts may have promoted greater survival and recruitment. However, drought-induced increases in river water temperature and a systemwide decrease in rainbow trout abundance concurrent with our experiment made it difficult to determine the cause of the apparent increase in juvenile native fish survival and recruitment

  1. Bioaccumulation of radionuclides in fertilized Canadian Shield lake basins.

    PubMed

    Bird, G A; Hesslein, R H; Mills, K H; Schwartz, W J; Turner, M A

    1998-07-11

    Radionuclide tracers of heavy metals (59Fe, 60Co, 65Zn, 75Se, 85Sr, 134Cs and 203Hg) representing potential contamination from nuclear power plants, industry and agriculture were added to separate basins of Lake 226, Experimental Lakes Area, northwestern Ontario. The two basins were part of a eutrophication experiment and differed in their trophic status; the north basin (L226N) was eutrophic whereas the south basin (L226S) was mesotrophic. Our objective was to determine the uptake of the radionuclides by biota and the effect of lake trophic status on their bioaccumulation. The trophic status of the lakes did not appear to have a marked effect on the accumulation of radionuclides by the biota. This may have been because of a mid-summer leakage of nutrients between the basins which enhanced primary production in L226S, because there is a time lag between primary production and the availability of the radionuclides to the fishes or because trophic status does not affect the uptake of at least some of these radionuclides. However, there was a tendency for faster uptake of the radionuclides in L226N by fish than L226S, but the differences were not significant. Concentrations in the biota generally decreased in the order: fathead minnow > pearl dace > tadpoles > slimy sculpin > leeches. Concentrations in biota generally decreased in the order. 65Zn > 203Hg > 75Se > 134Cs > 60Co > 85Sr = 59Fe. Cobalt-60 concentrations in tadpoles were greater than in the other biota. Radionuclide concentrations in the tissues of lake whitefish indicated that uptake was predominantly from food. Radionuclide concentrations were usually higher in the posterior gut, liver and kidney than in other tissues, whereas body burdens were generally high in the muscle for 75Se, 134Cs and 203Hg; kidney and gut for 60Co; and bone for 65Zn and 75Se. Mercury-203 burdens were also high in the bone and gut. PMID:9718743

  2. Use of Lead Isotopes to Assess Sources and Mobility of Contaminants from Barber's Orchard, North Carolina

    NASA Astrophysics Data System (ADS)

    Kondrad, S.; Miller, J. R.; Lechler, P. J.

    2001-12-01

    Pb-isotopes were used to identify and analyze the off-site migration of lead arsenate, a pesticide used on Barber's Orchard, western North Carolina. The orchard, heavily contaminated by Pb, As, and DDT, is being considered for the EPA's National Priorities List of hazardous waste sites. ICP-MS was used to analyze concentration and isotopic composition of Pb in sediment, fish, and water samples of Richland Creek, which drains the orchard. Isotopic ratios of contaminated sediment were compared to ratios of sediment, water, and fish collected up and downstream of the orchard. The data suggest that off-site migration of contaminants has occurred. Contaminated sediment from Barber's Orchard and older (historic) floodplain sediment downstream of the orchard fall along a well-defined mixing line, indicating a mixing of Pb from the underlying bedrock and from lead arsenate. Sediment not contaminated by lead arsenate, including samples upstream of the orchard, have a significantly different isotopic composition than contaminated terrace sediments. The composition of modern channel sediment also differs from contaminated materials, and may reflect the recent influx of upland sediments eroded during development activities. Whole fish samples of rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta), and longnose dace (Rhinichythys cataractae) were analyzed from three sites located downstream of the orchard. At each site, no differences were seen in isotopic composition among species. However, isotopic fractionation and differential accumulation does occur within the fish. Total Pb in bone was significantly greater than in liver or muscle. Isotopic composition of bone was similar to contaminated sediment. Conversely, the Pb isotopic signature of liver and muscle was found to be similar to water samples. Waters sampled during low-flow conditions show a unique signature, differing from both contaminated and non-contaminated sediment. It is hypothesized that this

  3. Detection of conspecific alarm cues by juvenile salmonids under neutral and weakly acidic conditions: laboratory and field tests.

    PubMed

    Leduc, Antoine O H C; Kelly, Jocelyn M; E Brown, Grant

    2004-04-01

    A variety of fishes possess damage-released chemical alarm cues, which play a critical role in the detection and avoidance of potential predation threats. Recently, we have demonstrated that the ability of fathead minnows ( Pimephales promelas) and finescale dace ( Phoxinus neogaeus) to detect and respond to conspecific alarm cues is significantly reduced under weakly acidic conditions (pH 6.0). Rainbow trout ( Oncorhynchus mykiss) and brook charr ( Salvelinus fontinalis) possess an analogous alarm cue system. However, it is unknown if the trout alarm cue system is likewise affected by relatively small changes in pH. In addition, previous studies have not verified this phenomenon under natural conditions. We conducted laboratory and field trials to examine the potential effects of acute exposure to weakly acidic (pH 6.0) conditions on the detection and response of conspecific alarm cues by juvenile trout. Our laboratory results demonstrate that while juvenile rainbow trout exhibit significant increases in antipredator behaviour under normal pH conditions (pH 7.0-7.2), they do not respond to the presence of conspecific chemical alarm cues (i.e. response is not different from controls) under weakly acidic conditions. Similarly, a wild strain of brook charr in their natural streams near Sudbury, Ontario, failed to detect conspecific alarm cues in a weakly acidic stream (mean pH 6.11) while they responded to these cues in a neutral stream (mean pH of 6.88). This is the first demonstration that relatively small changes in ambient pH can influence alarm responses under natural conditions. These data suggest significant, sub-lethal effects of acid precipitation on natural waterways. PMID:14758533

  4. Do management actions to restore rare habitat benefit native fish conservation? Distribution of juvenile native fish among shoreline habitats of the Colorado River

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E.; Korman, Josh; Finch, Colton

    2015-01-01

    Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River. 

  5. Context-dependent outcomes in a reproductive mutualism between two freshwater fish species.

    PubMed

    Peoples, Brandon K; Frimpong, Emmanuel A

    2016-02-01

    The development of encompassing general models of ecology is precluded by underrepresentation of certain taxa and systems. Models predicting context-dependent outcomes of biotic interactions have been tested using plants and bacteria, but their applicability to higher taxa is largely unknown.We examined context dependency in a reproductive mutualism between two stream fish species: mound nest-building bluehead chub Nocomis leptocephalus and mountain redbelly dace Chrosomus oreas, which often uses N. leptocephalus nests for spawning. We hypothesized that increased predator density and decreased substrate availability would increase the propensity of C. oreas to associate with N. leptocephalus and decrease reproductive success of both species.In a large-scale in situ experiment, we manipulated egg predator density and presence of both symbionts (biotic context), and replicated the experiment in habitats containing high- and low-quality spawning substrate (abiotic context).Contradictory to our first hypothesis, we observed that C. oreas did not spawn without its host. The interaction outcome switched from commensalistic to mutualistic with changing abiotic and biotic contexts, although the net outcome was mutualistic.The results of this study yielded novel insight into how context dependency operates in vertebrate mutualisms. Although the dilution effect provided by C. oreas positively influenced reproductive success of N. leptocephalus, it was not enough to overcome both egg predation and poor spawning habitat quality. Outcomes of the interaction may be ultimately determined by associate density. Studies of context dependency in vertebrate systems require detailed knowledge of species life-history traits. PMID:26941947

  6. Bioaccumulation of radionuclides in fertilized Canadian Shield lake basins.

    PubMed

    Bird, G A; Hesslein, R H; Mills, K H; Schwartz, W J; Turner, M A

    1998-07-11

    Radionuclide tracers of heavy metals (59Fe, 60Co, 65Zn, 75Se, 85Sr, 134Cs and 203Hg) representing potential contamination from nuclear power plants, industry and agriculture were added to separate basins of Lake 226, Experimental Lakes Area, northwestern Ontario. The two basins were part of a eutrophication experiment and differed in their trophic status; the north basin (L226N) was eutrophic whereas the south basin (L226S) was mesotrophic. Our objective was to determine the uptake of the radionuclides by biota and the effect of lake trophic status on their bioaccumulation. The trophic status of the lakes did not appear to have a marked effect on the accumulation of radionuclides by the biota. This may have been because of a mid-summer leakage of nutrients between the basins which enhanced primary production in L226S, because there is a time lag between primary production and the availability of the radionuclides to the fishes or because trophic status does not affect the uptake of at least some of these radionuclides. However, there was a tendency for faster uptake of the radionuclides in L226N by fish than L226S, but the differences were not significant. Concentrations in the biota generally decreased in the order: fathead minnow > pearl dace > tadpoles > slimy sculpin > leeches. Concentrations in biota generally decreased in the order. 65Zn > 203Hg > 75Se > 134Cs > 60Co > 85Sr = 59Fe. Cobalt-60 concentrations in tadpoles were greater than in the other biota. Radionuclide concentrations in the tissues of lake whitefish indicated that uptake was predominantly from food. Radionuclide concentrations were usually higher in the posterior gut, liver and kidney than in other tissues, whereas body burdens were generally high in the muscle for 75Se, 134Cs and 203Hg; kidney and gut for 60Co; and bone for 65Zn and 75Se. Mercury-203 burdens were also high in the bone and gut.

  7. Distributions of small nongame fishes in the lower Yellowstone River

    USGS Publications Warehouse

    Duncan, Michael B.; Bramblett, Robert G.; Zale, Alexander V.

    2016-01-01

    The Yellowstone River is the longest unimpounded river in the conterminous United States. It has a relatively natural flow regime, which helps maintain diverse habitats and fish assemblages uncommon in large rivers elsewhere. The lower Yellowstone River was thought to support a diverse nongame fish assemblage including several species of special concern. However, comprehensive data on the small nongame fish assemblage of the lower Yellowstone River is lacking. Therefore, we sampled the Yellowstone River downstream of its confluence with the Clark’s Fork using fyke nets and otter trawls to assess distributions and abundances of small nongame fishes. We captured 42 species (24 native and 18 nonnative) in the lower Yellowstone River with fyke nets. Native species constituted over 99% of the catch. Emerald shiners Notropis atherinoides, western silvery minnows Hybognathus argyritis, flathead chubs Platygobio gracilis, sand shiners Notropis stramineus, and longnose dace Rhinichthys cataractae composed nearly 94% of fyke net catch and were caught in every segment of the study area. We captured 24 species by otter trawling downstream of the Tongue River. Sturgeon chubs Macrhybopsis gelida, channel catfish Ictalurus punctatus, flathead chubs, stonecats Noturus flavus, and sicklefin chubs Macrhybopsis meeki composed 89% of the otter trawl catch. The upstream distributional limit of sturgeon chubs in the Yellowstone River was the Tongue River; few sicklefin chubs were captured above Intake Diversion Dam. This study not only provides biologists with baseline data for future monitoring efforts on the Yellowstone River but serves as a benchmark for management and conservation efforts in large rivers elsewhere as the Yellowstone River represents one of the best references for a naturally functioning Great Plains river.

  8. Riverscape factors for controlling fish distribution in a watershed with forest-urban transits

    NASA Astrophysics Data System (ADS)

    Okada, K.

    2012-12-01

    We examined riverscape factors with reach and watershed scales for controlling the presence and abundance of five fish species in 156.1 km2 Asakawa river of Tama-gawa watershed systems in Tokyo Metropolitan. Landuse of the watershed transits from forest to urban development. Based on the preferences of habitat, fish survey was conducted at 39 locations of 50m channel reaches from April and June, 2012 using an electrofisher (Smith-Root. Inc). At reach scale factors, we measured water temperature, dissolved oxygen, stream depth and width, flow velocity, substrate composition (sand, gravel and rock). For watershed scale factors, we evaluated drainage area, relief height, channel gradient and watershed forest area percentages. Masu salmon (Oncorhynchus masou masou) distributed in stream channels within 25km2 watershed area and 90% forested areas. Sculpin (Cottus pollux) tended to be distributed similar ranged of masu salmon. In contrast, Japanese dace (Tribolodon hakonensis) and sand loach (Cobitis biwae) tended to distributed to over 5km2 watershed area and 16% forested area. Because masu salmon and sculpin depended on macroinvertebrates and input terrestrial invertebrates food sources, limited habitat only occurred in the upstream areas. Distribution of these fish and their control factors marginally agreed to the database of fish distribution sampled in 1993 and 1997. Our finding suggested that watershed scale factors tended to affect the presence and absence of fish species in channel network, while reach scale factors such as forest ratio and substrate composition affect the abundance of fishes. However, further hydrological processes such as ephemeral and perennial nature of flow and locations of groundwater springs should also be considered as factors for affecting fish distribution in the channel network.

  9. Effects of a test flood on fishes of the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Valdez, R.A.; Hoffnagle, T.L.; McIvor, C.C.; McKinney, T.; Leibfried, W.C.

    2001-01-01

    A beach/habitat-building flow (i.e., test flood) of 1274 m3/s, released from Glen Canyon Dam down the Colorado River through Grand Canyon, had little effect on distribution, abundance, or movement of native fishes, and only short-term effects on densities of some nonnative species Shoreline and backwater catch rates of native fishes, including juvenile humpback chub (Gila cypha), flannelmouth suckers (Catostomus latipinnis), and bluehead suckers (C. discobolus), and all ages of speckled dace (Rhinichthys osculus), were not significantly different before and after the flood. Annual spring spawning migrations of flannelmouth suckers into the Paria River and endangered humpback chub into the Little Colorado River (LCR) took place during and after the flood, indicating no impediment to fish migrations. Pre-spawning adults staged in large slack water pools formed at the mouths of these tributaries during the flood. Net movement and habitat used by nine radio-tagged adult humpback chub during the flood were not significantly different from prior observations. Diet composition of adult humpback chub varied, but total biomass did not differ significantly before, during, and after the flood, indicating opportunistic feeding for a larger array of available food items displaced by the flood. Numbers of nonnative rainbow trout (Oncorhynchus mykiss) <152 mm total length decreased by ???8% in electrofishing samples from the dam tailwaters (0-25 km downstream of the dam) during the flood. Increased catch rates in the vicinity of the LCR (125 km downstream of the dam) and Hell's Hollow (314 km downstream of the dam) suggest that these young trout were displaced downstream by the flood, although displacement distance was unknown since some fish could have originated from local populations associated with intervening tributaries. Abundance, catch rate, body condition, and diet of adult rainbow trout in the dam tailwaters were not significantly affected by the flood, and the flood

  10. The fishes of Pea Ridge National Military Park, Arkansas, 2003

    USGS Publications Warehouse

    Justus, B.G.; Petersen, James C.

    2005-01-01

    A fish inventory was conducted at Pea Ridge National Military Park, Arkansas, during base-flow conditions in September 2003. Six sites including four streams and two ponds were sampled using conventional electrofishing equipment (a seine also was used at one site). There were 653 individuals collected comprising 18 species (plus 1 hybrid) and 15 genera. The number of species collected at the four stream sites ranged from 1 16. Most fish species collected generally are associated with small streams in the Ozark Plateaus. The two most common species were the banded sculpin and the southern redbelly dace. Three species and a sunfish hybrid were collected from the quarry pond. No fish were collected from the unnamed pond. A preliminary expected species list incorrectly listed 42 species because of incorrect species range or habitat requirements. One species not on the original list was added to the revised list. Upon revising this list, the inventory yielded 18 the 40 species (45 percent) and 1 hybrid. No previous fish inventories have been completed for park but some observations can be made relative to species distributions. There were only five fish species collected in three headwater streams, and it is unlikely that many other species would occur in these three streams because of constraints imposed on the fish community by stream size. Little Sugar Creek, a medium-sized stream, had the most species collected, and it is likely that additional species would be collected from this stream if additional sampling were to occur. Distribution records indicate that all 18 species occur in the general area. Although no species collected in this study are federallylisted threatened or endangered species, three species collected at Pea Ridge National Military Park may be of some special interest to National Park Service managers and others. Two the species collected (cardinal shiner and stippled darter) are endemic to the Ozark Plateaus; both are rather common in certain

  11. Fishes of the Blackwater River Drainage, Tucker County, West Virginia

    USGS Publications Warehouse

    Cincotta, Daniel A.; Welsh, Stuart; Wegman, Douglas P.; Oldham, Thomas E.; Hedrick, Lara B.

    2015-01-01

    The Blackwater River, a tributary of the upper Cheat River of the Monongahela River, hosts a modest fish fauna. This relatively low diversity of fish species is partly explained by its drainage history. The Blackwater was once part of the prehistoric, northeasterly flowing St. Lawrence River. During the Pleistocene Epoch, the fauna was significantly affected by glacial advance and by proglacial lakes and their associated overflows. After the last glacial retreat, overflow channels, deposits, and scouring altered drainage courses and connected some of the tributaries of the ancient Teays and Pittsburgh drainages. These major alterations allowed the invasion of fishes from North America's more species-rich southern waters. Here we review fish distributions based on 67 surveys at 34 sites within the Blackwater River drainage, and discuss the origin and status of 37 species. Within the Blackwater River watershed, 30 species (20 native, 10 introduced) have been reported from upstream of Blackwater Falls, whereas 29 (26 native, 3 introduced) have been documented below the Falls. Acid mine drainage, historic lumbering, and human encroachment have impacted the Blackwater's ichthyofauna. The fishes that have been most affected are Salvelinus fontinalis (Brook Trout), Clinostomus elongatus (Redside Dace), Nocomis micropogon (River Chub), Hypentelium nigricans (Northern Hog Sucker), Etheostoma flabellare (Fantail Darter), and Percina maculata(Blackside Darter). The first two species incurred range reductions, whereas the latter four were probably extirpated. In the 1990s, acid remediation dramatically improved the water quality of the river below Davis. Recent surveys in the lower drainage revealed 15 fishes where none had been observed since at least the 1940s; seven of these (Cyprinella spiloptera [Spotfin Shiner], Luxilus chrysocephalus [Striped Shiner], Notropis photogenis [Silver Shiner], N. rubellus [Rosyface Shiner];Micropterus dolomieu

  12. Natural Propagation and Habitat improvement, Volume 2B, Washington, Similkameen River Habitat Inventory, 1983 Final Report.

    SciTech Connect

    Unknown Author

    1984-04-01

    During the summer low flow period, a habitat assessment of the Similkameen, Tulameen, Ashnola and Pasayten rivers in British Columbia and Washington State was conducted between August 10 and October 10, 1983. The biophysical survey assessed 400 km (250 mi) of stream at 77 stations. Fish sampling was conducted at each station to assess the resident fish populations and standing crop. Rainbow trout populations and standing crops were found to be very low. Large populations of mountain whitefish and bridgelip suckers were present in the manstem Similkameen River below Similkameen Falls. High densities of sculpins and longnose dace were found throughout the system except for sculpins above the falls, where none were captured. Approximately 961,000 m/sup 2/ (1,150,000 yd/sup 2/) of spawnable area for steelhead trout were estimated for the entire system which could accommodate 98,000 spawners. Nearly 367,000 m/sup 2/ (439,000 yd/sup 2/) of chinook salmon spawnable area was also estimated, capable of accommodating 55,000 chinook. Rearing area for steelhead trout smolts was estimated for the whole system at 1.8 million m/sup 2/ (2.2 million yd/sup 2/). Chinook salmon smolt rearing area was estimated at 700,000 m/sup 2/ (837,000 yd/sup 2/). Rearing area was found to be a limiting factor to anadromous production in a Similkameen River system. Smolt production from the system was estimated 610,000 steelhead trout and between 1.6 million and 4.8 million chinook salmon. No water quality, temperature or flow problems for anadromous salmonids were evident from the available data and the habitat inventory. In addition to an impassable falls on the Tulameen River at river mile 32.5, only two other areas of difficult passage exist in the system, Similkameen Falls (a series of chutes) and the steep, narrow lower section of the Ashnola River. 51 references, 18 figures, 25 tables.

  13. Effects of coalbed natural gas development on fish assemblages in tributary streams of the Powder and Tongue rivers

    USGS Publications Warehouse

    Davis, W.N.; Bramblett, R.G.; Zale, A.V.

    2010-01-01

    1. Extraction of coalbed natural gas (CBNG) often results in disposal of large quantities of CBNG product water, which may affect aquatic ecosystems. We evaluated the effects of CBNG development on fish assemblages in tributary streams of the Powder and Tongue rivers. We used treatment and control, impact versus reference sites comparisons, surveys of CBNG product-water streams and in situ fish survival approaches to determine if CBNG development affected fish assemblages.2. Several of our results suggested that CBNG development did not affect fish assemblages. Species richness and index of biotic integrity (IBI) scores were similar in streams with and streams without CBNG development, and overall biotic integrity was not related to the number or density of CBNG wells. Fish occurred in one stream that was composed largely or entirely of CBNG product water. Sentinel fish survived in cages at treatment sites where no or few fish were captured, suggesting that factors such as lack of stream connectivity rather than water quality limited fish abundance at these sites. Fish species richness did not differ significantly from 1994 to 2006 in comparisons of CBNG-developed and undeveloped streams. Biotic integrity declined from 1994 to 2006; however, declines occurred at both impact and reference sites, possibly because of long-term drought.3. Some evidence suggested that CBNG development negatively affected fish assemblages, or may do so over time. Specific conductivity was on average higher in treatment streams and was negatively related to biotic integrity. Four IBI species richness metrics were negatively correlated with the number or density of CBNG wells in the catchment above sampling sites. Bicarbonate, one of the primary ions in product water, was significantly higher in developed streams and may have limited abundance of longnose dace (Rhinichthys cataractae). Total dissolved solids, alkalinity, magnesium and sulphate were significantly higher in developed streams

  14. Episodic acidification of small streams in the northeastern united states: Fish mortality in field bioassays

    USGS Publications Warehouse

    Van Sickle, J.; Baker, J.P.; Simonin, H.A.; Baldigo, Barry P.; Kretser, W.A.; Sharpe, W.E.

    1996-01-01

    (Cottus cognatus and C. bairdi) as well as blacknose dace (Rhinichthys atratulus). For these forage species a single inorganic aluminum exposure variable successfully accounted for 86-98% of the observed mortality. Even though field bioassays showed evidence of multiple toxicity factors, model results suggest that adequate mortality predictions can be obtained from a single index of inorganic Al concentrations during exposure periods.

  15. The fishes of Buffalo National River, Arkansas, 2001-2003

    USGS Publications Warehouse

    Petersen, James C.; Justus, B.G.

    2005-01-01

    During June through September 2001 and 2002, extensive fish community sampling was conducted at 29 sites within the boundaries of Buffalo National River. Samples were collected using backpack, tote barge, and boat electrofishing equipment. Kick seining also was used at all sites. To supplement these results, samples were collected in 2003 from less typical habitats and during other seasons of the year. Ten supplemental samples were collected from the Buffalo River and five samples were collected from tributaries of the Buffalo River. During the 3 years of sampling, 66 species of fish were collected or observed from the 42 sampling sites. Stonerollers, duskystripe shiners, longear sunfish, and rainbow darters were among the more abundant fish species at most sites. Each of these species is common and abundant throughout much of the Ozark Plateaus in creeks and small rivers. Other species (for example, banded sculpin, southern redbelly dace, orangethroat darter, and Ozark minnow) were among the more abundant species at other sites. These species prefer small- to medium-sized, springfed streams or small creeks. A preliminary list of species expected to occur at Buffalo National River provided by the National Park Service incorrectly listed 47 species because of incorrect species range or habitat requirements. Upon revising this list, the inventory yielded 66 of the 78 species (85 percent). Twelve additional species not collected in 2001-2003 may occur at Buffalo National River for two primary reasons--because the species had been collected previously at the park, or because the park occurs within the known species range and habitats found at the park are suitable for the species. Although no fish species collected from Buffalo National River are federally-listed threatened or endangered species, several species collected at Buffalo National River may be of special interest to National Park Service managers and others. Ten species are endemic to the Ozark Plateaus area

  16. Siphateles (Gila) sp. and Catostomus sp. from the Pleistocene OIS-6 Lake Gale, Panamint Valley, Owens River system, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Forester, R. M.; Smith, G. R.

    2014-12-01

    Panamint Valley lies within the Owens River system which linked southeastern Sierra Nevada basins between Mono Lake and Death Valley during glacial-pluvial times. Previous work indicates that late Pleistocene glacial-pluvial Lake Gale, Panamint Valley was an open system during OIS-6, a closed ground water supported shallow lake during OIS-4, and the terminal lake basin for the Owens River system during OIS-2. We here report the first occurrence of fossil fish from the Plio-Pleistocene Panamint basin. Fish remains are present in late Pleistocene OIS-6 nearshore deposits associated with a highstand that was spillway limited at Wingate Wash. The deposits contain small minnow-sized remains from both Siphateles or Gila sp. (chubs) and Catostomus sp. (suckers) from at least four locations widely dispersed in the basin. Siphateles or Gila sp. and Catostomus are indigenous to the Pleistocene and modern Owens River system, in particular to the historic Owens Lake area. Cyprinodon (pupfish) and Rhinichthys (dace) are known from the modern Amargosa River and from Plio-Pleistocene deposits in Death Valley to the east. The late Pleistocene OIS-6 to OIS-2 lacustrine and paleohydrologic record in Panamint basin is interpreted from ostracod assemblages, relative abundance of Artemia sp. pellets, shallow water indicators including tufa fragments, ruppia sp. fragments and the relative abundance of charophyte gyrogonites obtained from archived core, as well as faunal assemblages from paleoshoreline and nearshore deposits. The OIS-4 groundwater supported shallow saline lake had sufficiently low ratios of alkalinity to calcium (alk/Ca) to support the occurrence of exotic Elphidium sp. (?) foraminfera which are not observed in either OIS-2 or OIS-6 lacustrine deposits. The arrival of Owens River surface water into Panamint Basin during OIS-2 is recorded by the first appearance of the ostracod Limnocythere sappaensis at ~27 m depth in an ~100 m archived core (Smith and Pratt, 1957) which

  17. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 1. stream quality trends coinciding with the return of fish

    USGS Publications Warehouse

    Cravotta, Charles A.; Brightbill, Robin A.; Langland, Michael J.

    2010-01-01

    Acidic mine drainage (AMD) from legacy anthracite mines has contaminated Swatara Creek in eastern Pennsylvania. Intermittently collected base-flow data for 1959–1986 indicate that fish were absent immediately downstream from the mined area where pH ranged from 3.5 to 7.2 and concentrations of sulfate, dissolved iron, and dissolved aluminum were as high as 250, 2.0, and 4.7 mg/L, respectively. However, in the 1990s, fish returned to upper Swatara Creek, coinciding with the implementation of AMD treatment (limestone drains, limestone diversion wells, limestone sand, constructed wetlands) in the watershed. During 1996–2006, as many as 25 species of fish were identified in the reach downstream from the mined area, with base-flow pH from 5.8 to 7.6 and concentrations of sulfate, dissolved iron, and dissolved aluminum as high as 120, 1.2, and 0.43 mg/L, respectively. Several of the fish taxa are intolerant of pollution and low pH, such as river chub (Nocomis icropogon) and longnose dace (Rhinichthys cataractae). Cold-water species such as brook trout (Salvelinus fontinalis) and warm-water species such as rock bass (Ambloplites rupestris) varied in predominance depending on stream flow and stream temperature. Storm flow data for 1996–2007 indicated pH, alkalinity, and sulfate concentrations decreased as the stream flow and associated storm-runoff component increased, whereas iron and other metal concentrations were poorly correlated with stream flow because of hysteresis effects (greater metal concentrations during rising stage than falling stage). Prior to 1999, pH\\5.0 was recorded during several storm events; however, since the implementation of AMD treatments, pH has been maintained near neutral. Flow-adjusted trends for1997–2006 indicated significant increases in calcium; decreases in hydrogen ion, dissolved aluminum, dissolved and total manganese, and total iron; and no change in sulfate or dissolved iron in Swatara Creek immediately downstream from the

  18. Molecular biology of major components of chloride cells.

    PubMed

    Hirose, Shigehisa; Kaneko, Toyoji; Naito, Nobuko; Takei, Yoshio

    2003-12-01

    expressed on the apical membrane of CCs, reviving the original model. The CC is also involved in acid-base regulation. Analysis using Osorezan dace (Tribolodon hakonensis) living in a pH 3.5 lake demonstrated marked inductions of Na(+),K(+)-ATPase, CA-II, NHE3, Na(+)/HCO(3)(-) cotransporter-1 and aquaporin-3 in the CCs on acidification, leading to a working hypothesis for the mechanism of Na(+) retention and acid-base regulation. PMID:14662288

  19. Fish communities of benchmark streams in agricultural areas of eastern Wisconsin

    USGS Publications Warehouse

    Sullivan, D.J.; Peterson, E.M.

    1997-01-01

    Fish communities were surveyed at 20 stream sites in agricultural areas in eastern Wisconsin in 1993 and 1995 as part of the National Water-Quality Assessment (NAWQA) Program. These streams, designated "benchmark streams," were selected for study because of their potential use as regional references for healthy streams in agricultural areas, based on aquatic communities, habitat, and water chemistry. The agricultural benchmark streams were selected from four physical settings, or relatively homogeneous units (RHU's), that differ in bedrock type, texture of surficial deposits, and land use. Additional data were collected along with the fish-community data, including measures of habitat, water chemistry, and population surveys of algae and benthic invertebrates. Of the 20 sites, 19 are classified as trout (salmonid) streams. Fish species that require cold or cool water were the most commonly collected. At least one species of trout was collected at 18 sites, and trout were the most abundant species at 13 sites. The species with the greatest collective abundance, and collected at 18 of the 20 sites, were mottled sculpin (Cottus bairdi), a coldwater species. The next most abundant species were brown trout (Salmo trutta), followed by brook trout (Salvelinusfontinalis), creek chub (Semotilus atromaculatus), and longnose dace (Rhinichthys cataractae). In all, 31 species of fish were collected. The number of species per stream ranged from 2 to 14, and the number of individuals collected ranged from 19 to 264. According to Index of Biotic Integrity (IBI) scores, 5 sites were rated excellent, 10 sites rated good, 4 rated fair, and 1 rated poor. The ratings of the five sites in the fair to poor range were low for various reasons. Two sites appeared to have more warmwater species than was ideal for a high-quality coldwater stream. One was sampled during high flow and the results may not be valid for periods of normal flow; the other may have been populated by migrating

  20. Selenium in ecosystems within the mountaintop coal mining and valley-fill region of southern West Virginia-assessment and ecosystem-scale modeling

    USGS Publications Warehouse

    Presser, Theresa S.

    2013-01-01

    Coal and associated waste rock are among environmental selenium (Se) sources that have the potential to affect reproduction in fish and aquatic birds. Ecosystems of southern West Virginia that are affected by drainage from mountaintop coal mines and valleys filled with waste rock in the Coal, Gauley, and Lower Guyandotte watersheds were assessed during 2010 and 2011. Sampling data from earlier studies in these watersheds (for example, Upper Mud River Reservoir) and other mining-affected watersheds also are included to assess additional hydrologic settings and food webs for comparison. Basin schematics give a comprehensive view of sampled species and Se concentration data specific to location and date. Food-web diagrams document the progression of Se trophic transfer across suspended particulate material, invertebrates, and fish for each site to serve as the basis for developing an ecosystem-scale model to predict Se exposure within the hydrologic conditions and food webs of southern West Virginia. This approach integrates a site-specific predator’s dietary exposure pathway into modeling to ensure an adequate link to Se toxicity and, thus, to species vulnerability. Site-specific fish abundance and richness data in streams documented various species of chub, shiner, dace, darters, bass, minnow, sunfish, sucker, catfish, and central stoneroller (Campostoma anomalum), mottled sculpin (Cottus bairdii), and least brook lamprey (Lampetra aepyptera). However, Se assessment species for streams, and hence, model species for streams, were limited to creek chub (Semotilus atromaculatus) and central stoneroller. Both of these species of fish are generally considered to have a high tolerance for environmental stress based on traditional comparative fish community assessment, with creek chub being present at all sites. Aquatic insects (mayfly, caddisfly, stonefly, dobsonfly, chironomid) were the main invertebrates sampled in streams. Collection of suspended particulate material

  1. Big Spring spinedace and associated fish populations and habitat conditions in Condor Canyon, Meadow Valley Wash, Nevada

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.; Dixon, Chris

    2011-01-01

    Executive Summary: This project was designed to document habitat conditions and populations of native and non-native fish within the 8-kilometer Condor Canyon section of Meadow Valley Wash, Nevada, with an emphasis on Big Spring spinedace (Lepidomeda mollispinis pratensis). Other native fish present were speckled dace (Rhinichthys osculus) and desert sucker (Catostomus clarki). Big Spring spinedace were known to exist only within this drainage and were known to have been extirpated from a portion of their former habitat located downstream of Condor Canyon. Because of this extirpation and the limited distribution of Big Spring spinedace, the U.S. Fish and Wildlife Service listed this species as threatened under the Endangered Species Act in 1985. Prior to our effort, little was known about Big Spring spinedace populations or life histories and habitat associations. In 2008, personnel from the U.S. Geological Survey's Columbia River Research Laboratory began surveys of Meadow Valley Wash in Condor Canyon. Habitat surveys characterized numerous variables within 13 reaches, thermologgers were deployed at 9 locations to record water temperatures, and fish populations were surveyed at 22 individual sites. Additionally, fish were tagged with Passive Integrated Transponder (PIT) tags, which allowed movement and growth information to be collected on individual fish. The movements of tagged fish were monitored with a combination of recapture events and stationary in-stream antennas, which detected tagged fish. Meadow Valley Wash within Condor Canyon was divided by a 12-meter (m) waterfall known as Delmue Falls. About 6,100 m of stream were surveyed downstream of the falls and about 2,200 m of stream were surveyed upstream of the falls. Although about three-quarters of the surveyed stream length was downstream of Delmue Falls, the highest densities and abundance of native fish were upstream of the falls. Big Spring spinedace and desert sucker populations were highest near the

  2. Stream Temperature Variability as an Indicator of Groundwater-Surface Water Interactions in Two Groundwater-Fed Streams

    NASA Astrophysics Data System (ADS)

    Middleton, M.; Allen, D. M.

    2009-12-01

    Water temperature can be a useful tool in assessing the nature and the locations of groundwater - surface water interactions, particularly during low flow periods. In this study, a network of forty calibrated temperature (TidBit) loggers was installed in two groundwater-fed streams (Fishtrap and Bertrand Creeks) in the Lower Fraser Valley of British Columbia and northern Washington State. These streams have precipitation-driven flow regimes and are presumed to be sustained by baseflow during the annual low-flow period which lags minimum precipitation by approximately one month. In these particular streams, understanding groundwater-surface water interactions has been identified data gap in the development of recovery strategies for maintaining ecosystem health and habitat for two endangered fish species, the Nooksack Dace and Salish Sucker. From July 2008 to June 2009, stream temperature and discharge, groundwater temperature and level, and climate were monitored consecutively over two low-flow seasons with the objective of quantifying the spatial and temporal variability within each stream, as well as differences and trends between the streams. The temperature logger networks were installed over 50 m of channel or less at one site on each stream, as well as at two additional sites on Fishtrap Creek for regional coverage. Within each stream, the network of temperature loggers showed the variability in water temperature over a short distance of the channel. In Fishtrap Creek, among 15 dataloggers, the mean variability was 1.3oC, and in Bertrand Creek, among 19 dataloggers, the mean variability was 0.7oC. Fishtrap Creek water temperature ranged from 0.4oC to 17.6oC, showing less variability than Bertrand Creek, which ranged from -0.1oC to 20.8oC. The groundwater temperatures remained relatively stable throughout the year and ranged from 10.1oC to 12.0oC. Fishtrap Creek water temperature patterns were generally stable and mimicked groundwater temperature variations

  3. Mercury in fishes from 21 national parks in the Western United States: inter- and intra-park variation in concentrations and ecological risk

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Willacker, James J.; Flanagan Pritz, Colleen M.

    2014-01-01

    of fish sampled were above a benchmark for risk to highly sensitive avian consumers (90 ng/g ww), and THg concentrations in 68 percent of fish sampled were above exposure levels recommended by the Great Lakes Advisory Group (50 ng/g ww) for unlimited consumption by humans. Of the fish assessed for risk to human consumers (that is, species that are large enough to be consumed by recreational or subsistence anglers), only one individual fish from Yosemite National Park had a muscle Hg concentration exceeding the benchmark (950 ng/g ww) at which no human consumption is advised. Zion, Capital Reef, Wrangell-St. Elias, and Lake Clark National Parks all contained sites in which most fish exceeded benchmarks for the protection of human and wildlife health. This finding is particularly concerning in Zion and Capitol Reef National Parks because the fish from these parks were speckled dace, a small, invertebrate-feeding species, yet their Hg concentrations were as high or higher than those in the largest, long-lived predatory species, such as lake trout. Future targeted research and monitoring across park habitats would help identify patterns of Hg distribution across the landscape and facilitate management decisions aimed at reducing the ecological risk posed by Hg contamination in sensitive ecosystems protected by the National Park Service.

  4. Distribution of fish, benthic invertebrate, and algal communities in relation to physical and chemical conditions, Yakima River basin, Washington, 1990

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    1997-01-01

    Biological investigations were conducted in the Yakima River Basin, Washington, in conjunction with a pilot study for the U.S. Geological Survey's National Water-Quality Assessment Program. Ecological surveys were conducted at 25 sites in 1990 to (1) assess water-quality conditions based on fish, benthic invertebrate, and algal communities; (2) determine the hydrologic, habitat, and chemical factors that affect the distributions of these organisms; and (3) relate physical and chemical conditions to water quality. Results of these investigations showed that land uses and other associated human activities influenced the biological characteristics of streams and rivers and overall water-quality conditions. Fish communities of headwater streams in the Cascades and Eastern Cascades ecoregions of the Yakima River Basin were primarily composed of salmonids and sculpins, with cyprinids dominating in the rest of the basin. The most common of the 33 fish taxa collected were speckled dace, rainbow trout, and Paiute sculpin. The highest number of taxa (193) was found among the inverte- brates. Insects, particularly sensitive forms such as mayflies, stoneflies, and caddisflies (EPT--Ephemeroptera, Plecoptera, and Trichoptera fauna), formed the majority of the invertebrate communities of the Cascades and Eastern Cascades ecoregions. Diatoms dominated algal communities throughout the basin; 134 algal taxa were found on submerged rocks, but other stream microhabitats were not sampled as part of the study. Sensitive red algae and diatoms were predominant in the Cascades and Eastern Cascades ecoregions, whereas the abundance of eutrophic diatoms and green algae was large in the Columbia Basin ecoregion of the Yakima River Basin. Ordination of physical, chemical, and biological site characteristics indicated that elevation was the dominant factor accounting for the distribution of biota in the Yakima River Basin; agricultural intensity and stream size were of secondary importance

  5. Estimation of heat loss from a cylindrical cavity receiver based on simultaneous energy and exergy analyses

    NASA Astrophysics Data System (ADS)

    Madadi, Vahid; Tavakoli, Touraj; Rahimi, Amir

    2015-03-01

    This study undertakes the experimental and theoretical investigation of heat losses from a cylindrical cavity receiver employed in a solar parabolic dish collector. Simultaneous energy and exergy equations are used for a thermal performance analysis of the system. The effects of wind speed and its direction on convection loss has also been investigated. The effects of operational parameters, such as heat transfer fluid mass flow rate and wind speed, and structural parameters, such as receiver geometry and inclination, are investigated. The portion of radiative heat loss is less than 10%. An empirical and simplified correlation for estimating the dimensionless convective heat transfer coefficient in terms of the Re mathrm {Re} number and the average receiver wall temperature is proposed. This correlation is applicable for a wind speed range of dace5d23f.png" />0.10.1 to 10 m/s. Moreover, the proposed correlation for Nu mathrm {Nu} number is validated using experimental data obtained through the experiments carried out with a conical receiver with two aperture diameters. The coefficient of determination R2 and the normalized root

  6. Preliminary assessment of factors influencing riverine fish communities in Massachusetts.

    USGS Publications Warehouse

    Armstrong, David S.; Richards, Todd A.; Brandt, Sara L.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Conservation and Recreation (MDCR), Massachusetts Department of Environmental Protection (MDEP), and the Massachusetts Department of Fish and Game (MDFG), conducted a preliminary investigation of fish communities in small- to medium-sized Massachusetts streams. The objective of this investigation was to determine relations between fish-community characteristics and anthropogenic alteration, including flow alteration and impervious cover, relative to the effect of physical basin and land-cover (environmental) characteristics. Fish data were obtained for 756 fish-sampling sites from the Massachusetts Division of Fisheries and Wildlife fish-community database. A review of the literature was used to select a set of fish metrics responsive to flow alteration. Fish metrics tested include two fish-community metrics (fluvial-fish relative abundance and fluvial-fish species richness), and five indicator species metrics (relative abundance of brook trout, blacknose dace, fallfish, white sucker, and redfin pickerel). Streamflows were simulated for each fish-sampling site using the Sustainable Yield Estimator application (SYE). Daily streamflows and the SYE water-use database were used to determine a set of indicators of flow alteration, including percent alteration of August median flow, water-use intensity, and withdrawal and return-flow fraction. The contributing areas to the fish-sampling sites were delineated and used with a Geographic Information System (GIS) to determine a set of environmental characteristics, including elevation, basin slope, percent sand and gravel, percent wetland, and percent open water, and a set of anthropogenic-alteration variables, including impervious cover and dam density. Two analytical techniques, quantile regression and generalized linear modeling, were applied to determine the association between fish-response variables and the selected environmental and

  7. Identifying nutrient reference sites in nutrient-enriched regions-Using algal, invertebrate, and fish-community measures to identify stressor-breakpoint thresholds in Indiana rivers and streams, 2005-9

    USGS Publications Warehouse

    Caskey, Brian J.; Bunch, Aubrey R.; Shoda, Megan E.; Frey, Jeffrey W.; Selvaratnam, Shivi; Miltner, Robert J.

    2013-01-01

    found similar thresholds (TN of 0.656 mg/L, mean TP of 0.118 mg/L, and periphyton CHLa of 27.2 mg/m2) for some stressor variables as determined by the breakpoint analysis. The TN and TP concentrations in this study showed a nutrient gradient that spanned three orders of magnitude. Sites were divided into Low, Medium, and High nutrient groups based on the 10th and 75th percentiles. The invertebrate and fish communities were similar along the nutrient gradient, using an analysis of similarity, demonstrating there was not a species trophic gradient. Within all nutrient groups, invertebrate and fish communities were dominated by nutrient tolerant taxa (algivores, herbivores, and omnivores) that included invertebrates, such as Cheumatopsyche sp., Physella sp., and fish such as Stonerollers (Campostoma spp.) and Bluntnose Minnow (Pimephales notatus). To determine if low nutrient concentrations at some sites were caused by algal uptake and not oligotrophic conditions, sites with low nutrient concentrations (less than 10th percentile for TN or TP) were examined based on the Low (less than or equal to the 10th percentile) and High (greater than the 75th percentile) periphyton CHLa concentrations. Within low nutrient sites, the invertebrate and fish communities were statistically different between Low and High periphyton CHLa categories. The majority of variance between the Low and High periphyton CHLa categories was caused by Cheumatopsyche sp. (caddisfly), Physella sp. (pulmonate snail), and Caenis latipennis (a mayfly) in the invertebrate community; and caused by Stonerollers, Western Blacknose Dace (Rhinichthys atratulus meleagris), and Creek Chub (Semotilus atromaculatus) in the fish community. The dominance of tolerant herbivore and omnivore taxa in the High periphyton CHLa group indicates that low nutrient concentrations are a result of nutrient uptake and increased algal growth. This study highlights the importance of assessing multiple lines of evidence when attempting