Science.gov

Sample records for korea-china optical technology

  1. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.; Findakly, T.; Innarella, R.

    1982-01-01

    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.

  2. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  3. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.

    1982-01-01

    The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.

  4. Polymer optical motherboard technology

    NASA Astrophysics Data System (ADS)

    Keil, N.; Yao, H.; Zawadzki, C.; Grote, N.; Schell, M.

    2008-02-01

    In this paper, different hybridly integrated optical devices including optical multiplexer/ demultiplexer and optical transceivers are described. The devices were made using polymer planar light wave circuit (P2LC) technology. Laser diodes, photodiodes, and thin-film filters have been integrated. Key issues involved in this technology, in particular the coupling between laser diodes and polymer waveguides, and between waveguides and photodiodes and also fibers are discussed.

  5. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  6. Rewritable optical disk technologies

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2000-11-01

    The two mainstream technologies for rewritable optical data storage are based on magneto-optical (MO) and phase-change (PC) media. In both cases a focused laser beam is used to raise the temperature of the medium beyond a certain critical temperature (i.e., melting and crystallization temperatures in the case of PC, and the Curie temperature in the case of MO) for writing, erasure, and overwriting of data. The readout of information from these media relies on the change of reflectivity of the medium (PC), or the effect of the medium on the state of polarization of the laser beam (MO). The performance of these data storage systems is characterized by the storage density of the media, achievable data rates during recording and readout, longevity, reliability, and cost of the finished products. These performance criteria in turn are determined by a host of physical and technological factors, among them: (1) Wavelength of the available semiconductor laser diodes; (2) Type of optics used in shaping the laser beam and confining it to sub-micron regions (i.e., conventional optics, near-field optics, flying lasers, integrated optics, etc.); (3) Availability of one- or two- dimensional arrays of lasers and the corresponding optics; (4) Miniature magnetic heads for thermally-assisted writing (inductive) and magneto-resistive readout; (5) Adaptive optics for beam-shaping and/or polarization control; (6) Availability of low-noise media that can deliver large readout signals; (7) Advanced signal processing techniques (both optical and electronic); (8) Multi-layer recording on stacked layers of media; (9) Novel encoding/decoding schemes for efficient use of available space on the media; (10) Mass-production of flat, rigid, low-noise patterned substrates (plastic or glass); (11) Multi-level recording. We discuss the present state of the art in optical data storage, describe the potentials and pitfalls of the existing technologies, and draw conclusions about the future of this

  7. Optical fuzing technology

    NASA Astrophysics Data System (ADS)

    von der Lippe, Christian M.; Liu, J. Jiang

    2006-05-01

    Advanced optical fuze (OF) technology based on high-performance optoelectronic sensor is developed for munitions applications. The compact and robust design of the OF employed high-power vertical-cavity surface-emitting lasers (VCSELs), the metal-semiconductor-metal photodetectors, SiGe ASIC driver, miniature optics, and the corresponding electronic signal processors. Mounted on the front of the projectile, the laser transmitter sends out a highly collimated beam that is amplitude modulated with a chirped RF signal. The reflected optical signal from the target is picked up by the photoreceiver on the projectile which also has its electrical bias modulated at the same time-dependent operational frequency as the transmitted optical signal. The on-board signal processor heterodynes both transmitted and the delayed optical waveforms and generates an intermediate frequency corresponding to the time delay due to the travel time of the light. Further measurement of the mixed signals yields directly the range information of the target.

  8. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  9. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  10. Advanced optical fuzing technology

    NASA Astrophysics Data System (ADS)

    von der Lippe, Christian M.; Liu, J. Jiang

    2005-09-01

    We are developing a robust and compact photonic proximity sensor for munition applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The photonic component development exploits pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies employed in the optical fuze design are vertical cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, and miniature lenses optics. This work will culminate in a robust, fully integrated, g-hardened component design suitable for proximity fuzing applications. This compact sensor will replace costly assemblies that are based on discrete lasers, photodetectors, and bulk optics. It will be mass manufacturable and impart huge savings for such applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  11. Large Optics Technology.

    DTIC Science & Technology

    1986-05-22

    EEEEEEEEEEmhEE SENSEffl -2-5 12" 110111111 LLLo 111M1. 2 15 .1 111-= NATIONAL BUREAU OF S Mouopy *9sO9u TESI , C N LARGE OPTICS TECHNOLOGY FINAL...Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1981 !mw ’(’* 17 ABSTRACT The mirrors used in high energy laser systems...SCIENCES (GRADUATE) In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1982

  12. Optical Computers and Space Technology

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela

    1995-01-01

    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  13. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  14. Developing optic technologies in Belarus

    NASA Astrophysics Data System (ADS)

    Rubanov, Alexander S.; Shkadarevich, Alexei P.

    2001-03-01

    In this work we give a retrospective analysis of the development of optical technologies in Belarus. In the post-war period a great scientific and technological potential has been built up in this sphere, highly skilled specialist have been trained and prestigious scientific and technical schools have appeared. Belarusian multiprofile optical industry is noticed to be capable of producing not only the materials and equipment for optical production but also optical goods of the highest level of complication. The characteristics of cosmic photoequipment, photogrammetric and cinetheodolite techniques, a variety of laser devices and optical goods for civic purposes are given as an example. The instances demonstrating the realization of unique optical projects are considered as well. High quality of Belarusian optical production makes it be much in demand in Russia, Japan, USA, Germany, France, China, Korea, Sweden, Spain, England, United Arab Emirates and other countries.

  15. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  16. Optical Storage Technology Subgroup (FIMUG)

    DTIC Science & Technology

    1990-04-01

    PROCUREMENT INSTRUMENT IDEyTiFiCAT,ON NUMBER ORGANIZATION (If applicable) US Army Corps of Engineers I 8c. ADDRESS (Citv. State, and ZIP Code) I0 SOURCE OF... Engineering , and Automation) are considered in relation to the current level of optical technology, and options for the US Army Corps of Engi- neers are... Engineer - ing, and Automation are provided in the report. Conclusions General conclusions are as follow: a. The use of optical storage technologies can

  17. Optical Fiber Technology In Medicine

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryazard S.

    1986-01-01

    A digest of applications of optical fibre technology in biology and medicine is presented. We describe the topic from several main (according to our opinion) points of view, namely: place of optical fibre and some kinds of optoelectronic equipment among other optical biomedical apparatus, requirements imposed by biomedical environments on the construction of apparatus, possible areas of applications, main confinements of applications and further development. We present here our arbitrary understanding of directions of development of debated field. The bibliography of this problem is quoted and some works carried in this country are emphasized.

  18. A novel optical tuning technology

    NASA Astrophysics Data System (ADS)

    Miron, Nicolae

    2007-02-01

    A novel optical tuning technology based on new non-resonant interferometer (Optune interferometer) is described. This interferometer has a totally reflective layer either parallel with a partially reflective layer or tilted with a small angle, with an adjustable air gap between them. An input fiber optic collimator delivers a free space collimated beam that is incident first on the totally reflective layer at a small incidence angle. This beam bounces many times between the two reflective layers. An output fiber optic collimator collects all the beams going through the partially reflective layer making them to interfere at the entrance aperture of the output fiber. The optical configuration has no resonant frequencies. A broadband signal at the input is available at the output as a comb with even spacing. Any arbitrary wavelength can be selected by adjusting accurately the gap size. Tuning across 90 nm range could require less than 10 μm change of the gap size. Some properties of Optune interferometer are: 240 nm tuning range, no tuning holes, 0.2 ms / 100 nm tuning speed, 1 pm tuning accuracy, 0.15 nm bandwidth, 1 dB insertion loss, 45 dB contrast, 0.2 dB flatness, 0.15 dB polarization dependent loss. Optune interferometer can be used either for filtering or for generating optical wavelengths in a broad range of applications such as optical monitoring of structures (FBG and Brillouin technologies), and in optical communications. U.S. Patent No. 7,002,696 covers Optune interferometer and also optical tuning technology based on it.

  19. Basics of Videodisc and Optical Disk Technology.

    ERIC Educational Resources Information Center

    Paris, Judith

    1983-01-01

    Outlines basic videodisc and optical disk technology describing both optical and capacitance videodisc technology. Optical disk technology is defined as a mass digital image and data storage device and briefly compared with other information storage media including magnetic tape and microforms. The future of videodisc and optical disk is…

  20. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  1. Fiber-optic technology review

    SciTech Connect

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 ..mu..m and development of wavelengths multiplexers for simultaneous system operation at several wavelengths.

  2. Optical Technology: Interacting with Traditional Systems.

    ERIC Educational Resources Information Center

    McConnell, Karen

    1987-01-01

    Reviews optical technology products currently on the market, including their storage capacities, formats and uses, and outlines the benefits of integrating optical storage devices with online databases. A description of the HAYSTACK system is offered as a model of optical technology for library applications. A suggested reading list is provided.…

  3. Ultrasonic precision optical grinding technology

    NASA Astrophysics Data System (ADS)

    Cahill, Michael J.; Bechtold, Michael J.; Fess, Edward; Wolfs, Frank L.; Bechtold, Rob

    2015-10-01

    As optical geometries become more precise and complex and a wider range of materials are used, the processes used for manufacturing become more critical. As the preparatory stage for polishing, this is especially true for grinding. Slow processing speeds, accelerated tool wear, and poor surface quality are often detriments in manufacturing glass and hard ceramics. The quality of the ground surface greatly influences the polishing process and the resulting finished product. Through extensive research and development, OptiPro Systems has introduced an ultrasonic assisted grinding technology, OptiSonic, which has numerous advantages over traditional grinding processes. OptiSonic utilizes a custom tool holder designed to produce oscillations in line with the rotating spindle. A newly developed software package called IntelliSonic is integral to this platform. IntelliSonic automatically characterizes the tool and continuously optimizes the output frequency for optimal cutting while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more accurate surface. Utilizing a wide variety of instruments, test have proven to show a reduction in tool wear and increase in surface quality while allowing processing speeds to be increased. OptiSonic has proven to be an enabling technology to overcome the difficulties seen in grinding of glass and hard optical ceramics. OptiSonic has demonstrated numerous advantages over the standard CNC grinding process. Advantages are evident in reduced tool wear, better surface quality, and reduced cycle times due to increased feed rates. These benefits can be seen over numerous applications within the precision optics industry.

  4. IC-Compatible Technologies for Optical MEMS

    SciTech Connect

    Krygowski, T.W.; Sniegowski, J.J.

    1999-04-30

    Optical Micro Electro Mechanical Systems (Optical MEMS) Technology holds the promise of one-day producing highly integrated optical systems on a common, monolithic substrate. The choice of fabrication technology used to manufacture Optical MEMS will play a pivotal role in the size, functionality and ultimately the cost of optical Microsystems. By leveraging the technology base developed for silicon integrated circuits, large batches of routers, emitters, detectors and amplifiers will soon be fabricated for literally pennies per part. In this article we review the current status of technologies used for Optical MEMS, as well as fabrication technologies of the future, emphasizing manufacturable surface micromachining approaches to producing reliable, low-cost devices for optical communications applications.

  5. Optical technologies for intraoperative neurosurgical guidance

    PubMed Central

    Valdés, Pablo A.; Roberts, David W.; Lu, Fa-Ke; Golby, Alexandra

    2016-01-01

    Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light–tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery. PMID:26926066

  6. Optical technologies for intraoperative neurosurgical guidance.

    PubMed

    Valdés, Pablo A; Roberts, David W; Lu, Fa-Ke; Golby, Alexandra

    2016-03-01

    Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light-tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery.

  7. A Review of Optical NDT Technologies

    PubMed Central

    Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong

    2011-01-01

    Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045

  8. A review of optical NDT technologies.

    PubMed

    Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong

    2011-01-01

    Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress.

  9. Digital optical tape: Technology and standardization issues

    NASA Technical Reports Server (NTRS)

    Podio, Fernando L.

    1996-01-01

    During the coming years, digital data storage technologies will continue an aggressive growth to satisfy the user's need for higher storage capacities, higher data transfer rates and long-term archival media properties. Digital optical tape is a promising technology to satisfy these user's needs. As any emerging data storage technology, the industry faces many technological and standardization challenges. The technological challenges are great, but feasible to overcome. Although it is too early to consider formal industry standards, the optical tape industry has decided to work together by initiating prestandardization efforts that may lead in the future to formal voluntary industry standards. This paper will discuss current industry optical tape drive developments and the types of standards that will be required for the technology. The status of current industry prestandardization efforts will also be discussed.

  10. Enabling technologies for fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-04-01

    In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.

  11. Advanced high-bandwidth optical fuzing technology

    NASA Astrophysics Data System (ADS)

    Liu, Jony J.; von der Lippe, Christian M.

    2005-10-01

    A robust and compact photonic proximity sensor is developed for optical fuze in munitions applications. The design of the optical fuze employed advanced optoelectronic technologies including high-power vertical-cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, SiGe ASIC driver, and miniature optics. The development combines pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories and synergizes the key optoelectronic technologies in components and system designs. This compact sensor will replace conventional costly assemblies based on discrete lasers, photodetectors, and bulky optics and provide a new capability for direct fire applications. It will be mass manufacturable in low cost and simplicity. In addition to the specific applications for gun-fired munitions, numerous civilian uses can be realized by this proximity sensor in automotive, robotics, and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  12. Technology of optical azimuth transmission

    NASA Astrophysics Data System (ADS)

    Lu, Honggang; Hu, Chunsheng; Wang, Xingshu; Gao, Yang

    2012-11-01

    It often needs transfer a reference from one place to another place in aerospace and guided missile launching. At first, principles of several typical optical azimuth transmission methods are presented. Several typical methods are introduced, such as Theodolite (including gyro-theodolite) collimation method, Camera series method, Optical apparatus for azimuth method and polarization modulated light transmission method. For these typical azimuth transmission methods, their essential theories are elaborated. Then the devices, the application fields and limitations of these typical methods' are presented. Theodolite (including gyro-theodolite) collimation method is used in the ground assembly of spacecraft. Camera series method and optical apparatus for azimuth method are used in azimuth transmission between different decks of ship. Polarization modulated light transmission method is used in azimuth transmission of rocket and guided missile. At the last, the further developments of these methods are discussed.

  13. Innovative technology for optical and infrared astronomy

    NASA Astrophysics Data System (ADS)

    Cunningham, Colin R.; Evans, Christopher J.; Molster, Frank; Kendrew, Sarah; Kenworthy, Matthew A.; Snik, Frans

    2012-09-01

    Advances in astronomy are often enabled by adoption of new technology. In some instances this is where the technology has been invented specifically for astronomy, but more usually it is adopted from another scientific or industrial area of application. The adoption of new technology typically occurs via one of two processes. The more usual is incremental progress by a series of small improvements, but occasionally this process is disruptive, where a new technology completely replaces an older one. One of the activities of the OPTICON Key Technology Network over the past few years has been a technology forecasting exercise. Here we report on a recent event which focused on the more radical, potentially disruptive technologies for ground-based, optical and infrared astronomy.

  14. Moving Optical Technology In-House

    DTIC Science & Technology

    1989-03-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California 0 Lfl 00P40 < RUDTIC 0% EECTF MAY 17 1989 THESIS U MOVING OPTICAL TECHNOLOGY IN- HOUSE by Bruce E...ACCESSION NO. 11. TITLE (Include Security Classification) MOWING OPTICAL TECHNOLOGY IN- HOUSE 12 PERSONAL AUTHOR(S) FAr. R~RIX F-RR 13a TYPE OF REPORT...COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP CD-ROM; CD-It4 IN- HOUSE

  15. Retinal imaging using adaptive optics technology.

    PubMed

    Kozak, Igor

    2014-04-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started.

  16. Efficient manufacturing technology of metal optics

    NASA Astrophysics Data System (ADS)

    Zhang, Jizhen; Wu, Yanxiong; Zhang, Xin; Zhang, Liping; Wang, Lingjie; Qu, Hemeng

    2015-10-01

    The efficient manufacturing technologies greatly accelerate the development and production process. Optical components have higher precision requirements than mechanical parts. This provides great challenge for rapid manufacturing. Metallic optical system is featured high resolution, wide spectral range, light weight, compact design, low cost and short manufacturing period. Reflective mirrors and supporting structures can be made from the same material to improve athermal performance of the system. Common materials for metal mirrors in optical applications include aluminum, copper, beryllium, aluminum beryllium alloy and so on. Their physical characteristics and relative advantages are presented. Most kinds of metals have good machinability and can be manufactured by many kinds of producing methods. This makes metallic optical system saving 30%~60% cost and time than others. The manufacturing process of metal mirror is different due to its working spectral. The metal mirror can be directly manufactured by single point diamond turning. This is an outstanding technique in point of ultra-precision as well as economical manufacture of mirrors. The roughness values and form accuracy of optical surfaces after diamond turning can satisfy the quality level for applications in the near infrared and infrared range. And for visible light spectral the turning structures must be removed with a smoothing procedure in order to minimize the scatter losses. Some smoothing methods to obtain visible quality metal mirrors are given in this paper. Some new manufacturing technology, such as 3D printing, can be used for metallic optical system and several promising techniques are presented.

  17. Fiber Optic Communications Technology. A Status Report.

    ERIC Educational Resources Information Center

    Hull, Joseph A.

    Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…

  18. Advanced silicon device technologies for optical interconnects

    NASA Astrophysics Data System (ADS)

    Wosinski, Lech; Wang, Zhechao; Lou, Fei; Dai, Daoxin; Lourdudoss, Sebastian; Thylen, Lars

    2012-01-01

    Silicon photonics is an emerging technology offering novel solutions in different areas requiring highly integrated communication systems for optical networking, sensing, bio-applications and computer interconnects. Silicon photonicsbased communication has many advantages over electric wires for multiprocessor and multicore macro-chip architectures including high bandwidth data transmission, high speed and low power consumption. Following the INTEL's concept to "siliconize" photonics, silicon device technologies should be able to solve the fabrication problems for six main building blocks for realization of optical interconnects: light generation, guiding of light including wavelength selectivity, light modulation for signal encoding, detection, low cost assembly including optical connecting of the devices to the real world and finally the electronic control systems.

  19. Photonics technology development for optical fuzing.

    SciTech Connect

    Liu, J.J.; Geib, Kent Martin; von der Lippe, C.M.; Peake, Gregory Merwin; Serkland, Darwin Keith; Keeler, Gordon Arthur; Mar, Alan

    2005-07-01

    This paper describes the photonic component development, which exploits pioneering work and unique expertise at Sandia National Laboratories, ARDEC and the Army Research Laboratory by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies under investigation for the optical fuze design covered in this paper are vertical cavity surface emitting lasers (VECSELs), integrated resonant cavity photodetectors (RCPD), and diffractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components designed suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications.

  20. Intergenerational Relationships in Cross-Cultural Comparison: How Social Networks Frame Intergenerational Relations between Mothers and Grandmothers in Japan, Korea, China, Indonesia, Israel, Germany, and Turkey

    ERIC Educational Resources Information Center

    Nauck, Bernhard; Suckow, Jana

    2006-01-01

    The article explores the relevance of intergenerational relationships within the overall network of young mothers and grandmothers in seven societies: Japan, Korea, China, Indonesia, Turkey, Israel, and Germany. The empirical base is 2,945 named network members in 249 pairs of interviews of grandmothers and their daughters from a cross-cultural…

  1. Art + technology in optics educational outreach programs

    NASA Astrophysics Data System (ADS)

    Silberman, Donn M.

    2007-09-01

    In the modern era, art and technology have been at opposite ends of the spectrum of human study. Artists tend to be non-technical and technologists tend not to be artistic. While this is a broad generalization, it is rare to find an artist teaching science or an engineer teaching art. However, if we think back several centuries, it was very common for great artists to be at the forefront of technology. The prime example being the great Leonardo Di Vinci. Over the past several years, the optics educational outreach programs of the Optics Institute of Southern California (OISC) have incorporated using art and artists to help teach optics and related science. The original use of this was with material from the General Atomics Education Foundation, Color My World, which has been used in a number of settings. Recently, the OISC has partnered with the UC Irvine Beall Center for Art + Technology to provide Family Day Event presentations that use the themes of current Art + Technology exhibits to help attendees learn and understand more about the fundamental science through the art. The two main concepts here are that artists are using science and technology as the basis for their art, also sometimes making some social statements; and the technologists are using the art to make the science more accessible and interesting to the general pubic. This paper weaves a path from the original OISC uses of art to the recent work at UC Irvine.

  2. Fabricating binary optics: An overview of binary optics process technology

    NASA Technical Reports Server (NTRS)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  3. Optical Tracking Technology in Stereotactic Radiation Therapy

    SciTech Connect

    Wagner, Thomas H. . E-mail: thomas.wagner@orhs.org; Meeks, Sanford L.; Bova, Frank J.; Friedman, William A.; Willoughby, Twyla R.; Kupelian, Patrick A.; Tome, Wolfgang

    2007-07-01

    The last decade has seen the introduction of advanced technologies that have enabled much more precise application of therapeutic radiation. These relatively new technologies include multileaf collimators, 3-dimensional conformal radiotherapy planning, and intensity modulated radiotherapy in radiotherapy. Therapeutic dose distributions have become more conformal to volumes of disease, sometimes utilizing sharp dose gradients to deliver high doses to target volumes while sparing nearby radiosensitive structures. Thus, accurate patient positioning has become even more important, so that the treatment delivered to the patient matches the virtual treatment plan in the computer treatment planning system. Optical and image-guided radiation therapy systems offer the potential to improve the precision of patient treatment by providing a more robust fiducial system than is typically used in conventional radiotherapy. The ability to accurately position internal targets relative to the linac isocenter and to provide real-time patient tracking theoretically enables significant reductions in the amount of normal tissue irradiated. This report reviews the concepts, technology, and clinical applications of optical tracking systems currently in use for stereotactic radiation therapy. Applications of radiotherapy optical tracking technology to respiratory gating and the monitoring of implanted fiducial markers are also discussed.

  4. Developments in precision optical grinding technology

    NASA Astrophysics Data System (ADS)

    Fess, Edward; Bechtold, Mike; Wolfs, Frank; Bechtold, Rob

    2013-09-01

    Optical systems that utilize complex optical geometries such as aspheres and freeform optics require precise control through the manufacturing process. As the preparatory stage for polishing, this is especially true for grinding. The quality of the grinding process can greatly influence the polishing process and the resultant finished product. OptiPro has performed extensive development work in evaluating components of a precision grinding machine to determine how they influence the overall manufacturing process. For example, spindle technology has a strong effect on how a grinding machine will perform. Through metrology techniques that measure the vibration characteristics of a machine and measurements of grinding forces with a dynamometer, OptiPro has also developed a detailed knowledge of how the machine can influence the grinding process. One of the outcomes of this work has led OptiPro to develop an ultrasonic head for their grinding platform to aid in reducing grinding forces. Initial results show a reduction in force by ~50%.

  5. New technology for large optical telescopes

    NASA Astrophysics Data System (ADS)

    de Jonge, M. J.

    1983-05-01

    A recurrent topic arising in the discussions about new generation large optical telescopes is related to the economic advantages of lightweight reflector surfaces. A description is given of new technologies which might be suited for the construction of lightweight telescopes of low cost. One technology involves the use of sandwich structures, which include aluminum layers, separated by aluminum honeycomb layers. The availability of these structures, which have been developed for aircraft manufacture, has led various groups to study the feasibility of a use of sandwich materials for the manufacture of highly accurate reflecting surfaces, as required for millimeter and submillimeter wave telescopes. The results of these studies are discussed.

  6. Optical Technologies for UV Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.

    1993-01-01

    Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.

  7. Optics & Materials Science & Technology (OMST) Organization at LLNL

    SciTech Connect

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-11-30

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  8. Optics & Materials Science & Technology (OMST) Organization at LLNL

    ScienceCinema

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-12-09

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  9. Photonics technology development for optical fuzing

    NASA Astrophysics Data System (ADS)

    Geib, K. M.; Serkland, D. K.; Keeler, G. A.; Peake, G. M.; Mar, A.; von der Lippe, C. M.; Liu, J. J.

    2005-09-01

    This paper describes the photonic component development taking place at Sandia National Laboratories, ARDEC and the Army Research Laboratory in support of an effort to develop a robust, compact, and affordable photonic proximity sensor for munitions fuzing applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The technologies under investigation for the optical fuze design covered in this paper are vertical-cavity surface-emitting lasers (VCSELs), vertical-external-cavity surface-emitting lasers (VECSELs), integrated resonant-cavity photodetectors (RCPDs), and refractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  10. Optical coating technology for the EUV

    NASA Technical Reports Server (NTRS)

    Osantowski, J. F.; Keski-Kuha, R. A. M.; Herzig, H.; Toft, A. R.; Gum, J. S.; Fleetwood, C. M.

    1991-01-01

    Advances in optical coating and materials technology are one of the key motivators for the development of missions such as the Far Ultraviolet Spectroscopic Explorer recently selected by NASA for an Explorer class mission in the mid 1990's. The performance of a range of candidate coatings are reviewed for normal-incidence and glancing-incidence applications, and attention is given to strengths and problem areas for their use in space. The importance of recent developments in multilayer films, chemical-vapor deposited SiC (CVD-SiC) mirrors, and SiC films are discussed in the context of EUV instrumentation design. For example, the choice of optical coatings is a design driver for the selection of the average glancing angle for the FUSE telescope, and impacts efficiency, short-wavelength cut-off, and physical size.

  11. A brief examination of optical tagging technologies.

    SciTech Connect

    Ackermann, Mark R.; Cahill, Paul A. (Aspecular Optics, Dayton, OH); Drummond, Timothy J.; Wilcoxon, Jess Patrick

    2003-07-01

    Presented within this report are the results of a brief examination of optical tagging technologies funded by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. The work was performed during the summer months of 2002 with total funding of $65k. The intent of the project was to briefly examine a broad range of approaches to optical tagging concentrating on the wavelength range between ultraviolet (UV) and the short wavelength infrared (SWIR, {lambda} < 2{micro}m). Tagging approaches considered include such things as simple combinations of reflective and absorptive materials closely spaced in wavelength to give a high contrast over a short range of wavelengths, rare-earth oxides in transparent binders to produce a narrow absorption line hyperspectral tag, and fluorescing materials such as phosphors, dies and chemically precipitated particles. One technical approach examined in slightly greater detail was the use of fluorescing nano particles of metals and semiconductor materials. The idea was to embed such nano particles in an oily film or transparent paint binder. When pumped with a SWIR laser such as that produced by laser diodes at {lambda}=1.54{micro}m, the particles would fluoresce at slightly longer wavelengths, thereby giving a unique signal. While it is believed that optical tags are important for military, intelligence and even law enforcement applications, as a business area, tags do not appear to represent a high on return investment. Other government agencies frequently shop for existing or mature tag technologies but rarely are interested enough to pay for development of an untried technical approach. It was hoped that through a relatively small investment of laboratory R&D funds, enough technologies could be identified that a potential customers requirements could be met with a minimum of additional development work. Only time will tell if this proves to be correct.

  12. Ion Implanted Gaas Integrated Optics Fabrication Technology

    NASA Astrophysics Data System (ADS)

    Mentzer, M. A.; Hunsperger, R. G.; Bartko, J.; Zavada, J. M.; Jenkinson, H. A.

    1985-01-01

    Ion implantation of semiconductor materials is a fabrication technique that offers a number of distinct advantages for the formation of guided-wave components and microelectronic devices. Implanted damage and dopants produce optical and electronic changes that can be utilized for sensing and signal processing applications. GaAs is a very attractive material for optical fabrication since it is transparent out to the far infrared. It can be used to fabricate optical waveguides, directional couplers, EO modulators, and detectors, as well as other guided wave structures. The presence of free carriers in GaAs lowers the refractive index from that of the pure semiconductor material. This depression of the refractive index is primarily due to the negative contribution of the free carrier plasma to the dielectric constant of the semiconductor. Bombardment of n-type GaAs by protons creates damage sites near the surface of the crystal structure where free carriers are trapped. This "free carrier compensated" region in the GaAs has a higher refractive index than the bulk region. If the compensated region is sufficiently thick and has a refractive index which is sufficiently larger than that of the bulk n-type region, an optical waveguide is formed. In this paper, a description of ion implantation techniques for the fabrication of both planar and channel integrated optical structures in GaAs is presented, and is related to the selection of ion species, implant energy and fluence, and to the physical processes involved. Lithographic technology and masking techniques are discussed for achieving a particular desired implant profile. Finally, the results of a set of ion implantation experiments are presented.

  13. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  14. Advanced optical technologies for space exploration

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2007-09-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems

  15. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    DTIC Science & Technology

    2011-10-01

    05-1-0363 TITLE: Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer PRINCIPAL INVESTIGATOR...and Molecularly Specific Optical Screening Technologies for Breast Cancer Duke University Durham, NC 27705 Nirmala Ramanujam The goal of this...proposal is to harness the power of light to create “miniature and molecularly specific optical technologies” for breast cancer diagnosis and

  16. Recent progress on planar lightwave circuit technology for optical communication

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi

    2009-11-01

    Silica waveguide planar lightwave circuit (PLC) technology is very useful for fabricating compact and high performance optical devices for optical communication. Wavelength multiplexers and optical switches for ROADM and OXC are still being developed to improve performance further. New devices for an advanced modulation format can also be fabricated with PLC technology.

  17. Micro-optics technology and sensor systems applications

    NASA Technical Reports Server (NTRS)

    Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.

    1993-01-01

    The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.

  18. Si photonics technology for future optical interconnection

    NASA Astrophysics Data System (ADS)

    Zheng, Xuezhe; Krishnamoorthy, Ashok V.

    2011-12-01

    Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.

  19. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  20. Grinding technologies of small optical element molds

    NASA Astrophysics Data System (ADS)

    Katsuki, Masahide; Urushibata, Kazunori

    2003-05-01

    The high-precision grinding technology is making contribution in every field, which is especially remarkable in the optics-related field. Lenses for digital camera and projector, which are mass-produced, for instance, are molded by the injection molding machine and glass molding-press machine. Concerning materials of high-precision molds, nickel alloy is mainly used in plastic-molding. And brittle material such as tungsten carbide and ceramic is used in glass-molding because the molding temperature is generally high. High-precision machining of nickel alloy is possible with a single-crystal diamond tool. Brittle material is ground by means of a diamond wheel, etc. Glass is being widely used for the lenses and other optical elements due to its favorable characteristics and life. As a result, needs for advancement of the high-precision grinding technology are being heightened. In grinding of small, fine and complex profiles, consideration for wheel truing and wear is a key point. Also, as many optical mold products are convex, mold profile is mainly concave. Especially, grinding of a small-aperture mold with small radius of curvature is difficult. In other words, a wheel whose diameter is larger than the radius of curvature of a mold to be ground cannot be used, and use of a small-diameter wheel is required inevitably. Influence of wheel wear and wheel diameter input errors at creation of grinding program becomes large. To eliminate such errors, a cycle of grinding, measurement and compensation grinding is normally repeated in mold machining until the target accuracy is obtained. Recently, needs for molding optical elements of small body of non-revolution such as prism and cylinder lens are on the increase, in addition to the body of revolution including lens. As one example, we introduce the compensation grinding and its results when grinding molds for an extremely small-aperture lens used for optical communication and a cylindrical lens array used for semi

  1. Broadband access technology for passive optical network

    NASA Astrophysics Data System (ADS)

    Chi, Sien; Yeh, Chien-Hung; Chow, Chi-Wai

    2009-01-01

    We will introduce four related topics about fiber access network technologies for PONs. First, an upstream signal powerequalizer is proposed and designed using a FP-LD in optical line terminal applied to the TDM-PON, and a 20dB dynamic upstream power range from -5 to -25dBm having a 1.7dB maximal power variation is retrieved. The fiber-fault protection is also an important issue for PON. We investigate a simple and cost-effective TDM/WDM PON system with self-protected function. Next, using RSOA-based colorless WDM-PON is also demonstrated. We propose a costeffective CW light source into RSOA for 2.5Gb/s upstream in WDM-PON together with self-healing mechanism against fiber fault. Finally, we investigate a 4Gb/s OFDM-QAM for both upstream and downstream traffic in long-reach WDM/TDM PON system under 100km transmission without dispersion compensation. As a result, we believe that these key access technologies are emerging and useful for the next generation broadband FTTH networks.

  2. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    NASA Technical Reports Server (NTRS)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  3. Application of optical interconnect technology at Lawrence Livermore National Laboratory

    SciTech Connect

    Haigh, R.E.; Lowry, M.E.; McCammon, K.; Hills, R.; Mitchell, R.; Sweider, D.

    1995-08-10

    Optical interconnects will be required to meet the information bandwidth requirements of future communication and computing applications. At Lawrence Livermore National Laboratory, the authors are involved in applying optical interconnect technologies in two distinct application areas: Multi-Gigabit/sec Computer Backplanes and Gigabit/sec Wide Area Networking using Wavelength Division Multiplexing. In this paper, the authors discuss their efforts to integrate optical interconnect technologies into prototype computing and communication systems.

  4. Development of optical fiber technology in Poland 2015

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Wójcik, Waldemar

    2015-12-01

    The paper is a digest of works presented during the XVIth National Symposium on Optical Fibres and Their Applications. The Symposium is organized since 1976. OFTA 2015 was organized by Optical Fibre Laboratory of the Faculty of Chemistry at University of Maria Curie Skłodowska, and Institute of Electronics and Information Technology of Lublin University of Technology, in Nałęczów on 22-25 September 2015. The meeting has gathered around 120 participants who presented 85 research and technical papers. The Symposium organized every 18 months is a good portrait of optical fibre technology development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. Topical tracks of the Symposium were: optical and photonic materials, technology of classical, tailored and structural photonic optical fibres, light propagation physics in optical fibres, passive and active optical fibre components, optical fibre sensors, passive and active optical fibre networks, optical fibre amplifiers and lasers, optical fibre network issues: modulation, architectures, economy, etc.

  5. Opportunities in Application Design Using Optical Technology.

    ERIC Educational Resources Information Center

    Bowers, Richard A.

    1987-01-01

    Discusses the capabilities of optical data disk systems to merge different types of media, and the need to incorporate these capabilities into new information products. Guidelines for creating a profitable optical data disk product are outlined. (CLB)

  6. Technology review of flight crucial flight control systems (application of optical technology)

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The survey covers the various optical elements that are considered in a fly-by-light flight control system including optical sensors and transducers, optical data links, so-called optical actuators, and optical/electro-optical processing. It also addresses airframe installation, maintenance, and repair issues. Rather than an in-depth treatment of optical technology, the survey concentrates on technology readiness and the potential advantages/disadvantages of applying the technology. The information was assembled from open literature, personal interviews, and responses to a questionnaire distributed specifically for this survey. Not all of the information obtained was consistent, particularly with respect to technology readiness. The synthesis of information into the perception of the state-of-technology is presented.

  7. Smart Structures with Fibre-Optic Technologies

    SciTech Connect

    Del Grosso, Andrea; Zangani, Donato; Messervey, Thomas

    2008-07-08

    A number of smart structures have been proposed, and some of them realized, to reduce the effect that seismic motions induce on the structure themselves. In particular, active and semi-active control devices have been studied for being applied to buildings and bridges in seismic prone regions. The heart of the application for these devices consists of a network of sensors and computational nodes that produces the input to the actuating mechanisms. Despite the initial enthusiasm for these developments, only a few practical applications involving active devices have been implemented to-date, the main reason residing in questions concerning the reliability of active systems over time. Nevertheless, the allocation of sensory systems and computational intelligence in structures subjected to earthquakes can provide very important information on the real structural behavior, provide self-diagnosis functions after events, and allow for reliability estimates of critical components. The paper reviews several recently developed sensory devices and diagnostic algorithms that may be applied to existing structures or embedded in new ones for the above purpose. Special emphasis will be given to fibre optic technology and its applications.

  8. Optical Parametric Technology for Methane Measurements

    NASA Technical Reports Server (NTRS)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  9. Optical parametric technology for methane measurements

    NASA Astrophysics Data System (ADS)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-09-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 μJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  10. Rural Communities and Optical Information Technologies: Optical Disks Move Rural America Closer to the Information Mainstream.

    ERIC Educational Resources Information Center

    Remington, David Gray

    Optical disk technologies now offer a way to move large, complex, remote computer databases from the large urban areas to rural users. Recently, the Optical Information Systems (OIS) Conference provided an opportunity to discuss the use of this new technology for a variety of innovative applications; for example, "The State Education…

  11. Optical Sensor Technology Development and Deployment

    SciTech Connect

    B. G. Parker

    2005-01-24

    The objectives of this ESP (Enhanced Surveillance) project are to evaluate sensor performance for future aging studies of materials, components and weapon systems. The goal of this project is to provide analysis capability to experimentally identify and characterize the aging mechanisms and kinetics of Core Stack Assembly (CSA) materials. The work on fiber optic light sources, hermetic sealing of fiber optics, fiber optic hydrogen sensors, and detection systems will be discussed.

  12. A-7 Airborne Light Optical Fiber Technology (ALOFT) Demonstration Project

    DTIC Science & Technology

    1977-02-03

    differentl foom Report) 15 UPLEMENTARY NOTES Il. K<EY’ WORDS (Continue on reverse side if nec.saary and Identity by block number) Fiber opticsI...and weapon-delivery system, electrical interface . page 5 2. Summary LCC results for A-7 alternative configurations ... 10 3. Side -by- side comparison... Side -by- side comparison, fiber-optic and electrical cables ... 12 INTROI)UCTION The Airborne Light Optical Fiber Technology (AL.OFT) demonstration was

  13. ROADM architectures and technologies for agile optical networks

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2007-02-01

    We review the different optoelectronic component and module technologies that have been developed for use in ROADM subsystems, and describe their principles of operation, designs, features, advantages, and challenges. We also describe the various needs for reconfigurable optical add/drop switching in agile optical networks. For each network need, we present the different ROADM subsystem architecture options with their pros and cons, and describe the optoelectronic technologies supporting each architecture.

  14. Information Providers and Videodisc/Optical Disk Technology.

    ERIC Educational Resources Information Center

    Galloway, Emily; Paris, Judith

    1983-01-01

    Explores the possibilities of using videodisc and optical disk technology as publishing media, highlighting the videodisc as an educational tool and visual supplement to online databases, digital database publishing on videodisc, optical disks for electronic document and image delivery systems, and costs associated with videodisc design and…

  15. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    ERIC Educational Resources Information Center

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  16. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  17. Ultra-stable optical amplifier technologies for dynamic optical switching networks

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Tsang, K. S.; Man, R.; Puttnam, B. J.; Awaji, Y.; Wada, N.

    2015-01-01

    High-capacity fiber-optic communications are promising technologies to satisfy people's continuously growing demands for bandwidth hungry data services. Multi-wavelength optical circuit switching (OCS) technology is already widely deployed, however, with the limited number of transceivers equipped at each optical node and other constraints, the number of lightpaths which can be established and employed simultaneously in an optical network is restricted. This reduces the utilization efficiency of wavelength resources. Comparing to OCS, dynamic optical switching systems such as optical packet switching (OPS) offer higher efficiency in terms of wavelength resource utilization and have the potential to share more of the wavelength resources on fiber-links between larger numbers of users simultaneously. In such networks, bursty input signals or changes in traffic density may cause optical power surges that can damage optical components or impose gain transients on the signals that impair signal quality. A common approach for reducing gain transients is to employ electrical automatic gain control (AGC) or optical gain-clamping by optical feedback (OFB). AGC may be limited by the speed of the feedback circuit and result in additional transients. Meanwhile OFB can clamp the gain of power varying optical signals without transient but can introduce amplitude fluctuations caused by relaxation oscillations in the lasing cavity for large input power fluctuations. We propose and demonstrate a novel scheme for suppressing the power transients and the relaxation oscillations. This scheme can be utilized in optical amplifiers even if the optical feedback is employed.

  18. NIF Optical Materials and Fabrication Technologies: An Overview

    SciTech Connect

    Campbell, J H; Hawley-Fedder, R; Stolz, C J; Menapace, J A; Borden, M R; Whitman, P; Yu, J; Runkel, M; Riley, M; Feit, M; Hackel, R

    2004-02-23

    The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 {micro}m to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.

  19. NIF optical materials and fabrication technologies: an overview

    NASA Astrophysics Data System (ADS)

    Campbell, John H.; Hawley-Fedder, Ruth A.; Stolz, Christopher J.; Menapace, Joseph A.; Borden, Michael R.; Whitman, Pamela K.; Yu, June; Runkel, Michael J.; Riley, Michael O.; Feit, Michael D.; Hackel, Richard P.

    2004-05-01

    The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 μm to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.

  20. The Business and Technology of Electronic and Optical Publishing.

    ERIC Educational Resources Information Center

    Schwerin, Julie B.

    1988-01-01

    The first of a two-part series on the emergence of CD-ROM in the online publishing industry introduces the business and technology aspects of electronic and optical publishing. The development of CD-ROM products and differences between CD-ROM and online in the areas of technology, content, and marketing are discussed. (MES)

  1. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  2. Fiber optic electric field sensor technology

    NASA Technical Reports Server (NTRS)

    Jarzynski, J.; De Paula, R. P.

    1987-01-01

    The properties of piezoactive plastics are reviewed as well as the fiber-optic electric field sensors studied so far. A particular configuration consisting of a concentric piezoactive jacket on the glass fiber is discussed in detail and the frequency response of this sensor is projected over a wide range of frequencies. The present design has the practical advantages of leading to a compact lightweight sensor; longer fiber lengths may be used to increase sensitivity. It is predicted that, at low frequencies, a fiber-optic antenna using a 1-km length of fiber would be capable of detecting a minimum electric field of 43 microV/m assuming a minimum phase sensitivity of 10 to the -6th radians for the optical Mach-Zehnder interferometer.

  3. Optical coherent technologies in next generation access networks

    NASA Astrophysics Data System (ADS)

    Iwatsuki, Katsumi; Tsukamoto, Katsutoshi

    2012-01-01

    This paper reviews optical coherent technologies in next generation access networks with the use of radio over fiber (RoF), which offer key enabling technologies of wired and wireless integrated and/or converged broadband access networks to accommodate rapidly widespread cloud computing services. We describe technical issues on conventional RoF based on subcarrier modulation (SCM) and their countermeasures. Two examples of RoF access networks with optical coherent technologies to solve the technical issues are introduced; a video distribution system with FM conversion and wired and wireless integrated wide-area access network with photonic up- and down-conversion.

  4. Meeting evolving technology education challenges in photonics and optics

    NASA Astrophysics Data System (ADS)

    Woodward, William R.

    2012-10-01

    The rapid evolution of technology places great challenges on educators and employers to train and certify personnel in these technologies in a timely way. A cooperative effort between international standards organizations and the Electronics Technicians Association, International (ETA) is pioneering a new approach to meet the challenges of evolving technology education in the areas of photonics and optics. ETA recently introduced two optics certifications and two photonics certifications. Each of these certifications contains multiple knowledge and hands-on examinations that were developed specifically to meet the needs of industry.

  5. Emerging technology in fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Dyott, Richard B.

    1991-03-01

    Some recent innovations in interferoinetric fiber optic sensors include special fibers new components and sensor systems. Many of the concepts have precedents in microwaves. 1. GENERAL PRINCIPLES The application of optical fibers to sensors is diffuse compared with their application to optical communications which is essentially focused on the single problem of how to get information from A to B. A fiber sensor is viable when it can do something not possible with better than more cheaply than any existing method. The probability of the emergence of a new sensor depends on the length of time that a need for the sensor and the possibility of meeting that need have co-existed regardless of whether the need or the possibility has appeared first. 2. TYPES OF SENSOR Fiber sensors can be divided into: a) Multimode fiber sensors which depend on amplitude effects b) Single mode (single path) fiber sensors which depend on phase effects. Since multimode fiber has existed for many decades the emergence of a new multimode sensor depends mostly on the discovery of a new need for such a sensor. On the other hand single mode/single path (i. e. polarization maintaining) fiber is relatively new and so is still being applied to existing needs. This is particularly so of recent innovations in fibers and components. SPIE Vol. 1396 Applications of Optical Engineering Proceedings of OE/Midwest ''90 / 709

  6. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  7. Optical diagnosis of mammary ductal carcinoma using advanced optical technology

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Fu, Fangmeng; Lian, Yuane; Nie, Yuting; Zhuo, Shuangmu; Wang, Chuan; Chen, Jianxin

    2015-02-01

    Clinical imaging techniques for diagnosing breast cancer mainly include X-ray mammography, ultrasound, and magnetic resonance imaging (MRI), which have respective drawbacks. Multiphoton microscopy (MPM) has become a potentially attractive optical technique to bridge the current gap in clinical utility. In this paper, MPM was used to image normal and ductal cancerous breast tissues, based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). Our results showed that MPM has the ability to exhibit the microstructure of normal breast tissue, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) lesions at the molecular level comparable to histopathology. These findings indicate that, with integration of MPM into currently accepted clinical imaging system, it has the potential to make a real-time histological diagnosis of mammary ductal carcinoma in vivo.

  8. MPACVD processing technologies for planar integrated optics

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Chung; Boudreau, Robert A.; Bowen, Terry P.

    1998-06-01

    Optical circuits based on low-loss glass waveguide are the practical and promising approaches to integrate different functional components for optical communication system. Microwave plasma assisted chemical vapor deposition produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. A microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer thus deposited on the substrates with reasonable high growth rate. Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The main emphasis has been on optimizing the deposition parameters and reproducibility. An uniform, low-loss film can be made by properly balancing the precursor flows. The refractive index of deposited film can also be controlled by adjusting the flow ratio of SiCl4 and GeCl4 bubblers. Deposited films was characterized by prism coupler, loss measurement, residual stress, and composition analysis. The resulted refractive index step can be varied between 1.46 to 1.60. Waveguide can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on mask layer. Core layer was remove by the plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma etch. Etch rate of 3000-4000 angstrom/min has been achieved by using ICP compared to typical etch rate of 200-300 angstrom/min by using conventional RIE.

  9. Adaptive optics technology for high-resolution retinal imaging.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2012-12-27

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  10. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  11. Bloch FDTD simulation of slow optical wave resonance cavity in optical storage technology

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Lin, Zhaohua; Cai, Lihua

    2013-08-01

    Long chain series resonance cavity is suitable for transferring slow optical wave, which can be served as the basic device for optical storage technology. Micro-ring resonator is one kind of such a long chain structure, which is considered to be the basic component of optical integrated circuit and optical computer in the future. The discrete energy level has the potential to distinguish digital optical data. The optical delay characteristics make such a device possible to store the information for some time. The advantage of this device is that it has the potential to construct an optical storage device in small geometrical dimension and could use mature semiconductor manufacture capability to lower the design and manufacturing expenses. Many experimental results have proved a lot of material and geometrical coefficients are very important for such an optical delay device. New theory method is needed to calculate the periodical energy transfer and time delay characteristics, which can be compared with experimental result. The Bloch FDTD is presented for analysis of such a new optical device, based on the optical Bloch energy band theory. The energy band characteristics of micro-ring periodical optical waveguide device is discussed used that analytical method. This precise calculated method could be served as a useful tool for design the structure of such resonance cavity to achieve desired slow optical wave transfer performance.

  12. Enabling advanced mirror blank design through modern optical fabrication technology

    NASA Astrophysics Data System (ADS)

    Wilson, Timothy J.; Genberg, Victor L.

    1994-02-01

    Mirror blanks used in high-reliability optical systems for airborne and spaceborne applications have many requirements in terms of weight, stiffness and moment of inertia, as well as mounting and gravitational influences. Lightweight and ultra-lightweight mirror blank design techniques have been enhanced by recent technological developments in mirror blank fabrication and optical figuring. This paper briefly reviews traditional mirror blank design considerations in light of new fabrication technologies such as abrasive water jet machining of mirror cores and ion figuring of optical surfaces. The impact of these new technologies on mirror blank design is also discussed, as well as new design and analytical techniques using NASTRAN. Actual production data using these techniques are presented.

  13. Nonlinear Optics Technology, Area 1: FWM (Four Wave Mixing) Technology

    DTIC Science & Technology

    1986-09-22

    41 0 u Q)Co o 0 0. >1- o 0 41 -A $4 P4 38 paths to insure a high degree of copolarization at the Na cell. Turning mirrors (M) were visible dielectric...or MAXBRIte coated Zerodur substrate optics with twentieth wave or better surface figures. A 50-50 beamsplitter (BSl) served to generate the two pump...retroreflecting mirror . The signal beam, which essentially constituted a very bright glint, was split off of the pump leg by a beamsplitter and directed to a

  14. Gregorian optical system with non-linear optical technology for protection against intense optical transients

    DOEpatents

    Ackermann, Mark R.; Diels, Jean-Claude M.

    2007-06-26

    An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.

  15. Parallel optics technology assessment for the versatile link project

    SciTech Connect

    Chramowicz, J.; Kwan, S.; Rivera, R.; Prosser, A.; /Fermilab

    2011-01-01

    This poster describes the assessment of commercially available and prototype parallel optics modules for possible use as back end components for the Versatile Link common project. The assessment covers SNAP12 transmitter and receiver modules as well as optical engine technologies in dense packaging options. Tests were performed using vendor evaluation boards (SNAP12) as well as custom evaluation boards (optical engines). The measurements obtained were used to compare the performance of these components with single channel SFP+ components operating at a transmission wavelength of 850 nm over multimode fibers.

  16. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; ODell, S. L.; Jones, W. D.; Smith, W. S.; Engelhaupt, D.

    2000-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high- strength electroformed nickel alloys, In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  17. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    Odell, S. L.; Jones, W. D.; Smith, W. S.; Ramsey, B. D.

    1999-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high-strength electroformed nickel alloys. In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  18. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    ODell, S. L.; Jones, W. D.; Smith, W. S.; Ramsey, B. D.; Engelhaupt, D.

    2000-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high-strength electroformed nickel alloys. In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  19. Recent Advances in Fiber Optic Coupler Technology

    NASA Astrophysics Data System (ADS)

    Corke, Michael; Sweeney, Kevin L.; Schmidt, Kevin M.

    1987-01-01

    The performance requirements and device specifications of single mode couplers have been changing rapidly in recent years. This paper reviews the present state of the art in this technology and introduces new device concepts which rely on the fuse-taper technology in their fabrication process. Details will be given of the fabrication and application of single mode wavelength division multiplexers which have an insertion loss below 0.5 dB and have a 20 dB isolation over a 30 nm operating wavelength range. Wavelength division multiplexers with a narrow wavelength separation, <5 nm, will also be described in terms of their fabrication and application. Details of the utilization and performance of concatenated wavelength division multiplexers as filters for uni- and bi-directional communication will also be presented. Finally, techniques for reducing the wavelength sensitivity of the coupling ratio in single mode couplers will be discussed which result in the development of a broad band coupler, BBC.

  20. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  1. Optical Refrigeration for Dramatically Improved Cryogenic Technology

    DTIC Science & Technology

    2015-01-24

    I .,   Sheik-­‐ Bahae ,  M.,   “Cryogenic   Optical  Refrigeration”  Advances  in...Melgaard,  S.  D.,   Seletskiy,  D.  V.,  Epstein,  R.   I .,  Alden,  J.  V.,  Sheik-­‐ Bahae ,  M.,  Proceedings  of...eds.  R.   I .  Epstein,  D.  V.  Seletskiy  &  M.  Sheik-­‐ Bahae ),  9000,  p   900002-­‐1,  2014.   [MSB07

  2. New Optical Imaging Technologies for Bladder Cancer: Considerations and Perspectives

    PubMed Central

    Liu, Jen-Jane; Droller, Michael J.; Liao, Joseph C.

    2014-01-01

    Purpose Bladder cancer presents as a spectrum of different diatheses. Accurate assessment for individualized treatment depends on initial diagnostic accuracy. Detection relies on white light cystoscopy accuracy and comprehensiveness. Aside from invasiveness and potential risks, white light cystoscopy shortcomings include difficult flat lesion detection, precise tumor delineation to enable complete resection, inflammation and malignancy differentiation, and grade and stage determination. Each shortcoming depends on surgeon ability and experience with the technology available for visualization and resection. Fluorescence cystoscopy/photodynamic diagnosis, narrow band imaging, confocal laser endomicroscopy and optical coherence tomography address the limitations and have in vivo feasibility. They detect suspicious lesions (photodynamic diagnosis and narrow band imaging) and further characterize lesions (optical coherence tomography and confocal laser endomicroscopy). We analyzed the added value of each technology beyond white light cystoscopy and evaluated their maturity to alter the cancer course. Materials and Methods Detailed PubMed® searches were done using the terms “fluorescence cystoscopy,” “photodynamic diagnosis,” “narrow band imaging,” “optical coherence tomography” and “confocal laser endomicroscopy” with “optical imaging,” “bladder cancer” and “urothelial carcinoma.” Diagnostic accuracy reports and all prospective studies were selected for analysis. We explored technological principles, preclinical and clinical evidence supporting nonmuscle invasive bladder cancer detection and characterization, and whether improved sensitivity vs specificity translates into improved correlation of diagnostic accuracy with recurrence and progression. Emerging preclinical technologies with potential application were reviewed. Results Photodynamic diagnosis and narrow band imaging improve nonmuscle invasive bladder cancer detection, including

  3. Integrated optical sensing technologies on Si

    NASA Astrophysics Data System (ADS)

    Helmy, Amr S.; Abolghasem, P.; Ramanan, J.; Kang, D.; Logan, D.

    2015-01-01

    An effective approach to achieve efficient phase matching for second order nonlinearities, in multilayer structures will be discussed. It uses dispersion engineering in Bragg reflection waveguides to harness parametric processes in conjunction with concomitant dispersion and birefringence engineering in active devices. This technology enables novel coherent light sources using frequency conversion in a self-pumped chip form factor. These sources can also provide continuous coverage of spectral regions, which are not accessible by other technologies including quantum cascade lasers. This approach has been recently demonstrated in multi-layer Silicon-Oxy-Nitride (SiON) waveguides. Harnessing χ(2) in SiON offers a route for integration of broadband infrared sources using frequency mixing with opto-fluidics. Different approaches for implementing opto-fluidic structures on Si will be discussed, where the root cause of enhancing the retrieved Raman and infrared signals in these structures will be explained. Recent progress in using this approach to study different nanostructures and biological molecules will be presented.

  4. RF Photonic Technology in Optical Fiber Links

    NASA Astrophysics Data System (ADS)

    Chang, William S. C.

    2007-06-01

    List of contributors; Introduction and preface; 1. Figures of merit and performance analysis of photonic microwave links Charles Cox and William S. C. Chang; 2. RF subcarrier links in local access networks Xiaolin Lu; 3. Analog modulation of semiconductor lasers Joachim Piprek and John E. Bowers; 4. LiNbO3 external modulators and their use in high performance analog links Gary E. Betts; 5. Broadband traveling wave modulators in LiNbO3 Marta M. Howerton and William K. Burns; 6. Multiple quantum well electroabsorption modulators for RF photonic links William S. C. Chang; 7. Polymer modulators for RF photonics Timothy Van Eck; 8. Photodiodes for high performance analog links P. K. L. Yu and Ming C. Wu; 9. Opto-electronic oscillators X. Steve Yao; 10. Photonic link techniques for microwave frequency conversion Stephen A. Pappert, Roger Helkey and Ronald T. Logan Jr; 11. Antenna-coupled millimeter-wave electro-optical modulators William B. Bridges; 12. System design and performance of wideband photonic phased array antennas Greg L. Tangonan, Willie Ng, Daniel Yap and Ron Stephens; Acknowledgements; References; Index.

  5. Laser Electro-Optic Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary considerations in the organization, operation, and evaluation of a laser electro-optic technology program. An occupational description and program content are presented. A curriculum framework specifies the exact course title, course number, levels of instruction, major course content, laboratory activities,…

  6. Laser Electro-Optic Engineering Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies particular considerations in the organization, operation, and evaluation of laser electro-optic engineering technology programs. Contents include an occupational description and information on the following: program content, including a curriculum framework that details major concepts and intended outcomes and a list…

  7. Optical Disc Technology and the Cooperative Television Library.

    ERIC Educational Resources Information Center

    Kranch, Douglas

    1989-01-01

    Discusses the feasibility of individual television film libraries combining film holdings onto optical disks and developing networks that would allow online searching of, access to, and transmission of video images. It is concluded that recent advances in technology would support fast and cost effective image retrieval with no loss in video…

  8. Status of optical disk standards and copy protection technology

    NASA Astrophysics Data System (ADS)

    Chen, Di

    2000-07-01

    Optical data storage is now well into the second decade of continuing market and technology expansion. Media removability, which is the main attribute of this technology, presented the optical recording industry with unmatched opportunities and also new challenges. On the one hand, data interchange between the media and drives from different sources becomes a major concern, which can only be solved if international standards for all optical recording disk/cartridge are available. Many standards organizations, with the help of world wide industrial support, took up the challenge, and numerous international standards were established which are now being adapted. On the other hand, copy protection technology must be developed to prevent illegal copying and distribution of contents using this removable media. This need is accentuated by the proliferation of low cost CD and now DVD disks replication means and the availability of recordable and rewritable CD and DVD devices. This paper provides an update of the brief summary of the current status of the international optical disk standards published earlier and a brief review of the copy protection technology.

  9. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  10. Optical detectors for GaAs MMIC integration - Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  11. Optics and communication technology major of physics undergraduate degree at King Mongkut's Institute of Technology Ladkrabang

    NASA Astrophysics Data System (ADS)

    Buranasiri, Prathan

    2014-09-01

    A physics undergraduate degree major in optics and communication technology has been offered at King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand. There are nine required three credit hour courses including two laboratory courses plus a number of selections in optics and communication based technology courses. For independent thinking and industrial working skills, nine credit hours of research project, practical training or overseas studies are included for selection in the final semester. Students are encouraged to participate in international conferences and professional organizations. Recently the program, with support from SPIE and OSA, has organized its first international conference on photonic solutions 2013 (ICPS 2013).

  12. The 1994 Fiber Optic Sensors for Aerospace Technology (FOSAT) Workshop

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert (Compiler); Adamovsky, Grigory (Compiler); Tuma, Meg (Compiler); Beheim, Glenn (Compiler); Sotomayor, Jorge (Compiler)

    1995-01-01

    The NASA Lewis Research Center conducted a workshop on fiber optic technology on October 18-20, 1994. The workshop objective was to discuss the future direction of fiber optics and optical sensor research, especially in the aerospace arena. The workshop was separated into four sections: (1) a Systems Section which dealt specifically with top level overall architectures for the aircraft and engine; (2) a Subsystems Section considered the parts and pieces that made up the subsystems of the overall systems; (3) a Sensor/Actuators section considered the status of research on passive optical sensors and optical powered actuators; and (4) Components Section which addressed the interconnects for the optical systems (e.g., optical connectors, optical fibers, etc.). This report contains the minutes of the discussion on the workshop, both in each section and in the plenary sessions. The slides used by a limited number of presenters are also included as presented. No attempt was made to homogenize this report. The view of most of the attendees was: (1) the government must do a better job of disseminating technical information in a more timely fashion; (2) enough work has been done on the components, and system level architecture definition must dictate what work should be done on components; (3) a Photonics Steering Committee should be formed to coordinate the efforts of government and industry in the photonics area, to make sure that programs complimented each other and that technology transferred from one program was used in other programs to the best advantage of the government and industry.

  13. Critical Review of Noninvasive Optical Technologies for Wound Imaging

    PubMed Central

    Jayachandran, Maanasa; Rodriguez, Suset; Solis, Elizabeth; Lei, Jiali; Godavarty, Anuradha

    2016-01-01

    Significance: Noninvasive imaging approaches can provide greater information about a wound than visual inspection during the wound healing and treatment process. This review article focuses on various optical imaging techniques developed to image different wound types (more specifically ulcers). Recent Advances: The noninvasive optical imaging approaches in this review include hyperspectral imaging, multispectral imaging, near-infrared spectroscopy (NIRS), diffuse reflectance spectroscopy, optical coherence tomography, laser Doppler imaging, laser speckle imaging, spatial frequency domain imaging, and fluorescence imaging. The various wounds imaged using these techniques include open wounds, chronic wounds, diabetic foot ulcers, decubitus ulcers, venous leg ulcers, and burns. Preliminary work in the development and implementation of a near-infrared optical scanner for wound imaging as a noncontact hand-held device is briefly described. The technology is based on NIRS and has demonstrated its potential to differentiate a healing from nonhealing wound region. Critical Issues: While most of the optical imaging techniques can penetrate few hundred microns to a 1–2 mm from the wound surface, NIRS has the potential to penetrate deeper, demonstrating the potential to image internal wounds. Future Directions: All the technologies are currently at various stages of translational efforts to the clinic, with NIRS holding a greater promise for physiological assessment of the wounds internal, beyond the gold-standard visual assessment. PMID:27602254

  14. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field

  15. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.

  16. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  17. Development of manufacturing technologies for hard optical ceramic materials

    NASA Astrophysics Data System (ADS)

    Fess, Edward; DeFisher, Scott; Cahill, Mike; Wolfs, Frank

    2014-05-01

    Hard ceramic optical materials such as sapphire, ALON, Spinel, or PCA can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Premature tool wear or tool loading during the grinding process is a common result of these tough mechanical properties. Another challenge is the requirement to create geometries that conform to the platforms they reside in, but still achieve optical window tolerances for wavefront. These shapes can be complex and require new technologies to control sub aperture finishing techniques in a deterministic fashion. In this paper we will present three technologies developed at OptiPro Systems to address the challenges associated with these materials and complex geometries. The technologies presented will show how Ultrasonic grinding can reduce grinding load by up to 50%, UltraForm Finishing (UFF) and UltraSmooth Finishing (USF) technologies can accurately figure and finish these shapes, and how all of them can be controlled deterministically, with utilizing metrology feedback, by a new Computer Aided Manufacturing (CAM) software package developed by OptiPro called ProSurf.

  18. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs

  19. Ultrafast optical imaging technology: principles and applications of emerging methods

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Gao, Liang; Goda, Keisuke

    2016-09-01

    High-speed optical imaging is an indispensable technology for blur-free observation of fast transient dynamics in virtually all areas including science, industry, defense, energy, and medicine. High temporal resolution is particularly important for microscopy as even a slow event appears to occur "fast" in a small field of view. Unfortunately, the shutter speed and frame rate of conventional cameras based on electronic image sensors are significantly constrained by their electrical operation and limited storage. Over the recent years, several unique and unconventional approaches to high-speed optical imaging have been reported to circumvent these technical challenges and achieve a frame rate and shutter speed far beyond what can be reached with the conventional image sensors. In this article, we review the concepts and principles of such ultrafast optical imaging methods, compare their advantages and disadvantages, and discuss an entirely new class of applications that are possible using them.

  20. Quantum optics: science and technology in a new light.

    PubMed

    Walmsley, I A

    2015-05-01

    Light facilitates exploration of quantum phenomena that illuminate the basic properties of nature and also enables radical new technologies based on these phenomena. The critical features of quantum light that underpin the opportunities for discovery and application are exceptionally low noise and strong correlations. Rapid progress in both science and technology has been stimulated by adopting components developed for optical telecommunications and networking, such as highly efficient detectors, integrated photonic circuits, and waveguide- or nanostructure-based nonlinear optical devices. These provide the means to generate new quantum states of light and matter of unprecedented scale, containing many photons with quantum correlations across space and time. Notably, networks with only several tens of photons are already beyond what can be efficiently analyzed by current computers.

  1. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    DTIC Science & Technology

    2006-10-01

    modeling of the heat dissipation effects of compact LEDs on tissue samples, selection of multiwavelength compact light sources, calculating bandwidth...Opto Technology also designs custom chip on board assemblies with single and multiple wavelengths of UV , Visible and IR LED die (365 – 940 nm...reflectance with high signal to noise for optical properties typical of tissue in the UV -VIS. We have furthermore investigated the potential use of LEDs as

  2. New materials technology for latching electro-optic devices

    NASA Astrophysics Data System (ADS)

    Hood, Patrick J.; Mastrangelo, John C.; Chen, Shaw H.

    1999-04-01

    This paper presents the current status of a new class of liquid crystal material being developed for latching electrooptic applications. This new material has the unique property of being electrooptic and fully latching. That is, in one state, the material has the properties of a conventional liquid crystal, capable of being aligned with either an electric or magnetic field; in its other state, it is an optical quality solid that maintains the molecular alignment set while in the fluid state. Experiments have shown that current materials can be switched on the order of milliseconds, as is the case with conventional nematic liquid crystals. In the solid state, the electric field can be removed with no change to the previously set optical properties because the molecular alignment is frozen in place, which should last for an extended period of time. In addition, the material exhibits broad temperature stability in the solid state, enabling devices to be developed that operate from cryogenic temperatures to 80 degrees C without the use of a temperature controller. This new material is ideally suited for applications where the size and mechanical robustness of an electrooptic device is desired, along with the latching capability of optomechanical devices. This materials technology alone will currently not meet high-speed switch requirements. However, this technology can be integrated with other state-of-the-art high-speed materials to provide a high-speed latching device. Devices currently under investigation using this materials include optical switches, optical attenuators and tunable filters.

  3. Lab-on-fiber technology: toward multifunctional optical nanoprobes.

    PubMed

    Consales, Marco; Ricciardi, Armando; Crescitelli, Alessio; Esposito, Emanuela; Cutolo, Antonello; Cusano, Andrea

    2012-04-24

    We propose a reliable fabrication process enabling the integration of dielectric and metallic nanostructures on the tip of optical fibers, thus representing a further step in the "lab-on-fiber" technology roadmap. The proposed fabrication procedure involves conventional deposition and nanopatterning techniques, typically used for planar devices, but here adapted to directly operate on optical fiber tip. Following this approach, we demonstrate a first technological platform based on the integration onto the optical fiber tip of two-dimensional hybrid metallo-dielectric nanostructures supporting localized surface plasmon resonances. By means of experimental measurements and full-wave numerical simulations, we characterize these resonant phenomena and investigate the underlying physics. We show that resonances can be easily tuned by acting on the physical and geometrical parameters of the structure. Moreover, with a view toward possible applications, we present some preliminary results demonstrating how the proposed device can work effectively as an optical probe for label-free chemical and biological sensing as well as a microphone for acoustic wave detection.

  4. Novel concepts and technologies for manufacturing optical microdevices

    NASA Astrophysics Data System (ADS)

    Ehrfeld, Wolfgang; Bauer, Hans-Dieter; Drews, Dietrich; Lacher, Manfred

    1998-08-01

    The development and fabrication of micro-optical devices are of increasing importance in the field of data- and telecommunication networks capable of transmitting multimedia signals with high bit rates. Miniature optical sensors such as spectrometers and interferometers are another example for rapidly growing markets with a wide range of applications in biotechnology, chemistry, pharmacy, environmental technology, and automation, to namely only the most obvious. Various technologies are used for the development and fabrication of such devices. However, the success of the resulting product heavily depends on its price. Therefore, the techniques for the manufacture of micro-optical devices are at least as important as the product itself. In this presentation fabrication concepts and technologies will be discussed. By fabrication we naturally mean more than the production of a master that allows mass-production of the product. Among the criteria are also the pros and cons of the material to be used, automated assembly aspects, the compatibility with existing components or systems etc.

  5. Lasers and electro-optic technology in natural resource management

    NASA Astrophysics Data System (ADS)

    Greer, Jerry D.

    1991-03-01

    As pressure on our limited land base continues to increase managers of public lands must have more accurate information within a shorter time to make logical defensible decisions which are acceptable to the public. Remote sensing technology provides many tools required to gather much of the information used by decision makers. Some of the most important remote sensing tools are based on laser and electro-optical technology. This paper provides an overview of some applications of laser and electro-optical devices by managers of natural resources. It is important for workers in other fields to be aware of the problems and needs of resource managers as it is important for resource managers to be knowledgeable about developments in technical areas. Sharing information will promote opportunities to develop new tools and improve the effectiveness and efficiency of management. Personal knowledge and literature searches provide examples. While the variety of uses in somewhat limited their importance is increasing as managers and analysts become more accustomed to using products of this technology. Lasers and electro-optical instruments will continue to be a very important part of our data collection process. 2. 0

  6. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  7. Super-linear optical modulator technologies for optical broadband access network: development and potential

    NASA Astrophysics Data System (ADS)

    Dingel, Benjamin B.; Madabhushi, Rangaraj; Madamopoulos, Nicholas

    2005-10-01

    Linearized optical intensity modulator is recognized as one of the building blocks in any analog fiber-optics links systems such as subcarrier multiplexing (SCM) systems, ultra-dense CATV, Radio-over-Fiber (RoF) communications, and other platform access systems. For more than 30 years, the quest for highly linearized optical modulator with SFDR > 130 dB-Hz 2/3 represents a major, on-going technology goal. This invited paper has three-fold objective namely: (1) provide comprehensive overview of the numerous existing linearized optical intensity modulators, (2) introduce a classification of these linearized modulators, and (3) present recent development of new, super-linear (SFDR = 130-140 dB-Hz 2/3) modulator which the authors pioneered. Other features of this new modulator are simple setup, high tolerance and low-cost. Performance results are presented via numerical simulation, its potential applications and limitations are also discussed.

  8. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy1

    PubMed Central

    Fujimoto, James G; Pitris, Costas; Boppart, Stephen A; Brezinski, Mark E

    2000-01-01

    Abstract Optical coherence tomography (OCT) is an emerging technology for performing high-resolution cross-sectional imaging. OCT is analogous to ultrasound imaging, except that it uses light instead of sound. OCT can provide cross-sectional images of tissue structure on the micron scale in situ and in real time. Using OCT in combination with catheters and endoscopes enables high-resolution intraluminal imaging of organ systems. OCT can function as a type of optical biopsy and is a powerful imaging technology for medical diagnostics because unlike conventional histopathology which requires removal of a tissue specimen and processing for microscopic examination, OCT can provide images of tissue in situ and in real time. OCT can be used where standard excisional biopsy is hazardous or impossible, to reduce sampling errors associated with excisional biopsy, and to guide interventional procedures. In this paper, we review OCT technology and describe its potential biomedical and clinical applications. PMID:10933065

  9. Coherent DWDM technology for high speed optical communications

    NASA Astrophysics Data System (ADS)

    Saunders, Ross

    2011-10-01

    The introduction of coherent digital optical transmission enables a new generation of high speed optical data transport and fiber impairment mitigation. An initial implementation of 40 Gb/s coherent systems using Dual Polarization Quadrature Phase Shift Keying (DP-QPSK) is already being installed in carrier networks. New systems running at 100 Gb/s DP-QPSK data rate are in development and early technology lab and field trial phase. Significant investment in the 100 Gb/s ecosystem (optical components, ASICs, transponders and systems) bodes well for commercial application in 2012 and beyond. Following in the footsteps of other telecommunications fields such as wireless and DSL, we can expect coherent optical transmission to evolve from QPSK to higher order modulations schemes such as Mary PSK and/or QAM. This will be an interesting area of research in coming years and poses significant challenges in terms of electro-optic, DSP, ADC/DAC design and fiber nonlinearity mitigation to reach practical implementation ready for real network deployments.

  10. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  11. Undersea fiber optic technology for the offshore community

    SciTech Connect

    Mariano, J.J.

    1994-12-31

    The explosive growth in demand for global communications has been met by a rapid evolution in the undersea fiber-optic technology, which in just a few years has become the predominant method of communication across the world`s oceans and seas. As the scope of applications has become broader, the technology has become more diverse, and now comprises a range of products capable of providing economical, reliable service in any subsea environment, from ocean depths to coastal lagoons. In this paper, the authors discuss how undersea lightwave technology is being applied to meet the communication and production control needs of the offshore oil and gas industry. They discuss the trends and technology developments that are changing the economics of undersea fiber-optic communication networks, as well as synergies in the offshore industry. They consider various applications for the industry and means of enhancing the profitability of platform operations through reduced downtime, reduced operating cost, and enhanced safety. Finally, they discuss extensions to exploratory drilling and land-based operations.

  12. 3D optical measuring technologies for dimensional inspection

    NASA Astrophysics Data System (ADS)

    Chugui, Yu V.

    2005-01-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability takes a noncontact inspection of geometrical parameters of their components. For this tasks we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFILE, and technologies for non-contact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic system COMPLEX for noncontact inspection of geometrical parameters of running freight car wheel pairs. The performances of these systems and the results of the industrial testing at atomic and railway companies are presented.

  13. 3D optical measuring technologies and systems for industrial applications

    NASA Astrophysics Data System (ADS)

    Chugui, Yu. V.

    2005-06-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100 % noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, RADAR, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  14. Application of one multimode fiber optical sensor in optical tomography technology

    NASA Astrophysics Data System (ADS)

    Shi, Zhiwei; Li, Yang; Zhou, Hua; Zeng, Yanhua

    2003-09-01

    Optical tomography technique is very important in changing conventional techniques for the development of imaging science. It will be applied widely in the fields of biomedical imaging, material structure analyzing and blurry martial target distinguishing etc. In this paper, we introduce the application of a multimode optical fiber sensor in tomography technology. Optic fiber with polished terminations requires the incident ray within a certain angle, so it usually causes deficiency of the light power entered into the optical fiber and diffuse the emergent ray, so polished terminations make it difficult to receive and detect the emergent rays. In order to solve the two problems above, a sphere lens is designed for one termination and a cylinder lens is designed for the other termination. This paper uses mathematics to analyze the relationship between the sphere lens radius, the cylinder lens radius, refractive index of the optical fiber. The relationship between the scanning angles and the numbers of the numbers of the received optical fiber is researched in the air medium, and the designing method for the sphere lens and the cylinder lens are present.

  15. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  16. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    PubMed Central

    Liew, Oi Wah; Chong, Pek Ching Jenny; Li, Bingqing; Asundi, Anand K.

    2008-01-01

    Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for non-invasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control. PMID:27879874

  17. Technology Development for Nickel X-Ray Optics Enhancement

    NASA Technical Reports Server (NTRS)

    Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2008-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.

  18. EDITORIAL: Special issue on optical neural engineering: advances in optical stimulation technology Special issue on optical neural engineering: advances in optical stimulation technology

    NASA Astrophysics Data System (ADS)

    Shoham, Shy; Deisseroth, Karl

    2010-08-01

    Neural engineering, itself an 'emerging interdisciplinary research area' [1] has undergone a sea change over the past few years with the emergence of exciting new optical technologies for monitoring, stimulating, inhibiting and, more generally, modulating neural activity. To a large extent, this change is driven by the realization of the promise and complementary strengths that emerging photo-stimulation tools offer to add to the neural engineer's toolbox, which has been almost exclusively based on electrical stimulation technologies. Notably, photo-stimulation is non-contact, can in some cases be genetically targeted to specific cell populations, can achieve high spatial specificity (cellular or even sub-cellular) in two or three dimensions, and opens up the possibility of large-scale spatial-temporal patterned stimulation. It also offers a seamless solution to the problem of cross-talk generated by simultaneous electrical stimulation and recording. As in other biomedical optics phenomena [2], photo-stimulation includes multiple possible modes of interaction between light and the target neurons, including a variety of photo-physical and photo-bio-chemical effects with various intrinsic components or exogenous 'sensitizers' which can be loaded into the tissue or genetically expressed. Early isolated reports of neural excitation with light date back to the late 19th century [3] and to Arvanitaki and Chalazonitis' work five decades ago [4]; however, the mechanism by which these and other direct photo-stimulation, inhibition and modulation events [5-7] took place is yet unclear, as is their short- and long-term safety profile. Photo-chemical photolysis of covalently 'caged' neurotransmitters [8, 9] has been widely used in cellular neuroscience research for three decades, including for exciting or inhibiting neural activity, and for mapping neural circuits. Technological developments now allow neurotransmitters to be uncaged with exquisite spatial specificity (down to

  19. Health information management using optical storage technology: case studies.

    PubMed

    Kohn, D

    1992-05-01

    All the health care facilities examined in the case studies addressed several important organizational issues before and during the installation of their systems. All the facilities examined employee commitment. The prudent managers considered how easily their employees adapt to changes in their jobs and work environment. They considered how enthusiastic cooperation can be fostered in the creation of a liberated and reengineered office. This was determined not only by each individual's reaction to change, but also by the health care facility's track record with other system installations. For example, document image, diagnostic image, and coded data processing systems allow the integration of divergent health care information systems within complex institutions. Unfortunately, many institutions are currently struggling with how to create an information management architecture that will integrate their mature systems, such as their patient care and financial systems. Information managers must realize that if optical storage technology-based systems are used in a strategic and planned fashion, these systems can act as focal points for systems integration, not as promises to further confuse the issue. Another issue that needed attention in all the examples was the work environment. The managers considered how the work environment was going to affect the ability to integrate optical image and data systems into the institution. For example, many of these medical centers have created alliances with clinics, HMOs, and large corporate users of medical services. This created a demand for all or part of the health information outside the confines of the original institution. Since the work environment is composed of a handful of factors such as merged medical services, as many work environment factors as possible were addressed before application of the optical storage technology solution in the institutions. And finally, the third critical issue was the organization of work

  20. The AXAF technology program: The optical flats tests

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Harper, J. D.; Reily, J. C.; Weisskopf, M. C.; Wyman, C. L.; Zombeck, M.

    1984-01-01

    The results of a technology program aimed at determining the limits of surface polishing for reflecting X-ray telescopes is presented. This program is part of the major task of developing the Advanced X-ray Astrophysical Facility (AXAF). By studying the optical properties of state-of-the-art polished flat surfaces, conclusions were drawn as to the potential capability of AXAF. Surface microtopography of the flats as well as their figure are studied by X-ray, visual, and mechanical techniques. These techniques and their results are described. The employed polishing techniques are more than adequate for the specifications of the AXAF mirrors.

  1. Novel multiterabit optical router based on hybrid switching technologies

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zeng, QingJi; Ouyang, Yong; Liu, Jimin; Luo, Xuan; Huang, Xuejun

    2002-07-01

    Internet backbone network is undergoing a large-scale transformation from the current complex, static and multi-layer electronic-based architecture to the emerging simplified, and dynamic and one-layer photonic-based architecture. The explosive growth in the Internet, multi-media services, and IP router links are demanding the next generation Internet that can accommodate the entire traffic in a cost-effective manner. There is a consensus in current industries that IP over WDM integration technologies will be viable for the next generation of the optical Internet where the simplified flat network architecture can facilitate the networking performance and the networking management. In this paper, we firstly propose a novel node architecture-Terabit Optical Router (TOR) for building the next generation optical Internet and analyses each key function unit of TOR including multi-granularity electrical-optical hybrid switching fabrics, unified control plane unit and so on. Secondly, we give the unified routing definition of multi-layer in TOR and present control plane software structure with emphasis on multi-layer routing issues. Thirdly we describe our cost vs. performance analysis for various application of TOR. According to our calculation, we can get a cost reduction of more than 60 percent by using the TOR. Finally, we reach conclusions that TORs rather than OBS/OPS-based optical routers or big fat router, a cost effective multi-granularity switching and routing technique, are feasible to build the next generation Internet in the coming 5-10 years.

  2. Thin film technologies for optoelectronic components in fiber optic communication

    NASA Astrophysics Data System (ADS)

    Perinati, Agostino

    1998-02-01

    'The Asian Routes Towards the Global Information Society' and 'Towards a Strategic Planning for the Global Information Society' will be the forum themes of 'Asia Telecom 97' and 'Telecom Interactice 97' events respectively, to be held by the International Telecommunication Union (ITU) in order to further telecommunication development around the world. International telecommunications network affects our life by keeping us in touch, bringing us world news and underpinning the global economy. Global tele-economy, global information infrastructure, global information society terms are more and more used to indicate the evolution towards an information- driven world where the access to information, communication and technologies is essential to the economic and social development in every country. Telecommunication industry can strongly contribute to this evolution together with broadcasting and computer industry, and fiber optic communications are expected to continue to grow up and share a relevant part of the total telecom market. In 1995 telecom market shown a 3.8 percent worldwide investment growth reaching a 545 billion value. According to 'Kessler Marketing Intelligence (KMI) Corp.' analysis of fiberoptics and multimedia market the amount of cabled fiber installed in U.S. will be around 11 million fiber-km in 1997 and 15 million fiber-km are predicted in the year 2000. Between 1995 and 1998 the undersea industry is estimated to deal with 13.9 billion as additional undersea cable systems investment in the global telecom network. In China beside satellite telecom stations and digital microwave systems 22 fiber optic backbones have been realized and another 23 systems are expected to be built in the Ninth Five-Year National Plan (1996 to approximately 2000) with a total length of nearly 30,000 sheat-km. The study, Fiber and Fiberoptic Cable Markets in China, recently released by KMI Corp. shows that fiber optic cable installation by MPT and other network operators

  3. Reusable Cryogenic Tank VHM Using Fiber Optic Distributed Sensing Technology

    NASA Technical Reports Server (NTRS)

    Bodan-Sanders, Patricia; Bouvier, Carl

    1998-01-01

    The reusable oxygen and hydrogen tanks are key systems for both the X-33 (sub-scale, sub-orbital technology demonstrator) and the commercial Reusable Launch Vehicle (RLV). The backbone of the X-33 Reusable Cryogenic Tank Vehicle Health Management (VHM) system lies in the optical network of distributed strain temperature and hydrogen sensors. This network of fiber sensors will create a global strain and temperature map for monitoring the health of the tank structure, cryogenic insulation, and Thermal Protection System. Lockheed Martin (Sanders and LMMSS) and NASA Langley have developed this sensor technology for the X-33 and have addressed several technical issues such as fiber bonding and laser performance in this harsh environment.

  4. 78 FR 17187 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... to grant to Fiber Optic Sensor Systems Technology Corporation, a revocable, nonassignable, exclusive... its intent to grant to Fiber Optic Sensor Systems Technology Corporation a revocable,...

  5. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  6. Impressing technology of optical Bragg's gratings on planar optical sol-gel waveguides

    NASA Astrophysics Data System (ADS)

    Pustelny, T.; Zielonka, I.; Tyszkiewicz, C.; Karasiński, P.; Pustelny, B.

    2006-06-01

    The aim of the presented investigations was to develop a technique of producing Bragg's grating couplers on planar waveguides. Waveguides are obtained by means of the sol-gel technology. The introduction of a light beam into the structure of the waveguide is in the case of planar or strip optical systems always an essential technical problem, requiring simple and reproducible solutions without extending excessively the waveguide structure. The paper presents a technology of producing grating couplers by impressing the pattern of the network while forming the planar waveguide structure applying the sol-gel method. Some remarks concerning the sol-gel technology are also presented. The results of investigations on grating couplers obtained in such a way have been discussed, too. Attention has been drawn to the possibility of using such structures in optoelectronic sensors, particularly gas sensors, including sensors of water vapour as well as toxic gases.

  7. New technologies for fluid dynamics experiments and optical diagnostics

    NASA Astrophysics Data System (ADS)

    Orlov, Sergei S.

    2008-12-01

    Modern technologies offer new opportunities for experimentalists in a wide variety of research areas including hydrodynamics. A significant improvement in precision, dynamic range, reproducibility, motion control accuracy, data acquisition rate and information capacity of the experimental datasets over the current state-of-the-art are possible using new approaches and techniques, which may bring the quality of experiments to a new level of standards. Application of these new technologies in experimental diagnostics can help bridge the current quality gap between the observations and the large-scale computational fluid dynamics simulations allowing direct and unambiguous comparison of the data and the modeling results, which is crucial for the code validation. One of the new technologies which is described in this paper is ultra-high performance digital holographic data storage. The state-of-the-art motion control, electronics and optical imaging allow for realization of turbulent flows with very high Reynolds number (>107) in a relatively small laboratory-scale form-factor and quantification of their properties with extremely high spatio-temporal resolutions and bandwidth. Digital holographic technology can provide complete three-dimensional mapping of the flow velocity and density fields at high data rates (over 1000 fps) over large spatial area (~50 cm) with high spatial (1-10 μm) and temporal (better than a few nanoseconds) resolutions and, therefore, can provide extremely accurate quantitative description of the fluid flows, including those of multiphase and unsteady conditions. These unique experimental and metrological capabilities enable the studies of spatial and temporal properties of the transport of momentum, angular momentum and energy, and the identification of scaling, invariants and statistical properties of the complex multiphase and unsteady turbulent flows. The technology can be applied for investigations of a large variety of hydrodynamic

  8. Coherent Terahertz Wireless Signal Transmission Using Advanced Optical Fiber Communication Technology

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Morohashi, Isao; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Kitayama, Ken-ichi

    2015-02-01

    Coherent terahertz signal transmission with multilevel modulation and demodulation is demonstrated using an optical sub-harmonic IQ mixer (SHIQM), which consists of optical components in advanced optical fiber communication technologies. An optical-frequency-comb-employed signal generator is capable of vector modulation as well as frequency tunability. Digital signal processing (DSP) adopted from the recently developed optical digital coherent communication can easily demodulate multi-level modulated terahertz signals by using electrical heterodyning for intermediate-frequency (IF) down conversion. This technique is applicable for mobile backhauling in the next-generation mobile communication technology directly connected to an optical fiber network as a high-speed wireless transmission link.

  9. Development of Proton Exchange Technology in the ISSP—Optical Waveguides in Electro-Optical Crystals

    NASA Astrophysics Data System (ADS)

    Kuneva, Mariana

    2010-01-01

    The contribution of the team working in the field of integrated optics in the Institute of Solid State Physics to the development of proton exchange technology is discussed. Some modifications of its parameters (new proton sources) and steps (two-step exchange separated by annealing, for example) are pointed out in respect of their effect on the waveguide properties of proton-exchanged layers. The spectroscopic methods used for phase content characterization of waveguides obtained are also described. These include infrared absorption and reflection spectrometry, X-ray photoelectron spectroscopy, mode spectroscopy and micro & waveguide Raman spectroscopy.

  10. Optical fiber cabling technologies for flexible access network

    NASA Astrophysics Data System (ADS)

    Tanji, Hisashi

    2008-07-01

    Fiber-to-the-home (FTTH) outside plant infrastructure should be so designed and constructed as to flexibly deal with increasing subscribers and system evolution to be expected in the future, taking minimization of total cost (CAPEX and OPEX) into consideration. With this in mind, fiber access architectures are reviewed and key technologies on optical fiber and cable for supporting flexible access network are presented. Low loss over wide wavelength (low water peak) and bend-insensitive single mode fiber is a future proof solution. Enhanced separable ribbon facilitates mid-span access to individual fibers in a cable installed, improving fiber utilizing efficiency and flexibility of distribution design. It also contributes to an excellent low PMD characteristic which could be required for video RF overlay system or high capacity long reach metro-access convergence network in the future. Bend-insensitive fiber based cabling technique including field installable connector greatly improves fiber/cable handling in installation and maintenance work.

  11. Standoff detection of explosives: a challenging approach for optical technologies

    NASA Astrophysics Data System (ADS)

    Désilets, S.; Hô, N.; Mathieu, P.; Simard, J. R.; Puckrin, E.; Thériault, J. M.; Lavoie, H.; Théberge, F.; Babin, F.; Gay, D.; Forest, R.; Maheux, J.; Roy, G.; Châteauneuf, M.

    2011-06-01

    Standoff detection of explosives residues on surfaces at few meters was made using optical technologies based on Raman scattering, Laser-Induced Breakdown Spectroscopy (LIBS) and passive standoff FTIR radiometry. By comparison, detection and analysis of nanogram samples of different explosives was made with a microscope system where Raman scattering from a micron-size single point illuminated crystal of explosive was observed. Results from standoff detection experiments using a telescope were compared to experiments using a microscope to find out important parameters leading to the detection. While detection and spectral identification of the micron-size explosive particles was possible with a microscope, standoff detection of these particles was very challenging due to undesired light reflected and produced by the background surface or light coming from other contaminants. Results illustrated the challenging approach of detecting at a standoff distance the presence of low amount of micron or submicron explosive particles.

  12. Broadband optical concentration technology based on grating side-coupling

    NASA Astrophysics Data System (ADS)

    Lu, Luyun; Wang, Kaiwei

    2014-08-01

    Though the technology of grating side-coupling is often applied in fields, such as coupling of light of single wavelength or narrow waveband, pump of fiber laser, integration of optical waveguide, its application for broadband coupling of visible spectrum is rarely studied. Sunlight can concentrate and output at the edge of waveguides by integrating sub-wavelength gratings with waveguides, making it a novel solar concentrator. In this paper, we simulated different grating structures with the finite-difference time-domain solution software (FDTD) to obtain the optimal structure design, since different grating structures feature different diffractive efficiencies. The result demonstrates that the structures mentioned above all feature good diffractive efficiencies in broadband wavelength, among which the blazing grating reaches the largest efficiency, namely 48.8%.This kind of sub-wavelength gratings feature integration of small size, which makes it promising in absorption of solar energy, such as lumination, photovoltaic cell, space melting, etc.

  13. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    PubMed Central

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  14. The Over-Selling of Fiber Optics? Cable Planning for Educational Technology.

    ERIC Educational Resources Information Center

    Kovacs, Robert E.

    1993-01-01

    Describes fiber optic cables and coaxial cables and considers when each would be appropriate for educational technology. Single mode versus multimode fiber optics are explained, advantages and disadvantages of each type of cable are discussed, and guidelines for choosing fiber optic cables and coaxial cables are offered. (LRW)

  15. Optical memory system technology. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1980-01-01

    Approximately 213 citations from the international literature which concern the development of the optical data storage system technology are presented. Topics covered include holographic computer storage devices, crystal, magneto, and electro-optics, imaging techniques, in addition to optical data processing and storage.

  16. Acousto-Optic Technology for Topographic Feature Extraction and Image Analysis.

    DTIC Science & Technology

    1981-03-01

    This report contains all findings of the acousto - optic technology study for feature extraction conducted by Deft Laboratories Inc. for the U.S. Army...topographic feature extraction and image analysis using acousto - optic (A-O) technology. A conclusion of this study was that A-O devices are potentially

  17. Kodak Optical Disk and Microfilm Technologies Carve Niches in Specific Applications.

    ERIC Educational Resources Information Center

    Gallenberger, John; Batterton, John

    1989-01-01

    Describes the Eastman Kodak Company's microfilm and optical disk technologies and their applications. Topics discussed include WORM technology; retrieval needs and cost effective archival storage needs; engineering applications; jukeboxes; optical storage options; systems for use with mainframes and microcomputers; and possible future…

  18. Overview of Mirror Technology Development for Large Lightweight Space-Based Optical Systems

    NASA Technical Reports Server (NTRS)

    Smith, W. Scott; Stahl, H. P.; Rose, M. Frank (Technical Monitor)

    2000-01-01

    The Space Optics Manufacturing Technology Center of Marshall Space Flight Center is involved in the development of lightweight optics for spacebased'systems. The NGST and other future NASA programs require large aperture space-based instruments. This paper reviews the technologies under development for NGST including discussions of the environmental testing of candidate segment for the NGST primary mirror.

  19. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies

    NASA Astrophysics Data System (ADS)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio

    2012-04-01

    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  20. Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part I. System design and performance.

    PubMed

    Wilde, J P; Heanue, J F; Tselikov, A A; Hurst, J E

    2001-02-10

    A novel flying-optical-head data storage technology is described. It is based on a micro-optical recording head that contains a silicon micromachined torsional mirror for high-bandwidth track following. Multiple heads and disks are contained in a Winchester-style rotating disk drive. Single-mode optical fibers provide light delivery to and from the heads. Both polarization-maintaining and low-birefringence fiber systems have been implemented for magneto-optical (MO) recording. A fixed optics module containing a laser diode, MO detection optics, and a 1 x N fiber bundle switch has been developed as an integral part of this new recording architecture. A 5.25-in. (13.33-cm), half-height prototype drive design and its performance are presented.

  1. Summary of the Flight Technology Improvement Workshop. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Spaceborne instrumentation technology deficiencies are summarized. Recommendations are given for technology development, improvements in existing technology, and policy changes needed to facilitate the use of improved technology. Optical radiometric instruments, attitude control, and electromechanical and power subsystems are considered.

  2. The simulation of turbulence effect based on the technology of optical wavefront control

    NASA Astrophysics Data System (ADS)

    Zhao, Hongming; Fei, Jindong; Du, Huijie; Yu, Hong; Du, Jian; Hu, Xinqi; Dong, Bing

    2013-09-01

    In the process of high-resolution astronomical observation and space optical mapping, the wavefront aberrations caused by atmosphere turbulence effect lead to reduced resolution of optical imaging sensor. Firstly, on the base of influence of atmosphere turbulence effect for the optical observation system, this paper investigates and analyses the development and technical characteristics of deformable mirror, which is the key device of optical wavefront control technology. In this part, the paper describes the basic principles of wavefront control and measurement using the current production line of deformable mirror, including micro-electromechanical systems (MEMS) deformable mirror which is one of the most promising technology for wavefront modulation and Shack-Hartmann wavefront sensors. Secondly, a new method based on the technology of optical wavefront control and the data of optical path difference (OPD) for simulating the effect of optical transmission induced by turbulence is presented in this paper. The modeling and characteristics of atmosphere turbulence effect applied for optical imagery detector of astronomical observation and space optical mapping has been obtained. Finally, based on the theory model of atmosphere turbulence effects and digital simulation results, a preliminary experiment was done and the results verify the feasibility of the new method. The OPD data corresponding to optical propagation effect through turbulent atmosphere can be achieved by the calculation based on the method of ray-tracing and principle of physical optics. It is a common practice to decompose aberrated wavefronts in series over the Zernike polynomials. These data will be applied to the drive and control of the deformable mirror. This kind of simulation method can be applied to simulate the optical distortions effect, such as the dithering and excursion of light spot, in the space based earth observation with the influence of turbulent atmosphere. With the help of the

  3. Rapid micro-optical prototyping technology for fabricating optical interconnection modules at the MCM and PCB level

    NASA Astrophysics Data System (ADS)

    Debaes, C.; Vervaeke, M.; Van Erps, J.; Desmet, L.; Ottevaere, H.; Gomez, V.; Vynck, P.; Van Overmeire, S.; Ishii, Y.; Hermanne, A.; Thienpont, H.

    2006-10-01

    One of the remaining challenges to solve the interconnection bottlenecks at the Printed Circuit Board (PCB) and Multi-Chip-Module (MCM) level, is to adequately replace the galvanic interconnects with high-performance, low-cost, compact and reliable micro-photonic alternatives. At our labs of the Vrije Universiteit Brussel we are therefore optimizing and deploying a rapid micro-optical prototyping technology for micro-optical interconnect modules, which we call Deep Proton Writing (DPW). An advantage of the DPW process is that it can create steep micro-optical surfaces, micro-holes, micro-lenses and alignment features in one irradation step. Hence, relative accuracies are very well controlled. In this report, we will address more specifically the following components, made each with the DPW technology: 1) out-of-plane couplers for optical wave-guides embedded in PCB, 2) peripheral fiber ribbons and two dimensional single- and multimode fiber connectors for high-speed parallel optical connections, and 3) intra-MCM level optical interconnections via free-space optical modules. We will give special attention to the optical tolerancing and the opto-mechanical integration of components in their packages. We use both a sensitivity analysis to misalignment errors and Monte-Carlo simulations. It is our aim to investigate the whole component integration chain from the optoelectronic device packaging to the micro-opto-mechanical assembly of the interconnect module.

  4. Developing optofluidic technology through the fusion of microfluidics and optics.

    PubMed

    Psaltis, Demetri; Quake, Stephen R; Yang, Changhuei

    2006-07-27

    We describe devices in which optics and fluidics are used synergistically to synthesize novel functionalities. Fluidic replacement or modification leads to reconfigurable optical systems, whereas the implementation of optics through the microfluidic toolkit gives highly compact and integrated devices. We categorize optofluidics according to three broad categories of interactions: fluid-solid interfaces, purely fluidic interfaces and colloidal suspensions. We describe examples of optofluidic devices in each category.

  5. Coherent optical component technologies for WDM transmission systems

    NASA Astrophysics Data System (ADS)

    Mino, S.; Murata, K.; Saida, T.; Ogawa, I.

    2011-01-01

    We review our recent progress toward 100 Gbps and beyond, focusing on integrated optical devices. Topics include our recently developed integrated optical front-ends for 100 Gbps PDM-QPSK based on multi-channel micro collimator optics and hermetically sealed O/E converters, and PLC-LiNbO3 hybrid optical modulators for 100 Gbps PDM-QPSK. We also describe our recent work on exceeding 100 Gbps, including 64 QAM modulators, modulation-level-selectable modulators, and high-speed digital-analog converter ICs for future multi-level transmissions.

  6. Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.

    2008-01-01

    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.

  7. Gas Optics Applicable to Free Electron Laser Technology

    DTIC Science & Technology

    1989-10-23

    near-field of the wiggler . This requires uiconventional optics because of the flux densities involved. A solution to this problem is the use of gas...optics, which show great tolerance to very high power densities, in place of solid optics near the wiggler . Gas optics can be thought of as weak lenses...ratio (tilt and focus corrected) measurement was about 0.7 at a flow Red of about 1000. It is suspected that the Strehl ratio is actually higher due to

  8. Evaluation of emerging parallel optical link technology for high energy physics

    SciTech Connect

    Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.; /Fermilab

    2012-01-01

    Modern particle detectors utilize optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from industry advancements in transceiver technology. Supporting data transfers of up to 120 Gbps in each direction, optical engines permit assembly of the optical transceivers in close proximity to ASICs and FPGAs. Test results of some of these parallel components will be presented including the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.

  9. Optics Technologies for LUVOIR & HabEx: Polarization & Mirror Count

    NASA Astrophysics Data System (ADS)

    Breckinridge, James B.

    2017-01-01

    We show that polarization aberrations and mirror count will limit the optical system performance of LUVOIR and HabEx and thus both their exoplanet science yield and their UV science. In addition we show how increased mirror count reduces optical system transmittance and increases cost in large aperture telescopes. We make the observation that orthogonally polarized light does not interfere to form an intensity image. We show how the two polarization aberrations (diattenuation & and retardance) distort the system PSF, decrease transmittance, and increase the unwanted background above that predicted using scalar models. An optical system corrected for geometric path difference errors is a necessary but not sufficient condition for the perfect image formation needed to directly image terrestrial exoplanets. Geometric (trigonometric) path difference errors are controlled using adaptive optics (tip-tilt & wavefront), active metrology and precision pointing. However, image quality is also determined by several physical optics factors: diffraction, polarization, partial coherence, and chromatism all of which degrade image quality and are not corrected through the control of geometric path difference. The source of physical optics errors lies in the opto-mechanical packaging of optical elements, masks, stops and the thin film coatings needed to obtain high transmittance. Adaptive optics corrects wavefront errors described by geometric or optical path length errors but not those wavefront errors introduced by physical optics. We show that for large telescopes each reflection costs over $100 million to increase the collecting area in order to recover lost SNR. Examples will be shown. The LUVOIR and HabEx systems will need fewer optical surfaces than current systems

  10. Technology Validation of Optical Fiber Cables for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2000-01-01

    Periodically, commercially available (COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are evaluated to bring out known failure mechanisms that are expected to occur during a typical mission. The tests used to characterize COTS cables include: (1) vacuum exposure, (2) thermal cycling, and (3) radiation exposure. Presented here are the results of the testing conducted at NASA Goddard Space Flight Center on COTS optical fiber cables over this past year. Several optical fiber cables were characterized for their thermal stability both during and after thermal cycling. The results show how much preconditioning is necessary for a variety of available cables to remain thermally stable in a space flight environment. Several optical fibers of dimensions 100/140/172 microns were characterized for their radiation effects at -125 C using the dose rate requirements of International Space Station. One optical fiber cable in particular was tested for outgassing to verify whether an acrylate coated fiber could be used in a space flight optical cable configuration.

  11. Broadband Optical Access Technologies to Converge towards a Broadband Society in Europe

    NASA Astrophysics Data System (ADS)

    Coudreuse, Jean-Pierre; Pautonnier, Sophie; Lavillonnière, Eric; Didierjean, Sylvain; Hilt, Benoît; Kida, Toshimichi; Oshima, Kazuyoshi

    This paper provides insights on the status of broadband optical access market and technologies in Europe and on the expected trends for the next generation optical access networks. The final target for most operators, cities or any other player is of course FTTH (Fibre To The Home) deployment although we can expect intermediate steps with copper or wireless technologies. Among the two candidate architectures for FTTH, PON (Passive Optical Network) is by far the most attractive and cost effective solution. We also demonstrate that Ethernet based optical access network is very adequate to all-IP networks without any incidence on the level of quality of service. Finally, we provide feedback from a FTTH pilot network in Colmar (France) based on Gigabit Ethernet PON technology. The interest of this pilot lies on the level of functionality required for broadband optical access networks but also on the development of new home network configurations.

  12. Intravascular Optical Imaging Technology for Investigating the Coronary Artery

    PubMed Central

    Suter, Melissa J.; Nadkarni, Seemantini K.; Weisz, Giora; Tanaka, Atsushi; Jaffer, Farouc A.; Bouma, Brett E.; Tearney, Guillermo J.

    2012-01-01

    There is an ever-increasing demand for new imaging methods that can provide additional information about the coronary wall to better characterize and stratify high-risk plaques, and to guide interventional and pharmacologic management of patients with coronary artery disease. While there are a number of imaging modalities that facilitate the assessment of coronary artery pathology, this review paper focuses on intravascular optical imaging modalities that provide information on the microstructural, compositional, biochemical, biomechanical, and molecular features of coronary lesions and stents. The optical imaging modalities discussed include angioscopy, optical coherence tomography, polarization sensitive-optical coherence tomography, laser speckle imaging, near-infrared spectroscopy, time-resolved laser induced fluorescence spectroscopy, Raman spectroscopy, and near-infrared fluorescence molecular imaging. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in the evaluation of the coronary artery in the future. PMID:21920342

  13. Navigation and Elctro-Optic Sensor Integration Technology for Fusion of Imagery and Digital Mapping Products

    DTIC Science & Technology

    1999-08-01

    Electro - Optic Sensor Integration Technology (NEOSIT) software application. The design is highly modular and based on COTS tools to facilitate integration with sensors, navigation and digital data sources already installed on different host

  14. Design of an All-Optical Network Based on LCoS Technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  15. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  16. High-Throughput Optical Interconnect Technology for Future On-Board Digital Processors

    DTIC Science & Technology

    2005-07-13

    30 Gbit/s. A flexible optical fibre circuit was developed so as to route the fibres from board to board, and connected to optical transmitter and...receiver modules through multi- fibre connectors. The demonstrator was integrated and the overall processor functionality was successfully demonstrated...equalizing circuits may be necessary in order to restore degraded signals. Fibre optics has become the technology of predilection for high-speed

  17. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  18. Living Brain Optical Imaging: Technology, Methods and Applications

    PubMed Central

    Tsytsarev, Vassiliy; Bernardelli, Chad; Maslov, Konstantin I.

    2017-01-01

    Within the last few decades, optical imaging methods have yielded revolutionary results when applied to all parts of the central nervous system. The purpose of this review is to analyze research possibilities and limitations of several novel imaging techniques and show some of the most interesting achievements obtained by these methods. Here we covered intrinsic optical imaging, voltage-sensitive dye, photoacoustic, optical coherence tomography, near-infrared spectroscopy and some other techniques. All of them are mainly applicable for experimental neuroscience but some of them also suitable for the clinical studies. PMID:28251038

  19. Thermal Infrared Imaging Spectrometer - An advanced optics technology instrument

    NASA Technical Reports Server (NTRS)

    Mahoney, Colin; Labaw, Clayton; Sobel, Harold; Kahle, Anne

    1990-01-01

    Through the use of a special optical filter, the Thermal Infrared Imaging Spectrometer, an airborne multispectral IR imaging instrument operating in the thermal emission region (7.5-14 microns), will achieve signal-to-noise ratios greater than 600 with ambient temperature optics. This instrument will be used to do compositional surface mapping of the terrain, and will refine the ability to categorize rock families and types by providing much higher spectral resolution in the emission region than was previously available. Details of the optical system, the detector, the cooler system, and the support electronics are described.

  20. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  1. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  2. Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-07-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  3. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    DTIC Science & Technology

    2007-10-01

    that can be used in a practical clinical setting for breast cancer detection. The features that will be exploited for optical detection/diagnosis of...that can be used in a practical clinical setting for breast cancer detection. The features that will be exploited for optical detection/diagnosis of...manufactured clinical instrument, we feel confident that we will be able to minimize these inversion errors by doing more work to understand the detector

  4. Optical Disk Technology for Large Scale Mass Storage.

    DTIC Science & Technology

    1985-12-01

    rules. It is sufficient to say that the various encoding techniques provide the system’s designer with several advantages. 8. . . .-. ERROR MANAGEMENT ...characterize due to its variable nature. It is not the *intention to dismiss the characterization of the hardware and software for *error management ...system designer. The most difficult step in managing the error budget in an optical disk 2 *system is otingahigh quality media. An optical disk

  5. Multi-modal miniaturized microscope: successful merger of optical, MEMS, and electronic technologies

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Tomasz S.; Rogers, Jeremy D.; Rahman, Mohammed; Christenson, Todd C.; Gaalema, Stephen; Dereniak, Eustace L.; Richards-Kortum, Rebecca; Descour, Michael R.

    2005-12-01

    The multi-modal miniature microscope (4M) device for early cancer detection is based on micro-optical table (MOT) platform which accommodates on a chip: optical, micro-mechanical, and electronic components. The MOT is a zeroalignment optical-system concept developed for a wide variety of opto-mechanical instruments. In practical terms this concept translates into assembly errors that are smaller than the tolerances on the performance of the optical system. This paper discusses all major system elements: optical system, custom high speed CMOS detector and comb drive actuator. It also points to mutual relations between different technologies. The hybrid sol-gel lenses, their fabrication and assembling techniques, optical system parameters, and various operation modes are also discussed. A particularly interesting mode is a structured illumination technique that delivers confocal-imaging capabilities and may be used for optical sectioning. Structured illumination is produced with LIGA fabricated actuator scanning in resonance and reconstructed using sine approximation algorithm.

  6. Multi terabits/s optical access transport technologies

    NASA Astrophysics Data System (ADS)

    Binh, Le Nguyen; Wang Tao, Thomas; Livshits, Daniil; Gubenko, Alexey; Karinou, Fotini; Liu Ning, Gordon; Shkolnik, Alexey

    2016-02-01

    Tremendous efforts have been developed for multi-Tbps over ultra-long distance and metro and access optical networks. With the exponential increase demand on data transmission, storage and serving, especially the 5G wireless access scenarios, the optical Internet networking has evolved to data-center based optical networks pressuring on novel and economical access transmission systems. This paper reports (1) Experimental platforms and transmission techniques employing band-limited optical components operating at 10G for 100G based at 28G baud. Advanced modulation formats such as PAM-4, DMT, duo-binary etc are reported and their advantages and disadvantages are analyzed so as to achieve multi-Tbps optical transmission systems for access inter- and intra- data-centered-based networks; (2) Integrated multi-Tbps combining comb laser sources and micro-ring modulators meeting the required performance for access systems are reported. Ten-sub-carrier quantum dot com lasers are employed in association with wideband optical intensity modulators to demonstrate the feasibility of such sources and integrated micro-ring modulators acting as a combined function of demultiplexing/multiplexing and modulation, hence compactness and economy scale. Under the use of multi-level modulation and direct detection at 56 GBd an aggregate of higher than 2Tbps and even 3Tbps can be achieved by interleaved two comb lasers of 16 sub-carrier lines; (3) Finally the fundamental designs of ultra-compacts flexible filters and switching integrated components based on Si photonics for multi Tera-bps active interconnection are presented. Experimental results on multi-channels transmissions and performances of optical switching matrices and effects on that of data channels are proposed.

  7. Technologies for optical networking in Nx160-Gbit/s DWDM networks

    NASA Astrophysics Data System (ADS)

    Ramos, Francisco; Schulze, Karsten; Martinez, Jose Manuel; Marti, Javier; Llorente, Roberto; Clavero, Raquel

    2003-08-01

    Future multi-terabit/s optical core networks require optical technologies capable of managing ultra-high bit rate OTDM/DWDM (optical time division multiplexing/dense wavelength division multiplexing) channels at 160 Gbit/s or higher bit rates. The key functionalities in ultra-high speed network nodes are all-optical wavelength conversion, 3R-regeneration and demultiplexing of OTDM signals. Advanced optical networking techniques (optical add-drop multiplexing and optical routing) are studied in simulations and their performance evaluated considering 160 Gbit/s OTDM/DWDM channels. Performance comparison results for both OADM (optical add-drop multiplexer) and OXC (optical cross-connect) node networking functionalities are shown considering different technologies: semiconductor-optical-amplifier-based symmetric Mach-Zehnder interferometers (SOA-MZI) for wavelength conversion, signal regeneration and demultiplexing, electroabsorption-modulator-based demultiplexers, and wavelength converters based on four-wave mixing in dispersion-shifted fiber. The simulation results show that the SOA-MZI is a promising technology for all-optical signal processing in network nodes mainly due to its signal regeneration capability. At ultra-high bit rates, however, the relaxation time of SOAs considerably limits the operation. A solution to mitigate this problem is to use a differential scheme at the input of the device. Error-free wavelength conversion, signal regeneration and demultiplexing of 160 Gbit/s OTDM signals employing a SOA-MZI with a differential scheme is demonstrated by means of simulations. Furthermore, the parameters of this architecture are optimized to obtain the best performance for each optical networking functionality in OADM and OXC network nodes.

  8. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Over the past two decades, fiber optics has emerged as a highly practical and cost-efficient communications technology. Its competitiveness vis-a-vis other transmission media, especially satellite, has become a critical question. This report studies the likely evolution and application of fiber optic networks in the United States to the end of the century. The outlook for the technology of fiber systems is assessed and forecast, scenarios of the evolution of fiber optic network development are constructed, and costs to provide service are determined and examined parametrically as a function of network size and traffic carried. Volume 1 consists of the Executive Summary. Volume 2 focuses on fiber optic technology and long distance fiber optic networks. Volume 3 develops a traffic and financial model of a nationwide long distance transmission network. Among the study's most important conclusions are: revenue requirements per circuit for LATA-to-LATA fiber optic links are less than one cent per call minute; multiplex equipment, which is likely to be required in any competing system, is the largest contributor to circuit costs; the potential capacity of fiber optic cable is very large and as yet undefined; and fiber optic transmission combined with other network optimization schemes can lead to even lower costs than those identified in this study.

  9. The study of optical fiber communication technology for space optical remote sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yu, Sheng-quan; Zhang, Xiao-hong; Zhang, Rong-hui; Ma, Jian-hua

    2012-11-01

    The latest trends of Space Optical Remote Sensing are high-resolution, multispectral, and wide swath detecting. High-speed digital image data transmission will be more important for remote sensing. At present, the data output interface of Space Optical Remote Sensing, after performing the image data compression and formatting, transfers the image data to data storage unit of the Spacecraft through LVDS circuit cables. But this method is not recommended for high-speed digital image data transmission. This type of image data transmission, called source synchronization, has the low performance for high-speed digital signal. Besides, it is difficult for cable installing and system testing in limited space of vehicle. To resolve these issues as above, this paper describes a high-speed interconnection device for Space Optical Remote Sensing with Spacecraft. To meet its objectives, this device is comprised of Virtex-5 FPGA with embedded high-speed series and power-efficient transceiver, fiber-optic transceiver module, the unit of fiber-optic connection and single mode optical fiber. The special communication protocol is performed for image data transferring system. The unit of fiber-optic connection with high reliability and flexibility is provided for transferring high-speed serial data with optical fiber. It is evident that this method provides many advantages for Space Optical Remote Sensing: 1. Improving the speed of image data transferring of Space Optical Remote Sensing; 2. Enhancing the reliability and safety of image data transferring; 3. Space Optical Remote Sensing will be reduced significantly in size and in weight; 4. System installing and system testing for Space Optical Remote Sensing will become easier.

  10. Tolerancing the LITE optical system. [Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.

    1989-01-01

    This paper describes the optical system used in the Lidar In-Space Technology Experiment (LITE) and presents the results of a study designed to generate a tolerance budget for the LITE, using the combination of manual and Monte Carlo tolerancing techniques utilizing the SYNOPSYS optical analysis program. The tolerance budget derived for LITE, including the contributions of both the fabrication and the alignment of the optical-path elements, are presented. It is shown that the nature of the design allows for typical optical shop tolerances of about 5 mils of despace and decenter, 0.1 deg of tilt, and about 5 fringes of surface figure error.

  11. Research on fabrication of aspheres at the Center of Optics Technology (University of Applied Science in Aalen); Techical Digest

    NASA Astrophysics Data System (ADS)

    Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas

    2005-05-01

    The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics & Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.

  12. Hybrid Ground Station Technology for RF and Optical Communication Links

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.

    2012-01-01

    To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

  13. Optical technologies for communication satellite applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1986

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul (Editor)

    1986-01-01

    The present conference considers topics encompassing the fields of satellite communications technology, optical subsystems, transmitters and receivers, subsystems for pointing and tracking, onboard processing- and component-related technologies, fiber-optic distribution networks, and reliability-related considerations. Attention is given to lightwave technology in microwave systems, the status of CO2 laser technology and homodyne receiver concepts for communication satellite optical links, laser Doppler measurement techniques for spacecraft, fiber-optic gyros for space applications, integrated acoustooptic device modules for communication, signal processing and computing, radiation-hardened optoelectronic components, and radiation effects on fiber-optics.

  14. RAPID OPTICAL SCREEN TOOL (ROST™) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    In August 1994, a demonstration of cone penetrometer-mounted sensor technologies took place to evaluate their effectiveness in sampling and analyzing the physical and chemical characteristics of subsurface soil at hazardous waste sites. The effectiveness of each technology was ev...

  15. Silicon technology compatible photonic molecules for compact optical signal processing

    SciTech Connect

    Barea, Luis A. M. Vallini, Felipe; Jarschel, Paulo F.; Frateschi, Newton C.

    2013-11-11

    Photonic molecules (PMs) based on multiple inner coupled microring resonators allow to surpass the fundamental constraint between the total quality factor (Q{sub T}), free spectral range (FSR), and resonator size. In this work, we use a PM that presents doublets and triplets resonance splitting, all with high Q{sub T}. We demonstrate the use of the doublet splitting for 34.2 GHz signal extraction by filtering the sidebands of a modulated optical signal. We also demonstrate that very compact optical modulators operating 2.75 times beyond its resonator linewidth limit may be obtained using the PM triplet splitting, with separation of ∼55 GHz.

  16. Optical microsensors for pesticides identification based on porous silicon technology.

    PubMed

    Rotiroti, Lucia; De Stefano, Luca; Rendina, Ivo; Moretti, Luigi; Rossi, Andrea Mario; Piccolo, Alessandro

    2005-04-15

    A simple and low cost optical sensor, based on porous silicon nanotechnology, has been used to detect and quantify the presence of atrazine pesticide in water and humic acid solutions. In both cases, a well defined optical signal variation can be registered, even at low concentration as 1 ppm. The phenomenon can be ascribed to the capillary infiltration of liquid into the pores, which changes the average refractive index of the structure. Due to the resonant cavity enhanced operation of the proposed sensors, very low detection limits can be reached.

  17. Optically controlled phased-array technology for space communication systems

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Bhasin, Kul B.

    1988-01-01

    Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.

  18. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    DTIC Science & Technology

    2010-10-01

    aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) was successfully used to differentiate cancerous cells from normal with fluorescence ...contrast agents, specifically aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) and NBDG, for the molecular detection of breast cancer. 15...saturation, total hemoglobin content, reduction-oxidation ratio) and extrinsic sources of optical contrast (specifically aminolevulinic acid (ALA

  19. Application of fiber optic sensing technology in anchor monitoring

    NASA Astrophysics Data System (ADS)

    Liang, Lei; Jiang, Desheng; Sun, Dongya

    2000-05-01

    Prestressed steel anchors are widely adopted in the stabilization of rock slope engineering. To ensure the safety of the stabilization system, reliable monitoring techniques should be used to evaluate the operating state of the anchorage system. Fiber optical sensors can achieve the distribution detection of strain along the whole length of the optical fiber. Therefore it will be very suitable to embed optical fiber in motar, esp. concrete to perform strain measurement as well as crack detection. This paper reports the development of a simple intensity modulated fiber optic sensor for detecting internal cracks of concrete structures. This sensor is embedded in a 1-meter-long concrete beam and its reliability and feasibility tests were conducted by loading this beam to failure. Experiments for the embedded sensor show that incipience and propagation of concrete cracks can be well displayed by light intensity meter and the sensor can endure large deformation before it cracks and the maximum concrete crack width endured by the sensor can reach 5 mm.

  20. Advanced Technologies for Structural and Functional Optical Coherence Tomography

    DTIC Science & Technology

    2015-01-07

    patient and operator motion artifacts [37]. Third, we used a MEMS scanning mirror instead of galvanometers to scan the beam and a plastic 3D printed ...and demonstration of handheld ophthalmic OCT technology for 3D retinal imaging.  Development of prototype OCT technology for ophthalmology which...3 mm × 3 mm fields showing wide field retinal vasculature as well as the foveal avascular zone. Capillary structure can be imaged in 3D and image

  1. Emerging electro-optical technologies for defense applications

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, Ronda; Ser, W.; Er, Meng H.; Chan, Philip

    1999-11-01

    Technological breakthroughs in the field of imaging and non- imaging sensor sand the related signal processors helped the military users to achieve 'force multiplication'. Present day 'smart-weapon systems' are being converted to 'brilliant-weapon systems' to bridge the gap until the most potent new 'fourth generation systems' come on line based on nanotechnology. The recent military tactics have evolved to take advantage of ever improving technologies to improve the quality and performance over time. The drive behind these technologies is to get a first-pass-mission-success against the target with negligible collateral damage, protecting property and the lives of non-combatants. These technologies revolve around getting target information, detection, designation, guidance, aim-point selection, and mission accomplishment. The effectiveness of these technologies is amply demonstrated during recent wars. This paper brings out the emerging trends in visible/IR/radar smart-sensors and the related signal processing technologies that lead to brilliant guided weapon systems. The purpose of this paper is to give an overview to the readers about futuristic systems. This paper also addresses various system configurations including sensor-fusion.

  2. Review of ultra-high density optical storage technologies for big data center

    NASA Astrophysics Data System (ADS)

    Hao, Ruan; Liu, Jie

    2016-10-01

    In big data center, optical storage technologies have many advantages, such as energy saving and long lifetime. However, how to improve the storage density of optical storage is still a huge challenge. Maybe the multilayer optical storage technology is the good candidate for big data center in the years to come. Due to the number of layers is primarily limited by transmission of each layer, the largest capacities of the multilayer disc are around 1 TB/disc and 10 TB/ cartridge. Holographic data storage (HDS) is a volumetric approach, but its storage capacity is also strictly limited by the diffractive nature of light. For a holographic disc with total thickness of 1.5mm, its potential capacities are not more than 4TB/disc and 40TB/ cartridge. In recent years, the development of super resolution optical storage technology has attracted more attentions. Super-resolution photoinduction-inhibition nanolithography (SPIN) technology with 9 nm feature size and 52nm two-line resolution was reported 3 years ago. However, turning this exciting principle into a real storage system is a huge challenge. It can be expected that in the future, the capacities of 10TB/disc and 100TB/cartridge can be achieved. More importantly, due to breaking the diffraction limit of light, SPIN technology will open the door to improve the optical storage capacity steadily to meet the need of the developing big data center.

  3. Development of optical biosensor technologies for cardiac troponin recognition.

    PubMed

    Abdolrahim, Mojgan; Rabiee, Mohammad; Alhosseini, Sanaz Naghavi; Tahriri, Mohammadreza; Yazdanpanah, Sara; Tayebi, Lobat

    2015-09-15

    Acute myocardial infarction (AMI) is the leading cause of death among cardiovascular diseases. Among the numerous attempts to develop coronary marker concepts into clinical strategies, cardiac troponin is known as a specific marker for coronary events. The cardiac troponin concentration level in blood has been shown to rise rapidly for 4-10 days after onset of AMI, making it an attractive approach for a long diagnosis window for detection. The extremely low clinical sensing range of cardiac troponin levels consequently makes the methods of detection highly sensitive. In this review, by taking into consideration optical methods applied for cardiac troponin detection, we discuss the most commonly used methods of optical immunosensing and provide an overview of the various diagnostic cardiac troponin immunosensors that have been employed for determination of cardiac troponin over the last several years.

  4. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery

    SciTech Connect

    Wang, a.; Pickrell, G.; Xiao, H.; May, r.

    2003-02-27

    The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

  5. Electro-Optics and Millimeter-Wave Technology in Japan.

    DTIC Science & Technology

    1987-05-01

    has an input sensitivity of -20 dB. e 6 GHz static divide by 4 prescaler will be commercially available by late 1986. # R&D continues on a dynamic ...Electro-Optics Center Aeronautical Laboratories Dr. Ken J. Ando Mr. Mitchell B. Mellen Defense Advanced Research B-K Dynamics , Inc. Pro.iect Agency...Product Systems (MIPS) which makes personal computers and automation systems, and the Mecatronics Group which makes printers and 3.5 inch disks. One half

  6. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    DTIC Science & Technology

    2009-10-01

    fluorescence has a unique excitation and emission. In the previous year, aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) was successfully used...focuses on using contrast agents, specifically aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) and NBDG, for the molecular detection of...and extrinsic sources of optical contrast (specifically aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) and 2-[N-(7-nitrobenz-2-oxa-1,3

  7. Optical thin-film technology: past, present, future

    NASA Astrophysics Data System (ADS)

    Strickland, William P.

    1990-12-01

    The evolution of the vacuum coating industry is reviewed. Vacuum science progressed slowly until the late nineteenth century due to an incomplete understanding of vacuum and lack of applications. Edison's invention of the light bulb launched the vacuum industry and increased developmentof improved vacuum systems. The thin film optical coating industry arose from the needs of the German and U.S. military efforts during World War II. The author presents his experience in thin film coating from 1939 to the present.

  8. Micro-Optic Color Separation Technology for Efficient Projection Displays

    NASA Technical Reports Server (NTRS)

    Gunning, W. J.; Boehmer, E.

    1997-01-01

    Phase 1 of this project focused on development of an overall optical concept which incorporated a single liquid crystal spatial light modulator. The system achieved full color by utilizing an echelon grating, which diffracted the incident light into three orders with different color spectra, in combination with a microlens array, which spatially separated RGB bands and directed the light of the appropriate wavelength to the appropriate color dot. Preliminary echelon grating designs were provided by MIT/LL and reviewed by Rockwell. Additional Rockwell activities included the Identification of microlens designs, light sources (ILC), and projection optics to fulfill the overall design requirements. An Internal subcontract was established with Rockwell's Collins Avionics and Communications Division (CACD) which specified the liquid crystal SLM (Sharp Model No. LQ 46EO2) and built the projection display baseline projector. Full Color projected video images were produced and shown at the 1995 HDS meeting in Washington. Analysis of the luminance performance of the projector and detailed parameter trade studies helped define the dependence of overall display efficiency on lamp collimation, and indicated that a lamp with very small arc dimension is required for the optical concept to be viable.

  9. Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology

    NASA Astrophysics Data System (ADS)

    Kress, B.; Meyrueis, P.

    2000-10-01

    Diffractive optical elements (DOEs) are becoming more and more widely used in a braod range of fields, including telecommunications, optical computing, consumer electronics, laser material processing and the biomedical sciences, to manipulate light through micro-optical systems. In order to get the most out of such DOEs, knowledge of the design process, fabrication, packaging in a particular system, and operation is required. Digital Diffractive Optics discusses in detail the design and simulation of DOEs, before considering the main fabrication techniques. The increasingly important CAD/CAM tool requirements for the production of DOEs are covered, and a chapter is devoted to the crucial area of systematic fabrication error compensation. Finally, the integration and use of DOEs in a number of different systems, including various opto-electronic and opto-mechanical systems, are discussed. Digital Diffractive Optics will be of great interest to all those involved in the fields of optical engineering and photonics. It presents a clear view of the whole process, from design to fabrication and application, without overstressing the, often complex, mathematics, and will thus be accessible to postgraduate students and those entering the field, as well as more experienced engineers and scientists.

  10. Noncontact Microembossing Technology for Fabricating Thermoplastic Optical Polymer Microlens Array Sheets

    PubMed Central

    Chang, Xuefeng; Ge, Xiaohong; Li, Hui

    2014-01-01

    Thermoplastic optical polymers have replaced traditional optical glass for many applications, due to their superior optical performance, mechanical characteristics, low cost, and efficient production process. This paper investigates noncontact microembossing technology used for producing microlens arrays made out of PMMA (polymethyl methacrylate), PS (polyStyrene), and PC (polycarbonate) from a quartz mold, with microhole arrays. An array of planoconvex microlenses are formed because of surface tension caused by applying pressure to the edge of a hole at a certain glass transition temperature. We studied the principle of noncontact microembossing techniques using finite element analysis, in addition to the thermal and mechanical properties of the three polymers. Then, the independently developed hot-embossing equipment was used to fabricate microlens arrays on PMMA, PS, and PC sheets. This is a promising technique for fabricating diverse thermoplastic optical polymer microlens array sheets, with a simple technological process and low production costs. PMID:25162063

  11. Sol-gel technologies in thin film fabrication for integrated optics lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Almeida, Rui M.; Vasconcelos, H. C.

    1997-07-01

    There is a strong need for the development of cheap component technologies for optical functions such as switching, demultiplexing and amplification. Silica-on- silicon integrated optics using sol-gel processing is probably the best technology for such low cost applications. This review focuses on the sol-gel based thin film fabrication technologies for integrated optics (IO) lasers and amplifiers, using Nd3+ and Er3+ as the active species. Special emphasis is given to the work performed under the European Union sponsored projects NODES (ESPRIT) and CAPITAL (ACTS), in particular to the processing and characterization of Nd3+ and Er3+-doped silica-titania planar waveguides for IO lasers and amplifiers.

  12. Technology Development of Stratified Volume Diffractive Optics for Waveguide Coupling

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.

    2000-01-01

    Stratified Volume Diffractive Optical Elements (SVDOE) appear to be viable as high-efficiency waveguide couplers. Preliminary design studies were conducted under this task to provide initial device parameters for evaluation. However, these designs should be revisited prior to fabrication of a device for testing. The emphasis of this task has been development and implementation of fabrication procedures necessary for SVDOE'S, namely alignment of grating layers, Including offsets, to within required tolerances. Progress in this area Indicates that the alignment technique chosen is viable and tolerances have been reached that allow reasonable performance ranges. Approaches have been identified to improve alignment tolerances even further.

  13. Optical screening of oral cancer: technology for emerging markets.

    PubMed

    Naik, Sarif Kumar; Gupta, Lalit; Mittal, Chetan; Balakrishnan, Srinivasan; Rath, Satish Prasad; Santhosh, C; Pai, Keerthilatha M

    2007-01-01

    Oral cancer is the sixth most common cancer in the world. It is one of the most prevalent cancers in the developing countries of South Asia accounting for one third of the world burden. Sixty percent of the cancers are advanced by the time they are detected. Two methods of optical spectroscopy for detection of oral cancer have been discussed here. These methods are simple, easy to handle and non-invasive. The evaluation of the data is done automatically using pattern recognition techniques, making the screening subjective.

  14. Single-mode glass waveguide technology for optical interchip communication on board level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  15. Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley

    2016-10-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.

  16. Wide field of view adaptive optical system for lightweight deployable telescope technologies

    NASA Astrophysics Data System (ADS)

    McComas, Brian K.; Cermak, Michael A.; Friedman, Edward J.

    2003-02-01

    A NASA research contract (NAS1-00116) was awarded to Ball Aerospace & Technologies Corp. in January 2000 to study wide field-of-view adaptive optical systems. These systems will be required on future high resolution Earth remote sensing systems that employ large, flexible, lightweight, deployed primary mirrors. The deformations from these primary mirrors will introduce aberrations into the optical system, which must be removed by corrective optics. For economic reasons, these remote sensing systems must have a large field-of-view (a few degrees). Unlike ground-based adaptive optical systems, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct for the deformations in the primary mirror over the entire field-of-view. A new error function, which is an enhancement to conventional adaptive optics, for wide field-of-view optical systems will be introduced. This paper will present the goals of the NASA research project and its progress. The initial phase of this research project is a demonstration of the wide field-of-view adaptive optics theory. A breadboard has been designed and built for this purpose. The design and assembly of the breadboard will be presented, along with the final results for this phase of the research project. Finally, this paper will show the applicability of wide field-of-view adaptive optics to space-based astronomical systems.

  17. Emerging fiber optic endomicroscopy technologies towards noninvasive real-time visualization of histology in situ

    NASA Astrophysics Data System (ADS)

    Xi, Jiefeng; Zhang, Yuying; Huo, Li; Chen, Yongping; Jabbour, Toufic; Li, Ming-Jun; Li, Xingde

    2010-09-01

    This paper reviews our recent developments of ultrathin fiber-optic endomicroscopy technologies for transforming high-resolution noninvasive optical imaging techniques to in vivo and clinical applications such as early disease detection and guidance of interventions. Specifically we describe an all-fiber-optic scanning endomicroscopy technology, which miniaturizes a conventional bench-top scanning laser microscope down to a flexible fiber-optic probe of a small footprint (i.e. ~2-2.5 mm in diameter), capable of performing two-photon fluorescence and second harmonic generation microscopy in real time. This technology aims to enable realtime visualization of histology in situ without the need for tissue removal. We will also present a balloon OCT endoscopy technology which permits high-resolution 3D imaging of the entire esophagus for detection of neoplasia, guidance of biopsy and assessment of therapeutic outcome. In addition we will discuss the development of functional polymeric fluorescent nanocapsules, which use only FAD approved materials and potentially enable fast track clinical translation of optical molecular imaging and targeted therapy.

  18. Micro-optics: enabling technology for illumination shaping in optical lithography

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2014-03-01

    Optical lithography has been the engine that has empowered semiconductor industry to continually reduce the half-pitch for over 50 years. In early mask aligners a simple movie lamp was enough to illuminate the photomask. Illumination started to play a more decisive role when proximity mask aligners appeared in the mid-1970s. Off-axis illumination was introduced to reduce diffraction effects. For early projection lithography systems (wafer steppers), the only challenge was to collect the light efficiently to ensure short exposure time. When projection optics reached highest level of perfection, further improvement was achieved by optimizing illumination. Shaping the illumination light, also referred as pupil shaping, allows the optical path from reticle to wafer to be optimized and thus has a major impact on aberrations and diffraction effects. Highly-efficient micro-optical components are perfectly suited for this task. Micro-optics for illumination evolved from simple flat-top (fly's-eye) to annular, dipole, quadrupole, multipole and freeform illumination. Today, programmable micro-mirror arrays allow illumination to be changed on the fly. The impact of refractive, diffractive and reflective microoptics for photolithography will be discussed.

  19. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  20. Evaluation of emerging parallel optical link technology for high energy physics

    NASA Astrophysics Data System (ADS)

    Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.

    2012-01-01

    Modern particle detectors utilize optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from industry advancements in transceiver technology. Supporting data transfers of up to 120 Gbps in each direction, optical engines permit assembly of the optical transceivers in close proximity to ASICs and FPGAs. Test results of some of these parallel components will be presented including the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN. This work was supported by the U.S. Department of Energy, operated by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  1. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  2. Research and validation of key measurement technologies of large aperture optical elements

    NASA Astrophysics Data System (ADS)

    Guo, Renhui; Chen, Lei; Jiang, Chao; Cao, Hui; Zhang, Huiqin; Zhou, Binbin; Song, Le

    2015-07-01

    A lot of optical components with large aperture are employed in high-power solid-state laser driver. These optical components are with high requirement on the surface shape, optical homogeneity and stress distribution. In order to test these parameters, different types of interferometers, surface profilers and stress meters from different manufacturers are needed. But the problem is the products from different manufacturers may provide different test results. To solve the problem, the research and verification of the key measurement technologies of large aperture optical components are carried out in this paper. The absolute flatness and optical homogeneity measurement methods are analyzed. And the test results of different interferometric software are compared. The test results from different surface profilers and stress meters are also compared. The consistency and reliability of different test software are obtained with the comparing results, which will guide users to select a suitable product.

  3. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-04-13

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  4. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  5. Required technologies for a lunar optical UV-IR synthesis array

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Wetzel, John P.

    1992-01-01

    A Lunar Optical UV-IR Synthesis Array (LOUISA) proposed to take advantage of the characteristics of the lunar environment requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. LOUISA needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for LOUISA operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  6. Micro-precision control/structure interaction technology for large optical space systems

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.; Laskin, Robert A.

    1993-01-01

    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.

  7. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  8. Design and performance analysis of a bio-optical sub-assembly for diffuse optical technologies

    NASA Astrophysics Data System (ADS)

    Jeong, Je-Myung; Park, Kyoungsu; Kim, Sehwan

    2014-11-01

    This paper presents a compact, multi-wavelength, and high-frequency-response light source named the bio-optical sub-assembly (BiOSA). The BiOSA is used to measure the absorption and the reduced scattering coefficients from diffuse optics-based biomedical systems. It is equipped with six laser diodes and one optical fiber with a 400- μm diameter core. Simulations can be used to determine the design parameters and to confirm the feasibility of the BiOSA. The evaluation results indicate that the coupling efficiency of the fabricated BiOSA is 80 ˜ 85%, and the frequency response is up to 3.38 GHz.

  9. Technology Assessment: Optical Communications, Signal Processors, and Radiation Effects.

    DTIC Science & Technology

    1982-01-07

    involve the ubiquitous helix . In the twystron design study at Varian Associates, the broadband properties of the helix are combined with the power handling...Circuits 79 4. Manufacturing Methods and Technology 81 C. Thermionic Engineering 81 D. The $1,500 TWT 82 1. Overview 82 2. The $1,500 TWT 83 3...interest to MILSATCOM system designers; one of them, the 60 GHz coupled-cavity TWT program at Hughes Aircraft Company, HAC, has delivered an acceptable er

  10. New dichromated gelatin technologies for diffraction optical element fabrication

    NASA Astrophysics Data System (ADS)

    Vigovsky, Yury N.; Malov, Alexander N.; Malov, Sergey N.; Feshchenko, Valeriy S.; Konop, Sergey P.

    1998-01-01

    The hologram recording mechanism in the dichromated gelatin layers are discussed. A new technologies are described for red rainbow hologram recording in the photographic emulsion and selfdeveloped dichromated gelatin--glycerol layers. A new method is suggested and experimentally approbated for relief plastic replica of the rainbow hologram fabrication based on the tanning developed or bleached photographic emulsion. This method is modification of the old photographic `bromoil' process. Some aspects of the noncoherent hologram coping on the dichromated gelatin films are discussed too.

  11. Optical RAM-enabled cache memory and optical routing for chip multiprocessors: technologies and architectures

    NASA Astrophysics Data System (ADS)

    Pleros, Nikos; Maniotis, Pavlos; Alexoudi, Theonitsa; Fitsios, Dimitris; Vagionas, Christos; Papaioannou, Sotiris; Vyrsokinos, K.; Kanellos, George T.

    2014-03-01

    The processor-memory performance gap, commonly referred to as "Memory Wall" problem, owes to the speed mismatch between processor and electronic RAM clock frequencies, forcing current Chip Multiprocessor (CMP) configurations to consume more than 50% of the chip real-estate for caching purposes. In this article, we present our recent work spanning from Si-based integrated optical RAM cell architectures up to complete optical cache memory architectures for Chip Multiprocessor configurations. Moreover, we discuss on e/o router subsystems with up to Tb/s routing capacity for cache interconnection purposes within CMP configurations, currently pursued within the FP7 PhoxTrot project.

  12. Biodeterioration of optical glass induced by lubricants used in optical instruments technology.

    PubMed

    Bartosik, Magdalena; Zakowska, Zofia; Cedzińska, Krystyna; Rozniakowski, Kazimierz

    2010-01-01

    The process of biodeterioration of optical glass was studied after being induced by an auxiliary material (lubricant 4CKP) used in the production of optical instruments. It was determined that the lubricant can initiate growth of conidia of Aspergillus niger fungus. Acid spawn metabolites cause deterioration of the glass surface. Measurements of laser light beam transmittance through the glass plate and the AAS chemical analysis method of the post-culture fluid allowed to determine that glass with a high SiO2 content is most resistant to corrosion caused by the growth of A. niger fungi spawn.

  13. Workshop Proceedings: Optical Systems Technology for Space Astrophysics in the 21st Century, volume 3

    NASA Technical Reports Server (NTRS)

    Ayon, Juan A. (Editor)

    1992-01-01

    A technology development program, Astrotech 21, is being proposed by NASA to enable the launching of the next generation of space astrophysical observatories during the years 1995-2015. Astrotech 21 is being planned and will ultimately be implemented jointly by the Astrophysics Division of the Office of Space Science and Applications and the Space Directorate of the Office of Aeronautics and Space Technology. A summary of the Astrotech 21 Optical Systems Technology Workshop is presented. The goal of the workshop was to identify areas of development within advanced optical systems that require technology advances in order to meet the science goals of the Astrotech 21 mission set, and to recommend a coherent development program to achieve the required capabilities.

  14. Optical sensors for application in intelligent food-packaging technology

    NASA Astrophysics Data System (ADS)

    McEvoy, Aisling K.; Von Bueltzingsloewen, Christoph; McDonagh, Colette M.; MacCraith, Brian D.; Klimant, Ingo; Wolfbeis, Otto S.

    2003-03-01

    Modified Atmosphere Packaged (MAP) food employs a protective gas mixture, which normally contains selected amounts of carbon dioxide (CO2) and oxygen (O2), in order to extend the shelf life of food. Conventional MAP analysis of package integrity involves destructive sampling of packages followed by carbon dioxide and oxygen detection. For quality control reasons, as well as to enhance food safety, the concept of optical on-pack sensors for monitoring the gas composition of the MAP package at different stages of the distribution process is very attractive. The objective of this work was to develop printable formulations of oxygen and carbon dioxide sensors for use in food packaging. Oxygen sensing is achieved by detecting the degree of quenching of a fluorescent ruthenium complex entrapped in a sol-gel matrix. In particular, a measurement technique based on the quenching of the fluorescence decay time, phase fluorometric detection, is employed. A scheme for detecting CO2 has been developed which is compatible with the oxygen detection scheme. It is fluorescence-based and uses the pH-sensitive 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) indicator dye encapsulated in an organically modified silica (ORMOSIL) glass matrix. Dual Luminophore Referencing (DLR) has been employed as an internal referencing scheme, which provides many of the advantages of lifetime-based fluorometric methods. Oxygen cross-sensitivity was minimised by encapsulating the reference luminophore in dense sol-gel microspheres. The sensor performance compared well with standard methods for both oxygen and carbon dioxide detection. The results of preliminary on-pack print trials are presented and a preliminary design of an integrated dual gas optical read-out device is discussed.

  15. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  16. Update on the SKA Offset Optics Design for the U.S. Technology Development Project

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Cortes-Medellin, German; Baker, Lynn

    2011-01-01

    The U.S. design concept for the Square Kilometre Array (SKA) program is based on utilizing a large number of small-diameter dish antennas in the 12 to 15 meter diameter range. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. The latest considerations for selecting both the optics and feed design are presented.

  17. Planar optical integrated circuits based on UV-patternable sol-gel technology

    NASA Astrophysics Data System (ADS)

    Sabattie, Jean-Marc; MacCraith, Brian D.; Mongey, Karen; Charmet, Jerome; O'Dwyer, Kieran; Pez, Mathias M.; Quentel, Francois; Thierry, Dean

    2003-03-01

    Planar lightwave circuits (PLCs) made from photo-patternable sol-gel materials are attracting considerable R&D interest. This is due to the advantages they offer for applications in optical telecommunications and their compatibility with existing silicon technology process equipment. In particular, the ability to produce devices compatible with silica optical fibres using a straightforward, environmentally friendly, photolithographic process is very attractive. The approach is now well-established in the literature and typically involves the incorporation of an acrylate moiety in the sol-gel precursor mixture, thereby providing a photo-polymerisability function. In this work, we report on the fabrication of passive optical components and devices designed for datacomms applications using visible diode lasers or the 1st telecom window. Silica-based sol-gel waveguides have been integrated in an opto-electronic multichip module (OE-MCM) demonstrator for optical interconnect applications. We have fabricated an 8-channel transmitter module for parallel optical interconnects (POI) based on 2 sub-modules: (a) an optical interface sub-assembly based on photo-patterned sol-gel optical waveguides, and (b) an optoelectronic component sub-module comprising an array of VCSELs. We describe here the fabrication, characterization and performance of the optical components and a POI Transmitter chip.

  18. Enabling Technologies for Direct Detection Optical Phase Modulation Formats

    NASA Astrophysics Data System (ADS)

    Xu, Xian

    Phase modulation formats are believed to be one of the key enabling techniques for next generation high speed long haul fiber-optic communication systems due to the following main advantages: (1) with a balanced detection, a better receiver sensitivity over conventional intensity modulation formats, e.g., a ˜3-dB sensitivity improvement using differential phase shift keying (DPSK) and a ˜1.3-dB sensitivity improvement using differential quadrature phase shift keying (DQPSK); (2) excellent robustness against fiber nonlinearities; (3) high spectrum efficiency when using multilevel phase modulation formats, such as DQPSK. As the information is encoded in the phase of the optical field, the phase modulation formats are sensitive to the phase-related impairments and the deterioration induced in the phase-intensity conversion. This consequently creates new challenging issues. The research objective of this thesis is to depict some of the challenging issues and provide possible solutions. The first challenge is the cross-phase modulation (XPM) penalty for the phase modulated channels co-propagating with the intensity modulated channels. The penalty comes from the pattern dependent intensity fluctuations of the neighboring intensity modulated channels being converted into phase noise in the phase modulation channels. We propose a model to theoretically analyze the XPM penalty dependence on the walk off effect. From this model, we suggest that using fibers with large local dispersion or intentionally introducing some residual dispersion per span would help mitigate the XPM penalty. The second challenge is the polarization dependent frequency shift (PDf) induced penalty during the phase-intensity conversion. The direct detection DPSK is usually demodulated in a Mach-Zehnder delay interferometer (DI). The polarization dependence of DI introduces a PDf causing a frequency offset between the laser's frequency and the transmissivity peak of DI, degrading the demodulated DPSK

  19. Optical waveguide technology and its application in head-mounted displays

    NASA Astrophysics Data System (ADS)

    Cameron, Alex

    2012-06-01

    Applying optical waveguide technology to head mounted display (HMD) solutions has the key goal of providing the user with improved tactical situational awareness by providing information and imagery in an easy to use form which also maintains compatibility with current night vision devices and also enables the integration of future night vision devices. The benefits of waveguide technology in HMDs have seen a number of alternative waveguide display technologies and configurations emerge for Head mounted Display applications. BAE System's presented one such technology in 2009 [1] and this is now in production for a range of Helmet Mounted Display products. This paper outlines the key design drivers for aviators Helmet Mounted Displays, provides an update of holographic Optical Waveguide Technology and its maturation into compact, lightweight Helmet Mounted Displays products for aviation and non-aviation applications. Waveguide displays have proved too be a radical enabling technology which allows higher performance display devices solutions to be created in a revolutionary way. It has also provided the user with see through daylight readable displays, offering the combination of very large eye box and excellent real world transmission in a compact format. Holographic Optical Waveguide is an optical technology which reduces size and mass whilst liberating the designer from many of the constraints inherent in conventional optical solutions. This technology is basically a way of moving light without the need for a complex arrangement of conventional lenses. BAE Systems has exploited this technology in the Q-SightTM family of scalable Helmet Mounted Displays; allowing the addition of capability as it is required in a flexible, low-cost way The basic monocular Q-SightTM architecture has been extended to offer wide field of view, monochrome and full colour HMD solution for rotary wing, fast jet and solider system applications. In its basic form Q-SightTM now offers plug

  20. Mexican Infrared-Optical New Technology Telescope: The TIM project

    NASA Astrophysics Data System (ADS)

    Salas, L.

    1998-11-01

    The scientific goals for TIM are an image quality of 0.25", consistent with the seeing at our site, optimization for the infrared as many scientific programs are going in that region of the spectrum, a M1 diameter in excess of 6.5 meters and a field of view limited to 10 arc minutes. Practical reasons, such as the limited funding available and the requirement of mexican financial agencies that the telescope should be built and installed in Mexico, lead us to decide for a segmented telescope, with a single secondary mirror, a single cassegrain focus and a light high stifness tubular structure. ALthough we are still working on the conceptual design of the telescope, there are some concepts that we are pursuing. The optical desing (M1+M2) is Ritchey-Cretien type with an hyperbolic primary 7.8 m od F/1.5 and a 0.9 m diameter f/15 secondary mirror. This will give a plate scale of 1.7 "/mm. This is 0.03 "/pix in direct mode, enough for AO goals. As for direct imaging, a factor of 5 reduction with 20 cm diam optical components would be able to produce 5' fields on a 2048, 20 microns type detector with 0.17"/pix. This implies that, with the use of auxiliary optics which is a common need for each particular instrument anyway, a wide variety of needs can be accomodated with a single secondary mirror. Choping for infrared observations would however introduce a additional cost in the secondary mirror. Alternatively the use of cold tertiary choping mirror is currently under study. The M1+M2 design currently aquires d80 of 0.17" in a 5' field without correction and 1" in a 10' field, that would require a field correcting lens. The M1 mirror will be segmented into 19 1.8 m diameter segments. There are 4 kinds of segments, the central, which we have kept to provide a reference for phasing, 6 more segments for the first ring and 12 in the outer ring, of two different kinds. The spacing between the segments is 5 mm, enough to reduce the inter-segment thermal background to half a

  1. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    The project described in this report was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in conjunction with area vocational-technical schools, the second year of a competency-based curriculum in laser/electro-optics technology. During the project, a task force of teachers from the area schools and the college…

  2. Development of Generalizable Educational Programs in Laser/Electro-Optics Technology: Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    The purpose of the Laser/Electro-Optics Technology (LEOT) Project was to establish a pilot educational program, develop a flexible curriculum, prepare and test instructional materials, transport the curriculum and instructional materials into other educational institutions by establishing relevant LEOT programs wherever they are needed, and to…

  3. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    A project was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in cooperation with area vocational-technical schools, the first year of a competency-based curriculum in laser/electro-optics technology. Existing programs were reviewed and private sector input was sought in developing the curriculum and identifying…

  4. Advanced optical sensing and processing technologies for the distributed control of large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Williams, G. M.; Fraser, J. C.

    1991-01-01

    The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.

  5. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  6. Advanced Optical Technologies in NASA's Space Communication Program: Status, Challenges, and Future Plans

    NASA Technical Reports Server (NTRS)

    Pouch, John

    2004-01-01

    A goal of the NASA Space Communications Project is to enable broad coverage for high-data-rate delivery to the users by means of ground, air, and space-based assets. The NASA Enterprise need will be reviewed. A number of optical space communications technologies being developed by NASA will be described, and the prospective applications will be discussed.

  7. Nonlinear Optics Technology. Phase 3. Volume 2. Phase Conjugated Optical Communication Link

    DTIC Science & Technology

    1991-01-12

    periscope; I = 1 cm photodiode; PS =position sensing photodiode; RA -- transponder aperture; c -- camera; SM =steering mirrors; 4W = sodium vapor/ four wave...conjugation, four wave mixing, coherent detecti automatic racking and pointing, holographlc correction, mod 19 ABSTRACT ILollniue on reverse if...km four wave mixing (FWM) PC optical comm link propagating through the atmosphere was demonstrated and characterized over a range of atmospheric

  8. JPRS Report, Science & Technology, Japan, Optical Communications, Optronic Devices Manufacturing Technology

    DTIC Science & Technology

    2007-11-02

    absence of factors responsible for diffusion loss such as crystal boundaries and because of extremely small Rayleigh scattering. Actually, fiber...communication is attracting attention. In particular, prospects are good for use in optical communications in mobile bodies and optical transmission within...FeV)G Grain growth 1.55 96 (GdY)IG LPE 1.3 230 (GdBi) (FeAlGa)G LPE It 270 (YGdBi) (FeGa)G LPE 0.8 26 (GdBi) (FeGaAl)G LPE 11 27 (CaGdBi

  9. Videodisc and Optical Digital Disk Technologies and Their Applications in Libraries. A Report to the Council on Library Resources.

    ERIC Educational Resources Information Center

    Information Systems Consultants, Inc., Washington, DC.

    This report examines the potential impact of optical media--videodiscs, compact audio discs, and optical disks, tapes, and cards--in library related applications. A detailed consideration of the technology includes discussion of the underlying principles, the various forms in which the technology is marketed, production methods and costs, and the…

  10. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    A. Wang; H. Xiao; R. May

    1999-10-29

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  11. Quantum plasmonics for next-generation optical and sensing technologies

    NASA Astrophysics Data System (ADS)

    Moaied, Modjtaba; Ostrikov, Kostya (Ken)

    2015-12-01

    Classical plasmonics has mostly focused on structures characterized by large dimension, for which the quantummechanical effects have nearly no impact. However, recent advances in technology, especially on miniaturized plasmonics devices at nanoscale, have made it possible to imagine experimental applications of plasmons where the quantum nature of free charge carriers play an important role. Therefore, it is necessary to use quantum mechanics to model the transport of charge carriers in solid state plasma nanostructures. Here, a non-local quantum model of permittivity is presented by applying the Wigner equation with collision term in the kinetic theory of solid state plasmas where the dominant electron scattering mechanism is the electron-lattice collisions. The surface plasmon resonance of ultra-small nanoparticles is investigated using this non-local quantum permittivity and its dispersion relation is obtained. The successful application of this theory in ultra-small plasmonics structures such as surface plasmon polariton waveguides, doped semiconductors, graphene, the metamaterials composed of alternating layers of metal and dielectric, and the quantum droplets is anticipated.

  12. A Review on Radio-Over-Fiber Technology-Based Integrated (Optical/Wireless) Networks

    NASA Astrophysics Data System (ADS)

    Rajpal, Shivika; Goyal, Rakesh

    2017-03-01

    In the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.

  13. Research progress in the key device and technology for fiber optic sensor network

    NASA Astrophysics Data System (ADS)

    Liu, Deming; Sun, Qizhen; Lu, Ping; Xia, Li; Sima, Chaotan

    2016-03-01

    The recent research progress in the key device and technology of the fiber optic sensor network (FOSN) is introduced in this paper. An architecture of the sensor optical passive network (SPON), by employing hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) techniques similar to the fiber communication passive optical network (PON), is proposed. The network topology scheme of a hybrid TDM/WDM/FDM (frequency division multiplexing) three-dimension fiber optic sensing system for achieving ultra-large capacity, long distance, and high resolution sensing performance is performed and analyzed. As the most important device of the FOSN, several kinds of light source are developed, including the wideband multi-wavelength fiber laser operating at C band, switchable and tunable 2 μm multi-wavelength fiber lasers, ultra-fast mode-locked fiber laser, as well as the optical wideband chaos source, which have very good application prospects in the FOSN. Meanwhile, intelligent management techniques for the FOSN including wideband spectrum demodulation of the sensing signals and real-time fault monitoring of fiber links are presented. Moreover, several typical applications of the FOSN are also discussed, such as the fiber optic gas sensing network, fiber optic acoustic sensing network, and strain/dynamic strain sensing network.

  14. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications.

    PubMed

    Pires, Nuno Miguel Matos; Dong, Tao; Hanke, Ulrik; Hoivik, Nils

    2014-08-21

    The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

  15. Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications

    PubMed Central

    Pires, Nuno Miguel Matos; Dong, Tao; Hanke, Ulrik; Hoivik, Nils

    2014-01-01

    The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance. PMID:25196161

  16. Application of new electro-optic technology to Space Station Freedom data management system

    NASA Astrophysics Data System (ADS)

    Husbands, C. R.; Girard, M. M.

    1993-08-01

    A low risk design methodology to permit the local bus structures to support increased data carrying capacities and to speed messages and data flow between nodes or stations on the Space Station Freedom Data Management System in anticipation of growing requirements was evaluated and recommended. The recommended design employs a collateral fiber optic technique that follows a NATO avionic standard that is developed, tested, and available. Application of this process will permit a potential 25 fold increase in data transfer performance on the local wire bus network with a fiber optic network, maintaining the functionality of the low-speed bus and supporting all of the redundant transmission and fault detection capabilities designed into the existing system. The application of wavelength division multiplexing (WDM) technology to both the local data bus and global data bus segments of the Data Management System to support anticipated additional highspeed data transmission requirements was also examined. Techniques were examined to provide a dual wavelength implementation of the fiber optic collateral networks. This dual wavelength implementation would permit each local bus to support two simultaneous high-speed transfers on the same fiber optic bus structure and operate within the limits of the existing protocol standard. A second WDM study examined the use of spectral sliced technology to provide a fourfold increase in the Fiber Distributed Data Interface (FDDI) global bus networks without requiring modifications to the existing installed cable plant. Computer simulations presented indicated that this data rate improvement can be achieved with commercially available optical components.

  17. Application of new electro-optic technology to Space Station Freedom data management system

    NASA Technical Reports Server (NTRS)

    Husbands, C. R.; Girard, M. M.

    1993-01-01

    A low risk design methodology to permit the local bus structures to support increased data carrying capacities and to speed messages and data flow between nodes or stations on the Space Station Freedom Data Management System in anticipation of growing requirements was evaluated and recommended. The recommended design employs a collateral fiber optic technique that follows a NATO avionic standard that is developed, tested, and available. Application of this process will permit a potential 25 fold increase in data transfer performance on the local wire bus network with a fiber optic network, maintaining the functionality of the low-speed bus and supporting all of the redundant transmission and fault detection capabilities designed into the existing system. The application of wavelength division multiplexing (WDM) technology to both the local data bus and global data bus segments of the Data Management System to support anticipated additional highspeed data transmission requirements was also examined. Techniques were examined to provide a dual wavelength implementation of the fiber optic collateral networks. This dual wavelength implementation would permit each local bus to support two simultaneous high-speed transfers on the same fiber optic bus structure and operate within the limits of the existing protocol standard. A second WDM study examined the use of spectral sliced technology to provide a fourfold increase in the Fiber Distributed Data Interface (FDDI) global bus networks without requiring modifications to the existing installed cable plant. Computer simulations presented indicated that this data rate improvement can be achieved with commercially available optical components.

  18. Advanced Technology Lunar Telescopes I. Overview and Progress Report On Ultra-Lightweight Optics

    NASA Astrophysics Data System (ADS)

    Chen, P. C.; Pitts, R. E.; Oliversen, R. J.; Stolarik, J. D.; Segal, K.; Wilson, T. L.; Lin, E. I.; Hull, J. R.; Romeo, R.; Hojaji, H.; Ma, K. B.; Chen, Q. Y.; Chu, W. K.; Chu, C. W.

    1993-12-01

    The materials and technology already exist to build fully functional steerable telescopes for use on the moon, telescopes that are cost effective, that can be deployed using existing launchers, and that can function for extended periods without human maintenance. We describe our concept of advanced technology telescopes (ATT) which combines the elements of i) ultra-lightweight precision optics and structures, ii) non-contact, electronically controlled superconductor bearings and drive mechanisms, and iii) high dynamic range radiation resistant sensors. Unlike previous transit telescope designs, the ATTs can point and track objects anywhere in the sky over the entire lunar night (or day), can be deployed in multiple unit arrays, and can be equipped with standard astronomical instruments including spectrographs, imagers, or even interferometers. We first describe the optics. Lightweight optics are crucial because they minimize the mass of the telescope assembly and its support structure and ultimately the entire payload. By using materials and fabrication technology similar to that already refined by ESA and proven for space applications, we show that it is possible to produce precision optical elements of very low areal density (< 2 kg per sq. m). The process also has much lower per unit cost compared to traditional mirror fabrication techniques. By supporting the optical elements with a class of very lightweight but stiff material already developed by NASA, a telescope assembly can be made that has essentially the minimum possible mass. Such ultra-lightweight construction makes possible astronomical payloads that can be sent to the moon using existing small and medium size rockets. The very low per unit cost permits the production and deployment of multiple units, thereby increasing the versatility and productivity of a lunar observatory while providing good redundancy. We demonstrate a proof-of-concept optical telescope assembly that has a 31 cm diameter primary

  19. Deep proton writing: a powerful rapid prototyping technology for various micro-optical components

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Debaes, Christof; Ottevaere, Heidi; Van Overmeire, Sara; Hermanne, Alex; Thienpont, Hugo

    2010-05-01

    One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical modules, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in optical interconnections and in bio-photonics. These include: high-precision 2-D fiber connectors, out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars, and fluorescence and absorption detection bio-photonics modules. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.

  20. Fiber in access technologies and network convergence: an opportunity for optical integration

    NASA Astrophysics Data System (ADS)

    Ghiggino, Pierpaolo C.

    2008-11-01

    Broadband networks are among the fastest growing segment in telecom. The initial and still very significant push originated with xDSL technologies and indeed a significant amount of research and development is still occurring in this field with impressive results and allowing for a remarkable use of the installed copper infrastructure way beyond its originally planned bandwidth capabilities. However it is clear that ultimately a more suitable fiber based infrastructure will be needed in order to reduce both operational and network technology costs. Such cost reduction in inevitable as the added value to end users is only related to services and these cannot be priced outside a sensible window, whilst the related bandwidth increase is much more dramatic and its huge variability must be met with little or no cost impact by the network and its operation. Fiber in access has indeed the potential to cope with a huge bandwidth demand for many years to come as its inherent bandwidth capabilities are only just tapped by current service requirements. However the whole technology supply chain must follow in line. In particular optical technology must brace itself to cope with the required much larger deployment and greater cost effectiveness, whilst at the same time deliver performance suitable to the bandwidth increase offered in the longer term by the fiber medium. This paper looks at this issues and debates the opportunities for a new class of optical devices making use of the progress in optical integration

  1. Optical design of a near-infrared imaging spectropolarimeter for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Greco, Vincenzo; Cavallini, Fabio

    2013-06-01

    In designing the optics of an imaging multi-etalon spectropolarimeter as a post-focus instrument for the Advanced Technology Solar Telescope (ATST), many constraints must be considered. Among these are the large entrance pupil diameter of the telescope (4 m), the demanded large field of view (≥90 arc sec), high spectral resolving power (≥200,000), and limited field-dependent blue-shift of the instrumental profile [≤3 full width at half maximum (FWHM)], which require Fabry-Perot interferometers of large diameter (≥200 mm), lighted by highly collimated beams. This implies large optical elements and long optical paths. Moreover, to use interference pre-filters with a relatively small diameter (≤70 mm) and placed between the interferometers to reduce the inter-reflections in axial-mount, a "pupil adapter" must be included with a further increase of the optical path length. Although a multi-etalon spectropolarimeter works in quasi-monochromatic light, the Fraunhofer lines of interest cover a wide range of wavelengths (850 to 1650 nm), which demands a good chromatic aberration control. A low instrumental polarization (≤0.5%) is also required to allow a high polarimetric precision. Finally, some secondary optical paths are required to perform the initial instrumental setup and to secure the best instrumental performances. A diffraction-limited optical solution for ATST is described that fulfills all the above requirements in a relative small volume.

  2. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  3. The electronic image stabilization technology research based on improved optical-flow motion vector estimation

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ji, Ming; Zhang, Ying; Jiang, Wentao; Lu, Xiaoyan; Wang, Jiaoying; Yang, Heng

    2016-01-01

    The electronic image stabilization technology based on improved optical-flow motion vector estimation technique can effectively improve the non normal shift, such as jitter, rotation and so on. Firstly, the ORB features are extracted from the image, a set of regions are built on these features; Secondly, the optical-flow vector is computed in the feature regions, in order to reduce the computational complexity, the multi resolution strategy of Pyramid is used to calculate the motion vector of the frame; Finally, qualitative and quantitative analysis of the effect of the algorithm is carried out. The results show that the proposed algorithm has better stability compared with image stabilization based on the traditional optical-flow motion vector estimation method.

  4. Ultrastable assembly and integration technology for ground- and space-based optical systems.

    PubMed

    Ressel, Simon; Gohlke, Martin; Rauen, Dominik; Schuldt, Thilo; Kronast, Wolfgang; Mescheder, Ulrich; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2010-08-01

    Optical metrology systems crucially rely on the dimensional stability of the optical path between their individual optical components. We present in this paper a novel adhesive bonding technology for setup of quasi-monolithic systems and compare selected characteristics to the well-established state-of-the-art technique of hydroxide-catalysis bonding. It is demonstrated that within the measurement resolution of our ultraprecise custom heterodyne interferometer, both techniques achieve an equivalent passive path length and tilt stability for time scales between 0.1 mHz and 1 Hz. Furthermore, the robustness of the adhesive bonds against mechanical and thermal inputs has been tested, making this new bonding technique in particular a potential option for interferometric applications in future space missions. The integration process itself is eased by long time scales for alignment, as well as short curing times.

  5. Application of fiber optic temperature and strain sensing technology to gas hydrates

    SciTech Connect

    Ulrich, Shannon M; Madden, Megan Elwood; Rawn, Claudia J; Szymcek, Phillip; Phelps, Tommy Joe

    2008-01-01

    Gas hydrates may have a significant influence on global carbon cycles due to their large carbon storage capacity in the form of greenhouse gases and their sensitivity to small perturbations in local conditions. Characterizing existing gas hydrate and the formation of new hydrate within sediment systems and their response to small changes in temperature and pressure is imperative to understanding how this dynamic system functions. Fiber optic sensing technology offers a way to measure precisely temperature and strain in harsh environments such as the seafloor. Recent large-scale experiments using Oak Ridge National Laboratory's Seafloor Process Simulator were designed to evaluate the potential of fiber optic sensors to study the formation and dissociation of gas hydrates in 4-D within natural sediments. Results indicate that the fiber optic sensors are so sensitive to experimental perturbations (e.g. refrigeration cycles) that small changes due to hydrate formation or dissociation can be overshadowed.

  6. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    SciTech Connect

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.; Choi, Junoh; Howell, Stephen W.

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  7. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    PubMed

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  8. Ethernet access network based on free-space optic deployment technology

    NASA Astrophysics Data System (ADS)

    Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter

    2004-06-01

    The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.

  9. Enhanced environmental performance of fiber optic gyroscope by an adhesive potting technology.

    PubMed

    Chen, Jun; Ding, Nengwen; Li, Zhifeng; Wang, Wei

    2015-09-10

    An adhesive potting technology for fiber coils of a fiber optic gyroscope (FOG) is proposed. The fiber coil is immersed in liquid adhesive with superior mechanical properties. The internal air is first removed completely by vacuum pumping, and the adhesive is then evenly pressed into the fiber coil under pressure. The potted fiber core is prepared by ladder-type temperature curing and a stress-release process. With this potting technology, the vibration performance of an FOG is greatly improved and, at the same time, will not lead to degradation of its temperature performance. Using this potting technique of adhesive impregnation, the adaptability of FOGs will be enhanced.

  10. Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.

    2012-01-01

    The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.

  11. Microelectro-optical devices in a 5-level polysilicon surface micromachining technology

    SciTech Connect

    Smith, J.H.; Rodgers, M.S.; Sniegowski, J.J.; Miller, S.L.; Hetherington, D.; McWhorter, P.J.; Warren, M.E.

    1998-08-01

    The authors recently reported on the development of a 5-level polysilicon surface micromachine fabrication process consisting of four levels of mechanical poly plus an electrical interconnect layer and its application to complex mechanical systems. This paper describes the application of this technology to create micro-optical systems-on-a-chip. These are demonstration systems, which show that five levels of polysilicon provide greater performance, reliability, and significantly increased functionality. This new technology makes it possible to realize levels of system complexity that have so far only existed on paper, while simultaneously adding to the robustness of many of the individual subassemblies.

  12. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  13. Alenia Shm Fiber Optic Bragg Grating (Fobg) Strain Sensors Technology: Applications And Requirements

    DTIC Science & Technology

    2006-10-01

    identify the most convenient and efficient FBG surface installation procedure can be summarized describing the subsequent steps to accomplish. In the...specimen, • Preparation of the adhesive, • Alignment of the sensor on the specimen, • Placing of FBG sensor on surface, • Clamping of sensor and...pressure force , • Temperature cure of sensor, Alenia SHM Fiber Optic Bragg Grating (FOBG) Strain Sensors Technology: Applications and Requirements 7

  14. Research on the high-precision non-contact optical detection technology for banknotes

    NASA Astrophysics Data System (ADS)

    Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng

    2015-09-01

    The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.

  15. High-power electro-optic switch technology based on novel transparent ceramic

    NASA Astrophysics Data System (ADS)

    Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai

    2016-03-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).

  16. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  17. Alternative technology for fabrication of nano- or microstructured mould inserts used for optical components

    NASA Astrophysics Data System (ADS)

    Wissmann, M.; Guttmann, M.; Hartmann, M.

    2010-02-01

    For mass production of multiscale-optical components, micro- and nanostructured moulding tools are needed. Metal tools are used for hot embossing or injection moulding of microcomponents in plastics. Tools are typically produced by classical forming processes such as mechanical manufacturing e.g. turning or milling, laser manufacturing or electrical discharge machining (EDM). Microstructures with extremely tight specifications, e.g. low side wall roughness and high aspect ratios are generally made by lithographic procedures such as LIGA or DPW technology. However, these processes are unsuitable for low-cost mass production. They are limited by the exposure area and structure design. In cooperation with international partners alternative manufacturing methods of moulding tools have been developed at the Institute of Microstructure Technology (IMT). In a new replication procedure, mould inserts are fabricated using micro- and nanoscale optics. The multiscale structured prototypes, either in plastics, glass, metal or material combinations are used as sacrificial parts. Using joining technology, electroforming and EDM technology, a negative copy of a prototype is transferred into metal to be used as a moulding tool. The benefits of this replication technique are rapid and economical production of moulding tools with extremely precise micro- and nanostructures, large structured area and long tool life. Low-cost mass replication is possible with these moulding tools. In this paper, an established manufacturing chain will be presented. Multiscale and multimaterial optical prototypes e.g. out-of-plane coupler or microinterferometer were made by DPW or laser technology. The mould insert fabrication of each individual manufacturing step will be shown. The process reliability and suitability for mass production was tested by hot embossing.

  18. Aircraft corrosion and crack inspection using advanced magneto-optic imaging technology

    NASA Astrophysics Data System (ADS)

    Thome, David K.; Fitzpatrick, Gerald L.; Skaugset, Richard L.; Shih, William C.

    1996-11-01

    A next generation magneto-optic imaging system, the MOI 303, has recently been introduced with the ability to generate real-time, complete, 2D eddy current images of cracks and corrosion in aircraft. The new imaging system described features advanced, digital remote control operation and on- screen display of setup parameters for ease of use. This instrument gives the inspector the capability to more rapidly scan large surfaces areas. The magneto-optic/eddy current imaging technology has already been formally approved for inspection of surface cracking on an aircraft fuselage. The improved magneto-optic imager is now poised to aid rapid inspection for corrosion and subsurface cracking. Previous magneto-optic imaging systems required the inspector to scan the surface twice for complete inspection coverage: a second scan was necessary with the imager rotated about 90 degrees from the orientation of the first pass. However, by providing eddy current excitation simultaneously from two orthogonal directions, complete, filled-in magneto-optic images are now generated regardless of the orientation of the imager. THese images are considerably easier to interpret and evaluate. In addition, there is a synergism obtained in applying eddy current excitation simultaneously in multiple directions: better penetration is obtained and the resulting images have better signal to noise levels compared to those produced with eddy current excitation applied only in one direction. Examples of these improved images are presented.

  19. A New All-Optical Imaging Scheme based on QWIP technology

    NASA Astrophysics Data System (ADS)

    Zeng, Debing; Chen, Gang; Martini, Rainer

    2006-03-01

    Infrared imaging applications have gained increasing interest over the recent decades due to favorable light propagation, night imaging as well as chemical sensing applications. However, the scalability of the existing techniques towards high resolution in the multi-megapixel range is one of the major challenges in today's IR imaging technologies. Here we present an alternative solution using an all-optical wavelength conversion scheme. QWIP has been successfully proven their potential in IR imaging applications. Yet the fundamental conversion process from IR light to electric current has been one of the major restrictions in such system. To overcome this problem we propose the use of an all-optical conversion scheme, which utilizes an interband resonant optical NIR beam to probe the electrical population of the QW structure. In this methodology the incident MIR radiation changes the occupation of the QWs, which in turn influences the NIR transmission. Hence the irradiated MIR images can be probed by spatially resolved measurement of the NIR transmission, as has been demonstrated by Nada et al. for all-optical switching purposes. In this talk we present an implementation scheme of the all-optical QWIP readout technique together with theoretical calculations of the sensitivity of the proposed device and its temperature dependence. First experimental results will be presented also. The Authors thankfully acknowledge financial support by US Army, Picatinny Arsenal.

  20. Research progress on optical wireless communication at Xi'an University of Technology

    NASA Astrophysics Data System (ADS)

    Ke, Xizheng; Yang, Lihong

    2010-10-01

    Optical Wireless Communication (OWC) adopts laser beam as the carrier to deliver the message. It combines with the advantages of Microwave Communication and Fiber Optic Communication. The key technologies of OWC system includes source coding, channel coding, laser diode modulation, auto-alignment and channel. In this paper, the research progress on OWC in Xi'an University of Technology is introduced. The research on source coding involves in baseband modulation, frequency modulation, OFDM transmission and vertical layered space-time codes. The research on channel coding includes RS codes, Turbo codes, LDPC codes and so on. And the adaptive coding method is analyzed to meet the different channel characteristics. Propagation performance of laser is studied and bit error rate (BER) is measured under various weather conditions of rainy days, snowy days, foggy days, hazy days and so on. The experiment results show that applying channel coding methods can improve the system performance of OWC, especially under rainy, snowy, foggy weather conditions, the BER after decoding is up to 10-6. Based on many years of research, the technologies of MIMO, OFDM and space-time coding are proved to be the key technologies that need to solve in OWC.

  1. The outlook of innovative optical-electronic technologies implementation in transportation

    NASA Astrophysics Data System (ADS)

    Shilina, Elena V.; Ryabichenko, Roman B.

    2005-06-01

    Information and telecommunication technologies (ITT) are already tool economic development of society and their role will grow. The first task is providing of information security of ITT that is necessary for it distribution in "information" society. The state policy of the leading world countries (USA, France, Japan, Great Britain and China) is focused on investment huge funds in innovative technologies development. Within the next 4-6 years the main fiber-optic transfer lines will have data transfer speed 40 Gbit/s, number of packed channels 60-200 that will provide effective data transfer speed 2,4-8 Tbit/s. Photonic-crystalline fibers will be promising base of new generation fiber-optic transfer lines. The market of information imaging devices and digital photo cameras will be grown in 3-5 times. Powerful lasers based on CO2 and Nd:YAG will be actively used in transport machinery construction when producing aluminum constructions of light rolling-stock. Light-emitting diodes (LEDs) will be base for energy saving and safety light sources used for vehicles and indoor lighting. For example, in the USA cost reducing for lighting will be 200 billion dollars. Implementation analysis of optic electronic photonic technologies (OPT) in ground and aerospace systems shows that they provide significant increasing of traffic safety, crew and passengers comfort with help of smart vehicles construction and non-contact dynamic monitoring both transport facilities (for example, wheel flanges) and condition of rail track (road surface), equipping vehicles with night vision equipment. Scientific-technical programs of JSC "RZD" propose application of OPT in new generation systems: axle-box units for coaches and freight cars monitoring when they are moved, track condition analysis, mechanical stress and permanent way irregularity detection, monitoring geometric parameters of aerial contact wire, car truck, rail and wheel pair roll surface, light signals automatic detection from

  2. SCARLET I: Mechanization solutions for deployable concentrator optics integrated with rigid array technology

    NASA Technical Reports Server (NTRS)

    Wachholz, James J.; Murphy, David M.

    1996-01-01

    The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and design development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.

  3. SCARLET I: Mechanization solutions for deployable concentrator optics integrated with rigid array technology

    SciTech Connect

    Wachholz, J.J.; Murphy, D.M.

    1996-05-01

    The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and design development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.

  4. Research of subdivision driving technology for brushless DC motors in optical fiber positioning

    NASA Astrophysics Data System (ADS)

    Kan, Yi; Gu, Yonggang; Zhu, Ye; Zhai, Chao

    2016-07-01

    In fiber spectroscopic telescopes, optical fiber positioning units are used to position thousands of fibers on the focal plane quickly and precisely. Stepper motors are used in existing units, however, it has some inherent deficiencies, such as serious heating and low efficiency. In this work, the universally adopted subdivision driving technology for stepper motors is transplanted to brushless DC motors. It keeps the advantages of stepper motors such as high positioning accuracy and resolution, while overcomes the disadvantages mentioned above. Thus, this research mainly focuses on develop a novel subdivision driving technology for brushless DC motor. By the proving of experiments of online debug and subdivision speed and position, the proposed brushless DC motor subdivision technology can achieve the expected functions.

  5. Optical Manufacturing and Testing Requirements Identified by the NASA Science Instruments, Observatories and Sensor Systems Technology Assessment

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.

  6. Point-of-care and point-of-procedure optical imaging technologies for primary care and global health

    PubMed Central

    Boppart, Stephen A.; Richards-Kortum, Rebecca

    2015-01-01

    Leveraging advances in consumer electronics and wireless telecommunications, low-cost, portable optical imaging devices have the potential to improve screening and detection of disease at the point of care in primary health care settings in both low- and high-resource countries. Similarly, real-time optical imaging technologies can improve diagnosis and treatment at the point of procedure by circumventing the need for biopsy and analysis by expert pathologists, who are scarce in developing countries. Although many optical imaging technologies have been translated from bench to bedside, industry support is needed to commercialize and broadly disseminate these from the patient level to the population level to transform the standard of care. This review provides an overview of promising optical imaging technologies, the infrastructure needed to integrate them into widespread clinical use, and the challenges that must be addressed to harness the potential of these technologies to improve health care systems around the world. PMID:25210062

  7. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design

  8. NASA's first in-space optical gyroscope: A technology experiment on the X ray Timing Explorer spacecraft

    NASA Technical Reports Server (NTRS)

    Unger, Glenn; Kaufman, David M.; Krainak, Michael; Sanders, Glenn; Taylor, Bill; Schulze, Norman R.

    1993-01-01

    A technology experiment on the X-ray Timing Explorer spacecraft to determine the feasibility of Interferometric Fiber Optic Gyroscopes for space flight navigation is described. The experiment consists of placing a medium grade fiber optic gyroscope in parallel with the spacecraft's inertial reference unit. The performance of the fiber optic gyroscope will be monitored and compared to the primary mechanical gyroscope's performance throughout the two-year mission life.

  9. Optical fiber technology in Poland: four decades of development 1975-2015

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Dorosz, Jan; Wójcik, Waldemar; Mergo, Paweł; Buczyński, Ryszard

    2015-12-01

    The paper is a subjective yet critical authors' description of arbitrarily chosen series of events associated with the development of optical fibre technology (OFT) in Poland. There are reminding pioneering research activities in the second half of the seventies in Optical Fibre Technological Centres in Lublin (UMCS), in Warsaw (in ONPMP), which were joined soon after by Białystok (Polytechnics and Glass Works). There are mentioned with friendliness the key persons of that period, and in particular the pioneers of OFT in Poland, which are not with us anymore. There is emphasized the role of the first national symposia on "Optical Fibres and Their Applications", which played an integration role for the newly established research community of OFT and photonics. Omitting the complex history of the development of OFT in Poland during the intermediate years, we bravely jump to today, a day which would have not existed now, if the pioneering period had not been so rich in research results. The authors would like to show in particular these research, scientific and logistic activities, which despite difficult conditions of science development in Poland, when looked at from some distance in time and space, seemed to be then well ahead of their time.

  10. Study and design of a liquid level meter based on fiber optic sensing technology

    NASA Astrophysics Data System (ADS)

    Wang, Zhongdong; Wang, Yutian; Hou, Peiguo; Wang, Yanju

    2005-02-01

    At present, many floater-type measurement equipments whose readings are recorded by manpower are still in use in petrol-chemical industries. With regard to their low efficiency, great errors and their improbability in realization in automation management and remote control, in this instance, a new liquid-level meter system using the advanced fiber-optic sensing technology based on the floater-type level meter is developed. In principle, it measures the liquid level of the oil tank by using the principle of force balance, captures and transmits the light signals by means of the fiber-optic sensing technology, adjusts the light signals from continuous impulse signals to the discontinuous by the light-code disc, then converts light impulses into voltage impulses by photoelectric elements. In configuration, it adopts a twin light source and a twin optical-channel, utilizes twin fiber detectors to record the size of the liquid level and judge the direction of the liquid level respectively. Moreover, the measuring system has been tested practically in a chemical plant, the results indicate that the measuring errors are Less than or equal to +/-6mm, relative errors are <2% when its measuring range is within 0 and 1000mm.It is proved that the various indexes of the system satisfies the demand of the industries and the capability is credible.

  11. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.

  12. Printing polymer optical waveguides on conditioned transparent flexible foils by using the aerosol jet technology

    NASA Astrophysics Data System (ADS)

    Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg

    2016-09-01

    The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.

  13. Optical and electrical interfacing technologies for living cell bio-chips.

    PubMed

    Shacham-Diamand, Y; Belkin, S; Rishpon, J; Elad, T; Melamed, S; Biran, A; Yagur-Kroll, S; Almog, R; Daniel, R; Ben-Yoav, H; Rabner, A; Vernick, S; Elman, N; Popovtzer, R

    2010-06-01

    Whole-cell bio-chips for functional sensing integrate living cells on miniaturized platforms made by micro-system-technologies (MST). The cells are integrated, deposited or immersed in a media which is in contact with the chip. The cells behavior is monitored via electrical, electrochemical or optical methods. In this paper we describe such whole-cell biochips where the signal is generated due to the genetic response of the cells. The solid-state platform hosts the biological component, i.e. the living cells, and integrates all the required micro-system technologies, i.e. the micro-electronics, micro-electro optics, micro-electro or magneto mechanics and micro-fluidics. The genetic response of the cells expresses proteins that generate: a. light by photo-luminescence or bioluminescence, b. electrochemical signal by interaction with a substrate, or c. change in the cell impedance. The cell response is detected by a front end unit that converts it to current or voltage amplifies and filters it. The resultant signal is analyzed and stored for further processing. In this paper we describe three examples of whole-cell bio chips, photo-luminescent, bioluminescent and electrochemical, which are based on the genetic response of genetically modified E. coli microbes integrated on a micro-fluidics MEMS platform. We describe the chip outline as well as the basic modeling scheme of such sensors. We discuss the highlights and problems of such system, from the point of view of micro-system-technology.

  14. 30 Watts mid-infrared optical parametric oscillator based on spectral beam combination technology

    NASA Astrophysics Data System (ADS)

    Shang, Yaping; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Limited by the thermal effects and the laser-induced damage characteristics of the non-linear crystals, mid-infrared (MIR) output power of single optical parametric oscillator (OPO) is hard to get further promoted with excellent beam quality. An alternative solution is the multiple-beams combination technology, which exactly provided an effective approach for decreasing the thermal effects and the damage risk of the OPO system under high power operation. In this letter, the experimental study on the spectral beam combination of three idler MIR lasers was carried out for the first time. An optical parametric system with MIR output power of 30 W at 3130nm, 3352nm, and 3670nm was finally obtained. Experimental results indicated that the beam quality M2 factors of the combined laser were measured to be 1.76 and 2.42 in the horizontal and vertical directions, respectively, which confirmed the feasibility of the schematic design.

  15. Directional force measurement technology based on fiber optical laser heterodyning demodulation

    NASA Astrophysics Data System (ADS)

    Gao, Jingyi; Wang, Han; Guo, Xi; Lyu, Chengang

    2015-04-01

    Distributed Bragg Reflector (DBR) polarimetric optical fiber laser sensors have been attracting great interests due to harsh environment capability and high signal-to-noise ratio .We demonstrate directional force measurement technology using dual-polarization DBR optical fiber laser as a sensor. The influences of external force (bending, current and ultrasonic signal) could be analyzed by inducing a DFB polarimetric laser sensor to detect the beating signals shifts when the cavity is perturbed. We present the analysis of sensing mechanism on the DBR geometric construction and demodulation of directional information by separating the dual orthogonal polarization modes. With loading angles at 35°, 45°, 55°with 10° interval, the DBR laser sensor has shown orientation recognization ability corresponding to beating signals shifts, offering a potential for vector force directional detection.

  16. Generation-X mirror technology development plan and the development of adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Reid, Paul B.; Davis, William; O'Dell, Stephen; Schwartz, Daniel A.; Tolier-McKinstry, Susan; Wilke, Rudeger H. T.; Zhang, William

    2009-08-01

    Generation-X is being studied as an extremely high resolution, very large area grazing incidence x-ray telescope. Under a NASA Advanced Mission Concepts Study, we have developed a technology plan designed to lead to the 0.1 arcsec (HPD) resolution adjustable optics with 50 square meters of effective area necessary to meet Generation-X requirements. We describe our plan in detail. In addition, we report on our development activities of adjustable grazing incidence optics via the fabrication of bimorph mirrors. We have successfully deposited thin-film piezo-electric material on the back surface of thin glass mirrors. We report on the electrical and mechanical properties of the bimorph mirrors. We also report on initial finite element modeling of adjustable grazing incidence mirrors; in particular, we examine the impact of how the mirrors are supported - the boundary conditions - on the deformations which can be achieved.

  17. Optical pH detector based on LTCC and sol-gel technologies

    NASA Astrophysics Data System (ADS)

    Tadaszak, R. J.; Łukowiak, A.; Golonka, L. J.

    2013-01-01

    This paper presents an investigation on using sol-gel thin film as a material for sensors application in LTCC (Low Temperature Co-fired Ceramics) technology. This material gives the opportunity to make new, low-cost highly integrated optoelectronic devices. Sensors with optical detection are a significant part of these applications. They can be used for quick and safe diagnostics of some parameters. Authors present a pH detector with the optical detection system made of the LTCC material. The main part of the device is a flow channel with the chamber and sol-gel active material. The silica sol-gel with bromocresol green indicator was used. As the absorbance of sol-gel layer changes with the pH value of a measured medium, the transmitted light power was measured. The pH detector was integrated with the electronic components on the LTCC substrate.

  18. Silicon-on-sapphire fiber optic transceiver technology for space applications

    NASA Astrophysics Data System (ADS)

    Kuznia, C. P.; Ahadian, J. F.; Pommer, R. J.; Hagan, R.

    2007-09-01

    We present Single Event Upset (SEU) testing of a parallel fiber optic transceiver designed for communicating data using commercial Fibre Channel and GbE protocols at data rates up to 2.5 Gbps per channel (on eight parallel channels). This transceiver was developed for aircraft applications, such as the Joint Strike Fighter (JSF), Raptor and F/A-18 aircraft, that deploy fiber optic networks using multi-mode fiber operating at 850 nm wavelength. However, this transceiver may also have applications in space environments. This paper describes the underlying transceiver component technology, which utilizes complementary metal-oxide semiconductor (CMOS) silicon-onsapphire circuitry and GaAs VCSEL and PIN devices. We also present results of SEU testing of this transceiver using heavy ions at Brookhaven National Labs.

  19. Multi-core fiber technology for highly reliable optical network in access areas

    NASA Astrophysics Data System (ADS)

    Tanaka, Ken-ichi; Lee, Yong; Nomoto, Etsuko; Arimoto, Hideo; Sugawara, Toshiki

    2015-03-01

    A failure recovery system utilizing a multi-core fiber (MCF) link with field programmable gate array-based optical switch units was developed to achieve high capacity and highly reliable optical networks in access areas. We describe the novel MCF link based on a multi-ring structure and a protection scheme to prevent link failures. Fan-in/ -out devices and connectors are also presented to demonstrate the development status of the MCF connection technology for the link. We demonstrated path recovery by switching operation within a sufficiently short time, which is required by ITU-T. The selection of a protecting path as a failure working path was also optimized as the minimum passage of units for low loss transmission. The results we obtained indicate that our proposed link has potential for the network design of highly reliable network topologies in access areas such as data centers, systems in business areas, and fiber to the home systems in residential areas.

  20. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.

    PubMed

    Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback

    2009-11-10

    The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.

  1. Fiber-optic technologies for advanced thermo-therapy applied ex vivo to liver tumors

    NASA Astrophysics Data System (ADS)

    Tosi, D.; Perrone, G.; Vallan, A.; Braglia, A.; Liu, Y.; Macchi, E. G.; Braschi, G.; Gallati, M.; Cigada, A.; Poeggel, S.; Duraibabu, D. B.; Leen, G.; Lewis, E.

    2015-07-01

    Thermal ablation, using radiofrequency, microwave, and laser sources, is a common treatment for hepatic tumors. Sensors allow monitoring, at the point of treatment, the evolution of thermal ablation procedures. We present optical fiber sensors that allow advanced capabilities for recording the biophysical phenomena occurring in the tissue in real time. Distributed or quasi-distributed thermal sensors allow recording temperature with spatial resolution ranging from 0.1 mm to 5 mm. In addition, a thermally insensitive pressure sensor allows recording pressure rise, supporting advanced treatment of encapsulated tumors. Our investigation is focused on two case studies: (1) radiofrequency ablation of hepatic tissue, performed on a phantom with a stem-shaped applicator; (2) laser ablation of a liver phantom, performed with a fiber laser. The main measurement results are discussed, comparing the technologies used for the investigation, and drawing the potential for using optical fiber sensors for "smart"-ablation.

  2. Data Fusion Based on Optical Technology for Observation of Human Manipulation

    NASA Astrophysics Data System (ADS)

    Falco, Pietro; De Maria, Giuseppe; Natale, Ciro; Pirozzi, Salvatore

    2012-01-01

    The adoption of human observation is becoming more and more frequent within imitation learning and programming by demonstration approaches (PbD) to robot programming. For robotic systems equipped with anthropomorphic hands, the observation phase is very challenging and no ultimate solution exists. This work proposes a novel mechatronic approach to the observation of human hand motion during manipulation tasks. The strategy is based on the combined use of an optical motion capture system and a low-cost data glove equipped with novel joint angle sensors, based on optoelectronic technology. The combination of the two information sources is obtained through a sensor fusion algorithm based on the extended Kalman filter (EKF) suitably modified to tackle the problem of marker occlusions, typical of optical motion capture systems. This approach requires a kinematic model of the human hand. Another key contribution of this work is a new method to calibrate this model.

  3. Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis

    NASA Astrophysics Data System (ADS)

    Balas, Costas

    2009-10-01

    This paper reviews the recent developments in the field of biomedical optical imaging, emphasizing technologies that have been moved from 'bench top to bedside'. Important new developments in this field allow for unprecedented visualization of the tissue microstructure and enable quantitative mapping of disease-specific endogenous and exogenous substances. With these advances, optical imaging technologies are becoming powerful clinical tools for non-invasive and objective diagnosis, guided treatment and monitoring therapies. Recent developments in visible and infrared diffuse spectroscopy and imaging, spectral imaging, optical coherence tomography, confocal imaging, molecular imaging and dynamic spectral imaging are presented together with their derivative medical devices. Their perspectives and challenges are discussed.

  4. LISA technologies in new light: exploring alternatives for charge management and optical bench construction

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Conklin, John W.; Mueller, Guido

    2015-08-01

    A LISA-like gravitational wave observatory is the choice candidate for ESA's L3 large mission scheduled to launch in 2034. The LISA Test Package (LTP) mission will launch later this year and test many critical technologies needed for such an observatory, among which are picometer interferometry in space and UV charge management of the Test Mass (TM). The design of these subsystems has been frozen many years ago during the final formulation of the LTP mission; since then, the LISA mission concept has evolved and new technologies have become available, making it possible to re-think the way these subsystem are implemented. With the final formulation of the L3 mission still years in the future and the LTP results expected in about one year, now is an ideal time look for areas of possible improvement and explore alternative implementations that can enhance performance, reduce costs or mitigate risks.Recently developed UV LED are lighter, cheaper and more powerful than traditional mercury lamps; in addition, their fast response time can be used to implement AC discharge techniques that can save even more space and power, and provide a more precise control of the charge.The most recent iteration of the mission baseline design allows for eliminating some of the optical components initially deemed essential; paired with the use of polarization multiplexing, this permits a redesign of the optical bench that simplifies the layout and enables a modular approach to machining and assembly, thus reducing the risks and costs associated with the current monolithic design without compromising the picometer stability of the optical path.Leveraging on extensive previous experience with LISA interferometry and the availability of a torsion pendulum-based LISA test-bed, the University of Florida LISA group is working at developing, demonstrating and optimizing both these technologies. I will describe the most recent advancements and results.

  5. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  6. Adaptive optics real time processing design for the advanced technology solar telescope

    NASA Astrophysics Data System (ADS)

    Richards, Kit

    2012-07-01

    The four meter Advanced Technology Solar Telescope (ATST) adaptive optics (AO) system will require at least twenty-four times the real time processing power as the Dunn Solar Telescope AO system. An FPGA solution for ATST AO real time processing is being pursued instead of the parallel DSP approach used for the Dunn AO76 system. An analysis shows FPGAs will have lower latency and lower hardware cost than an equivalent DSP solution. Interfacing to the proposed high speed camera and the deformable mirror will be simpler and have lower latency than with DSPs. This paper will discuss the current design and progress toward implementing the FPGA solution.

  7. Hard X-ray Optics Technology Development for Astronomy at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Kilaru, Kiranmayee

    2009-01-01

    Grazing-incidence telescopes based on Wolter 1 geometry have delivered impressive advances in astrophysics at soft-x-ray wavelengths, while the hard xray region remains relatively unexplored at fine angular resolution and high sensitivities. The ability to perform ground-breaking science in the hard-x-ray energy range had been the motivation for technology developments aimed at fabricating low-cost, light-weight, high-quality x-ray mirrors. Grazing-incidence x-ray optics for high-energy astrophysical applications is being developed at MSFC using the electroform-nickel replication process.

  8. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials

    PubMed Central

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2016-01-01

    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements. PMID:26784192

  9. Simulation research on beam steering technology based on optical phased array

    NASA Astrophysics Data System (ADS)

    Tian, Junlin; Pan, Xudong

    2015-02-01

    The principle of beam steering technology based on optical phased array (OPA), which is composed of individual phase-modulating units, is introduced. By use of Fraunhofer diffraction and Fourier transformation, the OPA models are established. The influence of main parameters of OPA on beam steering efficiency, including duty ratio (ratio of effective unit size to total unit size), total unit size, unit number, and steering angle, is simulated and analyzed. It shows that beam steering efficiency of OPA is improved with larger duty ratio, smaller total unit size, and smaller steering angle, while the number of units has a very small impact on beam steering efficiency.

  10. A review on several key problems of standoff trace explosives detection by optical-related technology

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Cheng; Xiao, Wenjian; Qin, Mengze; Liu, Xianhong

    2016-01-01

    To prevent tragic disasters caused by terror acts and warfare threats, security check personnel must be capable of discovering, distinguishing and eliminating the explosives at multiple circumstances. Standoff technology for the remote detection of explosives and their traces on contaminated surfaces is a research field that has become a heightened priority in recent years for homeland security and counter-terrorism applications. There has been a huge increase in research within this area, the improvement of standoff trace explosives detection by optical-related technology. This paper provides a consolidation of information relating to recent advances in several key problems of, without being limited to one specific research area or explosive type. Working laser wavelength of detection system is discussed. Generation and collection of explosives spectra signal are summarized. Techniques for analysing explosives spectra signal are summed up.

  11. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  12. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    SciTech Connect

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.

  13. RAVEN, a Multi-Object Adaptive Optics technology and science demonstrator

    NASA Astrophysics Data System (ADS)

    Andersen, Dave; Blain, Célia; Bradley, Colin; Gamroth, Darryl; Ito, Meguru; Jackson, Kate; Lardière, Olivier; Nash, Reston; Oya, Shin; Pham, Laurie; Robertson, Dave; Véran, Jean-Pierre

    2011-09-01

    The University of Victoria Adaptive Optics Laboratory, the Herzberg Institute of Astrophysics and Subaru Observatory are undertaking a preliminary design study for a Multi-Object Adaptive Optics (MOAO) technology and science demonstrator called Raven. Raven will be mounted on the Subaru NIR Nasmyth platform and will feed the IRCS imager and spectrograph. The baseline design calls for three natural guide star (NGS) wavefront sensors (WFS), one on-axis laser guide star (LGS) WFS and two science pickoff arms that will patrol a 2 arcminute diameter field of regard (FOR). Sky coverage is an important consideration for a science demonstrator. End-to-end simulations of Raven show that a 10x10 subaperture adaptive optics (AO) system can meet the science requirements, i.e. 30% of the energy ensquared (EE) within a 140mas slit using three R<14 NGSs, and 40% EE with the addition of the central LGS. An overview of the Raven project is presented, including the top-level requirements, science cases, opto-mechanical design, calibration procedures and the hardware and software architecture.

  14. A Novel Monopulse Antenna Based on Quasi-Optical Technology at Sub-millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Dou, Wenbin; Su, Hongyan; Zhang, Xiaojing

    2015-08-01

    In this paper, a novel monopulse antenna operating at sub-millimeter wavelengths is firstly proposed and developed based on quasi-optical (QO) technology. The developed monopulse antenna is composed of spherical thin lens, ellipsoid mirrors, plane mirrors, quasi-optical sum-difference comparator, and dielectric prisms. The parameters of quasi-optical elements are determined by using Gaussian-Beam theory. Then, the antenna configuration is simulated and further optimized by finite-difference time-domain (FDTD) method. The simulated results show good sum-difference performance, with the sidelobe levels below -10.0 dB and the null-depth approximately -35.0 dB at the center frequency of 375 GHz. A prototype of the proposed monopulse antenna is fabricated and measured. The measured results have a good agreement with the simulated results in the near-field test process. This type of QO monopulse antenna may be used as an excellent candidate for tracking system over 300 GHz.

  15. On line measurement of lag angle in optical fiber winding using digital image processing technology

    NASA Astrophysics Data System (ADS)

    Ma, Baoji; Zhu, Yuquan; Jin, Xiaoli; Zhang, Jun

    2008-12-01

    During the optical fiber winding, larger or smaller lag angle would lead to superposition or spacing winding which would seriously influence the quality and stability of optical fiber bobbin. So the precise measurement and control of the lag angle was a key technique in optical fiber precise winding. Based on computer digital image technology, a new measurement scheme was proposed. According to the measurement requests, hardware of the image collection system and the image processing system were designed. By means of the image collection system and the designed program, the lag angle image was successfully collected. The resolution and efficiency of the Hough transform and the concentric cirque seeking method for image recognition were tested. The results showed that the efficiency of the Hough transform and the concentric cirque seeking method is low. So an improved Hough transform method was developed and the efficiency was numerically tested. The results showed that the improved Hough transform method was much more efficient and 0.1° measurement error of the lag angle can be achieved.

  16. Correction technology of a polarization lidar with a complex optical system.

    PubMed

    Di, Huige; Hua, Hangbo; Cui, Yan; Hua, Dengxin; Li, Bo; Song, Yuehui

    2016-08-01

    A complex optical system used in polarization lidars often modifies the input polarization of the return signal so that it may significantly impact depolarization estimates and introduce errors to polarization lidar measurements. In most cases, retardation, depolarization, and misalignment of the system exist at the same time and interact with each other. Polarization effects of the system cannot be represented by a simple correction coefficient, so they cannot be removed using a traditional calibration method. Detailed analysis and correction technologies were provided to remove systematic biases in estimating depolarization values from a polarization lidar owing to multiple optical components. The Mueller matrices from an emitter to a receiver were calculated, and the expression for an aerosol depolarization parameter including system polarization effects was derived and obtained. In addition, the correction algorithm based on the Mueller matrix was introduced and provided. A polarization lidar was established, and the polarization characteristics of its optical components were measured with a laboratory ellipsometer; then, the Mueller matrix of the receiver was calculated and obtained. Lidar observations were performed, and our correction algorithm was applied to lidar field data. The results show that the correction method can significantly remove systematic polarization effects.

  17. Study of cylindrical optical micro-structure technology used in infrared laser protection

    NASA Astrophysics Data System (ADS)

    Sun, Yanjun; Liu, Shunrui; Wang, Zhining; Zhao, Yixuan; Wu, Boqi; Leng, Yanbing; Wang, Li

    2016-10-01

    The paper aimed at the problem that strong absorption in visible wavelengths and equipment or operator injury caused by specular reflection exist in infrared laser protection technology to propose an infrared laser non-specular reflection optical micro-structure formed from optical window surface. It has the function of little effect on visible light transmission and large-angle scattering to 1064nm infrared laser in order to enable laser protection. The paper uses light track method to design double-side micro-cylindrical lens arrays with dislocation construction. Array period T and curvature radius of lens units R should meet the condition:0optical modeling software is applied for the simulation of designed cylindrical micro-structure, the simulation results: average transmittance rate of visible light drops 7% ,which has little impact on practical result, and we can make it up by visible wavelengths fabrication antireflection coating; 1064nm infrared laser reflection is about 75%, divergence angle is greater than 30%,which greatly reduces the single-directivity reflection echo energy of laser to achieve the purpose of laser protection.

  18. Fiber optic sensing technology for detecting gas hydrate formation and decomposition.

    PubMed

    Rawn, C J; Leeman, J R; Ulrich, S M; Alford, J E; Phelps, T J; Madden, M E

    2011-02-01

    A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH(4)-H(2)O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

  19. Fiber Optic Sensing Technology for Detecting Gas Hydrate Formation and Decomposition

    SciTech Connect

    Rawn, Claudia J; Leeman, John R; Ulrich, Shannon M; Alford, Jonathan E; Phelps, Tommy Joe; Madden, Megan Elwood

    2011-01-01

    A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 L) pressure vessel providing high spatial resolution, time resolved, 3-D measurement of hybrid temperature-strain (TS) values within experimental sediment gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data is visualized as a 'movie' of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Processing Simulator (SPS) at Oak Ridge National Laboratory show clear indications of hydrate formation and dissociation events at expected P-T conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

  20. Advanced manufacturing technologies for light-weight post- polished snap-together reflective optical system designs

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael N.

    2002-09-01

    Fast, light weight, off-axis, aspheric, reflective optical designs are increasingly being designed and built for space-based remote sensing, fire control systems, aerial reconnaissance, cryovac instrumentation and laser scanning. Diamond point turning (DPT) is the technology of first resort for many of these applications. In many cases the best diamond machining technologies available cannot meet the desired requirements for system wavefront error and scatter. Aluminum, beryllium, AlBeMet and silicon carbide mirrors, layered with thin films of electroless nickel or silicon can be first diamond machined and then post polished to achieve greatly enhanced performance levels for surface scatter, wavefront error (WFE), and alignment registration. By application of post polishing using precise null testing techniques, the objectives of snap-together, or limited compensation alignment of aggressive reflective optical systems can be achieved that are well beyond the performance envelope achievable by diamond machining alone. This paper discusses the tradeoffs among materials and processes selection for post polished reflective systems and illustrates actual applications including telescopes for earth and Mars orbit, and a commercial, high speed, flat field scan engine.

  1. Progress in the indirect slumping technology development at MPE for lightweight x-ray optics

    NASA Astrophysics Data System (ADS)

    Wen, Mingwu; Proserpio, Laura; Breunig, Elias; Friedrich, Peter; Burwitz, Vadim; Madarasz, Emanuel

    2016-10-01

    Large X-ray telescopes for future observatories need to combine a big collecting area, meaning thin mirrors with large diameter, with good angular resolution. Structures have to be stiff enough to guarantee the correct profiles and positioning of such mirrors. Due to the mass limits of the launching rockets, lightweight materials and configurations are required.. The Slumped Glass Optic (SGO) group of the Max-Planck-Institute for Extraterrestrial physics (MPE) is developing the indirect slumping technology to comply with this need. This technique foresees the shaping at high temperature of thin glass foils, originally flat, to Wolter I design X-ray mirror segments, by using suitable moulds. During the thermal cycle inside an electrical oven the glass viscosity is such reduced that it allows its bending onto the mould. So the mould's shape is replicated while still maintaining the original micro-roughness of the glass on the non-contact side that is of fundamental importance for X-ray reflections. This replication process is particularly suitable for the manufacturing of several identical optical elements, which must successively be coated with the necessary reflective layer and then aligned and integrated into supporting structures. Numerous aspects of the technology have been studied in the past, such as the selection of mould and glass materials, and the corresponding optimization of the thermal cycle parameters. During the last year, we focused on different process set-ups. The current results and status of activities will be presented in the paper.

  2. Micro-resonators based on integrated polymer technology for optical sensing

    NASA Astrophysics Data System (ADS)

    Girault, Pauline; Lemaitre, Jonathan; Guendouz, Mohammed; Lorrain, Nathalie; Poffo, Luiz; Gadonna, Michel; Bosc, Dominique

    2014-05-01

    Research on sensors has experienced a noticeable development over the last decades especially in label free optical biosensors. However, compact sensors without markers for rapid, reliable and inexpensive detection of various substances induce a significant research of new technological solutions. The context of this work is the development of a sensor based on easily integrated and inexpensive micro-resonator (MR) component in integrated optics, highly sensitive and selective mainly in the areas of health and food. In this work, we take advantage of our previous studies on filters based on micro-resonators (MR) to experiment a new couple of polymers in the objective to use MR as a sensing function. MRs have been fabricated by processing SU8 polymer as core and PMATRIFE polymer as cladding layer of the waveguide. The refractive index contrast reaches 0.16 @ 1550 nm. Sub-micronic ring waveguides gaps from 0.5 to 1 μm have been successfully achieved with UV (i-line) photolithography. This work confirms our forecasts, published earlier, about the resolution that can be achieved. First results show a good extinction coefficient of ~17 dB, a quality factor around 104 and a finesse of 12. These results are in concordance with the theoretical study and they allow us to validate our technology with this couple of polymers. Work is going on with others lower cladding materials that will be used to further increase refractive index contrast for sensing applications.

  3. Lidar Technology at the Goddard Laser and Electro-Optics Branch

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser and Electro-Optics Branch at Goddard Space flight Center was established about three years ago to provide a focused center of engineering support and technology development in these disciplines with an emphasis on spaced based instruments for Earth and Space Science. The Branch has approximately 15 engineers and technicians with backgrounds in physics, optics, and electrical engineering. Members of the Branch are currently supporting a number of space based lidar efforts as well as several technology efforts aimed at enabling future missions. The largest effort within the Branch is support of the Ice, Cloud, and land Elevation Satellite (ICESAT) carrying the Geoscience Laser Altimeter System (GLAS) instrument. The ICESAT/GLAS primary science objectives are: 1) To determine the mass balance of the polar ice sheets and their contributions to global sea level change; and 2) To obtain essential data for prediction of future changes in ice volume and sea-level. The secondary science objectives are: 1) To measure cloud heights and the vertical structure of clouds and aerosols in the atmosphere; 2) To map the topography of land surfaces; and 3) To measure roughness, reflectivity, vegetation heights, snow-cover, and sea-ice surface characteristics. Our efforts have concentrated on the GLAS receiver component development, the Laser Reference Sensor for the Stellar Reference System, the GLAS fiber optics subsystems, and the prelaunch calibration facilities. We will report on our efforts in the development of the space qualified interference filter [Allan], etalon filter, photon counting detectors, etalor/laser tracking system, and instrument fiber optics, as well as specification and selection of the star tracker and development of the calibration test bed. We are also engaged in development work on lidar sounders for chemical species. We are developing new lidar technology to enable a new class of miniature lidar instruments that are compatible with small

  4. Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury

    PubMed Central

    van der Merwe, Yolandi

    2015-01-01

    Abstract Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer “biohybrid” sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome. PMID:26478910

  5. Deterministic ion beam material adding technology for high-precision optical surfaces.

    PubMed

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2013-02-20

    Although ion beam figuring (IBF) provides a highly deterministic method for the precision figuring of optical components, several problems still need to be addressed, such as the limited correcting capability for mid-to-high spatial frequency surface errors and low machining efficiency for pit defects on surfaces. We propose a figuring method named deterministic ion beam material adding (IBA) technology to solve those problems in IBF. The current deterministic optical figuring mechanism, which is dedicated to removing local protuberances on optical surfaces, is enriched and developed by the IBA technology. Compared with IBF, this method can realize the uniform convergence of surface errors, where the particle transferring effect generated in the IBA process can effectively correct the mid-to-high spatial frequency errors. In addition, IBA can rapidly correct the pit defects on the surface and greatly improve the machining efficiency of the figuring process. The verification experiments are accomplished on our experimental installation to validate the feasibility of the IBA method. First, a fused silica sample with a rectangular pit defect is figured by using IBA. Through two iterations within only 47.5 min, this highly steep pit is effectively corrected, and the surface error is improved from the original 24.69 nm root mean square (RMS) to the final 3.68 nm RMS. Then another experiment is carried out to demonstrate the correcting capability of IBA for mid-to-high spatial frequency surface errors, and the final results indicate that the surface accuracy and surface quality can be simultaneously improved.

  6. High-efficiency heterojunction crystalline Si solar cell and optical splitting structure fabricated by applying thin-film Si technology

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kenji; Adachi, Daisuke; Uzu, Hisashi; Ichikawa, Mitsuru; Terashita, Toru; Meguro, Tomomi; Nakanishi, Naoaki; Yoshimi, Masashi; Hernández, José Luis

    2015-08-01

    Thin-film Si technology for solar cells has been developed for over 40 years. Improvements in the conversion efficiency and industrialization of thin-film Si solar cells have been realized through continuous research and development of the thin-film Si technology. The thin-film Si technology covers a wide range of fields such as fundamental understanding of the nature of thin-film Si, cell/module production, simulation, and reliability technologies. These technologies are also significant for solar cells other than the thin-film Si solar cells. Utilizing the highly developed thin-film Si solar cell technology, we have achieved ∼24% efficiency heterojunction crystalline Si solar cells using 6-in. wafers and >26% efficiency solar cells with an optical splitting structure. These results indicate that further improvement of thin-film Si technology and its synergy with crystalline Si solar cell technology will enable further improvement of solar cells with efficiencies above 26%.

  7. Zigbee networking technology and its application in Lamost optical fiber positioning and control system

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Zhai, Chao; Gu, Yonggang; Zhou, Zengxiang; Gai, Xiaofeng

    2010-07-01

    4,000 fiber positioning units need to be positioned precisely in LAMOST(Large Sky Area Multi-object Optical Spectroscopic Telescope) optical fiber positioning & control system, and every fiber positioning unit needs two stepper motors for its driven, so 8,000 stepper motors need to be controlled in the entire system. Wireless communication mode is adopted to save the installing space on the back of the focal panel, and can save more than 95% external wires compared to the traditional cable control mode. This paper studies how to use the ZigBee technology to group these 8000 nodes, explores the pros and cons of star network and tree network in order to search the stars quickly and efficiently. ZigBee technology is a short distance, low-complexity, low power, low data rate, low-cost two-way wireless communication technology based on the IEEE 802.15.4 protocol. It based on standard Open Systems Interconnection (OSI): The 802.15.4 standard specifies the lower protocol layers-the physical layer (PHY), and the media access control (MAC). ZigBee Alliance defined on this basis, the rest layers such as the network layer and application layer, and is responsible for high-level applications, testing and marketing. The network layer used here, based on ad hoc network protocols, includes the following functions: construction and maintenance of the topological structure, nomenclature and associated businesses which involves addressing, routing and security and a self-organizing-self-maintenance functions which will minimize consumer spending and maintenance costs. In this paper, freescale's 802.15.4 protocol was used to configure the network layer. A star network and a tree network topology is realized, which can build network, maintenance network and create a routing function automatically. A concise tree network address allocate algorithm is present to assign the network ID automatically.

  8. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 3: Advanced networks and economics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  9. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  10. Large optics technology; Proceedings of the Meeting, San Diego, CA, August 19-21, 1985. Volume 571

    SciTech Connect

    Sanger, G.M.

    1986-01-01

    The present conference on telescope primary mirror design and manufacturing technologies considers topics in mirror fabrication and testing, novel technology currently under development, recently instituted large optics development programs, and large mirror materials. Among the topics discussed are aspheric figure generation using feedback from an IR phase-shifting interferometer, thermal stability tests of CFRP sandwich panels for far-IR astronomy, Zerodur lightweight (large mirror) blanks, and the precision machining of grazing-incidence X-ray mirror substrates. Also treated are the rapid fabrication of large aspheric optics, steps toward 8-m honeycomb mirrors, a novel telescope design employing the refraction of prism rows, telescope technology for the Far-UV Spectroscopic Explorer, hot isostatic-pressed Be for large optics, and a concept for a moderate cost large deployable reflector.

  11. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    PubMed

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  12. The combination methodic of diffusion and implantation technologies for creating optic wave-guided layers in lithium niobate

    NASA Astrophysics Data System (ADS)

    Orlikov, L. N.; Orlikov, N. L.; Arestov, S. I.; Mambetova, K. M.; Shandarov, S. M.

    2015-04-01

    The implantation of copper into Lithium Niobate in the prohibited crystal zone forms a definite energetic level for optic transits. This paper examines conditions of optic wave-guided layers formation on Niobate Lithium due to the method of implantation copper ions with the next diffusion. Reflect Spectrum in consequences implantation is extended. The transfer of the optical power from the primary beam into the another beam was discovered and in reverse. Photo galvanic characteristics of implantation specimen identity of crystal by traditional technology and doping CuO manufacture.

  13. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B,; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    There are a variety of both portable and fixed gas monitors onboard the International Space Station (ISS). Devices range from rack-mounted mass spectrometers to hand-held electrochemical sensors. An optical Multi-Gas Monitor has been developed as an ISS Technology Demonstration to evaluate long-term continuous measurement of 4 gases. Based on tunable diode laser spectroscopy, this technology offers unprecedented selectivity, concentration range, precision, and calibration stability. The monitor utilizes the combination of high performance laser absorption spectroscopy with a rugged optical path length enhancement cell that is nearly impossible to misalign. The enhancement cell serves simultaneously as the measurement sampling cell for multiple laser channels operating within a common measurement volume. Four laser diode based detection channels allow quantitative determination of ISS cabin concentrations of water vapor (humidity), carbon dioxide, ammonia and oxygen. Each channel utilizes a separate vertical cavity surface emitting laser (VCSEL) at a different wavelength. In addition to measuring major air constituents in their relevant ranges, the multiple gas monitor provides real time quantitative gaseous ammonia measurements between 5 and 20,000 parts-per-million (ppm). A small ventilation fan draws air with no pumps or valves into the enclosure in which analysis occurs. Power draw is only about 3 W from USB sources when installed in Nanoracks or when connected to 28V source from any EXPRESS rack interface. Internal battery power can run the sensor for over 20 hours during portable operation. The sensor is controlled digitally with an FPGA/microcontroller architecture that stores data internally while displaying running average measurements on an LCD screen and interfacing with the rack or laptop via USB. Design, construction and certification of the Multi-Gas Monitor were a joint effort between Vista Photonics, Nanoracks and NASA-Johnson Space Center (JSC

  14. Participant recruitment and motivation for participation in optical technology for cervical cancer screening research trials.

    PubMed

    Shuhatovich, Olga M; Sharman, Mathilde P; Mirabal, Yvette N; Earle, Nan R; Follen, Michele; Basen-Engquist, Karen

    2005-12-01

    In order to improve recruitment for cervical cancer screening trials, it is necessary to analyze the effectiveness of recruitment strategies used in current trials. A trial to test optical spectroscopy for the diagnosis of cervical neoplasia recruited 1000 women from the community; the trial evaluated the emerging technology against Pap smears and colposcopically directed biopsies for cervical dysplasia. We have examined women's reasons for participating as well as the effectiveness and efficiency for each recruitment strategy. Reasons for participation were identified and compared between trials. The recruitment method that resulted in the most contacts was newspaper reportorial coverage and advertising, followed by family and friends, then television news coverage. The most cost-effective method for finding eligible women who attend the research appointment is word of mouth from a family member or friend. Recommendations are given for maximizing the efficiency of recruitment for cervical cancer screening trials.

  15. Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology.

    PubMed

    Zhao, Ying; Pang, Fufei; Dong, Yanhua; Wen, Jianxiang; Chen, Zhenyi; Wang, Tingyun

    2013-11-04

    The atomic layer deposition (ALD) technology is introduced to enhance the sensitivity of optical fiber cladding mode to surrounding refractive index (SRI) variation. The highly uniform Al2O nanofilm was deposited around the double cladding fiber (DCF) which presents cladding mode resonant feature. With the high refractive index coating, the cladding mode resonant spectrum was tuned. And the sensitivity enhancement for SRI sensor was demonstrated. Through adjusting the deposition cycles, a maximum sensitivity of 723 nm/RIU was demonstrated in the DCF with 2500 deposition cycles at the SRI of 1.34. Based on the analysis of cladding modes reorganization, the cladding modes transition of the coated DCF was investigated theoretically. With the high performance nanofilm coating, the proposed SRI sensor is expected to have wide applications in chemical sensors and biosensors.

  16. Development of Optical Technologies for Monitoring Moisture and Particulate in Geothermal Steam

    SciTech Connect

    J. K. Partin

    2006-08-01

    The results of an investigation directed at evaluating the feasibility of using optical measurements for the real-time monitoring moisture and particulate in geothermal steam is described. The measurements exploit new technologies that have been developed for the telecommunications industry and includes new solid state laser devices, large-bandwidth, high-sensitivity detectors and low loss optical fiber compo-nents. In particular, the design, fabrication, and in-plant testing of an optical steam monitor for the detection of moisture is presented. The measurement principle is based upon the selective absorption of infrared energy in response to the presence of moisture. Typically, two wavelengths are used in the measurements: a wavelength that is strongly absorbed by water and a reference wavelength that is minimally influenced by water and steam which serves as a reference to correct for particulate or droplet scattering. The two wavelengths are chosen to be as close as possible in order to more effectively correct for scattering effects. The basic instrumentation platform developed for the in-situ monitoring of steam moisture can be modified and used to perform other measurements of interest to plant operators. An upgrade that will allow the instrument to be used for the sensitive detection of particulate in process streams has been investigated. The new monitor design involves the use of laser diodes that are much less sensitive to water and water vapor and more sensitive to scattering phenomena, as well as new processing techniques to recover these signals. The design reduces the averaging time and sampling volume, while increasing the laser probe power, enhancing particulate detection sensitivity. The design concept and initial laboratory experiments with this system are also reported.

  17. Evaluation of dry technology for removal of pellicle adhesive residue on advanced optical reticles

    NASA Astrophysics Data System (ADS)

    Paracha, Shazad; Bekka, Samy; Eynon, Benjamin; Choi, Jaehyuck; Balooch, Mehdi; Varghese, Ivin; Hopkins, Tyler

    2013-09-01

    The fast pace of MOSFET scaling is accelerating the introduction of smaller technology nodes to extend CMOS beyond 20nm as required by Moore's law. To meet these stringent requirements, the industry is seeing an increase in the number of critical layers per reticle set as it move to lower technology nodes especially in a high volume manufacturing operation. These requirements are resulting in reticles with higher feature densities, smaller feature sizes and highly complex Optical Proximity Correction (OPC), built with using new absorber and pellicle materials. These rapid changes are leaving a gap in maintaining these reticles in a fab environment, for not only haze control but also the functionality of the reticle. The industry standard of using wet techniques (which uses aggressive chemicals, like SPM, and SC1) to repel reticles can result in damage to the sub-resolution assist features (SRAF's), create changes to CD uniformity and have potential for creating defects that require other means of removal or repair. Also, these wet cleaning methods in the fab environment can create source for haze growth. Haze can be controlled by: 1) Chemical free (dry) reticle cleaning, 2) In-line reticle inspection in fab, and 3) Manage the environment where reticles are stored. In this paper we will discuss a dry technique (chemical free) to remove pellicle adhesive residue from advanced optical reticles. Samsung Austin Semiconductors (SAS), jointly worked with Eco-Snow System (a division of RAVE N.P., Inc.) to evaluate the use of Dry Reactive Gas (DRG) technique to remove pellicle adhesive residue on reticles. This technique can significantly reduce the impact to the critical geometry in active array of the reticle, resulting in preserving the reticle performance level seen at wafer level. The paper will discuss results on the viability of this technique used on advanced reticles.

  18. Technology challenges for space interferometry: The option of mid-infrared integrated optics

    NASA Astrophysics Data System (ADS)

    Labadie, L.; Kern, P.; Labeye, P.; Lecoarer, E.; Vigreux-Bercovici, C.; Pradel, A.; Broquin, J.-E.; Kirschner, V.

    Nulling interferometry is a technique providing high angular resolution which is the core of the space missions Darwin and TPF. The first objective is to reach a deep degree of starlight cancelation in the range 6 20 μm, in order to observe and to characterize the signal from an earth-like planet. Among the numerous technological challenges involved in these missions, the question of the beam combination and wavefront filtering has an important place. A single-mode integrated optics (IO) beam combiner could support both the functions of filtering and the interferometric combination, simplifying the instrumental design. Such a perspective has been explored in this work within the project Integrated Optics for Darwin (IODA), which aims at developing a first IO combiner in the mid-infrared. The solutions reviewed here to manufacture the combiner here are based on infrared dielectric materials on one side, and on metallic conductive waveguides on the other side. With this work, additional inputs are offered to pursue the investigation on mid-infrared photonics devices.

  19. Determination of inorganic elements in animal feeds by NIRS technology and a fibre-optic probe.

    PubMed

    González-Martín, Inmaculada; Alvarez-García, Noelia; González-Pérez, Claudio; Villaescusa-García, Virginia

    2006-05-15

    In the present work we study the use of near infra-red spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe for the analysis of the mineral composition of animal feeds. The method allows immediate control of the feeds without prior sample treatment or destruction through direct application of the fibre-optic probe on the sample. The regression method employed was modified partial least squares (MPLS). The calibration results obtained using forty samples of animal feeds allowed the determination of Fe, Mn, Ca, Na, K, P, Zn and Cu, with a standard error of prediction (SEP(C)) and a correlation coefficient (RSQ) of 0.129 and 0.859 for Fe; 0.175 and 0.816 for Mn; 5.470 and 0.927 for Ca; 2.717 and 0.862 for Na; 4.397 and 0.891 for K; 2.226 and 0.881 for P; 0.153 and 0.764 for Zn, and 0.095 and 0.918 for Cu, respectively. The robustness of the method was checked by applying it to 10 animal feeds samples of unknown mineral composition in the external validation.

  20. Near infrared optical technologies to illuminate the status of the neonatal brain.

    PubMed

    Liao, Steve M; Culver, Joseph P

    2014-01-01

    The neurodevelopmental outcome of at-risk infants in the neonatal intensive care unit (NICU) is concerning despite steady improvement in the survival rate of these infants. Our current management is often complicated by delayed realization of cerebral deficits due to late manifestation and lack of effective screening tools and neuroimaging/monitoring techniques that are suitable for sick neonates at the bedside. Near infrared specstrocopy (NIRS) is a noninvasive, safe, and portable technique providing a wide range of cerebral hemodynamic contrasts for evaluating the brain. The current state of NIRS technology can be devided into three generations. The first generation represents conventional trend monitoring oximeters that are currently the most widely used in the clinical settings, while the second generation focuses on improving the quantitive accuracy of NIRS measurements by advanced optical techniques. The emergence of diffuse optical imaging (DOI) represents a third generation which opens up more potential clinical applications by providing regional comparisons of brain oximetry and functions either at rest or in response to interventions. Successful integration of NIRS/DOI into the clinical setting requires matching the different capabilities of each instrument to specific clinical goals.

  1. [Microfabricated X-ray Optics Technology Development for the Constellation X-Mission

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2005-01-01

    MIT has previously developed advanced methods for the application of silicon microstructures (so-called microcombs) in the precision assembly of foil x-ray optics in support of the Constellation-X Spectroscopy X-ray Telescope (SXT) technology development at the NASA Goddard Space Flight Center (GSFC). During the first year of the above Cooperative Agreement, MIT has developed a new, mature, potentially high- yield process for the manufacturing of microcombs that can be applied to a range of substrates independent of thickness. MIT also developed techniques to extract microcomb accuracy from an assembly truss metrology test stand and to extend the dynamic range of its Shack-Hartmann foil metrology tool. The placement repeatability of foil optics with microcombs in the assembly truss has been improved by a factor of two to approximately 0.15 micron. This was achieved by electric contact determination in favor of determining contact through force measurements. Development work on a stress-free thin foil holder was also supported by this agreement and successfully continued under a different grant.

  2. Deformation monitoring of long GFRP bar soil nails using distributed optical fiber sensing technology

    NASA Astrophysics Data System (ADS)

    Hong, Cheng-Yu; Yin, Jian-Hua; Zhang, Yi-Fan

    2016-08-01

    This paper introduces a new measurement technology characterized by the use of distributed optical fiber sensor (OFSs) for monitoring the strain and temperature distribution of glass fiber reinforced polymer (GFRP) bar soil nails. Laboratory tension tests were used to verify the performance of the OFSs for strain and elongation monitoring of GFRP bars. The measured strain data from the OFSs agree fairly well with the data from strain gauges in calibration tests. In field monitoring tests, two GFRP bar soil nails were installed with OFSs and pure strain data were used to evaluate the performance of GFRP bar soil nails after installation in a practical slope. Both the strain and temperature distributions measured by the OFSs show symmetric features. A Brillouin optical time domain analysis (BOTDA) measurement unit was used to collect temperature and strain data from the OFSs. The monitoring data show that the accumulative elongations of the soil nails present a continuous but limited increase with time in the field. The achieved maximum elongations of soil nails were less than 0.4 mm. The measured axial elongations of the soil nails were also validated using corresponding data predicted by a theoretical model. The test results from the present study prove that BOTDA based sensors are useful for the investigation of the average strain distributions (or elongation) of long soil nails and these data are useful for the estimation of the potential sliding surface of the entire soil nailing system.

  3. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure

    NASA Astrophysics Data System (ADS)

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m3/h to 6.5 m3/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement.

  4. Fiber-optic technologies in laser-based therapeutics: threads for a cure.

    PubMed

    Wang, Zheng; Chocat, Noémie

    2010-06-01

    In the past decade, novel fiber structures and material compositions have led to the introduction of new diagnostic and therapeutic tools. We review the structure, the material composition and the fabrication processes behind these novel fiber systems. Because of their structural flexibility, their compatibility with endoscopic appliances and their efficiency in laser delivery, these fiber systems have greatly extended the reach of a wide range of surgical lasers in minimally invasive procedures. Much research in novel fiber-optics delivery systems has been focused on the accommodation of higher optical powers and the extension to a broader wavelength range. Until recently, CO2 laser surgery, renowned for its precision and efficiency, was limited to open surgeries by the lack of delivery fibers. Hollow-core photonic bandgap fibers are assessed for their ability to transmit CO2 laser at surgical power level and for their applications in a range of clinical areas. Current fiber-delivery technologies for a number of laser surgery modalities and wavelengths are compared.

  5. Zirconium titanate ceramic pigments: Crystal structure, optical spectroscopy and technological properties

    NASA Astrophysics Data System (ADS)

    Dondi, M.; Matteucci, F.; Cruciani, G.

    2006-01-01

    Srilankite-type zirconium titanate, a promising structure for ceramic pigments, was synthesized at 1400 °C following three main doping strategies: (a) ZrTi 1-xA xO 4, (b) ZrTi 1-x-yA xB yO 4 and (c) Zr 1-xC xTiO 4 where A=Co, Cr, Fe, Mn, Ni or V (chromophores), B=Sb or W (counterions) and C=Pr (chromophore); x=y=0.05. Powders were characterized by XRD with Rietveld refinements and DRS in the UV-visible-NIR range; technological properties were appraised in several ceramic matrices (frits, glazes and body). Zirconium titanate can be usefully coloured with first row transition elements, giving green and greenish yellow (Co and Ni); orange-buff (Cr and V); tan-brown hues (Mn and Fe). In industrial-like synthesis conditions, a disordered structure as (Zr,Ti)O 2, with both Zr and Ti randomly distributed in the octahedral site, is achieved. Doping with chromophores and counterions induces unit cell dimensions variation and causes an oversaturation in zirconium oxide. Optical spectroscopy reveals the occurrence of Co 2+, Cr 3+, Fe 3+, Mn 2+, Mn 3+, Ni 2+, V 3+ and V 4+. The zirconium titanate pigments fulfil current technological requirements for low-temperature applications, but exhibit a limited chemico-physical stability for higher firing temperature and in chemically aggressive media.

  6. Application of fluidic lens technology to an adaptive holographic optical element see-through autophoropter

    NASA Astrophysics Data System (ADS)

    Chancy, Carl H.

    A device for performing an objective eye exam has been developed to automatically determine ophthalmic prescriptions. The closed loop fluidic auto-phoropter has been designed, modeled, fabricated and tested for the automatic measurement and correction of a patient's prescriptions. The adaptive phoropter is designed through the combination of a spherical-powered fluidic lens and two cylindrical fluidic lenses that are orientated 45o relative to each other. In addition, the system incorporates Shack-Hartmann wavefront sensing technology to identify the eye's wavefront error and corresponding prescription. Using the wavefront error information, the fluidic auto-phoropter nulls the eye's lower order wavefront error by applying the appropriate volumes to the fluidic lenses. The combination of the Shack-Hartmann wavefront sensor the fluidic auto-phoropter allows for the identification and control of spherical refractive error, as well as cylinder error and axis; thus, creating a truly automated refractometer and corrective system. The fluidic auto-phoropter is capable of correcting defocus error ranging from -20D to 20D and astigmatism from -10D to 10D. The transmissive see-through design allows for the observation of natural scenes through the system at varying object planes with no additional imaging optics in the patient's line of sight. In this research, two generations of the fluidic auto-phoropter are designed and tested; the first generation uses traditional glass optics for the measurement channel. The second generation of the fluidic auto-phoropter takes advantage of the progress in the development of holographic optical elements (HOEs) to replace all the traditional glass optics. The addition of the HOEs has enabled the development of a more compact, inexpensive and easily reproducible system without compromising its performance. Additionally, the fluidic lenses were tested during a National Aeronautics Space Administration (NASA) parabolic flight campaign, to

  7. Optical spectral signatures of liquids by means of fiber optic technology for product and quality parameter identification

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Diaz-Herrera, N.; Garcia-Allende, P. B.; Ottevaere, H.; Thienpont, H.; Attilio, C.; Cimato, A.; Francalanci, S.; Paccagnini, A.; Pavone, F. S.

    2009-01-01

    Absorption spectroscopy in the wide 200-1700 nm spectral range is carried out by means of optical fiber instrumentation to achieve a digital mapping of liquids for the prediction of important quality parameters. Extra virgin olive oils from Italy and lubricant oils from turbines with different degrees of degradation were considered as "case studies". The spectral data were processed by means of multivariate analysis so as to obtain a correlation to quality parameters. In practice, the wide range absorption spectra were considered as an optical signature of the liquids from which to extract product quality information. The optical signatures of extra virgin olive oils were used to predict the content of the most important fatty acids. The optical signatures of lubricant oils were used to predict the concentration of the most important parameters for indicating the oil's degree of degradation, such as TAN, JOAP anti-wear index, and water content.

  8. EVALUATION OF A FORMER LANDFILL SITE IN FORT COLLINS, COLORADO USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY

    EPA Science Inventory

    This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPA′s Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...

  9. Advanced technology optical telescopes IV; Proceedings of the Meeting, Tucson, AZ, Feb. 12-16, 1990. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Barr, Lawrence D. (Editor)

    1990-01-01

    The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.

  10. Design and Development of the WVU Advanced Technology Satellite for Optical Navigation

    NASA Astrophysics Data System (ADS)

    Straub, Miranda

    In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.

  11. Research on the surveillance technology and the comprehensive management network system using the optical fiber about a road management system

    NASA Astrophysics Data System (ADS)

    Nakano, Masahiro; Okuno, Masatomi; Sasaki, Susumu; Yano, Koji

    2005-05-01

    In recent years, IT (Information Technology) has been utilized in various fields of civil engineering. Especially, trials have been made to utilize optical fibers as sensors to measure strain of civil engineering structures, ground deformation, temperature, etc., and they have been installed for measuring in road structures and civil engineering structures including tunnel, river, and cut-slope structures. In order to make such optical monitoring systems of civil engineering structures more general and organic systems, it would be effective to combine them with such comprehensive systems as ITS. We investigate checking systems utilizing GIS technology, etc. that can process and analyze an enormous amount of data in real time and also investigate the construction of general monitoring systems of road facilities which can perform thorough management from monitoring to maintenance utilizing information technology networks.

  12. Zirconium titanate ceramic pigments: Crystal structure, optical spectroscopy and technological properties

    SciTech Connect

    Dondi, M.; Matteucci, F. . E-mail: matteucci@istec.cnr.it; Cruciani, G.

    2006-01-15

    Srilankite-type zirconium titanate, a promising structure for ceramic pigments, was synthesized at 1400 deg. C following three main doping strategies: (a) ZrTi{sub 1-x}A{sub x}O{sub 4} (b) ZrTi{sub 1-x-y}A{sub x}B{sub y}O{sub 4} and (c) Zr{sub 1-x}C{sub x}TiO{sub 4} where A=Co, Cr, Fe, Mn, Ni or V (chromophores), B=Sb or W (counterions) and C=Pr (chromophore); x=y=0.05. Powders were characterized by XRD with Rietveld refinements and DRS in the UV-visible-NIR range; technological properties were appraised in several ceramic matrices (frits, glazes and body). Zirconium titanate can be usefully coloured with first row transition elements, giving green and greenish yellow (Co and Ni); orange-buff (Cr and V); tan-brown hues (Mn and Fe). In industrial-like synthesis conditions, a disordered structure as (Zr,Ti)O{sub 2}, with both Zr and Ti randomly distributed in the octahedral site, is achieved. Doping with chromophores and counterions induces unit cell dimensions variation and causes an oversaturation in zirconium oxide. Optical spectroscopy reveals the occurrence of Co{sup 2+}, Cr{sup 3+}, Fe{sup 3+}, Mn{sup 2+}, Mn{sup 3+}, Ni{sup 2+}, V{sup 3+} and V{sup 4+}. The zirconium titanate pigments fulfil current technological requirements for low-temperature applications, but exhibit a limited chemico-physical stability for higher firing temperature and in chemically aggressive media.

  13. Benefits in clinical dermatology from methodological and technological innovations in laser and optical technologies in inter-and multi-disciplinary research

    NASA Astrophysics Data System (ADS)

    Eikje, N. Skrebova

    2008-06-01

    Benefits of employing laser and optical technologies in clinical dermatology are enormous, including solving the complex of questions in diagnosis and treatments of many skin diseases; introducing new methods of diagnosis, treatment and its evaluation; advancing fundamental understanding not only of physiology of skin itself, but also of pathophysiology of different dermatological diseases and conditions. Through numerous innovations in laser and optical technologies a variety of specific and important information has become available in clinical dermatology on real-time normal and lesional skin characterization and visualization, on different type and pattern recognition, on monitoring of several dermatological conditions, on assessment of various parameters for measuring dynamics of skin lesions with further possibilities to assess severity of skin symptoms, and on evaluation of different treatment regimes and their comparisons. After a decade of experiences in inter- and multi-disciplinary research I would like to share the wisdom and pitfalls of my work how to get laser and optical technologies into clinical practice of dermatological interest, that are discussed in the paper.

  14. Materials and optics for solar energy conversion and advanced lighting technology; Proceedings of the Meeting, San Diego, CA, Aug. 19-21, 1986

    SciTech Connect

    Lampert, C.M.; Holly, S.

    1987-01-01

    The present conference encompasses topics in the fields of optical switching materials, photovoltaic materials, holographic films, and solar optical materials, as well as insolation and illumination testing and measurement technologies, light source hardware and applications, novel optical techniques in illumination and lighting, and the production of lighting effects in the entertainment industry. Attention is given to thermochromic and electrochromic materials for optical switching and energy-efficient windows, tin oxide antireflection coatings, holographic solar concentration and greenhouse lighting, long-lived glass mirrors for space, exposure testing of solar absorbers, optical projection equipment, medium and short arc metal halide lamps, and nonimaging optics for illumination.

  15. Optical signal processing for indoor positioning using a-SiCH technology

    NASA Astrophysics Data System (ADS)

    Vieira, M. A.; Vieira, M.; Louro, P.; Silva, V.

    2016-05-01

    In this paper, we use the nonlinear property of SiC multilayer devices under UV irradiation to design an optical processor for indoor positioning. The transducer combines the simultaneous demultiplexing operation with the photodetection and self-amplification. The proposed coding is based on SiC technology. Based on that, we present a way to achieve indoor localization using the parity bits and a navigation syndrome. A representation with a 4 bit original string colour message and the transmitted 7 bit string, the encoding and decoding accurate positional information processes and the design of SiC navigation syndrome generators are discussed and tested. A visible multilateration method estimates the position of the device by using the decoded information received from several, non-collinear transmitters. The location and motion information is found by mapping position and estimates the location areas. Since the indoor position of the LED light source is known from building floor plans and lighting plans, the corresponding indoor position and travel direction of a mobile device can be determined.

  16. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology

    NASA Astrophysics Data System (ADS)

    Bache, Michael; Bosco, Filippo G.; Brøgger, Anna L.; Frøhling, Kasper B.; Sonne Alstrøm, Tommy; Hwu, En-Te; Chen, Ching-Hsiu; Eugen-Olsen, Jesper; Hwang, Ing-Shouh; Boisen, Anja

    2013-11-01

    In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.

  17. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology.

    PubMed

    Bache, Michael; Bosco, Filippo G; Brøgger, Anna L; Frøhling, Kasper B; Alstrøm, Tommy Sonne; Hwu, En-Te; Chen, Ching-Hsiu; Eugen-Olsen, Jesper; Hwang, Ing-Shouh; Boisen, Anja

    2013-11-08

    In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.

  18. Optical signal processing for indoor positioning using a-SiCH technology

    NASA Astrophysics Data System (ADS)

    Vieira, Manuel A.; Vieira, Manuela; Louro, Paula; Silva, Vitor; Vieira, Pedro

    2016-10-01

    We use the nonlinear property of silicon carbon (SiC) multilayer devices under UV irradiation to design an optical processor for indoor positioning. The transducer combines the simultaneous demultiplexing operation with photodetection and self-amplification. The proposed coding is based on SiC technology. Based on that, we present a way to achieve indoor localization using the parity bits and a navigation syndrome. A representation with a 4-bit original string color message and the transmitted 7-bit string, the encoding and decoding of accurate positional information processes, and the design of SiC navigation syndrome generators are discussed and tested. A visible multilateration method estimates the position of the device using the decoded information received from several noncollinear transmitters. The location and motion information is found by mapping position and estimates the location areas. Since the indoor position of the light-emitting diode light source is known from building floor plans and lighting plans, the corresponding indoor position and travel direction of a mobile device can be determined.

  19. High Sensitivity Refractometer Based on TiO₂-Coated Adiabatic Tapered Optical Fiber via ALD Technology.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-08-15

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field.

  20. A broadband RF continuously variable time delay device. [using Bragg cell and optical heterodyne technology for signal processing

    NASA Technical Reports Server (NTRS)

    Freyre, F. W.

    1981-01-01

    A method for implementation of continuously variable time delay of broadband RF signals is described. The method uses Bragg Cell and optical heterodyne technology. The signal to be delayed is applied to the Bragg Cell acoustic transducer, and the delay time is the acoustic transit time from this transducer to the incident light beam. By translating the light beam, the delay is varied. Expressions describing the Bragg Cell diffraction, lens Fourier transformation, and the optical heterodyne processes are developed. Specifications for the variable delay including bandwidth, range of delay, and insertion loss are provided. Applications include radar signal processing, spread spectrum intercept, radar ECM, and adaptive array antenna processing.

  1. AlGaInN laser diode technology for free-space and plastic optical fibre telecom applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bóckowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.; Watson, M. A.; Blanchard, P.; White, H.

    2016-03-01

    Gallium Nitride laser diodes fabricated from the AlGaInN material system is an emerging technology for laser sources from the UV to visible and is a potential key enabler for new system applications such as free-space (underwater & air bourne links) and plastic optical fibre telecommunications. We measure visible light (free-space and underwater) communications at high frequency (up to 2.5 Gbit/s) and in plastic optical fibre (POF) using a directly modulated GaN laser diode.

  2. Research on distributed strain separation technology of fiber Brillouin sensing system combining an electric power optical fiber cable

    NASA Astrophysics Data System (ADS)

    Lei, Yuqing; Chen, Xi; Li, Jihui; Tong, Jie

    2013-12-01

    Brillouin-based optical fiber sensing system has been taken more and more attentions in power transmission line in recent years. However, there exists a temperature cross sensitivity problem in sensing system. Hence, researching on strain separation technology of fiber brillouin sensing system is an urgent requirement in its practical area. In this paper, a real-time online distributed strain separation calculation technology of fiber Brillouin sensing combining an electric power optical fiber cable is proposed. The technology is mainly composed of the Brillouin temperature-strain distributed measurement system and the Raman temperature distributed measurement system. In this technology, the electric power optical fiber cable is a special optical phase conductor (OPPC); the Brillouin sensing system uses the Brillouin optical time domain analysis (BOTDA) method. The optical unit of the OPPC includes single-mode and multimode fibers which can be used as sensing channel for Brillouin sensing system and Raman sensing system respectively. In the system networking aspect, the data processor of fiber Brillouin sensing system works as the host processor and the data processor of fiber Raman sensing system works as the auxiliary processor. And the auxiliary processor transfers the data to the host processor via the Ethernet interface. In the experiment, the BOTDA monitoring system and the Raman monitoring system work on the same optical unit of the OPPC simultaneously; In the data processing aspect, the auxiliary processor of Raman transfers the temperature data to the host processor of Brillouin via the Ethernet interface, and then the host processor of Brillouin uses the temperature data combining itself strain-temperature data to achieve the high sampling rate and high-precision strain separation via data decoupling calculation. The data decoupling calculation is achieved through the interpolation, filtering, feature point alignment, and the singular point prediction

  3. MFOX-Technology, transceiver design and performance. [Multipurpose Fiber Optic Transceiver

    NASA Technical Reports Server (NTRS)

    Channin, Donald J.

    1987-01-01

    The multipurpose fiber optic transceiver (MFOX) family of fiber-optic transceivers will provide standard, military-qualified off-the-shelf transmitters and receivers for ground-based tactical fiber-optic communications. The author describes these units and their capabilities for diverse military applications.

  4. Optical data transmission technology for fixed and drag-on STS payload umbilicals, volume 2

    NASA Technical Reports Server (NTRS)

    St.denis, R. W.

    1981-01-01

    Optical data handling methods are studied as applicable to payload communications checkout and monitoring. Both payload umbilicals and interconnecting communication lines carrying payload data are examined for the following: (1) ground checkout requirements; (2) optical approach (technical survey of optical approaches, selection of optimum approach); (3) survey and select components; (4) compare with conventional approach; and (5) definition of follow on activity.

  5. Optical communications and a comparison of optical technologies for a high data rate return link from Mars

    NASA Technical Reports Server (NTRS)

    Spence, Rodney L.

    1993-01-01

    The important principles of direct- and heterodyne-detection optical free-space communications are reviewed. Signal-to-noise-ratio (SNR) and bit-error-rate (BER) expressions are derived for both the direct-detection and heterodyne-detection optical receivers. For the heterodyne system, performance degradation resulting from received-signal and local oscillator-beam misalignment and laser phase noise is analyzed. Determination of interfering background power from local and extended background sources is discussed. The BER performance of direct- and heterodyne-detection optical links in the presence of Rayleigh-distributed random pointing and tracking errors is described. Finally, several optical systems employing Nd:YAG, GaAs, and CO2 laser sources are evaluated and compared to assess their feasibility in providing high-data-rate (10- to 1000-Mbps) Mars-to-Earth communications. It is shown that the root mean square (rms) pointing and tracking accuracy is a critical factor in defining the system transmitting laser-power requirements and telescope size and that, for a given rms error, there is an optimum telescope aperture size that minimizes the required power. The results of the analysis conducted indicate that, barring the achievement of extremely small rms pointing and tracking errors (less than 0.2 microrad), the two most promising types of optical systems are those that use an Nd:YAG laser (lambda = 1.064 microns) and high-order pulse position modulator (PPM) and direct detection, and those that use a CO2 laser (lambda = 10.6 microns) and phase shifting keying homodyne modulation and coherent detection. For example, for a PPM order of M = 64 and an rms pointing accuracy of 0.4 microrad, an Nd:YAG system can be used to implement a 100-Mbps Mars link with a 40-cm transmitting telescope, a 20-W laser, and a 10-m receiving photon bucket. Under the same conditions, a CO2 system would require 3-m transmitting and receiving telescopes and a 32-W laser to implement such

  6. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  7. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  8. Review of the potential of optical technologies for cancer diagnosis in neurosurgery: a step toward intraoperative neurophotonics.

    PubMed

    Vasefi, Fartash; MacKinnon, Nicholas; Farkas, Daniel L; Kateb, Babak

    2017-01-01

    Advances in image-guided therapy enable physicians to obtain real-time information on neurological disorders such as brain tumors to improve resection accuracy. Image guidance data include the location, size, shape, type, and extent of tumors. Recent technological advances in neurophotonic engineering have enabled the development of techniques for minimally invasive neurosurgery. Incorporation of these methods in intraoperative imaging decreases surgical procedure time and allows neurosurgeons to find remaining or hidden tumor or epileptic lesions. This facilitates more complete resection and improved topology information for postsurgical therapy (i.e., radiation). We review the clinical application of recent advances in neurophotonic technologies including Raman spectroscopy, thermal imaging, optical coherence tomography, and fluorescence spectroscopy, highlighting the importance of these technologies in live intraoperative tissue mapping during neurosurgery. While these technologies need further validation in larger clinical trials, they show remarkable promise in their ability to help surgeons to better visualize the areas of abnormality and enable safe and successful removal of malignancies.

  9. Technologies for manufacturing of high angular resolution multilayer coated optics for the New Hard X-ray Mission

    NASA Astrophysics Data System (ADS)

    Orlandi, A.; Basso, S.; Borghi, G.; Binda, R.; Citterio, O.; Grisoni, G.; Kools, J.; Marioni, F.; Missaglia, N.; Negri, B.; Negri, R.; Pareschi, G.; Raimondi, L.; Ritucci, A.; Salmaso, B.; Sironi, G.; Spiga, D.; Subranni, R.; Tagliaferri, G.; Valsecchi, G.; Vernani, D.

    2011-05-01

    In the frame of the technology development to be used for the Optical Payload of next future X-ray missions (such as e.g. New Hard X-ray Mission-ASI), a new set of manufacturing techniques were finalized by Media Lario Technologies (MLT), in collaboration with the Italian Space Agency (ASI) and the Brera Astronomical Observatory (INAF/OAB). The set of new technologies includes master manufacturing machines and processes, electroforming method, a vertical optical bench and metrology machines to support manufacturing and integration of mirrors. A magnetron sputtering PVD machine was upgraded and a Pt/C development study has been performed on the basis of the W/Si results obtained in the first phase of the study. New manufacturing technologies for highly accurate masters were developed and tested by mean of two full-size masters together with several dummies. A number of ultrathin Nickel-Cobalt focusing mirrors were manufactured via galvanic replication process from the masters and coated with Pt/C multilayer. Tests on substrate material, roughness and shape of the shell together with analysis on specimens were performed. Tests with AFM and XRR supported the development of the Pt/C multilayer which is the enabling technology for focusing high energy X-Rays. Several mirror shells were integrated into two demonstrator modules to assess the whole manufacturing process up to optical payload integration. The summary of the results from manufacturing and testing of specimens and mirror shells is reported in this paper together with a description of the technologies now available at MLT.

  10. Optical fiber chemical sensors with sol-gel derived nanomaterials for monitoring high temperature/high pressure reactions in clean energy technologies

    NASA Astrophysics Data System (ADS)

    Tao, Shiquan

    2010-04-01

    The development of sensor technologies for in situ, real time monitoring the high temperature/high pressure (HTP) chemical processes used in clean energy technologies is a tough challenge, due to the HTP, high dust and corrosive chemical environment of the reaction systems. A silica optical fiber is corrosive resistance, and can work in HTP conditions. This paper presents our effort in developing fiber optic sensors for in situ, real time monitoring the concentration of trace ammonia and hydrogen in high temperature gas samples. Preliminary test results illustrate the feasibility of using fiber optic sensor technologies for monitoring HTP processes for next generation energy industry.

  11. Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable.

    DTIC Science & Technology

    1979-10-26

    THRU SEPTEMBER 30, 1979 MAY 7 1980 A APPROVED FOR PUBLIC RELEASE ; DISTRIBUTION UNLIMITED I ORADCOM SARMY COMMUNICATION RESEARCH & DEVELOPMENT COMMAND...and optical testing of the first engineering sample. (2) Facilitization: a . High speed strander setup and operation, Extruder setup, -J Fiber optic...R. McDevitt, Director, Program Manager Piber Optics R&D a -nd Systems Approved for public release; distribution unlimited. Roanoke, Virginia . .c 2 ;i

  12. Mirror-based surface optical input/output technology with precise and arbitrary coupling angle for silicon photonic application

    NASA Astrophysics Data System (ADS)

    Noriki, Akihiro; Amano, Takeru; Mori, Masahiko; Sakakibara, Yoichi

    2017-04-01

    Mirror-based surface optical coupling is an attractive technology for the optical input/output of Si photonics. For the practical use of the mirror-based surface optical coupling, we evaluated its coupling angle controllability. Different angular mirrors were integrated into 3 × 3-µm-square single-mode silicon oxynitride optical waveguides on Si substrates. Near- and far-field patterns of optical beams output from the mirrors were measured to evaluate the beam characteristics and coupling angles. We successfully controlled the coupling angle over a wide range of more than 20° without beam characteristic variation, and perfect vertical output, which is difficult to achieve using grating couplers, was successfully demonstrated. The coupling angle error was less than ±1°, which was sufficiently small to ignore additional coupling loss. The wavelength dependence of the coupling angle was also evaluated and found to be less than ±0.5° over wide wavelength ranges of 1.26–1.36 and 1.52–1.62 µm.

  13. Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable. Revision.

    DTIC Science & Technology

    1982-04-01

    samples. The Optic Fiber samples were returned to ITT, Electro-Optical Products Division for a complete inspection and test evaluation. B-2 Aerosoace ...complete inspection and test evaluation. 4 D-13 Aerosoace 4ese3rch .) roa𔃽tiin, 4oanoke. Ia. CERTIFICATION We certify that this test data is a true

  14. Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part II. Laser noise considerations.

    PubMed

    Wilde, Jeffrey P; Tselikov, Alexander A; Gray, George R; Zhang, Yongwei; Gangopadhyay, Shubhagat

    2002-02-10

    A magneto-optical data storage system utilizing single-mode fiber is capable of providing high signal-to-noise ratio (SNR) recording if laser noise sources are properly managed. In particular, mode partition noise (MPN) associated with use of a Fabry-Perot laser diode can be a significant problem in a fiber-based system. The various mechanisms leading to MPN as well as to laser phase noise are discussed in the context of a system constructed with polarization-maintaining fiber. The primary noise mechanisms include spurious fiber-endface reflections and errors in the quarter-wave plate on the recording head. An understanding of these effects is essential for fabrication of a fiber-based recording system with suitable SNR performance.

  15. Get smart, go optical: example uses of optical fibre sensing technology for production optimisation and subsea asset monitoring

    NASA Astrophysics Data System (ADS)

    Staveley, Chris

    2014-06-01

    With the growth in deep-water oil and gas production, condition monitoring of high-value subsea assets to give early warning of developing problems is vital. Offshore operators can then transport and deploy spare parts before a failure occurs, so minimizing equipment down-time, and the significant costs associated with unscheduled maintenance. Results are presented from a suite of tests in which multiple elements of a subsea twin-screw pump and associated electric motor were monitored using a fibre optic sensing system based on fibre Bragg gratings (FBG) that simultaneously measured dynamic strain on the main rotor bearings, pressure and temperature of the lubricating oil, distributed temperature through the motor stator windings and vibration of the pump and motor housings.

  16. Fabrication of fluorinated polyimide optical waveguides by micropen direct writing technology

    NASA Astrophysics Data System (ADS)

    Wang, Zemin; Cao, Yu; Li, Xiangyou; Gao, Ming; Zeng, Xiaoyan

    2011-07-01

    A novel and cheap direct writing method based on the micropen has been developed to fabricate fluorinated polyimide stripe optical waveguides on Si/SiO 2 wafers. The overall design, starting material, micropen direct writing system and fabrication processes of the stripe optical waveguides are presented. The effects of the key direct writing parameters, such as the tip-to-substrate distance, extrusive gas pressure, writing speed and viscosity of the polyamic acid, on the dimension and morphology of the stripe optical waveguides are discussed in detail. After deposition by the micropen system and baking process, the fluorinated polyimide stripe optical waveguides with good morphology and surface quality can be fabricated using the optimal parameters. The propagation losses at the wavelength of 1.55 μm are in the range of 1.4-3.5 dB cm -1 as characterized by different length combinations of the strip optical waveguides.

  17. Applications of Emerging Parallel Optical Link Technology to High Energy Physics Experiments

    SciTech Connect

    Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.; /Fermilab

    2011-09-01

    Modern particle detectors depend upon optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from the telecommunications and storage area network market segments. These links support data transfers in each direction at rates up to 120 Gbps in packages that minimize or even eliminate edge connector requirements. Emerging products include a class of devices known as optical engines which permit assembly of the optical transceivers in close proximity to the electrical interfaces of ASICs and FPGAs which handle the data in parallel electrical format. Such assemblies will reduce required printed circuit board area and minimize electromagnetic interference and susceptibility. We will present test results of some of these parallel components and report on the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.

  18. The key technologies research on the large field-of-view and high resolution optical synthesis telescope

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Zhu, Yongkai; Ma, Wantai; Cai, Jiahui; Zhang, Yajing; Tian, Gui Yun

    2008-08-01

    It briefly introduces the international development status of the high resolution for air-to-ground remote sensing satellite. High resolution for the air-to-ground observation is also the civil and martial pursuing target. Because of the rising cost along with the large-diameter telescope, the weight, cubage will also become large. Nowadays, how to get high resolution with light weight, small cubage launch and large diameter is one of the important research directions in many countries. We raise a method of large field-of-view and high resolution optical synthesis telescope which can solve this problem. It is a co-phased segment mirrors which synthetic aperture diameter is about 1 m. Four 50cm diameter segment mirrors can fulfill the requirement. It is folded during its launch and is spread after it reaches to its working spot. In this way, it can reach the requirement of low launch weight, small launch cubage and can get high resolution observation. This method contains the key technologies of real-time UV coverage, optics design optimization, co-phase measurement and adjustment, micro-displacement sensor technology, the optics design and structure design. We explore the technology which can fulfill field-of-view of 1.86° and the resolution of 0.4m. We will discuss the UV-coverage method which includes the aperture arrangement, the relationship between the aperture number and the synthetic aperture diameter. There are much more detail calculation and analysis to it. Something is discussed about its structure design and optics design in the paper.

  19. The key technologies research on the large field-of-view and high-resolution optical synthesis telescope

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Luo, Qiufeng; Zhu, Yongkai; Ma, Wantai; Zhang, Yajing; Tian, Gui Yun

    2010-08-01

    It briefly introduces the international development status of the high resolution for air-to-ground remote sensing satellite. High resolution for the air-to-ground observation is also the civil and martial pursuing target. Because of the rising cost along with the large-diameter telescope, the weight, cubage will also become large. Nowadays, how to get high resolution with light weight, small cubage launch and large diameter is one of the important research directions in many countries. We raise a method of large field-of-view and high resolution optical synthesis telescope which can solve this problem. It is a co-phased segment mirrors which synthetic aperture diameter is about 1 m. Four 50cm diameter segment mirrors can fulfill the requirement. It is folded during its launch and is spread after it reaches to its working spot. In this way, it can reach the requirement of low launch weight, small launch cubage and can get high resolution observation. This method contains the key technologies of real-time UV coverage, optics design optimization, co-phase measurement and adjustment, micro-displacement sensor technology, the optics design and structure design. We explore the technology which can fulfill field-of-view of 1.86° and the resolution of 0.4m. We will discuss the UV-coverage method which includes the aperture arrangement, the relationship between the aperture number and the synthetic aperture diameter. There are much more detail calculation and analysis to it. Something is discussed about its structure design and optics design in the paper.

  20. High-temperature high-bandwidth fiber optic MEMS pressure-sensor technology for turbine engine component testing

    NASA Astrophysics Data System (ADS)

    Pulliam, Wade J.; Russler, Patrick M.; Fielder, Robert S.

    2002-02-01

    Acquiring accurate, transient measurements in harsh environments has always pushed the limits of available measurement technology. Until recently, the technology to directly measure certain properties in extremely high temperature environments has not existed. Advancements in optical measurement technology have led to the development of measurement techniques for pressure, temperature, acceleration, skin friction, etc. using extrinsic Fabry-Perot interferometry (EFPI). The basic operating principle behind EFPI enables the development of sensors that can operate in the harsh conditions associated with turbine engines, high-speed combustors, and other aerospace propulsion applications where the flow environment is dominated by high frequency pressure and temperature variations caused by combustion instabilities, blade-row interactions, and unsteady aerodynamic phenomena. Using micromachining technology, these sensors are quite small and therefore ideal for applications where restricted space or minimal measurement interference is a consideration. In order to help demonstrate the general functionality of this measurement technology, sensors and signal processing electronics currently under development by Luna Innovations were used to acquire point measurements during testing of a transonic fan in the Compressor Research Facility (CRF) at the Turbine Engine Research Center (TERC), WPAFB. Acquiring pressure measurements at the surface of the casing wall provides data that are useful in understanding the effects of pressure fluctuations on the operation and lifetime wear of a fan. This measurement technique is useful in both test rig applications and in operating engines where lifetime wear characterization is important. The measurements acquired during this test also assisted in the continuing development of this technology for higher temperature environments by providing proof-of-concept data for sensors based on advanced microfabrication and optical techniques.

  1. Physics Behind Optical Fiber Communications: Technologies that Drive the Internet Capacity Growth

    NASA Astrophysics Data System (ADS)

    Willner, Alan

    Optical fiber communications forms the backbone for global communications, especially as it relates to the Internet. Indeed, the Internet as we know it today would not exist without optical communications. The data transmission capacity through an optical fiber has undergone an exponential growth increase for decades, progressing from Megabits/sec to now Petabits/sec in just the past 40 years. This growth came about due to many physics advances in the field of optical fiber communications, dating back to 1966 when Sir Charles Kao proposed the idea of a communication system based on low-loss optical glass fiber. This presentation will explore the past and present physics-based crucial innovations needed for this continuing story. Specific topics to be highlighted include: (a) ultra-pure fiber that decreased the attenuation losses through glass by many orders of magnitude, (b) single-frequency lasers that defined a specific data channel that could propagate with low signal distortion, (c) Erbium-doped fiber amplifiers that had high gain and low additive noise allowing for amplifier cascades and conquering enormous distances, (d) the simultaneous transmission of multiple wavelength-division-multiplexing data channels down the optical fiber, and (e) the tackling of various dispersive and nonlinear effects that are introduced by the optical fiber itself, cause the data to degrade, and necessitate some form of compensation or management.

  2. A novel all-fiber optic flow cytometer technology for Point-of Care and Remote Environments

    NASA Astrophysics Data System (ADS)

    Mermut, Ozzy

    Traditional flow cytometry designs tend to be bulky systems with a complex optical-fluidic sub-system and often require trained personnel for operation. This makes them difficult to readily translate to remote site testing applications. A new compact and portable fiber-optic flow cell (FOFC) technology has been developed at INO. We designed and engineered a specialty optical fiber through which a square hole is transversally bored by laser micromachining. A capillary is fitted into that hole to flow analyte within the fiber square cross-section for detection and counting. With demonstrated performance benchmarks potentially comparable to commercial flow cytometers, our FOFC provides several advantages compared to classic free-space con-figurations, e.g., sheathless flow, low cost, reduced number of optical components, no need for alignment (occurring in the fabrication process only), ease-of-use, miniaturization, portability, and robustness. This sheathless configuration, based on a fiber optic flow module, renders this cytometer amenable to space-grade microgravity environments. We present our recent results for an all-fiber approach to achieve a miniature FOFC to translate flow cytometry from bench to a portable, point-of-care device for deployment in remote settings. Our unique fiber approach provides the capability to illuminate a large surface with a uniform intensity distri-bution, independently of the initial shape originating from the light source, and without loss of optical power. The CVs and sensitivities are measured and compared to industry benchmarks. Finally, integration of LEDs enable several advantages in cost, compactness, and wavelength availability.

  3. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    NASA Astrophysics Data System (ADS)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  4. NASA Armstrong Flight Research Center (AFRC) Fiber Optic Sensing System (FOSS) Technology

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Chan, Patrick; Hamory, Phil; Pena, Frank

    2014-01-01

    Attached is a power point presentation created to assist the Tech Transfer Office and the FOSS project team members in responding to inquiries from the public about the capabilities of the Fiber Optic Sensing System.

  5. Advancing adaptive optics technology: Laboratory turbulence simulation and optimization of laser guide stars

    NASA Astrophysics Data System (ADS)

    Rampy, Rachel A.

    Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and

  6. Ergonomic design considerations for an optical data link between a warfighter's head and body-worn technologies

    NASA Astrophysics Data System (ADS)

    Trew, Noel; Linn, Aaron; Nelson, Zac; Burnett, Greg; Sedillo, Mike

    2012-06-01

    Today, warfighters are burdened by a web of cables linking technologies that span the head and torso regions of the body. These cables help to provide interoperability between helmet-worn peripherals such as head mounted displays (HMDs), cameras, and communication equipment with chest-worn computers and radios. Although promoting enhanced capabilities, this cabling also poses snag hazards and makes it difficult for the warfighter to extricate himself from his kit when necessary. A newly developed wireless personal area network (WPAN), one that uses optical transceivers, may prove to be an acceptable alternative to traditional cabling. Researchers at the Air Force Research Laboratory's 711th Human Performance Wing are exploring how best to mount the WPAN transceivers to the body in order to facilitate unimpeded data transfer while also maintaining the operator's natural range of motion. This report describes the two-step research process used to identify the performance limitations and usability of a body-worn optical wireless system. Firstly, researchers characterized the field of view for the current generation of optical WPAN transceivers. Then, this field of view was compared with anthropometric data describing the range of motion of the cervical vertebrae to see if the data link would be lost at the extremes of an operator's head movement. Finally, this report includes an additional discussion of other possible military applications for an optical WPAN.

  7. National Institute of Standards and Technology measurement service of the optical properties of biomedical phantoms: Current status

    PubMed Central

    Lemaillet, Paul; Cooksey, Catherine C.; Levine, Zachary H.; Pintar, Adam L.; Hwang, Jeeseong; Allen, David W.

    2016-01-01

    The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer. PMID:27453623

  8. National Institute of Standards and Technology measurement service of the optical properties of biomedical phantoms: current status

    NASA Astrophysics Data System (ADS)

    Lemaillet, Paul; Cooksey, Catherine C.; Levine, Zachary H.; Pintar, Adam L.; Hwang, Jeeseong; Allen, David W.

    2016-03-01

    The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer.

  9. Application of Shack-Hartmann wavefront sensing technology to transmissive optic metrology

    NASA Astrophysics Data System (ADS)

    Rammage, Ron R.; Neal, Daniel R.; Copland, Richard J.

    2002-11-01

    Human vision correction optics must be produced in quantity to be economical. At the same time every human eye is unique and requires a custom corrective solution. For this reason the vision industries need fast, versatile and accurate methodologies for characterizing optics for production and research. Current methods for measuring these optics generally yield a cubic spline taken from less than 10 points across the surface of the lens. As corrective optics have grown in complexity this has become inadequate. The Shack-Hartmann wavefront sensor is a device that measures phase and irradiance of light in a single snapshot using geometric properties of light. Advantages of the Shack-Hartmann sensor include small size, ruggedness, accuracy, and vibration insensitivity. This paper discusses a methodology for designing instruments based on Shack-Hartmann sensors. The method is then applied to the development of an instrument for accurate measurement of transmissive optics such as gradient bifocal spectacle lenses, progressive addition bifocal lenses, intrarocular devices, contact lenses, and human corneal tissue. In addition, this instrument may be configured to provide hundreds of points across the surface of the lens giving improved spatial resolution. Methods are explored for extending the dynamic range and accuracy to meet the expanding needs of the ophthalmic and optometric industries. Data is presented demonstrating the accuracy and repeatability of this technique for the target optics.

  10. Current developments in optical engineering and commercial optics

    SciTech Connect

    Fischer, R.E.; Pollicove, H.M.; Smith, W.J.

    1989-01-01

    This book is covered under the following topics: Commercial Optics Techniques; Optical Design and Engineering; Special Systems Requirements; Micro-Optics and Related Technologies; and Micro-Optics and Other Technologies.

  11. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology.

    PubMed

    Aravanis, Alexander M; Wang, Li-Ping; Zhang, Feng; Meltzer, Leslie A; Mogri, Murtaza Z; Schneider, M Bret; Deisseroth, Karl

    2007-09-01

    Neural interface technology has made enormous strides in recent years but stimulating electrodes remain incapable of reliably targeting specific cell types (e.g. excitatory or inhibitory neurons) within neural tissue. This obstacle has major scientific and clinical implications. For example, there is intense debate among physicians, neuroengineers and neuroscientists regarding the relevant cell types recruited during deep brain stimulation (DBS); moreover, many debilitating side effects of DBS likely result from lack of cell-type specificity. We describe here a novel optical neural interface technology that will allow neuroengineers to optically address specific cell types in vivo with millisecond temporal precision. Channelrhodopsin-2 (ChR2), an algal light-activated ion channel we developed for use in mammals, can give rise to safe, light-driven stimulation of CNS neurons on a timescale of milliseconds. Because ChR2 is genetically targetable, specific populations of neurons even sparsely embedded within intact circuitry can be stimulated with high temporal precision. Here we report the first in vivo behavioral demonstration of a functional optical neural interface (ONI) in intact animals, involving integrated fiberoptic and optogenetic technology. We developed a solid-state laser diode system that can be pulsed with millisecond precision, outputs 20 mW of power at 473 nm, and is coupled to a lightweight, flexible multimode optical fiber, approximately 200 microm in diameter. To capitalize on the unique advantages of this system, we specifically targeted ChR2 to excitatory cells in vivo with the CaMKIIalpha promoter. Under these conditions, the intensity of light exiting the fiber ( approximately 380 mW mm(-2)) was sufficient to drive excitatory neurons in vivo and control motor cortex function with behavioral output in intact rodents. No exogenous chemical cofactor was needed at any point, a crucial finding for in vivo work in large mammals. Achieving modulation

  12. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology

    NASA Astrophysics Data System (ADS)

    Aravanis, Alexander M.; Wang, Li-Ping; Zhang, Feng; Meltzer, Leslie A.; Mogri, Murtaza Z.; Schneider, M. Bret; Deisseroth, Karl

    2007-09-01

    Neural interface technology has made enormous strides in recent years but stimulating electrodes remain incapable of reliably targeting specific cell types (e.g. excitatory or inhibitory neurons) within neural tissue. This obstacle has major scientific and clinical implications. For example, there is intense debate among physicians, neuroengineers and neuroscientists regarding the relevant cell types recruited during deep brain stimulation (DBS); moreover, many debilitating side effects of DBS likely result from lack of cell-type specificity. We describe here a novel optical neural interface technology that will allow neuroengineers to optically address specific cell types in vivo with millisecond temporal precision. Channelrhodopsin-2 (ChR2), an algal light-activated ion channel we developed for use in mammals, can give rise to safe, light-driven stimulation of CNS neurons on a timescale of milliseconds. Because ChR2 is genetically targetable, specific populations of neurons even sparsely embedded within intact circuitry can be stimulated with high temporal precision. Here we report the first in vivo behavioral demonstration of a functional optical neural interface (ONI) in intact animals, involving integrated fiberoptic and optogenetic technology. We developed a solid-state laser diode system that can be pulsed with millisecond precision, outputs 20 mW of power at 473 nm, and is coupled to a lightweight, flexible multimode optical fiber, ~200 µm in diameter. To capitalize on the unique advantages of this system, we specifically targeted ChR2 to excitatory cells in vivo with the CaMKIIα promoter. Under these conditions, the intensity of light exiting the fiber (~380 mW mm-2) was sufficient to drive excitatory neurons in vivo and control motor cortex function with behavioral output in intact rodents. No exogenous chemical cofactor was needed at any point, a crucial finding for in vivo work in large mammals. Achieving modulation of behavior with optical control of

  13. Migration to Broadband and Ubiquitous Environments by Using Fiber-Optic Technologies in Access/Home Areas

    NASA Astrophysics Data System (ADS)

    Oguchi, Kimio

    2016-03-01

    The recent dramatic advances in information and communication technologies have yielded new environments. However, adoption still differs area by area. To realize the future broadband environment that everyone can enjoy everywhere, several technical issues have to be resolved before network penetration becomes ubiquitous. One such key is the use of fiber optics for the home and mobile services. This article overviews initial observations drawn from numerical survey data gathered over the last decade in several countries/regions, and gives some example scenarios for network/service evolution. One result implies that implementing new/future services must consider the gross domestic product impact.

  14. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    PubMed

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  15. The optical fiber monitoring system of environmental parameters using multiwavelength and differential absorption technology

    NASA Astrophysics Data System (ADS)

    Wu, Kaihua; Yan, Kuang; Huang, Zuohua; Wang, Ruirong

    2005-02-01

    Air pollution monitoring is an important aspect of environmental protection. The pollutants to be detected are usually more than one in air or smoke monitoring. Researching new techniques that can meet the demand of detecting the pollutants at the same time is important and necessary. The paper researched the method of detecting multi-parameters in one optical fiber gas sensing system. The system used multi-wavelength and time division multiplex technique to detect the concentration of SO2 and NO2 simultaneously based on gas' spectra absorption principle. The light differential absorption formula was deduced. The two strong and weak absorbing wavelengths were chosen as signal and reference relatively. To every gas, optical coupler and narrow-band optical filters were used to generate signal and reference light from a high brightness LED. The central wavelength of filters is identical to the strong or weak absorption wavelength respectively. The multi-channel signals were switched to one light beam using a 4x1 optical switch controlled by computer in designed time sequence. The output light after absorbing by gas was coupled on a high sensitivity PIN detector. To achieve high detecting sensitivity, the light source was modulated by a pulse signal. The power and temperature control circuits were also used to stabilize the output power and wavelength of light source. After differential absorption process, the concentration of different gas can be deduced in one set of common optical and electrical sensing system.

  16. Research on spectral resource optimization and self-healing technology of hybrid optical fiber sensing network

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Sang, Mei; Ge, Chunfeng; Chen, Guanghui; Liu, Tiegen

    2015-08-01

    We propose an optical-fiber-sensing-network (OFSN) to allow hybrid fiber sensors working in the same network and it achieves self-healing function. The discrete and distributed optical fiber sensors can be connected in sub-layers of the network. WDM-OTDM technique is introduced to convert multi-wavelengths of light source into a specific arranged wavelength in each sub-layer. Thus every sub-layer can share the system spectrum resources, and sensing signals of each sub-layer are transmitted together in the backbone network. To achieve self-healing function, double-ring structure is adopted in the backbone network. Node microprocessor program is designed to make switching to the protect fiber when working fiber is broken. The experimental backbone setup of the network demonstrates the practical reliability and intelligence of the optical sensing network.

  17. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    NASA Astrophysics Data System (ADS)

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  18. New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology

    PubMed Central

    Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging. PMID:24696850

  19. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology.

    PubMed

    Camino, Acner; Zhang, Miao; Gao, Simon S; Hwang, Thomas S; Sharma, Utkarsh; Wilson, David J; Huang, David; Jia, Yali

    2016-10-01

    Artifacts introduced by eye motion in optical coherence tomography angiography (OCTA) affect the interpretation of images and the quantification of parameters with clinical value. Eradication of such artifacts in OCTA remains a technical challenge. We developed an algorithm that recognizes five different types of motion artifacts and used it to evaluate the performance of three motion removal technologies. On en face maximum projection of flow images, the summed flow signal in each row and column and the correlation between neighboring rows and columns were calculated. Bright line artifacts were recognized by large summed flow signal. Drifts, distorted lines, and stretch artifacts exhibited abnormal correlation values. Residual lines were simultaneously a local maximum of summed flow and a local minimum of correlation. Tracking-assisted scanning integrated with motion correction technology (MCT) demonstrated higher performance than tracking or MCT alone in healthy and diabetic eyes.

  20. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology

    PubMed Central

    Camino, Acner; Zhang, Miao; Gao, Simon S.; Hwang, Thomas S.; Sharma, Utkarsh; Wilson, David J.; Huang, David; Jia, Yali

    2016-01-01

    Artifacts introduced by eye motion in optical coherence tomography angiography (OCTA) affect the interpretation of images and the quantification of parameters with clinical value. Eradication of such artifacts in OCTA remains a technical challenge. We developed an algorithm that recognizes five different types of motion artifacts and used it to evaluate the performance of three motion removal technologies. On en face maximum projection of flow images, the summed flow signal in each row and column and the correlation between neighboring rows and columns were calculated. Bright line artifacts were recognized by large summed flow signal. Drifts, distorted lines, and stretch artifacts exhibited abnormal correlation values. Residual lines were simultaneously a local maximum of summed flow and a local minimum of correlation. Tracking-assisted scanning integrated with motion correction technology (MCT) demonstrated higher performance than tracking or MCT alone in healthy and diabetic eyes. PMID:27867702

  1. Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable.

    DTIC Science & Technology

    1981-10-01

    SIMA 2 -w A.-L 4 . .’*. . 4 4. . . . .e am CHOPUUW VARIALE -I A LS- H 𔃺- - L TOW PMM POMUR OO 1.3S 16133 4.3.1 Fungus Test Fungus testing was conducted...optical fibers contra- helically laid around a polyurethane coated Kevlare central mem- ber. A jacket of polyurethane is extruded over the optical core... helically around the polyurethane Kevlar* jacketed central stength member. A high speed single twist closing unit equipped with a 13-bay neutralizing

  2. Training course on optical telecommunication and multimedia technologies for specialists in endoscopic video surgery

    NASA Astrophysics Data System (ADS)

    Agliullin, Arthur F.; Gusev, Valery F.; Morozov, Oleg G.; Samigullin, Rustem R.; Akul'Shin, Alexander, IV.; Bagapov, Nail N.

    2010-12-01

    The program of courses is recommended for the experts working in endoscopy area, surgery, diagnostics, to developers of optical, optoelectronic and electronic equipment, and also for students and the post-graduate students of telecommunication high schools in addition trained on specializations of biomedical engineering. It urged to help the future researcher, engineer and doctor to understand mechanisms of images formation and display, to understand more deeply procedures of their processing and transfer on telecommunication channels of the various natures, to master modern reports of record and video and audio information reproduction. The separate section is devoted to questions of designing of surgical toolkit compatible with fiber-optical endoscopes.

  3. Training course on optical telecommunication and multimedia technologies for specialists in endoscopic video surgery

    NASA Astrophysics Data System (ADS)

    Agliullin, Arthur F.; Gusev, Valery F.; Morozov, Oleg G.; Samigullin, Rustem R.; Akul'shin, Alexander, Iv.; Bagapov, Nail N.

    2011-04-01

    The program of courses is recommended for the experts working in endoscopy area, surgery, diagnostics, to developers of optical, optoelectronic and electronic equipment, and also for students and the post-graduate students of telecommunication high schools in addition trained on specializations of biomedical engineering. It urged to help the future researcher, engineer and doctor to understand mechanisms of images formation and display, to understand more deeply procedures of their processing and transfer on telecommunication channels of the various natures, to master modern reports of record and video and audio information reproduction. The separate section is devoted to questions of designing of surgical toolkit compatible with fiber-optical endoscopes.

  4. On the use of optical fiber Bragg grating (FBG) sensor technology for strain modal analysis

    NASA Astrophysics Data System (ADS)

    Peeters, Bart; dos Santos, Fábio Luis Marques; Pereira, Andreia; Araujo, Francisco

    2014-05-01

    This paper discusses the use of optical fiber Bragg grating (FBG) strain sensors for structural dynamics measurements. For certain industrial applications, there is an interest to use strain sensors rather than or in combination with accelerometers for experimental modal analysis. Classical electrical strain gauges can be used hereto, but optical strain sensors are an interesting alternative with some very specific advantages. This paper gives an overview of dynamic strain measurements in industrial applications, discusses the benefits of FBG sensors and reviews their measurement principle. Finally, the concept of strain modal analysis is introduced and a helicopter main rotor blade vibration testing and analysis case study is presented.

  5. Optically controlled phased-array antenna technology for space communication systems

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Bhasin, Kul B.

    1988-01-01

    Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.

  6. Study of optical inter-orbit communication technology for next generation space data-relay satellite

    NASA Astrophysics Data System (ADS)

    Hanada, Tatsuyuki; Yamakawa, Shiro; Kohata, Hiroki

    2011-03-01

    JAXA has made efforts to build the next generation space data relay network. The inter-orbit optical links are essential segments for such a network in order to fulfill requirements of high resolution earth observation satellite applications (such as Advanced Land Observing Satellite (ALOS) follow-on missions by JAXA) and manned space flight missions. JAXA's R&D activities for advanced optical communication terminals are introduced. The target of the terminals is to establish the optical data relay link between the LEO user satellite and the GEO data relay satellite up to 2.5 Gbps of data-rate. JAXA has started the development of a Bread Board Model (BBM) of the terminal in order to evaluate the feasibility of the terminal. The terminal is aimed to be small and light-weighted, which is helpful for an onboard capability of the LEO satellite. Furthermore, the modulation of carrier and the acquisition and tracking sequence are selected in order to achieve the interoperability of optical space communication systems. We recently study the feasibility of the acquisition and tracking sensor, the waveguide high power amplifier for a transmitter and the homodyne coherent receiver etc. in the development of BBM.

  7. EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY

    EPA Science Inventory

    EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...

  8. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  9. Coherent optical imaging and guided interventions in breast cancer: translating technology into clinical applications

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.; Nguyen, Freddy T.; Zysk, Adam M.; Chaney, Eric J.; Kotynek, Jan G.; Oliphant, Uretz J.; Bellafiore, Frank J.; Rowland, Kendrith M.; Johnson, Patricia A.

    2008-04-01

    Breast cancer continues to be one of the most widely diagnosed forms of cancer in women and the second leading type of cancer deaths for women. The metastatic spread and staging of breast cancer is typically evaluated through the nodal assessment of the regional lymphatic system, and often this is performed during the surgical resection of the tumor mass. The recurrence rate of breast cancer is highly dependent on several factors including the complete removal of the primary tumor during surgery, and the presence of cancer cells in involved lymph nodes. Hence, developing means to more accurately resect tumor cells, along with the tumor mass, and ensure negative surgical margins, offers the potential to impact outcomes of breast cancer. The use of diffuse optical tomography has been applied for screening optical mammography applications as an alternative to standard x-ray mammography. The use of coherence ranging and coherent optical imaging in breast tissue has also found numerous applications, including intra-operative assessment of tumor margin status during lumpectomy procedures, assessment of lymph node changes for staging metastatic spread, and for guiding needle-biopsy procedures. The development, pre-clinical testing, and translation of techniques such as low-coherence interferometry (LCI) and optical coherence tomography (OCT) into clinical applications in breast cancer is demonstrated in these feasibility studies.

  10. 77 FR 73456 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... for the measurement or control of temperature, pressure, strain, vibration, acceleration, and any..., distribute or store electrical energy; the field of use microphones for the measurement of sound pressure... Fiber Optic Temperature Sensors, Navy Case No. 98,030.//U.S. Patent Application No....

  11. An optical fiber viscometer based on long-period fiber grating technology and capillary tube mechanism.

    PubMed

    Wang, Jian-Neng; Tang, Jaw-Luen

    2010-01-01

    This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15-213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer.

  12. Physical and technological aspects of compact He-Ne/CH4 optical frequency standards of highest performance

    NASA Astrophysics Data System (ADS)

    Gubin, Mikhail; Petrukhin, Evgenyi A.; Krylova, Daria D.; Kovalchuk, Evgeny V.; Tyurikov, Dimitry A.; Shelkovnikov, A.

    2001-05-01

    The new generation of transportable He-Ne/CH4 ((lambda) equals 3.39 micrometer) optical frequency standards (TOFS) stabilized over resolved magnetic hyperfine structure (MHFS) and recoil doublet of F2(2) methane line is considered. The main limitations of the performance of present devices are caused by the residual first order Doppler effect manifestation. Several physical and technological improvements are in progress for reaching the level of 10-13 - 10-14 in frequency reproducibility/repeatability, while a relative frequency stability may exceed the stability of H-maser at averaging times (10-3 - 104) s. In combination with 'fs-comb generators' the compact and precise He-Ne/CH4 standards will be able to transfer their excellent short and middle term stability (10-14 per sec now, 10-15 per sec in near future) to the desired range of spectrum. In such a way they can play a role of narrow spectrum interrogative oscillators for super accurate frequency standards based on laser cooled atoms/ions or can be used as one of the optical references for fs-comb optical synthesizers.

  13. Super-Nyquist shaping and processing technologies for high-spectral-efficiency optical systems

    NASA Astrophysics Data System (ADS)

    Jia, Zhensheng; Chien, Hung-Chang; Zhang, Junwen; Dong, Ze; Cai, Yi; Yu, Jianjun

    2013-12-01

    The implementations of super-Nyquist pulse generation, both in a digital field using a digital-to-analog converter (DAC) or an optical filter at transmitter side, are introduced. Three corresponding signal processing algorithms at receiver are presented and compared for high spectral-efficiency (SE) optical systems employing the spectral prefiltering. Those algorithms are designed for the mitigation towards inter-symbol-interference (ISI) and inter-channel-interference (ICI) impairments by the bandwidth constraint, including 1-tap constant modulus algorithm (CMA) and 3-tap maximum likelihood sequence estimation (MLSE), regular CMA and digital filter with 2-tap MLSE, and constant multi-modulus algorithm (CMMA) with 2-tap MLSE. The principles and prefiltering tolerance are given through numerical and experimental results.

  14. [Research on key technologies of all fiber optic Fourier transform spectrometer].

    PubMed

    Wang, An; Zhu, Ling; Zhang, Long; Liu, Yong; Zhu, Zhen; Li, Zhi-Gang; Wu, Jian-Dong; Fan, Yan-Ping

    2009-07-01

    A noval all fiber optic Fourier transform spectrometer based on single mode fiber Mach-Zehnder interferometer is reported. The authors designed a piezoelectric optical phase modulator with two centimeter scan scale, which was used to replace the moving mirror of traditonal Fourier transform spectrometer. The 1 310 nm DFB laser was used as reference light source to make equal interval sampling of test light source's interferogram, and to eliminate errors of nonlinear modulation. Through making the inverse Fourier transform to test light source's interferogram, the authors obtained the spectrum of test source. The spectrum of ASE broadband light source was measured by FFTS system, and the experiment result agrees with that tested by grating spectrometer. Finally, the authors utilized fiber grating as sample to measure the resolution of FFTS system, and the spectral resolution is 0.78 cm(-1).

  15. Three-gas detection system with IR optical sensor based on NDIR technology

    NASA Astrophysics Data System (ADS)

    Tan, Qiulin; Tang, Licheng; Yang, Mingliang; Xue, Chenyang; Zhang, Wendong; Liu, Jun; Xiong, Jijun

    2015-11-01

    In this paper, a three-gas detection system with a environmental parameter compensation method is proposed based on Non-dispersive infra-red (NDIR) technique, which can be applied to detect multi-gas (methane, carbon dioxide and carbon monoxide). In this system, an IR source and four single-channel pyroelectric sensors are integrated in the miniature optical gas chamber successfully. Inner wall of the chamber coated with Au film is designed as paraboloids. The infrared light is reflected twice before reaching to detectors, thus increasing optical path. Besides, a compensation method is presented to overcome the influence in variation of environment (ambient temperature, humidity and pressure), thus leading to improve the accuracy in gas detection. Experimental results demonstrated that detection ranges are 0-50,000 ppm for CH4, 0-44,500 ppm for CO, 0-48,000 ppm for CO2 and the accuracy is ±0.05%.

  16. Optical assay technology for safeguards. Quarterly report, January 1--March 31, 1992

    SciTech Connect

    Edelson, M.C.; Lee, S.C.; Lipert, R.J.; Murray, G.M.; Schuler, R.A.; Weeks, S.J.; Wang, Z.M.

    1993-05-01

    Research conducted in the Ames Laboratory Nuclear Safeguards and Security Program during the period January 1, 1992 to March 31, 1992 is reviewed. Work in applying optical spectroscopy to the demonstration of actinides and related elements in gas phase is discussed. The application of diode lasers to the measurement of an actinide (U) and the rate-{pi}earth elements by optogalvanic spectrometry is discussed.

  17. Gas sensor technology at Sandia National Laboratories: Catalytic gate, Surface Acoustic Wave and Fiber Optic Devices

    SciTech Connect

    Hughes, R.C.; Moreno, D.J.; Jenkins, M.W.; Rodriguez, J.L.

    1993-10-01

    Sandia`s gas sensor program encompasses three separate electronic platforms: Acoustic Wave Devices, Fiber Optic Sensors and sensors based on silicon microelectronic devices. A review of most of these activities was presented recently in a article in Science under the title ``Chemical Microsensors.`` The focus of the program has been on understanding and developing the chemical sensor coatings that are necessary for using these electronic platforms as effective chemical sensors.

  18. Construction of a Chemical Sensor/Instrumentation Package Using Fiber Optic and Miniaturization Technology

    NASA Technical Reports Server (NTRS)

    Newton, R. L.

    1999-01-01

    The objective of this research was to construct a chemical sensor/instrumentation package that was smaller in weight and volume than conventional instrumentation. This reduction in weight and volume is needed to assist in further reducing the cost of launching payloads into space. To accomplish this, fiber optic sensors, miniaturized spectrometers, and wireless modems were employed. The system was evaluated using iodine as a calibration analyte.

  19. Optical biosensor technologies for molecular diagnostics at the point-of-care

    NASA Astrophysics Data System (ADS)

    Schotter, Joerg; Schrittwieser, Stefan; Muellner, Paul; Melnik, Eva; Hainberger, Rainer; Koppitsch, Guenther; Schrank, Franz; Soulantika, Katerina; Lentijo-Mozo, Sergio; Pelaz, Beatriz; Parak, Wolfgang; Ludwig, Frank; Dieckhoff, Jan

    2015-05-01

    Label-free optical schemes for molecular biosensing hold a strong promise for point-of-care applications in medical research and diagnostics. Apart from diagnostic requirements in terms of sensitivity, specificity, and multiplexing capability, also other aspects such as ease of use and manufacturability have to be considered in order to pave the way to a practical implementation. We present integrated optical waveguide as well as magnetic nanoparticle based molecular biosensor concepts that address these aspects. The integrated optical waveguide devices are based on low-loss photonic wires made of silicon nitride deposited by a CMOS compatible plasma-enhanced chemical vapor deposition (PECVD) process that allows for backend integration of waveguides on optoelectronic CMOS chips. The molecular detection principle relies on evanescent wave sensing in the 0.85 μm wavelength regime by means of Mach-Zehnder interferometers, which enables on-chip integration of silicon photodiodes and, thus, the realization of system-on-chip solutions. Our nanoparticle-based approach is based on optical observation of the dynamic response of functionalized magneticcore/ noble-metal-shell nanorods (`nanoprobes') to an externally applied time-varying magnetic field. As target molecules specifically bind to the surface of the nanoprobes, the observed dynamics of the nanoprobes changes, and the concentration of target molecules in the sample solution can be quantified. This approach is suitable for dynamic real-time measurements and only requires minimal sample preparation, thus presenting a highly promising point-of-care diagnostic system. In this paper, we present a prototype of a diagnostic device suitable for highly automated sample analysis by our nanoparticle-based approach.

  20. Application of Optical Disc Databases and Related Technology to Public Access Settings

    DTIC Science & Technology

    1992-03-01

    computer based CD-ROM instruction tool. CD-ROM Professional 3, no. 6: 12-15. Harter , Stephen P. and Susan M. Jackson. 1988. Optical disc systems in...incumbent upon the reference librarian to assist the patron in matching his/her research needs to the resources available ( Harter and Jackson 1988, 521...users rather than serving them." Harter and Jackson (1988, 521) assert that librarians should be aggressive in assisting users to identify the reference

  1. Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable.

    DTIC Science & Technology

    1980-04-26

    OPTIMI:ATION RESULTS Al-I B PHASE III OPTIMIATION RESULTS BI-1 C PROGRESS AGAINST ORIGINAL PROGRAM\\IMING Cl-i Roanoke, Virginia vii J - - ŕ!l...all respooling speeds by regulating the payoff spool and braking functions. .__Roanoke, Viginia 1-11 ITT Elctro-Optical Products Division 2.0 FIBER...lu -2- ITT- Electro-Optcal Products Division__ dual caliper graduated to .001". Tests were conducted to determine the reproducibility of the station

  2. [The technology of fast spectral reconstruction in the longer optical path difference PEM-FTS].

    PubMed

    Zhang, Min-Juan; Wang, Zhao-Ba; Wang, Zhi-Bin; Li, Xiao; Li, Shi-Wei; Li, Jin-Hua

    2014-07-01

    The optical path difference of the photoelastic modulator Fourier transform spectrometers (PEM-FTS) changes rapidly and nonlinearly, while the instrument preserves the speed as high as about 10(5) interferograms per second, so that the interferograms of PEM-FTS are sampled by equal interval. In order to fleetly and accurately reconstruct these spectrums, the principle of PEM-FTS and accelerated NUFFT algorithm were studied in the present article. The accelerating NUFFT algorithm integrates interpolation based on convolution kernel and fast Fourier transform (FFT). And the velocity and precision of the algorithm are affected by the type and parameter tau of kernel function, the single-side spreading distance q and the oversampling ratio micro, and so on. In the paper these parameters were analysed, under the condition N = 1 024, q = 10, micro = 2 and tau = 1 x 10(-6) in the Gaussian scaling factor, and the accelerated NUFFT algorithm was applied to the longer optical path difference PEM-FTS to rebuild the spectrums of 632. 8 nm laser and Xenon lamp, The frequency error of the rebuilt spectrums of 632.8 nm laser is less than 0.013 52, the spent time of interpolation is less than 0.267 s. the velocity is fast and the error is less. The accelerated nonuniform fast Fourier transform is fit for the longer optical path difference PEM-FTS.

  3. Strained-silicon metrology using a multi-technology optical system

    NASA Astrophysics Data System (ADS)

    Pois, Heath; Morris, Stephen; Opsal, Jon; Paranjpe, Ajit; Cody, Nyles; Landin, Trevan

    2005-05-01

    A selection of thin Si layers grown epitaxially upon thick relaxed SiGe films were measured using the combination of optical metrology techniques available on the Opti-Probe 7341 system. The techniques used included in particular (i) angle resolved laser Beam Profile Reflectometry (BPR) with S and P polarization, (ii) Broad-band visible-DUV spectrophotometry (BB), and (iii) spectroscopic ellipsometry (SE). The measured parameters included the Ge-content of the relaxed SiGe layer, the thickness and optical dispersion of the thin Si layer, and the thickness of the native oxide layer on the strained Si. Strain in the Si layer can be recognized by a significant downwards shift in the energy of the E1 peak and in the magnitude of the E2 peak in the ɛ2 dispersion curve, which is consistent with theoretical predictions when the strain in the layer is tensile. The thickness measurements of the Si layer made by the Opti-Probe were found to be in agreement with subsequent SIMS analysis to within 5Å for the strained-Si layer. Measurement precision for thickness was <1.5Å (3σ). for the strained-Si layer. Overall, the results show that a reliable and stable measurement of Strained-Si is possible using optical metrology.

  4. Damage Resistant Optical Glasses for High Power Lasers: A Continuing Glass Science and Technology Challenge

    SciTech Connect

    Campbell, J H

    2002-08-28

    A major challenge in the development of optical glasses for high-power lasers is reducing or eliminating laser-induced damage to the interior (bulk) and the polished surface of the glass. Bulk laser damage in glass generally originates from inclusions. With the development of novel glass melting and forming processes it is now possible to make both fused silica and a suit of meta-phosphate laser glasses in large sizes ({approx}>0.5-lm diameter), free of inclusions and with high optical homogeneity ({approx} 10{sup -6}). Considerable attention also has been focused on improving the laser damage resistance to polished optical glass surfaces. Studies have shown that laser-induced damage to surfaces grows exponentially with the number of shots when illuminated with nano-second pulses at 351-nm above a given fluence threshold. A new approach for reducing and eliminating laser-induced surface damage relies on a series of post-polishing treatment steps. This damage improvement method is briefly reviewed.

  5. Wide bandwidth fiber-optic ultrasound probe in MOMS technology: Preliminary signal processing results.

    PubMed

    Vannacci, E; Granchi, S; Belsito, L; Roncaglia, A; Biagi, E

    2017-03-01

    An ultrasonic probe consisting of two optical fiber-based miniaturized transducers for wideband ultrasound emission and detection is employed for the characterization of in vitro biological tissues. In the probe, ultrasound generation is obtained by thermoelastic emission from patterned carbon films in Micro-Opto-Mechanical-System (MOMS) devices mounted on the tip of an optical fiber, whereas acousto-optical detection is performed in a similar way by a miniaturized polymeric interferometer. The microprobe presents a wide, flat bandwidth that is a very attractive feature for ultrasonic investigation, especially for tissue characterization. Thanks to the very high ultrasonic frequencies obtained, the probe is able to reveal different details of the object under investigation by analyzing the ultrasonic signal within different frequencies ranges, as shown by specific experiments performed on a patterned cornstarch flour sample in vitro. This is confirmed by measurements executed to determine the lateral resolution of the microprobe at different frequencies of about 70μm at 120MHz. Moreover, measurements performed with the wideband probe in pulsed-echo mode on a histological finding of porcine kidney are presented, on which two different spectral signal processing algorithms are applied. After processing, the ultrasonic spectral features show a peculiar spatial distribution on the sample, which is expected to depend on different ultrasonic backscattering properties of the analyzed tissues.

  6. System technology for laser-assisted milling with tool integrated optics

    NASA Astrophysics Data System (ADS)

    Hermani, Jan-Patrick; Emonts, Michael; Brecher, Christian

    2013-02-01

    High strength metal alloys and ceramics offer a huge potential for increased efficiency (e. g. in engine components for aerospace or components for gas turbines). However, mass application is still hampered by cost- and time-consuming end-machining due to long processing times and high tool wear. Laser-induced heating shortly before machining can reduce the material strength and improve machinability significantly. The Fraunhofer IPT has developed and successfully realized a new approach for laser-assisted milling with spindle and tool integrated, co-rotating optics. The novel optical system inside the tool consists of one deflection prism to position the laser spot in front of the cutting insert and one focusing lens. Using a fiber laser with high beam quality the laser spot diameter can be precisely adjusted to the chip size. A high dynamic adaption of the laser power signal according to the engagement condition of the cutting tool was realized in order not to irradiate already machined work piece material. During the tool engagement the laser power is controlled in proportion to the current material removal rate, which has to be calculated continuously. The needed geometric values are generated by a CAD/CAM program and converted into a laser power signal by a real-time controller. The developed milling tool with integrated optics and the algorithm for laser power control enable a multi-axis laser-assisted machining of complex parts.

  7. Challenges in Ecohydrological Monitoring at Soil-Vegetation Interfaces: Exploiting the Potential for Fibre Optic Technologies

    NASA Astrophysics Data System (ADS)

    Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.

    2015-12-01

    The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations

  8. Rapid Technology Assessment via Unified Deployment of Global Optical and Virtual Diagnostics

    NASA Technical Reports Server (NTRS)

    Jordan, Jeffrey D.; Watkins, A. Neal; Fleming, Gary A.; Leighty, Bradley D.; Schwartz, Richard J.; Ingram, JoAnne L.; Grinstead, Keith D., Jr.; Oglesby, Donald M.; Tyler, Charles

    2003-01-01

    This paper discusses recent developments in rapid technology assessment resulting from an active collaboration between researchers at the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base (WPAFB) and the NASA Langley Research Center (LaRC). This program targets the unified development and deployment of global measurement technologies coupled with a virtual diagnostic interface to enable the comparative evaluation of experimental and computational results. Continuing efforts focus on the development of seamless data translation methods to enable integration of data sets of disparate file format in a common platform. Results from a successful low-speed wind tunnel test at WPAFB in which global surface pressure distributions were acquired simultaneously with model deformation and geometry measurements are discussed and comparatively evaluated with numerical simulations. Intensity- and lifetime-based pressure-sensitive paint (PSP) and projection moire interferometry (PMI) results are presented within the context of rapid technology assessment to enable simulation-based R&D.

  9. Technology Development of a Fiber Optic-Coupled Laser Ignition System for Multi-Combustor Rocket Engines

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.

  10. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  11. Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-02-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  12. Measurement of Oil and Natural Gas Well Pad Enclosed Combustor Emissions Using Optical Remote Sensing Technologies

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD) and EPA Region 8 are collaborating under the EPA’s Regional Applied Research Effort (RARE) program to evaluate ground-based remote sensing technologies that could be used to characterize emis...

  13. Physics Teacher Candidates' Opinions on Fiber Optics and New Technologies in This Field

    ERIC Educational Resources Information Center

    Çildir, Sema

    2016-01-01

    Factors such as innovations brought in by the developing technology, also rapidly changing social structures casted various roles to both the student and the teacher. Therefore, it is necessary to associate such knowledge acquired in courses with implications of the knowledge in our real lives and to constantly enrich course contents, namely to…

  14. Ion implanted integrated optics (I3O) technology for planar lightwave circuits (PLCs) fabrication

    NASA Astrophysics Data System (ADS)

    Drouard, Emmanuel; Escoubas, Ludovic; Flory, Francois; Tisserand, Stephane; Roux, Laurent

    2004-02-01

    The I3O technology based on Titanium ion implantation in silica is proposed for the fabrication of passive compact PLC devices. It is demonstrated that the guided field can be easily tailored to fit standard fibers or can be compatible with the use of bent waveguides having a small radius of curvature.

  15. Measurement of Oil and Gas Well Pad Enclosed Combustor Emissions Using Optical Remote Sensing Technologies

    EPA Science Inventory

    The U.S. EPA Office of Research and Development and U.S. EPA Region 8 are collaborating to investigate the impact of energy production under the EPA’s Regional Applied Research Effort (RARE) program. As part of this effort, a research study was conducted to evaluate technologies...

  16. Low cost optical particle detection for lab on chip systems based on DVD technology

    NASA Astrophysics Data System (ADS)

    Clow, Andrew L.; Künnemeyer, Rainer; Gaynor, Paul; Sharpe, John C.

    2007-12-01

    Lab on chip (LOC) systems often require the controlled movement of individual biological cells. Automated operation of these systems usually requires detectors to track individual cells. Electrical methods involving measurement of the conductivity or permittivity of regions between two electrodes are capable of providing this information. However, these detection systems can interfere with other dielectrophoretic LOC cell handling systems. Conversely optical systems are immune to electrical interference. Many LOC devices are fabricated with only the top surface of the device being transparent to light, precluding the use of transmitted optical detection. This is often due to the use of silicon, a favoured substrate. Here we present a low cost optical system suitable for detecting biological cells in microfluidic channels. A flow cell with a fluid microlayer approximately 105+/-10μm deep was fabricated having a 100+/-10μm thick glass window, and a reflective base layer. The reflective base was formed by thermal evaporation of gold onto a substrate. Particles within a microfluidic layer were epi-illuminated by a standard (red) laser DVD pickup unit. The flow cell permitted the laser beam to be focussed onto the gold reflector, and back through a beamsplitter onto a photodiode. This system was tested using polystyrene beads that were representative of biological cells. The position of the focal point significantly affected the base line reflected signal, but this micron scale position sensitivity could be overcome using the magnetic focussing coil of the DVD pickup. In this system, polystyrene beads down to 3μm in diameter were successfully detected.

  17. Occlusal overload investigations by noninvasive technology: fluorescence microscopy and en-face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Marcauteanu, Corina; Negrutiu, Meda; Sinescu, Cosmin; Demjan, Enikö; Hughes, Michael; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2009-07-01

    The aim of this study is the early detection and monitoring of occlusal overload in bruxing patients. En-Face Optical coherence tomography (eF-OCT) and fluorescence microscopy (FM) were used for the imaging of several anterior teeth extracted from patients with light active bruxism. We found a characteristic pattern of enamel cracks, that reached the tooth surface. We concluded that the combination of the en-Face OCT and FM is a promising non-invasive alternative technique for reliable monitoring of occlusal overload.

  18. Electro-optics technology for a new generation of military and law enforcement small equipment

    NASA Astrophysics Data System (ADS)

    Giunti, C.; Cocchi, A.; Bardazzi, R.; Calamai, L.; Sabatini, M.; Torniai, E.; Livi, M.; Toccafondi, C.; Maestrini, M.; Santini, N.

    2007-10-01

    In the framework of a modernization program, supported by Italian Army, Galileo Avionica (a Finmeccanica company) has developed a family of small equipments based on suites of electro-optics sensors. These modules, designed and built by GA, range from uncooled V0x 25 micron thermal imagers, small and very compact laser rangefinders, CMOS Visible sensors to the last generation of colour OLED microdisplay based visual units. All the EO assemblies are integrated to form very small and lightweight Integrated Sight, a Multi Function Target Locator, and Dynamic Aiming System. Even if the equipments have been developed for military applications many other applications such as law enforcements or surveillance can be envisaged.

  19. Investigation on optical properties of BSA protein on single-layer graphene using terahertz spectroscopy technology

    NASA Astrophysics Data System (ADS)

    Yang, Shengxin; Du, Pengju; Sun, Yiwen

    2016-11-01

    Terahertz (THz) spectroscopy is sensitive to probe several aspects of biological systems. In THz frequency, electrically controllable Drude-like intraband absorption makes graphene a promising platform for building graphene-based optoelectronic devices such as THz biosensor. In this work, BSA protein thin films were spin-coated and incubated on single-layer graphene. IR lasers with different power were used as the pump light to stimulate the sandwich-like sample respectively. The graphene monolayer complex conductivity was calculated using the transmission method. The novel optical properties of single-layer graphene and BSA protein on graphene in the THz range will be discussed in this paper.

  20. Electro-optical equivalent calibration technology for high-energy laser energy meters

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  1. Research on key technologies of non-contact measurement system of optical aspheric surface

    NASA Astrophysics Data System (ADS)

    Liu, Gujin; Guo, Yinbiao; Liu, Jianchun

    2007-12-01

    According to the requirement of high precision measurement of optical aspheric surface, 4D measurement platform is under development. Open motion control system is adapted and multi-axes motion control card is mounted in IPC. Repeatability accuracy and positioning accuracy of the full travel of the driving unit of the platform can reach to 0.3μm and 1μm respectively. Laser sensor is droven by the ultrasonic LM (USLM) to the position needed to be tested. The fine positioning of the unit is achieved by USLM with its DC drive mode, which can perform nanometer steps proportional to the input voltages. The positioning error of the driving unit can not be prevented. In this paper, the mathematic model of error compensation of the USLM driving unit is found and software compensation is introduced. Results of compensation show that the position accuracy of this driving unit is greatly improved and can fulfill the task of optical aspheric mirror surface measurement.

  2. Fabricating Optical Fiber Imaging Sensors Using Inkjet Printing Technology: a pH Sensor Proof-of-Concept

    SciTech Connect

    Carter, J C; Alvis, R M; Brown, S B; Langry, K C; Wilson, T S; McBride, M T; Myrick, M L; Cox, W R; Grove, M E; Colston, B W

    2005-03-01

    We demonstrate the feasibility of using Drop-on-Demand microjet printing technology for fabricating imaging sensors by reproducibly printing an array of photopolymerizable sensing elements, containing a pH sensitive indicator, on the surface of an optical fiber image guide. The reproducibility of the microjet printing process is excellent for microdot (i.e. micron-sized polymer) sensor diameter (92.2 {+-} 2.2 microns), height (35.0 {+-} 1.0 microns), and roundness (0.00072 {+-} 0.00023). pH sensors were evaluated in terms of pH sensing ability ({le}2% sensor variation), response time, and hysteresis using a custom fluorescence imaging system. In addition, the microjet technique has distinct advantages over other fabrication methods, which are discussed in detail.

  3. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in cheese.

    PubMed

    González-Martín, Inmaculada; González-Pérez, Claudio; Hernández-Hierro, José Miguel; González-Cabrera, José Miguel

    2008-04-15

    In the present work the potential of near infra-red spectroscopy technology (NIRS) together with the use of a remote reflectance fibre-optic probe for the analysis of fat, moisture, protein and chlorides contents of commercial cheeses elaborated with mixtures of cow's, ewe's and goat's milk and with different curing times was examined. The probe was applied directly, with no previous sample treatment. The regression method employed was modified partial least squares (MPLS). The equations developed for the cheese samples afforded fat, moisture, protein, and chloride contents in the range 13-52%, 10-62%, 20-30%, and 0.7-2.9%, respectively. The multiple correlation coefficients (RSQ) and prediction corrected standard errors (SEP (C)) obtained were respectively 0.97 and 0.995% for fat; 0.96% and 1.640% for moisture; 0.78% and 0.760% for protein, and 0.89% and 0.112% for chlorides.

  4. Crystals of the simple and complex nickel and cobalt sulfates as optical filters for the solar-blind technology

    NASA Astrophysics Data System (ADS)

    Manomenova, V. L.; Rudneva, E. B.; Voloshin, A. E.

    2016-06-01

    Published data on the design of UV optical filters for the solar-blind technology, a new trend in instrument making, are analyzed. The phase diagrams of the nickel sulfate and cobalt sulfate crystalline hydrates, the growth methods of the simple and complex nickel and cobalt sulfates and the results of studies on their structure and properties are considered. The dehydration mechanism and the factors influencing the thermal stability of the crystals are discussed. The problem of correct measurement of the dehydration temperature is addressed. Particular attention is paid to studies of correlations between the thermal stability and structural parameters of the crystals. Development trends of the title area are outlined. The bibliography includes 119 references.

  5. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    PubMed

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method.

  6. Achieving Last-Mile Broadband Access With Passive Optical Networking Technology

    DTIC Science & Technology

    2002-09-01

    Design Mar. 2002 1 May 2002 http:www.cedmagazine.com/ced/2002/0302/03a.htm. Lafferty, Michael. “ FTTH Starts Making House Calls...subscriber line and cable modem access) that rely on infrastructures designed to carry voice and cable television signals. As a...consists of technologies (e.g. digital subscriber line and cable modem access) that rely on infrastructures designed to carry voice

  7. Night Vision and Electro-Optics Technology Transfer, 1972-1981

    DTIC Science & Technology

    1981-09-15

    night blindness can now purchase a small image intensifier to improve their vision? Image intensifiers have also been used in eye re- search, in...Avoidance for the Blind ......................................... 13 Eye Research and Image Intensifiers ....................................... 14 Low...NV&EOL’s work in these areas. NIGHT VISION TECHNOLOGIES Night Vision and the Electromagnetic Spectrum The human eye and many man-made devices such as

  8. A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces

    NASA Astrophysics Data System (ADS)

    Fanara, Carlo; Shore, Paul; Nicholls, John R.; Lyford, Nicholas; Sommer, Phil; Fiske, Peter

    2006-06-01

    The next generation of 30-100 metre diameter extremely large telescopes (ELTs) requires large numbers of hexagonal primary mirror segments. As part of the Basic Technology programme run jointly by UCL and Cranfield University, a reactive atomic plasma technology (RAP(tm)) emerged from the US Lawrence Livermore National Laboratory (LLNL), is employed for the finishing of these surfaces. Results are presented on this novel etching technology. The Inductively Coupled Plasma (ICP) operated at atmospheric pressure using argon, activates the chemical species injected through its centre and promotes the fluorine-based chemical reactions at the surface. Process assessment trials on Ultra Low Expansion (ULE(tm)) plates, previously ground at high material removal rates, have been conducted. The quality of the surfaces produced on these samples using the RAP process are discussed. Substantial volumetric material removal rates of up to 0.446(21) mm 3/s at the highest process speed (1,200 mm/min) were found to be possible without pre-heating the substrate. The influences of power transfer, process speed and gas concentration on the removal rates have been determined. The suitability of the RAP process for revealing and removing sub-surface damage induced by high removal rate grinding is discussed. The results on SiC samples are reported elsewhere in this conference.

  9. Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology.

    PubMed

    von Bultzingslöwen, Christoph; McEvoy, Aisling K; McDonagh, Colette; MacCraith, Brian D; Klimant, Ingo; Krause, Christian; Wolfbeis, Otto S

    2002-11-01

    An optical sensor for the measurement of carbon dioxide in Modified Atmosphere Packaging (MAP) applications has been developed. It is based on the fluorescent pH indicator 1-hydroxypyrene-3,6,8-trisulfonate (HPTS) immobilised in a hydrophobic organically modified silica (ormosil) matrix. Cetyltrimethylammonium hydroxide was used as an internal buffer system. Fluorescence is measured in the phase domain by means of the Dual Luminophore Referencing (DLR) sensing scheme which provides many of the advantages of lifetime-based fluorometric sensors and makes it compatible with established optical oxygen sensor technology. The long-term stability of the sensor membranes has been investigated. The sensor displays 13.5 degrees phase shift between 0 and 100% CO2 with a resolution of better than 1% and a limit of detection of 0.08%. Oxygen cross-sensitivity is minimised (0.6% quenching in air) by immobilising the reference luminophore in polymer nano-beads. Cross-sensitivity towards chloride and pH was found to be negligible. Temperature effects were studied, and a linear Arrhenius correlation between ln k and 1/T was found. The sensor is stable over a period of at least seven months and its output is in excellent agreement with a standard reference method for carbon dioxide analysis.

  10. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in bee pollen.

    PubMed

    González-Martín, I; Hernández-Hierro, J M; Barros-Ferreiro, N; Cordón Marcos, C; García-Villanova, R J

    2007-05-15

    In the present work, we study the use of near infra-red spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe for determination of the major components in bee pollen. The method allows immediate control of the bee pollen without prior sample treatment or destruction through direct application of the fibre-optic probe to the sample. The regression method employed was modified partial least squares (MPLS). The calibration results obtained using 45 samples of bee pollen allowed the measurement of protein, moisture, ash, reducing sugars, and pH with multiple correlation coefficients (RSQ) and prediction corrected standard errors (SEPC) of 0.91, 0.56% for protein, of 0.78 and 0.49% for moisture; 0.92 and 0.049% for ash; 0.81 and 1.32g of glucose/100g of bee pollen; 0.84 and 0.15 for pH, respectively. The prediction capacity of the pattern was checked by applying it to samples of unknown pollen in external validation.

  11. Free-space optics technology employed in an UMTS release 4 bearer independent core network access part

    NASA Astrophysics Data System (ADS)

    Bibac, Ionut

    2005-08-01

    The UMTS Bearer Independent Core Network program introduced the 3rd Generation Partnership Program Release 4 BICN architecture into the legacy UMTS TDM-switched network. BICN is the application of calI server archltecture for voice and circuit switched data, enabling the provisioning of traditional circuit-switched services using a packet-switched transport network. Today"s business climate has made it essential for service providers to develop a comprehensive networking strategy that means introduction of RCBICN networks. The R4-BICN solution to the evolution of the Core Network in UMTS will enable operators to significantly reduce the capital and operational costs of delivering both traditional voice sewices and new multimedia services. To build the optical backbone, which can support the third generation (3G) packetized infrastructure, the operators could choose a fibre connection, or they could retain the benefits of a wireless connectivity by using a FSO - Free Space Optical lmk, the only wireless technology available that is capable of achieving data rates up to 2.4 Gbit/s. FSO offers viable alternatives for both core transmission networks and for replacing microwaves links in NodeB - RNC access networks. The paper and presentation aim to demonstrate the manner in which FSO products and networks are employed into R4-BICN design solutions.

  12. Functional design and implementation with on-line programmable technology in optical fiber communication pulse code modulation test system

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Ding, Huan; Gao, Youtang

    2010-10-01

    In order to complete the functional design in the fiber optical communication pulse code modulation test system, taking advantage of CPLD / FPGA and SOPC technology, software solutions used to design system hardware features and control functions, thereby the whole system could attain optimisation in the logic control as well as encoding and decoding functional designs on the motherboard, enabling this system fulfill the capacities varying from simple digital simulation transmission modulate to the high speed fiber optical communication network information encoding and decoding functions. Simultaneously the application of logarithmic pressure companding technique, PCM encoding and decoding system to improve the small signal quantizing SNR(Signal-to-Noise Ratio), TP3067 adopting A rate thirteen broken lines to carry on signal pressure companding. When the signal at a certain stage, the quantizing SNR is invariable(as signal receives uniform quantization in this phase, therefore the quantizing SNR drops along with signal amplititude decreasing). Test results are as follows: ideal various signal encoding and decoding system waveforms, high performance parameters , achieve the desired designing aim, a entirely new approach to realize different kinds of information encoding and decoding model building and implementation, saving development costs, improving design efficiency, satisfactory actual results, stable operation.

  13. OFSETH: optical technologies embedded in smart medical textile for continuous monitoring of respiratory motions under magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Narbonneau, F.; De Jonckheere, J.; Jeanne, M.; Kinet, D.; Witt, J.; Krebber, K.; Paquet, B.; Depré, A.; D'Angelo, L. T.; Thiel, T.; Logier, R.

    2010-04-01

    The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patient during Magnetic Resonance Imaging (MRI) is now proved. We report how two pure optical technologies can successfully sense textile elongation between, 0% and 3%, while maintaining the stretching properties of the textile substrates for a good comfort of the patient. Investigating influence of different patients' morphology as well as textile integration issues to let free all vitals organs for medical staff actions, the OFSETH harness allows a continuous measurement of respiration movements. For example, anaesthesia for MRI examination uses the same drugs as for any surgical procedure. Even if spontaneous respiration can be preserved most of the time, spontaneous respiration is constantly at risk of being impaired by anaesthetic drugs or by upper airway obstruction. Monitoring of the breathing activity is needed to assess adequate ventilation or to detect specific obstruction patterns. Moreover artefacts due to physiological motions induce a blooming effect on the MRI result. The use of synchronisation devices allows reducing these effects. Positioned at certain strategic places according to the investigated organ, the presented sensors could constitute an efficient and adapted solution for respiratory synchronisation of the MRI acquisition.

  14. Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology

    NASA Technical Reports Server (NTRS)

    Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan

    2014-01-01

    Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.

  15. Aerospace Application of Fiber Optic Strain Measurement Technology in Cryogenic Environments

    NASA Astrophysics Data System (ADS)

    Mizutani, Tadahito; Takeda, Nobuo

    Strain and temperature measurement, especially in cryogenic environments, was studied using fiber Bragg grating (FBG) sensors for the purpose of the aerospace structural health monitoring. Although the relationship between the applied strain and the Bragg wavelength shift was the same as that at room temperature, the temperature-wavelength relationship became non-linear under cryogenic environment. In order to show the applicability of the sensor in aerospace applications, FBG strain and temperature sensors were embedded in a composite liquid hydrogen tank and measured in the cryogenic and pressurized environment. Encapsulated and small-size temperature sensors were used in this article and the temperature drift of the strain sensor was compensated by using the output of the temperature sensor. It was revealed throughout the experiment that the optical power loss could be critical in the case of existing large temperature difference. The practical solution for this issue was also discussed in this article.

  16. Implant planning and placement using optical scanning and cone beam CT technology.

    PubMed

    van der Zel, Jef M

    2008-08-01

    There is a growing interest in minimally invasive implant therapy as a standard prosthodontic treatment, providing complete restoration of occlusal function. A new treatment method (CADDIMA), which combines both computerized tomographic (CT) and optical laser-scan data for planning and design of surgical guides, implant abutments, and prosthetic devices, is described. Imaging using a "NewTom 3G" cone beam CT scanner and a modified laser triangulation scanner "D200c" is discussed, as are impression and surgical guide fabrication, which allow for flapless, precise implant placement and an accurate provisional prosthesis. The new approach gives the operator full control over the design of the implant prosthesis for planning of proper occlusal relations and shows promise for further evaluation.

  17. Perspective optical-electronic technologies for persons identification and verification on the bases of the fingerprints

    NASA Astrophysics Data System (ADS)

    Perju, Veacheslav L.; Casasent, David P.; Perju, Veacheslav V.; Saranciuc, Dorin I.

    2005-02-01

    There are presented the results of the investigations of the fingerprints" images correlation recognition in conditions of different distortions - scale, angular orientation change, image"s surface reducing, noises" influence. There are examined possibilities of the persons" identification and their verification. There are proposed and investigated the method of the fingerprints" semi-spectrums recognition and the method of the fingerprints" space-dependent recognition. There are presented the structures of the special purpose mono-channel and multi-channel optical-electronic systems and are described computing processes in the systems at the realization of the different fingerprints recognition algorithms: "FSR-1", "FSR-2", "FSDR-1", "FSDR-2", "FICR". Also, there are presented the results of systems investigations: fingerprints time recognition, systems productivity at the fingerprints comparison step, systems prices.

  18. High-speed, Low Voltage, Miniature Electro-optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol-Gel Technology

    DTIC Science & Technology

    2012-02-01

    code) 01/02/2012 FINAL 15/11/2008 - 15/11/2011 High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer... optic modulator, silicon photonics, integrated optics, electro - optic polymer, avionics, optical communications, sol-gel, nanotechnology U U U UU 25...2011 Program Manager: Dr. Charles Y-C Lee High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol

  19. Advanced manufacturing technologies for reduced cost and weight in portable ruggedized VIS-IR and multi-mode optical systems for land, sea, and air

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael; Spinazzola, Robert; Morrison, Donald; Macklin, Dennis; Marion, Jared

    2011-06-01

    Homeland security systems, special forces, unmanned aerial vehicles (UAV), and marine patrols require low cost, high performance, multi-mode visible through infrared (VIS-IR) wavelength optical systems to identify and neutralize potential threats that often arise at long ranges and under poor visibility conditions. Long range and wide spectral performance requirements favor reflective optical system design solutions. The limited field of view of such designs can be significantly enhanced by the use of catadioptric optical solutions that utilize molded or diamond point machined VIS-IR lenses downstream from reflective objective optics. A common optical aperture that services multiple modes of field-of-view, operating wavelength, and includes laser ranging and spotting, provides the highest utility and is most ideal for size and weight. Such a design also often requires fast, highly aspheric, reflective, refractive, and sometimes diffractive surfaces using high performance and aggressively light-weighted materials that demand the finest of manufacturing technologies. Visible wavelength performance sets the bar for component optical surface irregularity on the order of 20 nm RMS and surface finishes less than 3.0 nm RMS. Aluminum mirrors and structures can also be precision machined to yield "snap together alignment" or limited compensation assembly approaches to reduce cost and enhance interchangeability. Diamond point turning, die cast and investment cast mirror substrates and structures, computerized optical polishing, mirror replication, lens molding and other advanced manufacturing technologies can all be used to minimize the cost of this type of optical equipment. This paper discusses the tradeoffs among materials and process selection for catadioptric, multi-mode systems that are under development for a variety of DoD and Homeland Security applications. Several examples are profiled to illuminate the confluence of applicable design and manufacturing

  20. Temperature-insensitive pressure or strain sensing technology with fiber optic hybrid Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Lu, Lin; Liu, Shuo; Jin, Wei; Han, Zonghu; Cao, Yaohui

    2016-05-01

    The transmission spectrum characteristic of two-segment polarization maintaining fibers Sagnac interferometer was investigated and simulated in detail and a temperature-insensitive pressure or strain sensing technology was proposed. An experimental hybrid Sagnac interferometer was built and the solid core polarization maintaining photonic crystal fiber was taken as the sensing probe. The side pressure sensitive coefficients and the temperature crosstalk drift were measured and compared. The experimental results show that the side pressure sensitive coefficient was ~0.2877 nm/N and the temperature drift was less than 0.1 pm/°C.

  1. Optical disks

    NASA Technical Reports Server (NTRS)

    Lopez-Swafford, B.

    1986-01-01

    A comprehensive overview of the different types of optical storage technology is presented. Research efforts to integrate this technology into the VAX/VMS environment are discussed. In addition, plans for future applications of optical disk technology are described. The applications should prove to be beneficial to the NSSDC user community as a whole. Of particular interest is the concentration on the collaboration with the Dynamics Explorer project.

  2. Improvement of the accuracy of the aircraft center of gravity by employing optical fiber Bragg grating technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wang, Pengfei; Fan, LingLing; Guan, Liang; Zhao, Qiming; Cui, Hong-Liang

    2010-04-01

    Safety flight of aircrafts requires that the aircraft center of gravity (CG) must fall within specified limits established by the manufacturer. However, the aircraft CG depends not only on the structure of planes, but also on the passengers and their luggage. The current method of estimating the weight of passengers and luggage by the average weight may result in a violation of this requirement. To reduce the discrepancy between the actual weight and estimated weight, we propose a method of improving the accuracy of calculating the CG of the plane by weighing the passengers and their personal luggage. This method is realized by a Weigh-In-Motion (WIM) system installed at boarding gates based on optical fiber Bragg grating (FBG) technology. One prototype of WIM is fabricated and tested at lab. The resolution of this system is 2 kg and can be further improved by advanced manufacture technology. With the accurate weight of passengers and luggage coming from the WIM system and the locations of passengers and luggage obtained from boarding cards, the aircraft CG can be calculated correctly. This method can be applied into other fields, such as escalators, boarding gates for ferries.

  3. Structural and Functional Assessment in Patients Treated with Systemic Isotretinoin Using Optical Coherence Tomography and Frequency-Doubling Technology Perimetry

    PubMed Central

    Bakbak, Berker; Gedik, Sansal; Koktekir, Bengu Ekinci; Guzel, Huseyin; Altınyazar, Hilmi Cevdet

    2013-01-01

    Abstract A causal association between central nervous system neuropathy and oral isotretinoin has been reported. In this study we aimed to assess retinal nerve fibre layer (RNFL) thickness and visual field changes in patients treated with systemic isotretinoin. Thirty-nine patients treated with 1 mg/kg daily oral isotretinoin were enrolled in this prospective clinical trial. All patients underwent complete ophthalmologic assessment before treatment, on day 60, and 3 months after completion of treatment. RNFL thickness measurements were performed with Stratus optical coherence tomography. Functional testing included frequency-doubling technology perimetry and Humphrey field analyser. Main outcome measures were average RNFL thicknesses and visual field indices (mean deviation, pattern standard deviation). Measurements of RNFL thickness showed no statistically significant change between the three measurements (p = 0.180). No statistically significant differences were observed in the frequency-doubling technology indices (mean deviation and pattern standard deviation, p = 0.066 and p = 0.103, respectively) and in the Humphrey field analyser indices (mean deviation and pattern standard deviation, p = 0.091 and p = 0.087, respectively) at day 60 of treatment or 3 months after the cessation of treatment. In this study of 39 patients, systemic use of isotretinoin (1 mg/kg daily) does not cause a statistically significant change in peripapillary RNFL thickness or visual field findings within the usage period, and within 3 months after cessation. PMID:28163763

  4. Technology

    ERIC Educational Resources Information Center

    Isman, Aytekin

    2003-01-01

    This article begins by drawing on literature to examine the various definitions of "technology" and "technique." Following a discussion of the origin of technology in education, the remaining sections of the article focus on the relationships and interaction between: (1) machines and technique; (2) science and technique; (3)…

  5. Technology.

    ERIC Educational Resources Information Center

    Giorgis, Cyndi; Johnson, Nancy J.

    2002-01-01

    Presents annotations of 30 works of children's literature that support the topic of technology and its influences on readers' daily lives. Notes some stories tell about a time when simple tools enabled individuals to accomplish tasks, and others feature visionaries who used technology to create buildings, bridges, roads, and inventions. Considers…

  6. Visualizing sexual assault: an exploration of the use of optical technologies in the medico-legal context.

    PubMed

    White, Deborah; Du Mont, Janice

    2009-01-01

    This article is an exploration of the visualization of sexual assault in the context of adult women. In investigating the production of visual evidence, we outline the evolution of the specialized knowledge of medico-legal experts and describe the optical technologies involved in medical forensic examinations. We theorize that the principles and practices characterizing medicine, science and the law are mirrored in the medico-legal response to sexual assault. More specifically, we suggest that the demand for visual proof underpins the positivist approach taken in the pursuit of legal truth and that the generation of such evidence is based on producing discrete and decontextualized empirical facts through what are perceived to be objective technologies. Drawing on interview and focus group data with 14 sexual assault nurse examiners (SANEs) in Ontario, Canada, we examine perceptions and experiences of the role of the visual in sexual assault. Certain of their comments appear to lend support to our theoretical assumptions, indicating a sense of the institutional overemphasis placed on physical damage to sexually assaulted women's bodies and the drive towards the increased technologization of visual evidence documentation. They also noted that physical injuries are frequently absent and that those observed through more refined tools of microvisualization such as colposcopes may be explained away as having resulted from either vigorous consensual sex or a "trivial" sexual assault. Concerns were expressed regarding the possibly problematic ways in which either the lack or particular nature of visual evidence may play out in the legal context. The process of documenting external and internal injuries created for some an uncomfortable sense of fragmenting and objectifying the bodies of those women they must simultaneously care for. We point to the need for further research to enhance our understanding of this issue.

  7. Optical sensor technology for a noninvasive continuous monitoring of blood components

    NASA Astrophysics Data System (ADS)

    Kraitl, Jens; Timm, Ulrich; Lewis, Elfed; Ewald, Hartmut

    2010-02-01

    NIR-spectroscopy and Photoplethysmography (PPG) is used for a measurement of blood components. The absorptioncoefficient of blood differs at different wavelengths. This fact is used to calculate the optical absorbability characteristics of blood which is yielding information about blood components like hemoglobin (Hb), carboxyhemoglobin (CoHb) and arterial oxygen saturation (SpO2). The measured PPG time signals and the ratio between the peak to peak pulse amplitudes are used for a measurement of these parameters. Hemoglobin is the main component of red blood cells. The primary function of Hb is the transport of oxygen from the lungs to the tissue and carbon dioxide back to the lungs. The Hb concentration in human blood is an important parameter in evaluating the physiological status of an individual and an essential parameter in every blood count. Currently, invasive methods are used to measure the Hb concentration, whereby blood is taken from the patient and subsequently analyzed. Apart from the discomfort of drawing blood samples, an added disadvantage of this method is the delay between the blood collection and its analysis, which does not allow real time patient monitoring in critical situations. A noninvasive method allows pain free continuous on-line patient monitoring with minimum risk of infection and facilitates real time data monitoring allowing immediate clinical reaction to the measured data.

  8. Nanoscale materials applications: Thermoelectrical, biological, and optical applications with nanomanipulation technology

    NASA Astrophysics Data System (ADS)

    Lee, Kyung-Min

    In a sub-wavelength scale, even approaching to the atomic scale, nanoscale physics shows various novel phenomena. Since it has been named, nanoscience and nanotechnology has been employed to explore and exploit this small scale world. For example, with various functionalized features, nanowire (NW) has been making its leading position in the researches of physics, chemistry, biology, and engineering as a miniaturized building block. Its individual characteristic shows superior and unique features compared with its bulk counterpart. As one part of these research efforts and progresses, and with a part of the fulfillment of degree study, novel methodologies and device structures in nanoscale were devised and developed to show the abilities of high performing thermoelectrical, biological, and optical applications. A single beta-SiC NW was characterized for its thermoelectric properties (thermal conductivity, Seebeck coefficient, and figure of merit) to compare with its bulk counterpart. The combined structure of Ag NW and ND was made to exhibit its ability of clear imaging of a fluorescent cell. And a plasmonic nanosture of silver (Ag) nanodot array and a beta-SiC NW was fabricated to show a high efficient light harvesting device that allows us to make a better efficient solar cell. Novel nanomanipulation techniques were developed and employed in order to fabricate all of these measurement platforms. Additionally, one of these methodological approaches was used to successfully isolate a few layer graphene.

  9. Full-Scale Prestress Loss Monitoring of Damaged RC Structures Using Distributed Optical Fiber Sensing Technology

    PubMed Central

    Lan, Chunguang; Zhou, Zhi; Ou, Jinping

    2012-01-01

    For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams. PMID:22778590

  10. Van der Lugt optical correlation for use in the improvement of hermetically sealed microstimulator technology

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Colleen M.; Mueller, Edward P.

    1992-08-01

    As neuroprostheses become smaller, the need for superior quality control becomes vital. For such devices, Van der Lugt optical correlation (VLOC) techniques, involving Fourier transform holography, offer the potential of superseding conventional leak testing methodologies -- in that working with light is cleaner, faster, more sensitive, and eliminates the disadvantages of tracer gas introduced through backfilling or `bombing.' Current leak testing methods often prove inadequate for very small and delicate devices, as they sometimes involve inordinate stress on the package, or introduce undesirable results due to chemical considerations. In the case of very small packages, gross leaks are often missed by conventional means, since minute quantities of tracer gas introduced into the package may have disappeared by the time the test is run. VLOC techniques have been shown to overcome many of these limitations. The preliminary studies reported here indicate that VLOC techniques are capable of detecting leaks in the range of 10-6 and above in large aluminum-enclosed electronic packages. Furthermore, the method has been proven capable of automation through the use of a thermoplastic recording camera.

  11. Full-scale prestress loss monitoring of damaged RC structures using distributed optical fiber sensing technology.

    PubMed

    Lan, Chunguang; Zhou, Zhi; Ou, Jinping

    2012-01-01

    For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams.

  12. Applications of optical fibre Bragg gratings sensing technology-based smart stay cables

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ou, Jinping; Zhou, Zhi

    2009-10-01

    Stay cable is one of the most critical structural components of a bridge. However, it readily suffers from fatigue damage, corrosion damage, and their coupled effects. Thus, health monitoring of stay cables is important for ensuring the integrity and safety of a bridge. A smart stay cable assembled with optical fibre Bragg grating (OFBG) strain and temperature sensors was proposed in this study. To protect the OFBG sensors against breakage in application, the OFBG sensors were first incorporated into a glass-fibre-reinforced polymer (GFRP) bar (GFRP-OFBG bar) when the bar was fabricated. To fabricate cables assembled with OFBG sensors, several GFRP-OFBG bars were inserted into the hollows of steel wires and fixed with the steel wires together at the anchorages of the cable. Therefore, the GFRP-OFBG bars can consistently deform with the steel wires in a cable and the smart stay cable can sense its own strain and temperature through OFBG sensors. The fabrication procedure of the smart stay cable was developed and the self-sensing property of the smart stay cable was calibrated. Finally, the application of the smart stay cables on the Tianjing Yonghe Bridge was demonstrated. The fatigue accumulative damage of the smart stay cables was evaluated based on field monitoring strain.

  13. Development of Fast Reactor Structural Integrity Monitoring Technology Using Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Matsuba, Ken-Ichi; Ito, Chikara; Kawahara, Hirotaka; Aoyama, Takafumi

    Significant thermal stresses are loaded onto the structures of sodium-cooled fast reactor (SFR) due to high temperature and large temperature gradients associated with employing sodium coolant with its high thermal conductivity and low heat capacity. Therefore, it is important to monitor the temperature variation, related stress and displacement, and vibration in the cooling system piping and components in order to assure structural integrity while the reactor plant is in-service. SFR structural integrity monitoring can be enhanced by an optical fiber sensor, which is capable of continuous or dispersed distribution measurements of various properties such as radiation dose, temperature, strain, displacement and acceleration. In the experimental fast reactor Joyo, displacement and vibration measurements of the primary cooling system have been carried out using Fiber Bragg Grating (FBG) sensors to evaluate the durability and measurement accuracy of FBG sensors in a high gamma-ray environment. The data were successfully obtained with no significant signal loss up to an accumulated gamma-ray dose of approximately 4×104 Gy corresponding to 120 EFPDs (effective full power days) operation. Measured displacement of the piping support was nearly equal to the calculated thermal displacement. Measured vibration power spectra of the piping support were similar to those measured with a reference acceleration sensor. The measured results indicate that the FBG sensor is suitable for monitoring the displacement and vibration aspects of fast reactor cooling system integrity in a high gamma-ray environment.

  14. EVALUATION OF FUGITIVE EMISSIONS AT A FORMER LANDFILL SITE IN COLORADO SPRINGS, COLORADO, USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY

    EPA Science Inventory

    This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPAs Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...

  15. Metal-mesh optical filter technology for mid-IR, far-IR, and submillimeter

    NASA Astrophysics Data System (ADS)

    McGovern, William R.; Swinehart, Philip R.; Hogue, Eric L.; Daughton, David R.; DeLombard, Jay V.

    2012-06-01

    The innovative, high transmission band-pass filter technology presented here for the mid infrared (IR), terahertz (THz) and submillimeter ranges can tolerate cryogenic temperatures (down to 4K and below), are radiation-hard, vacuum-compatible and vibration-tolerant making them launch-capable and durable for potential space applications. In addition, Lake Shore band-pass filters (BPF) are light weight, as they employ no heavy substrates, nor have any vibronic bands due to polymer support layers. The filters are less than 2 mm thick (mostly the mounting frame) which allows insertion into tight spaces and standard filter wheels. The thin, light weight, vacuum compatible design can be incorporated into almost any detector setup. Filters are available for quick delivery in 29 standard center wavelengths (CWL) with 4 standard diameter sizes, up to 40mm inner diameter (ID).

  16. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  17. Research Center for Optical Physics: Education and Technology for the 21st Century

    NASA Technical Reports Server (NTRS)

    2003-01-01

    During the past eleven years since its inception, RCOP has excelled in its two primary goals: 1) training of the scientists and engineers needed for the twenty-first century with special emphasis on underrepresented citizens and 2) research and technological development in areas of relevance to NASA. In the category of research training, as of May 2003, RCOP produced 36 Bachelors degrees, 25 Masters degrees, and 13 Doctoral degrees. Of these, all 36 Bachelors degrees, 16 of the Masters degrees and 9 of the Doctoral degrees were awarded to African Americans. Four of the Doctoral graduates and one of the Masters graduates are working at NASA Field Centers. RCOP has also provided research experiences to 130 undergraduate students and 22 high school students through a number of outreach programs held during the summer and the academic year. RCOP has also been crucial to the development of the Ph.D. program in physics at Hampton University by providing high quality research training and technical electives required for a Doctoral degree in physics. RCOP has also excelled in research and technological development. Since 1992, RCOP researchers have leveraged over 8 million dollars in additional research funding, published 152 papers in refereed journals and proceedings, and given 125 presentations at refereed international conferences in the United States and eight other countries. RCOP also developed numerous collaborations with other research centers, universities and industries. In recognition of this outstanding work, RCOP is the first research center in the United States invited to join the Joint Open Laboratory for Laser Crystals and Precise Laser Systems headed by Dr. Alexander Kaminiskii of the Russian Academy of Sciences.

  18. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering, Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-15

    optical pulses: (1) using acousto - optic modulators (AOMs) driven with a chirped RF source, ( 2 ) using EOPMs driven with a chirped RF source, (3) utilizing a...holograms (SSH) have the potential to duplicate the functional operation of acousto - optic (AO) deflectors , but with bandwidths (BW) in excess of 10 GHz... acousto - optic deflector to create a scanned optical signal that was recorded in an OCT crystal. The scanner functionality of the AOD was thus

  19. Optical materials technology for energy efficiency and solar energy conversion VII; Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 19-21, 1988

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes G.; Lampert, Carl M.

    Various papers on optical materials technology for energy efficiency and solar energy conversion are presented. Individual topics addressed include: nonlinear optical effects in organic molecules and polymers, optical and electrical properties of amorphous Li(x)WO3 films, electrochromism in sputtered vanadium pentoxide, characterization of nickel oxide electrochromic films, radiative cooling with pigmented polyethylene foils, plasma-film interactions in RF sputtered a-Si:H and a-Ge:H, metal oxyfluoride coatings for energy-efficient windows, fatigue-resistant photochromic plastics, evaporated VO(x) thin films, electrochromism in nickel oxide films, system design for high-rate deposition of indium oxide solar coatings, performance and bandwidth analysis of holographic solar reflectors, laser and spectroscopic characterization of thin films, high-efficiency collectors for solar energy applications, influence of surface roughness on the optical properties of cermet coatings, and sputtered aluminum composite selective absorbing surfaces.

  20. Optical engineering

    SciTech Connect

    Saito, T T

    1998-01-01

    The Optical Engineering thrust area at Lawrence Livermore National Laboratory (LLNL) was created in the summer of 1996 with the following main objectives: (1) to foster and stimulate leading edge optical engineering research and efforts key to carrying out LLNL's mission and enabling major new programs; (2) to bring together LLNL's broad spectrum of high level optical engineering expertise to support its programs. Optical engineering has become a pervasive and key discipline, with applications across an extremely wide range of technologies, spanning the initial conception through the engineering refinements to enhance revolutionary application. It overlaps other technologies and LLNL engineering thrust areas.

  1. Hot slumping glass technology for the grazing incidence optics of future missions with particular reference to IXO

    NASA Astrophysics Data System (ADS)

    Ghigo, M.; Basso, S.; Bavdaz, M.; Conconi, P.; Citterio, O.; Civitani, M.; Friedrich, P.; Gallieni, D.; Guldimann, B.; Martelli, F.; Negri, R.; Pagano, G.; Pareschi, G.; Parodi, G.; Proserpio, L.; Salmaso, B.; Scaglione, F.; Spiga, D.; Tagliaferri, G.; Terzi, L.; Tintori, M.; Vongehr, M.; Wille, E.; Winter, A.; Zambra, A.

    2010-07-01

    The mirrors of the International X-ray Observatory (IXO) consist of a large number of high quality segments delivering a spatial resolution better than 5 arcsec. A study concerning the slumping of thin glass foils for the IXO mirrors is under development in Europe, funded by ESA and led by the Brera Observatory. We are investigating two approaches, the "Direct" and "Indirect" slumping technologies, being respectively based on the use of convex and concave moulds. In the first case during the thermal cycle the optical surface of the glass is in direct contact with the mould surface, while in the second case it is the rear side of the foil which touches the master. Both approaches present pros and cons and aim of this study is also to make an assessment of both processes and to perform a trade-off between the two. The thin plates are made of D263glass produced by Schott. Each plate is 0.4 mm thick, with a reflecting area of 200 mm x 200 mm; the mould are made of Fused Silica. After the thermal cycle the slumped MPs are characterized to define their optical quality and microroughness. The adopted integration process foresees the bonding of the slumped foils to a rigid backplane by means of reinforcing ribs. During the bonding process the plates are constrained to stay in close contact to the surface of the master (i.e. the same mould used for the hot slumping process) by the application of a vacuum pump suction. In this way spring-back deformations and low frequency errors still present on the foil profile after slumping can be corrected. In this paper we present the preliminary results concerning achieved during the first part of the project.

  2. Optical oxygen sensing systems for drug discovery applications: Respirometric Screening Technology (RST)

    NASA Astrophysics Data System (ADS)

    Papkovsky, Dmitri B.; Hynes, James; Fernandes, Richard

    2005-11-01

    Quenched-fluorescence oxygen sensing allows non-chemical, reversible, real-time monitoring of molecular oxygen and rates of oxygen consumption in biological samples. Using this approach we have developed Respirometric Screening Technology (RST); a platform which facilitates the convenient analysis of cellular oxygen uptake. This in turn allows the investigation of compounds and processes which affect respiratory activity. The RST platform employs soluble phosphorescent oxygen-sensitive probes, which may be assessed in standard microtitter plates on a fluorescence plate reader. New formats of RST assays and time-resolved fluorescence detection instrumentation developed by Luxcel provide improvements in assay sensitivity, miniaturization and overall performance. RST has a diverse range of applications in drug discovery area including high throughput analysis of mitochondrial function; studies of mechanisms of toxicity and apoptosis; cell and animal based screening of compound libraries and environmental samples; and, sterility testing. RST has been successfully validated with a range of practical targets and adopted by several leading pharmaceutical companies.

  3. Temperature variation in metal ceramic technology analyzed using time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-01-01

    The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.

  4. Optical data transmission technology for fixed and drag-on STS payloads umbilicals. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    St.denis, R. W.

    1981-01-01

    The feasibility of using optical data handling methods to transmit payload checkout and telemetry is discussed. Optical communications are superior to conventional communication systems for the following reasons: high data capacity optical channels; small and light weight optical cables; and optical signal immunity to electromagnetic interference. Task number one analyzed the ground checkout data requirements that may be expected from the payload community. Task number two selected the optical approach based on the interface requirements, the location of the interface, the amount of time required to reconfigure hardware, and the method of transporting the optical signal. Task number three surveyed and selected optical components for the two payload data link. Task number four makes a qualitative comparison of the conventional electrical communication system and the proposed optical communication system.

  5. Optical Micromachining

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research) with Marshall Space Flight Center, Potomac Photonics, Inc., constructed and demonstrated a unique tool that fills a need in the area of diffractive and refractive micro-optics. It is an integrated computer-aided design and computer-aided micro-machining workstation that will extend the benefits of diffractive and micro-optic technology to optical designers. Applications of diffractive optics include sensors and monitoring equipment, analytical instruments, and fiber optic distribution and communication. The company has been making diffractive elements with the system as a commercial service for the last year.

  6. High Sensitivity Refractometer Based on TiO2-Coated Adiabatic Tapered Optical Fiber via ALD Technology

    PubMed Central

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-01-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO2) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO2 nanofilm compared to that of silica, an asymmetric Fabry–Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO2 nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO2 on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373–1.3500. Due to TiO2’s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field. PMID:27537885

  7. Ultrahigh sensitivity polarimetric strain sensor based upon D-shaped optical fiber and surface plasmon resonance technology.

    PubMed

    Lo, Yu-Lung; Chuang, Chin-Ho; Lin, Zheng-Wei

    2011-07-01

    An ultrahigh sensitivity polarimetric strain sensor is proposed based upon a four-layer D-shaped optical fiber and surface plasmon resonance (SPR) technology. In contrast to existing SPR-based sensors, which are based on changes in the refractive index of the overlayer, the sensor proposed in this study is based on the change in the refractive index of the fiber core in response to the application of an axial load. Specifically, the phase difference between the P and S waves after passing through the sensor under SPR conditions is measured using a common-path heterodyne interferometer and is used to determine the corresponding change in the refractive index of the core, from which the strain is then inversely derived. The experimental results show that the sensitivity of the proposed sensor is around 2.19×10⁴ deg/ε, i.e., degree/strain. By contrast, that of a conventional (non-SPR) polarimetric fiber sensor is just 5.2×10² deg/ε. To the best of the authors' knowledge, the sensor proposed in this study represents the first reported attempt to exploit the refractive index change of the core of an SPR-based fiber sensor for strain measurement purposes.

  8. The application of surgical navigation system using optical molecular imaging technology in orthotopic breast cancer and metastasis studies

    NASA Astrophysics Data System (ADS)

    Chi, Chongwei; Zhang, Qian; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Du, Yang; Tian, Jie

    2014-02-01

    Currently, it has been an international focus on intraoperative precise positioning and accurate resection of tumor and metastases. The methods such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role in preoperative accurate diagnosis. However, most of them are inapplicable for intraoperative surgery. We have proposed a surgical navigation system based on optical molecular imaging technology for intraoperative detection of tumors and metastasis. This system collects images from two CCD cameras for real-time fluorescent and color imaging. For image processing, the template matching algorithm is used for multispectral image fusion. For the application of tumor detection, the mouse breast cancer cell line 4T1-luc, which shows highly metastasis, was used for tumor model establishment and a model of matrix metalloproteinase (MMP) expressing breast cancer. The tumor-bearing nude mice were given tail vein injection of MMP 750FAST (PerkinElmer, Inc. USA) probe and imaged with both bioluminescence and fluorescence to assess in vivo binding of the probe to the tumor and metastases sites. Hematoxylin and eosin (H&E) staining was performed to confirm the presence of tumor and metastasis. As a result, one tumor can be observed visually in vivo. However liver metastasis has been detected under surgical navigation system and all were confirmed by histology. This approach helps surgeons to find orthotopic tumors and metastasis during intraoperative resection and visualize tumor borders for precise positioning. Further investigation is needed for future application in clinics.

  9. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-14

    for creating fast (~MHz/µs) linear frequency chirped optical pulses: (1) using acousto - optic modulators (AOMs) driven with a chirped RF source, ( 2 ...the cavity. The frequencies allowed in a Fabry–Perot cavity are: where =1,2,... and optical path length of cavity 2 qcv q d d = = (29) The...the functional operation of acousto - optic (AO) deflectors , but with bandwidths (BW) in excess of 10 GHz and Time-Bandwidth Prod- ucts (TB) over 103 by

  10. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  11. Implementation of a new junior-level optical engineering laboratory course at Rose-Hulman Institute of Technology

    NASA Astrophysics Data System (ADS)

    Leisher, Paul O.; Granieri, Sergio C.; Bunch, Robert M.

    2016-09-01

    The optical engineering program at Rose-Hulman recently developed a course titled "Optomechanics and Optical Engineering Lab." This course focuses on the design, assembly, and alignment of benchtop optical systems in an effort to expose students to the synthesis of concepts from the areas of geometrical optics, physical optics, photonic devices, and optomechanics. Minimal guidance is provided to the students regarding procedure - students must devise their own methodology and data collection/analysis plan. We present results from the implementation of this new course and details on the projects that the students carry out in the areas of spectroscopy, interferometry, photonics, and imaging.

  12. Optical materials technology for energy efficiency and solar energy conversion VI; Proceedings of the Meeting, San Diego, CA, Aug. 18, 19, 1987

    SciTech Connect

    Lampert, C.M.

    1987-01-01

    Recent advances in optical materials for energy conversion are discussed in reviews and reports. Sections are devoted to transparent IR reflectors and large-area deposition technology; optical switching materials; holographic films and reflector technology; and absorbers, photovoltaics, and solar materials. Topics addressed include bendable Ag-based low-emissivity coating on glass, plasma oxidation of Ag and Zn in low-emissivity stacks, smart window coatings, improved colored-state reflectivity in lithiated WO3 films, photochromic and thermochromic pigments for solar absorbing-reflecting coatings, the design and optimization of holographic solar concentrators, the properties of black cobalt coatings, and interface states and Fermi-level pinning in CdSe thin-film solar cells.

  13. Bringing (Century-Old) Technology into the Classroom, Part II: Teaching Vibrations and Waves, Electricity and Magnetism, and Optics with Antiques

    NASA Astrophysics Data System (ADS)

    Jewett, John W.

    2016-01-01

    This is the second in a series of two articles on using antique devices to teach introductory physics. As mentioned in the first article, students can more clearly see the physics required for the operation of antique devices than for modern-day technological devices. This article will discuss antiques used to teach vibrations and waves, electricity and magnetism, and optics. In addition, a description of possible sources for obtaining antiques will help those interested in pursuing these ideas.

  14. Sensitivity enhancement of evanescent waveguide optical sensor for detecting adulterant traces in petroleum products using SiON technology

    NASA Astrophysics Data System (ADS)

    Dutta, Aradhana; Deka, Bidyut; Sahu, Partha Pratim

    2013-11-01

    The development of an evanescent waveguide optical sensor incorporating planar waveguide geometry using silicon oxynitride as the core layer on silica-silicon wafer and its implementation for detection of adulterant traces in petroleum products is presented in this paper. This work focuses on enhancement of sensitivity and analyzed by using Simple Effective Index Method (SEIM), based on sinusoidal modes. The embedded waveguide of length ~ 10,000 μm and core width ~ 50 μm have been developed using SiON technology and applied for checking adulteration so as to ensure the purity of the fuel such that the engine will give the desired performance including low emissions yielding better accuracy and high sensitivity within a very short pulse. The thin cladding layer acts as the analytes (mixture of adulterated fuel) that supports the waveguiding film having a refractive index smaller than that of the core. The main aim of this present work is to encompass a speedy choice to the time-consuming existing methods for detecting adulterated fuels, which generally requires some time to give the consequence. The developed sensor allows spot determination of the percentage concentration of adulterant in pure petrol without involving any chemical analysis. The waveguide based sensor is polarization independent and the sensitivity of the waveguide sensor is ~10 times more than that of the existing planar waveguide sensors and also 5 times more than that of asymmetric waveguide structure. Advantages include high sensitivity, simple fabrication and easy interrogation without involving the use of solvents or toxic chemicals.

  15. Development of traceable measurement of the diffuse optical properties of solid reference standards for biomedical optics at National Institute of Standards and Technology.

    PubMed

    Lemaillet, Paul; Bouchard, Jean-Pierre; Allen, David W

    2015-07-01

    The development of a national reference instrument dedicated to the measurement of the scattering and absorption properties of solid tissue-mimicking phantoms used as reference standards is presented. The optical properties of the phantoms are measured with a double-integrating sphere setup in the steady-state domain, coupled with an inversion routine of the adding-doubling procedure that allows for the computation of the uncertainty budget for the measurements. The results are compared to the phantom manufacturer's values obtained by a time-resolved approach. The results suggest that the agreement between these two independent methods is within the estimated uncertainties. This new reference instrument will provide optical biomedical research laboratories with reference values for absolute diffuse optical properties of phantom materials.

  16. Digital Optical Circuit Technology.

    DTIC Science & Technology

    1985-03-01

    under financial support of the Max-Planck- Gesell - schaft (MPG) and the Deutsche Forschungsgemeinschaft (DFG) and in part at the Tech- nische...mode picosecond pulses by injection locking of an AIGaAs semiconductor laser", Appl. Phys. Lett., vol. 41, 1982, pp. 14 - 16 0 G. Arnold , P. Russer, K...stripe laser", Appl. Phys. Lett., 39, pp. 27-29 (1981). 12. Peterman, K. and Arnold , G., "Noise and distortion charaL -ristics of semi- conductor lases

  17. Conference Paper NFO-7:7th International Conference on Near-Field Optics and Related Technologies

    SciTech Connect

    Prof.Dr. Lukas Novotny

    2004-10-18

    The seventh conference in the NFO conference series, held here in Rochester, provided to be the principal forum for advances in sub-wavelength optics, near-field optical microscopy, local field enhancement, instrumental developments and the ever-increasing range of applications. This conference brought together the diverse scientific communities working on the theory and application of near-field optics (NFO) and related techniques.

  18. Design and Performance Evaluation of Optical Ethernet Switching Architecture with Liquid Crystal on Silicon-Based Beam-Steering Technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Chou, H.-H.; Shiau, Yhi; Cheng, Shu-Ying

    2016-07-01

    A non-blocking optical Ethernet switching architecture with liquid crystal on a silicon-based beam-steering switch and optical output buffer strategies are proposed. For preserving service packet sequencing and fairness of routing sequence, priority and round-robin algorithms are adopted at the optical output buffer in this research. Four methods were used to implement tunable fiber delay modules for the optical output buffers to handle Ethernet packets with variable bit-rates. The results reported are based on the simulations performed to evaluate the proposed switching architecture with traffic analysis under a traffic model captured from a real-core network.

  19. Optical testing

    NASA Technical Reports Server (NTRS)

    Wyant, James; Hochberg, Eric; Breault, Robert; Greivenkamp, John; Hunt, Gary; Mason, Pete; Mcguire, James; Meinel, Aden; Morris, Mike; Scherr, Larry

    1992-01-01

    Optical testing is one of the most vital elements in the process of preparing an optical instrument for launch. Without well understood, well controlled, and well documented test procedures, current and future mission goals will be jeopardized. We should keep in mind that the reason we test is to provide an opportunity to catch errors, oversights, and problems on the ground, where solutions are possible and difficulties can be rectified. Consequently, it is necessary to create tractable test procedures that truly provide a measure of the performance of all optical elements and systems under conditions which are close to those expected in space. Where testing is not feasible, accurate experiments are required in order to perfect models that can exactly predict the optical performance. As we stretch the boundaries of technology to perform more complex space and planetary investigations, we must expand the technology required to test the optical components and systems which we send into space. As we expand the observational wavelength ranges, so must we expand our range of optical sources and detectors. As we increase resolution and sensitivity, our understanding of optical surfaces to accommodate more stringent figure and scatter requirements must expand. Only with research and development in these areas can we hope to achieve success in the ever increasing demands made on optical testing by the highly sophisticated missions anticipated over the next two decades. Technology assessment and development plan for surface figure, surface roughness, alignment, image quality, radiometric quantities, and stray light measurement are presented.

  20. Laser-based technology of scanning near-field optical probes fabrication: study of kinetics and progress of measuring

    NASA Astrophysics Data System (ADS)

    Veiko, Vadim P.; Kalachev, Alexey I.; Kaporsky, Lev N.; Volkov, Sergey A.; Voznesensky, Nikolay B.

    2003-02-01

    Basic principles of laser assisted process of fiber etching for scanning near-field optical (SNO) probes formation and control technique are presented. The thermal and temporal regimes are considered in order to provide stable reproducibility and high quality of a tapered end of the optical fiber. Problems of adequate definition of the scanning imaging properties of a SNO probe are discussed. Thus an optical method of far-field registration and processing together with a new autoelectronic emission method are considered for solution of the task of a subwavelength SNO probe aperture measurement and estimation of its apparatus function.