Science.gov

Sample records for kraft mill wastewater

  1. In-series columns adsorption performance of Kraft mill wastewater pollutants onto volcanic soil.

    PubMed

    Navia, R; Fuentes, B; Lorber, K E; Mora, M L; Diez, M C

    2005-08-01

    Two in-series columns systems with volcanic soil were tested for wastewater pollutants adsorption capacity. The first system was tested with acidified volcanic soil and the second with a reactivated volcanic soil. The reactivated soil was obtained by washing the previous spent acidified soil system with an acid solution. The systems parameters were obtained using the Bohardt and Adams model for fixed-beds. The acidified soil parameters indicated an adsorption capacity q of 28 and 139 mg/g of phenolic compounds and color, respectively (for each column), compared to 12 and 39 mg/g for the reactivated soil system. The adsorption rate constant k ranged between 1.5x10(-6) and 2.8x10(-6) l/min mg and no significant difference was observed for each analysed column system and pollutant. Furthermore, the molecular weight distribution analysis of input and output samples of one acidified soil column indicated that the fraction >30000 Da is the most adsorbed until the breakpoint. Moreover, the CODs and tannins and lignin removal efficiencies at the breakpoint reached values between 60% and 70% in each column and each system, indicating that lower biodegradable compounds were retained effectively. The results indicate that it is possible to compare the acidified volcanic soil adsorption capacity with natural zeolites, and a preliminary costs evaluation indicates that volcanic soil could be also competitive, even when comparing with activated carbon.

  2. Effect of organic load and nutrient ratio on the operation stability of the moving bed bioreactor for kraft mill wastewater treatment and the incidence of polyhydroxyalkanoate biosynthesis.

    PubMed

    Pozo, G; Villamar, C A; Martínez, M; Vidal, G

    2012-01-01

    This paper studies the effect of organic load rate (OLR) and nutrient ratio on operation stability of the moving bed bioreactor (MBBR) for kraft mill wastewater treatment, analyzing the incidence of polyhydroxyalkanoate (PHA) production. The MBBR operating strategy was to increase OLR from 0.25 ± 0.05 to 2.41 ± 0.19 kg COD m(-3) d(-1) between phases I and IV. The BOD(5):N:P ratio (100:5:1 and 100:1:0.2) was evaluated as an operation strategy for phases IV to V. A stable MBBR operation was found when the OLR was increased during 225 days in five phases. The maximum absolute fluorescence against the proportion of cells accumulating PHA was obtained for an OLR of 2.41 ± 0.19 kg COD m(-3)d(-1) and a BOD(5):N:P relationship of 100:1:0.2. The increase of PHA biosynthesis is due to the increased OLR and is not attributable to the increased cell concentration, which is maintained constant in stationary status during bioreactor biosynthesis. PMID:22699342

  3. 78 FR 31315 - Kraft Pulp Mills NSPS Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... emissions data that will enable a broader understanding of condensable PM emissions from pulp and paper... first review of the kraft pulp mills NSPS was completed on May 20, 1986 (51 FR 18544). The 1986 review..., 2000 (65 FR 61759); and September 21, 2006 (71 FR 55127)). The current kraft pulp mills NSPS...

  4. [Air stripping-UASB process for the treatment of evaporator condensate from a Kraft pulp mill].

    PubMed

    Zhou, Wei-li; Qin, Xiao-peng; Yu, Jun; Imai, Tsuyoshi; Ukita, Masao

    2006-04-01

    Evaporator condensate from a kraft pulp mill is characterized by high temperature, high strength, poor nutrition, and some odor and inhibitive materials. In this study, air stripping-UASB process was developed to treat the wastewater from a kraft pulp mill. The lab scale study demonstrated that air stripping process removed 70%-80% of the volatile organic sulfur compounds. After that, the UASB reactor showed high efficiency, at the organic loading rate (COD) of 30 kg x (m3 x d)(-1), COD removal was retained about 95%. On the other hand, the inoculated granules were broken in the new surroundings and were replaced with the newly formed granules The scanning electronic microscope (SEM) observation showed wide difference of the predominant anaerobic microorganisms in the seed and newly formed granules.

  5. Spectroscopic changes on fulvic acids from a kraft pulp mill effluent caused by sun irradiation.

    PubMed

    Carvalho, Sandra I M; Otero, Marta; Duarte, Armando C; Santos, Eduarda B H

    2008-12-01

    Large volumes of wastewater with a high organic load are generated by the pulp and paper industry that negatively affect the quality of receiving waters. The main waste products in the pulp mill effluents are lignin derived macromolecular compounds, which are similar to natural humic substances and very resistant to wastewater treatments. Fulvic acids (FA) represent the higher percentage of these humic substances and it was observed that solar irradiation modify their properties. Several analytic tools, namely, UV-Visible, molecular fluorescence and FTIR spectroscopies, were used to assess the effect of solar exposition on fulvic acids from a kraft pulp mill effluent. It may be concluded that sun irradiation may alter to a high extent the physicochemical properties of macromolecular organic matter, namely fulvic acids, released by kraft pulp mill effluents. After solar exposition, the aromaticity decreases, the aliphatic structures become more oxygenated, and the fulvic acids from the pulp mill effluent remaining in solution are more similar to aquatic fulvic acids from non polluted sites. PMID:18804839

  6. Environmental assessment before and after conversion of a kraft mill to elemental-chlorine-free bleaching

    SciTech Connect

    Deardorff, T.L.; Renard, J.J.; Phillips, R.B.

    1995-12-31

    As part of our continuing efforts to understand the potential impact of biologically treated effluents to the aquatic ecosystem, we critically examined several environmental parameters before and after the conversion to elemental-chlorine-free (ECF) bleaching at a kraft pulp and paper mill. The study involved evaluation of filtrates, pulps, sludges, and wastewater treatment within the mill and an integrated field study of the receiving stream, which included comprehensive water and sediment toxicity testing, benthic community evaluations, fish health testing, and physicochemical and biological parameters of water quality. Following ECF conversion, no detectable levels of 2,3,7,8-dioxin or polychlorinated phenolic compounds at the bleach plant and no indications of detrimental impacts to the ecosystem from the effluent were found.

  7. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    NASA Astrophysics Data System (ADS)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  8. Comparative bacterial degradation and detoxification of model and kraft lignin from pulp paper wastewater and its metabolites

    NASA Astrophysics Data System (ADS)

    Abhishek, Amar; Dwivedi, Ashish; Tandan, Neeraj; Kumar, Urwashi

    2015-05-01

    Continuous discharge of lignin containing colored wastewater from pulp paper mill into the environment has resulted in building up their high level in various aquatic systems. In this study, the chemical texture of kraft lignin in terms of pollution parameters (COD, TOC, BOD, etc.) was quite different and approximately twofold higher as compared to model lignin at same optical density (OD 3.7 at 465 nm) and lignin content (2000 mg/L). For comparative bacterial degradation and detoxification of model and kraft lignin two bacteria Citrobacter freundii and Serratia marcescens were isolated, screened and applied in axenic and mixed condition. Bacterial mixed culture was found to decolorize 87 and 70 % model and kraft lignin (2000 mg/L), respectively; whereas, axenic culture Citrobacter freundii and Serratia marcescens decolorized 64, 60 % model and 50, 55 % kraft lignin, respectively, at optimized condition (34 °C, pH 8.2, 140 rpm). In addition, the mixed bacterial culture also showed the removal of 76, 61 % TOC; 80, 67 % COD and 87, 65 % lignin from model and kraft lignin, respectively. High pollution parameters (like TOC, COD, BOD, sulphate) and toxic chemicals slow down the degradation of kraft lignin as compared to model lignin. The comparative GC-MS analysis has suggested that the interspecies collaboration, i.e., each bacterial strain in culture medium has cumulative enhancing effect on growth, and degradation of lignin rather than inhibition. Furthermore, toxicity evaluation on human keratinocyte cell line after bacterial treatment has supported the degradation and detoxification of model and kraft lignin.

  9. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    NASA Astrophysics Data System (ADS)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  10. Technical assistance document for monitoring total reduced sulfur (TRS) from kraft pulp mills. Final report

    SciTech Connect

    Winberry, W.T.

    1985-12-01

    This document supports enforcement personnel in determining whether a total reduced sulfur (TRS) continuous emission monitoring (CEM) system is operating properly after initial compliance, in order to assure continuous compliance of Kraft pulp mills with TRS standards. The Kraft process, the applicable NSPS (Subpart BB), common TRS CEM Systems, performance specification tests, and QA/QC are covered. Evaluation forms covering all aspects of the TRS CEM system are provided.

  11. Multimedia sampling for dioxin at a strip mine reclaimed with sludge from bleached kraft wastewater treatment

    SciTech Connect

    Krouskop, D.J.; Ayers, K.C. ); Proctor, J.L. )

    1991-04-01

    This paper reports that mead conducted a two-year dioxin testing program on strip-mined land being reclaimed with sludge from the wastewater treatment plant of its bleached kraft mill. Many different samples were analyzed for both 2,3,7,8-TCDD (or dioxin) and 2,3,7,8-TCDF (or furan). The study included biodiversity studies to determine the total environmental impact. The results indicate that the sludge is an excellent reclamation material that improves the biodiversity at the site. The tracer dioxin in the sludge does not exhibit any significant migration or bioavailability when used for reclaiming strip mines. These findings differ from assumptions sometimes used in assessing the environmental risks of dioxin.

  12. Management of nonprocess elements in low-effluent bleached kraft pulp mills

    SciTech Connect

    Bryant, P.S.

    1995-12-31

    Increasing environmental regulation for the discharge of chlorinated organics in bleach plant effluents has required most manufacturers in the pulp and paper industry to reduce the charge of elemental chlorine in the bleaching of kraft pulp. The best long term solution for reducing effluent pollutants from bleached kraft pulp mills is to move towards low-effluent (closed-cycle) bleaching. Closure of operating bleach plants would dramatically reduce both the volume and the pollutant concentration of pulp mill effluents. However, closing the mill creates many operational problems including a concentration build-up of nonprocess elements (NPE`s) in process streams. NPE`s usually enter the pulp process as trace constituents of wood. Recent studies have lead to a fundamental understanding of how NPE`s partition between the solid cellulose phase and the liquid aqueous phase in pulp mill process streams. This knowledge will help in the design, operation and optimization of future low-effluent bleach plants.

  13. IN VITRO ANDROGENIC ACTIVITY OF KRAFT MILL EFFLUENT IS ASSOCIATED WITH MASCULINIZATION OF FEMALE FISH

    EPA Science Inventory

    In Vitro Androgenic Activity of Kraft Mill Effluent is Associated with Masculinization of Female Fish. Lambright, CS 1 , Parks, LG 1, Orlando, E 2, Guillette, LJ, Jr.2, Ankley, G 3, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville ...

  14. Metabolic effects of kraft mill effluents on the eel Anguilla anguilla L

    SciTech Connect

    Santos, M.A.; Pires, F.; Hall, A. )

    1990-08-01

    Yellow eels (Anguilla anguilla L.) with an average weight of 60 g were used in this experiment. The fish were caught in June/July at the Aveiro Lagoon on the Portuguese West Coast, transported to the Department of Biology, Aveiro University, and kept in aerated aquaria for 1 week before the experiment started. The eels were then exposed for 1 and 3 weeks to 75 and 50% of the kraft pulp mill effluent. The eels exposed to the kraft pulp mill effluent developed an increase in red blood cell number per cubic millimeter and several biochemical changes, such as an increase in plasma lactate and sodium and a decrease in plasma pyruvate and potassium. Histological examination of the experimental eels exposed to the 50% kraft pulp mill effluent revealed deep alteration of the tissue structure, such as disruption of the skin and edematous hypertrophy of covering epithelial cells in secondary gill lamellae. The kidney had damage of the renal tubules. The liver developed necrosis supported by a significant decrease in GOT and GPT activity. The spleen had an increase in blood content as well as in pigment centers. Previous results indicated the kraft pulp mill effluent causes tissue damage and consequent metabolic changes in the eel Anguilla anguilla L.

  15. An Analytical System Designed to Measure Multiple Malodorous Compounds Related to Kraft Mill Activities.

    ERIC Educational Resources Information Center

    Mulik, J. D.; And Others

    Reported upon in this research study is the development of two automated chromatographs equipped with flame photometric detectors for the qualitative and quantitative analysis of both low- and high-molecular weight sulfur compounds in kraft mill effluents. In addition the study sought to determine the relationship between total gaseous sulfur and…

  16. Valorisation of by Products from Bleached Eucalyptus Kraft Pulp Mill

    NASA Astrophysics Data System (ADS)

    Silva, M. C.; Lopes, O. R.; Colodette, J. L.; Porto, A. O.; Rieumont, J.; Chaussy, D.; Belgacem, M. N.; Silva, G. G.

    2008-08-01

    Three industrial wastes arising from bleached hardwood kraft pulps, namely: unbleached screen rejects (USR), effluent treatment (ETW), and eucalyptus bark (EB) were analyzed with the aim of their possible valorization as an alternative source of cellulose. Their morphological properties were determined using MorFi apparatus. For this study the sample bleached kraft pulp, BKP, was analyzed as a reference. Lignin and carbohydrate contents were also quantified. These by-products were studied as such (i.e. without careful purification) because we intended to find rational and low-cost way of valorization. In fact any additional operation will induce an over cost. The results obtained indicate that these industrial wastes can be potential raw material in fibre-based applications (paper, composites…), since they contain a high proportion of cellulose with preserved fibrillar morphology. Some of these materials have low lignin and inorganic residue contents.

  17. Removal of stigmasterol from Kraft mill effluent by aerobic biological treatment with steroidal metabolite detection.

    PubMed

    Chamorro, Soledad; Vergara, Juan P; Jarpa, Mayra; Hernandez, Victor; Becerra, Jose; Vidal, Gladys

    2016-10-14

    Stigmasterol is a phytosterol contained in Kraft mill effluent that is able to increase over 100% after aerobic biological treatment. This compound can act as an endocrine disrupter as its structure is similar to that of cholesterol. The aim of this study was to evaluate the removal of stigmasterol from Kraft mill effluents treated by a moving bed biofilm reactor (MBBR) with steroidal metabolite detection. The MBBR was operated for 145 days, with a hydraulic retention time of 2 days. Stigmasterol and steroidal metabolites were detected by gas chromatography with a flame ionization detector during MBBR operation. The results show that the MBBR removed 87.4% of biological oxygen demand (BOD5), 61.5% of chemical oxygen demand (COD), 24.5% of phenol and 31.5% of lignin, expressed in average values. The MBBR system successfully removed 100% of the stigmasterol contained in the influent (33 µg L(-1)) after 5 weeks of operation. In that case, the organic load rate was 0.343 kg COD m(-3) d(-1). Furthermore, different steroidal compounds (e.g., testosterone propionate, stigmast-4-en-3-one, 5α-pregnan-12-one-20α-hydroxy, 5α-pregnane-3,11,20-trione and 3α-hydroxy-5α-androstane-11,17-dione were detected in the Kraft mill effluent as potential products of phytosterol biotransformation. PMID:27399163

  18. Removal of stigmasterol from Kraft mill effluent by aerobic biological treatment with steroidal metabolite detection.

    PubMed

    Chamorro, Soledad; Vergara, Juan P; Jarpa, Mayra; Hernandez, Victor; Becerra, Jose; Vidal, Gladys

    2016-10-14

    Stigmasterol is a phytosterol contained in Kraft mill effluent that is able to increase over 100% after aerobic biological treatment. This compound can act as an endocrine disrupter as its structure is similar to that of cholesterol. The aim of this study was to evaluate the removal of stigmasterol from Kraft mill effluents treated by a moving bed biofilm reactor (MBBR) with steroidal metabolite detection. The MBBR was operated for 145 days, with a hydraulic retention time of 2 days. Stigmasterol and steroidal metabolites were detected by gas chromatography with a flame ionization detector during MBBR operation. The results show that the MBBR removed 87.4% of biological oxygen demand (BOD5), 61.5% of chemical oxygen demand (COD), 24.5% of phenol and 31.5% of lignin, expressed in average values. The MBBR system successfully removed 100% of the stigmasterol contained in the influent (33 µg L(-1)) after 5 weeks of operation. In that case, the organic load rate was 0.343 kg COD m(-3) d(-1). Furthermore, different steroidal compounds (e.g., testosterone propionate, stigmast-4-en-3-one, 5α-pregnan-12-one-20α-hydroxy, 5α-pregnane-3,11,20-trione and 3α-hydroxy-5α-androstane-11,17-dione were detected in the Kraft mill effluent as potential products of phytosterol biotransformation.

  19. Molecular analysis of bacterial isolates and total community DNA from kraft pulp mill effluent treatment systems.

    PubMed

    Fortin, N; Fulthorpe, R R; Allen, D G; Greer, C W

    1998-06-01

    Chloroaliphatics are major components of bleached kraft mill effluents. Gene probes and oligonucleotide primers were developed to monitor kraft pulp mill effluent treatment systems for the presence of key genes (dehalogenases) responsible for the dehalogenation of chloroaliphatic organics. The primers were used for polymerase chain reaction (PCR) analysis of genomic DNA extracted from dehalogenating bacterial isolates and from total community DNA extracted from water and sediments of mill effluent treatment system. PCR amplification with oligonucleotide primers designed from dhlB, encoding the haloacid dehalogenase from Xanthobacter autotrophicus, revealed the presence of dehalogenase genes in both aerated lagoons and stabilization basins. Similarly, positive results were obtained with mmoX primers designed from the soluble methane monooxygenase gene of Methylococcus capsulatus Bath. The haloacetate dehalogenase encoding gene (dehH2) from Moraxella sp. was typically not detected in mill effluent treatment systems unless the biomass was selectively enriched. DNA sequence analysis of several PCR fragaments revealed significant similarity to known dehalogenase amd methane monooxygenase genes. The results indicated a broad distribution of known dehalogenation genes and bacteria with chloroorganic-degrading potential in the mill effluent treatment systems. PMID:9734304

  20. Advanced Modeling and Materials in Kraft Pulp Mills

    SciTech Connect

    Keiser, J.R.; Gorog, J.P.

    2002-05-15

    This CRADA provided technical support to the Weyerhaeuser Company on a number of issues related to the performance and/or selection of materials at a number of locations in a pulp and paper mill. The studies related primarily to components for black liquor recovery boilers, but some effort was directed toward black liquor gasifiers and rolls for paper machines. The purpose of this CRADA was to assist Weyerhaeuser in the evaluation of materials exposed in various paper mill environments and to provide direction in the selection of alternate materials, when appropriate.

  1. MASCULINIZATION OF FEMALE MOSQUITO FISH IN KRAFT MILL EFFLUENT -CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY.

    EPA Science Inventory

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp-mill effluent (PME) from the Fen...

  2. MASCULINIZATION OF FEMALE MOSQUITOFISH IN KRAFT MILL EFFLUENT-CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY

    EPA Science Inventory

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp mill effluent (PME) from the Fe...

  3. IN VITRO CONFIRMATION OF ANDROGENIC ACTIVITY IN KRAFT MILL EFFLUENT WHICH IS ASSOCIATED WITH MASCULINIZED FEMALE MOSQUITOFISH FORP

    EPA Science Inventory

    Female mosquitofish downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent response. This effect can be introduced in the laboratory with exposure to either paper mill effluent (PME) or to androgenic drugs. Hence, it has been h...

  4. Recycling of water in bleached kraft pulp mills by using electrodialysis.

    SciTech Connect

    Fracaro, A. T.; Henry, M. P.; Pfromm, P.; Tsai, S.-P.

    1999-01-15

    Conservation of water in bleached kraft pulp mills by recycling the bleach plant effluent directly without treatment will cause accumulation of inorganic ''non-process elements'' (NPEs) and serious operational problems. In this work, an electrodialysis process is being developed for recycling the acidic bleach plant effluent of bleached kraft pulp mills. In this process, electrodialysis functions as a selective kidney to remove inorganic NPEs from bleach plant effluents, before they reach the recovery cycle. Acidic bleach plant effluents from several mills using bleaching sequences based on chlorine dioxide were characterized. The total dissolved solids were mostly inorganic NPEs. Sodium was the predominant cation and chloride was present at significant levels in all these effluents. In laboratory electrodialysis experiments, selective removal of chloride and potentially harmful cations, such as potassium, calcium, and magnesium, were removed efficiently. Rejection of organic compounds was up to 98%. Electrodialysis was shown to be resistant to membrane fouling and scaling, in a 100-hour laboratory experiment. Based on a model mill with 1,000 ton/day pulp production, the economic analysis suggests that the energy cost of electrodialysis is less than $200/day, and the capital cost of the stack is about $500,000.

  5. Assessment of opacimeter calibration on kraft pulp mills

    NASA Astrophysics Data System (ADS)

    Gomes, Joa˜o. F. P.

    This paper describes the methodology and specific techniques for calibrating automatic on-line industrial emission analysers, specifically equipments that measure total suspended dust installed in pulp mills within the scope of Portuguese Regulation No. 286/93 on air quality. The calibration of opacimeters is a multi-parameter relationship instead of the bidimensional calibration which is used in industrial practice. For a stationary source from a pulp mill such as the recovery boiler stack, which is subjected to significant variations, the effects of parameters such as the humidity and gas temperature, deviations of isokinetism, size range of particles and characteristic transmittance of equipment are analysed. The multivariable analysis of a considerable set of data leads to an estimate of about 98% of equipment transmittance over the other parameters with a level of significance greater than 0.99 which is a validation of the bidimensional practical calibrations.

  6. Monitoring endocrine activity in kraft mill effluent treated by aerobic moving bed bioreactor system.

    PubMed

    Chamorro, S; Pozo, G; Jarpa, M; Hernandez, V; Becerra, J; Vidal, G

    2010-01-01

    A Moving Bed Bioreactor (MBBR) was operated at three different hydraulic retention times for a period of 414 days. The fate of the extractive compounds and the estrogenic activity of the Pinus radiata kraft mill effluents were evaluated using Yeast Estrogen Screen (YES) and gas chromatography - mass spectrometry (GC-MS) detection. Results show that the MBBR reactor is able to remove between 80-83% of estrogenic activity present in the kraft mill Pinus radiata influent, where the values of the effluent's estrogenic activity ranged between 0.123-0.411 ng L(-1), expressed as estrogenic equivalent (EEqs) of 17-a-ethynylestradiol (EE2 eq.). Additionally, the biomass of the MBBR reactor accumulated estrogenic activity ranging between 0.29-0.37 ng EEqs EE2 during the different Hydraulic Retention Time (HRT) operations. The main groups present in pulp mills effluents, corresponding to fatty acids, hydrocarbons, phenols, sterols and triterpenes, were detected by solid phase extraction (SPE) and gas chromatography - mass spectrometry (GC-MS). The results suggest that the sterols produce the estrogenic activity in the evaluated effluent. PMID:20595766

  7. Effects of Kraft Mill effluent on the sexuality of fishes: An environmental early warning

    SciTech Connect

    Davis, W.P.; Bortone, S.A.

    1992-01-01

    Arrhenoid or masculinized female fish species of the live-bearing family, Poeciliidae, have been observed for over thirteen years in specific southern streams which receive waste effluents from pulping mills. The complex mixture of organic compounds in kraft mill effluent (KME) has inhibited specific identification of causal agent(s). However, microbially degraded phytosterols (e.g. sitosterol or stigmastanol) in experimental exposures induce the same intersexual states that characterize affected female poeciliids sampled from KME streams. KME-polluted streams often exhibit a drastic reduction of fish species diversity and degrees of physiological stress, all of which suggests reduced reproduction in surviving forms. A potential ontogenetic or developmental response is demonstrated in American eels captured in one of these streams as well. The authors examine available information, including laboratory and experimental field exposures, and suggest directions for additional research as well as the need for environmental concern.

  8. Long-term effects of bleached kraft mill effluents on red and white blood cell status, ion balance, and vertebral structure in fish

    SciTech Connect

    Haerdig, J.A.; Andersson, T.; Bengtsson, B.E.; Foerlin, L.L.; Larsson, A.

    1988-02-01

    In a laboratory investigation fourhorn sculpin (Myoxocephalus quadricornis) were exposed for 5-9 months to wastewater from pine and birch lines from a bleached kraft pulp plant. This long-term exposure to bleached kraft mill effluent (BKME) affected the hematology, the ion balance, and the vertebral structure. Decreased values for hematocrit and hemoglobin and a reduced red blood cell count, as well as increased levels of methemoglobin, indicated disturbances in the red blood cell status. The white blood cell picture was not significantly affected by the BKME exposure. Decreased levels of potassium and chloride ions in the blood plasma in some of the exposed fish suggest an impaired ability to maintain ion homeostasis. Elevated frequencies of vertebral deformations in fish exposed to BKME confirm previous observations of vertebral damage in feral fourhorn sculpin caught in the receiving body of water of the same bleached kraft pulp industry. Many of the parameters analyzed in this investigation may be used as health indicators in future laboratory and field studies on fish exposed to BKME.

  9. Characterization of kraft pulp mill particulate emissions—A summary of existing measurements and observations

    NASA Astrophysics Data System (ADS)

    Pinkerton, John E.; Blosser, Russell O.

    Particulate matter emission sources at a kraft pulp mill include kraft recovery furnaces, lime kilns, smelt dissolving tanks and power boilers. Chemical and physical characteristics of these paniculate emissions are reviewed. Measurements of particle size distributions for these sources made with cascade impactors and microscopic counting techniques both before and after paniculate control devices such as multiple cyclones, wet scrubbers, and electrostatic precipitalors are discussed. In general, particles with equivalent diameters less than 3 jim comprise the bulk of the controlled paniculate emissions from all sources. Sodium sulfate is the dominant paniculate emission from kraft recovery furnaces, smelt dissolving tanks and lime kilns. Results from a field investigation of the relationship between human observations of near-stack plume opacity and measured in-stack paniculate concentrations and opacities are summarized. Trained cenified panels of observers were used in the investigation to estimate plume opacities from two kraft recovery furnaces, a combination wood/coal-fired boiler, and a combination wood/oil-fired boiler at four different pulp mill locations. Plume opacities were varied from near-zero to 45 % by adjustment of the paniculate control equipment operation. The effects of different background viewing conditions, observer positions, observer experience levels, and plume characteristics are enumerated. It is concluded that there can be substantial variations between measured in-stack opacities and human perceptions of near-stack plume opacities. The degree of agreement between the human judgements and measured in-stack opacities is significantly affected by the background viewing conditions. It is further shown that even with a panel of six or seven trained observers with similar visual acuity, there can be significant departures of individual opacity readings from the panel mean opacity. Although this investigation deals with questions of human

  10. Process for purification of waste water produced by a Kraft process pulp and paper mill

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  11. Application of ozonation process in industrial wastewaters: textile, kraft E1 and whey effluents.

    PubMed

    Assalin, M R; Almeida, E S; Rosa, M A; Moraes, S G; Duran, N

    2004-08-01

    A large variety of organic and inorganic compounds can be found in wastewater from industrial processes. In this work, Advanced Oxidative Processes (AOPs) have been applied for the control of water pollution and the ozonation of different effluents was investigated. Wastewater from textile, kraft E1 and cheese manufacturing processes were chosen as examples of industrial effluents. The efficiency of substrate mineralization has been comparatively analyzed by the decrease in total organic carbon (TOC), color, and toxicity. The results revealed that the ozonation process can be a method for decolorization of effluent, but it is not effective for TOC reduction. The whey effluent was the most recalcitrant wastewater for ozone treatment which produced no TOC removal.

  12. Evaluation of dioxin mobility and spoils leaching in a surface coal mine reclaimed with bleached kraft pulp and paper mill biosolids

    SciTech Connect

    McFadden, D.P.; Krouskop, D.J.; Ayers, K.C.; Proctor, J.L.

    1995-07-01

    A surface coal mine in southeastern Ohio has been reclaimed with approximately 15 to 25 cm thickness of biosolids from a bleached kraft pulp and paper mill wastewater treatment plant. Soil, vegetation, rodents, earthworms, insects, fish, frogs, sediment, and algae samples were collected and analyzed for 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran. Water samples from lakes receiving drainage from unreclaimed and biosolids reclaimed areas were collected and analyzed for various parameters, including pH and metals. The trace levels of dioxin and furan in the pulp and paper mill biosolids did not bioaccumulate in rodents, insects, or earthworms or translocate into plants living in the reclaimed area. The trace levels of dioxin and furan in biosolids did not sufficiently migrate to a drainage lake to result in significant concentrations in fish, frogs, algae, or vegetation. The biosolids reclamation resulted in dramatic decreases in spoils leaching of acid, aluminum, calcium, iron, magnesium, manganese, nickel, and zinc. This work supports the thesis that surface mine reclamation with pulp and paper mill biosolids is safe and effective. 4 refs., 6 tabs.

  13. Masculinization of female mosquitofish in Kraft mill effluent-contaminated Fenholloway River water is associated with androgen receptor agonist activity.

    PubMed

    Parks, L G; Lambright, C S; Orlando, E F; Guillette, L J; Ankley, G T; Gray, L E

    2001-08-01

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp-mill effluent (PME) from the Fenholloway River in Florida displayed androgenic activity in vitro and to relate this activity to the reproductive status of female mosquitofish taken from this river. We tested water samples for androgenic activity from a reference site upstream of a Kraft pulp and paper mill on the Fenholloway River, from 3 sites downstream from the mill, and from another reference site on the Econfina River, also in Florida, where there is no paper mill. We also examined anal fin ray morphology in mosquitofish from these rivers for evidence of masculinization. Eighty percent of the female mosquitofish from the Fenholloway River were partially masculinized while another 10% were completely masculinized, based upon the numbers of segments in the longest anal fin ray (18.0 +/- 0.4 vs. 28.1 +/- 0.9 [p < 0.001]) in the Econfina River vs. the Fenholloway River, respectively). In a COS whole cell-binding assay, all 3 PME samples displayed affinity for human androgen receptor (hAR) (p < 0.001). In addition, PME induced androgen-dependent gene expression in CV-1 cells (cotransfected with pCMV hAR and MMTV luciferase reporter), which was inhibited by about 50% by coadministration of hydroxyflutamide (1 microM), an AR antagonist. Water samples collected upstream of the Kraft mill or from the Econfina River did not bind hAR or induce luciferase expression. When CV-1 cells were transfected with human glucocorticoid receptor (hGR) rather than hAR, PME failed to significantly induce MMTV-luciferase expression. Further evidence of the androgenicity was observed using a COS cell AR nuclear-translocalization assay. PME bound hAR and induced translocalization of AR into the nucleus. In contrast, AR remained perinuclear when

  14. Acclimatization of roach, Rutilus rutilus (L. ), to toxic components of kraft pulp mill effluents

    SciTech Connect

    Oikari, A.; Kukkonen, J.

    1988-06-01

    Roach (Rutilus rutilus) were exposed, along with their appropriate controls, to a simulated bleached kraft mill effluent (KME-Sa + CP) first for 38 days at a concentration of 0.035 X LC50 and then for 14 days at 0.07 X LC50. During the experiment, their tolerances to KME-Sa + CP were tested five times by measuring the 48-hr LC50 values. In addition, the growth of roach was monitored. At the end of the exposure, accumulation of (/sup 14/C)pentachlorophenol in various parts of the fish (total PCP in water 15.6 micrograms/liter) was measured. When the fish were preexposed to KME-Sa + CP, the acute tolerance of this mixture in roach increased by 30-39%, but the response was abolished in 31 days. Fish growth remained unchanged during the experiment. Measurement of PCP accumulation revealed no difference in the absorption rate, but under steady-state conditions the degree of bioconcentration was 16% lower (P less than 0.02) in preexposed roach than in their unexposed controls. This difference was entirely accounted for in the head and visceral parts of the fish. Even when no final changes were noted in tolerance and growth rate of the fish, the authors suggest that the significantly lowered body burden implied acclimatizatory compensation under subchronic exposure of this xenobiotic.

  15. Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process.

    PubMed

    Ooi, Zing-Yi; Harruddin, Norlisa; Othman, Norasikin

    2015-01-01

    Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3 ) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2-ethyl-1-hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously. PMID:26101101

  16. Removal of the organic content from a bleached kraft pulp mill effluent by a treatment with silica-alginate-fungi biocomposites.

    PubMed

    Duarte, Katia; Justino, Celine I L; Pereira, Ruth; Panteleitchouk, Teresa S L; Freitas, Ana C; Rocha-Santos, Teresa A P; Duarte, Armando C

    2013-01-01

    This study attempts a treatment strategy of a bleached kraft pulp mill effluent with Rhizopus oryzae or Pleurotus sajor caju encapsulated on silica-alginate (biocomposite of silica-alginate-fungi, with the purpose of reducing its potential impact in the environment. Active (alive) or inactive (death by sterilization) Rhizopus oryzae or Pleurotus sajor caju was encapsulated in alginate beads. Five beads containing active and inactive fungus were placed in a mold and filled with silica hydrogel (biocomposites). The biocomposites were added to batch reactors containing the bleached kraft pulp mill effluent. The treatment of bleached kraft pulp mill effluent by active and inactive biocomposites was performed throughout 29 days at 28°C. The efficiency of treatment was evaluated by measuring the removal of organic compounds, chemical oxygen demand and the relative absorbance ratio over time. Both fungi species showed potential for removal of organic compounds, colour and chemical oxygen demand. Maximum values of reduction in terms of colour (56%), chemical oxygen demand (65%) and organic compounds (72-79%) were attained after 29 days of treatment of bleached kraft pulp mill effluent by active Rhizopus oryzae biocomposites. The immobilization of fungi, the need for low fungal biomass, and the possibility of reutlization of the biocomposites clearly demonstrate the industrial and environmental interest in bleached kraft pulp mill effluent treatment by silica-alginate-fungi biocomposites. PMID:23043338

  17. Biological treatment of the effluent from a bleached kraft pulp mill using basidiomycete and zygomycete fungi.

    PubMed

    Freitas, A C; Ferreira, F; Costa, A M; Pereira, R; Antunes, S C; Gonçalves, F; Rocha-Santos, T A P; Diniz, M S; Castro, L; Peres, I; Duarte, A C

    2009-05-01

    Three white-rot fungi (Pleurotus sajor caju, Trametes versicolor and Phanerochaete chrysosporium) and one soft-rot fungi (Rhizopus oryzae) species confirmed their potential for future applications in the biological treatment of effluents derived from the secondary treatment of a bleached kraft pulp mill processing Eucalyptus globulus. Among the four species P. sajor caju and R. oryzae were the most effective in the biodegradation of organic compounds present in the effluent, being responsible for the reduction of relative absorbance (25-46% at 250 nm and 72-74% at 465 nm) and of chemical oxygen demand levels (74 to 81%) after 10 days of incubation. Laccase (Lac), lignin (Lip) and manganese peroxidases (MnP) expression varied among fungal species, where Lac and LiP activities were correlated with the degradation of organic compounds in the effluent treated with P. sajor caju. The first two axes of a principal component analysis explained 88.9% of the total variation among sub-samples treated with the four fungus species, after different incubation periods. All the variables measured contributed positively to the first component except for the MnP enzyme activity which was the only variable contributing negatively to the first component. Absorbances at 465 nm, LiP and Lac enzyme activities were the variables with more weight on the second component. P. sajor caju revealed to be the only species able to perform the biological treatment without promoting an increment in the toxicity of the effluent to the Vibrio fischeri, as it was assessed by the Microtox assay. The opposite was recorded for the treatments with the other three species of fungus. EC(50-5 min) values ranging between 28 and 57% (effluent concentrations) were recorded even after 10 to 13 days of treatment with P. chrysosporium, R. oryzae or with T. versicolor. PMID:19269018

  18. Multivariate statistical analysis of a high rate biofilm process treating kraft mill bleach plant effluent.

    PubMed

    Goode, C; LeRoy, J; Allen, D G

    2007-01-01

    This study reports on a multivariate analysis of the moving bed biofilm reactor (MBBR) wastewater treatment system at a Canadian pulp mill. The modelling approach involved a data overview by principal component analysis (PCA) followed by partial least squares (PLS) modelling with the objective of explaining and predicting changes in the BOD output of the reactor. Over two years of data with 87 process measurements were used to build the models. Variables were collected from the MBBR control scheme as well as upstream in the bleach plant and in digestion. To account for process dynamics, a variable lagging approach was used for variables with significant temporal correlations. It was found that wood type pulped at the mill was a significant variable governing reactor performance. Other important variables included flow parameters, faults in the temperature or pH control of the reactor, and some potential indirect indicators of biomass activity (residual nitrogen and pH out). The most predictive model was found to have an RMSEP value of 606 kgBOD/d, representing a 14.5% average error. This was a good fit, given the measurement error of the BOD test. Overall, the statistical approach was effective in describing and predicting MBBR treatment performance. PMID:17486834

  19. Degradation of Chlorophenols by Alcaligenes eutrophus JMP134(pJP4) in Bleached Kraft Mill Effluent

    PubMed Central

    Valenzuela, J.; Bumann, U.; Cespedes, R.; Padilla, L.; Gonzalez, B.

    1997-01-01

    The ability of Alcaligenes eutrophus JMP134(pJP4) to degrade 2,4-dichlorophenoxyacetic acid, 2,4,6-trichlorophenol, and other chlorophenols in a bleached kraft mill effluent was studied. The efficiency of degradation and the survival of strain JMP134 and indigenous microorganisms in short-term batch or long-term semicontinuous incubations performed in microcosms were assessed. After 6 days of incubation, 2,4-dichlorophenoxyacetate (400 ppm) or 2,4,6-trichlorophenol (40 to 100 ppm) were extensively degraded (70 to 100%). In short-term batch incubations, indigenous microorganisms were unable to degrade such of compounds. Degradation of 2,4,6-trichlorophenol by strain JMP134 was significantly lower at 200 to 400 ppm of compound. This strain was also able to degrade 2,4-dichlorophenoxyacetate, 2,4,6-trichlorophenol, 4-chlorophenol, and 2,4,5-trichlorophenol when bleached Kraft mill effluent was amended with mixtures of these compounds. On the other hand, the chlorophenol concentration and the indigenous microorganisms inhibited the growth and survival of the strain in short-term incubations. In long-term (>1-month) incubations, strain JMP134 was unable to maintain a large, stable population, although extensive 2,4,6-trichlorophenol degradation was still observed. The latter is probably due to acclimation of the indigenous microorganisms to degrade 2,4,6-trichlorophenol. Acclimation was observed only in long-term, semicontinuous microcosms. PMID:16535488

  20. Selected resin acids in effluent and receiving waters derived from a bleached and unbleached kraft pulp and paper mill

    USGS Publications Warehouse

    Quinn, B.P.; Booth, M.M.; Delfino, J.J.; Holm, S.E.; Gross, T.S.

    2003-01-01

    Water samples were collected on three dates at 24 sites influenced by effluent from Georgia-Pacific's Palatka Pulp and Paper Mill Operation, a bleached and unbleached kraft mill near Palatka, Florida, USA. The sampling sites were located within the mill retention ponds, Rice Creek, and the St. John's River. Samples were analyzed by gas chromatography-mass spectrometry for abietic, dehydroabietic, and isopimaric acids, all of which are potentially toxic by-products of pulp production. Isopimaric acid concentrations greater than 12 mg/L were measured at the mill's effluent outfall but were less than 20 ??g/L at the end of Rice Creek. This result indicates that the waters of Rice Creek provide dilution or conditions conducive for degradation or sorption of these compounds. Large differences in resin acid concentrations were observed between sampling events. In two sampling events, the maximum observed concentrations were less than 2 mg/L for each analyte. In a third sampling event, all of the compounds were detected at concentrations greater than 10 mg/L. Data from the three sample dates showed that resin acid concentrations were below 20 ??g/L before the confluence of Rice Creek and the St. John's River in all cases.

  1. Sustainable technologies for olive mill wastewater management (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The California olive oil industry produces more than 600 million gallons of wastewater each year. Olive mill wastewater (OMWW) is considered a highly polluting effluent due to its high organic load and resistance to biological degradation. A current trend in OMWW management is to not only decrease e...

  2. Recovery in the health of fish populations and communities following remedial activities at a bleached kraft mill facility

    SciTech Connect

    Greeley, M.S. Jr.; Adams, S.M.; Saylor, C.F.

    1995-12-31

    Fish populations and communities were studied over a seven year period in a river receiving bleached kraft mill effluent (BKME). The period of these investigations preceded and accompanied the extensive modernization of mill facilities and the implementation of design changes to reduce contaminant discharges and minimize impacts on the river ecology. Before modernization, reaches of the river downstream of the discharges were characterized by depauperate fish communities and severely skewed population distributions. The relative condition of both individual fish and fish populations in the river prior to remediation was consistent with effects frequently attributed to exposure to endocrine disrupting agents, including a sex ratio strongly skewed towards male fish, alterations in reproductive hormone levels, pronounced atresia of the developing oocytes in female fish, and a general absence of young fish suggesting near total reproductive failure in a sentinel fish population. Following modernization, sex ratios have trended towards normality, young fish have returned to the mainstream river, and fish communities have become more diverse coincident with corresponding decreases in body burdens of dioxin and other indirect indicators of contaminant exposure, including liver detoxification enzyme activity. The significance of these studies lie in the establishment of distinct links between both: (1) the exposure of individual wild fish to BKME and alterations in fish population and community structure, and (2) the implementation of process changes in a mill producing BKME and noticeable improvements in fish health from the individual to community levels of biological organization.

  3. Assessment of reproductive effects in largemouth bass (Micropterus salmoides) exposed to bleached/unbleached kraft mill effluents.

    PubMed

    Sepúlveda, M S; Ruessler, D S; Denslow, N D; Holm, S E; Schoeb, T R; Gross, T S

    2001-11-01

    This study evaluated the potential effects of different concentrations of bleached/unbleached kraft mill effluent (B/UKME) on several reproductive endpoints in adult largemouth bass (Micropterus salmoides). The kraft mill studied produces a 50/50 mix of bleached/unbleached market pulp with an estimated release of 36 million gal of effluent/day. Bleaching sequences were C90d10EopHDp and CEHD for softwood (pines) and hardwoods (mainly tupelo, gums, magnolia, and water oaks), respectively. Bass were exposed to different effluent concentrations (0 [controls, exposed to well water], 10, 20, 40, or 80%) for either 28 or 56 days. At the end of each exposure period, fish were euthanized, gonads collected for histological evaluation and determination of gonadosomatic index (GSI), and plasma was analyzed for 17beta-estradiol, 11-ketotestosterone, and vitellogenin (VTG). Largemouth bass exposed to B/UKME responded with changes at the biochemical level (decline in sex steroids in both sexes and VTG in females) that were usually translated into tissue/organ-level responses (declines in GSI in both sexes and in ovarian development in females). Although most of these responses occurred after exposing fish to 40% B/UKME concentrations or greater, some were observed after exposures to 20% B/UKME. These threshold concentrations fall within the 60% average yearly concentration of effluent that exists in the stream near the point of discharge (Rice Creek), but are above the <10% effluent concentration present in the St. Johns River. The chemical(s) responsible for such changes as well as their mode(s) of action remain unknown at this time.

  4. Assessment of reproductive effects in largemouth bass (Micropterus salmoides) exposed to bleached/unbleached kraft mill effluents

    USGS Publications Warehouse

    Sepulveda, M.S.; Ruessler, D.S.; Denslow, N.D.; Holm, S.E.; Schoeb, T.R.; Gross, T.S.

    2001-01-01

    This study evaluated the potential effects of different concentrations of bleached/unbleached kraft mill effluent (B/UKME) on several reproductive endpoints in adult largemouth bass (Micropterus salmoides). The kraft mill studied produces a 50/50 mix of bleached/unbleached market pulp with an estimated release of 36 million gal of efffluent/day. Bleaching sequences were C90d10EopHDp and CEHD for softwood (pines) and hardwoods (mainly tupelo, gums, magnolia, and water oaks), respectively. Bass were exposed to different effluent concentrations (0 [controls, exposed to well water], 10, 20, 40, or 80%) for either 28 or 56 days. At the end of each exposure period, fish were euthanized, gonads collected for histological evaluation and determination of gonadosomatic index (GSI), and plasma was analyzed for 17??-estradiol, 11-ketotestosterone, and vitellogenin (VTG). Largemouth bass exposed to B/UKME responded with changes at the biochemical level (decline in sex steroids in both sexes and VTG in females) that were usually translated into tissue/organ-level responses (declines in GSI in both sexes and in ovarian development in females). Although most of these responses occurred after exposing fish to 40% B/UKME concentrations or greater, some were observed after exposures to 20% B/UKME. These threshold concentrations fall within the 60% average yearly concentration of effluent that exists in the stream near the point of discharge (Rice Creek), but are above the <10% effluent concentration present in the St. Johns River. The chemical(s) responsible for such changes as well as their mode(s) of action remain unknown at this time.

  5. Catalytic pyrolysis of olive mill wastewater sludge

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  6. Post-treatment of anaerobic effluent by ozone and ozone/UV of a kraft cellulose pulp mill.

    PubMed

    Chaparro, T R; Pires, E C

    2015-01-01

    Pulp and paper mill effluents represent a challenge when treatment technologies are considered, not only to reduce organic matter, but also to reduce the toxicological effects. Although anaerobic treatment has shown promising results, as well as advantages when compared with an aerobic system, this process alone is not sufficient to reduce recalcitrant compounds. Thus, an advanced oxidation process was applied. This experiment was performed to determine the effect of ozone and ozone/UV treating a horizontal anaerobic immobilized biomass reactor effluent from a kraft cellulose pulp mill for 306 days with an organic volumetric load of 2.33 kgCOD/m³/day. The removal of organic compounds was measured by the following parameters: adsorbable organically bound halogens (AOX), total phenols, chemical oxygen demand (COD), dissolved organic carbon and absorbance values in the UV-visible spectral region. Moreover, ecotoxicity and genotoxicity tests were conducted before and after treatment with ozone and ozone/UV. At an applied ozone dosage of 0.76 mgO₃/mgCOD and an applied UV dosage of 3.427 Wh/m(3), the organochlorine compounds measured as AOX reached removal efficiencies of 40%. Although the combination of ozone/UV showed better results in colour (79%) and total phenols (32%) compared with only ozone, the chronic toxicity and the genotoxicity that had already been removed in the anaerobic process were slightly increased.

  7. Milt characteristics, reproductive performance, and larval survival and development of white sucker exposed to bleached kraft mill effluent

    SciTech Connect

    McMaster, M.E.; Portt, C.B.; Munkittrick, K.R.; Dixon, D.G. )

    1992-02-01

    White sucker from a Lake Superior bay which receives bleached kraft mill effluent (BKME) show increased hepatic mixed-function oxygenase (MFO) activity, reduced plasma sex steroid levels, decreased egg and gonad size, a decrease in the occurrence of secondary sexual characteristics, and an increased age to maturation. This study evaluated the reproductive performance of that white sucker population relative to a similar reference population. Spawning male white sucker from the BKME site had reduced spermatozoan motility but no significant differences in milt volume, spermatocrit levels, or seminal plasma constituents. BKME male and female fish had equal or greater fertilization potential compared to both male and female fish at the reference site. There was no difference either in the hatchability of the eggs or in larval size at hatch. BKME larvae did show reduced growth rates by 24 days posthatch but showed equal rates of yolk utilization. No difference in larval MFO activity was detected between sites at 21 days posthatch, indicating no parental transfer of induction to the progeny.

  8. Detoxification of olive mill wastewater using superabsorbent polymers.

    PubMed

    Davies, L C; Novais, J M; Martins-Dias, S

    2004-01-01

    The detoxification of agro-industrial effluents using superabsorbent polymers is a new and innovative process. Olive mill wastewater constitutes a major environmental problem in Mediterranean countries due to the large volumes generated, the seasonality of the industry, and the high content of polyphenols and organic matter. The application of superabsorbent polymers allows olive mill wastewater to be used as a fertilizer, as it is immobilized, increasing the biological activity that decreases its phytotoxicity, thus making its water, organic matter and mineral content usable for plant nutrition. Various parameters that characterise olive mill wastewater were evaluated after absorption in 2 different superabsorbent polymers (SAP1 and SAP2). The organic matter was equally distributed in both phases, while there was a concentration of protein and sodium in solution. The K:Na ratio decreased from 70:1 to 2:1. The polyphenol desorption from the gel into solution was found to follow Fick's law. The mass transfer coefficients were 0.147 min(-1) and 0.0085 min(-1) for SAP1 and SAP2, respectively. Phytotoxicity tests were carried out with SAP2. Olive mill wastewater in SAP2 with polyphenol concentrations up to 200 mg l(-1) revealed no phytotoxicity, and even stimulated Lepidium sativum growth, while olive mill wastewater without superabsorbent polymer revealed growth inhibition for all concentrations tested. Caffeic acid degradation by the immobilised biomass followed zero order kinetics. Degradation constants of 0.087 mg l(-1) min(-1) gSAP2(-1) and 1.156 mg l(-1) min(-1) gSAP2(-1) were found. Fungi that developed in the plant growth medium were identified as Aspergillus sp. and Penicillium sp. PMID:15027653

  9. Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF.

    PubMed

    Kang, Li; Wang, Wei; Lee, Yoon Y

    2010-05-01

    Paper mill sludge is a solid waste material composed of pulp residues and ash generated from pulping and paper making processes. The carbohydrate portion of the sludge has chemical and physical characteristics similar to pulp. Because of its high carbohydrate content and well-dispersed structure, the sludges can be biologically converted to value-added products without pretreatment. In this study, two different types of paper mill sludges, primary sludge and recycle sludge, were evaluated as a feedstock for bioconversion to ethanol. The sludges were first subjected to enzymatic conversion to sugars by commercial cellulase enzymes. The enzymatic conversion was inefficient because of interference by ash in the sludges with the enzymatic reaction. The main cause was that the pH level is dictated by CaCO3 in ash, which is two units higher than the pH optimum of cellulase. To alleviate this problem, simultaneous saccharification and cofermentation (SSCF) using cellulase (Spezyme CP) and recombinant Escherichia coli (ATCC-55124), and simultaneous saccharification and fermentation (SSF) using cellulase and Saccharomyces cerevisiae (ATCC-200062) were applied to the sludges without any pretreatment. Ethanol yields of 75-81% of the theoretical maximum were obtained from the SSCF on the basis of total carbohydrates. The yield from the SSF was also found to be in the range of 74-80% on the basis of glucan. The SSCF and SSF proceeded under stable condition with the pH staying near 5.0, close to the optimum for cellulase. Decrease of pH occurred due to carbonic acid and other organic acids formed during fermentation. The ash was partially neutralized by the acids produced from the SSCF and SSF and acted as a buffer to stabilize the pH during fermentation. When the SSF and SSCF were operated in fed-batch mode, the ethanol concentration in the broth increased from 25.5 and 32.6 g/L (single feed) to 45 and 42 g/L, respectively. The ethanol concentration was limited by the tolerance

  10. Pulp mill wastewater sediment reveals novel methanogenic and cellulolytic populations.

    PubMed

    Yang, Chunyu; Wang, Wei; Du, Miaofen; Li, Chunfang; Ma, Cuiqing; Xu, Ping

    2013-02-01

    Pulp mill wastewater generated from wheat straw is characterized as high alkalinity and very high COD pollution load. A naturally developed microbial community in a pulp mill wastewater storage pool that had been disused were investigated in this study. Owing to natural evaporation and a huge amount of lignocellulose's deposition, the wastewater sediment contains high concentrations of organic matters and sodium ions, but low concentrations of chloride and carbonate. The microbiota inhabiting especially anaerobic community, including methanogenic arhcaea and cellulolytic species, was studied. All archaeal sequences fall into 2 clusters of family Halobacteriaceae and methanogenic archaeon in the phylum Euryarchaeota. In the methanogenic community, phylogenetic analysis of methyl coenzyme M reductase A (mcrA) genes targeted to novel species in genus Methanoculleus or novel genus of order Methanomicrobiales. The predominance of Methanomicrobiales suggests that methanogenesis in this system might be driven by the hydrogenotrophic pathway. As the important primary fermenter for methane production, the cellulolytic community of enzyme GHF48 was found to be dominated by narrower breadth of novel clostridial cellulase genes. Novel anoxic functional members in such extreme sediment provide the possibility of enhancing the efficiency of anoxic treatment of saline and alkaline wastewaters, as well as benefiting to the biomass transformation and biofuel production processes. PMID:23228889

  11. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    PubMed

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated

  12. Exposure to bleached kraft pulp mill effluent disrupts the pituitary-gonadal axis of white sucker at multiple sites

    SciTech Connect

    Van Der Kraak, G.J.; Munkittrick, K.R.; McMaster, M.E.; Portt, C.B.; Chang, J.P. )

    1992-08-01

    Recent studies have demonstrated reproductive problems in white sucker (Catostomus commersoni) exposed to bleached kraft pulp mill effluent (BKME) at Jackfish Bay on Lake Superior. These fish exhibit delayed sexual maturity, reduced gonadal size, reduced secondary sexual characteristics, and circulating steroid levels depressed relative to those of reference populations. The present studies were designed to evaluate sites in the pituitary-gonadal axis of prespawning white sucker affected by BKME exposure. At the time of entry to the spawning stream, plasma levels of immunoreactive gonadotropin (GtH)-II (LH-type GtH) in male and female white sucker were 30- and 50-fold lower, respectively, than the levels in fish from a reference site. A single intraperitoneal injection of D-Arg6, Pro9N-Et sGnRH (sGnRH-A, 0.1 mg/kg) increased plasma GtH levels in male and female fish at both sites, although the magnitude of the response was greatly reduced in BKME-exposed fish. Fish at the BKME site did not ovulate in response to sGnRH-A, while 10 of 10 fish from the reference site ovulated within 6 hr. Plasma 17 alpha,20 beta-dihydroxy-4-pregnen-3-one (17,20 beta-P) levels were depressed in BKME-exposed fish and unlike fish at the reference site, failed to increase in response to sGnRH-A. Testosterone levels in both sexes and 11-ketostestosterone levels in males were elevated in fish from the reference site but were not further increased by GnRH treatment. In contrast, BKME-exposed fish exhibit a transitory increase in testosterone levels in response to the GnRH analog. In vitro incubations of ovarian follicles obtained from fish at the BKME site revealed depressed basal secretion of testosterone and 17,20 beta-P and reduced responsiveness to the GtH analog human chorionic gonadotropin and to forskolin, a direct activator of adenylate cyclase.

  13. Waste to resource: Converting paper mill wastewater to bioplastic.

    PubMed

    Jiang, Yang; Marang, Leonie; Tamis, Jelmer; van Loosdrecht, Mark C M; Dijkman, Henk; Kleerebezem, Robbert

    2012-11-01

    In this study we investigated the feasibility of producing polyhydroxyalkanoate (PHA) by microbial enrichments on paper mill wastewater. The complete process includes (1) paper mill wastewater acidogenic fermentation in a simple batch process, (2) enrichment of a PHA-producing microbial community in a selector operated in sequencing batch mode with feast-famine regime, (3) Cellular PHA content maximization of the enrichment in an accumulator in fed-batch mode. The selective pressure required to establish a PHA-producing microbial enrichment, as derived from our previous research on synthetic medium, was validated using an agro-industrial waste stream in this study. The microbial enrichment obtained could accumulate maximum up to 77% PHA of cell dry weight within 5 h, which is currently the best result obtained on real agro-industrial waste streams, especially in terms of biomass specific efficiency. Biomass in this enrichment included both Plasticicumulans acidivorans, which was the main PHA producer, and a flanking population, which exhibited limited PHA-producing capacity. The fraction of P. acidivorans in the biomass was largely dependent on the fraction of volatile fatty acids in the total soluble COD in the wastewater after acidification. Based on this observation, one simple equation was proposed for predicting the PHA storage capacity of the enrichment. Moreover, some crucial bottlenecks that may impede the successful scaling-up of the process are discussed.

  14. Waste to resource: Converting paper mill wastewater to bioplastic.

    PubMed

    Jiang, Yang; Marang, Leonie; Tamis, Jelmer; van Loosdrecht, Mark C M; Dijkman, Henk; Kleerebezem, Robbert

    2012-11-01

    In this study we investigated the feasibility of producing polyhydroxyalkanoate (PHA) by microbial enrichments on paper mill wastewater. The complete process includes (1) paper mill wastewater acidogenic fermentation in a simple batch process, (2) enrichment of a PHA-producing microbial community in a selector operated in sequencing batch mode with feast-famine regime, (3) Cellular PHA content maximization of the enrichment in an accumulator in fed-batch mode. The selective pressure required to establish a PHA-producing microbial enrichment, as derived from our previous research on synthetic medium, was validated using an agro-industrial waste stream in this study. The microbial enrichment obtained could accumulate maximum up to 77% PHA of cell dry weight within 5 h, which is currently the best result obtained on real agro-industrial waste streams, especially in terms of biomass specific efficiency. Biomass in this enrichment included both Plasticicumulans acidivorans, which was the main PHA producer, and a flanking population, which exhibited limited PHA-producing capacity. The fraction of P. acidivorans in the biomass was largely dependent on the fraction of volatile fatty acids in the total soluble COD in the wastewater after acidification. Based on this observation, one simple equation was proposed for predicting the PHA storage capacity of the enrichment. Moreover, some crucial bottlenecks that may impede the successful scaling-up of the process are discussed. PMID:22921584

  15. Phenolic profile and antioxidant activities of olive mill wastewater.

    PubMed

    El-Abbassi, Abdelilah; Kiai, Hajar; Hafidi, Abdellatif

    2012-05-01

    Olive trees play an important role in the Moroccan agro-economy, providing both employment and export revenue. However, the olive oil industry generates large amounts of wastes and wastewaters. The disposal of these polluting by-products is a significant environmental problem that needs an adequate solution. On one hand, the phytotoxic and antimicrobial effects of olive mill wastewaters are mainly due to their phenolic content. The hydrophilic character of the polyphenols results in the major proportion of natural phenols being separated into the water phase during the olive processing. On other hand, the health benefits arising from a diet containing olive oil have been attributed to its richness in phenolic compounds that act as natural antioxidants and are thought to contribute to the prevention of heart diseases and cancers. Olive mill wastewater (OMW) samples have been analysed in terms of their phenolic constituents and antioxidant activities. The total phenolic content, flavonoids, flavanols, and proanthocyanidins were determined. The antioxidant and radical scavenging activity of phenolic extracts and microfiltred samples was evaluated using different tests (iron(II) chelating activity, total antioxidant capacity, DPPH assays and lipid peroxidation test). The obtained results reveal the considerable antioxidant capacity of the OMW, that can be considered as an inexpensive potential source of high added value powerful natural antioxidants comparable to some synthetic antioxidants commonly used in the food industry.

  16. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.

    PubMed

    Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C

    2014-02-01

    Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers.

  17. Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters.

    PubMed

    Balabanič, Damjan; Hermosilla, Daphne; Merayo, Noemí; Klemenčič, Aleksandra Krivograd; Blanco, Angeles

    2012-01-01

    There is increasing concern about chemical pollutants that have the ability to mimic hormones, the so-called endocrine-disrupting compounds (EDCs). One of the main reasons for concern is the possible effect of EDCs on human health. EDCs may be released into the environment in different ways, and one of the most significant sources is industrial wastewater. The main objective of this research was to evaluate the treatment performance of different wastewater treatment procedures (biological treatment, filtration, advanced oxidation processes) for the reduction of chemical oxygen demand and seven selected EDCs (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, bisphenol A and nonylphenol) from wastewaters from a mill producing 100 % recycled paper. Two pilot plants were running in parallel and the following treatments were compared: (i) anaerobic biological treatment followed by aerobic biological treatment, ultrafiltration and reverse osmosis (RO), and (ii) anaerobic biological treatment followed by membrane bioreactor and RO. Moreover, at lab-scale, four different advanced oxidation processes (Fenton reaction, photo-Fenton reaction, photocatalysis with TiO(2), and ozonation) were applied. The results indicated that the concentrations of selected EDCs from paper mill wastewaters were effectively reduced (100 %) by both combinations of pilot plants and photo-Fenton oxidation (98 %), while Fenton process, photocatalysis with TiO(2) and ozonation were less effective (70 % to 90 %, respectively). PMID:22571523

  18. Assessment of Gasification-Based Biorefining at Kraft Pulp and Paper Mills in the United States, Part A: Background and Assumptions

    SciTech Connect

    Larson, E. D.; Consonni, S.; Katofsky, R. E.; Iisa, K.; Frederick, W. J., Jr.

    2008-11-01

    Commercialization of black liquor and biomass gasification technologies is anticipated in the 2010-2015 time frame, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are already commercially established in the gas-to-liquids or coal-to-liquids industries. This set of two papers describes key results from a major assessment of the prospective energy, environmental, and financial performance of commercial gasification-based biorefineries integrated with kraft pulp and paper mills [1]. Seven detailed biorefinery designs were developed for a reference mill in the southeastern United States, together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which could be refined to vehicle fuels at an existing petroleum refinery), dimethyl ether (a diesel engine fuel or propane substitute), or an ethanol-rich mixed-alcohol product. This paper describes the key assumptions that underlie the biorefinery designs. Part B will present analytical results.

  19. Electro-coagulation treatment efficiency of graphite, iron and aluminum electrodes using alum and wood ash electrolytes on a Kraft pulp and paper mill effluent.

    PubMed

    Orori, O B; Etiégni, L; Senelwa, K; Mwamburi, M M; Balozi, K B; Barisa, G K; Omutange, E S

    2010-01-01

    Specific power consumption and reduction of BOD, COD, TS, pH, and chemical elements were used to determine the treatment efficiency of Fe, graphite and Al electrodes with alum and wood ash as supporting electrolytes on the effluent from a Kraft pulp and paper mill in Kenya. Five sampling points were selected along mill's effluent treatment system: primary settling tank (SP1), first aerated lagoon (SP2), second aerated lagoon (SP3), stabilization pond (SP4), and at discharge point (SP5). Operating costs were also compared between treatments. Graphite electrodes combined with alum showed the lowest power consumption (0.5 to 3.9 mWh/m³), followed by Al and Fe. All the electrodes reduced color from a maximum of 3,200°H to the minimum local standard of 15°H. However Al electrode with alum was the most effective method for BOD and COD reduction by over 60% and 58.8% respectively and generated less sludge at all sampling points. The cost of treatment was lowest with graphite electrode (US$0.006 to 0.0008 per m³ of effluent), but highest with Al electrodes combined with wood ash (US$31.74 to 8.34 per m³). Further study is required for the effectiveness of increasing the concentration of wood ash leachate at higher concentration and current density. PMID:20935369

  20. Bioaccumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin in feral fish collected from a bleach-kraft paper mill receiving stream

    SciTech Connect

    Schell, J.D. ); Campbell, D.M.; Lowe, E. )

    1993-11-01

    Bleach-kraft mill (BKM) processes may result in the formation and release of a number of chlorinated organic compounds, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Contamination of aquatic ecosystems by TCDD is of concern due to the chemical's toxicity, bioaccumulation potential, and persistence in the environment. Sediment samples and tissues from three species of fish an done invertebrate were collected downstream from a BKM facility and were analyzed for TCDD. Concentrations of TCDD were greatest in the bowfin, particularly in the ovary of a gravid female. There appeared to be no correlation between either trophic position of habitat classification (i.e., epibenthic or pelagic) and TCDD tissue concentrations. Sediments collected near the mill outfall contained elevated levels of TCDD as great as 52.8 ppt. Sediment-based BAFs and lipid- and carbon-normalized bioavailability indexes (BI) were calculated for the fish livers and gonads, and blue crab hepatopancreas. BAF*s varied by a factor of 27, depending on species and organ, whereas BIs had an approximate seven-fold variation. It appears that organic carbon- and lipid-normalization factors may be more accurate predictors of the extent of bioaccumulation in resident biota from TCDD-contaminated sediments than either BAF*s or BCFs. As there is currently only a limited understanding of species variability in absorption and deposition of TCDD, a more accurate estimation of TCDD levels in feral fish tissues may not be possible.

  1. Electro-coagulation treatment efficiency of graphite, iron and aluminum electrodes using alum and wood ash electrolytes on a Kraft pulp and paper mill effluent.

    PubMed

    Orori, O B; Etiégni, L; Senelwa, K; Mwamburi, M M; Balozi, K B; Barisa, G K; Omutange, E S

    2010-01-01

    Specific power consumption and reduction of BOD, COD, TS, pH, and chemical elements were used to determine the treatment efficiency of Fe, graphite and Al electrodes with alum and wood ash as supporting electrolytes on the effluent from a Kraft pulp and paper mill in Kenya. Five sampling points were selected along mill's effluent treatment system: primary settling tank (SP1), first aerated lagoon (SP2), second aerated lagoon (SP3), stabilization pond (SP4), and at discharge point (SP5). Operating costs were also compared between treatments. Graphite electrodes combined with alum showed the lowest power consumption (0.5 to 3.9 mWh/m³), followed by Al and Fe. All the electrodes reduced color from a maximum of 3,200°H to the minimum local standard of 15°H. However Al electrode with alum was the most effective method for BOD and COD reduction by over 60% and 58.8% respectively and generated less sludge at all sampling points. The cost of treatment was lowest with graphite electrode (US$0.006 to 0.0008 per m³ of effluent), but highest with Al electrodes combined with wood ash (US$31.74 to 8.34 per m³). Further study is required for the effectiveness of increasing the concentration of wood ash leachate at higher concentration and current density.

  2. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation.

    PubMed

    Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2016-10-01

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS.

  3. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation.

    PubMed

    Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2016-10-01

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS. PMID:27453288

  4. Organochlorine contaminants in mummichog (Fundulus heteroclitus) living downstream from a bleached-kraft pulp mill in the Miramichi Estuary, New Brunswick, Canada

    SciTech Connect

    Couillard, C.M.; Nellis, P.

    1999-11-01

    Mummichog, a small-sized sentinel fish species, has been proposed for use in environmental effects monitoring programs conducted by pulp mills that release their effluent in marine waters. In order to evaluate the suitability of mummichog as a sentinel species and to support the interpretation of biological effects data, tissue concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans, (PCDD/Fs), chlorophenolic compounds (CPs), polychlorinated biphenyls (PCBs), and chlorinated pesticides were investigated in mummichog sampled in the Miramichi Estuary, which was receiving a bleached-kraft mill (BKM) effluent, and in a reference estuary, the Bouctouche Estuary. Higher concentrations PCDD/Fs, CPs, DDT, and PCBs were found in mummichog sampled at the upstream site of the Miramichi Estuary. At this site, 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalent concentrations were slightly above the threshold for ethoxy resorufin O-deethylase induction. Multivariate analyses on congener profiles revealed that the contamination by PCDD/Fs and CPs originated both from the BKM and from a former wood-preservation plant and that PCDD/Fs and CPs typical of the BKM were transported 40 km downstream from the mill. Patterns and levels of persistent contaminants differed between sites within the Estuary, indicating that the fish did not mix during their growing period. These findings support the use of mummichog in environmental effects monitoring programs, because this species bioaccumulates chlorinated compounds contained in BKM effluent and is sedentary. The cause-effect relationship between exposure to the BKM effluent and the observed biological responses will have to be demonstrated by laboratory studies because of the presence of multiple sources of contamination.

  5. Inoculation of paperboard mill sludge versus mixed culture bacteria for hydrogen production from paperboard mill wastewater.

    PubMed

    Farghaly, Ahmed; Tawfik, Ahmed; Danial, Amal

    2016-02-01

    A comparative evaluation of paperboard mill sludge (PMS) versus mixed culture bacteria (MCB) as inoculum for hydrogen production from paperboard mill wastewater (PMW) was investigated. The experiments were conducted at different initial cultivation pHs, inoculums to substrate ratios (ISRs gVS/gCOD), and hydraulic retention times (HRTs). The peak hydrogen yield (HY) of 5.29 ± 0.16 and 1.22 ± 0.11 mmol/gCODinitial was occurred at pH = 5 for MCB and PMS, respectively. At pH of 5, the HY and COD removal achieved the highest values of 2.26 ± 0.14 mmol/gCODinitial and 86 ± 1.6% at ISR = 6 for MCB, and 2.38 ± 0.25 mmol/gCODinitial and 60.4 ± 2.5% at ISRs = 3 for PMS. The maximum hydrogen production rate was 93.75 ± 8.9 mmol/day at HRT = 9.6 h from continuous upflow anaerobic reactor inoculated with MCB. Meanwhile, the 16S ribosomal RNA (rRNA) gene fragments indicated a dominance of a novel hydrogen-producing bacterium of Stenotrophomonas maltophilia for PMS microbial community. On the other hand, Escherichia fergusonii and Enterobacter hormaechei were the predominant species for MCB.

  6. Biomass selection for optimal anaerobic treatment of olive mill wastewater.

    PubMed

    Sabbah, I; Yazbak, A; Haj, J; Saliba, A; Basheer, S

    2005-01-01

    This research was conducted to identify the most efficient biomass out of five different types of biomass sources for anaerobic treatment of Olive Mill Wastewater (OMW). This study was first focused on examining the selected biomass in anaerobic batch systems with sodium acetate solutions (control study). Then, the different types of biomass were tested with raw OMW (water-diluted) and with pretreated OMW by coagulation-flocculation using Poly Aluminum Chloride (PACl) combined with hydrated lime (Ca(OH)2). Two types of biomass from wastewater treatment systems of a citrus juice producing company "PriGat" and from a citric acid manufacturing factory "Gadot", were found to be the most efficient sources of microorganisms to anaerobically treat both sodium acetate solution and OMW. Both types of biomass were examined under different concentration ranges (1-40 g l(-1)) of OMW in order to detect the maximal COD tolerance for the microorganisms. The results show that 70-85% of COD removal was reached using Gadot biomass after 8-10 days when the initial concentration of OMW was up to 5 g l(-1), while a similar removal efficiency was achieved using OMW of initial COD concentration of 10 g l(-1) in 2-4 days of contact time with the PriGat biomass. The physico-chemical pretreatment of OMW was found to enhance the anaerobic activity for the treatment of OMW with initial concentration of 20 g l(-1) using PriGat biomass. This finding is attributed to reducing the concentrations of polyphenols and other toxicants originally present in OMW upon the applied pretreatment process. PMID:15747599

  7. Biomass selection for optimal anaerobic treatment of olive mill wastewater.

    PubMed

    Sabbah, I; Yazbak, A; Haj, J; Saliba, A; Basheer, S

    2005-01-01

    This research was conducted to identify the most efficient biomass out of five different types of biomass sources for anaerobic treatment of Olive Mill Wastewater (OMW). This study was first focused on examining the selected biomass in anaerobic batch systems with sodium acetate solutions (control study). Then, the different types of biomass were tested with raw OMW (water-diluted) and with pretreated OMW by coagulation-flocculation using Poly Aluminum Chloride (PACl) combined with hydrated lime (Ca(OH)2). Two types of biomass from wastewater treatment systems of a citrus juice producing company "PriGat" and from a citric acid manufacturing factory "Gadot", were found to be the most efficient sources of microorganisms to anaerobically treat both sodium acetate solution and OMW. Both types of biomass were examined under different concentration ranges (1-40 g l(-1)) of OMW in order to detect the maximal COD tolerance for the microorganisms. The results show that 70-85% of COD removal was reached using Gadot biomass after 8-10 days when the initial concentration of OMW was up to 5 g l(-1), while a similar removal efficiency was achieved using OMW of initial COD concentration of 10 g l(-1) in 2-4 days of contact time with the PriGat biomass. The physico-chemical pretreatment of OMW was found to enhance the anaerobic activity for the treatment of OMW with initial concentration of 20 g l(-1) using PriGat biomass. This finding is attributed to reducing the concentrations of polyphenols and other toxicants originally present in OMW upon the applied pretreatment process.

  8. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.

    PubMed

    Oz, Nilgun Ayman; Uzun, Alev Cagla

    2015-01-01

    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p<0.05) in terms of SCOD parameter, but not for raw OMW (p>0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (p<0.05). Anaerobic

  9. Effect of Olive Mill Wastewater Spreading on Soil Properties.

    PubMed

    Vella, Filomena M; Galli, Emanuela; Calandrelli, Roberto; Cautela, Domenico; Laratta, Bruna

    2016-07-01

    The effect of untreated olive mill wastewater (OMW) spreading on chemical and biological soil properties of two different fields located in Campania (Italy) was investigated. Fields were irrigated since 2003 with quantities of about 30 m(3) ha(-1) year(-1), a volume lower than the maximum limit of 80 m(3) ha(-1) year(-1) established by Italian law. Results showed that the addition of OMW, even if repeated for many years, had little impact on pH, electrical conductivity, organic matter, concentrations of main cations and polyphenolic content of both soil plots; moreover, microbial respiration was low during the winter time, but an increase was evident in the second sampling carried out in warm season. This study suggests that OMW, without pre-treatments, can be annually used for crops and tree irrigation. As a consequence, OMW should be a readily and inexpensive source of nutrients that could replace chemical fertilizers which are extensively employed in agricultural practices of Mediterranean countries. PMID:27209544

  10. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater.

    PubMed

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification.

  11. Olive oil mill wastewater for soil nitrogen and carbon conservation.

    PubMed

    Aguilar, Manuel Jimenez

    2009-06-01

    In this work the application of two levels of N fertilizer (NH(4)NO(3)) dissolved in water or olive oil mill wastewater (OOMW) diluted 10 or 20 times in water, has been studied in relation to the properties of two soils (Loam and Silt-Clay-Loam). Also, the effect of irrigation water bubbled with CO(2) (Dissolved Inorganic Carbon, DIC) was studied. Nitrate N, ammonium N, total N, organic C (OC), and CaCO(3) contents were determined in the soil as well as pH, electrical conductivity (EC), oxidation-reduction potential (ORP), and absorbance at 250 and 360 nm. Our data provide evidence that inorganic-N fertilizer dissolved in OOMW significantly reduced the emission of nitrates from soils for two months, increasing OC values. Moreover, OOMW significantly lowered the ORP. The irrigation with DIC also increased soil OC. Thus, the application of inorganic-N fertilizers dissolved in OOMW diluted with water on soils and the irrigation with water bubbled with CO(2) could reduce the environmental impact of OOMW, nitrates, and CO(2).

  12. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    PubMed Central

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  13. Synergistic Antibacterial Effects of Polyphenolic Compounds from Olive Mill Wastewater

    PubMed Central

    Tafesh, Ahmed; Najami, Naim; Jadoun, Jeries; Halahlih, Fares; Riepl, Herbert; Azaizeh, Hassan

    2011-01-01

    Polyphenols or phenolic compounds are groups of secondary metabolites widely distributed in plants and found in olive mill wastewater (OMW). Phenolic compounds as well as OMW extracts were evaluated in vitro for their antimicrobial activity against Gram-positive (Streptococcus pyogenes and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). Most of the tested phenols were not effective against the four bacterial strains when tested as single compounds at concentrations of up to 1000 μg mL−1. Hydroxytyrosol at 400 μg mL−1 caused complete growth inhibition of the four strains. Gallic acid was effective at 200, and 400 μg mL−1 against S. aureus, and S. pyogenes, respectively, but not against the gram negative bacteria. An OMW fraction called AntiSolvent was obtained after the addition of ethanol to the crude OMW. HPLC analysis of AntiSolvent fraction revealed that this fraction contains mainly hydroxytyrosol (10.3%), verbascoside (7.4%), and tyrosol (2.6%). The combinations of AntiSolvent/gallic acid were tested using the low minimal inhibitory concentrations which revealed that 50/100–100/100 μg mL−1 caused complete growth inhibition of the four strains. These results suggest that OMW specific fractions augmented with natural phenolic ingredients may be utilized as a source of bioactive compounds to control pathogenic bacteria. PMID:21647315

  14. Antioxidant activity of phenolic fractions in olive mill wastewater.

    PubMed

    Azaizeh, Hassan; Halahlih, Fares; Najami, Naim; Brunner, Doris; Faulstich, Martin; Tafesh, Ahmed

    2012-10-15

    Olive mill wastewater (OMW) contains a substantial amount of valuable antioxidant phenols that can be recovered for industrial application as food additives and pharmaceuticals. The present study was aimed at extracting different phenolic OMW fractions, and determining their antioxidant potential. Five different OMW fractions were obtained using fractionation techniques, their antioxidant potential determined by DPPH, ORAC and a β-carotene bleaching test. The total phenol level ranged between 115 and 170 mg/l. The phenolic compounds present in individual fractions were identified using the HPLC-PAD method, where the main compounds were hydroxytyrosol, tyrosol, caffeic acid, vanillic acid, verbascoside, oleuropein, ferulic acid, and p-coumaric acid. The five OMW fractions showed different antioxidant levels depending on the test used. DPPH test showed that the fraction of alkyl aromatic alcohols (AAAs) was the best with EC(50) of 20 mg/l and the pure hydroxytyrosol with 2 mg/l. ORAC test showed that AAA and semi hydrolysed total phenol (s-TP) fractions were significantly better than Trolox when compared to 20 mg/l of Trolox. PMID:23442678

  15. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater.

    PubMed

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  16. Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells.

    PubMed

    Bermek, Hakan; Catal, Tunc; Akan, S Süha; Ulutaş, Mehmet Sefa; Kumru, Mert; Özgüven, Mine; Liu, Hong; Özçelik, Beraat; Akarsubaşı, Alper Tunga

    2014-04-01

    Olive mill wastewaters create significant environmental issues in olive-processing countries. One of the most hazardous groups of pollutants in these wastewaters is phenolic compounds. Here, olive mill wastewater was used as substrate and treated in single-chamber air-cathode microbial fuel cells. Olive mill wastewater yielded a maximum voltage of 381 mV on an external resistance of 1 kΩ. Notable decreases in the contents of 3,4-dihydroxybenzoic acid, tyrosol, gallic acid and p-coumaric acid were detected. Chemical oxygen demand removal rates were 65 % while removal of total phenolics by the process was lower (49 %). Microbial community analysis during the olive mill wastewater treating MFC has shown that both exoelectrogenic and phenol-degrading microorganisms have been enriched during the operation. Brevundimonas-, Sphingomonas- and Novosphingobium-related phylotypes were enriched on the anode biofilm, while Alphaproteobacteria and Bacteriodetes dominated the cathode biofilm. As one of the novel studies, it has been demonstrated that recalcitrant olive mill wastewaters could be treated and utilized for power generation in microbial fuel cells.

  17. Wet Oxidation: A Promising Option for the Treatment of Pulp and Paper Mill Wastewater

    NASA Astrophysics Data System (ADS)

    Garg, A.

    2012-05-01

    Wet oxidation (WO) is used to degrade persistent organic or inorganic impurities present in industrial wastewater. The process utilizes severe oxidation conditions (i.e., high temperature and pressures) to achieve the efficient degradation of pollutants. To obtain high degradation at lower operation conditions, catalytic WO process is being suggested. The wastewater generated from a pulp and paper mill contains several recalcitrant compounds like lignin, hemi-cellulose, phenols, sulfides etc. Therefore, pulp and paper mill effluent have low biodegradability and are not amenable for conventional biological process. With the implementation of stringent regulations, pulp and paper mill operators need a cleaner disposal route for the wastewater. In this mini-review, the results obtained from the recently published studies on WO treatment for pulp and paper mill effluent are compiled and presented. Finally, the recommendations for the future work are also given.

  18. Assessment of the best available wastewater management techniques for a textile mill: cost and benefit analysis.

    PubMed

    Dogan, Bugce; Kerestecioglu, Merih; Yetis, Ulku

    2010-01-01

    In the present study, several water recovery and end-of-pipe wastewater treatment alternatives were evaluated towards the evaluation of Best Available Techniques (BATs) for the management of wastewaters from a denim textile mill in accordance with the European Union's Integrated Pollution Prevention and Control (IPPC) Directive. For this purpose, an assessment that translates the key environmental aspects into a quantitative measure of environmental performance and also financial analysis was performed for each of the alternatives. The alternatives considered for water recovery from dyeing wastewaters were nanofiltration (NF) with coagulation and/or microfiltration (MF) pre-treatment, ozonation or peroxone and Fenton oxidation. On the other hand, for the end-of-pipe treatment of the mill's mixed wastewater, ozonation, Fenton oxidation, membrane bioreactor (MBR) and activated sludge (AS) process followed by membrane filtration technologies were evaluated. The results have indicated that membrane filtration process with the least environmental impacts is the BAT for water recovery. On the other side, MBR technology has appeared as the BAT for the end-of-pipe treatment of the mill's mixed wastewater. A technical and financial comparison of these two BAT alternatives revealed that water recovery via membrane filtration from dyeing wastewaters is selected as the BAT for the water and wastewater management in the mill.

  19. Olive oil mill wastewater for remediation of slag contaminated soil.

    PubMed

    Ferrara, Luciano; Panzella, Lucia; Napolitano, Alessandra; Giudicianni, Italo; d'Ischia, Marco; Arienzo, Michele

    2013-12-01

    Two olive mill wastewaters (OMW) samples, OMWa and OMWb, containing different polyphenolic loads were used for decontaminating an unauthorized dump site in the Campania region, south Italy. In a bench-scale experiment, OMWa at pH 6.0 (OMWapH6.0) and 4.7 (OMWapH4.7), OMWb at pH 4.7 (OMWbpH4.7) and OMWa free of the polyphenolic moiety polyphenol-free OMWa (PF-OMWa) were added to the soil for a 96 h contact time. At 96 h, OMWapH4.7 was more effective than OMWapH6.0, with Cd, Cu, Pb and Zn removal percentages of 30.7-68.1. Cd and Pb levels were 6.0 and 915 mg kg(-1), respectively, decreasing below the regulatory limits for industrial and commercial areas (15.0 and 1 × 10(3) mg kg(-1), respectively). A threefold decrease in Zn levels was also observed from 13.5 × 10(3) to 4.3 × 10(3) mg kg(-1). The metal removal efficiency of PF-OMWa dropped from 30.7 % to 15.6 % for Cd and from 37.9 % to 1.3 % for Pb. OMWbpH4.7 at 96 h was more efficient than OMWapH4.7, with mean removal percentages of 32.5 versus 7.8, respectively.

  20. Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity

    SciTech Connect

    Stuart E. Strand

    2001-12-06

    The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

  1. Olive mill wastewater membrane filtration fraction: Drying techniques and quality assessment of the dried product (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also utilize valuable co-products. Recovery of phenolics from OMWW could help olive oil processors add value to their co-product, increasing the sustainability of olive oil production. The ...

  2. Membrane-filtered olive mill wastewater: Quality assessment of the dried phenolic-rich fraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW a...

  3. Centrifugation as a pre-treatment in olive mill wastewater processing (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Olive mill wastewater (OMWW), generated during production of olive oil, is an untapped source of nutritious compounds. Thus, processors want to separate OMWW into a high-value, concentrated product stream and near-pure water. However, the amount and characteristics of the produced OMWW depend on t...

  4. PERIPHYTON AND SEDIMENT BIOASSESSMENT AS INDICATORS OF THE EFFECT OF A COASTAL PULP MILL WASTEWATER

    EPA Science Inventory

    A two year study was conducted near Port St. Joe, Florida, in a coastal transportation canal and bay receiving combined municipal and pulp mill wastewater. The objective of the study was to determine the effectiveness of periphyton analysis techniques and sediment toxicity as ind...

  5. Treatments of oil-refinery and steel-mill wastewaters by mesocosm constructed wetland systems.

    PubMed

    Yang, L; Hu, C C

    2005-01-01

    In this study, two types of industrial wastewater, oil-refining and steel-milling, were selected for investigating their feasibility of treatment by mesocosm constructed wetland systems. The secondly treated effluents from the wastewater treatment plants were directly discharged into the systems controlled at different flow rates. Three wetland mesocosms were installed in the two industries: mesocosms A and B were in the oil refinery, and mesocosm C was in the steel mill. The substratum media used in wetland systems were sand (mesocosm A) and gravel (mesocosms B and C), while the vegetation types selected were reeds (mesocosms A and B) and mixed species of reeds and cattails (mesocosm C). The flow regimes were controlled as free water surface (FWS) and subsurface flow (SSF) for the sand- and gravel-beds, respectively. According to the experimental results, we found that the system treating oil-refining wastewater performed better than that treating steel-milling wastewater learned by comparing the removal efficiencies of COD, total N and total P. In addition, it was found that for oil-refining wastewater treatments, the SSF wetland system (mesocosm B) performed better than FWS (mesocosm A) wetland system when comparing both of their removal of pollutants and growth of vegetation. Besides, the effluents from these two industrial wetland treatment systems might be reclaimed and reused for boiler water, cooling, cleaning and miscellaneous purposes in industries. Further treatments are required if the constructed wetland effluents are thought about being reused for processing in industries.

  6. Influence of olive mill wastewater in composting and impact of the compost on a Swiss chard crop and soil properties.

    PubMed

    Paredes, C; Cegarra, J; Bernal, M P; Roig, A

    2005-02-01

    The suitability of olive mill wastewater (OMW) for composting was studied by the addition of this liquid waste to a mixture of cotton gin waste and sewage sludge, and its composting was compared with that of another pile of similar composition, but without olive mill wastewater. Both piles were composted by the Rutgers static pile system in a pilot plant. To study the effects of both composts on plant yield and soil properties, a plot experiment was carried out with Swiss chard (Beta vulgaris L. var. cicla). Five treatments were applied: mineral fertiliser and two doses (30 and 60 tons ha(-1)) of both composts. The olive mill wastewater addition produced a compost with lower organic matter and nitrate concentrations, higher electrical conductivity, and a stabilised and humified organic matter similar to that of the compost produced without olive mill wastewater. The olive mill wastewater compost application to soil did not injure plants, producing a similar plant yield to both compost without olive mill wastewater and inorganic fertiliser. Also, the accumulation of potentially toxic heavy metals in plants cultivated with organic or mineral fertilisers did not reveal significant differences. The olive mill wastewater compost application to soil also improved the chemical and physicochemical properties of the soil.

  7. Does wastewater from olive mills induce toxicity and water repellency in soil?

    NASA Astrophysics Data System (ADS)

    Peikert, B.; Bandow, N.; Schaumann, G. E.

    2012-04-01

    Olive oil mill wastewater is the effluent generated by the olive oil extraction process. It is the main waste product of this industry mainly being produced in the Mediterranean Basin. Because proper treatment options are rare it is often disposed into the environment, e.g. fields or wadies. Due to its high concentration of fatty acids and phytotoxic phenolic compounds and its high chemical and biological oxygen demand, olive oil mill wastewater becomes a serious environmental problem. In this screening study we investigated long-term effects of olive oil mill wastewater application on soil properties in several locations in the West Bank and Israel. We determined wettability via water drop penetration time and the contact angle as well as general soil properties including pH, EC, carbon content, and we conducted thermogravimetrical analyses in order to characterize the impact of the waste water on the quality of soil organic matter. Our results show that application of olive oil mill wastewater has various effects. We determined contact angles between 110 and 120° and water drop penetration times up to 1367 s indicating significant reduction in wettability. Furthermore, soil carbon and nitrogen content and water extractable organic matter increased as well as electric conductivity, which could be pointed out as a fertilizing effect. In contrast soil pH was significantly reduced. Conducting thermal analyses we observed an increase in the labile and refractory carbon fraction. Probably first one is responsible for induced water repellency. As a consequence the reduced wettability negatively affects soil quality. It would therefore be promising to minimize the hydrophobizing impacts without losing fertilizing effects of the olive oil mill wastewater.

  8. Phytoremediation of parboiled rice mill wastewater using water lettuce (Pistia stratiotes).

    PubMed

    Mukherjee, Bidisha; Majumdar, Madhurina; Gangopadhyay, Amitava; Chakraborty, Sankar; Chaterjee, Debashish

    2015-01-01

    Phytoremediation is an emerging technology applied for treatment of wastewater. It is a suitable option notably in developing countries as it is simple, sustainable and cost effective. In the present lab-based batch study the free floating aquatic plant water lettuce (Pistia stratiotes) is used for treatment of parboiled rice mill wastewater having low pH, high chemical oxygen demand (COD), nitrogen, and phosphate. In raw rice mill wastewater (undiluted) growth of water lettuce is found to be inhibited. Later on, two different dilution approaches (raw and facultative pond effluent 1:1; raw and tap water 1:1) are applied in order to effectively use this technology. In all cases a control (without plant) is maintained to compare the performance with the Aquatic Plant based Treatment (APT) system. In the APT system results reveal that removal of soluble COD (SCOD), ammoniacal nitrogen (NH4-N), nitrate nitrogen (NO3-N), and soluble phosphorus (sol. P) are upto 65%, 98%, 70%, and 65% respectively. The study highlights the efficacy of water lettuce in removing organics and nutrients from parboiled rice mill wastewater.

  9. Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status.

    PubMed

    Karaouzas, Ioannis; Skoulikidis, Nikolaos T; Giannakou, Urania; Albanis, Triantafyllos A

    2011-12-01

    Olive mill wastewater (OMW) is one of the major and most challenging organic pollutants in olive oil production countries. However, the knowledge about the in-situ effects of olive mill wastewaters to lotic ecosystems and their benthic organisms is very limited. To resolve this, eight sampling sites were selected upstream and downstream the outflow of several olive mills to assess the spatial and temporal effects of OMW to stream macroinvertebrates and to ecological status of stream ecosystems. Biotic (macroinvertebrates) and abiotic (physicochemical, hydromorphological) data were monitored for two years thus following the biennial cycle of olive growth and production and hydrological variation (drought-wet years). The results of this study revealed the spatial and temporal structural deterioration of the aquatic community due to OMW pollution with consequent reduction of the river capacity for reducing the effects of polluting substances through internal mechanisms of self-purification. OMW, even highly diluted, had dramatic impacts on the aquatic fauna and to the ecological status of the receiving stream ecosystems. The organic load of the wastewater expressed as BOD(5), COD and TSS, substrate contamination (sewage bacteria) and distance from the mill outlet, were the most important factors affecting macroinvertebrate assemblages while the typology (i.e. slope, altitude) and hydrology of the stream site (i.e. mountainous-lowland) and the intensity and volume of the wastewater were the most important determinants of self-purification processes. As OMW are usually being discharged in small size streams that are not considered in the Water Framework Directive 2000/60/EC, there is a need for including such systems into monitoring and assessment schemes as they may significantly contribute to the pollution load of the river basin. Furthermore, guidelines to manage these wastes through technologies that minimise their environmental impact and lead to a sustainable use

  10. Spray drying of a phenolic-rich membrane filtration fraction of olive mill wastewater: Optimization and dried product quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...

  11. 40 CFR 430.20 - Applicability; description of the bleached papergrade kraft and soda subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD... pulp and fine papers at bleached kraft mills; and the integrated production of pulp and paper at soda... discharges resulting from: The production of market pulp at bleached kraft mills; the integrated...

  12. 40 CFR 430.20 - Applicability; description of the bleached papergrade kraft and soda subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD... pulp and fine papers at bleached kraft mills; and the integrated production of pulp and paper at soda... discharges resulting from: The production of market pulp at bleached kraft mills; the integrated...

  13. 40 CFR 430.20 - Applicability; description of the bleached papergrade kraft and soda subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND... pulp and fine papers at bleached kraft mills; and the integrated production of pulp and paper at soda... discharges resulting from: The production of market pulp at bleached kraft mills; the integrated...

  14. 40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE... pulp and paper at unbleached kraft mills; the production of pulp and paper at unbleached kraft-neutral sulfite semi-chemical (cross recovery) mills; and the production of pulp and paper at combined...

  15. 40 CFR 430.20 - Applicability; description of the bleached papergrade kraft and soda subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND... pulp and fine papers at bleached kraft mills; and the integrated production of pulp and paper at soda... discharges resulting from: The production of market pulp at bleached kraft mills; the integrated...

  16. 40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE... pulp and paper at unbleached kraft mills; the production of pulp and paper at unbleached kraft-neutral sulfite semi-chemical (cross recovery) mills; and the production of pulp and paper at combined...

  17. 40 CFR 430.20 - Applicability; description of the bleached papergrade kraft and soda subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND... pulp and fine papers at bleached kraft mills; and the integrated production of pulp and paper at soda... discharges resulting from: The production of market pulp at bleached kraft mills; the integrated...

  18. 40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE... pulp and paper at unbleached kraft mills; the production of pulp and paper at unbleached kraft-neutral sulfite semi-chemical (cross recovery) mills; and the production of pulp and paper at combined...

  19. Green Technology for the Removal of Chloro-Organics from Pulp and Paper Mill Wastewater.

    PubMed

    Choudhary, Ashutosh Kumar; Kumar, Satish; Sharma, Chhaya; Kumar, Vivek

    2015-07-01

    This study evaluates the treatment efficiency of a horizontal subsurface-flow constructed wetland (HSSF-CW) for the removal of chloro-organic compounds from pulp and paper mill wastewater. The surface area of the HSSF-CW unit was 5.25 m² and was planted with Colocasia esculenta. The wastewater was characterized for different chloro-organic compounds, that is, adsorbable organic halides (AOX), chlorophenolics, and chlorinated resin and fatty acids (cRFAs). Under a hydraulic retention time of 5.9 days, the average AOX, chlorophenolics, and cRFA removal from wastewater was 87, 87, and 93%, respectively. Some of the chlorophenolics were found to accumulate in the plant biomass and soil material. The mass balance studies show that a significant fraction of chlorophenolics and cRFA was degraded in the constructed wetland system. Modeling studies were carried out to estimate the first-order area-based removal rate constants (k) for chemical oxygen demand removal. The HSSF-CW was found to be an effective treatment technology for the remediation of pulp and paper mill wastewater. PMID:26163503

  20. A review on palm oil mill biogas plant wastewater treatment using coagulation-ozonation

    NASA Astrophysics Data System (ADS)

    Dexter, Z. D.; Joseph, C. G.; Zahrim, A. Y.

    2016-06-01

    Palm oil mill effluent (POME) generated from the palm oil industry is highly polluted and requires urgent attention for treatment due to its high organic content. Biogas plant containing anaerobic digester is capable to treat the high organic content of the POME while generating valuable biogas at the same time. This green energy from POME is environmental-friendly but the wastewater produced is still highly polluted and blackish in colour. Therefore a novel concept of combining coagulation with ozonation treatment is proposed to treat pollution of this nature. Several parameters should be taken under consideration in order to ensure the effectiveness of the hybrid treatment including ozone dosage, ozone contact time, pH of the water or wastewater, coagulant dosage, and mixing and settling time. This review paper will elucidate the importance of hybrid coagulation-ozonation treatment in producing a clear treated wastewater which is known as the main challenge in palm oil industry

  1. Anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a tubular digester at mesophilic temperature.

    PubMed

    Boubaker, Fezzani; Cheikh Ridha, Ben

    2007-03-01

    Anaerobic co-digestion is a well established process for treating many types of organic wastes, both solid and liquid. In this study we have investigated, on a laboratory scale, the anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW) using semi-continuous, feeding, tubular digesters operated at mesophilic temperatures. Each digester was fed with an influent, composed of OMW and OMSW, at an organic loading rate (OLR) varying between 0.67 and 6.67 g COD/l/d. The hydraulic retention times (HRT) were 12, 24 and 36 days. The TCOD concentrations of OMW used as the main substrate were 24, 56 and 80 g COD/l; the amount of the dry OMSW used as a co-substrate was fixed to approximately 56 g/l of OMW. The results indicated that the best methane production was about 0.95 l/l/day obtained at an OLR = 4.67 g COD/l/d, corresponding to influent TCOD = 56 g COD/l at an HRT = 12d. In contrast, the maximum TCOD removal efficiency (89%) was achieved at an OLR = 0.67 g COD/l/d, corresponding to influent TCOD = 24 g COD/l at an HRT = 36 d. Moreover, the inhibition of biogas production was observed at the highest OLR studied.

  2. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    PubMed

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes.

  3. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    PubMed

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes. PMID:24718336

  4. Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater

    NASA Astrophysics Data System (ADS)

    Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.

    2012-04-01

    In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the

  5. Bioaccumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran and extractable organic chlorine at a bleached-kraft mill site in a northern Canadian river system

    SciTech Connect

    Owens, J.W. ); Swanson, S.M. ); Birkholz, D.A. )

    1994-02-01

    Abiotic and biotic environmental compartments in a northern Canadian river system have been analyzed for poly-chlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and extractable organochlorines (EOCl) down-stream of a bleached-kraft mill. The water column, deposited and suspended sediments, invertebrates, and tissues from several fish species were analyzed. The data indicate that (a) conversion of the mill bleaching process to 100% chlorine dioxide virtually eliminated the discharge of PCDDs and PCDFs; (b) PCDD, PCDF, and EOCl transport occurred primarily in suspended sediments; and (c) the food choice of filter-feeding insects by specific fish species such as the mountain whitefish (Prosopium williamsoni) was an important determinant in the food-chain transfer of the principal compounds, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,7,8-tetrachlorodibenzofuran (TCDF). Relative to mountain whitefish, TCDD and TCDF levels in another bottom feeding species, longnose sucker (Catostomus catostomus), were at least an order of magnitude lower. Food-chain biomagnification of TCDD and TCDF was not observed in omnivorous and predatory species, burbot (Lota lota) and walleye (Stizostedium vitreum), for which lipid-adjusted levels were similar to those in the longnose sucker. These data indicate that organism lipid levels alone are not sufficient to predict species-specific bioaccumulation of these hydrophobic compounds, and that site-specific transport and species food choice parameters should be included in bioaccumulation models for hydrophobic compounds such as PCDDs and PCDFs.

  6. Pesticide interactions with soils affected by olive oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  7. Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions.

    PubMed

    Kourmentza, C; Ntaikou, I; Lyberatos, G; Kornaros, M

    2015-03-01

    The present study aimed at investigating the ability of bacteria isolated from an enriched mixed culture to produce polyhydroxyalkanoates (PHAs) and examining the effect of nitrogen and dual nitrogen-oxygen limitation on PHAs production, by using both synthetic and olive mill wastewater (OMW). PHAs production was performed through batch experiments using both the enriched culture and the isolated strains (belonging to the genus of Pseudomonas) aiming to compare PHAs accumulation capacity, yields and rates. The use of enriched culture and synthetic wastewater under nitrogen limitation resulted in the highest PHA accumulation, i.e. 64.4%gPHAs/g of cell dry mass (CDM). However, when OMW was used, PHAs accumulation significantly decreased, i.e. 8.8%gPHAs/g CDM. The same trend was followed by the isolated strains, nevertheless, their ability to synthesize PHAs was lower. Although, dual nitrogen-oxygen limitation generally slowed down PHAs biosynthesis, in certain strains PHAs production was positively affected.

  8. Membrane filtration of olive mill wastewater and exploitation of its fractions.

    PubMed

    Paraskeva, C A; Papadakis, V G; Kanellopoulou, D G; Koutsoukos, P G; Angelopoulos, K C

    2007-04-01

    Olive mill wastewater (OMW) produced from small units scattered in rural areas of Southern Europe is a major source of pollution of surface and subsurface water. In the present work, a treatment scheme based on physical separation methods is presented. The investigation was carried out using a pilot-plant unit equipped with ultrafiltration, nanofiltration, and reverse osmosis membranes. Approximately 80% of the total volume of wastewater treated by the membrane units was sufficiently cleaned to meet the standards for irrigation water. The concentrated fractions collected in the treatment concentrates were characterized by high organic load and high content of phenolic compounds. The concentrates were tested in hydroponic systems to examine their toxicity towards undesired herbs. The calculations of the cost of the overall process showed that fixed and operational costs could be recovered from the exploitation of OMW byproducts as water for irrigation and/or as bioherbicides. PMID:17489277

  9. Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus.

    PubMed

    Fountoulakis, M S; Dokianakis, S N; Kornaros, M E; Aggelis, G G; Lyberatos, G

    2002-11-01

    Olive mill wastewaters (OMW) present a major environmental problem. The large amounts generated, combined with the high phenols and chemical oxygen demand concentrations, are the main difficulties in finding a solution for the management of these wastewaters, which are dangerous for the environment. The phenols, which are contained in the OMW have a structure similar to lignin, which makes them difficult to biodegrade. Lignin can be degraded only by a few microorganisms, such as "white-rot" basidiomycete, which produce manganese (MnPs) and lignin peroxidases (LiPs) and laccases that are responsible for the oxidisation of lignin compounds. The capability of Pleurotus ostreatus to degrade phenols of OMW in different conditions such as in sterilized and thermally processed (at 100 degrees C) wastewater, with and without dilution, is investigated in this work. According to the experimental results P. ostreatus removed phenols from the culture medium, under all different conditions that were examined. The degradation of phenols reached up to 78.3% for the sterilized and 50% diluted OMW, 66.7% and 64.7% for the thermally processed OMW, with and without dilution, respectively. The effect of pre-treatment of OMW on the performance of anaerobic digestion is also assessed, as methanogenic bacteria are seriously affected by the presence of phenol compounds. The pre-treated wastewater was shown to be more amenable to a subsequent anaerobic digestion. PMID:12448515

  10. Impact of Raw and Bioaugmented Olive-Mill Wastewater and Olive-Mill Solid Waste on the Content of Photosynthetic Molecules in Tobacco Plants.

    PubMed

    Parrotta, Luigi; Campani, Tommaso; Casini, Silvia; Romi, Marco; Cai, Giampiero

    2016-08-01

    Disposal and reuse of olive-mill wastes are both an economic and environmental problem, especially in countries where the cultivation of olive trees is extensive. Microorganism-based bioaugmentation can be used to reduce the pollutant capacity of wastes. In this work, bioaugmentation was used to reduce the polyphenolic content of both liquid and solid wastes. After processing, bioaugmented wastes were tested on the root development of maize seeds and on photosynthesis-related molecules of tobacco plants. In maize, we found that bioaugmentation made olive-mill wastes harmless for seed germination. In tobacco, we analyzed the content of RuBisCO (ribulose-1,5-bisphosphate carboxylase oxygenase) and of the photosynthetic pigments lutein, chlorophylls, and β-carotene. Levels of RuBisCO were negatively affected by untreated wastewater but increased if plants were treated with bioaugmented wastewater. On the contrary, levels of RuBisCO increased in the case of plants treated with raw olive-mill solid waste. Pigment levels showed dissimilar behavior because their concentration increased if plants were irrigated with raw wastewater or treated with raw olive-mill solid waste. Treatment with bioaugmented wastes restored pigment content. Findings show that untreated wastes are potentially toxic at the commencement of treatment, but plants can eventually adapt after an initial stress period. Bioaugmented wastes do not induce immediate damages, and plants rapidly recover optimal levels of photosynthetic molecules.

  11. Impact of Raw and Bioaugmented Olive-Mill Wastewater and Olive-Mill Solid Waste on the Content of Photosynthetic Molecules in Tobacco Plants.

    PubMed

    Parrotta, Luigi; Campani, Tommaso; Casini, Silvia; Romi, Marco; Cai, Giampiero

    2016-08-01

    Disposal and reuse of olive-mill wastes are both an economic and environmental problem, especially in countries where the cultivation of olive trees is extensive. Microorganism-based bioaugmentation can be used to reduce the pollutant capacity of wastes. In this work, bioaugmentation was used to reduce the polyphenolic content of both liquid and solid wastes. After processing, bioaugmented wastes were tested on the root development of maize seeds and on photosynthesis-related molecules of tobacco plants. In maize, we found that bioaugmentation made olive-mill wastes harmless for seed germination. In tobacco, we analyzed the content of RuBisCO (ribulose-1,5-bisphosphate carboxylase oxygenase) and of the photosynthetic pigments lutein, chlorophylls, and β-carotene. Levels of RuBisCO were negatively affected by untreated wastewater but increased if plants were treated with bioaugmented wastewater. On the contrary, levels of RuBisCO increased in the case of plants treated with raw olive-mill solid waste. Pigment levels showed dissimilar behavior because their concentration increased if plants were irrigated with raw wastewater or treated with raw olive-mill solid waste. Treatment with bioaugmented wastes restored pigment content. Findings show that untreated wastes are potentially toxic at the commencement of treatment, but plants can eventually adapt after an initial stress period. Bioaugmented wastes do not induce immediate damages, and plants rapidly recover optimal levels of photosynthetic molecules. PMID:27399282

  12. Innovative method for recovery and valorization of hydroxytyrosol from olive mill wastewaters.

    PubMed

    Bonetti, A; Venturini, S; Ena, A; Faraloni, C

    2016-01-01

    The nutritional properties of olive oil can be attributed to its oleic acid and phenolic compounds content, acting as natural oxidants to prevent human diseases. In particular, hydroxytyrosol has an anti-inflammatory action similar to omega 3 fatty acids from fish oil. The olive oil production was conducted by two extraction procedures: first, a two-phase extraction giving extra-virgin olive oil and humid pomace, second, a three-phase working process of humid pomace, obtaining another minimum quantity of extra-virgin olive oil, 'dry' pomace devoid of polyphenols, and mill wastewaters rich in anti-oxidant compounds. The aim of this processing was to employ water to extract the highest concentration of polyphenols from humid pomace and convey them in oil mill wastewaters for extraction. Processed olives were 37,200 kg, pomace deprived of polyphenols was equal to 20,400 kg and processing was performed with 500 kg of olives per hour. This method offers advantages of using cheap equipment and technical simplicity. PMID:27386985

  13. Treatment of cane sugar mill wastewater in an upflow anaerobic sludge bed reactor.

    PubMed

    Nacheva, P Mijaylova; Chávez, G Moeller; Chacón, J Matías; Chuil, A Canul

    2009-01-01

    The performance of a mesophilic UASB reactor was studied for the treatment of sugar cane mill wastewater previously pre-treated for solid separation. The experimental work was carried out in a reactor with 80 L total volume. Four organic loads were applied and the process performance was evaluated during two months for each experimental stage. Removal efficiencies higher than 90% were obtained with organic loads up to 16 kg COD m(-3) d(-1). Stable process performance and high biogas production were obtained. The COD removal rate increased substantially with the load increase to 24 kg COD m(-3) d(-1). However, the obtained removal was of only 78-82%, which can be attributed to the accumulation of volatile organic acids. The kinetic coefficients were obtained using first order model for the substrate removal rate and Monod's equation for bacteria specific growth rate. The UASB reactor is a good option for the biological treatment of pre-treated sugar cane mill wastewaters. The discharge requirements for COD concentration can be accomplished if the reactor is operated at a low organic load of 4 kg COD m(-3) d(-1). At higher loads, an additional biological treatment stage is needed.

  14. Review on recent developments on pulp and paper mill wastewater treatment.

    PubMed

    Kamali, Mohammadreza; Khodaparast, Zahra

    2015-04-01

    Economic benefits of the pulp and paper industry have led it to be one of the most important industrial sections in the world. Nevertheless, in recent years, pulp and paper mills are facing challenges with the energy efficiency mechanisms and management of the resulting pollutants, considering the environmental feedbacks and ongoing legal requirements. This study reviews and discusses the recent developments of affordable methods dealing with pulp and paper mill wastewaters. To this end, the current state of the various processes used for pulp and paper production from virgin or recovered fibers has been briefly reviewed. Also, the relevant contaminants have been investigated, considering the used raw materials and applied techniques as the subject for further discussion about the relevant suitable wastewater treatment methods. The results of the present study indicated that adopting the integrated methods, alongside a combination of biological (e.g., anaerobic digestion) and physicochemical (e.g., novel Fenton reactions) treatment methods, can be environmentally and economically preferable to minimize environmental contaminants and energy recycling.

  15. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis.

    PubMed

    Martinez-Garcia, Gregorio; Johnson, Anbu Clemensis; Bachmann, Robert T; Williams, Ceri J; Burgoyne, Andrea; Edyvean, Robert G J

    2009-05-30

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 degrees C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20L fixed-bed reactor at 37 degrees C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m(-3)day(-1) during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L(biogas)L(reactor)(-1)day(-1), respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  16. Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.

    PubMed

    Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

    2013-10-15

    The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700 m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ≤4.0 €/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region.

  17. Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum mill) depending on growth substrate.

    PubMed

    Ouzounidou, G; Asfi, M; Sotirakis, N; Papadopoulou, P; Gaitis, F

    2008-10-30

    We have studied the changes in the physiology and nutritional quality of Lycopersicon esculentum exposed to olive mill wastewater (OMW) with regard to cultivation in sand and soil. Tomato plant performance decreased with increasing concentration of OMW to both substrates. Root was more sensitive to OMW than the upper parts of the plants, grown either in sand or in soil for 10 days and 3 months, respectively, probably due to the direct OMW toxicity on roots as compared to other parts. Significant restriction on uptake and translocation of nutrients (K, Na, Fe, Ca and Mg) under OMW application was found. The decrease in the photochemical efficiency of PSII photochemistry in the light adapted state and the big decrease in photochemical quenching, indicate that OMW resulted in diminished reoxidation of Q(A)(-) and started to inactivate the reaction centers of PSII. The OMW supply on soil and sand, resulted in leaf water stress and lesser water use efficiency. Plants treated with high OMW concentration, produced fewer but bigger tomatoes as compared to plants treated with lower OMW concentration. Generally, fruit yield and nutritional value was inhibited under OMW application.

  18. Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite.

    PubMed

    Markou, Giorgos; Chatzipavlidis, Iordanis; Georgakakis, Dimitris

    2012-05-01

    The subject of this paper is the cultivation of the cyanobacterium Arthrospira (Sprirulina) platensis in olive-oil mill wastewater (OMWW) treated with sodium hypochlorite (NaOCl). The main positive effect of NaOCl on the OMWW characteristics is the decrease of the phenol concentration and turbidity, rendering the OMWW suitable for A. platensis growth. Maximum biomass production (1696 mg/l) was obtained when the concentration of OMWW in the cultivation medium was 10% with the supplementation of 1g/l NaNO(3) and 5 g/l NaHCO(3). However, the addition of NaHCO(3) has no significant effect, indicating that the only limited nutrient in this wastewater is nitrogen, while carbon is provided by the organic compounds of the wastewater. The maximum of the removals of chemical oxygen demand (COD) and carbohydrates was 73.18% and 91.19%, respectively, while phenols, phosphorus and nitrates in some runs was completely removed.

  19. Phanerochaete flavido-alba Laccase Induction and Modification of Manganese Peroxidase Isoenzyme Pattern in Decolorized Olive Oil Mill Wastewaters

    PubMed Central

    Pérez, J.; de la Rubia, T.; Hamman, O. Ben; Martínez, J.

    1998-01-01

    Lignin-degrading enzymes were partially purified from supernatant solutions obtained from Phanerochaete flavido-alba-decolorized olive oil mill wastewaters (OMW). The dominant enzymes, manganese peroxidases, exhibited different isoform patterns in decolorized OMW-containing cultures than in residue-free samples. Laccase induction was also detected in OMW-containing cultures but not in control cultures. PMID:9647858

  20. 40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY... provisions of this subpart are applicable to discharges resulting from: the production of pulp and paper at unbleached kraft mills; the production of pulp and paper at unbleached kraft-neutral sulfite...

  1. 40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY... provisions of this subpart are applicable to discharges resulting from: the production of pulp and paper at unbleached kraft mills; the production of pulp and paper at unbleached kraft-neutral sulfite...

  2. Olive orchard amended with olive mill wastewater: effects on olive fruit and olive oil quality.

    PubMed

    Mechri, B; Issaoui, M; Echbili, A; Chehab, H; Mariem, F B; Braham, M; Hammami, M

    2009-12-30

    The aim of this work was to study the effects of agronomic application of olive mill wastewater (OMW) in a field of olive trees on olive fruit and olive oil quality. Agronomic application of OMW increased significantly the fungal:bacteria ratio, whereas the root colonisation and the photosynthetic rates decreased significantly. Consequently, the oil content expressed as a percentage of dry weight, decreased significantly after agronomic application of OMW. Land spreading of OMW altered the relative proportion of individual olive fruit sugar and decreased significantly the nitrogen (N) and phosphorus (P) of the fruit. A significant increase was observed in total phenol content of oil after agronomic application of OMW. alpha-Tocopherol content, on the contrary, decreased with OMW application. The fatty acid composition of the oil was not affected by the treatments. To our knowledge, this is the first report of change in the olive fruit and olive oil quality following agronomic application of OMW.

  3. Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity.

    PubMed

    Ertuğrul, Sevgi; Dönmez, Gönül; Takaç, Serpil

    2007-11-19

    The bacteria that could grow on media containing olive mill wastewater (OMW) were isolated and their lipase production capacities were investigated. The strain possessing the highest lipase activity among 17 strains grown on tributyrin agar medium was identified as Bacillus sp. The effect of initial pH on the lipase activity was investigated in tributyrin medium and pH 6 was found to be the optimal. The liquid medium composition was improved by replacing tributyrin with various carbon sources. Among the media containing different compositions of triolein, trimyristin, trilaurin, tricaprin, tricaprylin, tributyrin, triacetin, Tween 80, OMW, glucose, and whey; the medium contained 20% whey +1% triolein was found to give the highest lipase activity. Cultivation of Bacillus sp. in the optimal medium at pH 6 and 30 degrees C for 64h resulted in the extracellular and intracellular lipase activities of 15 and 168U/ml, respectively.

  4. Sequential treatment of olive oil mill wastewater with adsorption and biological and photo-Fenton oxidation.

    PubMed

    Aytar, Pınar; Gedikli, Serap; Sam, Mesut; Farizoğlu, Burhanettin; Çabuk, Ahmet

    2013-05-01

    Olive oil mill wastewater (OMWW), a recalcitrant pollutant, has features including high phenolic content and dark color; thereby, several chemical or physical treatments or biological processes were not able to remediate it. In this study, the treatment efficiencies of three treatments, including adsorption, biological application, and photo-Fenton oxidation were sequentially evaluated for OMWW. Adsorption, biological treatment, and photo-Fenton caused decreasing phenolic contents of 48.69 %, 59.40 %, and 95 %, respectively. However, after three sequential treatments were performed, higher reduction percentages in phenolic (total 99 %) and organic contents (90 %) were observed. Although the studied fungus has not induced significant color reduction, photo-Fenton oxidation was considered to be an attractive solution, especially for color reduction. Besides, toxicity of OMWW treatment was significantly reduced. PMID:23054778

  5. Sequential treatment of olive oil mill wastewater with adsorption and biological and photo-Fenton oxidation.

    PubMed

    Aytar, Pınar; Gedikli, Serap; Sam, Mesut; Farizoğlu, Burhanettin; Çabuk, Ahmet

    2013-05-01

    Olive oil mill wastewater (OMWW), a recalcitrant pollutant, has features including high phenolic content and dark color; thereby, several chemical or physical treatments or biological processes were not able to remediate it. In this study, the treatment efficiencies of three treatments, including adsorption, biological application, and photo-Fenton oxidation were sequentially evaluated for OMWW. Adsorption, biological treatment, and photo-Fenton caused decreasing phenolic contents of 48.69 %, 59.40 %, and 95 %, respectively. However, after three sequential treatments were performed, higher reduction percentages in phenolic (total 99 %) and organic contents (90 %) were observed. Although the studied fungus has not induced significant color reduction, photo-Fenton oxidation was considered to be an attractive solution, especially for color reduction. Besides, toxicity of OMWW treatment was significantly reduced.

  6. Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion

    SciTech Connect

    Hamdi, M. Universite de Provence, Marseille )

    1992-11-01

    The anaerobic biodegradability and toxicity of olive mill wastewaters (OMW) were studied in batch anaerobic digestion experiments. Anaerobic digestion of OMW or the supernatant of its centrifugation, the methane production was achieved at up to 5-15% (V/V) dilution corresponding to only 5-20 g/L COD. The washed suspended solids of OMW were toxic at up to 80 g/L COD; however, the kinetic of biodegradability of OMW or the supernatant was faster than for suspended solids, which are constituted mealy of cellulose and lignin. The darkly colored polyphenols induce the problem of biodegradation of OMW, whereas the long chain fatty acids (LCFA), tannins and simple phenolic compounds are responsible for its toxicity for methanogenic bacteria. 26 refs., 4 figs., 1 tab.

  7. Ozonation kinetics of phenolic acids present in wastewaters from olive oil mills

    SciTech Connect

    Benitez, F.J.; Beltran-Heredia, J.; Acero, J.L.; Pinilla, M.L.

    1997-03-01

    A kinetic study of the degradation by ozone of eight phenolic acids present in wastewaters from olive oil mills has been performed by using a competition kinetic method. The selected phenolic acids are: caffeic, p-coumaric, syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, p-hydroxy-benzoic, and protocatechuic. The influence of the operating variables (temperature, pH, and ozone partial pressure in the gas stream) is established, and the stoichiometric ratios for the individual direct reactions between ozone and each acid are determined. Once the reaction rate constants are evaluated, they are correlated as a function of temperature and pH into kinetic expressions which are provided for every phenolic acid. The global process occurs in the fast and pseudo-first-order kinetic regime of absorption, a condition required by the competition model to be used.

  8. Antimicrobial Activity of Olive Mill Wastewater Extract Against Pseudomonas Fluorescens Isolated from Mozzarella Cheese

    PubMed Central

    Roila, Rossana; Branciari, Raffaella; Ortenzi, Roberta; Urbani, Stefania; Servili, Maurizio; Valiani, Andrea

    2016-01-01

    Olive mill wastewater polyphenol extract was tested for antimicrobial activity against 64 strains of Pseudomonas fluorescens responsible for mozzarella discolouration. The extract showed a minimum inhibitory concentration (MIC)50 value of 5 mg/mL and a MIC90 value of 7 mg/mL. The MBC50 and MBC90 values corresponded to 6 and 8 mg/mL, respectively. The MIC concentration (7 mg/mL) was demonstrated to have a bacteriostatic effect while maintaining the bacterial concentration on the levels of the inoculum for 48 hours. The 3/2 MIC concentration was responsible for four logs CFU/mL depletion in colony count after 24 h. As the extract concentration decreased from MIC value, no inhibitory effects were recorded. PMID:27800450

  9. Membrane-Filtered Olive Mill Wastewater: Quality Assessment of the Dried Phenolic-Rich Fraction.

    PubMed

    Sedej, Ivana; Milczarek, Rebecca; Wang, Selina C; Sheng, Runqi; de Jesús Avena-Bustillos, Roberto; Dao, Lan; Takeoka, Gary

    2016-04-01

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also to extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW and compare the techniques in terms of the dried product quality and feasibility of the process. The OMWW from 2 (3-phase and 2-phase) California mills was subjected to a 2-step membrane filtration process using a novel vibratory system. The reverse osmosis retentate (RO-R) is a phenolic-rich coproduct stream, and the reverse osmosis permeate is a near-pure water stream that could be recycled into the milling process. Spray-, freeze-, and infrared-drying were applied to obtain solid material from the RO-R. Drying of the RO-R was made possible only with addition of 10% maltodextrin as a carrier. The total soluble phenolics in dried RO-R were in the range 0.15 to 0.58 mg gallic acid equivalents/g of dry weight for 2-phase RO-R, and 1.38 to 2.17 mg gallic acid equivalents/g of dry weight for the 3-phase RO-R. Spray-dried RO-R from 3-phase OMWW showed remarkable antioxidant activity. Protocatechuic acid, tyrosol, vanillic acid, and p-coumaric acid were quantified in all dried RO-R, whereas 3-hydroxytyrosol was found in 3-phase dried RO-R. This combination of separation and drying technologies helps to add value and shelf-stability to an olive oil by-product and increase environmental sustainability of its production.

  10. Membrane-Filtered Olive Mill Wastewater: Quality Assessment of the Dried Phenolic-Rich Fraction.

    PubMed

    Sedej, Ivana; Milczarek, Rebecca; Wang, Selina C; Sheng, Runqi; de Jesús Avena-Bustillos, Roberto; Dao, Lan; Takeoka, Gary

    2016-04-01

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also to extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW and compare the techniques in terms of the dried product quality and feasibility of the process. The OMWW from 2 (3-phase and 2-phase) California mills was subjected to a 2-step membrane filtration process using a novel vibratory system. The reverse osmosis retentate (RO-R) is a phenolic-rich coproduct stream, and the reverse osmosis permeate is a near-pure water stream that could be recycled into the milling process. Spray-, freeze-, and infrared-drying were applied to obtain solid material from the RO-R. Drying of the RO-R was made possible only with addition of 10% maltodextrin as a carrier. The total soluble phenolics in dried RO-R were in the range 0.15 to 0.58 mg gallic acid equivalents/g of dry weight for 2-phase RO-R, and 1.38 to 2.17 mg gallic acid equivalents/g of dry weight for the 3-phase RO-R. Spray-dried RO-R from 3-phase OMWW showed remarkable antioxidant activity. Protocatechuic acid, tyrosol, vanillic acid, and p-coumaric acid were quantified in all dried RO-R, whereas 3-hydroxytyrosol was found in 3-phase dried RO-R. This combination of separation and drying technologies helps to add value and shelf-stability to an olive oil by-product and increase environmental sustainability of its production. PMID:26989993

  11. Dephenolization, dearomatization and detoxification of olive mill wastewater with sonication combined with additives and radical scavengers.

    PubMed

    Sponza, Delia Teresa; Oztekin, Rukiye

    2014-05-01

    In this study, the effects of some additives [manganese (III) oxide (Mn3O4), Cu(+2), Fe(0) and potassium iodate (KIO3)] and some radical scavengers [sodium carbonate (Na2CO3), perfluorohexane (C6F14) and t-butyl alcohol (C4H10O)] on the sonication of olive mill effluent wastewater (OMW) were investigated since the wastewaters of this industry are removed with low efficiencies. The maximum total phenol and total aromatic amines (TAAs) removal efficiencies were 88% and 79%, respectively, at 60°C with only 150 min sonication. The maximum phenol removal was found as 98% with 19 mg L(-1) perfluorohexane and 5 mg L(-1) Fe(0) while the maximum TAAs removal was 99% with 16 mg L(-1) KIO3. Catechol, tyrosol, quercetin, caffeic acid, 4-methyl catechol, 2-phenylphenol (2-PHE) and 3-phenyl phenol (3-PHE) were detected as phenol intermediates while trimethlyaniline, aniline, o-toluidine, o-anisidine, dimethylaniline, ethylbenzene and durene were identified as TAAs in the OMW. The maximum acute toxicity removals were 96% and 99% in Vibrio fischeri and Daphnia magna, respectively. Total phenol, TAAs and the toxicity in an OMW were removed efficiently and cost-effectively through sonication.

  12. Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation.

    PubMed

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri

    2008-05-01

    The decolorization and reduction of COD of dyeing wastewater from a cotton textile mill was conducted using catalytic thermal treatment (thermolysis) accompanied with/without coagulation. Thermolysis in presence of a homogeneous copper sulphate catalyst was found to be the most effective in comparison to other catalysts (FeCl(3), FeSO(4), CuO, ZnO and PAC) used. A maximum reduction of chemical oxygen demand (COD) and color of dyeing wastewater of 66.85% and 71.4%, respectively, was observed with a catalyst concentration of 5 kg/m(3) at pH 8. Commercial alum was found most effective coagulant among various coagulants (aluminum potassium sulphate, PAC, FeCl(3) and FeSO(4)) tested during coagulation operations, resulting in 58.57% COD and 74% color reduction at pH 4 and coagulant dose of 5 kg/m(3). Coagulation of the clear fluid (supernatant) obtained after treatment by thermolysis at the conditions previously used resulted in an overall reduction of 89.91% COD and 94.4% color at pH 4 and a coagulant dose of 2 kg/m(3). The application of thermolysis followed by coagulation, thus, is the most effective treatment method in removing nearly 90% COD and 95% color at a lower dose of coagulant (2 kg/m(3)). The sludge thus produced would contain lower inorganic mass coagulant and, therefore, less amount of inorganic sludge.

  13. Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions.

    PubMed

    Kourmentza, C; Ntaikou, I; Lyberatos, G; Kornaros, M

    2015-03-01

    The present study aimed at investigating the ability of bacteria isolated from an enriched mixed culture to produce polyhydroxyalkanoates (PHAs) and examining the effect of nitrogen and dual nitrogen-oxygen limitation on PHAs production, by using both synthetic and olive mill wastewater (OMW). PHAs production was performed through batch experiments using both the enriched culture and the isolated strains (belonging to the genus of Pseudomonas) aiming to compare PHAs accumulation capacity, yields and rates. The use of enriched culture and synthetic wastewater under nitrogen limitation resulted in the highest PHA accumulation, i.e. 64.4%gPHAs/g of cell dry mass (CDM). However, when OMW was used, PHAs accumulation significantly decreased, i.e. 8.8%gPHAs/g CDM. The same trend was followed by the isolated strains, nevertheless, their ability to synthesize PHAs was lower. Although, dual nitrogen-oxygen limitation generally slowed down PHAs biosynthesis, in certain strains PHAs production was positively affected. PMID:25542172

  14. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification

    PubMed Central

    Ochando-Pulido, Javier Miguel; Martinez-Ferez, Antonio

    2015-01-01

    Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW) have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these highly polluted effluents. In the present work, a review on the actual state of the art concerning the treatment and disposal of OMW by membranes is addressed, comprising microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), as well as membrane bioreactors (MBR) and non-conventional membrane processes such as vacuum distillation (VD), osmotic distillation (OD) and forward osmosis (FO). Membrane processes are becoming extensively used to replace many conventional processes in the purification of water and groundwater as well as in the reclamation of wastewater streams of very diverse sources, such as those generated by agro-industrial activities. Moreover, a brief insight into inhibition and control of fouling by properly-tailored pretreatment processes upstream the membrane operation and the use of the critical and threshold flux theories is provided. PMID:26426062

  15. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification.

    PubMed

    Ochando-Pulido, Javier Miguel; Martinez-Ferez, Antonio

    2015-01-01

    Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW) have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these highly polluted effluents. In the present work, a review on the actual state of the art concerning the treatment and disposal of OMW by membranes is addressed, comprising microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), as well as membrane bioreactors (MBR) and non-conventional membrane processes such as vacuum distillation (VD), osmotic distillation (OD) and forward osmosis (FO). Membrane processes are becoming extensively used to replace many conventional processes in the purification of water and groundwater as well as in the reclamation of wastewater streams of very diverse sources, such as those generated by agro-industrial activities. Moreover, a brief insight into inhibition and control of fouling by properly-tailored pretreatment processes upstream the membrane operation and the use of the critical and threshold flux theories is provided. PMID:26426062

  16. Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion.

    PubMed

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2006-06-01

    In this work, we investigated an integrated technology for the treatment of the recalcitrant contaminants of olive mill wastewaters (OMW), allowing water recovery and reuse for agricultural purposes. The method involves an electrochemical pre-treatment step of the wastewater using the electro-Fenton reaction followed by an anaerobic bio-treatment. The electro-Fenton process removed 65.8% of the total polyphenolic compounds and subsequently decreased the OMW toxicity from 100% to 66.9%, which resulted in improving the performance of the anaerobic digestion. A continuous lab-scale methanogenic reactor was operated at a loading rate of 10 g chemical oxygen demand (COD)l(-1) d(-1) without any apparent toxicity. Furthermore, in the combined process, a high overall reduction in COD, suspended solids, polyphenols and lipid content was achieved by the two successive stages. This result opens promising perspectives since its conception as a fast and cheap pre-treatment prior to conventional anaerobic post-treatment. The use of electro-coagulation as post-treatment technology completely detoxified the anaerobic effluent and removed its toxic compounds. PMID:16678883

  17. Co-treatment of olive-mill and urban wastewaters by experimental stabilization ponds.

    PubMed

    Jail, A; Boukhoubza, F; Nejmeddine, A; Sayadi, S; Hassani, L

    2010-04-15

    Olive oil mill wastewater (OMW) constitutes a source of environmental problems in Morocco due to its significantly high organic load, its phytotoxic properties and its relatively low biodegradability. An effective option for its disposal is its agricultural use after co-treatment with urban wastewater (UWW). The main objective of this investigation was to evaluate the potential of this co-treatment, using experimental waste stabilization ponds, in removing OMW phytotoxicity. We examined the influence of the organic load, at the entry of the treatment system, on the evolution of some physicochemical (chemical oxygen demand and polyphenols) and microbiological (fecal coliforms and fecal streptococci) parameters. The results showed a removal of the organic, phenolic and microbial load throughout the treatment which differed from one system to another according to the OMW load applied to each system. The results concerning the germination assays of Zea mays and Solanum lycopersicum suggested that the co-treatment of OMW with UWW would decrease the phytotoxicity of this waste.

  18. Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation.

    PubMed

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri

    2008-05-01

    The decolorization and reduction of COD of dyeing wastewater from a cotton textile mill was conducted using catalytic thermal treatment (thermolysis) accompanied with/without coagulation. Thermolysis in presence of a homogeneous copper sulphate catalyst was found to be the most effective in comparison to other catalysts (FeCl(3), FeSO(4), CuO, ZnO and PAC) used. A maximum reduction of chemical oxygen demand (COD) and color of dyeing wastewater of 66.85% and 71.4%, respectively, was observed with a catalyst concentration of 5 kg/m(3) at pH 8. Commercial alum was found most effective coagulant among various coagulants (aluminum potassium sulphate, PAC, FeCl(3) and FeSO(4)) tested during coagulation operations, resulting in 58.57% COD and 74% color reduction at pH 4 and coagulant dose of 5 kg/m(3). Coagulation of the clear fluid (supernatant) obtained after treatment by thermolysis at the conditions previously used resulted in an overall reduction of 89.91% COD and 94.4% color at pH 4 and a coagulant dose of 2 kg/m(3). The application of thermolysis followed by coagulation, thus, is the most effective treatment method in removing nearly 90% COD and 95% color at a lower dose of coagulant (2 kg/m(3)). The sludge thus produced would contain lower inorganic mass coagulant and, therefore, less amount of inorganic sludge. PMID:17931773

  19. Impacts of operating conditions on nanofiltration of secondary-treated two-phase olive mill wastewater.

    PubMed

    Ochando Pulido, Javier Miguel; Martínez Férez, Antonio

    2015-09-15

    In the present paper, a thin-film composite polymeric nanofiltration (NF) membrane is examined for the tertiary treatment of secondary-treated two-phase olive mill wastewater, in substitution of the reverse osmosis membrane used in previous work by the Authors. Overcoming the deleterious fouling phenomena persistently encountered in membrane processes managing wastewater streams was indeed pursued. Setting the adequate parameters of the operating variables - that is, operating at ambient temperature upon a net pressure equal to 13 bar (Pc), tangential crossflow in the order of 2.55 m s(-1) to attain enough turbulence over the membrane, and above the point of zero charge (pH > 5.8) of the membrane - ensured high steady-state permeate productivity (59.6 L h(-1) m(-2)), also economically sustainable in time owed to minimization of the fouling-build up rate (0.91 h(-1)). Moreover, these conditions also provided high feed recovery (90%) and significant rejection efficiencies for the electroconductivity (58.1%) and organic matter (76.1%). This led to a purified permeate stream exiting the NF membrane operation exhibiting average EC and COD values equal to 1.4 mS cm(-1) and 45 mg L(-1). This permits complying with the water quality parameters established by different regulations for discharge public waterways and irrigation purposes. PMID:26186549

  20. Treatment of wastewater from pulp and paper mill industry by electrochemical methods in membrane reactor.

    PubMed

    Chanworrawoot, Kanjana; Hunsom, Mali

    2012-12-30

    The treatment of wastewater from a pulp and paper mill plant using electrochemical methods was performed at a laboratory bench-scale at ambient temperature (~30 °C). The effects of wastewater dilution (10- to 100-fold), circulating water flow rate (0-3.95 l/min), current density (1.90-3.80 mA/cm(2)) and sodium chloride concentration (0-3.75 g/l) were ascertained. The results demonstrated that this methods can facilitate the disappearance of the oxidative coupling unit of lignin as well as other organic and inorganic compounds, measured in terms of the removal of color, total biological- and total chemical oxygen demand (BOD and COD), and the total suspended and dissolved solids (TSS and TSD). In addition, the electrochemical method was more effective at reducing the pollutant levels, produced a smaller quantity of low-density sludge and had a low operating cost per unit quantity of COD. After optimization, the electrochemical method operating in a batch mode enhanced the removal of color, BOD and COD at around 98%, 98% and 97%, respectively, whilst in a continuous mode at the steady state condition (8 h after the start-up time) the color, BOD and COD levels were reduced by around 91%, 83% and 86%, respectively. PMID:23062272

  1. Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion.

    PubMed

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2006-06-01

    In this work, we investigated an integrated technology for the treatment of the recalcitrant contaminants of olive mill wastewaters (OMW), allowing water recovery and reuse for agricultural purposes. The method involves an electrochemical pre-treatment step of the wastewater using the electro-Fenton reaction followed by an anaerobic bio-treatment. The electro-Fenton process removed 65.8% of the total polyphenolic compounds and subsequently decreased the OMW toxicity from 100% to 66.9%, which resulted in improving the performance of the anaerobic digestion. A continuous lab-scale methanogenic reactor was operated at a loading rate of 10 g chemical oxygen demand (COD)l(-1) d(-1) without any apparent toxicity. Furthermore, in the combined process, a high overall reduction in COD, suspended solids, polyphenols and lipid content was achieved by the two successive stages. This result opens promising perspectives since its conception as a fast and cheap pre-treatment prior to conventional anaerobic post-treatment. The use of electro-coagulation as post-treatment technology completely detoxified the anaerobic effluent and removed its toxic compounds.

  2. Waste treatment of kraft effluents by white-rot fungi

    SciTech Connect

    Kondo, R.

    1996-10-01

    The residual lignin in unbleached kraft pulp is commonly removed to afford a fully bleached pulp through a multi-stage bleaching process consisting of chlorination and alkaline-extraction stages. The effluent from such a bleaching process is of growing environmental concern because it shows a dark brown color and contains numerous chlorinated organic substances. Moreover, this effluent is not easily recycled within a mill recovery system because of the potential corrosion problems created by its high chlorine content. White-rot fungi have even heavily modified lignin such as kraft lignin and atoms demonstrated that kraft bleaching effluent can be rot fungi, in particular, Trametes versicolor and this review lecture, the possibility of the application of kraft effluents will be discussed.

  3. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    SciTech Connect

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraft mills). Provide background to most effectively transfer this new technology to commercial mills.

  4. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    PubMed

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.

  5. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    PubMed

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. PMID:25463585

  6. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    PubMed

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated.

  7. Treatment of composite wastewater of a cotton textile mill by thermolysis and coagulation.

    PubMed

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri

    2008-03-01

    Catalytic thermal treatment (thermolysis) accompanied with coagulation was used for the removal of COD and color of composite wastewater from a cotton textile mill. CuSO4, FeSO4, FeCl3, CuO, ZnO and PAC were used as catalytic agents during thermolysis. Homogeneous copper sulphate at a mass loading of 6 kg/m3 was found to be the most active. Similarly during coagulation aluminum potassium sulphate [KAl(SO4)(2).16H2O] at a coagulant concentration of 5 kg/m3 was found to be the best among the other coagulants tested, namely, commercial alum, FeSO4, FeCl3 and PAC. During thermolysis, a reduction in COD and color of composite wastewater of about 77.9 and 92.85%, respectively, was observed at pH 12. Coagulation of fresh composite waste using aluminum potassium sulphate resulted in 88.62% COD reduction and 95.4% color reduction at pH 8. Coagulation of the supernatant obtained after treatment by catalytic thermolysis resulted in overall reduction of 97.3% COD and close to 100% color reductions at pH 8 at a lesser coagulant concentration of 3 kg/m3. The results reveal that the application of coagulation after thermolysis is most effective in removing nearly 100% of COD and color at a lower dose of coagulant. The sludge thus produced would contain lower inorganic mass coagulant and can be used as a solid fuel with high calorific value of about 16 MJ/kg, close to that of Indian coal.

  8. Use of cheese whey to enhance Geotrichum candidum biomass production in olive mill wastewater.

    PubMed

    Aouidi, Fathia; Khelifi, Eltaeif; Asses, Nedra; Ayed, Lamia; Hamdi, Moktar

    2010-08-01

    Geotrichum candidum is a yeast-like filamentous fungus that has attracted industrial interest. The present work investigated G. candidum biomass production in agro-industrial wastewaters (olive mill wastewater (OMW) and cheese whey (CW)) as the only substrate. Different solid media (Sabouraud dextrose agar (SDA), CW, OMW, and OMW/CW mixtures in different proportions) were tested. OMW/CW mixtures proved to be suitable for optimal mycelia growth of G. candidum with a very high hyphae density. The highest fungal and expansion rate growth of 83 +/- 1 mm and 12.4 day(-1), respectively, were obtained on a 20:80 mixture of OMW/CW, which was incubated for 7 days. This optimal mixture was used to study the biomass production and the OMW decolorization ability of G. candidum in the presence of CW in liquid medium. Liquid cultures were also conducted in OMW and CW separately. After 5 days of incubation, fungal biomass reached 9.26 g l(-1) in the OMW/CW mixture and only 2.83 g l(-1) in CW, while no biomass production was observed in OMW alone. OMW decolorization and dephenolization by G. candidum also improved in the presence of CW with a decolorization efficiency of 54.5% and a total phenolic reduction of 55.3%, compared with the control which yielded values of about 10% and 15%, respectively. These results suggested that OMW/CW--as the only substrate--could be used as a cost-effective medium to produce G. candidum biomass, without the need for water dilution or supplementation with other nutriments. PMID:20526856

  9. Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke.

    PubMed

    Shawwa, A R; Smith, D W; Sego, D C

    2001-03-01

    Delayed petroleum coke, a waste by-product from the oil sand industry, was utilized in the production of activated carbon. The activated carbon was then evaluated for color and chlorinated organics reduction from pulp mill wastewater. The activation of the petroleum coke was evaluated using a fixed bed reactor involving carbonization and activation steps at temperature of 850 degrees C and using steam as the activation medium. The activation results showed that the maximum surface area of the activated coke was achieved at an activation period of 4 h. The maximum surface area occurred at burnoff and water efficiency of 48.5 and 54.3%, respectively. Increasing the activation period to 6 h resulted in a decrease in the surface area. Methylene blue adsorption results indicated that the activation process was successful. Methylene blue adsorbed per 100 g of applied activated coke was 10 times higher than that adsorbed by raw petroleum coke. Adsorption equilibrium results of the bleached wastewater and the activated coke showed that significant color, COD, DOC and AOX removal (> 90%) was achieved when the activated coke dose exceeded 15,000 mg/L. Adsorption isotherms, in terms of COD, DOC, UV and color were developed based on the batch equilibrium data. Based on these isotherms, the amount of activated coke required to achieve certain removal of color and AOX can be predicted. The utilization of the petroleum coke for the production of activated carbon can provide an excellent disposal option for the oil sand industry at the same time would provide a cheap and valuable activated carbon.

  10. Toxicities effects of pharmaceutical, olive mill and textile wastewaters before and after degradation by Pseudomonas putida mt-2

    PubMed Central

    2012-01-01

    Background Removal of numerous classes of chemical pollutants from the industrial wastewater such as textile, pharmaceutical and olive mill using conventional wastewater treatment, is incomplete and several studies suggested that improvement of this situation would require the application of biological treatment techniques. Dyes, polyphenols and drugs are an environmental pollutants extremely toxics to plants and other living organisms including humans. These effluents were previously treated by Pseudomonas putida. The main of this work was to evaluate the in vivo toxicity of the three wastewaters. Methods Writhes and convulsant effect of effluents were carried out and were compared to the treated effluents. Only pharmaceutical wastewater was exhibited a convulsant effect which observed in mice treated by effluent. On the other hand, all industrial wastewater induced significantly an algogenic effects particularly when mice were treated by the pharmaceutical wastewater (Number of writhes = 44). Conclusion Toxicity was totally removed when mice were treated by the bio remediated effluent. This indicates that P. putida was able to completely detoxify the toxic industrial effluent. PMID:22314194

  11. Tertiary treatment of pulp mill wastewater by solar photo-Fenton.

    PubMed

    Lucas, Marco S; Peres, José A; Amor, Carlos; Prieto-Rodríguez, Lucía; Maldonado, Manuel I; Malato, Sixto

    2012-07-30

    This work reports on pulp mill wastewater (PMW) tertiary treatment by Fenton (Fe(2+)/H(2)O(2)) and solar photo-Fenton (Fe(2+)/H(2)O(2)/UV) processes in a pilot plant based on compound parabolic collectors (CPCs). Solar photo-Fenton reaction is much more efficient than the respective dark reaction under identical experimental conditions. It leads to DOC mineralisation, COD and total polyphenols (TP) removal higher than 90%. The solar photo-Fenton experiment with 5mg Fe L(-1) reaches 90% of DOC mineralisation with 31kJ L(-1) of UV energy and 50mM of H(2)O(2). The initial non-biodegradability of PMW, as shown by respirometry assays and BOD(5)/COD ratio, can be changed after a solar photo-Fenton treatment. Experiments with 20 and 50mg Fe L(-1) revealed that solar photo-Fenton can reach the same DOC degradation (90%), however, consuming less H(2)O(2) and time. Diluting the initial organic load to 50% also diminishes the dosage of H(2)O(2) and the necessary reaction time to achieve high DOC removals. Accordingly, solar photo-Fenton can be considered an alternative or complementary process to improve the performance of a biologic treatment and, subsequently, achieve legal limits on discharge into natural waters.

  12. Olive oil mill wastewater purification by combination of coagulation- flocculation and biological treatments.

    PubMed

    Jaouani, A; Vanthournhout, M; Penninckx, M J

    2005-06-01

    In order to define an efficient pre-treatment of Olive Oil Mill Wastewater (OOMW) to overcome major obstacles to biological treatment, various organic and mineral coagulants have been tested. In particular, the application of quicklime until a pH around 12 - 12.4 was reached, allowed the reduction of almost 37% of the initial COD, and approximately 88% and 71% of the colour and phenolic content of the waste. Hence, further biological treatments with an adapted aerobic consortium (AC) and a white rot fungus (WRF) strain were improved. The WRF Coriolopsis polyzona was more efficient than AC to reduce colour and polyphenols when the waste was prior diluted or pre-treated; however, it was less effective in COD removal. The combined treatment: lime - AC of OOMW having initial COD of 102 g l(-1) led to the elimination of about 77, 91 and 63%, of the COD, phenols and colour, respectively. Interestingly, the opposite combination AC - lime permitted better COD, phenols and colour reduction to respectively, 21, 11 and 11% of the initial values. This latter condition is technically recommended since only one step separation was needed and no pH correction was necessary before undergoing aerobic treatment. Moreover, the process would produce a sludge potentially rich in organic matter, and consequently, useful as an agricultural amendment or/and as an additive in animal nutrition.

  13. Effects of olive mill wastewater addition in composting of agroindustrial and urban wastes.

    PubMed

    Paredes, C; Bernal, M P; Roig, A; Cegarra, J

    2001-01-01

    In order to study the suitability of olive mill wastewater (OMW) for composting, this liquid waste was added to two different mixtures of agroindustrial and urban wastes and the composting process was compared with two other piles of similar composition, but without OMW. These four piles were studied in a pilot plant using the Rutgers static pile system. The addition of OMW produced a greater proportion of degradable organic matter or a higher degradation rate, higher electrical conductivity values, greater losses of total N and lower nitrification than in piles without OMW. Its addition also restricted the increase of the cation exchange capacity and provoked the appearance of phytotoxicity or a longer persistence of phytotoxicity. However, in general, all the composts showed increases in the cation exchange capacity, the percentage of humic acid-like carbon, the polymerisation ratio of these humic substances (which revealed that the organic matter had been humified during composting) and the germination index, the latter indicating the reduction of phytotoxicity during the process. PMID:11826905

  14. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters.

    PubMed

    Piacentini, Emma; Poerio, Teresa; Bazzarelli, Fabio; Giorno, Lidietta

    2016-01-01

    Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively) were produced. The release of biophenols was also investigated. PMID:27171115

  15. Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption.

    PubMed

    Zagklis, Dimitris P; Vavouraki, Aikaterini I; Kornaros, Michael E; Paraskeva, Christakis A

    2015-03-21

    Olive tree cultivation has a long history in the Mediterranean countries, and even today consists an important cultural, economic, and environmental aspect of the area. The production of olive oil through 3-phase extraction systems, leads to the co-production of large quantities of olive mill wastewater (OMW), with toxic compounds that inhibit its biodegradation. Membrane filtration has been used for the exploitation of this byproduct, through the isolation of valuable phenolic compounds. In the current work, a fraction of the waste occurring from a membrane process was used. More specifically the reverse osmosis concentrate, after a nanofiltration, containing the low-molecular-weight compounds, was further treated with resin adsorption/desorption. The non ionic XAD4, XAD16, and XAD7HP resins were implemented, for the recovery of phenols and their separation from carbohydrates. The recovered phenolic compounds were concentrated through vacuum evaporation reaching a final concentration of 378 g/L in gallic acid equivalents containing 84.8 g/L hydroxytyrosol.

  16. Assesing the effect of an olive mill wastewater evaporation pond in Sousse, Tunisia

    NASA Astrophysics Data System (ADS)

    S'habou, Rakia; Zairi, Moncef; Kallel, Amjed; Aydi, Abdelwaheb; Ben Dhia, Hamed

    2009-08-01

    Olive oil is a typical and valuable agro-industrial product in Mediterranean countries. In Tunisia, olive mill wastewaters (OMW) reach an amount of about 1,000,000 t year-1 and constitute a serious organic pollution risk because of the high chemical oxygen demand values and the presence of phytotoxic and antibacterial polyphenols. OMW have been generally stored in pond sites to be eliminated by natural evaporation or valorised by spreading on cultivated soils or by composting. Many researches on the interactions of OMW with soils at laboratory scale (columns) have been reported, but less attention have been paid to the effect of OMW on soils at field scale. The aim of this work is to investigate an area used for >15 years as an uncontrolled OMW pond site. The transformations of soil properties and groundwater occurring during OMW storage were characterised by the pH, phenolic contents, electrical conductivity (EC), moisture content and organic contents. The soil samples were taken from two borings and compared to those of a control one located near the pond site. Groundwater samples were taken on the accessible and nearest water wells to the evaporation ponds. The permeable silty and sandy layers in the site support the infiltration of OMW near the evaporation ponds. This infiltration has reached a depth of 6 m at a distance of almost 50 m laterally. The results show that the OMW infiltration in the subsoil has affected the pH, EC, organic content, phenolic compounds and the moisture.

  17. Use of solar distillation for olive mill wastewater drying and recovery of polyphenolic compounds.

    PubMed

    Sklavos, Sotirios; Gatidou, Georgia; Stasinakis, Athanasios S; Haralambopoulos, Dias

    2015-10-01

    Olive mill wastewater (OMW) is characterized by its high organic load and the presence of phenolic compounds. For first time, a solar distillator was used to investigate the simultaneous solar drying of OMW and the recovery of phenolic compounds with antioxidant properties in the distillate. Two experiments were conducted and the role of thermal insulation on the performance of the distiller was studied. The use of insulation resulted to higher temperatures in the distillator (up to 84.3 °C and 78.5 °C at the air and sludge, respectively), shorter period for OMW dewatering (14 days), while it increased the performance of distillator by 26.1%. Chemical characterization of the distillate showed that pH and COD concentration gradually decreased during the experiments, whereas an opposite trend was noticed for conductivity and total phenols concentration. Almost 4% of the total phenols found initially in OMW were transferred to the distillate when an insulated solar distillator was used. Gas chromatographic analysis of collected distillates confirmed the presence of tyrosol in all samples; whereas hydroxytyrosol was found only in fresh collected distillate samples. Further experiments should be conducted to optimize the process and quantify the concentrations of recovered phenolic compounds.

  18. Use of solar distillation for olive mill wastewater drying and recovery of polyphenolic compounds.

    PubMed

    Sklavos, Sotirios; Gatidou, Georgia; Stasinakis, Athanasios S; Haralambopoulos, Dias

    2015-10-01

    Olive mill wastewater (OMW) is characterized by its high organic load and the presence of phenolic compounds. For first time, a solar distillator was used to investigate the simultaneous solar drying of OMW and the recovery of phenolic compounds with antioxidant properties in the distillate. Two experiments were conducted and the role of thermal insulation on the performance of the distiller was studied. The use of insulation resulted to higher temperatures in the distillator (up to 84.3 °C and 78.5 °C at the air and sludge, respectively), shorter period for OMW dewatering (14 days), while it increased the performance of distillator by 26.1%. Chemical characterization of the distillate showed that pH and COD concentration gradually decreased during the experiments, whereas an opposite trend was noticed for conductivity and total phenols concentration. Almost 4% of the total phenols found initially in OMW were transferred to the distillate when an insulated solar distillator was used. Gas chromatographic analysis of collected distillates confirmed the presence of tyrosol in all samples; whereas hydroxytyrosol was found only in fresh collected distillate samples. Further experiments should be conducted to optimize the process and quantify the concentrations of recovered phenolic compounds. PMID:26222602

  19. Olive mill wastewater treatment using a simple zeolite-based low-cost method.

    PubMed

    Aly, Anwar A; Hasan, Yousef N Y; Al-Farraj, Abdullah S

    2014-12-01

    Olive mill wastewater (OMW), a liquid by-product of the olive oil industry, represents a severe environmental problem owing to its high pollution load. In this study, successive columns containing different types of natural materials were investigated for their OMW treatment efficiency. Passing OMW through three columns of gravel, fine sand, and a mixture of acidified cotton and zeolite (weight:weight ratio of cotton:clinoptilolite of 2:1), followed by treatment with activated charcoal (AC) and lime, was the best treatment in terms of the quality of water obtained. This treatment decreased concentrations of [Formula: see text] , B, K, P, and total fat in OMW by mean percentages of 78.0, 92.4, 66.6, 48.3, and 93.3%, respectively. Furthermore, it decreased OMW turbidity and electric conductivity (EC) by 96.8 and 48.4%, respectively. Most contaminants were removed from the OMW in the cotton/clinoptilolite column owing to the high sorption affinity of clinoptilolite on its active sites. The AC was efficient for organic particle removal; meanwhile, lime was used to raise the pH of the treated OMW (TOMW) from 2.9 to 5.1. This simple method enables us to obtain environmentally friendly TOMW that can be safely used for irrigation.

  20. Exploitation of olive mill wastewater and liquid cow manure for biogas production.

    PubMed

    Dareioti, Margarita A; Dokianakis, Spyros N; Stamatelatou, Katerina; Zafiri, Constantina; Kornaros, Michael

    2010-10-01

    Co-digestion of organic waste streams is an innovative technology for the reduction of methane/greenhouse gas emissions. Different organic substrates are combined to generate a homogeneous mixture as input to the anaerobic reactor in order to increase process performance, realize a more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. In this study, the potential of anaerobic digestion for the treatment of a mixture containing olive mill wastewater (OMW) and liquid cow manure (LCM) using a two-stage process has been evaluated by using two continuously stirred tank reactors (CSTRs) under mesophilic conditions (35 degrees C) in order to separately monitor and control the processes of acidogenesis and methanogenesis. The overall process was studied with a hydraulic retention time (HRT) of 19 days. The digester was continuously fed with an influent composed (v/v) of 20% OMW and 80% LCM. The average removal of dissolved and total COD was 63.2% and 50%, respectively. The volatile solids (VS) removal was 34.2% for the examined mixture of feedstocks operating the system at an overall OLR of 3.63 g CODL(reactor)(-1)d(-1). Methane production rate at the steady state reached 0.91 L CH(4)L(reactor)(-1)d(-1) or 250.9L CH(4) at standard temperature and pressure conditions (STP) per kg COD fed to the system.

  1. Hydrothermal liquefaction of oil mill wastewater for bio-oil production in subcritical conditions.

    PubMed

    Hadhoum, Loubna; Balistrou, Mourad; Burnens, Gaëtan; Loubar, Khaled; Tazerout, Mohand

    2016-10-01

    The main purpose of this study is to investigate the direct hydrothermal liquefaction of oil mill wastewater (OMWW). Experiments were carried out at different temperatures (240-300°C), water contents (58-88wt.%) and reaction times (15-45min). Results show that the highest bio-oil yield was about 58wt.%, resulting in a higher heating value of 38MJ/kg. This was conducted at the following optimal conditions: water content 88wt.%, a temperature of 280°C, and 30min as reaction time. To put bio-oil into wide application, the various physical and chemical characteristics were determined. A detailed chemical composition analysis of bio-oil was performed by gas chromatography-mass spectrometry (GC-MS) coupled with a flame ionization detector (FID). The dominant compounds were identified by using NIST library. Analyses show that the bio-oil contains mainly oleic acid, hexadecanoic acid, fatty acid methyl ester, fatty acid ethyl ester, amino acid derived compounds and phenolic compounds. PMID:27344243

  2. Olive mill wastewater stabilization in open-air ponds: impact on clay-sandy soil.

    PubMed

    Jarboui, Raja; Sellami, Fatma; Kharroubi, Adel; Gharsallah, Néji; Ammar, Emna

    2008-11-01

    The aim of this work was to study the natural biodegradation of the stored olive mill wastewater (OMW) in ponds and the infiltration as well as the impact on soil of the effluent in the evaporation pond used for the storage over the past eight years. For this, two approaches were considered. First, a laboratory-scale column was used for the infiltration of OMW through soil (clay and sand) to predict the effect of the clayey soil in reducing OMW pollution. Second, the ponds including the effluent annually stored and having this clayey structure were investigated. At the laboratory-scale, a modification of OMW contents was noticed, with the elimination of 95% of total suspended solids (TSS), 60% of chemical oxygen demand (COD), 40% of total organic carbon (TOC), 50% of total P, 50% of phenols and 40% of minerals (K+, Mg++ and Na+). The experimented soil was able to restrain the considerable effects of OMW pollution. In the ponds, the granulometric characteristics, the physico-chemical and the biological parameters of the soil profile from the contaminated pond were compared to those of a control soil, located near the contaminated pond. Property modifications of the contaminated soil were noted, especially pH, electrical conductivity, COD and microflora. These changes can be explained by the infiltration of OMW constituents, which were noticed in the soil layers, especially phenolic compounds that have a negative effect on the ground water. PMID:18337092

  3. Characterization of the harmful effect of olive mill wastewater on spearmint.

    PubMed

    El Hassani, F Z; Zinedine, A; Amraoui, M Bendriss; Errachidi, F; Alaoui, S Mdaghri; Aissam, H; Merzouki, M; Benlemlih, M

    2009-10-30

    In this study, changes in viability, biomass production, essential oil yield and essential oil composition of Mentha spicata L. (spearmint) exposed to olive mill wastewater (OMW) were investigated. Spearmint cuttings were sensitive to OMW and, after 6h of incubation in raw or diluted OMW, their viability was null. The short contact of raw OMW with mint cuttings caused an irreversible damage in rhizogenesis and shoots development. Roots were more sensitive to phytotoxicity than shoots. In a field essay, spearmint showed a good capability to recover when OMW was spread at 8 l m(-2) at the vegetative phase of growth (45 days after plantation). At this dose, a slight increase of mostly of the mint essential oil constituents was obtained. When the dose applied was 16 l m(-2), phytotoxicity was manifested by a high reduction of biomass and essential oil yield. The essential oil composition was also affected and a disappearance of many of mint essential oil constituents was observed with an increase of 59% for carvone, the major compound of spearmint essential oil. As far as we know, this is the first report on the effect of field application of OMW on an aromatic plant essential oil yield and composition.

  4. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters

    PubMed Central

    Piacentini, Emma; Poerio, Teresa; Bazzarelli, Fabio; Giorno, Lidietta

    2016-01-01

    Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively) were produced. The release of biophenols was also investigated. PMID:27171115

  5. Control of household mycoflora in fermented sausages using phenolic fractions from olive mill wastewaters.

    PubMed

    Chaves-López, Clemencia; Serio, Annalisa; Mazzarrino, Giovanni; Martuscelli, Maria; Scarpone, Emidio; Paparella, Antonello

    2015-08-17

    Biopreservation using polyphenols represents an alternative to chemical molecules for improving food safety. In this work, we evaluated the antifungal activity of polyphenols extracted from olive mill wastewater (OMWWP) to reduce or eliminate the growth of undesired fungi on the surface of dry fermented sausages. Antagonism against Penicillium expansum DSMZ 1282, Penicillium verrucosum DSMZ 12639, Penicillium nalgiovense MS01, Aspergillus ochraceus DSMZ 63304, Cladosporium cladosporioides MS12, and Eurotium amstelodami MS10 was evident at 1.25% OMWWP in vitro, whereas in situ application of 2.5% OMWWP strongly reduced undesired household fungal species such as C. cladosporioides, Penicillium aurantiogriseum, Penicillium commune, and Eurotium amstelodami, while a moderate antagonistic activity towards P. nalgiovense and Penicillium chrysogenum was observed at the same concentration. OMWWP at the concentrations used in this study demonstrated species-dependent antifungal activity by inhibiting both fungal growth and spore germination. Therefore, OMWWP can be regarded as a potential alternative to synthetic antifungal compounds to preserve the product from both oxidation and undesired fungi, without changing the sensory characteristics. PMID:25996624

  6. Sugar and volatile fatty acids dynamic during anaerobic treatment of olive mill wastewater.

    PubMed

    Fernandes, L R; Gomes, A C; Lopes, A; Albuquerque, A; Simões, R M

    2016-01-01

    Biogas production has been the main route used to exploit olive mill wastewater (OMW), after pretreatment and/or in combination with other effluents, but more recently the production of chemicals and biopolymers by biotechnological routes has deserved increasing attention by the scientific community. The present paper aims to explore the potential of fresh OMW as a source of volatile fatty acids (VFAs) and biogas. The time profile of VFAs production and the corresponding sugar consumption was followed by high-performance liquid chromatography, in batch anaerobic assays. The experimental results have revealed the very high potential of the OMW for the production of VFAs, mainly due to the high sugar concentration in the effluent (37.8 g/L) and its complete conversion into VFAs, in a time period of 2-3 days. The most abundant VFAs were acetic (48-50%), n-butanoic (12-27%), iso-pentanoic (12-14%) and propanoic (5-13%). The ratio of VFA containing even and odd carbon chains increased with the reduction in the initial chemical oxygen demand concentration of the samples used in the experiments. The conversion of the VFAs to biogas was inhibited at concentrations of 3.5 g/L of VFAs. PMID:26496487

  7. Hydrothermal liquefaction of oil mill wastewater for bio-oil production in subcritical conditions.

    PubMed

    Hadhoum, Loubna; Balistrou, Mourad; Burnens, Gaëtan; Loubar, Khaled; Tazerout, Mohand

    2016-10-01

    The main purpose of this study is to investigate the direct hydrothermal liquefaction of oil mill wastewater (OMWW). Experiments were carried out at different temperatures (240-300°C), water contents (58-88wt.%) and reaction times (15-45min). Results show that the highest bio-oil yield was about 58wt.%, resulting in a higher heating value of 38MJ/kg. This was conducted at the following optimal conditions: water content 88wt.%, a temperature of 280°C, and 30min as reaction time. To put bio-oil into wide application, the various physical and chemical characteristics were determined. A detailed chemical composition analysis of bio-oil was performed by gas chromatography-mass spectrometry (GC-MS) coupled with a flame ionization detector (FID). The dominant compounds were identified by using NIST library. Analyses show that the bio-oil contains mainly oleic acid, hexadecanoic acid, fatty acid methyl ester, fatty acid ethyl ester, amino acid derived compounds and phenolic compounds.

  8. Control of household mycoflora in fermented sausages using phenolic fractions from olive mill wastewaters.

    PubMed

    Chaves-López, Clemencia; Serio, Annalisa; Mazzarrino, Giovanni; Martuscelli, Maria; Scarpone, Emidio; Paparella, Antonello

    2015-08-17

    Biopreservation using polyphenols represents an alternative to chemical molecules for improving food safety. In this work, we evaluated the antifungal activity of polyphenols extracted from olive mill wastewater (OMWWP) to reduce or eliminate the growth of undesired fungi on the surface of dry fermented sausages. Antagonism against Penicillium expansum DSMZ 1282, Penicillium verrucosum DSMZ 12639, Penicillium nalgiovense MS01, Aspergillus ochraceus DSMZ 63304, Cladosporium cladosporioides MS12, and Eurotium amstelodami MS10 was evident at 1.25% OMWWP in vitro, whereas in situ application of 2.5% OMWWP strongly reduced undesired household fungal species such as C. cladosporioides, Penicillium aurantiogriseum, Penicillium commune, and Eurotium amstelodami, while a moderate antagonistic activity towards P. nalgiovense and Penicillium chrysogenum was observed at the same concentration. OMWWP at the concentrations used in this study demonstrated species-dependent antifungal activity by inhibiting both fungal growth and spore germination. Therefore, OMWWP can be regarded as a potential alternative to synthetic antifungal compounds to preserve the product from both oxidation and undesired fungi, without changing the sensory characteristics.

  9. Combined treatment of olive mill wastewater by Fenton's reagent and anaerobic biological process.

    PubMed

    Amor, Carlos; Lucas, Marco S; García, Juan; Dominguez, Joaquín R; De Heredia, J Beltrán; Peres, José A

    2015-01-01

    This work presents the application of Fenton's reagent process combined with anaerobic digestion to treat an olive mill wastewater (OMW). Firstly, OMW was pre-treated by chemical oxidation in a batch reactor with Fenton's reagent, using a fixed H2O2/COD ratio of 0.20, pH = 3.5 and a H2O2/Fe(2+) molar ratio of 15:1. This advanced oxidation treatment allowed reaching reductions of 17.6 and 82.5% of chemical oxygen demand (COD) and total polyphenols (TP), respectively. Secondly, OMW treatment by anaerobic digestion was performed using previously adapted microorganisms immobilized in Sepiolite. These biological tests were carried out varying the substrate concentration supplied to the reactor and COD conversions from 52 to 74% were obtained. Afterwards, Fenton's reagent followed by anaerobic digestion was applied to OMW treatment. This combined process presented a significant improvement on organic load removal, reaching COD degradations from 64 to 88%. Beyond the pollutant load removal, it was also monitored the yield of methane generated throughout anaerobic experiments. The methane produced ranged from 281 cm(3) to 322 cm(3) of CH4/g COD removed. Additionally, a methane generation kinetic study was performed using the Monod Model. The application of this model allowed observing a kinetic constant increase of the combined process (kFN = 0.036 h(-1)) when compared to the single anaerobic process (kF = 0.017 h(-1)).

  10. Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media.

    PubMed

    Papanikolaou, Seraphim; Galiotou-Panayotou, Maria; Fakas, Stylianos; Komaitis, Michael; Aggelis, George

    2008-05-01

    Yarrowia lipolytica ACA-DC 50109 cultivated on olive-mill wastewater (O.M.W.)-based media, enriched with commercial-industrial glucose, presented an efficient cell growth. Parameters of growth were unaffected by the presence of O.M.Ws in the growth medium. In diluted O.M.Ws enriched with high glucose amounts (initial sugar concentration, 65 g l(-1)), a notable quantity of total citric acid was produced (28.9 g l(-1)). O.M.W.-based media had a noteworthy stimulating effect on the production of citric acid, since both final citric acid concentration and conversion yield of citric acid produced per unit of sugar consumed were higher when compared with the respective parameters obtained from trials without added O.M.W. Adaptation of the strain in O.M.W.-based media favoured the biosynthesis of cellular unsaturated fatty acids (principally of oleic and palmitoleic acids). Additionally, a non-negligible decrease of the phenolic compounds in the growth medium [up to 15% (wt/wt)], a slight decrease of the phyto-toxicity, and a remarkable decolourisation of the O.M.W. were observed. All these results suggest the potentiality of O.M.Ws utilisation in the fermentation process of citric acid production.

  11. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    PubMed Central

    Koutrotsios, Georgios; Zervakis, Georgios I.

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  12. Boron-doped diamond anodic treatment of olive mill wastewaters: statistical analysis, kinetic modeling and biodegradability.

    PubMed

    Chatzisymeon, Efthalia; Xekoukoulotakis, Nikolaos P; Diamadopoulos, Evan; Katsaounis, Alexandros; Mantzavinos, Dionissios

    2009-09-01

    The electrochemical treatment of olive mill wastewaters (OMW) over boron-doped diamond (BDD) electrodes was investigated. A factorial design methodology was implemented to evaluate the statistically important operating parameters, amongst initial COD load (1000-5000 mg/L), treatment time (1-4h), current intensity (10-20A), initial pH (4-6) and the use of 500 mg/L H(2)O(2) as an additional oxidant, on treatment efficiency; the latter was assessed in terms of COD, phenols, aromatics and color removal. Of the five parameters tested, the first two had a considerable effect on COD removal. Hence, analysis was repeated at more intense conditions, i.e. initial COD values up to 10,000 mg/L and reaction times up to 7h and a simple model was developed and validated to predict COD evolution profiles. The model suggests that the rate of COD degradation is zero order regarding its concentration and agrees well with an electrochemical model for the anodic oxidation of organics over BDD developed elsewhere. The treatability of the undiluted effluent (40,000 mg/L COD) was tested at 20A for 15h yielding 19% COD and 36% phenols' removal respectively with a specific energy consumption of 96 kWh/kg COD removed. Aerobic biodegradability and ecotoxicity assays were also performed to assess the respective effects of electrochemical treatment. PMID:19423147

  13. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater.

    PubMed

    Ochando-Pulido, J M; Rodriguez-Vives, S; Hodaifa, G; Martinez-Ferez, A

    2012-10-01

    Management of the effluent from the olive oil industry is of capital importance nowadays, especially in the Mediterranean countries. Most of the scarce existing studies concerning olive mill wastewater (OMW) treatment by means of membrane processes not only do fix their aims simply on achieving irrigation standards, but lack suitable pretreatments against deleterious fouling issues. With the target of achieving the parametric requirements for public waterways discharge or even for reuse in the production process, a bench-scale study was undertaken to evaluate the feasibility of a thin-film composite reverse osmosis (RO) membrane (polyamide/polysulfone) for the purification of OMW. Previously, OMW was pretreated by means of chemical oxidation based on Fenton's reagent, flocculation-sedimentation and biosorption through olive stones. Impacts of the main operating parameters on permeate flux and pollutants rejection of the RO process, as well as fouling on the membrane surface, were examined for removing the significant ionic concentration and remaining organic matter load of the pretreated OMW. Combining operating parameters adequately in a semibatch operating regime ensured high and sustainable permeate flux, yielding over 99.4% and 98.5% removal efficiencies for the chemical oxygen demand and ionic content respectively, as well as complete rejection of phenols, iron and suspended solids. PMID:22771149

  14. Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption.

    PubMed

    Zagklis, Dimitris P; Vavouraki, Aikaterini I; Kornaros, Michael E; Paraskeva, Christakis A

    2015-03-21

    Olive tree cultivation has a long history in the Mediterranean countries, and even today consists an important cultural, economic, and environmental aspect of the area. The production of olive oil through 3-phase extraction systems, leads to the co-production of large quantities of olive mill wastewater (OMW), with toxic compounds that inhibit its biodegradation. Membrane filtration has been used for the exploitation of this byproduct, through the isolation of valuable phenolic compounds. In the current work, a fraction of the waste occurring from a membrane process was used. More specifically the reverse osmosis concentrate, after a nanofiltration, containing the low-molecular-weight compounds, was further treated with resin adsorption/desorption. The non ionic XAD4, XAD16, and XAD7HP resins were implemented, for the recovery of phenols and their separation from carbohydrates. The recovered phenolic compounds were concentrated through vacuum evaporation reaching a final concentration of 378 g/L in gallic acid equivalents containing 84.8 g/L hydroxytyrosol. PMID:25497019

  15. Study on preparation of water hyacinth-based activated carbon for pulp and paper mill wastewater treatment.

    PubMed

    Boonpoke, Anusorn

    2015-09-01

    Mulberry pulp and paper mills produce high chemical- and organic matter containing waste water in Thailand. Many of the mills are not equipped with wastewater treatment unit; their untreated effluent is directly discharged into recipient water resources. The effluent constituents are well recognized as acute and chronic pollutants that are hazardous to the environment. The present study aimed to investigate the utilization of an activated carbon from a low-cost material and to examine its adsorption performance using batch and fixed-bed adsorption. Water hyacinth was used as a raw material for activated carbon production via a chemical activation method. The results showed that water hyacinth-based activated carbon (WHAC) provided a high surface area of 912-1,066 m2g(-1) and exhibited micropore structure. Based on the Freundlich fit, the maximum adsorption capacity of COD and color was 4.52 mgg(-1) and 13.57 Pt-Cog(-1), respectively. The fixed bed adsorption provided maximum removal efficiency of 91.70 and 92.62% for COD and color, respectively. A continuous adsorption data agreed well with the Thomas kinetic model. In summary, water hyacinth can be used as a low-cost material for activated carbon production with high removal efficiency of COD and color for pulp and paper mill wastewater treatment.

  16. Effect of temperature and aeration rate on co-composting of olive mill wastewater with olive stone wooden residues.

    PubMed

    Vlyssides, Alphapostolos; Barampouti, Elli Maria; Mai, Sofia; Loizides, Michael

    2010-11-01

    Co-composting of the solid residues and wastewater from the olive oil production process was examined as a potential bioremediation treatment for these wastes. Experimental results from a semi batch laboratory pilot plant were reported. Composting was performed for 20 days under constant moisture 40% and the temperature ranged from 55 to 72°C and the oxygen partial pressure from 10 to 17%. An operational region of temperature and oxygen partial pressure was defined in order to achieve a ratio of total olive mill wastewater consumption to olive stone wooden residue stabilization equal or greater than 2.5, the typical ratio for an olive mill plant. Another critical parameter for the optimisation of the 20-day co-composting process that was examined was the biological efficiency of the process, as the carbon dioxide produced to the total carbon available to biomass. A strong sigmoid correlation of co-composting efficiency with temperature derived, reaching a maximum plateau of 0.50 at 68°C. The optimum conditions for a 20-day semi batch co-composting proved to be 68°C and 16-17% oxygen partial pressure, indicating that this process could be an integrated treatment scheme for olive mills. PMID:20401685

  17. Study on preparation of water hyacinth-based activated carbon for pulp and paper mill wastewater treatment.

    PubMed

    Boonpoke, Anusorn

    2015-09-01

    Mulberry pulp and paper mills produce high chemical- and organic matter containing waste water in Thailand. Many of the mills are not equipped with wastewater treatment unit; their untreated effluent is directly discharged into recipient water resources. The effluent constituents are well recognized as acute and chronic pollutants that are hazardous to the environment. The present study aimed to investigate the utilization of an activated carbon from a low-cost material and to examine its adsorption performance using batch and fixed-bed adsorption. Water hyacinth was used as a raw material for activated carbon production via a chemical activation method. The results showed that water hyacinth-based activated carbon (WHAC) provided a high surface area of 912-1,066 m2g(-1) and exhibited micropore structure. Based on the Freundlich fit, the maximum adsorption capacity of COD and color was 4.52 mgg(-1) and 13.57 Pt-Cog(-1), respectively. The fixed bed adsorption provided maximum removal efficiency of 91.70 and 92.62% for COD and color, respectively. A continuous adsorption data agreed well with the Thomas kinetic model. In summary, water hyacinth can be used as a low-cost material for activated carbon production with high removal efficiency of COD and color for pulp and paper mill wastewater treatment. PMID:26521558

  18. Biological treatment with fungi of olive mill wastewater pre-treated by photocatalytic oxidation with nanomaterials.

    PubMed

    Nogueira, V; Lopes, I; Freitas, A C; Rocha-Santos, T A P; Gonçalves, F; Duarte, A C; Pereira, R

    2015-05-01

    Olive mill wastewater (OMW) still is a major environmental problem due to its high chemical oxygen demand (COD) and total phenolic content (TPC), contributing for the high toxicity and recalcitrant nature. Several attempts have been made for developing more efficient treatment processes, but no chemical or biological approaches were found to be totally effective, especially in terms of toxicity reduction. In this context, the main purpose of this study was to investigate the treatability of OMW by the combination of photocatalytic oxidation, using two nanomaterials as catalysts (TiO2 and Fe2O3), with biological degradation by fungi (Pleurotus sajor caju and Phanerochaete chrysosporium). Photocatalytic oxidation was carried out using different systems, nano-TiO2/UV, nano-Fe2O3/UV, nano-TiO2/H2O2/UV and nano-Fe2O3/H2O2/UV. The effectiveness of the treatment was assessed through color (465nm), aromatics (270nm), COD and TPC reductions, as well as by the decrease in toxicity using the bacterium Vibrio fischeri. The chemical treatment with the system nano-TiO2/H2O2/UV promoted 43%, 14%, 38% and 31% reductions in color, aromatics content, COD and TPC, respectively. However no toxicity reduction was observed. The combination with a biological treatment increased the reduction of COD and TPC as well as a reduction in toxicity. The treatment with P. chrysosporium promoted the highest reduction in toxicity, but P. sajor caju was responsible for the best reduction in COD and TPC. However, the biological treatment was more effective when no hydrogen peroxide was used in the pre-treatment.

  19. Biological treatment with fungi of olive mill wastewater pre-treated by photocatalytic oxidation with nanomaterials.

    PubMed

    Nogueira, V; Lopes, I; Freitas, A C; Rocha-Santos, T A P; Gonçalves, F; Duarte, A C; Pereira, R

    2015-05-01

    Olive mill wastewater (OMW) still is a major environmental problem due to its high chemical oxygen demand (COD) and total phenolic content (TPC), contributing for the high toxicity and recalcitrant nature. Several attempts have been made for developing more efficient treatment processes, but no chemical or biological approaches were found to be totally effective, especially in terms of toxicity reduction. In this context, the main purpose of this study was to investigate the treatability of OMW by the combination of photocatalytic oxidation, using two nanomaterials as catalysts (TiO2 and Fe2O3), with biological degradation by fungi (Pleurotus sajor caju and Phanerochaete chrysosporium). Photocatalytic oxidation was carried out using different systems, nano-TiO2/UV, nano-Fe2O3/UV, nano-TiO2/H2O2/UV and nano-Fe2O3/H2O2/UV. The effectiveness of the treatment was assessed through color (465nm), aromatics (270nm), COD and TPC reductions, as well as by the decrease in toxicity using the bacterium Vibrio fischeri. The chemical treatment with the system nano-TiO2/H2O2/UV promoted 43%, 14%, 38% and 31% reductions in color, aromatics content, COD and TPC, respectively. However no toxicity reduction was observed. The combination with a biological treatment increased the reduction of COD and TPC as well as a reduction in toxicity. The treatment with P. chrysosporium promoted the highest reduction in toxicity, but P. sajor caju was responsible for the best reduction in COD and TPC. However, the biological treatment was more effective when no hydrogen peroxide was used in the pre-treatment. PMID:25723133

  20. Assessment of Coriolopsis gallica-treated olive mill wastewater phytotoxicity on tomato plants.

    PubMed

    Daâssi, Dalel; Sellami, Sahar; Frikha, Fakher; Rodriguez-Couto, Susana; Nasri, Moncef; Mechichi, Tahar

    2016-08-01

    The aim of the present study was to evaluate the phytotoxicity of olive mill wastewater (OMW) after being treated by the white-rot fungus Coriolopsis gallica. For this, the effect of irrigation with treated OMW (TOMW) and untreated OMW (UOMW) on tomato plants (Lycopersicon esculentum) for 3 weeks was studied. The control plants were irrigated with distilled water. Agronomic tests were performed in pot experiments in a greenhouse using the randomized complete block (RCB) experimental design. The relative leaf height (RLH), as a morphological parameter, and the content of total phenols in the roots and total chlorophyll [Cha + Chb] and reducing sugars in the leaves, as physiological parameters, were selected as responses of the experimental design. The results obtained showed that [Cha + Chb] in the leaves of tomato growth under TOMW was enhanced by 36.3 and 19.4 % compared to the plant growth under UOMW and to the controls, respectively. Also, reducing sugar concentrations were closed to those of the control plants, ranging from 0.424 to 0.678 g/L for the different dilutions tested. However, the plants irrigated with UOMW showed lower reducing sugar concentrations ranging from 0.042 to 0.297g/L. The optimum RLH (0.537) was observed in the plants irrigated with TOMW diluted at (1:4), this value being higher than that observed in the controls (0.438). Our study proved that the irrigation with TOMW significantly improved tomato growth and photosynthesis activity over those irrigated with UOMW. Optimization of TOMW as a fertilizer was obtained for a dilution of 1:4. From the obtained results, it can be concluded that OMW treated by C. gallica holds potential to be used as a fertilizer for tomato plants. Graphical Abstract ᅟ Please provide a caption for the graphical abstract.The graphical abstract is improved and sent as attachment Please replace it.

  1. Exploitation of olive mill wastewater and liquid cow manure for biogas production

    SciTech Connect

    Dareioti, Margarita A.; Dokianakis, Spyros N.; Stamatelatou, Katerina; Zafiri, Constantina; Kornaros, Michael

    2010-10-15

    Co-digestion of organic waste streams is an innovative technology for the reduction of methane/greenhouse gas emissions. Different organic substrates are combined to generate a homogeneous mixture as input to the anaerobic reactor in order to increase process performance, realize a more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. In this study, the potential of anaerobic digestion for the treatment of a mixture containing olive mill wastewater (OMW) and liquid cow manure (LCM) using a two-stage process has been evaluated by using two continuously stirred tank reactors (CSTRs) under mesophilic conditions (35 {sup o}C) in order to separately monitor and control the processes of acidogenesis and methanogenesis. The overall process was studied with a hydraulic retention time (HRT) of 19 days. The digester was continuously fed with an influent composed (v/v) of 20% OMW and 80% LCM. The average removal of dissolved and total COD was 63.2% and 50%, respectively. The volatile solids (VS) removal was 34.2% for the examined mixture of feedstocks operating the system at an overall OLR of 3.63 g CODL{sub reactor}{sup -1}d{sup -1}. Methane production rate at the steady state reached 0.91 L CH{sub 4}L{sub reactor}{sup -1}d{sup -1} or 250.9 L CH{sub 4} at standard temperature and pressure conditions (STP) per kg COD fed to the system.

  2. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions.

  3. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. PMID:26183941

  4. Polyhydroxyalkanoate biosynthesis from paper mill wastewater treated by a moving bed biofilm reactor.

    PubMed

    Jarpa, Mayra; Pozo, Guillermo; Baeza, Rocío; Martínez, Miguel; Vidal, Gladys

    2012-01-01

    Polyhydroxyalkanoate (PHA) biosynthesis in paper mill wastewater treated by a Moving Bed Biofilm Reactor (MBBR) was evaluated. A MBBR was operated during 300 d. The increasing effect of the Organic Load Rate (OLR) from 0.13 kg BOD(5)/m(3)·d to 2.99 kg BOD(5)/m(3)·d and the influence of two relationship of BOD(5:) N: P (100: 5: 1 and 100: 1: 0.3) on the PHA biosynthesis were evaluated. With an OLR of 0.13 kg BOD(5)/m(3)·d, the maximum organic matter removal measure as Biochemical Oxygen Demand (BOD(5)) was 98.7% for a BOD(5:) N: P relationship of 100: 5: 1. Meanwhile for BOD(5): N: P relationship of 100: 1: 0.3, the maximum efficiency was 87.2% (OLR: 2.99 kg BOD(5)/m(3)·d). The behaviour of the Chemical Oxygen Demand (COD) and total phenolic compound removal efficiencies were below 65.0% and 41.0%, respectively. PHA biosynthesis was measured as a percentage of cells that accumulate PHA, where the maximum percentage was 85.1% and 78.7% when MBBR was operated under a BOD(5): N: P relationship of 100: 5: 1 and 100: 1: 0.3, respectively. Finally, the PHA yields in this study were estimated to range between 0.11 to 0.72 mg PHA/mg VSS and 0.06 to 0.15 mg PHA/mg COD. PMID:22871002

  5. Agronomic application of olive mill wastewater: Effects on maize production and soil properties.

    PubMed

    Belaqziz, Majdouline; El-Abbassi, Abdelilah; Lakhal, El Khadir; Agrafioti, Evita; Galanakis, Charis M

    2016-04-15

    This study investigates the effect of direct amendment of olive mill wastewater (OMW) on the fertility of soil, described as poor in the area of Marrakech (semi-arid region) in Morocco. The treated plots were amended with untreated OMW generated by a traditional extraction process at the amount of 10 L/m(2)/year during two consecutive years. Results of these two years treatments with crude OMW at relatively high dose reveal an important increase in soil physicochemical characteristics, namely electric conductivity (EC), Na(+,) K(+), phosphorus, nitrogen, organic matter and soluble phenolic compounds. EC of treated soil was enhanced from 0.34 to 2.91 mS/cm as compared to the control soil. After spreading OMW in soil, the amounts of its nutritive elements increased by 81% for nitrogen, 66% for phosphorus and 88% for potassium. The accumulation of phenolic compounds and the increase of total peroxidase activity in plants provide evidence of their protective role against the physiological stress induced by OMW. However, this enrichment in mineral and nutritive elements decreased three months after OMW application, revealing OMW biodegradation in the studied calcareous soil. In parallel, an increase in the contents of the soluble phenolic compounds on the upper layer of soil was denoted and maize plants growth was efficiently raised. Significant amelioration was obtained notably in terms of fresh and dry weight of leaves, leaves area, spikes fresh and dry weight, 100 seeds weight and straw yield (37, 54, 27, 24, 14 and 9% respectively). Along with the correct choice of convenient soils notably calcareous ones and tolerant crops such as maize, this method could constitute an efficient approach for avoiding problems attributed to the uncontrolled disposal of these effluents and an effective strategy to regenerate degraded soils and represents an economical alternative that provides a local fertilizer.

  6. Quality assessment of composts prepared with olive mill wastewater and agricultural wastes.

    PubMed

    Hachicha, Salma; Sallemi, Fatma; Medhioub, Khaled; Hachicha, Ridha; Ammar, Emna

    2008-12-01

    The co-composting of solid residue from olive oil production process, exhausted olive cake (EOC), with poultry manure (PM) watered with olive mill wastewater (OMW) was considered as an efficient method for the treatment of olive oil extraction effluent having high organic content including phenolic polluting compounds. The process was carried out by using three aerated windrows of variable compositions. OMW was used continuously during the bio-oxidative period, which lasted three months, to replace water for windrow moistening. The main process parameters (temperature, pH, humidity and C/N) were monitored over four months to ascertain the maturity of the compost. The composting process lasted four months during which 26 moistenings of the mixtures were performed with OMW or water to keep moisture within the ideal range of 45-60% (w/w). At the maturity stage, the C/N ratios were less than 16, pH of the resulting products were slightly alkaline (pH=8) and electrical conductivity was relatively high in the OMW mixtures (5.46-5.48 Sm(-1)) when compared with water application. Nitrates increased (0.16-0.42%) and phenol contents were reduced by more than 49%. Mature composts were then used as an amendment for potato production in a field where no inhibitory effect was observed. Potato productivity increased 10-23% as a result of compost application. No noticeable negative impact of OMW on the soil system was observed. Phenolic compound concentrations in the stabilised composts were comparable in the three studied mixtures (different sites) and averaged 0.24%. Considering previous results and this three year study, it has been observed that the benefit of these composts demonstrated the potential sustainable agronomic production of potato while using locally available recycled organic materials.

  7. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    PubMed

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment.

  8. Polyhydroxyalkanoate biosynthesis from paper mill wastewater treated by a moving bed biofilm reactor.

    PubMed

    Jarpa, Mayra; Pozo, Guillermo; Baeza, Rocío; Martínez, Miguel; Vidal, Gladys

    2012-01-01

    Polyhydroxyalkanoate (PHA) biosynthesis in paper mill wastewater treated by a Moving Bed Biofilm Reactor (MBBR) was evaluated. A MBBR was operated during 300 d. The increasing effect of the Organic Load Rate (OLR) from 0.13 kg BOD(5)/m(3)·d to 2.99 kg BOD(5)/m(3)·d and the influence of two relationship of BOD(5:) N: P (100: 5: 1 and 100: 1: 0.3) on the PHA biosynthesis were evaluated. With an OLR of 0.13 kg BOD(5)/m(3)·d, the maximum organic matter removal measure as Biochemical Oxygen Demand (BOD(5)) was 98.7% for a BOD(5:) N: P relationship of 100: 5: 1. Meanwhile for BOD(5): N: P relationship of 100: 1: 0.3, the maximum efficiency was 87.2% (OLR: 2.99 kg BOD(5)/m(3)·d). The behaviour of the Chemical Oxygen Demand (COD) and total phenolic compound removal efficiencies were below 65.0% and 41.0%, respectively. PHA biosynthesis was measured as a percentage of cells that accumulate PHA, where the maximum percentage was 85.1% and 78.7% when MBBR was operated under a BOD(5): N: P relationship of 100: 5: 1 and 100: 1: 0.3, respectively. Finally, the PHA yields in this study were estimated to range between 0.11 to 0.72 mg PHA/mg VSS and 0.06 to 0.15 mg PHA/mg COD.

  9. Agronomic application of olive mill wastewater: Effects on maize production and soil properties.

    PubMed

    Belaqziz, Majdouline; El-Abbassi, Abdelilah; Lakhal, El Khadir; Agrafioti, Evita; Galanakis, Charis M

    2016-04-15

    This study investigates the effect of direct amendment of olive mill wastewater (OMW) on the fertility of soil, described as poor in the area of Marrakech (semi-arid region) in Morocco. The treated plots were amended with untreated OMW generated by a traditional extraction process at the amount of 10 L/m(2)/year during two consecutive years. Results of these two years treatments with crude OMW at relatively high dose reveal an important increase in soil physicochemical characteristics, namely electric conductivity (EC), Na(+,) K(+), phosphorus, nitrogen, organic matter and soluble phenolic compounds. EC of treated soil was enhanced from 0.34 to 2.91 mS/cm as compared to the control soil. After spreading OMW in soil, the amounts of its nutritive elements increased by 81% for nitrogen, 66% for phosphorus and 88% for potassium. The accumulation of phenolic compounds and the increase of total peroxidase activity in plants provide evidence of their protective role against the physiological stress induced by OMW. However, this enrichment in mineral and nutritive elements decreased three months after OMW application, revealing OMW biodegradation in the studied calcareous soil. In parallel, an increase in the contents of the soluble phenolic compounds on the upper layer of soil was denoted and maize plants growth was efficiently raised. Significant amelioration was obtained notably in terms of fresh and dry weight of leaves, leaves area, spikes fresh and dry weight, 100 seeds weight and straw yield (37, 54, 27, 24, 14 and 9% respectively). Along with the correct choice of convenient soils notably calcareous ones and tolerant crops such as maize, this method could constitute an efficient approach for avoiding problems attributed to the uncontrolled disposal of these effluents and an effective strategy to regenerate degraded soils and represents an economical alternative that provides a local fertilizer. PMID:26899012

  10. Assessment of Coriolopsis gallica-treated olive mill wastewater phytotoxicity on tomato plants.

    PubMed

    Daâssi, Dalel; Sellami, Sahar; Frikha, Fakher; Rodriguez-Couto, Susana; Nasri, Moncef; Mechichi, Tahar

    2016-08-01

    The aim of the present study was to evaluate the phytotoxicity of olive mill wastewater (OMW) after being treated by the white-rot fungus Coriolopsis gallica. For this, the effect of irrigation with treated OMW (TOMW) and untreated OMW (UOMW) on tomato plants (Lycopersicon esculentum) for 3 weeks was studied. The control plants were irrigated with distilled water. Agronomic tests were performed in pot experiments in a greenhouse using the randomized complete block (RCB) experimental design. The relative leaf height (RLH), as a morphological parameter, and the content of total phenols in the roots and total chlorophyll [Cha + Chb] and reducing sugars in the leaves, as physiological parameters, were selected as responses of the experimental design. The results obtained showed that [Cha + Chb] in the leaves of tomato growth under TOMW was enhanced by 36.3 and 19.4 % compared to the plant growth under UOMW and to the controls, respectively. Also, reducing sugar concentrations were closed to those of the control plants, ranging from 0.424 to 0.678 g/L for the different dilutions tested. However, the plants irrigated with UOMW showed lower reducing sugar concentrations ranging from 0.042 to 0.297g/L. The optimum RLH (0.537) was observed in the plants irrigated with TOMW diluted at (1:4), this value being higher than that observed in the controls (0.438). Our study proved that the irrigation with TOMW significantly improved tomato growth and photosynthesis activity over those irrigated with UOMW. Optimization of TOMW as a fertilizer was obtained for a dilution of 1:4. From the obtained results, it can be concluded that OMW treated by C. gallica holds potential to be used as a fertilizer for tomato plants. Graphical Abstract ᅟ Please provide a caption for the graphical abstract.The graphical abstract is improved and sent as attachment Please replace it. PMID:27113734

  11. [Pollution by wastewater from olive oil mills and drinking-water production. Case study of the Sebou river in Morocco].

    PubMed

    Foutlane, A; Saadallah, M; Echihabi, L; Bourchich, L

    2002-01-01

    The National Office for Drinking Water (ONEP), responsible for the drinking-water supply in Morocco, faces serious difficulties in producing water of good quality at a reasonable price from the River Sebou waters. The ONEP's three water treatment plants have been disrupted or even stopped due to the poor quality of waters received. The main source of pollution is the urban and industrial waste of the town of Fes, compounded by episodic pollution caused by the olive oil mills of Fes and its surrounding area. The ONEP study shows that the additional production costs incurred as a result of the pollution by wastewater from olive oil mills far exceeds the drinking-water rates charged in the study area.

  12. Syntrophic co-culture of Bacillus subtilis and Klebsiella pneumonia for degradation of kraft lignin discharged from rayon grade pulp industry.

    PubMed

    Yadav, Sangeeta; Chandra, Ram

    2015-07-01

    In order to search the degradability of kraft lignin, the potential bacterial strains Bacillus subtilis (GU193980) and Klebsiella pneumoniae (GU193981) were isolated, screened and applied in axenic and co-culture conditions. Results revealed that mixed culture showed better decolorization efficiency (80%) and reduction of pollution parameters (COD 73% and BOD 62%) than axenic culture. This indicated syntrophic growth of these two bacteria rather than any antagonistic effect. The HPLC analysis of degraded samples of kraft lignin has shown the reduction in peak area compared to control, suggesting that decrease in color intensity might be largely attributed to the degradation of lignin by isolated bacteria. Further, the GC-MS analysis showed that most of the compounds detected in control were diminished after bacterial treatment. Further, the seed germination test using Phaseolus aureus has supported the detoxification of bacterial decolorized kraft lignin for environmental safety. All these observations have revealed that the developed bacterial co-culture was capable for the effective degradation and decolorization of lignin containing rayon grade pulp mill wastewater for environmental safety. PMID:26141897

  13. Syntrophic co-culture of Bacillus subtilis and Klebsiella pneumonia for degradation of kraft lignin discharged from rayon grade pulp industry.

    PubMed

    Yadav, Sangeeta; Chandra, Ram

    2015-07-01

    In order to search the degradability of kraft lignin, the potential bacterial strains Bacillus subtilis (GU193980) and Klebsiella pneumoniae (GU193981) were isolated, screened and applied in axenic and co-culture conditions. Results revealed that mixed culture showed better decolorization efficiency (80%) and reduction of pollution parameters (COD 73% and BOD 62%) than axenic culture. This indicated syntrophic growth of these two bacteria rather than any antagonistic effect. The HPLC analysis of degraded samples of kraft lignin has shown the reduction in peak area compared to control, suggesting that decrease in color intensity might be largely attributed to the degradation of lignin by isolated bacteria. Further, the GC-MS analysis showed that most of the compounds detected in control were diminished after bacterial treatment. Further, the seed germination test using Phaseolus aureus has supported the detoxification of bacterial decolorized kraft lignin for environmental safety. All these observations have revealed that the developed bacterial co-culture was capable for the effective degradation and decolorization of lignin containing rayon grade pulp mill wastewater for environmental safety.

  14. Comparison of the efficiencies of attached- versus suspended-growth SBR systems in the treatment of recycled paper mill wastewater.

    PubMed

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Abd Rahim, Reehan Adnee

    2015-11-01

    The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents.

  15. Lentinula edodes removes phenols from olive-mill wastewater: impact on durum wheat (Triticum durum Desf.) germinability.

    PubMed

    D'Annibale, A; Casa, R; Pieruccetti, F; Ricci, M; Marabottini, R

    2004-02-01

    Olive-mill wastewater (OMW) exhibits highly phytotoxic properties, mainly due to phenols. A valuable option for OMW disposal is its agricultural use provided that phytotoxic effects are removed. The present investigation was aimed at evaluating the efficacy of the lignin-degrading fungus Lentinula edodes in achieving OMW detoxification. Germinability experiments on durum wheat showed that OMW phytotoxicity was significantly reduced by L. edodes cultures. Germinability on undiluted and twofold diluted OMW from fungal cultures was 34+/-5% and 57+/-6%, respectively, while on related incubation controls it was almost completely suppressed. These results suggest that fungal cultures of L. edodes would decrease the phytotoxicity of this waste. PMID:14637346

  16. Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1).

    PubMed

    Boubaker, Fezzani; Ridha, Ben Cheikh

    2008-09-01

    The anaerobic digestion model No. 1 (ADM1), conceived by the international water association (IWA) task group for mathematical modelling of anaerobic digestion processes is a structured generic model which includes multiples steps describing biochemical and physicochemical processes encountered in the anaerobic degradation of complex organic substrates and a common platform for further model enhancement and validation of dynamic simulations for a variety of anaerobic processes. In this study the ADM1 model was modified and applied to simulate the mesophilic anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW). The ADM1 equations were coded and implemented using the simulation software package MATLAB/Simulink. The most sensitive parameters were calibrated and validated using updated experimental data of our previous work. The results indicated that the ADM1 model could simulate with good accuracy: gas flows, methane and carbon-dioxide contents, pH and total volatile fatty acids (TVFA) concentrations of effluents for various feed concentrations digested at different hydraulic retention times (HRTs) and especially at HRTs of 36 and 24 days. Furthermore, effluent alkalinity and ammonium nitrogen were successfully predicted by the model at HRTs of 12 and 24 days for some feed concentrations. PMID:18187320

  17. Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell.

    PubMed

    Sciarria, Tommy Pepè; Tenca, Alberto; D'Epifanio, Alessandra; Mecheri, Barbara; Merlino, Giuseppe; Barbato, Marta; Borin, Sara; Licoccia, Silvia; Garavaglia, Virgilio; Adani, Fabrizio

    2013-11-01

    Improving electricity generation from wastewater (DW) by using olive mill wastewater (OMW) was evaluated using single-chamber microbial fuel cells (MFC). Doing so single-chambers air cathode MFCs with platinum anode were fed with domestic wastewater (DW) alone and mixed with OMW at the ratio of 14:1 (w/w). MFCs fed with DW+OMW gave 0.38 V at 1 kΩ, while power density from polarization curve was of 124.6 mW m(-2). The process allowed a total reduction of TCOD and BOD5 of 60% and 69%, respectively, recovering the 29% of the coulombic efficiency. The maximum voltage obtained from MFC fed with DW+OMW was 2.9 times higher than that of cell fed with DW. DNA-fingerprinting showed high bacterial diversity for both experiments and the presence on anodes of exoelectrogenic bacteria, such as Geobacter spp. Electrodes selected peculiar consortia and, in particular, anodes of both experiments showed a similar specialization of microbial communities independently by feeding used.

  18. Efficacy of olive mill wastewater for protecting Bacillus thuringiensis formulation from UV radiations.

    PubMed

    Jallouli, Wafa; Sellami, Sameh; Sellami, Maissa; Tounsi, Slim

    2014-12-01

    The effectiveness of 10 low-cost UV-absorbers in protecting Bacillus thuringiensis subsp. kurstaki BLB1 toxins against inactivation by UV-A and UV-B irradiation was evaluated in this study. Among them, two by-products, molasses and olive mill wastewater (OMW) were selected for further studies. They were tested at different concentrations of 0.05, 0.1, 0.15 and 0.2% using the para-aminobenzoic acid (PABA) as a common UV protectant. Interestingly, addition of PABA and OMW to BLB1 formulations was found to be most effective in protecting BLB1 spores at 90.8 and 76.4% respectively and in preserving delta-endotoxin concentration at a level of 81.7 and 72.2%, respectively when used at a concentration of 0.2%. The lowest preserved spores (46.3%) and delta-endotoxin level (12.4%) was found using molasses. In contrast, spore count and delta-endotoxin concentration were completely reduced after an exposure of unprotected Bt strain BLB1 to UV radiations up to 96h. SDS-PAGE analysis of protected and unprotected samples revealed that delta-endotoxin bands (130, 65-70kDa) were conserved until 96h of UV exposure in presence of PABA or OMW compared with their disappearance in presence of molasses after 72h of exposure and their dramatically decline from 8h of exposure in unprotected mixture. A complete loss of larvicidal toxicity against Ephestia kuehniella was found after 24h of exposure in absence of any UV-absorber. Addition of OMW or PABA offered the highest levels of insecticidal activity with 63.2 and 74.7% of residual toxicity, respectively. Whereas, molasses addition, as UV protectant retained only 26.3% of residual activity after 96h of exposure. Therefore, addition of OMW by-product to Bt formulation may be a suitable alternative to others synthetic chemical compounds. OMW may also provided added value, be environmentally friendly and less hazardous, when used at low concentration.

  19. Recovery of antioxidants from olive mill wastewaters: a viable solution that promotes their overall sustainable management.

    PubMed

    Kalogerakis, Nicolas; Politi, Maria; Foteinis, Spyros; Chatzisymeon, Efthalia; Mantzavinos, Dionissios

    2013-10-15

    Olive mill wastewaters (OMW) are rich in water-soluble polyphenolic compounds that show remarkable antioxidant properties. In this work, the recovery yield of compounds, such as hydroxytyrosol and tyrosol, as well as total phenols (TPh) from real OMW was investigated. Antioxidants were recovered by means of liquid-liquid solvent extraction. For this purpose, a laboratory-scale pilot unit was established and the effect of various organic solvents, namely ethyl acetate, diethyl ether and a mixture of chloroform/isopropyl alcohol, on process efficiency was investigated. It was found that the performance of the three extraction systems decreased in the order: ethyl acetate > chloroform/isopropanol > diethyl ether, in terms of their antioxidant recovery yield. It was estimated that treatment of 1 m(3) OMW with ethyl acetate could provide 0.247 kg hydroxytyrosol, 0.062 kg tyrosol and 3.44 kg of TPh. Furthermore, the environmental footprint of the whole liquid-liquid extraction system was estimated by means of the life cycle assessment (LCA) methodology to provide the best available and most sustainable extraction technique. From an environmental perspective, it was found that ethyl acetate and diethyl ether had similar environmental impacts. Specifically, for the production of 1 g hydroxytyrosol, tyrosol or TPh, 13.3, 53.1 or 0.949 kg CO2 equivalent would be released to the atmosphere, respectively. On the other hand, the chloroform/isopropyl alcohol mixture had detrimental effects onto ecosystems, human health and fossil fuels resources. In total, ethyl acetate yields low environmental impacts and high antioxidant recovery yield and thus it can be considered as the best solution, both from the environmental and technical point of view. Three alternative scenarios to improve the recovery performance and boost the sustainability of the ethyl acetate extraction system were also investigated and their total environmental impacts were estimated. It was found that

  20. Ozonation and ultrafiltration for the treatment of olive mill wastewaters: effect of key operating conditions and integration schemes.

    PubMed

    Martins, Rui C; Ferreira, Ana M; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2015-10-01

    With the objective of reaching suitable techniques for olive mill wastewater treatment, ozonation and ultrafiltration were studied individually and combined. A continuous reactor was run for the treatment of a phenolic mixture mimicking an actual olive mill wastewater (OMW) by ozonation. The effect of the main operating parameters was analysed (pH, liquid flow rate and ozone inlet concentration). The increase of pH and ozone dose improved ozonation efficiency. As expected, the highest residence time led to higher steady-state degradation (35 % of chemical oxygen demand (COD) abatement). Even if the rise on ozone inlet gas concentration was able to remove COD in a higher extent, it should be taken into consideration that with the lowest oxidant load (15 g O3/m(3)), the maximum steady-state biochemical oxygen demand (BOD5)/COD ratio was reached which would reduce the process costs. These operating conditions (pH 9, 1 mL/min of liquid flow rate and 15 g O3/m(3)) were applied to an actual OMW leading to 80 % of phenolic content abatement and 12 % of COD removal at the steady state. Regarding ultrafiltration, it was concluded that the best total phenolic content (TPh) and COD abatement results (55 and 15 %) are attained for pH 9 and using a transmembrane pressure drop of 1 bar. Among the integration schemes that were tested, ultrafiltration followed by ozonation was able to reach 93 and 20 % of TPh and COD depletion, respectively. Moreover, this sequence led to an effluent with a BOD5/COD ratio of about 0.55 which means that it likely can be posteriorly refined in a municipal wastewater treatment plant. PMID:26013744

  1. Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system.

    PubMed

    Kaewkannetra, P; Imai, T; Garcia-Garcia, F J; Chiu, T Y

    2009-12-15

    Cassava mill wastewater has a high organic and cyanide content and is an important economic product of traditional and rural low technology agro-industry in many parts of the world. However, the wastewater is toxic and can pose serious threat to the environment and aquatic life in the receiving waters. The ability of Azotobactor vinelandii TISTR 1094, a N2-fixing bacterium, to grow and remove cyanide in cassava wastewater was evaluated. Results revealed that the cells in the exponential phase reduce the level of cyanide more rapidly than when the cells are at their stationary growth phase. The rate of cyanide removal by A. vinelandii depends on the initial cyanide concentration. As the initial cyanide concentration increased, removal rate increased and cyanide removal of up to 65.3% was achieved. In the subsequent pilot scale trial involving an activated sludge system, the introduction of A. vinelandii into the system resulted in cyanide removals of up to 90%. This represented an improvement of 20% when compared to the activated sludge system which did not incorporate the strain.

  2. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications.

    PubMed

    Chinnasamy, Senthil; Bhatnagar, Ashish; Hunt, Ryan W; Das, K C

    2010-05-01

    Industrial and municipal wastewaters are potential resources for production of microalgae biofuels. Dalton - the Carpet Capital of the World generates 100-115 million L of wastewater d(-1). A study was conducted using a wastewater containing 85-90% carpet industry effluents with 10-15% municipal sewage, to evaluate the feasibility of algal biomass and biodiesel production. Native algal strains were isolated from carpet wastewater. Preliminary growth studies indicated both fresh water and marine algae showed good growth in wastewaters. A consortium of 15 native algal isolates showed >96% nutrient removal in treated wastewater. Biomass production potential and lipid content of this consortium cultivated in treated wastewater were approximately 9.2-17.8 tons ha(-1) year(-1) and 6.82%, respectively. About 63.9% of algal oil obtained from the consortium could be converted into biodiesel. However further studies on anaerobic digestion and thermochemical liquefaction are required to make this consortium approach economically viable for producing algae biofuels.

  3. Water quality model for a river receiving paper-mill effluents and conventional sewage

    SciTech Connect

    Summers, J.K.; Kazyak, P.F.; Weisberg, S.B.

    1991-01-01

    During low flow periods in summer, portions of the Pigeon River, North Carolina, have experienced depressed dissolved oxygen concentrations. The Pigeon River receives multiple point source effluents from several wastewater treatment facilities and a large kraft paper mill located in Canton, NC, which contribute the oxygen-demanding and nutrient loads on the river. A water quality model was constructed to examine processes and sources contributing to the observed oxygen declines and to evaluate the specific management alternatives. Simulations showed that relatively little of the CBOD materials released by the mill were degraded within the river and were subsequently 'deposited' in the reservoir at the end of the modeled river segment. Reductions in CBOD concentrations could be generally accounted for by tributary dilution. However, nitrogenous oxygen demanding materials released by the mill (e.g., NH3) created a considerable demand for oxygen within the modeled segment of the river.

  4. Kraft black liquor delivery systems

    SciTech Connect

    Adams, T.N.; Empie, H.L.; Obuskovic, N.; Spielbauer, T.M.

    1990-02-01

    Improvement of spray nozzles for black liquor injection into kraft recovery furnaces is expected to result from obtaining a controlled, well-defined droplet size distribution. Work this year has centered on defining the capabilities of commercial black liquor nozzles currently in use. Considerations of the observed mechanism of droplet formation suggest a major revision is needed in the theory of how droplets form from these nozzles. High resolution, high sensitivity video has been shown to be superior to flash x-ray as a technique for measuring the droplet size distribution as well as the formation history. An environmentally sound spray facility capable of spraying black liquor at temperatures up to normal firing conditions is being constructed before data acquisition continues. Preliminary correlations have been developed between liquor properties, nozzle design, and droplet size. Three aspects of nozzle design have been investigated: droplet size distribution, fluid sheet thickness, and flow and pressure drop characteristics. The standard deviation about the median droplet size for black liquor is nearly the same as the for a wide variety of other fluids and nozzle types. Preliminary correlation for fluid sheet thickness on the plate of a splashplate nozzle show the strong similarities of black liquor to other fluids. The flow and pressure drop characteristic of black liquor nozzle, follow a simple two-term relationship similar to other flow devices. This means that in routine mill operation of black liquor nozzles only the fluid acceleration in the nozzle is important, viscous losses are quiet small. 21 refs., 53 figs., 10 tabs.

  5. A pilot scale anoxic/oxic membrane bioreactor (A/O MBR) for woolen mill dyeing wastewater treatment.

    PubMed

    Zheng, Xiang; Fan, Yao-bo; Wei, Yuan-song

    2003-07-01

    A pilot-scale (10 m3/d) anoxic/oxic membrane bioreactor (A/O MBR) was tested for dyeing wastewater treatment of woolen mill without wasting sludge in 125 days operation. Results showed that the effluent quality was excellent, i.e. effluent COD less than 25 mg/L, BOD5 under 5 mg/L, turbidity lower than 0.65 NTU, and colour less than 30 DT, and met with the reuse water standard of China. The removal rates of COD, BOD5, colour, and turbidity were 92.4%, 98.4%, 74% and 98.9%, respectively. Constant-flux operation mode was carried out in this study, and backwash was effective for reducing membrane fouling and maintaining constant flux. Membrane fouling had heavy impact on energy consumption. More attention should be paid on pipe selection and design for the sidestream MBR system, too.

  6. Box-Behnken Design Application to Study Leaching of Pyrolusite from Manganese Mining Residue Using Olive Mill Wastewater as Reductant

    NASA Astrophysics Data System (ADS)

    Alaoui, Abdallah; El Kacemi, K.; El Ass, K.; Kitane, S.; El Bouzidi, S.

    2015-05-01

    The leaching capacity of olive mill wastewater (OMW) for pyrolusite mine tailings (MnO2) was evaluated using the Box-Behnken experimental design of response surface methodology. The selected test parameters include the concentration of sulfuric acid, the OMW dosage chemical oxygen demand (COD), the solid/liquid ratio S/ L, and particle size. It was determined that the MnO2 dissolution increased with an increase in the sulfuric acid concentration and the OMW dosage, and with a decrease in the solid/liquid ratio. The particle size does not have significant influence on the manganese recovery. A quadratic polynomial model has been developed to predict the amount of manganese extraction from pyrolusite for other operating conditions that were not directly tested. The leaching ability was evaluated based on manganese recovery (Mn%) and the removal capability of chemical oxygen demand (COD%). The predicted values for the responses agreed well with experimental values; R 2 (correlation coefficient) values for Mn% and COD% were 0.9602 and 0.9687, respectively. Within the design space, the optimum conditions for the lixiviation of MnO2 in terms of manganese recovery and COD removal were established and include [H2SO4] of 3 mol L-1, OMW in range of 23 g L-1 to 25 g L-1 COD, and pulp density in range of 90 g L-1 to 100 g L-1. Under these conditions, the response values generated by the model are Mn% ˜49% and COD% >40%. These values show good agreement with those obtained in the validation test. This study has demonstrated that it is possible to use the olive mill wastewater as a reductant agent to recover manganese from a pyrolusite mining residue.

  7. Chemical attributes of soil fertilized with cassava mill wastewater and cultivated with sunflower.

    PubMed

    Dantas, Mara Suyane Marques; Rolim, Mário Monteiro; Duarte, Anamaria de Sousa; de Silva, Ênio Farias de França; Pedrosa, Elvira Maria Regis; Dantas, Daniel da Costa

    2014-01-01

    The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol) were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA), located in Vitória de Santo Antão. The experimental design was randomized blocks with 6 × 5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m(3) ha(-1)); and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater), with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers. PMID:25610900

  8. Chemical Attributes of Soil Fertilized with Cassava Mill Wastewater and Cultivated with Sunflower

    PubMed Central

    Dantas, Mara Suyane Marques; Monteiro Rolim, Mário; Duarte, Anamaria de Sousa; de Silva, Ênio Farias de França; Maria Regis Pedrosa, Elvira; Dantas, Daniel da Costa

    2014-01-01

    The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol) were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA), located in Vitória de Santo Antão. The experimental design was randomized blocks with 6 × 5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m3 ha−1); and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater), with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers. PMID:25610900

  9. Chemical attributes of soil fertilized with cassava mill wastewater and cultivated with sunflower.

    PubMed

    Dantas, Mara Suyane Marques; Rolim, Mário Monteiro; Duarte, Anamaria de Sousa; de Silva, Ênio Farias de França; Pedrosa, Elvira Maria Regis; Dantas, Daniel da Costa

    2014-01-01

    The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol) were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA), located in Vitória de Santo Antão. The experimental design was randomized blocks with 6 × 5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m(3) ha(-1)); and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater), with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers.

  10. Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms.

    PubMed

    Lim, Su Lin; Wu, Ta Yeong; Clarke, Charles

    2014-01-22

    In this laboratory-scale study, earthworms were introduced as biodegraders of palm oil mill effluent (POME), which is a wastewater produced from the wet process of palm oil milling. POME was absorbed into amendments (soil or rice straw) in different ratios as feedstocks for the earthworm, Eudrilus eugeniae. The presence of earthworms led to significant increases in pH, electrical conductivity, and nutrient content but decreases in the C/N ratio (0.687-75.8%), soluble chemical oxygen demand (19.7-87.9%), and volatile solids (0.687-52.7%). However, earthworm growth was reduced in all treatments by the end of the treatment process. Rice straw was a better amendment/absorbent relative to soil, with a higher nutrient content and greater reduction in soluble chemical oxygen demand with a lower C/N ratio in the vermicompost. Among all treatments investigated, the treatment with 1 part rice straw and 3 parts POME (w/v) (RS1:3) produced the best quality vermicompost with high nutritional status. PMID:24372356

  11. The influence of calcium on granular sludge in a full-scale UASB treating paper mill wastewater.

    PubMed

    Batstone, D J; Landelli, J; Saunders, A; Webb, R I; Blackall, L L; Keller, J

    2002-01-01

    Calcium precipitation can have a number of effects on the performance of high-rate anaerobic performance including cementing of the sludge bed, limiting diffusion, and diluting the active biomass. The aim of this study was to observe the influence of precipitation in a stable full-scale system fed with high-calcium paper factory wastewater. Granules were examined from an upflow anaerobic sludge blanket reactor (volume 1,805 m3) at a recycled paper mill with a loading rate of 5.7-6.6 kgCOD.m(-3).d(-1) and influent calcium concentration of 400-700 gCa m(-3). The granules were relatively small (1 mm), with a 200-400 microm core of calcium precipitate as observed with energy dispersive X-ray spectroscopy. Compared to other granules, Methanomicrobiales not Methanobacteriales were the dominant hydrogen or formate utilisers, and putative acidogens were filamentous. The strength of the paper mill fed granules was very high when compared to granules from other full-scale reactors, and a partial linear correlation between granule strength and calcium concentration was identified.

  12. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).

    PubMed

    Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

    2015-01-01

    In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment. PMID:25502693

  13. Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms.

    PubMed

    Lim, Su Lin; Wu, Ta Yeong; Clarke, Charles

    2014-01-22

    In this laboratory-scale study, earthworms were introduced as biodegraders of palm oil mill effluent (POME), which is a wastewater produced from the wet process of palm oil milling. POME was absorbed into amendments (soil or rice straw) in different ratios as feedstocks for the earthworm, Eudrilus eugeniae. The presence of earthworms led to significant increases in pH, electrical conductivity, and nutrient content but decreases in the C/N ratio (0.687-75.8%), soluble chemical oxygen demand (19.7-87.9%), and volatile solids (0.687-52.7%). However, earthworm growth was reduced in all treatments by the end of the treatment process. Rice straw was a better amendment/absorbent relative to soil, with a higher nutrient content and greater reduction in soluble chemical oxygen demand with a lower C/N ratio in the vermicompost. Among all treatments investigated, the treatment with 1 part rice straw and 3 parts POME (w/v) (RS1:3) produced the best quality vermicompost with high nutritional status.

  14. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).

    PubMed

    Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

    2015-01-01

    In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment.

  15. Electrochemical treatment of olive mill wastewater: treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools.

    PubMed

    Belaid, Chokri; Khadraoui, Moncef; Mseddii, Salma; Kallel, Monem; Elleuch, Boubaker; Fauvarque, Jean Frangois

    2013-01-01

    Problems related with industrials effluents can be divided in two parts: (1) their toxicity associated to their chemical content which should be removed before discharging the wastewater into the receptor media; (2) and the second part is linked to the difficulties of pollution characterisation and monitoring caused by the complexity of these matrixes. This investigation deals with these two aspects, an electrochemical treatment method of an olive mill wastewater (OMW) under platinized expanded titanium electrodes using a modified Grignard reactor for toxicity removal as well as the exploration of the use of some specific analytical tools to monitor effluent phenolic compounds elimination. The results showed that electrochemical oxidation is able to remove/mitigate the OMW pollution. Indeed, 87% of OMW color was removed and all aromatic compounds were disappeared from the solution by anodic oxidation. Moreover, 55% of the chemical oxygen demand (COD) and the total organic carbon (TOC) were reduced. On the other hand, UV-Visible spectrophotometry, Gaz chromatography/mass spectrometry, cyclic voltammetry and 13C Nuclear Magnetic Resonance (NMR) showed that the used treatment seems efficaciously to eliminate phenolic compounds from OMW. It was concluded that electrochemical oxidation in a modified Grignard reactor is a promising process for the destruction of all phenolic compounds present in OMW. Among the monitoring analytical tools applied, cyclic voltammetry and 13C NMR a re among th e techniques that are introduced for thefirst time to control the advancement of the OMW treatment and gave a close insight on polyphenols disappearance.

  16. Olive Mill Wastewater (OMW) Phenol Compounds Degradation by Means of a Visible Light Activated Titanium Dioxide-Based Photocatalyst

    NASA Astrophysics Data System (ADS)

    Cuomo, Francesca; Venditti, Francesco; Cinelli, Giuseppe; Ceglie, Andrea; Lopez, Francesco

    2016-09-01

    The use of titanium dioxide as heterogeneous photocatalyst is drawing considerable attention for water and air purification and remediation. Recently, TiO2 particles have been modified in order to make this material attractive for industrial and environmental remediation usage. In the present study, phenolic compounds of olive mill wastewater (OMW) were degraded in the presence of glucose-doped titanium particles (CDT) through a photocatalysis process activated by visible light. The photocatalyst effectiveness towards the polluted wastewater from olive oil industry was tested on systems having different initial concentrations of phenols and in the presence of different amounts of CDT. For kinetic analysis the role of Ti/TPh ratio (amount of catalyst/amount of total phenols) was investigated. The rate constant (k2) and the amounts of species adsorbed on adsorbent at equilibrium (qe) of each reaction were calculated by fitting kinetics data to a second-order kinetic adsorption model. The results collected at different Ti/TPh ratios showed that the amount of phenols that can be removed from the water solution linearly increases with the Ti/TPh ratio till a maximum value (optimal ratio) at which no further degradation of phenolic compounds was obtainable. Such kind of parameter allows to identify the optimal value of catalyst and the initial substrate concentration for a high level of degradation. The results showed in this study can have an important impact for an applicative point of view.

  17. Effects of olive mill wastewater physico-chemical treatments on polyphenol abatement and Italian ryegrass (Lolium multiflorum Lam.) germinability.

    PubMed

    Barbera, A C; Maucieri, C; Ioppolo, A; Milani, M; Cavallaro, V

    2014-04-01

    Direct spreading on agricultural lands may represent an environmentally friendly disposal method and a possible use of water and nutrients from olive mill wastewaters (OMWs). However, the agronomic use of OMWs is limited, among others by polyphenols, which exert phytotoxic effects. Activated charcoal (AC) has been recognized as a very effective agent for polyphenol abatement, as it enables an irreversible process of phenol adsorption. Addition of calcium hydroxide (Ca(OH)2) has also been described as a cheap and effective method in polyphenols abatement. However, the effects of Ca(OH)2 addition to OMW on seed germination are unclear. In this paper, the effects of AC and/or Ca(OH)2 on OMW polyphenols abatement, and Lolium multiflorum seed germination have been investigated. The highest polyphenols removal, approximately 95%, was observed when 80 g L(-1) of AC was added to OMWs (the maximum dose in this investigation). The addition of Ca(OH)2 not only improved the effectiveness of the AC treatment but also resulted in a significant rise in Lolium seed germination at the highest AC doses (60 and 80 g L(-1)). Considering the high salinity (7300 μS cm(-1)) of these wastewaters, low quantities of Ca(OH)2 may also exert a protective effect on soil structure counteracting the sodium-induced dispersion through the binding action of calcium cation on clays and organic matter.

  18. Toxicity of solid residues resulting from wastewater treatment with nanomaterials.

    PubMed

    Nogueira, Verónica; Lopes, Isabel; Rocha-Santos, Teresa; Gonçalves, Fernando; Pereira, Ruth

    2015-08-01

    Nanomaterials (NMs) are widely recommended for wastewater treatments due to their unique properties. Several studies report the different advantages of nanotechnology in the remediation of wastewaters, but limited research has been directed toward the fate and potential impacts of the solid residues (SRs) produced after the application of such technologies. The present work aimed at investigating the ecotoxicity of SRs resulting from the treatment of three effluents (OOMW, kraft pulp mill, and mining drainage) with two NMs (TiO2 and Fe2O3). The invertebrate Chironomus riparius was selected as test organism and exposed to the residues. The effect on percentage of survival and growth was assessed. Results showed that the SRs from the treatments nano-TiO2(1.0gL(-1))/H2O2(0.5M) and nano-Fe2O3(1.0gL(-1))/H2O2(1.0M) from OOMW and nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) from kraft pulp mill effluent exhibited lethal toxicity to C. riparius. Only the exposure to SRs resulting from the treatment with nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) applied to the kraft pulp mill effluent significantly affected the growth rate based on the head capsule width. In terms of growth rate, based on the body length, it decreased significantly after exposure to the SRs from the treatments nano-TiO2 (1.0gL(-1)) and nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) of kraft paper mill effluent and nano-Fe2O3(1.0gL(-1))/H2O2(1.0M) of OOMW. According to our study the SRs can promote negative effects on C. riparius. However, the effects are dependent on the type of effluent treated as well as on the organic and inorganic compounds attached to the NMs. PMID:26057932

  19. Involvement of microbial populations during the composting of olive mill wastewater sludge.

    PubMed

    Abid, N; Chamkha, M; Godon, J J; Sayadi, S

    2007-07-01

    Olive mill waste water sludge obtained by the electro-Fenton oxidation of olive mill waste water was composted in a bench scale reactor. The evolution of microbial species within the composter was investigated using a respirometric test and by means of both cultivation-dependent and independent approaches (Polymerase Chain Reaction-Single Strand Conformation Polymorphism, PCR SSCP). During the period of high respiration rate (7-24 days), cultivation method showed that thermophilic bacteria as well as actinomycetes dominated over eumycetes. During the composting process, the PCR-SSCP method showed a higher diversity of the bacterial community than the eukaryotic one. After 60 days of composting, the compost exhibited a microbial stability and a clear absence of phytotoxicity.

  20. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    NASA Astrophysics Data System (ADS)

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-12-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  1. Effect of spent cotton stalks on color removal and chemical oxygen demand lowering in olive oil mill wastewater by white rot fungi.

    PubMed

    Kahraman, S; Yeşilada, O

    1999-01-01

    Wastewater from olive oil mill was decolorized (and its chemical oxygen demand reduced in static cultivation) using the fungi Coriolus versicolor, Funalia trogii, Phanerochaete chrysosporium and Pleurotus sajor-caju. The effect of cotton stalk on decolorizing and COD removing capability was demonstrated. P. chrysosporium (in 20% medium with cotton stalk) reduced the COD by 48% and color by 58%, F. trogii (in 30% medium with cotton stalk)) by 51 and 55%, respectively.

  2. Pulp, paper, and paperboard industry -- Background information for promulgated air emission standards: Manufacturing processes at kraft, sulfite, soda, semi-chemical, mechanical, and secondary and non-wood fiber mills. Final report

    SciTech Connect

    1997-10-01

    National emission standards for hazardous air pollutants (NESHAP) are being promulgated for the pulp and paper industry under authority of Section 112(d) of the Clean Air Act as amended in 1990. This background information document provides technical information and analyses used in the development of the promulgated pulp and paper NESHAP, and contains responses to comments from the proposed rule. This document covers air emission controls for wood pulping and bleaching processes at pulp mills and integrated mills (i.e., mills that combine on-site production of both pulp and paper).

  3. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites.

    PubMed

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment.

  4. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    SciTech Connect

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  5. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    NASA Astrophysics Data System (ADS)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  6. Combined process for the treatment of olive oil mill wastewater: absorption on sawdust and combustion of the impregnated sawdust.

    PubMed

    Chouchene, Ajmia; Jeguirim, Mejdi; Trouvé, Gwenaëlle; Favre-Reguillon, Alain; Le Buzit, Gérard

    2010-09-01

    Olive oil mill wastewater (OMWW) generated by the olive oil extraction industry constitutes a major pollutant, causing a severe environmental threats because of the high chemical oxygen demand and the high content of polyphenol. This work studied a combined process of absorption on sawdust, a low-cost renewable absorbents, and an energetic valorisation via combustion was studied. The thermal behaviour of different OMWW/sawdust blends was studied under inert and oxidative atmosphere from 20 to 900 degrees C using thermogravimetric analysis (TGA). Gaseous emissions such as CO(2), CO and volatile organic compounds (VOCs) were measured under oxidative conditions at 600 degrees C in a fixed-bed reactor. Kinetic parameters were obtained and compared for the different mixtures of OMWW and sawdust. The absorption of the organic content of OMWW on sawdust improves the decomposition of cellulosic compounds at low temperatures in both atmospheres. Compared to sawdust, absorption of the organic content of OMWW on sawdust favours a combustion process with lower molar ratio of CO/CO(2) in the exhaust. Combustion of an impregnated sawdust containing 40 wt.% of the organic content of the OMWW generates the same amount of gas in the exhaust as sawdust. OMWW/sawdust blends may therefore be a promising biofuel with low environmental impacts.

  7. Feed supplemented with polyphenolic byproduct from olive mill wastewater processing improves the redox status in blood and tissues of piglets.

    PubMed

    Gerasopoulos, Konstantinos; Stagos, Dimitrios; Petrotos, Konstantinos; Kokkas, Stylianos; Kantas, Dimitrios; Goulas, Panagiotis; Kouretas, Dimitrios

    2015-12-01

    In the present study, a polyphenolic byproduct from olive mill wastewater (OMWW) was used for making piglet feed with antioxidant activity. For examining the antioxidant capacity of the feed, 30 piglets of 20 d old were divided into two groups receiving basal or experimental feed for 30 d. Blood and tissue samples were drawn at days 2, 20, 35 and 50 post-birth. The tissues collected were brain, heart, kidney, liver, lung, quadriceps muscle, pancreas, spleen and stomach. The antioxidant effects of the experimental feed were assessed by measuring oxidative stress biomarkers in blood and tissues. The oxidative stress markers were total antioxidant capacity (TAC), glutathione (GSH), catalase activity (CAT), protein carbonyls (CARB) and thiobarbituric acid reactive species (TBARS). The results showed that piglets fed with diet supplemented with OMWW polyphenols had significantly increased antioxidant mechanisms in blood and the majority of the tested tissues as shown by increases in TAC, CAT and GSH compared to control group. Moreover, piglets fed with the experimental feed exhibited decreased oxidative stress-induced damage to lipids and proteins as shown by decreases in TBARS and CARB respectively. This is the first study in which OMWW polyphenols were used for making pig feed with antioxidant activity.

  8. Effect of olive mill wastewaters on the oxygen consumption by activated sludge microorganisms: an acute toxicity test method.

    PubMed

    Paixão, S M; Anselmo, A M

    2002-01-01

    The test for inhibition of oxygen consumption by activated sludge (ISO 8192-1986 (E)) was evaluated as a tool for assessing, the acute toxicity of olive mill wastewaters (OMW). According to the ISO test, information generated by this method may be helpful in estimating the effect of a test material on bacterial communities in the aquatic environment, especially in aerobic biological treatment systems. However, the lack of standardized bioassay methodology for effluents imposed that the test conditions were modified and adapted. The experiments were conducted in the presence or absence of an easily biodegradable carbon source (glucose) with different contact times (20 min and 24 h). The results obtained showed a remarkable stimulatory effect of this effluent to the activated sludge microorganisms. In fact, the oxygen uptake rate values increase with increasing effluent concentrations and contact times up to 0.98 microl O(2) h(-1) mg(-1) dry weight for a 100% OMW sample, 24 h contact time, with blanks exhibiting an oxygen uptake rate of ca. 1/10 of this value (0.07-0.10). It seems that the application of the ISO test as an acute toxicity test for effluents should be reconsidered, with convenient adaptation for its utilization as a method of estimating the effect on bacterial communities present in aerobic biological treatment systems. PMID:12015797

  9. Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater.

    PubMed

    Chiaiese, Pasquale; Palomba, Francesca; Tatino, Filippo; Lanzillo, Carmine; Pinto, Gabriele; Pollio, Antonino; Filippone, Edgardo

    2011-12-10

    Olive oil mill wastewaters (OMWs) are characterised by low pH and a high content of mono- and polyaromatic compounds that exert microbial and phytotoxic activity. The laccase cDNA of the poxA1b gene from Pleurotus ostreatus, carrying a signal peptide sequence for enzyme secretion and driven by the CaMV 35S promoter, was cloned into a plant expression vector. Nuclear genetic transformation was carried out by co-cultivation of Agrobacterium tumefaciens with tobacco cv Samsun NN leaves and cells of five different microalgae accessions belonging to the genera Chlamydomonas, Chlorella and Ankistrodesmus. Transgenic plants and microalgae were able to express and secrete the recombinant laccase in the root exudates and the culture medium, respectively. In comparison to untransformed controls, the ability to reduce phenol content in OMW solution was enhanced up to 2.8-fold in transgenic tobacco lines and by up to about 40% in two microalgae accessions. The present work provides new evidence for metabolic improvement of green organisms through the transgenic approach to remediation.

  10. Feed supplemented with polyphenolic byproduct from olive mill wastewater processing improves the redox status in blood and tissues of piglets.

    PubMed

    Gerasopoulos, Konstantinos; Stagos, Dimitrios; Petrotos, Konstantinos; Kokkas, Stylianos; Kantas, Dimitrios; Goulas, Panagiotis; Kouretas, Dimitrios

    2015-12-01

    In the present study, a polyphenolic byproduct from olive mill wastewater (OMWW) was used for making piglet feed with antioxidant activity. For examining the antioxidant capacity of the feed, 30 piglets of 20 d old were divided into two groups receiving basal or experimental feed for 30 d. Blood and tissue samples were drawn at days 2, 20, 35 and 50 post-birth. The tissues collected were brain, heart, kidney, liver, lung, quadriceps muscle, pancreas, spleen and stomach. The antioxidant effects of the experimental feed were assessed by measuring oxidative stress biomarkers in blood and tissues. The oxidative stress markers were total antioxidant capacity (TAC), glutathione (GSH), catalase activity (CAT), protein carbonyls (CARB) and thiobarbituric acid reactive species (TBARS). The results showed that piglets fed with diet supplemented with OMWW polyphenols had significantly increased antioxidant mechanisms in blood and the majority of the tested tissues as shown by increases in TAC, CAT and GSH compared to control group. Moreover, piglets fed with the experimental feed exhibited decreased oxidative stress-induced damage to lipids and proteins as shown by decreases in TBARS and CARB respectively. This is the first study in which OMWW polyphenols were used for making pig feed with antioxidant activity. PMID:26561741

  11. Biological treatment of two-phase olive mill wastewater (TPOMW, alpeorujo): polyhydroxyalkanoates (PHAs) production by Azotobacter strains.

    PubMed

    Cerrone, Federico; Sánchez-Peinado, Maria del Mar; Juárez-Jimenez, Belén; González-López, Jesús; Pozo, Clementina

    2010-03-01

    Azotobacter chroococcum H23 (CECT 4435), Azotobacter vinelandii UWD, and Azotobacter vinelandii (ATCC 12837), members of the family Pseudomonadaceae, were used to evaluate their capacity to grow and accumulate polyhydroxyalkanoates (PHAs) using two-phase olive mill wastewater (TPOMW, alpeorujo) diluted at different concentrations as the sole carbon source. The PHAs amounts (g/l) increased clearly when the TPOMW samples were previously digested under anaerobic conditions. The MNR analysis demonstrated that the bacterial strains formed only homopolymers containing beta-hydroxybutyrate, either when grown in diluted TPOMW medium or diluted anaerobically digested TPOMW medium. COD values of the diluted anaerobically digested waste were measured before and after the aerobic PHA-storing phase, and a clear reduction (72%) was recorded after 72 h of incubation. The results obtained in this study suggest the perspectives for using these bacterial strains to produce PHAs from TPOMW, and in parallel, contribute efficiently to the bioremediation of this waste. This fact seems essential if bioplastics are to become competitive products. PMID:20372033

  12. Comparative study of olive oil mill wastewater treatment using free and immobilized Coriolopsis polyzona and Pycnoporus coccineus.

    PubMed

    Neifar, Mohamed; Jaouani, Atef; Martínez, María Jesús; Penninckx, Michel J

    2012-10-01

    The efficiency of the two white-rot fungi Pycnoporus coccineus and Coriolopsis polyzona in the Olive Oil Mill Wastewater (OOMW) treatment was investigated. Both fungi were active in the decolourisation and COD removal of OOMW at 50 g/L COD, but only the first fungus remains effective on the crude effluent (COD=100 g/L). Moreover P. coccineus was less affected by oxygen supplementation and exhibited a high tolerance to agitation in comparison to C. polyzona. However, it required a nitrogen supplementation to obtain faster and higher COD removal. To overcome the negative effect of agitation on fungi growth and efficiency, immobilisation of C. polyzona and P. coccineus in polyurethane foam was applied. The immobilized system showed better COD decreases during three consecutive batches without remarkable loss of performances. The results obtained in this study suggested that immobilized C. polyzona and especially immobilized P. coccineus might be applicable to a large scale for the removal colour and COD of OOMW. PMID:23124741

  13. Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus.

    PubMed

    Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Antoniou, Theodoros; Merhautová, Věra; Zervakis, Georgios I

    2012-07-01

    Thirty-nine white-rot fungi belonging to nine species of Agaricomycotina (Basidiomycota) were initially screened for their ability to decrease olive-mill wastewater (OMW) phenolics. Four strains of Ganoderma australe, Ganoderma carnosum, Pleurotus eryngii and Pleurotus ostreatus, were selected and further examined for key-aspects of the OMW biodegradation process. Fungal growth in OMW-containing batch cultures resulted in significant decolorization (by 40-46% and 60-65% for Ganoderma and Pleurotus spp. respectively) and reduction of phenolics (by 64-67% and 74-81% for Ganoderma and Pleurotus spp. respectively). COD decrease was less pronounced (12-29%). Cress-seeds germination increased by 30-40% when OMW was treated by Pleurotus strains. Toxicity expressed as inhibition of Aliivibrio fischeri luminescence was reduced in fungal-treated OMW samples by approximately 5-15 times compared to the control. As regards the pertinent enzyme activities, laccase and Mn-independent peroxidase were detected for Ganoderma spp. during the entire incubation period. In contrast, Pleurotus spp. did not exhibit any enzyme activities at early growth stages; instead, high laccase (five times greater than those of Ganoderma spp.) and Mn peroxidases activities were determined at the end of treatment. OMW decolorization by Ganoderma strains was strongly correlated to the reduction of phenolics, whereas P. eryngii laccase activity was correlated with the effluent's decolorization.

  14. Determination of labile copper, cobalt, and chromium in textile mill wastewater

    SciTech Connect

    Crain, J.S.; Essling, A.M.; Kiely, J.T.

    1997-01-01

    Copper, chromium, and cobalt species present in filtered wastewater effluent were separated by cation exchange and reverse phase chromatography. Three sample fractions were obtained: one containing metal cations (i.e., trivalent Cr, divalent Cu, and divalent Co), one containing organic species (including metallized dyes), and one containing other unretained species. The metal content of each fraction was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The sum of the corrected data was compared to the metal content of a filtered effluent aliquot digested totally with fuming sulfuric acid. Other aliquots of the filtered effluent were spiked with the metals of interest and digested to confirm chemical yield and accuracy. Method detection limits were consistently below 20 {mu}g L{sup -1} for Cu, 30 {mu}g L{sup -1} for Co, and 10 {mu}g L{sup -1} for Cr. Spike recoveries for undifferentiated Cu and Cr were statistically indistinguishable from unity; although Co spike recoveries were slightly low ({approximately}95%), its chemical yield was 98%. Copper retention on the sodium sulfonate cation exchange resin was closely correlated with the [EDTA]/[Cu] ratio, suggesting that metals retained upon the cation exchange column were assignable to labile metal species; however, mass balances for all three elements, though reasonable ({approximately}90%), were significantly different from unity. Mechanical factors may have contributed to the material loss, but other data suggest that some metal species reacted irreversibly with the reverse phase column. 3 refs., 2 figs., 4 tabs.

  15. Decolourisation of palm oil mill biogas plant wastewater using Poly-Diallyldimethyl Ammonium Chloride (polyDADMAC) and other chemical coagulants

    NASA Astrophysics Data System (ADS)

    Zahrim, A. Y.; Dexter, Z. D.

    2016-06-01

    Palm oil mill effluent was expected as a future source of renewable biogas. Nevertheless,colours in palm oil mill biogas plant wastewater (POMBPW) causes negative perception among the public and the wastewater is difficult to be treated biologically. In this study, the performance of various chemical coagulants i.e., calcium lactate, magnesium hydroxide, ferric chloride, aluminium chlorohydrate i.e. CK-800, CK-1000, and polyDADMAC, forPOMBPW colour removal were investigated. PolyDADMAC (1,000 mg/L) shows best colour removal (∼48%). The main coagulation process with polyDADMACcould be due to charge neutralization-bridging mechanism. The zeta potential analysis supports the finding where the value became positive as the dosage increases. The addition of polyDADMAC has increased the conductivity of the treated wastewater up to 9.22%; however, the final pH is maintained (8.0-8.3). It can be deduced that polyDADMAC has potential to treat POMBPW at low dosage.

  16. Effects of seasonal olive mill wastewater applications on hydrological and biological soil properties in an olive orchard in Israel

    NASA Astrophysics Data System (ADS)

    Steinmetz, Zacharias; Kurtz, Markus; Peikert, Benjamin; Zipori, Isaac; Dag, Arnon; Schaumann, Gabriele E.

    2014-05-01

    During olive oil production in Mediterranean countries, large amounts of olive mill wastewater (OMW) are generated within a short period of time. OMW has a high nutrient content and could serve as fertilizer when applied on land. However, its fatty and phenolic constituents have adverse effects on hydrological and biological soil properties. It is still unknown how seasonal fluctuations in temperature and precipitation influence the fate and effect of OMW components on soil in a long-term perspective. An appropriate application season could mitigate negative consequences of OMW while preserving its beneficial effects. In order to investigate this, 14 L OMW m-2 were applied to different plots of an olive orchard in Gilat, Israel, in winter, spring, and summer, respectively. Hydrological soil properties (water drop penetration time, hydraulic conductivity, dynamic contact angle), physicochemical parameters (pH, EC, soluble ions, phenolic compounds, organic matter), and biological degradation (bait-lamina test) were measured to assess the soil state after OMW application. After one rainy season following OMW application, the soil quality of summer treatments significantly decreased compared to the control. This was particularly apparent in a ten-fold higher soil water repellency, a three-times lower biodegradation performance, and a four-fold higher content of phenolic compounds. 1.5 years after the last OMW application, the soil properties of winter treatments were comparable to the control, which suggests a certain recovery potential of the soil. Spring treatments resulted in an intermediate response compared to summer and winter treatments, but without any precipitation following OMW application. Strongest OMW effects were found in the top soil layers. Further research is needed to quantify the effect of spring treatments as well as to gain further insight into leaching effects, the composition of organic OMW constituents, and the kinetics of their degradation in

  17. Olive mill wastewater disposal in evaporation ponds in Sfax (Tunisia): moisture content effect on microbiological and physical chemical parameters.

    PubMed

    Jarboui, Raja; Hadrich, Bilel; Gharsallah, Néji; Ammar, Emna

    2009-11-01

    The study of the isotherms desorption of olive mill wastewater (OMW) was investigated to describe its water activity under different saturated environments. The microbial biodegradation of OMW during its storage in 5 evaporation ponds located in Agareb (Sfax-Tunisia) was carried out during the oil-harvesting year held 105 days in 2004. Gravimetric static method using saturated salt solutions was used and OMW as placed at 30 degrees C and under different water activities ranging from 0.11 to 0.90. Eight models were taken from the literature to describe experimental desorption isotherms. During storage, the evolution of physico-chemical parameters including pH, temperature, evaporation, humidity, total phosphorus, chemical oxygen demand (COD), biological oxygen demand (BOD) and phenols and three microbiological flora (aerobic mesophilic bacteria, yeasts and moulds) were considered. At 30 degrees C, when relative humidity increased in the experimented ponds of 69, 84 and 90%, the evaporation speed decreased from 1.24 x 10(-5) to 5 x 10(-6) cm(3) s(-1), from 6 x 10(-5) to 7 x 10(-6) cm(3) s(-1) and from 5 x 10(-6) to 1.1 x 10(-7) cm(3) s(-1) respectively. The desorption isotherm exhibited a sigmoidal curve corresponding to type II, typical of many organic material. The GAB and Peleg models gave the best fit for describing the relationship between the equilibrium moisture content and water activity in OMW (R (2) = 0.998). During the storage period, the analysis showed an increase of all the physico-chemical parameters studied, except phenols and total phosphorus concentrations. The microbiological study showed the predominance of yeasts and moulds and the decrease of bacteria population after 75 days reflecting both effect of recalcitrant compounds and the water activity on microbial growth. PMID:19603274

  18. Thermal pretreatment of olive mill wastewater for efficient methane production: control of aromatic substances degradation by monitoring cyclohexane carboxylic acid.

    PubMed

    Pontoni, Ludovico; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; Pirozzi, Francesco

    2015-01-01

    Anaerobic digestion is investigated as a sustainable depurative strategy of olive oil mill wastewater (OOMW). The effect of thermal pretreatment on the anaerobic biodegradation of aromatic compounds present in (OMWW) was investigated. The anaerobic degradation of phenolic compounds, well known to be the main concern related to this kind of effluents, was monitored in batch anaerobic tests at a laboratory scale on samples pretreated at mild (80±1 °C), intermediate (90±1 °C) and high temperature (120±1 °C). The obtained results showed an increase of 34% in specific methane production (SMP) for OMWW treated at the lowest temperature and a decrease of 18% for treatment at the highest temperature. These results were related to the different decomposition pathways of the lignocellulosic compounds obtained in the tested conditions. The decomposition pathway was determined by measuring the concentrations of volatile organic acids, phenols, and chemical oxygen demand (COD) versus time. Cyclohexane carboxylic acid (CHCA) production was identified in all the tests with a maximum concentration of around 200 µmol L(-1) in accordance with the phenols degradation, suggesting that anaerobic digestion of aromatic compounds follows the benzoyl-CoA pathway. Accurate monitoring of this compound was proposed as the key element to control the process evolution. The total phenols (TP) and total COD removals were, with SMP, the highest (TP 62.7%-COD 63.2%) at 80 °C and lowest (TP 44.9%-COD 32.2%) at 120 °C. In all cases, thermal pretreatment was able to enhance the TP removal ability (up to 42% increase).

  19. Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view.

    PubMed

    Justino, Celine I L; Pereira, Ruth; Freitas, Ana C; Rocha-Santos, Teresa A P; Panteleitchouk, Teresa S L; Duarte, Armando C

    2012-03-01

    The olive oil mill wastewater (OMW) is a problematic and polluting effluent which may degrade the soil and water quality, with critical negative impacts on ecosystems functions and services provided. The main purpose of this review paper is presenting the state of the art of OMW treatments focusing on their efficiency to reduce OMW toxicity, and emphasizing the role of ecotoxicological tests on the evaluation of such efficiency before the up-scale of treatment methodologies being considered. In the majority of research works, the reduction of OMW toxicity is related to the degradation of phenolic compounds (considered as the main responsible for the toxic effects of OMW on seed germination, on bacteria, and on different species of soil and aquatic invertebrates) or the decrease of chemical oxygen demand content, which is not scientifically sound. Batteries of ecotoxicological tests are not applied before and after OMW treatments as they should be, thus leading to knowledge gaps in terms of accurate and real assessment of OMW toxicity. Although the toxicity of OMW is usually high, the evaluation of effects on sub-lethal endpoints, on individual and multispecies test systems, are currently lacking, and the real impacts yielded by its dilution, in freshwater trophic chains of receiving systems can not be assessed. As far as the terrestrial compartment is considered, ecotoxicological data available include tests only with plants and the evaluation of soil microbial parameters, reflecting concerns with the impacts on crops when using OMW for irrigation purposes. The evaluation of its ecotoxicity to other edaphic species were not performed giving rise to a completely lack of knowledge about the consequences of such practice on other soil functions. OMW production is a great environmental problem in Mediterranean countries; hence, engineers, chemists and ecotoxicologists should face this problem together to find an ecologically friend solution. PMID:22042608

  20. Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater.

    PubMed

    Baransi, Katie; Dubowski, Yael; Sabbah, Isam

    2012-03-01

    The photocatalytic degradation of two phenolic compounds, p-coumaric acid and caffeic acid, was performed with a suspended mixture of TiO(2) and powdered activated carbon (PAC) (at pH=3.4 and 8). Adsorption, direct photolysis and photocatalytic degradation were studied under different pH and UV light sources (sunlight vs. 365nm UV lamps). The potential for reusing this catalyst mixture in sequential photocatalytic runs was examined as well. Quantum yields for the direct photolysis of caffeic acid under solar and artificial 365nm light were calculated (for the first time) as 0.005 and 0.011, respectively. A higher removal rate of contaminants by either adsorption or photocatalysis was obtained at a low pH (pH 4). Furthermore, the addition of PAC increased the removal efficiency of the phenolic compounds. Fast removal of the pollutants from the solution over three sequential runs was achieved only when both TiO(2) and PAC were present. This suggests that at medium phenolic concentrations, the presence of PAC as a co-sorbent reduces surface poisoning of the TiO(2) catalyst and hence improves photocatalysis degradation of phenolic pollutants. The adsorption equilibrium of caffeic acid or p-coumaric acid on TiO(2), PAC and the combined mixture of TiO(2) and PAC follows the Langmuir isotherm model. Experiments with PAC TiO(2) mixture and olive mill wastewater (anaerobically treated and diluted by a factor of 10) showed higher removal of polyphenols than of chemical oxygen demand (COD). 87% removal of total polyphenols, compared to 58% of COD, was achieved after 24h of exposure to 365nm irradiation (7.6W/m(2)) in the presence of a suspended mixture of TiO(2) and PAC, indicating "self-selectivity" of polyphenols. PMID:22153960

  1. Thermal pretreatment of olive mill wastewater for efficient methane production: control of aromatic substances degradation by monitoring cyclohexane carboxylic acid.

    PubMed

    Pontoni, Ludovico; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; Pirozzi, Francesco

    2015-01-01

    Anaerobic digestion is investigated as a sustainable depurative strategy of olive oil mill wastewater (OOMW). The effect of thermal pretreatment on the anaerobic biodegradation of aromatic compounds present in (OMWW) was investigated. The anaerobic degradation of phenolic compounds, well known to be the main concern related to this kind of effluents, was monitored in batch anaerobic tests at a laboratory scale on samples pretreated at mild (80±1 °C), intermediate (90±1 °C) and high temperature (120±1 °C). The obtained results showed an increase of 34% in specific methane production (SMP) for OMWW treated at the lowest temperature and a decrease of 18% for treatment at the highest temperature. These results were related to the different decomposition pathways of the lignocellulosic compounds obtained in the tested conditions. The decomposition pathway was determined by measuring the concentrations of volatile organic acids, phenols, and chemical oxygen demand (COD) versus time. Cyclohexane carboxylic acid (CHCA) production was identified in all the tests with a maximum concentration of around 200 µmol L(-1) in accordance with the phenols degradation, suggesting that anaerobic digestion of aromatic compounds follows the benzoyl-CoA pathway. Accurate monitoring of this compound was proposed as the key element to control the process evolution. The total phenols (TP) and total COD removals were, with SMP, the highest (TP 62.7%-COD 63.2%) at 80 °C and lowest (TP 44.9%-COD 32.2%) at 120 °C. In all cases, thermal pretreatment was able to enhance the TP removal ability (up to 42% increase). PMID:25624137

  2. Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater.

    PubMed

    Baransi, Katie; Dubowski, Yael; Sabbah, Isam

    2012-03-01

    The photocatalytic degradation of two phenolic compounds, p-coumaric acid and caffeic acid, was performed with a suspended mixture of TiO(2) and powdered activated carbon (PAC) (at pH=3.4 and 8). Adsorption, direct photolysis and photocatalytic degradation were studied under different pH and UV light sources (sunlight vs. 365nm UV lamps). The potential for reusing this catalyst mixture in sequential photocatalytic runs was examined as well. Quantum yields for the direct photolysis of caffeic acid under solar and artificial 365nm light were calculated (for the first time) as 0.005 and 0.011, respectively. A higher removal rate of contaminants by either adsorption or photocatalysis was obtained at a low pH (pH 4). Furthermore, the addition of PAC increased the removal efficiency of the phenolic compounds. Fast removal of the pollutants from the solution over three sequential runs was achieved only when both TiO(2) and PAC were present. This suggests that at medium phenolic concentrations, the presence of PAC as a co-sorbent reduces surface poisoning of the TiO(2) catalyst and hence improves photocatalysis degradation of phenolic pollutants. The adsorption equilibrium of caffeic acid or p-coumaric acid on TiO(2), PAC and the combined mixture of TiO(2) and PAC follows the Langmuir isotherm model. Experiments with PAC TiO(2) mixture and olive mill wastewater (anaerobically treated and diluted by a factor of 10) showed higher removal of polyphenols than of chemical oxygen demand (COD). 87% removal of total polyphenols, compared to 58% of COD, was achieved after 24h of exposure to 365nm irradiation (7.6W/m(2)) in the presence of a suspended mixture of TiO(2) and PAC, indicating "self-selectivity" of polyphenols.

  3. Effect of shortening kraft pulping integrated with extended oxygen delignification on biorefinery process performance of eucalyptus.

    PubMed

    Li, Jing; Zhang, Chunyun; Hu, Huichao; Chai, Xin-Sheng

    2016-02-01

    The aim of this work was to study the impact of shortening kraft pulping (KP) process integrated with extended oxygen delignification (OD) on the biorefinery process performance of eucalyptus. Data showed that using kraft pulps with high kappa number could improve the delignification efficiency of OD, reduce hexenuronic acid formation in kraft pulps. Pulp viscosity for a target kappa number of ∼10 was comparable to that obtained from conventional KP and OD process. The energy and alkali consumption in the integrated biorefinery process could be optimized when using a KP pulp with kappa number of ∼27. The process could minimize the overall methanol formation, but greater amounts of carbonate and oxalate were formed. The information from this study will be helpful to the future implementation of short-time KP integrated with extended OD process in actual pulp mill applications for biorefinery, aiming at further improvement in the biorefinery effectiveness of hardwood.

  4. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    PubMed

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were

  5. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    PubMed

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were

  6. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.).

    PubMed

    Rusan, Munir J M; Albalasmeh, Ammar A; Zuraiqi, Said; Bashabsheh, Mohammad

    2015-06-01

    Olive-mill wastewater (OMW) is a by-product effluent of olive oil extraction process that is produced in large amount in the Mediterranean region. OMW is believed to induce phytotoxic effect on organisms including seed germination and plant growth. The objective of this study was to evaluate the impact of untreated and treated OMW with different techniques on seed germination of barley (Hordeum vulgare L.). The following treatments were investigated: (1) tap water (control); (2) OMW treated by aerobic biological technology in a Jacto Reactor (JR); (3) OMW treated by solar fenton oxidation (SFO); (4) OMW treated by microfiltration followed by nanofiltration (MF+NF); (5) OMW treated by microfiltration followed by reverse osmosis (MF+RO) process; (6) diluted OMW with tap water (25 % OMW); (7) diluted OMW with tap water (50 % OMW); (8) diluted OMW with tap water (75 % OMW); and (9) untreated OMW (100 % OMW). A germination test was conducted in an incubator at temperature of 23 (∘)C. In each petri dish, a filter paper was mounted and ten seeds of barley were placed on the filter paper. Five milliliter of water were added to each petri dish. The seed germination was determined by counting the number of germinated seeds to calculate the percentage of germination (G %). Germination rate index (GRI), seed vigor index (SVI), and phytotoxicity index (PI) were also calculated. Then, the dry weights and lengths of the shoots and the roots of the germinated seeds were measured. The results show that 100, 75, and 50 %OMW were very phytotoxic and completely prohibited seed germination. However, phytotoxicity decreased significantly following treatments of OMW with all techniques investigated and by the 25 % OMW dilution, as results of removing the phenols and other phytotoxic organic compounds from the OMW or by diluting it. This was evidenced by relative enhancement of the dry weights and lengths of shoot and root as well as the G %, GRI, SVG, and PI. It was concluded that if

  7. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.).

    PubMed

    Rusan, Munir J M; Albalasmeh, Ammar A; Zuraiqi, Said; Bashabsheh, Mohammad

    2015-06-01

    Olive-mill wastewater (OMW) is a by-product effluent of olive oil extraction process that is produced in large amount in the Mediterranean region. OMW is believed to induce phytotoxic effect on organisms including seed germination and plant growth. The objective of this study was to evaluate the impact of untreated and treated OMW with different techniques on seed germination of barley (Hordeum vulgare L.). The following treatments were investigated: (1) tap water (control); (2) OMW treated by aerobic biological technology in a Jacto Reactor (JR); (3) OMW treated by solar fenton oxidation (SFO); (4) OMW treated by microfiltration followed by nanofiltration (MF+NF); (5) OMW treated by microfiltration followed by reverse osmosis (MF+RO) process; (6) diluted OMW with tap water (25 % OMW); (7) diluted OMW with tap water (50 % OMW); (8) diluted OMW with tap water (75 % OMW); and (9) untreated OMW (100 % OMW). A germination test was conducted in an incubator at temperature of 23 (∘)C. In each petri dish, a filter paper was mounted and ten seeds of barley were placed on the filter paper. Five milliliter of water were added to each petri dish. The seed germination was determined by counting the number of germinated seeds to calculate the percentage of germination (G %). Germination rate index (GRI), seed vigor index (SVI), and phytotoxicity index (PI) were also calculated. Then, the dry weights and lengths of the shoots and the roots of the germinated seeds were measured. The results show that 100, 75, and 50 %OMW were very phytotoxic and completely prohibited seed germination. However, phytotoxicity decreased significantly following treatments of OMW with all techniques investigated and by the 25 % OMW dilution, as results of removing the phenols and other phytotoxic organic compounds from the OMW or by diluting it. This was evidenced by relative enhancement of the dry weights and lengths of shoot and root as well as the G %, GRI, SVG, and PI. It was concluded that if

  8. Physical and oxidative stability of functional olive oil-in-water emulsions formulated using olive mill wastewater biophenols and whey proteins.

    PubMed

    Caporaso, Nicola; Genovese, Alessandro; Burke, Róisín; Barry-Ryan, Catherine; Sacchi, Raffaele

    2016-01-01

    The present paper reports on the use of phenolic extracts from olive mill wastewater (OMW) in model olive oil-in-water (O/W) emulsions to study their effect on their physical and chemical stability. Spray-dried OMW polyphenols were added to a model 20% olive O/W emulsion stabilized with whey protein isolate (WPI) and xanthan gum, in phosphate buffer solution at pH 7. The emulsions were characterised under accelerated storage conditions (40 °C) up to 30 days. Physical stability was evaluated by analysing the creaming rate, mean particle size distribution and mean droplet size, viscosity and rheological properties, while chemical stability was assessed through the measurement of primary and secondary oxidation products. The rheological behaviour and creaming stability of the emulsions were dramatically improved by using xanthan gum, whereas the concentration of WPI and the addition of encapsulated OMW phenolics did not result in a significant improvement of physical stability. The formation of oxidation products was higher when higher concentrations of encapsulated polyphenols were used, indicating a possible binding with the WPI added in the system as a natural emulsifier. This paper might help in solving the issue of using the olive mill wastewater from olive processing in formulating functional food products with high antioxidant activity and improved health properties.

  9. [Treatment of dying wastewater from a woolen mill with a pilot-scale anaerobic/oxic membrane bioreactor (A/O MBR)].

    PubMed

    Zheng, X; Zhu, X; Fan, Y

    2001-07-01

    A pilot-scale (10 t/d) anaerobic/oxic membrane bioreactor (A/O MBR) was used for treatment of dying wastewater from a woolen mill. The results showed that when COD, BOD5 and color in the influent was 179-358 mg/L, 44.8-206 mg/L and 50-240 dilution times (DT), the average COD, BOD5 and color of A/O MBR effluent was 20.2 mg/L, 1.6 mg/L, 25 DT respectively. The removal of COD, BOD5, color, turbidity was 92.1%, 98.4%, 60.7% and 98.9% respectively. Each quota of the treated water met the gray water standards (CJ25.1-89). The A/O MBR process has many advantages, such as stable performance, simple operation, easy management etc. The result of this work could be reference for the designing of industrial scale A/O MBR process for treatment of the woolen mill wastewater.

  10. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus.

    PubMed

    Koutrotsios, Georgios; Larou, Evangelia; Mountzouris, Konstantinos C; Zervakis, Georgios I

    2016-09-01

    Environmentally acceptable disposal of olive cultivation residues (e.g., olive prunings; olive pruning residues (OLPR)) and olive mill wastes is of paramount importance since they are generated in huge quantities within a short time. Moreover, olive mill wastewater (OMW) or sludge-like effluents ("alperujo"; two-phase olive mill waste (TPOMW)) are highly biotoxic. Hericium erinaceus is a white-rot fungus which produces choice edible mushrooms on substrates rich in lignocellulosics, and its suitability for the treatment of olive by-products was examined for the first time. Fungal growth resulted in a notable reduction of OMW's pollution parameters (i.e., 65 % decolorization, 47 % total phenolic reduction, and 52 % phytotoxicity decrease) and correlated with laccase and manganese peroxidase activities. Solid-state fermentation of various mixtures of OLPR, TPOMW, and beech sawdust (control) by H. erinaceus qualified OLPR in subsequent cultivation experiments, where it exhibited high mushroom yields and biological efficiency (31 %). Analyses of proximate composition and bioactive compound content revealed that mushrooms deriving from OLPR substrates showed significantly higher crude fat, total glucan, β-glucan, total phenolics, and ferric-reducing antioxidant potential values than the control. H. erinaceus demonstrated the potential to detoxify OMW and bioconvert OLPR into high-quality biomass, and hence, this fungus could be successfully exploited for the treatment of such by-products. PMID:27138726

  11. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus.

    PubMed

    Koutrotsios, Georgios; Larou, Evangelia; Mountzouris, Konstantinos C; Zervakis, Georgios I

    2016-09-01

    Environmentally acceptable disposal of olive cultivation residues (e.g., olive prunings; olive pruning residues (OLPR)) and olive mill wastes is of paramount importance since they are generated in huge quantities within a short time. Moreover, olive mill wastewater (OMW) or sludge-like effluents ("alperujo"; two-phase olive mill waste (TPOMW)) are highly biotoxic. Hericium erinaceus is a white-rot fungus which produces choice edible mushrooms on substrates rich in lignocellulosics, and its suitability for the treatment of olive by-products was examined for the first time. Fungal growth resulted in a notable reduction of OMW's pollution parameters (i.e., 65 % decolorization, 47 % total phenolic reduction, and 52 % phytotoxicity decrease) and correlated with laccase and manganese peroxidase activities. Solid-state fermentation of various mixtures of OLPR, TPOMW, and beech sawdust (control) by H. erinaceus qualified OLPR in subsequent cultivation experiments, where it exhibited high mushroom yields and biological efficiency (31 %). Analyses of proximate composition and bioactive compound content revealed that mushrooms deriving from OLPR substrates showed significantly higher crude fat, total glucan, β-glucan, total phenolics, and ferric-reducing antioxidant potential values than the control. H. erinaceus demonstrated the potential to detoxify OMW and bioconvert OLPR into high-quality biomass, and hence, this fungus could be successfully exploited for the treatment of such by-products.

  12. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    PubMed Central

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-01-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of OMW. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46–51% in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials. PMID:24790964

  13. Preventing Strength Loss of Unbleached Kraft Pulp

    SciTech Connect

    Martin Hubbe; Richard Venditti; John Heitmann

    2003-04-16

    Kraft pulp fibers lose inter-fiber bonding ability when they are dried during the manufacture of paper. Adverse environmental consequences of this loss include (a) limitations on the number of times that kraft fibers can be recycled, (b) reduced paper strength, sometimes making it necessary to use heavier paper or paperboard to meet product strength requirements, increasing the usage of raw materials, (c) decreased rates of paper production in cases where the fiber furnish has been over-refined in an attempt to regain inter-fiber bonding ability. The present study is the first of its type to focus on unbleached kraft fibers, which are a main ingredient of linerboard for corrugated containers. About 90 million tons of unbleached kraft fiber are used worldwide every year for this purpose.

  14. Biological modification of loblolly pine chips with Ceriporiopsis subvermispora prior to kraft pulping

    NASA Astrophysics Data System (ADS)

    Villalba, Laura L.

    The ability of the white-rot fungus Ceriporiopsis subvermispora to selectively degrade lignin in loblolly pine chips and the effect on kraft pulps was investigated. The effect of fungal treatment was assessed by comparing changes in untreated wood chips with chips incubated for two and four weeks. The kraft pulping step included two different cooking times and two levels of chemical dosage as the variables, 16 and 22% for the effective alkali and 60 and 90 min at 170°C. The other cooking variables were kept constant for all the experiments and were: sulfidity, 22%; liquor/wood ratio 4:1; time to Tmax 90 min.; Tmax 170°C. Scanning electron microscopy (SEM) revealed that the colonization introduced significant chemical and physical changes. Pore size distribution analyses revealed a statistically significant increase in the average pore size as fungal treatment progressed. Significant reduction in the extractives content (23%) was found in the first 2 weeks, after which the reduction leveled off. Lignin losses reached 2% in the first 2 weeks of incubation, followed by an 11% loss after 4 weeks of treatment. Lignin phenolic hydroxyl groups increased 14% after 4 weeks of incubation. Fungal treatment caused 4 and 6% carbohydrate loss in 2 and 4 weeks-treated chips, respectively. The selectivity of the fungal treatment was emphasized in the subsequent kraft pulping. The best response regarding improved delignification was found in kraft pulps processed at the mildest pulping conditions without affecting pulp viscosity. Benefits of fungal treatment regarding freeness of kraft pulps were evidenced after 4 weeks of incubation with a maximum of 35% freeness reduction in kraft pulps refined at 12,000 rev in a PFI mill. Strength properties of kraft pulps of fungal treated chips were superior to those of the control. This method involves chemical and physical modification of wood chips using fungi. The approach improved chip impregnation, which in turn, led to more uniform

  15. Changes in the nature of dissolved organics during pulp and paper mill wastewater treatment: a multivariate statistical study combining data from three analytical techniques.

    PubMed

    Plant, Emma L; Smernik, Ronald J; van Leeuwen, John; Greenwood, Paul; Macdonald, Lynne M

    2014-03-01

    The paper-making process can produce large amounts of wastewater (WW) with high particulate and dissolved organic loads. Generally, in developed countries, stringent international regulations for environmental protection require pulp and paper mill WW to be treated to reduce the organic load prior to discharge into the receiving environment. This can be achieved by primary and secondary treatments involving both chemical and biological processes. These processes result in complex changes in the nature of the organic material, as some components are mineralised and others are transformed. In this study, changes in the nature of organics through different stages of secondary treatment of pulp and paper mill WW were followed using three advanced characterisation techniques: solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, pyrolysis-gas chromatography mass spectrometry (py-GCMS) and high-performance size-exclusion chromatography (HPSEC). Each technique provided a different perspective on the changes that occurred. To compare the different chemical perspectives in terms of the degree of similarity/difference between samples, we employed non-metric multidimensional scaling. Results indicate that NMR and HPSEC provided strongly correlated perspectives, with 86 % of the discrimination between the organic samples common to both techniques. Conversely, py-GCMS was found to provide a unique, and thus complementary, perspective.

  16. Performance Modeling and Cost Analysis of a Pilot-Scale Reverse Osmosis Process for the Final Purification of Olive Mill Wastewater

    PubMed Central

    Ochando-Pulido, Javier Miguel; Hodaifa, Gassan; Victor-Ortega, Maria Dolores; Martinez-Ferez, Antonio

    2013-01-01

    A secondary treatment for olive mill wastewater coming from factories working with the two-phase olive oil production process (OMW-2) has been set-up on an industrial scale in an olive oil mill in the premises of Jaén (Spain). The secondary treatment comprises Fenton-like oxidation followed by flocculation-sedimentation and filtration through olive stones. In this work, performance modelization and preliminary cost analysis of a final reverse osmosis (RO) process was examined on pilot scale for ulterior purification of OMW-2 with the goal of closing the loop of the industrial production process. Reduction of concentration polarization on the RO membrane equal to 26.3% was provided upon increment of the turbulence over the membrane to values of Reynolds number equal to 2.6 × 104. Medium operating pressure (25 bar) should be chosen to achieve significant steady state permeate flux (21.1 L h−1 m−2) and minimize membrane fouling, ensuring less than 14.7% flux drop and up to 90% feed recovery. Under these conditions, irreversible fouling below 0.08 L h−2 m−2 bar−1 helped increase the longevity of the membrane and reduce the costs of the treatment. For 10 m3 day−1 OMW-2 on average, 47.4 m2 required membrane area and 0.87 € m−3 total costs for the RO process were estimated. PMID:24957058

  17. Treatment of olive mill wastewater by photooxidation with ZrO2-doped TiO2 nanocomposite and its reuse capability.

    PubMed

    Sponza, Delia Teresa; Oztekin, Rukiye

    2016-01-01

    Zirconium dioxide (zirconia, ZrO2)-doped TiO2 (TiO2/ZrO2) nanocomposite was used for the photocatalytic oxidation of pollutant parameters [COD components (CODtotal, CODdissolved and CODinert)], polyphenols (catechol, 3-hydroxybenzoic acid, tyrosol and 4-hydroxybenzoic acid) and total polyaromatic amines [aniline, 4-nitroaniline, o-toluidine and o-anisidine] from the olive mill effluent wastewaters at different operational conditions such as at different mass ratios of ZrO2 (50, 25, 14, 10 and 5 wt%) in the TiO2/ZrO2 nanocomposite, at different TiO2/ZrO2 photocatalyst concentrations (1, 4, 15 and 50 mg/L) and pH values (4.0-7.0-10.0) under 300 W UV irradiations, respectively. Under the optimized conditions (pH = 4.6, 15 mg/L ZrO2/TiO2 nanocomposite with a ZrO2 mass ratio of 14 wt%, 300 W UV light, after 60 min photooxidation time, at 21°C), the maximum CODdissolved, total phenol and total aromatic amines photooxidation yields were 99%, 89% and 95%, respectively. High pollutant removal (89%) yields after sequential five times utilization of ZrO2/TiO2 nanocomposite show that this catalyst can be effectively used commercially in the treatment of olive mill effluent.

  18. The Effects of Different Irrigation Treatments on Olive Oil Quality and Composition: A Comparative Study between Treated and Olive Mill Wastewater.

    PubMed

    Ben Brahim, Samia; Gargouri, Boutheina; Marrakchi, Fatma; Bouaziz, Mohamed

    2016-02-17

    In the present paper, two irrigation treatments were applied to olive trees cv. Chemlali: irrigation with treated wastewater (TWW) and with olive mill wastewater (OMW), which was spread at three levels (50, 100, and 200 m(3)/ha). This work is interested in two topics: (1) the influence of different irrigation treatments on olive oil composition and quality and (2) the comparison between OMW and TWW application using different statistical analyses. The obtained variance analysis (ANOVA) has confirmed that there are no significant differences in oil quality indices and flavonoids between the control and treatments amended by OMW or TWW (p > 0.05). However, the irrigation affected some aspects of olive oil composition such as the reduction in palmitic acid (16.32%) and increase in linoleic acid (19.55%). Furthermore, the total phenols and α-tocopherol contents increased significantly following OMW and TWW treatments. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) defined three irrigation groups: OMW 50 and 100 m(3)/ha, OMW 200 m(3)/ha and control, and TWW treatment. The full factorial design revealed that OMW amendment by 100 m(3)/ha is the best irrigation treatment. Thus, the optimal performances in terms of olive oil quality and composition were shown by olive oil extracted from olives grown under irrigation with 100 m(3)/ha of OMW.

  19. The combination of coagulation, acid cracking and Fenton-like processes for olive oil mill wastewater treatment: phytotoxicity reduction and biodegradability augmentation.

    PubMed

    Yazdanbakhsh, Ahmadreza; Mehdipour, Fayyaz; Eslami, Akbar; Maleksari, Hajar Sharifi; Ghanbari, Farshid

    2015-01-01

    Olive oil mill wastewater (OOMW) is one of the most important industrial wastewaters in the world due to high organic load and phenolic compounds. In this study, an integration of three processes including coagulation, acid cracking and Fenton-like was evaluated to treat OOMW. The performance of alum, ferric chloride and polyaluminum chloride was studied as coagulants. Among coagulants, ferric chloride showed the best results in comparison with the others. Coagulation process with FeCl3 removed 91.2% chemical oxygen demand (COD), 91.3% phenol, 98.9% total suspended solids and 99.2% turbidity at condition of pH = 6 and 3,000 mg/L coagulant dosage. Acid cracking process following the coagulation process with ferric chloride could slightly degrade organic compounds and provided suitable condition for the next process. Fenton-like process with zero valent iron (ZVI) was applied after coagulation and acid cracking. The optimal removal efficiency was achieved by Fenton-like process which was accomplished in condition of 7 g/L ZVI, 1,000 mg/L H2O2 and 180 min reaction time. The biodegradability of final effluent of this integration was improved significantly and biochemical oxygen demand5/COD value increased from 0.14 to 0.83. The results of germination tests revealed that phytotoxicity of the final effluent decreased. PMID:25860714

  20. Chemical characterization of organic microcontaminant sources and biological effects in riverine sediments impacted by urban sewage and pulp mill discharges.

    PubMed

    Chamorro, S; Hernández, V; Matamoros, V; Domínguez, C; Becerra, J; Vidal, G; Piña, B; Bayona, J M

    2013-01-01

    The Biobío River basin is highly impacted by a variety of anthropogenic activities such as pulp mills and urban wastewaters subjected to different treatment processes. This work assesses for the first time, the contamination source and biological effects (estrogenic and dioxin-like activities) in the river basin by the determination of 45 organic microcontaminants in seven sediment samples. Pressurized solvent extraction combined with two-dimensional comprehensive gas chromatography coupled to time of flight mass spectrometry was employed for this purpose. The organic microcontaminants identified comprise monoterpenes, sesquiterpenes, diterpenes, ionones, lineal alkyl benzenes, polycyclic aromatic hydrocarbons, musk fragrances, sterols and phathalate esters. The presence of pine and eucalyptus pulp mill effluents increased the abundance of resin-derived neutral compounds and monoterpenes respectively. A principal component analysis showed that the Biobío River basin was impacted by domestic wastewater treatment plants (WWTPs), pine or eucalyptus Kraft pulp mills and pyrolytic and pyrogenic processes. Finally, the recombinant yeast assays showed that the presence of estrogenic and dioxin-like activity was mostly located in sediments impacted by domestic WWTP effluents.

  1. The effects of nutrient limitation (nitrogen and phosphorus) on BOD removal from post-coagulated Pinus radiata sulfite pulp and paper mill wastewater in a baffled aerated stabilisation basin-laboratory pilot scale study.

    PubMed

    Dewi, R; Van Leeuwen, J A; Everson, A; Nothrop, S C; Chow, C W K

    2011-01-01

    The use of coagulation and flocculation for tertiary treatment of pulp and paper mill effluent was investigated, where the evaluation was based on the removal of nitrogen (N), phosphorus (P) and BOD from post-coagulated wastewater. The study was undertaken on laboratory scale aerobic stabilisation basins (ASB). Two post coagulated (alum) wastewaters were studied, where the BOD:N:P ratios were 100:1.3:0.06 and 100:1.3:0.3. These wastewaters were treated in two identical concurrent simulations (A & B). The influent ratio for 'A' was selected representing the composition of actual coagulated Pinus radiata sulfite pulp effluent mixed with paper mill effluent. The input composition for 'B' represented a typical P concentration found in existing pulp and paper mill effluents. Unmodified sludge collected from a mill-pond was added at 4% v/v to each simulation replicating the treatment conditions at full-scale. Similar high percentage removals of BOD and COD occurred after 28 days (two HRTs) which were 94 and 67% respectively for 'A', and 98 and 70% respectively for 'B', where both remained at steady state during the third HRT. A statistical analysis of the data revealed that there was no significant difference in the sample variance of the BOD and COD results.

  2. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    SciTech Connect

    Singbeil, D.L.; Prescott, R.; Keiser, J.R.; Swindeman, R.W.

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  3. ASSESSMENT OF IN VITRO ANDROGENIC ACTIVITY IN KRAFT MILL EFFLUENT

    EPA Science Inventory

    Detection of In Vitro Androgenic Activity in Feedlot Effluent. Lambright, CS 1 , Guillette, LJ, Jr.2, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville FL

    Recent studies have shown the presence of androgenic activity in water...

  4. IN VITRO ANDROGENIC ACTIVITY OF KRAFT MILL EFFLUENT

    EPA Science Inventory

    In: Environmental Sciences in the 21st Century: Paradigms, Opportunities, and Challenges: Abstract Book: SETAC 21st Annual Meeting, 12-16 November 2000, Nashville, TN. Society of Environmental Toxicology and Chemistry, Pensacola, FL. Pp. 102.

    Female mosquito fish (Gambusia...

  5. 78 FR 38877 - Kraft Pulp Mills NSPS Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    .... World Wide Web. The EPA Web site containing information for this rulemaking is: http://www.epa.gov/ttn... the proposed rule published May 23, 2013 (78 FR 31315), is being extended by 15 days to July 23, 2013... mail, by facsimile or through hand delivery/courier. Please refer to the proposal (78 FR 31315) for...

  6. Evaluation of the suitability of low hazard surfactants for the separation of phenols and carotenoids from red-flesh orange juice and olive mill wastewater using cloud point extraction.

    PubMed

    Katsoyannos, Evagelos; Gortzi, Olga; Chatzilazarou, Arhontoula; Athanasiadis, Vasilios; Tsaknis, John; Lalas, Stavros

    2012-10-01

    Natural antioxidants derived from plant sources attract considerable scientific interest. While classic extraction methods consume high volumes of toxic organic solvents, cloud point extraction requires surfactant not exceeding 15% of the waste volume. In preliminary tests, the suitability of various low hazard surfactants (Span 20, PEG 400, Tween 80 and 20) was explored for separation of phenols and carotenoids from olive mill wastewater and red-flesh orange juice. Tween 80 showed the highest recovery and further applied to the next experiments. The most appropriate surfactant concentrations were 5% (for olive mill wastewater) and 7% (for orange juice) as indicated by recovery % and the rest cloud point extraction parameters (analyte concentration, concentration factor, and phase volume ratio). A double step CPE with 5% + 5% of Tween 80 recovered up to 94.4% of the total phenols from olive mill wastewater, while a 7% + 7% of Tween 80 recovered up to 72.4% of the total carotenoids from orange juice. Evaluation of the final effects and extraction efficiency of single and double step cloud point extraction shows that double step scheme seems to be preferable in both cases. Finally, phenols and carotenoids recovered by Tween 80 maintained high antiradical activity (DPPH test).

  7. Evaluation of the suitability of low hazard surfactants for the separation of phenols and carotenoids from red-flesh orange juice and olive mill wastewater using cloud point extraction.

    PubMed

    Katsoyannos, Evagelos; Gortzi, Olga; Chatzilazarou, Arhontoula; Athanasiadis, Vasilios; Tsaknis, John; Lalas, Stavros

    2012-10-01

    Natural antioxidants derived from plant sources attract considerable scientific interest. While classic extraction methods consume high volumes of toxic organic solvents, cloud point extraction requires surfactant not exceeding 15% of the waste volume. In preliminary tests, the suitability of various low hazard surfactants (Span 20, PEG 400, Tween 80 and 20) was explored for separation of phenols and carotenoids from olive mill wastewater and red-flesh orange juice. Tween 80 showed the highest recovery and further applied to the next experiments. The most appropriate surfactant concentrations were 5% (for olive mill wastewater) and 7% (for orange juice) as indicated by recovery % and the rest cloud point extraction parameters (analyte concentration, concentration factor, and phase volume ratio). A double step CPE with 5% + 5% of Tween 80 recovered up to 94.4% of the total phenols from olive mill wastewater, while a 7% + 7% of Tween 80 recovered up to 72.4% of the total carotenoids from orange juice. Evaluation of the final effects and extraction efficiency of single and double step cloud point extraction shows that double step scheme seems to be preferable in both cases. Finally, phenols and carotenoids recovered by Tween 80 maintained high antiradical activity (DPPH test). PMID:22887931

  8. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system.

    PubMed

    Ntaikou, I; Valencia Peroni, C; Kourmentza, C; Ilieva, V I; Morelli, A; Chiellini, E; Lyberatos, G

    2014-10-20

    The operational efficiency of a two stage pilot scale system for polyhydroxyalkanoates (PHAs) production from three phase olive oil mill wastewater (OMW) was investigated in this study. A mixed anaerobic, acidogenic culture derived from a municipal wastewater treatment plant, was used in the first stage, aiming to the acidification of OMW. The effluent of the first bioreactor that was operated in continuous mode, was collected in a sedimentation tank in which partial removal of the suspended solids was taking place, and was then forwarded to an aerobic reactor, operated in sequential batch mode under nutrient limitation. In the second stage an enriched culture of Pseudomonas sp. was used as initial inoculum for the production of PHAs from the acidified waste. Clarification of the acidified waste, using aluminium sulphate which causes flocculation and precipitation of solids, was also performed, and its effect on the composition of the acidified waste as well as on the yields and properties of PHAs was investigated. It was shown that clarification had no significant qualitative or quantitative effect on the primary carbon sources, i.e. short chain fatty acids and residual sugars, but only on the values of total suspended solids and total chemical oxygen demand of the acidified waste. The type and thermal characteristics of the produced PHAs were also similar for both types of feed. However the clarification of the waste seemed to have a positive impact on final PHAs yield, measured as gPHAs/100g of VSS, which reached up to 25%. Analysis of the final products via nuclear magnetic resonance spectroscopy revealed the existence of 3-hydroxybutyrate (3HB) and 3-hydroxyoctanoate (HO) units, leading to the conclusion that the polymer could be either a blend of P3HB and P3HO homopolymers or/and the 3HB-co-3HO co-polymer, an unusual polymer occurring in nature with advanced properties.

  9. Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process.

    PubMed

    Aggelis, G; Iconomou, D; Christou, M; Bokas, D; Kotzailias, S; Christou, G; Tsagou, V; Papanikolaou, S

    2003-09-01

    Pleurotus ostreatus grown in bioreactor batch cultures in a model phenolic wastewater (diluted and sterilized olive oil mill wastewater-OMW), caused significant phenolic removal. Laccase, the sole ligninolytic enzyme detected in the growth environment, was produced during primary metabolic growth. The bioprocess was simulated with the aid of a mathematical model and the parameters of growth were determined. When the fungal biomass was increased in the reactor (during repeated batch experiments) the rate of reducing sugars consumption progressively increased, but a phenolic fraction seemed of being strongly resistant to oxidation. The toxicity of OMW against the seeds of Lepidium sativum and the marine Branchiopoda Artemia sp. was significantly decreased after biotreatment. On the contrary, the toxicity against the freshwater Branchiopoda Daphnia magna was not affected by the treatment, whereas on the soil and freshwater sediments Ostracoda Heterocypris incongruens was slightly decreased. Both treated and untreated OMWs, used as water for irrigation of lettuce and tomato plants, did not significantly affect the uptake of several nutrients by the cultivated plants, but resulted in a decrease in the plant yields, which was minimized when high OMW dilutions were used. As a conclusion, P. ostreatus is able to reduce phenolic content and toxicity of sterilized OMW, in bioreactor cultures. However, high OMW dilutions should be used, and/or additional treatment should be applied before use of the OMW in the environment, e.g. as water for irrigation. Further research should be done in order to transfer this technology under industrial conditions (e.g. by using unsterilized OMW). PMID:12909108

  10. Kinetics of pulp mill effluent treatment by ozone-based processes.

    PubMed

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-09-15

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  11. Vermiconversion of wastewater sludge from textile mill mixed with anaerobically digested biogas plant slurry employing Eisenia foetida.

    PubMed

    Garg, V K; Kaushik, Priya; Dilbaghi, Neeraj

    2006-11-01

    Vermicomposting is commonly used for the management of organic wastes. We have investigated the potential of an epigeic earthworm, Eisenia foetida, to transform solid textile mill sludge (STMS) spiked with anaerobically digested biogas plant slurry (BPS) into vermicompost to evaluate the feasibility of vermicomposting in industries for waste management. The growth and reproduction of E. foetida was monitored in a range of different feed mixtures for 15 weeks in laboratory under controlled experimental conditions. E. foetida did not survive in fresh STMS. But worms grew and reproduced in STMS spiked with BPS feed mixtures. A greater percentage of STMS in feed mixture affected biomass gain and cocoon production by earthworms. The maximum growth was recorded in 100% BPS. The net weight gain by E. foetida in 100% BPS was two-four-fold higher than STMS-containing feed mixtures. After 15 weeks, maximum cocoons (78) were counted in 100% BPS and minimum (26) in 60% BPS+40% STMS feed. Vermicomposting resulted in pH shift toward acidic, significant reduction in C:N ratio, and increase in nitrogen, phosphorus, and potassium contents. Microbial activity measured as dehydrogenase activity increased with time up to day 75 but decreased on day 90, indicating the exhaustion of feed and decrease in microbial activity. These experiments demonstrate that vermicomposting can be an alternate technology for the recycling and environmentally safe disposal/management of textile mill sludge using an epigeic earthworm, E. foetida, if mixed with anaerobically digested BPS in appropriate ratios.

  12. Olive-oil mill wastewater transport under unsaturated and saturated laboratory conditions using the geoelectrical resistivity tomography method and the FEFLOW model

    NASA Astrophysics Data System (ADS)

    Seferou, P.; Soupios, P.; Kourgialas, N. N.; Dokou, Z.; Karatzas, G. P.; Candasayar, E.; Papadopoulos, N.; Dimitriou, V.; Sarris, A.; Sauter, M.

    2013-09-01

    An integrated approach for monitoring the vertical transport of a solute into the subsurface by using a geophysical method and a simulation model is proposed and evaluated. A medium-scale (1 m3) laboratory tank experiment was constructed to represent a real subsurface system, where an olive-oil mill wastewater (OOMW) spill might occur. High-resolution cross-hole electrical resistivity tomography (ERT) was performed to monitor the OOMW transport. Time-lapse ERT images defined the spatial geometry of the interface between the contaminated and uncontaminated soil into the unsaturated and saturated zones. Knowing the subsurface characteristics, the finite element flow and transport model FEFLOW was used for simulating the contaminant movement, utilizing the ERT results as a surrogate for concentration measurements for the calibration process. A statistical analysis of the ERT measurements and the corresponding transport model results for various time steps showed a good agreement between them. In addition, a sensitivity analysis of the most important parameters of the simulation model (unsaturated flow, saturated flow and transport) was performed. This laboratory-scale study emphasizes that the combined use of geophysical and transport-modeling approaches can be useful for small-scale field applications where contaminant concentration measurements are scarce, provided that its transferability from laboratory to field conditions is investigated thoroughly.

  13. Dephenolization of stored olive-mill wastewater, using four different adsorbing matrices to attain a low-cost feedstock for hydrogen photo-production.

    PubMed

    Padovani, Giulia; Pintucci, Cristina; Carlozzi, Pietro

    2013-06-01

    This investigation deals with the conversion of olive-mill wastewater (OMW) into several feedstocks suitable for hydrogen photo-production. The goal was reached by means of two sequential steps: (i) a pre-treatment process of stored-OMW for the removal of polyphenols, which made it possible to obtain several effluents, and (ii) a photo-fermentative process for hydrogen production by means of Rhodopseudomonas palustris sp. Four different adsorbent matrices (Azolla, granular active carbon, resin, and zeolite) were used to dephenolize stored-OMW. The four liquid fractions attained by using the above process created the same number of effluents, and these were diluted with water and then used for hydrogen photo-production. The maximum hydrogen production rate (14.31 mL/L/h) was attained with the photo-fermenter containing 25% of the effluent, which came from the pre-treatment of stored-OMW using granular active carbon. Using the carbon effluent as feedstock, the greatest light conversion efficiency of 2.29% was achieved. PMID:23612177

  14. Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion.

    PubMed

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2008-03-01

    Liquid-liquid extraction was used in order to recover phenolic compounds from centrifuged olive mill wastewater (OMW), a polluting by-product of olive oil production process, and to reduce their toxicity for a subsequent aerobic or anaerobic digestion. Phenolic compounds were identified in untreated and treated OMW by gas chromatography coupled to mass spectrometry (GC-MS). The experimental results of ethyl acetate extraction showed that the monomers recovery efficiency was over 90%. This pre-treatment resulted in the removal of the major LMM phenolic compounds and a small part of HMM polyphenols. The aerobic treatment of the exhausted OMW fraction removed 78.7% of the soluble COD. In the case of anaerobic digestion at OLR ranged from 1 to 3.5 gCOD l(-1)day(-1), methanisation process exhibited high methane yield as 0.3 l CH4 produced per g COD introduced and high COD removal (80%). However, a disruption of the process was observed when the OLR was increased to 4.5 gCODl(-1)day(-1). A pre-treatment by electro-coagulation resulted in decreasing the toxicity and enhancing the performance of methanisation operated at higher OLR from 4 to 7.5 gCODl(-1)day(-1). PMID:17629620

  15. A yearly spraying of olive mill wastewater on agricultural soil over six successive years: impact of different application rates on olive production, phenolic compounds, phytotoxicity and microbial counts.

    PubMed

    Magdich, Salwa; Jarboui, Raja; Rouina, Béchir Ben; Boukhris, Makki; Ammar, Emna

    2012-07-15

    Olive mill wastewater (OMW) spraying effects onto olive-tree fields were investigated. Three OMW levels (50, 100 and 200 m(3)ha(-1)year(-1)) were applied over six successive years. Olive-crop yields, phenolic compounds progress, phytotoxicity and microbial counts were studied at different soil depths. Olive yield showed improvements with OMW level applied. Soil polyphenolic content increased progressively in relation to OMW levels in all the investigated layers. However, no significant difference was noted in lowest treatment rate compared to the control field. In the soil upper-layers (0-40 cm), five phenolic compounds were identified over six consecutive years of OMW-spraying. In all the soil-layers, the radish germination index exceeded 85%. However, tomato germination test values decreased with the applied OMW amount. For all treatments, microbial counts increased with OMW quantities and spraying frequency. Matrix correlation showed a strong relationship between soil polyphenol content and microorganisms, and a negative one to tomato germination index.

  16. Olive mill wastewater biodegradation potential of white-rot fungi--Mode of action of fungal culture extracts and effects of ligninolytic enzymes.

    PubMed

    Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Merhautová, Věra; Zervakis, Georgios I

    2015-01-01

    Forty-nine white-rot strains belonging to 38 species of Basidiomycota were evaluated for olive-mill wastewater (OMW) degradation. Almost all fungi caused high total phenolics (>60%) and color (⩽ 70%) reduction, while COD and phytotoxicity decreased to a lesser extent. Culture extracts from selected Agrocybe cylindracea, Inonotus andersonii, Pleurotus ostreatus and Trametes versicolor strains showed non-altered physicochemical and enzymatic activity profiles when applied to raw OMW in the presence or absence of commercial catalase, indicating no interaction of the latter with fungal enzymes and no competition for H2O2. Hydrogen peroxide's addition resulted in drastic OMW's decolorization, with no effect on phenolic content, suggesting that oxidation affects colored components, but not necessarily phenolics. When fungal extracts were heat-treated, no phenolics decrease was observed demonstrating thus their enzymatic rather than physicochemical oxidation. Laccases added to OMW were reversibly inhibited by the effluent's high phenolic load, while peroxidases were stable and active during the entire process. PMID:25879179

  17. Antioxidant activity of oregano, parsley, and olive mill wastewaters in bulk oils and oil-in-water emulsions enriched in fish oil.

    PubMed

    Jimenez-Alvarez, D; Giuffrida, F; Golay, P A; Cotting, C; Lardeau, A; Keely, Brendan J

    2008-08-27

    The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p < 0.05), OMWW > oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products.

  18. Effect of the organic loading rate on the production of polyhydroxyalkanoates in a multi-stage process aimed at the valorization of olive oil mill wastewater.

    PubMed

    Campanari, Sabrina; e Silva, Francisca A; Bertin, Lorenzo; Villano, Marianna; Majone, Mauro

    2014-11-01

    Mixed microbial culture polyhydroxyalkanoates (PHA) production has been investigated by using olive oil mill wastewater (OMW) as no-cost feedstock in a multi-stage process, also involving phenols removal and recovery. The selection of PHA-storing microorganisms occurred in a sequencing batch reactor (SBR), fed with dephenolized and fermented OMW and operated at different organic loading rates (OLR), ranging from 2.40 to 8.40gCOD/Ld. The optimal operating condition was observed at an OLR of 4.70gCOD/Ld, which showed the highest values of storage rate and yield (339±48mgCOD/gCODh and 0.56±0.05 COD/COD, respectively). The OLR applied to the SBR largely affected the performance of the PHA-accumulating reactor, which was fed through multiple pulsed additions of pretreated OMW. From an overall mass balance, involving all the stages of the process, an abatement of about 85% of the OMW initial COD (chemical oxygen demand) was estimated whereas the conversion of the influent COD into PHA was about 10% (or 22% by taking into account only the COD contained in the pretreated OMW, which is directly fed to the PHA production stages). Overall, polymer volumetric productivity (calculated from the combination of both the SBR and the accumulation reactor) accounted for 1.50gPHA/Ld.

  19. Antioxidant activity of oregano, parsley, and olive mill wastewaters in bulk oils and oil-in-water emulsions enriched in fish oil.

    PubMed

    Jimenez-Alvarez, D; Giuffrida, F; Golay, P A; Cotting, C; Lardeau, A; Keely, Brendan J

    2008-08-27

    The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p < 0.05), OMWW > oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products. PMID:18636737

  20. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Colantuono, Antonio; Kokkinidou, Smaro; Peterson, Devin G; Fogliano, Vincenzo

    2014-10-15

    Thermal processing and Maillard reaction (MR) affect the nutritional and sensorial qualities of milk. In this paper an olive mill wastewater phenolic powder (OMW) was tested as a functional ingredient for inhibiting MR development in ultrahigh-temperature (UHT)-treated milk. OMW was added to milk at 0.1 and 0.05% w/v before UHT treatment, and the concentration of MR products was monitored to verify the effect of OMW phenols in controlling the MR. Results revealed that OMW is able to trap the reactive carbonyl species such as hydroxycarbonyls and dicarbonyls, which in turn led to the increase of Maillard-derived off-flavor development. The effect of OMW on the formation of Amadori products and N-ε-(carboxymethyl)-lysine (CML) showed that oxidative cleavage, C2-C6 cyclization, and the consequent reactive carbonyl species formation were also inhibited by OMW. Data indicated that OMW is a functional ingredient able to control the MR and to improve the nutritional and sensorial attributes of milk.

  1. Physicochemical analysis and adequation of olive oil mill wastewater after advanced oxidation process for reclamation by pressure-driven membrane technology.

    PubMed

    Ochando-Pulido, Javier Miguel; Victor-Ortega, Maria Dolores; Hodaifa, Gassan; Martinez-Ferez, Antonio

    2015-01-15

    Physicochemical characterization of olive mill wastewaters (OMW) was studied after a primary and secondary treatment was implemented in an olive oil factory in Jaén (Spain), comprising natural precipitation, Fenton-like reaction, flocculation-sedimentation and olive stone filtration in series. The application of membrane technology in improving the quality of the secondary-treated OMW (OMW/ST) was examined, to reduce the hazardous electroconductivity (EC) values (2-3 mS cm(-1)). Particle size distribution on OMW/ST shows supra-micron colloids and suspended solids as well as sub-micron particles with a mean size below 1.5 μm remaining in considerable concentration. The high organic pollutants percentage (31.7%) registered with an average diameter below 3 kDa is sensibly relevant for membrane fouling. Mesophilic aerobic bacteria growth warns of possible membrane biofouling formation. The saturation index indicates to work upon recovery factor below 90%. Finally, operating at a pressure equal to 15 bar ensured low fouling and high flux production on the selected NF membrane (69.9 L h(-1)m(-2)) and significant rejection efficiencies (55.5% and 88.5% for EC and COD). This permits obtaining an effluent with good quality according to the recommendations of the Food and Agricultural Association (FAO) with the goal of reusing the regenerated water for irrigation.

  2. Olive mill wastewater biodegradation potential of white-rot fungi--Mode of action of fungal culture extracts and effects of ligninolytic enzymes.

    PubMed

    Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Merhautová, Věra; Zervakis, Georgios I

    2015-01-01

    Forty-nine white-rot strains belonging to 38 species of Basidiomycota were evaluated for olive-mill wastewater (OMW) degradation. Almost all fungi caused high total phenolics (>60%) and color (⩽ 70%) reduction, while COD and phytotoxicity decreased to a lesser extent. Culture extracts from selected Agrocybe cylindracea, Inonotus andersonii, Pleurotus ostreatus and Trametes versicolor strains showed non-altered physicochemical and enzymatic activity profiles when applied to raw OMW in the presence or absence of commercial catalase, indicating no interaction of the latter with fungal enzymes and no competition for H2O2. Hydrogen peroxide's addition resulted in drastic OMW's decolorization, with no effect on phenolic content, suggesting that oxidation affects colored components, but not necessarily phenolics. When fungal extracts were heat-treated, no phenolics decrease was observed demonstrating thus their enzymatic rather than physicochemical oxidation. Laccases added to OMW were reversibly inhibited by the effluent's high phenolic load, while peroxidases were stable and active during the entire process.

  3. Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion.

    PubMed

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2008-03-01

    Liquid-liquid extraction was used in order to recover phenolic compounds from centrifuged olive mill wastewater (OMW), a polluting by-product of olive oil production process, and to reduce their toxicity for a subsequent aerobic or anaerobic digestion. Phenolic compounds were identified in untreated and treated OMW by gas chromatography coupled to mass spectrometry (GC-MS). The experimental results of ethyl acetate extraction showed that the monomers recovery efficiency was over 90%. This pre-treatment resulted in the removal of the major LMM phenolic compounds and a small part of HMM polyphenols. The aerobic treatment of the exhausted OMW fraction removed 78.7% of the soluble COD. In the case of anaerobic digestion at OLR ranged from 1 to 3.5 gCOD l(-1)day(-1), methanisation process exhibited high methane yield as 0.3 l CH4 produced per g COD introduced and high COD removal (80%). However, a disruption of the process was observed when the OLR was increased to 4.5 gCODl(-1)day(-1). A pre-treatment by electro-coagulation resulted in decreasing the toxicity and enhancing the performance of methanisation operated at higher OLR from 4 to 7.5 gCODl(-1)day(-1).

  4. Decolorization of kraft bleaching effluent by advanced oxidation processes using copper (II) as electron acceptor.

    PubMed

    Yeber, María C; Oñate, Katherine P; Vidal, Gladys

    2007-04-01

    Two advanced oxidation processes (AOPs), TiO2/UV/O2 and TiO2/UV/Cu (II), were used to remove color from a Kraft bleaching effluent. The optimal decoloration rate was determined by multivariate analysis, obtaining a mathematical model to evaluate the effect among variables. TiO2 and Cu (II) concentrations and the reaction times were optimized. The experimental design resulted in a quadratic matrix of 30 experiments. Additionally, the pH influence on the color removal was determined by multivariate analysis. Results indicate that color removal was 94% at acidic pH (3.0) in the presence of Cu (11) as an electron acceptor. Under this condition, the biodegradation of the effluent increased from 0.3 to 0.6. Moreover, 70% of COD (chemical oxygen demand) was removed, and the ecotoxicity, measured by Daphnia magna, was reduced. Photocatalytic oxidation to remove the color contained in the Kraft mill bleaching effluent was effective under the following conditions: short reaction time, acidic pH values, and without the addition of oxygen due to the presence of Cu (II) in the effluent. Moreover, residual Cu (II) was a minimum (0.05.mg L(-1)) and was not toxic to the next biological stage. The experimental design methodology indicated that a quadratic polynomial model may be used to representthe efficiencyfor degradation of the Kraft bleach pulp effluent by a photocatalytic process. PMID:17438808

  5. Decolorization of kraft bleaching effluent by advanced oxidation processes using copper (II) as electron acceptor.

    PubMed

    Yeber, María C; Oñate, Katherine P; Vidal, Gladys

    2007-04-01

    Two advanced oxidation processes (AOPs), TiO2/UV/O2 and TiO2/UV/Cu (II), were used to remove color from a Kraft bleaching effluent. The optimal decoloration rate was determined by multivariate analysis, obtaining a mathematical model to evaluate the effect among variables. TiO2 and Cu (II) concentrations and the reaction times were optimized. The experimental design resulted in a quadratic matrix of 30 experiments. Additionally, the pH influence on the color removal was determined by multivariate analysis. Results indicate that color removal was 94% at acidic pH (3.0) in the presence of Cu (11) as an electron acceptor. Under this condition, the biodegradation of the effluent increased from 0.3 to 0.6. Moreover, 70% of COD (chemical oxygen demand) was removed, and the ecotoxicity, measured by Daphnia magna, was reduced. Photocatalytic oxidation to remove the color contained in the Kraft mill bleaching effluent was effective under the following conditions: short reaction time, acidic pH values, and without the addition of oxygen due to the presence of Cu (II) in the effluent. Moreover, residual Cu (II) was a minimum (0.05.mg L(-1)) and was not toxic to the next biological stage. The experimental design methodology indicated that a quadratic polynomial model may be used to representthe efficiencyfor degradation of the Kraft bleach pulp effluent by a photocatalytic process.

  6. Lab scale experiments using a submerged MBR under thermophilic aerobic conditions for the treatment of paper mill deinking wastewater.

    PubMed

    Simstich, Benjamin; Beimfohr, Claudia; Horn, Harald

    2012-10-01

    This paper describes the results of laboratory experiments using a thermophilic aerobic MBR (TMBR) at 50 °C. An innovative use of submerged flat-sheet MBR modules to treat circuit wastewater from the paper industry was studied. Two experiments were conducted with a flux of 8-13 L/m(2)/h without chemical membrane cleaning. COD and BOD(5) elimination rates were 83% and 99%, respectively. Calcium was reduced from 110 to 180 mg/L in the inflow to 35-60 mg/L in the permeate. However, only negligible membrane scaling occurred. The observed sludge yield was very low and amounted to 0.07-0.29 g MLSS/g COD(eliminated). Consequently, the nutrient supply of ammonia and phosphate can be lower compared to a mesophilic process. Molecular-biological FISH analysis revealed a likewise high diversity of microorganisms in the TMBR compared to the mesophilic sludge used for start-up. Furthermore, ammonia-oxidising bacteria were detected at thermophilic operation. PMID:22595101

  7. Effect of Olive mill wastewater spreading on soil wettability and acidity under different season in a semi humid area: A field study in Bait Reema - West Bank - Palestine

    NASA Astrophysics Data System (ADS)

    Tamimi, Nesreen; Marei Sawalha, Amer; Schaumann, Gabriele E.

    2014-05-01

    Olive mill wastewater (OMW) is generated seasonally in large amounts during the olive oil production in Palestine, and it is often disposal of in uncontrolled manner into the open environment. OMW has a high amount of phototoxic compounds, high salinity and acidity and therefore is challenging when disposed on soil. The objective of this study was to study the persistence and degree of water repellency during different season of OMW application in soil samples (0-5 cm deep), and to elucidate how extent this phenomenon is associated with soil acidity, to analyze the relationships between soil water repellency and environmental factors including, temperature and moisture and to describe the seasonal variation in the phenol concentration of the soil. In order to understand how climatic conditions at the time of OMW disposal affect the development of soil water repelleny in field, soil acidity and phenol content in soil, we conducted a field study in Bait Reema village in the West Bank - Palestine. The study site is characterized by 1.5 m thick brown rendzina and has an annual average rainfall of 550 mm. On an extensively used olive orchard field, we implemented 16 plots (2.5 x 3.5 m). OMW application (14 L / m2) was conducted either in winter, spring or summer on two replicate plots distributed randomly among the 16 plots. To test the effect of soil moisture on the persistence of OMW effects, we implemented an OMW application in summer on two additional plots, but kept those plots moist before and after OMW application until start of the rain season. For each of the treatment variants, we implemented two control plots which were treated in the same way as their counterparts, but with tap water. Soil samples (0-5 cm) were collected after 2 days, 3 weeks, 6 weeks, 3 months, 6 months , 9 months, 12 months , and 18 months. pH was determined and analyzed in aqueous soil extracts (1:5), the total phenol content was determined by using Folin-Ciocalteu's reagent, soil water

  8. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity.

    PubMed

    Hachicha, Ridha; Rekik, Olfa; Hachicha, Salma; Ferchichi, Mounir; Woodward, Steve; Moncef, Nasri; Cegarra, Juan; Mechichi, Tahar

    2012-07-01

    The co-composting of spent coffee grounds, olive mill wastewater sludge and poultry manure was investigated on a semi-industrial scale. In order to reduce the toxicity of the phenolic fraction and to improve the degree of composting humification, composts were inoculated with the white-rot fungus Trametes versicolor in the early stages of the maturation phase. During composting, a range of physico-chemical parameters (temperature and both organic matter and C/N reduction), total organic carbon, total nitrogen, elemental composition, lignin degradation and spectroscopic characteristics of the humic acids (HAs) were determined; impacts of the composting process on germination index of Hordeum vulgare and Lactuca sativa were assessed. The coffee waste proved to be a highly compostable feedstock, resulting in mature final compost with a germination index of 120% in less than 5 months composting. In addition, inoculation with T. versicolor led to a greater degree of aromatization of HA than in the control pile. Moreover, in the inoculated mixture, lignin degradation was three times greater and HA increased by 30% (P<0.05), compared to the control pile. In the T. versicolor inoculated mixture, the averages of C and N were significantly enhanced in the HA molecules (P<0.05), by 26% and 22%, respectively. This improvement in the degree of humification was confirmed by the ratio of optical densities of HA solutions at 465 and 665 nm which was lower for HA from the treated mixture (4.5) than that from the control pile (5.4).

  9. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity.

    PubMed

    Hachicha, Ridha; Rekik, Olfa; Hachicha, Salma; Ferchichi, Mounir; Woodward, Steve; Moncef, Nasri; Cegarra, Juan; Mechichi, Tahar

    2012-07-01

    The co-composting of spent coffee grounds, olive mill wastewater sludge and poultry manure was investigated on a semi-industrial scale. In order to reduce the toxicity of the phenolic fraction and to improve the degree of composting humification, composts were inoculated with the white-rot fungus Trametes versicolor in the early stages of the maturation phase. During composting, a range of physico-chemical parameters (temperature and both organic matter and C/N reduction), total organic carbon, total nitrogen, elemental composition, lignin degradation and spectroscopic characteristics of the humic acids (HAs) were determined; impacts of the composting process on germination index of Hordeum vulgare and Lactuca sativa were assessed. The coffee waste proved to be a highly compostable feedstock, resulting in mature final compost with a germination index of 120% in less than 5 months composting. In addition, inoculation with T. versicolor led to a greater degree of aromatization of HA than in the control pile. Moreover, in the inoculated mixture, lignin degradation was three times greater and HA increased by 30% (P<0.05), compared to the control pile. In the T. versicolor inoculated mixture, the averages of C and N were significantly enhanced in the HA molecules (P<0.05), by 26% and 22%, respectively. This improvement in the degree of humification was confirmed by the ratio of optical densities of HA solutions at 465 and 665 nm which was lower for HA from the treated mixture (4.5) than that from the control pile (5.4). PMID:22537889

  10. Investigation of olive mill wastewater (OMW) ozonation efficiency with the use of a battery of selected ecotoxicity and human toxicity assays.

    PubMed

    Siorou, Sofia; Vgenis, Theodoros T; Dareioti, Margarita A; Vidali, Maria-Sophia; Efthimiou, Ioanna; Kornaros, Michael; Vlastos, Dimitris; Dailianis, Stefanos

    2015-07-01

    The effects of olive mill wastewater (OMW) on a battery of biological assays, before and during the ozonation process, were investigated in order to assess ozone's efficiency in removing phenolic compounds from OMW and decreasing the concomitant OMW toxicity. Specifically, ozonated-OMW held for 0, 60, 120, 300, 420, 540min in a glass bubble reactor, showed a drastic reduction of OMW total phenols (almost 50%) after 300min of ozonation with a concomitant decrease of OMW toxicity. In particular, the acute toxicity test primarily performed in the fairy shrimp Thamnocephalus platyurus (Thamnotoxkit F™ screening toxicity test) showed a significant attenuation of OMW-induced toxic effects, after ozonation for a period of 120 and in a lesser extent 300min, while further treatment resulted in a significant enhancement of ozonated-OMW toxic effects. Furthermore, ozonated-OMW-treated mussel hemocytes showed a significant attenuation of the ability of OMW to cause cytotoxic (obtained by the use of NRRT assay) effects already after an ozonation period of 120 and to a lesser extent 300min. In accordance with the latter, OMW-mediated oxidative (enhanced levels of superoxide anions and lipid peroxidation by-products) and genotoxic (induction of DNA damage) effects were diminished after OMW ozonation for the aforementioned periods of time. The latter was also revealed by the use of cytokinesis block micronucleus (CBMN) assay in human lymphocytes exposed to different concentrations of both raw- and ozonated-OMW for 60, 120 and 300min. Those findings revealed for a first time the existence of a critical time point during the OMW ozonation process that could be fundamentally used for evaluating OMW ozonation as a pretreatment method of OMW.

  11. Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS.

    PubMed

    Aydi, Abdelwaheb; Abichou, Tarek; Nasr, Imen Hamdi; Louati, Mourad; Zairi, Moncef

    2016-01-01

    This paper presents a geographic information system-based multi-criteria site selection tool of an olive mill wastewater (OMW) disposal site in Sidi Bouzid Region, Tunisia. The multi-criteria decision framework integrates ten constraints and six factors that relate to environmental and economic concerns, and builds a hierarchy model for OMW disposal site suitability. The methodology is used for preliminary assessment of the most suitable OMW disposal sites by combining fuzzy set theory and analytic hierarchy process (AHP). The fuzzy set theory is used to standardize factors using different fuzzy membership functions while the AHP is used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by both environmental and economic decision criteria. The OMW disposal site suitability is achieved by applying a weighted linear combination that uses a comparison matrix to aggregate different importance scenarios associated with environmental and economic objectives. Three different scenarios generated by different weights applied to the two objectives. The scenario (a) assigns a weight of 0.75 to the environmental and 0.25 to the economic objective, scenario (b) has equal weights, and scenario (c) features weights of 0.25 and 0.75 for environmental and economic objectives, respectively. The results from this study assign the least suitable OMW disposal site of 2.5 % when environmental and economic objectives are rated equally, while a more suitable OMW disposal site of 1.0 % is generated when the economic objective is rated higher. PMID:26711812

  12. Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS.

    PubMed

    Aydi, Abdelwaheb; Abichou, Tarek; Nasr, Imen Hamdi; Louati, Mourad; Zairi, Moncef

    2016-01-01

    This paper presents a geographic information system-based multi-criteria site selection tool of an olive mill wastewater (OMW) disposal site in Sidi Bouzid Region, Tunisia. The multi-criteria decision framework integrates ten constraints and six factors that relate to environmental and economic concerns, and builds a hierarchy model for OMW disposal site suitability. The methodology is used for preliminary assessment of the most suitable OMW disposal sites by combining fuzzy set theory and analytic hierarchy process (AHP). The fuzzy set theory is used to standardize factors using different fuzzy membership functions while the AHP is used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by both environmental and economic decision criteria. The OMW disposal site suitability is achieved by applying a weighted linear combination that uses a comparison matrix to aggregate different importance scenarios associated with environmental and economic objectives. Three different scenarios generated by different weights applied to the two objectives. The scenario (a) assigns a weight of 0.75 to the environmental and 0.25 to the economic objective, scenario (b) has equal weights, and scenario (c) features weights of 0.25 and 0.75 for environmental and economic objectives, respectively. The results from this study assign the least suitable OMW disposal site of 2.5 % when environmental and economic objectives are rated equally, while a more suitable OMW disposal site of 1.0 % is generated when the economic objective is rated higher.

  13. Elimination of the Calcium Cycle: Direct Electrolytic Causticizing of Kraft Smelt, Final report

    SciTech Connect

    P. Pfromm, J. Winnick

    1999-01-31

    An electrochemical molten salt alternative to the classic kraft causticizing process has been investigated and the feasibility of the process was successfully shown. The experiments included (a) determination of background thermal decomposition gases, (b) the electrolysis of a sodium-carbonate-only smelt to show that sodium oxide can be electrochemically produced, and (c) electrolysis of a synthetic smelt containing 80 mole% Na2-CO3 and 20 mole% Na2-S. The experiments show that sodium hydroxide (NaOH) was produced by the electrochemical reduction of sodium carbonate to sodium oxide in the molten state. In the experiment containing sodium sulfide, there was formation of less than 5 mole% of polysulfide. Energy savings on the order of 500,000 BTU per ton of kraft pulp produced are estimated, based on the energy used by the mill. Operating costs are estimated to be currently similar to conventional processing. However, price increases of fossil fuels and increased co-generation of electricity in the mill will give the electrolytical process significant cost advantages.

  14. Elimination of the calcium cycle: direct electrolytic causticizing of Kraft smelt. Final report

    SciTech Connect

    Pfromm, P.; Winnick, J.

    1999-01-19

    An electrochemical molten salt alternative to the classic Kraft causticizing process has been investigated and the feasibility of the process was successfully shown. The experiments include (A) the determination of background thermal decomposition gases, (B) the electrolysis of a sodium carbonate only smelt to show that sodium oxide can be electrochemically produced, and (C) electrolysis of a synthetic smelt containing 80 mole % Na{sub 2}CO{sub 3} and 20 mole % Na{sub 2}S. The experiments show, that sodium hydroxide (NaOH) was produced by the electrochemical reduction of sodium carbonate to sodium oxide in the molten state. In the experiment containing sodium sulfide, there was formation of less than 5 mole % of polysulfide. Energy savings on the order of 500,000 BTU per ton of kraft pulp produced are estimated, based on the energy used by the mill. Operating costs are estimated to be currently similar to conventional processing. However, price increases of fossil fuels and increased co-generation of electricity in the mill will give the electrolytical process significant cost advantages.

  15. Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation.

    PubMed

    Michael, I; Panagi, A; Ioannou, L A; Frontistis, Z; Fatta-Kassinos, D

    2014-09-01

    This study investigated the application of a solar-driven advanced oxidation process (solar Fenton) combined with previous coagulation/flocculation, for the treatment of olive mill wastewater (OMW) at a pilot scale. Pre-treatment by coagulation/flocculation using FeSO4·7H2O (6.67 g L(-1)) as the coagulant, and an anionic polyelectrolyte (FLOCAN 23, 0.287 g L(-1)) as the flocculant, was performed to remove the solid content of the OMW. The solar Fenton experiments were carried out in a compound parabolic collector pilot plant, in the presence of varying doses of H2O2 and Fe(2+). The optimization of the oxidation process, using reagents at low concentrations ([Fe(2+)] = 0.08 g L(-1); [H2O2] = 1 g L(-1)), led to a high COD removal (87%), while the polyphenolic fraction, which is responsible for the biorecalcitrant and/or toxic properties of OMW, was eliminated. A kinetic study using a modified pseudo first-order kinetic model was performed in order to determine the reaction rate constants. This work evidences also the potential use of the solar Fenton process at the inherent pH of the OMW, yielding only a slightly lower COD removal (81%) compared to that obtained under acidic conditions. Moreover, the results demonstrated the capacity of the applied advanced process to reduce the initial OMW toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba), and the water flea Daphnia magna. The OMW treated samples displayed a varying toxicity profile for each type of organism and plant examined in this study, a fact that can potentially be attributed to the varying oxidation products formed during the process applied. Finally, the overall cost of solar Fenton oxidation for the treatment of 50 m(3) of OMW per day was estimated to be 2.11 € m(-3). PMID:24815102

  16. Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation.

    PubMed

    Michael, I; Panagi, A; Ioannou, L A; Frontistis, Z; Fatta-Kassinos, D

    2014-09-01

    This study investigated the application of a solar-driven advanced oxidation process (solar Fenton) combined with previous coagulation/flocculation, for the treatment of olive mill wastewater (OMW) at a pilot scale. Pre-treatment by coagulation/flocculation using FeSO4·7H2O (6.67 g L(-1)) as the coagulant, and an anionic polyelectrolyte (FLOCAN 23, 0.287 g L(-1)) as the flocculant, was performed to remove the solid content of the OMW. The solar Fenton experiments were carried out in a compound parabolic collector pilot plant, in the presence of varying doses of H2O2 and Fe(2+). The optimization of the oxidation process, using reagents at low concentrations ([Fe(2+)] = 0.08 g L(-1); [H2O2] = 1 g L(-1)), led to a high COD removal (87%), while the polyphenolic fraction, which is responsible for the biorecalcitrant and/or toxic properties of OMW, was eliminated. A kinetic study using a modified pseudo first-order kinetic model was performed in order to determine the reaction rate constants. This work evidences also the potential use of the solar Fenton process at the inherent pH of the OMW, yielding only a slightly lower COD removal (81%) compared to that obtained under acidic conditions. Moreover, the results demonstrated the capacity of the applied advanced process to reduce the initial OMW toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba), and the water flea Daphnia magna. The OMW treated samples displayed a varying toxicity profile for each type of organism and plant examined in this study, a fact that can potentially be attributed to the varying oxidation products formed during the process applied. Finally, the overall cost of solar Fenton oxidation for the treatment of 50 m(3) of OMW per day was estimated to be 2.11 € m(-3).

  17. Effective saccharification of kraft pulp by using a cellulase cocktail prepared from genetically engineered Aspergillus oryzae.

    PubMed

    Yamada, Ryosuke; Yoshie, Toshihide; Sakai, Shoji; Wakai, Satoshi; Asai-Nakashima, Nanami; Okazaki, Fumiyoshi; Ogino, Chiaki; Hisada, Hiromoto; Tsutsumi, Hiroko; Hata, Yoji; Kondo, Akihiko

    2015-01-01

    Kraft pulp is a promising feedstock for bioproduction. The efficiency of kraft pulp saccharification was improved by using a cellulase cocktail prepared from genetically engineered Aspergillus oryzae. Application of the cellulase cocktail was demonstrated by simultaneous saccharification and fermentation, using kraft pulp and non-cellulolytic yeast. Such application would make possible to do an efficient production of other chemicals from kraft pulp.

  18. Utilization of geothermal energy in a pulp and paper mill

    SciTech Connect

    Hotson, G.W.

    1997-01-01

    The Tasman Pulp and Paper Company Ltd.`s Mill at Kawerau, New Zealand, has been utilizing geothermal energy for more than 30 years. The mill produces approximately 200,000 tonnes of kraft pulp and 400,000 tonnes of newsprint per annum. Geothermal energy produces 26% of the process steam requirements and 6% of the mill`s electrical load. The management of the mill`s energy sources is complex and ever changing, which has resulted in unique control strategies being developed over the years to improve efficiencies in the operation of the plant. Complete utilization of the geothermal resource has been the aim of the company and has led to pioneering plant and process developments.

  19. Hydrothermal carbonization of pulp mill streams.

    PubMed

    Wikberg, Hanne; Ohra-Aho, Taina; Honkanen, Mari; Kanerva, Heimo; Harlin, Ali; Vippola, Minnamari; Laine, Christiane

    2016-07-01

    The progress of the conversion, the yield, the structure and the morphology of the produced carbonaceous materials as a function of time were systematically studied with pyrolysis-GC/FID and FESEM microscope. The conversion of galactoglucomannan, bleached kraft pulp and TEMPO oxidized cellulose nanofibrils followed the reaction route of glucose being slower though with fibrous material, higher molar mass and viscosity. The conversion of kraft lignin was minor following completely different reaction route. Carbonaceous particles of different shape and size were produced with yields between 23% and 73% after 4h with being higher for lignin than carbohydrates. According to the results, potential pulp mill streams represent lignocellulosic resources for generation of carbonaceous materials. PMID:27107340

  20. Microbial diversity in various types of paper mill sludge: identification of enzyme activities with potential industrial applications.

    PubMed

    Ghribi, Manel; Meddeb-Mouelhi, Fatma; Beauregard, Marc

    2016-01-01

    This study is the first comprehensive investigation of enzyme-producing bacteria isolated from four sludge samples (primary, secondary, press and machine) collected in a Kraft paper mill. Overall, 41 strains encompassing 11 different genera were identified by 16S rRNA gene analysis and biochemical testing. Both biodiversity and enzymatic activities were correlated with sludge composition. Press sludge hosted the largest variety of bacterial strains and enzymatic activities, which included hydrolytic enzymes and ligninolytic enzymes. In contrast, strains isolated from secondary sludge were devoid of several enzymatic activities. Most strains were found to metabolize Kraft liquor at its alkaline pH and to decolorize industrial lignin-mimicking dyes. Resistance to lignin or the ability to metabolize this substrate is a prerequisite to survival in any paper mill sludge type. We demonstrate here that the bacterial strains found in a typical Kraft paper mill represent a source of potential novel enzymes for both industrial applications and bioremediation.

  1. Microbial diversity in various types of paper mill sludge: identification of enzyme activities with potential industrial applications.

    PubMed

    Ghribi, Manel; Meddeb-Mouelhi, Fatma; Beauregard, Marc

    2016-01-01

    This study is the first comprehensive investigation of enzyme-producing bacteria isolated from four sludge samples (primary, secondary, press and machine) collected in a Kraft paper mill. Overall, 41 strains encompassing 11 different genera were identified by 16S rRNA gene analysis and biochemical testing. Both biodiversity and enzymatic activities were correlated with sludge composition. Press sludge hosted the largest variety of bacterial strains and enzymatic activities, which included hydrolytic enzymes and ligninolytic enzymes. In contrast, strains isolated from secondary sludge were devoid of several enzymatic activities. Most strains were found to metabolize Kraft liquor at its alkaline pH and to decolorize industrial lignin-mimicking dyes. Resistance to lignin or the ability to metabolize this substrate is a prerequisite to survival in any paper mill sludge type. We demonstrate here that the bacterial strains found in a typical Kraft paper mill represent a source of potential novel enzymes for both industrial applications and bioremediation. PMID:27652065

  2. Krafting an agreement: Negotiations to reduce pollution from the Nordic pulp industry, 1985--1989

    SciTech Connect

    Auer, M.R.

    1996-05-01

    International environmental accords frequently contain obligations that may be easily satisfied by their signatories. Observers have speculated why it is in a state`s interests to sign agreements that lack strict conditions, but policy analysts lack a coherent model explaining how such agreements are formalized. Knowledge, values, and authority are key forces that elucidate how environmental accords are developed with provisions that are easily executable. This dissertation examines the formulation of Helsinki Commission recommendations to reduce emissions of organochlorines from Nordic kraft pulp mills. The kraft pulp industry, the largest industrial pollution emitter to the Baltic Sea, is also a crucial foreign exchange earner for both Sweden and Finland. Hence, Swedes and Finns were the most active participants in regional negotiations to reduce organochlorine emissions. Key variable analysis explains how obstacles in various regional negotiations were overcome, and how parties constructed a recommendation with obligations that could be easily accommodated. The two sides never agreed about the level of risk posed by organochlorines in the marine environment. This problem influenced the strictness of pollution limits specified in the final agreement. But, the parties overcame formidable obstacles in the negotiations, including: (1) concerns about costs to industry and competitive disadvantages in the pulp and paper sector; (2) disagreement about technologies to combat the problem; and (3) domestic rule-making schedules that were out of sync.

  3. Membrane treatment of alkaline bleaching effluents from elementary chlorine free kraft softwood cellulose production.

    PubMed

    Oñate, Elizabeth; Rodríguez, Edgard; Bórquez, Rodrigo; Zaror, Claudio

    2015-01-01

    This paper reports experimental results on the sequential use of ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) to fractionate alkaline extraction bleaching effluents from kraft cellulose production. The aim was to unveil the way key pollutants are distributed when subjected to sequential UF/NF/RO membrane separation processes. Alkaline bleaching effluents were obtained from a local pinewood-based mill, featuring elementary chlorine free bleaching to produce high-brightness cellulose. The experimental system was based on a laboratory-scale membrane system, DSS LabStak® M20 Alfa Laval, using Alfa Laval UF and NF/RO membranes, operated at a constant transmembrane pressure (6 bar for UF membranes and 32 bar for NF/RO membranes), at 25°C. Results show that 78% chemical oxygen demand (COD) and total phenols, 82% adsorbable organic halogens (AOX) and 98% colour were retained by UF membranes which have molecular weight cut-off (MWCO) above 10 kDa. In all, 16% of original COD, total phenols and AOX, and the remaining 2% colour were retained by UF membranes within the 1 to 10 kDa MWCO range. Chloride ions were significantly present in all UF permeates, and RO was required to obtain a high-quality permeate with a view to water reuse. It is concluded that UF/NF/RO membranes offer a feasible option for water and chemicals recovery from alkaline bleaching effluents in kraft pulp production. PMID:25253193

  4. Effect of Cellulases and Xylanases on Refining Process and Kraft Pulp Properties

    PubMed Central

    Przybysz Buzała, Kamila; Kalinowska, Halina; Derkowska, Małgorzata

    2016-01-01

    Samples of bleached kraft pine cellulosic pulp, either treated with an enzyme preparation (a Thermomyces lanuginosus xylanase, an Aspergillus sp. cellulase, and a multienzyme preparation NS-22086 containing both these activities) or untreated, were refined in a laboratory PFI mill. The treatment with cellulases contained in the last two preparations significantly improved the pulp’s susceptibility to refining (the target freeness value of 30°SR was achieved in a significantly shorter time), increased water retention value (WRV) and fines contents while the weighted average fiber length was significantly reduced. These changes of pulp parameters caused deterioration of paper strength properties. The treatment with the xylanase, which partially hydrolyzed xylan, small amounts of which are associated with cellulose fibers, only slightly loosened the structure of fibers. These subtle changes positively affected the susceptibility of the pulp to refining (refining energy was significantly reduced) and improved the static strength properties of paper. Thus, the treatment of kraft pulps with xylanases may lead to substantial savings of refining energy without negative effects on paper characteristics. PMID:27557079

  5. Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent

    PubMed Central

    Assalin, Marcia Regina; dos Santos Almeida, Edna; Durán, Nelson

    2009-01-01

    The treatment of paper mill effluent for COD, TOC, total phenols and color removal was investigated using combined activated sludge-ozonation processes and single processes. The combined activated sludge-O3/pH 10 treatment was able to remove around 80% of COD, TOC and color from Kraft E1 effluent. For the total phenols, the efficiency removal was around 70%. The ozonation post treatment carried out at pH 8.3 also showed better results than the single process. The COD, TOC, color and total phenols removal efficiency obtained were 75.5, 59.1, 77 and 52.3%, respectively. The difference in the concentrations of free radical produced by activated sludge-O3/pH 10 and activated sludge-O3/pH 8.3 affected mainly the TOC and total phenol removal values. PMID:19440438

  6. Development of viscometers for kraft black liquor. Summary report, Phase 2 and 2A

    SciTech Connect

    Fricke, A.L.; Crisalle, O.D.

    1996-11-01

    This report documents the results of the evaluation of the on-line prototype viscometers for kraft black liquors carried out at the Pilot Plant facilities of the University of Florida. The original plan called for the evaluation of five prototype on-line viscometers along with laboratory bench versions. At a later stage in the project an additional experimental prototype under development at Southwest Research Institute was added. The viscometers are evaluated for accuracy and repeatability under varying process conditions, such as black liquor species, solids content, temperature, flow rate, and contaminants, as well as for maintenance and reliability. This document reports extensive results of the evaluations and recommendations for design modifications and for the installation of the instruments in industrial pulping mills for further field evaluations in Phase 3 of the project. The report also documents relevant details of the final design of the pilot flow loop used to support the experiments.

  7. Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent.

    PubMed

    Leiviskä, Tiina; Nurmesniemi, Hannu; Pöykiö, Risto; Rämö, Jaakko; Kuokkanen, Toivo; Pellinen, Jaakko

    2008-08-01

    Pulp and paper mill wastewater was characterizated, before (influent) and after (effluent) biological wastewater treatment based on an activated sludge process, by microfiltration (8, 3, 0.45 and 0.22microm) and ultrafiltration (100, 50, 30 and 3kDa) of the wastewater samples into different size fractions. Various parameters were measured on each fraction: molecular weight distribution (MWD) using high performance size exclusion chromatography (HPSEC), total organic carbon (TOC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (Tot-P), phosphate phosphorus (PO(4)-P), electrical conductivity, pH, turbidity, charge quantity and zeta potential. The MWD, TOC and COD(Cr) results indicated that the majority of the material present in both the influent and effluent was in the medium molecular weight (MW) range (i.e. MW<10kDa) with three main MW sub-fractions. There were no significant differences in the range of the MWD between the influent and effluent samples. The magnitude of the MWD in the effluent was about one half that in the influent, the greatest reduction being in the 6kDa fraction. The 3kDa fractions of both the influent and effluent showed a considerable increase in BOD(7), probably due to the removal of compounds harmful to bacteria in 3kDa ultrafiltration. Influent turbidity decreased considerably in microfiltration (8-0.22microm). As the turbidity was removed by 0.22microm filtration, the anionic charge quantity started to decrease. Particles in the influent and effluent contained 19-29% and 14-20% of the total phosphorus, respectively. The major phosphorus fraction was in the form of soluble phosphate. PMID:18707750

  8. Fermentation and chemical treatment of pulp and paper mill sludge

    SciTech Connect

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  9. 40 CFR 63.446 - Standards for kraft pulping process condensates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Standards for kraft pulping process... Standards for kraft pulping process condensates. (a) The requirements of this section apply to owners or operators of kraft processes subject to the requirements of this subpart. (b) The pulping...

  10. Economic Assessment of Rural District Heating by Bio-Steam Supplied by a Paper Mill in Canada

    ERIC Educational Resources Information Center

    Marinova, Mariya; Beaudry, Catherine; Taoussi, Abdelaziz; Trepanier, Martin; Paris, Jean

    2008-01-01

    The article investigates the feasibility of district heating in a small town adjacent to a Kraft pulp mill in eastern Canada. A detailed heat demand analysis is performed for all buildings using a geographical information system and archived data provided by the municipality. The study shows that the entire space heating requirement of the town…

  11. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers

    SciTech Connect

    Keiser, J.R.

    2001-10-22

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining.

  12. Prooxidant Effects of Verbascoside, a Bioactive Compound from Olive Oil Mill Wastewater, on In Vitro Developmental Potential of Ovine Prepubertal Oocytes and Bioenergetic/Oxidative Stress Parameters of Fresh and Vitrified Oocytes

    PubMed Central

    Dell'Aquila, M. E.; Bogliolo, L.; Russo, R.; Martino, N. A.; Filioli Uranio, M.; Ariu, F.; Amati, F.; Sardanelli, A. M.; Linsalata, V.; Ferruzzi, M. G.; Cardinali, A.; Minervini, F.

    2014-01-01

    Verbascoside (VB) is a bioactive polyphenol from olive oil mill wastewater with known antioxidant activity. Oxidative stress is an emerging problem in assisted reproductive technology (ART). Juvenile ART is a promising topic because, in farm animals, it reduces the generation gap and, in human reproductive medicine, it helps to overcome premature ovarian failure. The aim of this study was to test the effects of VB on the developmental competence of ovine prepubertal oocytes and the bioenergetic/oxidative stress status of fresh and vitrified oocytes. In fresh oocytes, VB exerted prooxidant short-term effects, that is, catalase activity increase and uncoupled increases of mitochondria and reactive oxygen species (ROS) fluorescence signals, and long-term effects, that is, reduced blastocyst formation rate. In vitrified oocytes, VB increased ROS levels. Prooxidant VB effects in ovine prepubertal oocytes could be related to higher VB accumulation, which was found as almost one thousand times higher than that reported in other cell systems in previous studies. Also, long exposure times of oocytes to VB, throughout the duration of in vitro maturation culture, may have contributed to significant increase of oocyte oxidation. Further studies are needed to identify lower concentrations and/or shorter exposure times to figure out VB antioxidant effects in juvenile ARTs. PMID:24719893

  13. A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry

    SciTech Connect

    Eric D. Larson; Stefano Consonni; Ryan E. Katofsky; Kristiina Iisa; W. James Frederick

    2007-03-31

    Production of liquid fuels and chemicals via gasification of kraft black liquor and woody residues (''biorefining'') has the potential to provide significant economic returns for kraft pulp and paper mills replacing Tomlinson boilers beginning in the 2010-2015 timeframe. Commercialization of gasification technologies is anticipated in this period, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are in most cases already commercially established today in the ''gas-to-liquids'' industry. These conclusions are supported by detailed analysis carried out in a two-year project co-funded by the American Forest and Paper Association and the Biomass Program of the U.S. Department of Energy. This work assessed the energy, environment, and economic costs and benefits of biorefineries at kraft pulp and paper mills in the United States. Seven detailed biorefinery process designs were developed for a reference freesheet pulp/paper mill in the Southeastern U.S., together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. Commercial (''Nth'') plant levels of technology performance and cost were assumed. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which would be refined to vehicle fuels at existing petroleum refineries), dimethyl ether (a diesel engine fuel or LPG substitute), or an ethanol-rich mixed-alcohol product. Compared to installing a new Tomlinson power/recovery system, a biorefinery would require larger capital investment. However, because the biorefinery would have higher energy efficiencies, lower air emissions, and a more diverse product slate (including transportation fuel), the internal rates of return (IRR) on the incremental capital investments would be attractive under many circumstances. For nearly all of the

  14. Pretreated cheese whey wastewater management by agricultural reuse: chemical characterization and response of tomato plants Lycopersicon esculentum Mill. under salinity conditions.

    PubMed

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-10-01

    The agricultural reuse of pretreated industrial wastewater resulting from cheese manufacture is shown as a suitable option for its disposal and management. This alternative presents attractive advantages from the economic and pollution control viewpoints. Pretreated cheese whey wastewater (CWW) has high contents of biodegradable organic matter, salinity and nutrients, which are essential development factors for plants with moderate to elevated salinity tolerance. Five different pretreated CWW treatments (1.75 to 10.02 dS m(-1)) have been applied in the tomato plant growth. Fresh water was used as a control run (average salinity level=1.44 dS m(-1)). Chemical characterization and indicator ratios of the leaves, stems and roots were monitored. The sodium and potassium leaf concentrations increased linearly with the salinity level in both cultivars, Roma and Rio Grande. Similar results were found in the stem sodium content. However, the toxic sodium accumulations in the cv. Roma exceeded the values obtained in the cv. Rio Grande. In this last situation, K and Ca uptake, absorption, transport and accumulation capacities were presented as tolerance mechanisms for the osmotic potential regulation of the tissues and for the ion neutralization. Consequently, Na/Ca and Na/K ratios presented lower values in the cv. Rio Grande. Na/Ca ratio increased linearly with the salinity level in leaves and stems, regardless of the cultivar. Regarding the Na/K ratio, the values demonstrated competition phenomena between the ions for the cv. Rio Grande. Despite the high chloride content of the CWW, no significant differences were observed for this nutrient in the leaves and stems. Thus, no nitrogen deficiency was demonstrated by the interaction NO3(-)/Cl(-). Nitrogen also contributes to maintain the water potential difference between the tissues and the soil. Na, P, Cl and N radicular concentrations were maximized for high salinity levels (≥2.22 dS m(-1)) of the pretreated CWW. PMID

  15. Pretreated cheese whey wastewater management by agricultural reuse: chemical characterization and response of tomato plants Lycopersicon esculentum Mill. under salinity conditions.

    PubMed

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-10-01

    The agricultural reuse of pretreated industrial wastewater resulting from cheese manufacture is shown as a suitable option for its disposal and management. This alternative presents attractive advantages from the economic and pollution control viewpoints. Pretreated cheese whey wastewater (CWW) has high contents of biodegradable organic matter, salinity and nutrients, which are essential development factors for plants with moderate to elevated salinity tolerance. Five different pretreated CWW treatments (1.75 to 10.02 dS m(-1)) have been applied in the tomato plant growth. Fresh water was used as a control run (average salinity level=1.44 dS m(-1)). Chemical characterization and indicator ratios of the leaves, stems and roots were monitored. The sodium and potassium leaf concentrations increased linearly with the salinity level in both cultivars, Roma and Rio Grande. Similar results were found in the stem sodium content. However, the toxic sodium accumulations in the cv. Roma exceeded the values obtained in the cv. Rio Grande. In this last situation, K and Ca uptake, absorption, transport and accumulation capacities were presented as tolerance mechanisms for the osmotic potential regulation of the tissues and for the ion neutralization. Consequently, Na/Ca and Na/K ratios presented lower values in the cv. Rio Grande. Na/Ca ratio increased linearly with the salinity level in leaves and stems, regardless of the cultivar. Regarding the Na/K ratio, the values demonstrated competition phenomena between the ions for the cv. Rio Grande. Despite the high chloride content of the CWW, no significant differences were observed for this nutrient in the leaves and stems. Thus, no nitrogen deficiency was demonstrated by the interaction NO3(-)/Cl(-). Nitrogen also contributes to maintain the water potential difference between the tissues and the soil. Na, P, Cl and N radicular concentrations were maximized for high salinity levels (≥2.22 dS m(-1)) of the pretreated CWW.

  16. Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process

    DOE PAGESBeta

    Yang, Haitao; Xie, Yimin; Zheng, Xing; Pu, Yunqiao; Huang, Fang; Meng, Xianzhi; Wu, Weibing; Ragauskas, Arthur; Yao, Lan

    2016-02-18

    With this study, to understand the structural changes of lignin after soda-AQ and kraft pretreatment, milled straw lignin, black liquor lignin and residual lignin extracted from wheat straw were characterized by FT-IR, UV, GPC and NMR. The results showed that the main lignin linkages were β-aryl ether substructures (β-O-4'), followed by phenylcoumaran (β-5') and resinol (β-β') substructures, while minor content of spirodienone (β-1'), dibenzodioxocin (5-5') and α,β-diaryl ether linkages were detected as well. After pretreatment, most lignin inter-units and lignin-carbohydrate complex (LCC) linkages were degraded and dissolved in black liquor, with minor amount left in residual pretreated biomass. In addition,more » through quantitative 13C and 2D-HSQC NMR spectral analysis, lignin and LCC were found to be more degraded after kraft pretreatment than soda-AQ pretreatment. Furthermore, the subsequent enzymatic hydrolysis results showed that more cellulose in wheat straw was converted to glucose after kraft pretreatment, indicating that LCC linkages were important in the enzymatic hydrolysis process.« less

  17. Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process.

    PubMed

    Yang, Haitao; Xie, Yimin; Zheng, Xing; Pu, Yunqiao; Huang, Fang; Meng, Xianzhi; Wu, Weibing; Ragauskas, Arthur; Yao, Lan

    2016-05-01

    To understand the structural changes of lignin after soda-AQ and kraft pretreatment, milled straw lignin, black liquor lignin and residual lignin extracted from wheat straw were characterized by FT-IR, UV, GPC and NMR. The results showed that the main lignin linkages were β-aryl ether substructures (β-O-4'), followed by phenylcoumaran (β-5') and resinol (β-β') substructures, while minor content of spirodienone (β-1'), dibenzodioxocin (5-5') and α,β-diaryl ether linkages were detected as well. After pretreatment, most lignin inter-units and lignin-carbohydrate complex (LCC) linkages were degraded and dissolved in black liquor, with minor amount left in residual pretreated biomass. In addition, through quantitative (13)C and 2D-HSQC NMR spectral analysis, lignin and LCC were found to be more degraded after kraft pretreatment than soda-AQ pretreatment. Furthermore, the subsequent enzymatic hydrolysis results showed that more cellulose in wheat straw was converted to glucose after kraft pretreatment, indicating that LCC linkages were important in the enzymatic hydrolysis process.

  18. 40 CFR 430.00 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY General Provisions § 430.00 Applicability. (a) This part applies to any pulp, paper, or paperboard mill that discharges or may discharge process wastewater... paper, and tissue paper at bleached kraft mills (Ha); pulp and fine papers at bleached kraft mills...

  19. 40 CFR 430.00 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY General Provisions § 430.00 Applicability. (a) This part applies to any pulp, paper, or paperboard mill that discharges or may discharge process wastewater... paper, and tissue paper at bleached kraft mills (Ha); pulp and fine papers at bleached kraft mills...

  20. The Value of the Freshwater Snail Dip Scoop Sampling Method in Macroinvertebrates Bioassessment of Sugar Mill Wastewater Pollution in Mbandjock, Cameroon

    PubMed Central

    Takougang, Innocent; Barbazan, Phillipe; Tchounwou, Paul B.; Noumi, Emmanuel

    2008-01-01

    Macroinvertebrates identification and enumeration may be used as a simple and affordable alternative to chemical analysis in water pollution monitoring. However, the ecological responses of various taxa to pollution are poorly known in resources-limited tropical countries. While freshwater macroinvertebrates have been used in the assessment of water quality in Europe and the Americas, investigations in Africa have mainly focused on snail hosts of human parasites. There is a need for sampling methods that can be used to assess both snails and other macroinvertebrates. The present study was designed to evaluate the usefulness of the freshwater snail dip scoop method in the study of macroinvertebrates for the assessment of the SOSUCAM sugar mill effluents pollution. Standard snail dip scoop samples were collected upstream and downstream of the factory effluent inputs, on the Mokona and Mengoala rivers. The analysis of the macroinvertebrate communities revealed the absence of Ephemeroptera and Trichoptera, and the thriving of Syrphidae in the sections of the rivers under high effluent load. The Shannon & Weaver diversity index was lower in these areas. The dip scoop sampling protocol was found to be a useful method for macroinvertebrates collection. Hence, this method is recommended as a simple, cost-effective and efficient tool for the bio-assessment of freshwater pollution in developing countries with limited research resources. PMID:18441407

  1. The value of the freshwater snail dip scoop sampling method in macroinvertebrates bioassessment of sugar mill wastewater pollution in Mbandjock, Cameroon.

    PubMed

    Takougang, Innocent; Barbazan, Phillipe; Tchounwou, Paul B; Noumi, Emmanuel

    2008-03-01

    Macroinvertebrates identification and enumeration may be used as a simple and affordable alternative to chemical analysis in water pollution monitoring. However, the ecological responses of various taxa to pollution are poorly known in resources-limited tropical countries. While freshwater macroinvertebrates have been used in the assessment of water quality in Europe and the Americas, investigations in Africa have mainly focused on snail hosts of human parasites. There is a need for sampling methods that can be used to assess both snails and other macroinvertebrates. The present study was designed to evaluate the usefulness of the freshwater snail dip scoop method in the study of macroinvertebrates for the assessment of the SOSUCAM sugar mill effluents pollution. Standard snail dip scoop samples were collected upstream and downstream of the factory effluent inputs, on the Mokona and Mengoala rivers. The analysis of the macroinvertebrate communities revealed the absence of Ephemeroptera and Trichoptera, and the thriving of Syrphidae in the sections of the rivers under high effluent load. The Shannon & Weaver diversity index was lower in these areas. The dip scoop sampling protocol was found to be a useful method for macroinvertebrates collection. Hence, this method is recommended as a simple, cost-effective and efficient tool for the bio-assessment of freshwater pollution in developing countries with limited research resources.

  2. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005

    SciTech Connect

    John E. Pinkerton

    2007-08-15

    Estimates of total SO{sub 2} and NOx emissions from U.S. pulp and paper mills were developed from industry-wide surveys conducted at 5-yr intervals from 1980 to 2005. The following conclusions were drawn from these estimates: (1) Total SO{sub 2} emissions from pulp and paper mills were 340,000 t in 2005. Since 1980, SO{sub 2} emissions have decreased steadily. The decline over the 25-yr period was over 60%. Paper production increased by 50% over the same period. (2) Boilers burning coal and oil are the primary source of SO{sub 2} emissions, with minor contributions from black liquor combustion in kraft recovery furnaces and the burning of noncondensable gases in boilers at kraft pulp mills. Factors contributing to the decline in boiler SO{sub 2} emissions include large reductions in residual oil use, recent decreases in coal use, declines in the average sulfur content of residual oil and coal being burned, and increasing use of flue gas desulfurization systems.(3) NOx emissions from pulp and paper mills were 230,000 t in 2005. NOx emissions were fairly constant through 1995, but then declined by 12% in 2000 and an additional 17% between 2000 and 2005. (4) In 2005, boilers accounted for two-thirds of the NOx emissions, and kraft mill sources approximately 30%. Boiler NOx emissions exhibited very little change through 1995, but decreased by one third in the next 10 yr. The lower emissions resulted from declines in fossil fuel use, a reduction in the EPA emission factors for natural gas combustion in boilers without NOx controls, and more widespread use of combustion modifications and add-on NOx control technologies, particularly on coal-fired boilers subject to EPA's NOx SIP call. Total NOx emissions from kraft mill sources changed little over the 25-yr period. 7 refs., 4 figs., 3 tabs.

  3. An aerobic fixed-phase biofilm reactor system for the degradation of the low-molecular weight aromatic compounds occurring in the effluents of anaerobic digestors treating olive mill wastewaters.

    PubMed

    Bertin, L; Majone, M; Di Gioia, D; Fava, F

    2001-05-01

    An aerobic co-culture, prepared by combining Ralstonia sp. LD35 and Pseudomonas putida DSM1868, was recently found to be capable of extensively degrading many of the hydroxylated and/or methoxylated benzoic, phenylacetic and 3-phenyl-2-propenoic acids occurring in the olive mill wastewaters (OMWs). In the perspective of developing a biotechnological process for the degradation of low-molecular weight (MW) aromatic compounds occurring in the effluents of anaerobic digestors treating OMWs, the capability of this bacterial co-culture of biodegrading a synthetic mix of the above mentioned compounds and the aromatic compounds of an anaerobic OMW-treatment plant effluent in the physiological state of immobilised cells was investigated. Two aerobic fixed-bed biofilm reactors were developed by immobilising the co-culture cells on Manville silica beads and on polyurethane foam cubes. Both supports were found to give rise to a microbiologically stable and biologically active biofilm. The two biofilm reactors were found to be similarly capable of rapidly and completely biodegrading the components of a synthetic mix of nine monocyclic aromatic acids typically present in OMWs and the low-MW aromatic compounds occurring in the anaerobic effluent in batch conditions. However, in the same conditions, the silica bead-packed reactor was found to be more effective in the removal of high-MW phenolic compounds from the anaerobic effluent with respect to the polyurethane cube-packed reactor. These results are encouraging in the perspective of using the co-culture as immobilized cells for developing a continuous biotechnological process for the post-treatment of effluents with low-MW aromatic compounds produced by anaerobic digestors treating OMWs.

  4. Producing a True Lignin Depolymerase for Biobleaching Softwood Kraft Pulp

    SciTech Connect

    Simo Sarkanen

    2002-02-04

    This project constituted an intensive effort devoted to producing, from the white-rot fungus Tramets Cingulata, a lignin degrading enzyme (lignin depolymerase) that is directly able to biobleach or delignify softwood kraft pulp brownstock. To this end, the solutions in which T. cingulata was grown contained dissolved kraft lignin which fulfilled two functions; it behaved as a lignin deploymerase substrate and it also appeared to act as an inducer of enzyme expression. However, the lignin depolymerase isoenzymes (and other extracellular T. cingulata enzymes) interacted very strongly with both the kraft lignin components and the fungal hypae, so the isolating these proteins from the culture solutions proved to be unexpectedly difficult. Even after extensive experimentation with a variety of protein purification techniques, only one approach appeared to be capable of purifying lignin depolymerases to homogeneity. Unfortunately the procedure was extremely laborious; it involved the iso electric focusing of concentrated buffer-exchanged culture solutions followed by electro-elution of the desired protein bands from the appropriate polyacrylamide gel segments

  5. Effect of depth beating on the fiber properties and enzymatic saccharification efficiency of softwood kraft pulp.

    PubMed

    Gao, Wenhua; Xiang, Zhouyang; Chen, Kefu; Yang, Rendang; Yang, Fei

    2015-01-01

    Commercial bleached softwood kraft pulp was mechanically fibrillated by a PFI-mill with beating revolution from 5000 to 30,000 r. The extent of fibrillating on the pulp was evaluated by beating degree, fiber morphological properties (fiber length, width, coarseness and curls index), water retention value (WRV) and physical properties of paper made from the pulp. Depth beating process significantly affected the pulp fibrillations as showed by the decreased fiber length and width as well as the SEM analysis, but the effects were limited after beating revolution of 15,000. Depth beating process also improved the total internal pore and inter-fibril surface areas as shown by the increased WRV values. Substrate enzymatic digestibility (SED) of beaten pulp at 5000 revolutions could reach 95% at cellulase loading of 15 FPU/g of glucan. After the enzymatic hydrolysis, the size of the pulp residues was reduced to micro-scale, and a relative uniform size distribution of the residues appeared at 10,000 r beating revolution. PMID:25965499

  6. Field-inspection notebook for monitoring total reduced sulfur (TRS) from kraft pulp mills

    SciTech Connect

    Winberry, W.T.

    1984-12-01

    Field-performance audit procedures were developed for three of the most common total reduced sulfur (TRS) continuous-emission-monitoring systems (CEMS). These procedures were designed to assist state/federal field inspectors in the evaluation of TRS-CEMS. Contained in the notebook are checklists and data-entry tables covering preparation for the inspection, preliminary review of records, preliminary on-site meeting with source personnel, and general guidelines for inspection of any type TRS-CEMS. Specific audit procedures for three of the most common models of TRS CEMS: Sampling Technology Inc. Model 100 TRS CEM System; Barton Titrator TRS System; and Bendix Gas Chromatograph TRS System are provided as sectional inserts. In auditing these monitors the inspector should follow the specific procedure rather than the general guidelines given in the body of the field notebook. Conscientious use of this notebook will aid the inspector in conducting a thorough audit of the TRS CEMS and provide a comprehensive original record of all phases of the inspection.

  7. Dr. Christopher Kraft looks over packaged 'parasol' in bldg 10

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Dr. Christopher C. Kraft J. (left), JSC Director, and George A Post, JSC Crew Systems Division, look over the packaged 'parasol' during fabrication and checkout of the umbrella-like mechanical device in the Technical Services shop in bldg 10 at JSC. The 'parasol' is designed to fit into the T027 experiment photometer canister. The canopy portion of the 'parasol' measures 24 feet by 22 feet. The 'parasol' is one of several sunscreen possibilities being considered for use in shading the overheated Skylab 1 Orbital Workshop.

  8. Land application of pulp and paper mill effluents -- A literature review

    SciTech Connect

    Rezende, A.A.; Edwards, E.

    1999-07-01

    This paper reviews the literature on land application of pulp and paper mill effluents with emphasis on secondary treated effluents from kraft bleach pulp mills. It discusses the current status of effluent land application in the industry and the need for further studies. The literature review showed that considerable research had been undertaken, including full-scale land application of effluents from pulp and paper mills. These studies dealt almost exclusively with crop productivity aspects. Soil salinity and sodicity problems, as well as application rates were extensively studied. However, relatively little attention has been given to the behavior of toxic organic compounds from pulp mill effluents in the soil environment and the long-term environmental impact of the effluent disposal practices is not fully understood.

  9. High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase Ia - Low-temperature gasifier evaluation. Final report, November 1, 1995--October 31, 1996

    SciTech Connect

    Southards, W.T.; Blude, J.D.; Dickinson, J.A.

    1997-06-01

    This project, conducted under The United States Department of Energy (DOE) Cooperative Agreement DE-FC36-94GO10002/A002, was part of a multiple-phase effort to develop technologies that improve the energy efficiency and economics of chemical process recovery in the pulp and paper industry. The approach taken was to consider two major alternatives in two phases. Phase I, conducted previously, considered means to improve pulp mill recovery boilers using high-solids advanced combustion of black liquor; while this project, Phase la, considered means to recover kraft pulping mill process chemicals by low-temperature black liquor gasification. The principal steps previously proposed in this program were: (1) Evaluate these two technologies, high-solids advanced combustion and gasification, and then select a path forward using the more promising of these two options for future work. (2) Design and construct a pilot-scale unit based on the selected technology, and using that unit, develop the precompetitive data necessary to make commercialization attractive. (3) Develop and deploy a first-of-a-kind (FOAK) commercial unit in a kraft pulp mill. Phase I, which evaluated the high-solids advanced combustion option, was concluded in 1995. Results of that project phase were reported previously. This report describes the work conducted in Phase Ia. The work is described in Sections 1 through 4 and six appendices provide additional detail.

  10. Mill Designed Bio bleaching Technologies

    SciTech Connect

    Institute of Paper Science Technology

    2004-01-30

    A key finding of this research program was that Laccase Mediator Systems (LMS) treatments on high-kappa kraft could be successfully accomplished providing substantial delignification (i.e., > 50%) without detrimental impact on viscosity and significantly improved yield properties. The efficiency of the LMS was evident since most of the lignin from the pulp was removed in less than one hour at 45 degrees C. Of the mediators investigated, violuric acid was the most effective vis-a-vis delignification. A comparative study between oxygen delignification and violuric acid revealed that under relatively mild conditions, a single or a double LMS{sub VA} treatment is comparable to a single or a double O stage. Of great notability was the retention of end viscosity of LMS{sub VA} treated pulps with respect to the end viscosity of oxygen treated pulps. These pulps could then be bleached to full brightness values employing conventional ECF bleaching technologies and the final pulp physical properties were equal and/or better than those bleached in a conventional ECF manner employing an aggressively O or OO stage initially. Spectral analyses of residual lignins isolated after LMS treated high-kappa kraft pulps revealed that similar to HBT, VA and NHA preferentially attack phenolic lignin moieties. In addition, a substantial decrease in aliphatic hydroxyl groups was also noted, suggesting side chain oxidation. In all cases, an increase in carboxylic acid was observed. Of notable importance was the different selectivity of NHA, VA and HBT towards lignin functional groups, despite the common N-OH moiety. C-5 condensed phenolic lignin groups were overall resistant to an LMS{sub NHA, HBT} treatments but to a lesser extent to an LMS{sub VA}. The inactiveness of these condensed lignin moieties was not observed when low-kappa kraft pulps were biobleached, suggesting that the LMS chemistry is influenced by the extent of delignification. We have also demonstrated that the current

  11. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    SciTech Connect

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  12. Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil.

    PubMed

    Kaisangsri, Nattapon; Kerdchoechuen, Orapin; Laohakunjit, Natta

    2014-09-22

    Cassava starch foam (CSF) trays blended with zein, gluten, soy protein, kraft fiber, and palm oil at various concentrations: 0, 5, 10 and 15% by weight of starch, were characterized. The addition of zein and gluten into CSF resulted in consolidated and homogeneous structural foams compared to its controls. Moreover, the flexural and compressive strength increased with increasing kraft, zein and gluten. CSF containing 15% kraft gave the highest flexural and compressive strength. However, the addition of palm oil into CSF gave the lowest flexural strength and compressive strength. The observed water absorption and water solubility index of CSFs blended with 15% zein and 15% gluten protein was lowest. Although kraft, zein and gluten could improve mechanical properties, water absorption and water solubility were greater than the expanded polystyrene foam (EPS). The CSF trays in this study might be an alternative for packing low water content foods.

  13. Smart Vapor Barrier: CertainTeed Dryright-vs-Kraft-Faced Insulation

    SciTech Connect

    2009-09-08

    This fact sheet CertainTeed compares the hygrothermal performances of DryRight™ fiberglass batts and kraft-faced fiberglass batts in a south facing wall assembly with a moisture storage cladding material.

  14. Conversion of kraft lignin over hierarchical MFI zeolite.

    PubMed

    Kim, Seong-Soo; Lee, Hyung Won; Ryoo, Ryong; Kim, Wookdong; Park, Sung Hoon; Jeon, Jong-Ki; Park, Young-Kwon

    2014-03-01

    Catalytic pyrolysis of kraft lignin was carried out using pyrolysis gas chromatography/mass spectrometry. Hierarchical mesoporous MFI was used as the catalyst and another mesoporous material Al-SBA-15 was also used for comparison. The characteristics of mesoporous MFI were analyzed by X-ray diffraction patterns, N2 adsorption-desorption isotherms, and temperature programmed desorption of NH3. Two catalyst/lignin mass ratios were tested: 5/1 and 10/1. Aromatics and alkyl phenolics were the main products of the catalytic pyrolysis of lignin over mesoporous MFI. In particular, the yields of mono-aromatics such as benzene, toluene, ethylbenzene, and xylene were increased substantially by catalytic upgrading. Increase in the catalyst dose enhanced the production of aromatics further, which is attributed to decarboxylation, decarbonlyation, and aromatization reactions occurring over the acid sites of mesoporous MFI.

  15. Bleaching kraft pulps with white-rot fungi

    SciTech Connect

    Reid, I.D.; Paice, M.G.; Bourbonnais, R.

    1996-10-01

    Certain white-rot fungi, notably Trametes versicolor, Phanerochaete sordida, and isolate IZU-154 can lower the residual lignin content and increase the brightness of kraft pulps without damaging the pulps` strength or yield. This biological delignification effect can be used in Elemental Chlorine Free and Totally Chlorine Free bleaching sequences. Physical contact between the fungal hyphae and the pulp fibers is not required, but the presence of the living fungus is necessary for continued delignification. In many but not a systems, delignification is correlated with manganese peroxidase activity. Experiments with pulps containing {sup 14}C-labelled lignin indicate that the residual lignin is solubilized, but not extensively mineralized, by T. versicolor. The solubilized lignin has the same molecular size as the residual lignin originally present in the pulp. Demethylation of the phenolic rings in the pulp is an early effect of incubation with the fungus.

  16. Green Diesel from Kraft Lignin in Three Steps.

    PubMed

    Löfstedt, Joakim; Dahlstrand, Christian; Orebom, Alexander; Meuzelaar, Gerrit; Sawadjoon, Supaporn; Galkin, Maxim V; Agback, Peter; Wimby, Martin; Corresa, Elena; Mathieu, Yannick; Sauvanaud, Laurent; Eriksson, Sören; Corma, Avelino; Samec, Joseph S M

    2016-06-22

    Precipitated kraft lignin from black liquor was converted into green diesel in three steps. A mild Ni-catalyzed transfer hydrogenation/hydrogenolysis using 2-propanol generated a lignin residue in which the ethers, carbonyls, and olefins were reduced. An organocatalyzed esterification of the lignin residue with an in situ prepared tall oil fatty acid anhydride gave an esterified lignin residue that was soluble in light gas oil. The esterified lignin residue was coprocessed with light gas oil in a continous hydrotreater to produce a green diesel. This approach will enable the development of new techniques to process commercial lignin in existing oil refinery infrastructures to standardized transportation fuels in the future. PMID:27246391

  17. A case study of waste management at the Northern Finnish pulp and paper mill complex of Stora Enso Veitsiluoto Mills.

    PubMed

    Nurmesniemi, Hannu; Pöykiö, Risto; Keiski, Riitta Liisa

    2007-01-01

    This work presents the current waste management system at the pulp and paper mill complex of Stora Enso Oyj Veitsiluoto Mills at Kemi, Northern Finland. This paper covers examples of case studies carried out at the mill and describes how the wastes and by-products are utilized as a neutralizing agent for acidic wastewaters (i.e., green liquor dregs from the causticizing process), as a hardener in filling mine cavities (i.e., ash from the fluidized bed boiler), as a landscaping agent (i.e., ash as well as the fibre clay from chemical wastewater treatment plant), as a hydraulic barrier material for landfills (i.e., fibre clay), and as a soil enrichment agent (i.e., calcium carbonate from the precipitated calcium carbonate plant). In addition, the wood waste from the wood-handling plant, sawmill, packaging pallet plant and from the groundwood mill, as well as the biosludge from the biological wastewater treatment plant, are all incinerated in the fluidized bed boiler for energy production. Due to effective utilization of the solid wastes generated at the mills, the annual amount of waste to be disposed of in the landfill has decreased between 1994 and 2004 from 42,990 to 6083 tonn (expressed as wet weight). The paper also gives an overview of the relevant European Union legislation on the forest industry and on waste management, as well as of the pulping process and of the generation of major solid wastes in the pulp and paper mills. PMID:16987647

  18. Bioenergy from anaerobically treated wastewater

    SciTech Connect

    Richards, E.A.

    1981-01-01

    Breweries and other processing plants including dairy cooperatives, sugar plants, grain mills, gasohol plants, etc., produce wastewater containing complex organic matter, either in solution or as volatile suspended solids, which can be treated anaerobically to effectively reduce the pollutants by 85-95% and generate a CH4 containing gas. An example anaerobic plant to serve a 10 to the power of 6-bbl brewery is discussed.

  19. A comprehensive program to develop correlations for the physical properties of Kraft black liquor. Interim report No. 3

    SciTech Connect

    Fricke, A.L.; Dong, D.J.; Schmidl, G.W.; Stoy, M.A.; Zaman, A.A.

    1993-09-01

    The black liquor properties program has been conducted over this last period so as to systematically collect data on properties, liquor composition, and lignin characteristics very carefully by methods that have developed during this program. Complete data has been collected for Slash Pine black liquors made by experimental pulping at different pulping conditions. In addition, data has been collected for mill liquors and partial properties or composition data has been collected on Slash Pine black liquors. Data reduction methods have been developed or extended for correlation of viscosity, heat capacity, heat of dilution, and density. Correlation of properties to pulping conditions and of composition to. pulping conditions has begun. In most cases, data reduction methods have been developed that are fundamentally based and that have been shown to be generally applicable to all black liquors. In the near future, we fully expect to accomplish our goal of developing generalized correlations relating physical properties of Slash Pine kraft black liquors to liquor composition. This interim report reviews the methods used, describes examples of data reduction methods that have been developed, and presents some preliminary results for correlation of liquor composition and properties to pulping conditions for Slash Pine black liquors.

  20. 12. TROJAN MILL, INTERIOR SHOWING PRIMARY MILL No. 1 (MONADNOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. TROJAN MILL, INTERIOR SHOWING PRIMARY MILL No. 1 (MONADNOCK CHILEAN) FROM EAST, c. 1912. ELEVATOR No. 1 ADJACENT TO MILL. CREDIT WR. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  1. Biomass torrefaction mill

    DOEpatents

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  2. Augusta Newsprint: Paper Mill Pursues Five Projects Following Plant-Wide Energy Efficiency Assessment

    SciTech Connect

    Not Available

    2003-07-01

    Augusta Newsprint undertook a plant-wide energy efficiency assessment of its Augusta, Georgia, plant in 2001. The assessment helped the company decide to implement five energy efficiency projects. Four of the five projects will save the company 11,000 MWh of electrical energy (about$369,000) each year. The remaining project will produce more than$300,000 annually, from sale of the byproduct turpentine. The largest annual savings,$881,000, will come from eliminating Kraft pulp by using better process control. All of the projects could be applied to other paper mills and most of the projects could be applied in other industries.

  3. Viscoelastic properties of high solids softwood kraft black liquors

    SciTech Connect

    Zaman, A.A.; Fricke, A.L. . Dept. of Chemical Engineering)

    1995-01-01

    The linear viscoelastic functions of several softwood slash pine kraft black liquors from a two level, four variable factorially designed pulping experiment were determined for solids concentrations from 65% to 81% and temperatures from 40 to 85 C. At high solids and lower temperatures, black liquors behave like un-cross-linked polymers.The exact level of dynamic viscosity and storage modulus at any given condition is dependent upon the solids composition which will vary from liquor to liquor. The linear viscoelastic functions were described using Cross and Carreau-Yasuda models. Superposition principles developed for polymer melts and concentrated polymer solutions were applied to obtain reduced correlations for dynamic viscosity and storage modulus. The data for dynamic viscosity were shifted over the whole range of temperature, solids concentrations, and frequency, and a single curve for dynamic viscosity behavior of every liquor was obtained. The data for storage modulus did not superimpose into a single curve for the effects of solids concentration. The reduced correlations were used to estimate the viscoelasticity of the liquors near normal firing conditions and found that black liquors will not have any problem in droplet formation for concentrations up to 81% solids and temperatures above 120 C. The viscometric and linear viscoelastic functions of black liquors were compared (Cox-Merz rule), and it was shown that at sufficiently low shear rates and frequencies both shear viscosity and the magnitude of the complex viscosity approach zero shear rate viscosity.

  4. Helmholtz's early empiricism and the Erhaltung der Kraft.

    PubMed

    Jurkowitz, Edward

    2010-01-01

    Hermann Helmholtz has often been understood to have started research under the influence of Kant, and then to have made a transition to a later mature empiricist phase. Without claiming that in 1847 Helmholtz held the same positions that he later espoused, I suggest that already in his 1847 'Uber die Erhaltung der Kraft' one may find important aspects of his later empiricism. I highlight the ways in which, from early on, Helmholtz turned Kant to use in developing an empirical program of inquiry into possible basic natural causes. To that end, I indicate how, throughout his arguments, Helmholtz employed, sometimes explicitly, but often tacitly, an empiricist logic, one that ran contrary to any form of transcendental deduction, and even to all a priori knowledge. Instead of deriving aspects about the ultimate constituents of nature, Helmholtz aimed to define the proper project for physical natural science. The first part of the paper describes the context of discussion in which Helmholtz entered. The bulk of the paper then analyzes Helmholtz's arguments in order to make space between (1) Kantian, and other, deductions of characteristics that must be true of nature and (2) Helmholtz's delineation of empirically determinable characteristics of presumed ultimate elements of nature, ones that he meant to be specified and delimited through future experimental research. The paper highlights that throughout his discussion Helmholtz meant to define the proper project for physical natural science, a project rife with empiricist aspects. PMID:20503777

  5. Hot Corrosion at Air-Ports in Kraft Recovery Boilers

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2003-01-01

    Hot corrosion can occur on the cold-side of airports in Kraft recovery boilers. The primary corrosion mechanism involves the migration of sodium hydroxide and potassium hydroxide vapors through leaks in the furnace wall at the airports and their subsequent condensation. It has been reported that stainless steel is attacked much faster than carbon steel in composite tubes, and that carbon steel tubing, when used with a low-chromium refractory, does not exhibit this type of corrosion. For hot corrosion fluxing of metal oxides, either acidic or basic fluxing takes place, with a solubility minimum at the basicity of transition between the two reactions. For stainless steel, if the basicity of the fused salt is between the iron and chromium oxide solubility minima, then a synergistic effect can occur that leads to rapid corrosion. The products of one reaction are the reactants of the other, which eliminates the need for rate-controlling diffusion. This effect can explain why stainless steel is attacked more readily than carbon steel.

  6. Helmholtz's early empiricism and the Erhaltung der Kraft.

    PubMed

    Jurkowitz, Edward

    2010-01-01

    Hermann Helmholtz has often been understood to have started research under the influence of Kant, and then to have made a transition to a later mature empiricist phase. Without claiming that in 1847 Helmholtz held the same positions that he later espoused, I suggest that already in his 1847 'Uber die Erhaltung der Kraft' one may find important aspects of his later empiricism. I highlight the ways in which, from early on, Helmholtz turned Kant to use in developing an empirical program of inquiry into possible basic natural causes. To that end, I indicate how, throughout his arguments, Helmholtz employed, sometimes explicitly, but often tacitly, an empiricist logic, one that ran contrary to any form of transcendental deduction, and even to all a priori knowledge. Instead of deriving aspects about the ultimate constituents of nature, Helmholtz aimed to define the proper project for physical natural science. The first part of the paper describes the context of discussion in which Helmholtz entered. The bulk of the paper then analyzes Helmholtz's arguments in order to make space between (1) Kantian, and other, deductions of characteristics that must be true of nature and (2) Helmholtz's delineation of empirically determinable characteristics of presumed ultimate elements of nature, ones that he meant to be specified and delimited through future experimental research. The paper highlights that throughout his discussion Helmholtz meant to define the proper project for physical natural science, a project rife with empiricist aspects.

  7. Mills at Maryland.

    ERIC Educational Resources Information Center

    Form, William

    1995-01-01

    Offers an insightful and perceptive portrait of the legendary sociologist C. Wright Mills by one of his former graduate students. Traces Mills's areas of interest from occupational characteristics to power groups leading to the publication of his seminal work, "The Power Elite." Discusses Mills's teaching styles and academic career. (MJP)

  8. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  9. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  10. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  11. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  12. Biosolids recycling at a pulp and paper mill

    SciTech Connect

    Gratton, P.F.; Montgomery, K.L.; Page, S.H.

    1997-12-31

    The Bio Gro Division of Wheelabrator Water Technologies Inc. has traditionally been involved in recycling biosolids from domestic wastewater treatment plants. The biosolids, or primarily organic residuals that result from the treatment of wastewater, have long been used in agriculture as a soil conditioner, fertilizer, organic lime material and also for other soil fertility practices. It has long been known that residuals from certain industrial wastewater processes are very high in nutrients and organic matter which can also be successfully used in agricultural activities. One of these industrial biosolids with well-documented agricultural value is the organic residual from the treatment of wastewater from pulp and paper mills. Most pulp and paper producers in the US recognize the value of pulp and paper biosolids as a material that can fertilize their own tree stands or can be used in normal agricultural practices. In 1995, Bio Gro entered into a contract with a two large pulp and paper mills in Maine for the management of its pulp and paper biosolids. Bio Gro was responsible for implementing the beneficial use options for a mixture of primary and secondary biosolids from the wastewater treatment process which was combined with combustion ash from the facility`s power generation facilities. The contract included the layout of spreading areas, mixing of the residuals and spreading the material on the sites. This paper will explain the process that Bio Gro employed to manage the pulp and paper biosolids generated at the mill.

  13. Field Comparison of the Sampling Efficacy of Two Smear Media: Cotton Fiber and Kraft Paper

    SciTech Connect

    Hogue, M.G.

    2002-02-07

    Two materials were compared in field tests at the Defense Waste Processing Facility: kraft paper (a strong, brown paper made from wood pulp prepared with a sodium sulfate solution) and cotton fiber. Based on a sampling of forty-six pairs of smears, the cotton fiber smears provide a greater sensitivity. The cotton fiber smears collected an average of forty-four percent more beta activity than the kraft paper smears and twenty-nine percent more alpha activity. Results show a greater sensitivity with cotton fiber over kraft paper at the 95 percent confidence level. Regulatory requirements for smear materials are vague. The data demonstrate that the difference in sensitivity of smear materials could lead to a large difference in reported results that are subsequently used for meeting shipping regulations or evaluating workplace contamination levels.

  14. Simultaneous and rapid determination of multiple component concentrations in a Kraft liquor process stream

    DOEpatents

    Li, Jian; Chai, Xin Sheng; Zhu, Junyoung

    2008-06-24

    The present invention is a rapid method of determining the concentration of the major components in a chemical stream. The present invention is also a simple, low cost, device of determining the in-situ concentration of the major components in a chemical stream. In particular, the present invention provides a useful method for simultaneously determining the concentrations of sodium hydroxide, sodium sulfide and sodium carbonate in aqueous kraft pulping liquors through use of an attenuated total reflectance (ATR) tunnel flow cell or optical probe capable of producing a ultraviolet absorbency spectrum over a wavelength of 190 to 300 nm. In addition, the present invention eliminates the need for manual sampling and dilution previously required to generate analyzable samples. The inventive method can be used in Kraft pulping operations to control white liquor causticizing efficiency, sulfate reduction efficiency in green liquor, oxidation efficiency for oxidized white liquor and the active and effective alkali charge to kraft pulping operations.

  15. Wastewater Collection.

    ERIC Educational Resources Information Center

    Chatterjee, Samar; And Others

    1978-01-01

    Presents a literature review of wastewater collection systems and components. This review covers: (1) planning, (2) construction; (3) sewer system evaluation; (4) maintenance; (5) rehabilitation; (6) overview prevention; and (7) wastewater pumping. A list of 111 references is also presented. (HM)

  16. Valuable product production from wood mill effluents.

    PubMed

    Mato, T; Ben, M; Kennes, C; Veiga, M C

    2010-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand (COD), low pH and nutrients limitation. Aerobic and anaerobic processes have been used for their treatment. Presently, bioplastics production (mainly polyhydroxyalkanoates or PHA) from wastewaters with mixed cultures is being studied. Substrate requirements for these processes are a high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. PHA production from wastewaters is carried out in three steps. First, complex organic matter is converted into volatile fatty acids (VFA) through acidogenic fermentation. Then, VFA are used as substrate in an aerobic sequencing batch reactor (SBR), in which the enrichement of PHA producing bacteria from a mixed culture is favoured. Finally, the sludge from the SBR is fed with a pulse containing high VFA concentrations, resulting in PHA accumulation inside the cells. In this work, the possibility of applying this process to wood mill effluents is proposed. An acidification percentage of 37% and a storage yield (Y(STO)) of 0.23 Cmmol/Cmmol were obtained. PMID:21076215

  17. 31. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: View down at the mill from top of the mill's circular masonry enclosure. Mill animals circling above the mill, on top of the enclosure, dragged booms radiating from the drive shaft to power the mill. The drive-shaft is no longer in its upright positon but is lying next to the mill in the foreground. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  18. 70. PRIMARY MILL AND CLASSIFIER No. 2 FROM NORTHWEST. MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. PRIMARY MILL AND CLASSIFIER No. 2 FROM NORTHWEST. MILL DISCHARGED INTO LAUNDER WHICH PIERCED THE SIDE OF THE CLASSIFIER PAN. WOOD LAUNDER WITHIN CLASSIFIER VISIBLE (FILLED WITH DEBRIS). HORIZONTAL WOOD PLANKING BEHIND MILL IS FEED BOX. MILL SOLUTION PIPING RUNS ALONG BASE OF WEST SIDE OF CLASSIFIER. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  19. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    SciTech Connect

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was

  20. 40 CFR 430.01 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY General Provisions § 430.01... wastewaters; wastewater, including leachates, from landfills owned by pulp and paper mills subject to subpart... pertains to pulp and paperboard production at unbleached kraft mills including linerboard or bag paper...

  1. 40 CFR 430.01 - General definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY General Provisions § 430.01... wastewaters; wastewater, including leachates, from landfills owned by pulp and paper mills subject to subpart... pertains to pulp and paperboard production at unbleached kraft mills including linerboard or bag paper...

  2. 40 CFR 430.01 - General definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY General Provisions § 430.01... wastewaters; wastewater, including leachates, from landfills owned by pulp and paper mills subject to subpart... pertains to pulp and paperboard production at unbleached kraft mills including linerboard or bag paper...

  3. Nonlinear mill control.

    PubMed

    Martin, G; McGarel, S

    2001-01-01

    A mill is a mechanical device that grinds mined or processed material into small particles. The process is known to display significant deadtime, and, more notably, severe nonlinear behavior. Over the past 25 years attempts at continuous mill control have met varying degrees of failure, mainly due to model mismatch caused by changes in the mill process gains. This paper describes an on-line control application on a closed-circuit cement mill that uses nonlinear model predictive control technology. The nonlinear gains for the control model are calculated on-line from a neural network model of the process.

  4. 40 CFR 63.446 - Standards for kraft pulping process condensates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... condensates. 63.446 Section 63.446 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Standards for kraft pulping process condensates. (a) The requirements of this section apply to owners or... condensates from the following equipment systems shall be treated to meet the requirements specified...

  5. 40 CFR 63.446 - Standards for kraft pulping process condensates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... condensates. 63.446 Section 63.446 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Standards for kraft pulping process condensates. (a) The requirements of this section apply to owners or... condensates from the following equipment systems shall be treated to meet the requirements specified...

  6. Wastewater Treatment.

    ERIC Educational Resources Information Center

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  7. Compound taper milling machine

    NASA Technical Reports Server (NTRS)

    Campbell, N. R.

    1969-01-01

    Simple, inexpensive milling machine tapers panels from a common apex to a uniform height at panel edge regardless of the panel perimeter configuration. The machine consists of an adjustable angled beam upon which the milling tool moves back and forth above a rotatable table upon which the workpiece is held.

  8. Bay Mills' Bold Approach

    ERIC Educational Resources Information Center

    Freedman, Eric

    2011-01-01

    It's a long, long way from Bay Mills Community College, near the shores of frigid Lake Superior, to Detroit. But distance, time and demographics aside, the school and the city are united by Bay Mills' status as the nation's only tribally controlled college that authorizes quasi-public schools, known officially as public school academies. And it's…

  9. Reduction of organic trace compounds and fresh water consumption by recovery of advanced oxidation processes treated industrial wastewater.

    PubMed

    Bierbaum, S; Öller, H-J; Kersten, A; Klemenčič, A Krivograd

    2014-01-01

    Ozone (O(3)) has been used successfully in advanced wastewater treatment in paper mills, other sectors and municipalities. To solve the water problems of regions lacking fresh water, wastewater treated by advanced oxidation processes (AOPs) can substitute fresh water in highly water-consuming industries. Results of this study have shown that paper strength properties are not impaired and whiteness is slightly impaired only when reusing paper mill wastewater. Furthermore, organic trace compounds are becoming an issue in the German paper industry. The results of this study have shown that AOPs are capable of improving wastewater quality by reducing organic load, colour and organic trace compounds.

  10. 32. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: End of mill into which cane was fed between top and bottom roll. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  11. 13. TROJAN MILL, INTERIOR SHOWING PRIMARY MILL No. 1 (ALLIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TROJAN MILL, INTERIOR SHOWING PRIMARY MILL No. 1 (ALLIS CHALMERS BALL MILL) FROM EAST, c. 1919. ELECTRIC MOTOR AND DRIVE SHAFT CLEARLY VISIBLE. CREDIT WR. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  12. 33. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: From above the mill showing the three 15' x 22' horizontal rolls, mill frame or cheeks, portland cement foundation, and lower part of vertical drive shaft lying next mill in foreground. The loose metal piece resting on top of the mill frame matched the indented portion of the upper frame to form a bracket and bearing for the drive shaft when it was in its proper upright position. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  13. 30. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1885-1870. View: Masonry-lined passage-way leading to the mill at the center of its circular masonry enclosure. The passageway permitted cane to be carried to the mill and cane trash (bagasse) to be carried away. Bridges over the passageways, no longer in place, permitted the mill animals to circle and power the mill from above. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  14. 1. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Historical view, 1934, from T.T. Waterman collection, Hawaiian Sugar Planters' Association. Large rectangular piece lying in front of the mill is the top of the mill frame appearing in its proper place in 1928 views. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  15. 13. VIEW OF THE MILL LOOKING SOUTHWEST SHOWING THE MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF THE MILL LOOKING SOUTHWEST SHOWING THE MILL, TRESTLES, A WAREHOUSE AT THE RIGHT SIDE TO THE PHOTOGRAPH. NOTE THE PIPE IN THE LOWER CENTER FOREGROUND. THIS IS A RUIN OF THE TAILING LINE THAT RAN FROM THE MILL TO THE CYANIDE PLANT ABOUT 1800 FEET NORTH OF THE MILL. DETERIORATED PIECES OF THE WOOD TRESTLE THAT CARRIED THE PIPE ARE SCATTERED AROUND THE PIPE. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  16. 40 CFR Table Aa-2 to Subpart Aa of... - Kraft Lime Kiln and Calciner Emissions Factors for CH4 and N2O

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Kraft Lime Kiln and Calciner Emissions... Manufacturing Pt. 98, Subpt. AA, Table AA -2 Table AA-2 to Subpart AA of Part 98—Kraft Lime Kiln and Calciner Emissions Factors for CH4 and N2O Fuel Fossil fuel-based emissions factors (kg/mmBtu HHV) Kraft lime...

  17. Assessment of Population Status for a White Sucker (Catostomus commersoni) Population Exposed to Bleached Kraft Pulp Mill Effluent

    EPA Science Inventory

    A predictive model was developed to translate changes in the fecundity and the age structure of a breeding population of white sucker (Catostomus commersoni) collected in the field to alterations in population growth rate. Application of this density dependent population ...

  18. Comparison of two continuous fungal bioreactors for posttreatment of anaerobically pretreated weak black liquor from kraft pulp mills.

    PubMed

    Ortega-Clemente, Alfredo; Marín-Mezo, G; Ponce-Noyola, M T; Montes-Horcasitas, M C; Caffarel-Méndez, S; Barrera-Cortés, Josefina; Poggi-Varaldo, Héctor M

    2007-03-01

    The purpose of this work was to evaluate and compare two continuous systems of posttreatment of anaerobically pretreated weak black liquor (WBL). The first system consisted of a packed bed reactor (PBR) with Trametes versicolor (Tv) immobilized on wood cubes of holm oak (biocubes). The second system was a fluidized bed reactor (FBR) with Lentinus edodes (Le) immobilized on wood cubes of holm oak. The reactors operated for 65 days at a hydraulic retention time (HRT) of 5 days, at 28 degrees C, with continuous aeration. Response variables monitored were conventional and specific, unit, net removal efficiency (eta and eta(sun), respectively) of chemical oxygen demand (COD), color, and ligninoids, and enzymatic activities of manganese peroxidase (MnP), lignin peroxidase (LiP), laccase (Lac) and proteases. The PBR showed an average color eta superior to that of the FBR (52.42 +/- 21.78% and 25.34 +/- 14.38% for PBR and FBR, respectively); removals of COD and ligninoids presented a similar pattern to that of color. Lac activity was significantly larger in PBR than in FBR. Activity of MnP in PBR was higher than that of the FBR (0.004 and 0.002 U MnP/mL, respectively). This difference could be ascribed to the different fungi present in each bioreactor. LiP activity was very low in both reactors. Average value of proteases was almost double in the FBR as compared with PBR (0.472 and 0.209 U Proteases/mL, respectively). During the last 2 weeks of operation, biocubes in the FBR experienced a significant loss of the attached Le biomass, probably by attrition. This and higher protease activity in the FBR could explain the lower pollutant removals achieved in the FBR. Overall, PBR with immobilized Tv showed a better performance than the FBR with Le for the posttreatment of the recalcitrant anaerobic effluent. Extended and sustained pollutant removal (65 days) was achieved in the PBR, although more research is needed to evaluate bioreactor performance at shorter hydraulic retention times. PMID:16937406

  19. Assessment of Population Status for a White Sucker (Catostomus commersoni) Population Exposed to Bleached Kraft Pulp Mill Effluent

    EPA Science Inventory

    Credible ecological risk assessments often need to include analysis of population-level impacts. In the present study, a predictive model was developed to translate changes in the fecundity and the age structure of a breeding population of white sucker (Catostomus commersoni) co...

  20. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.; Herren, Kenneth A.

    2004-01-01

    The ion milling of sapphire is a complicated operation due to several characteristics of the material itself. It is a relatively hard transparent nonconductive crystalline material that does not transfer heat nearly as well as metals that have been successfully ion milled in the past. This investigation involved designing an experimental arrangement, using existing ion milling equipment, as the precursor to figuring the surface of sapphire and other insulating optical materials. The experimental arrangement employs a laser probe beam to constantly monitor the stresses being induced in the material, as it is being ion milled. The goal is to determine if the technique proposed would indeed indicate the stress being induced in the material so that these stresses can be managed to prevent failure of the optic.

  1. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.

    PubMed

    Palme, Anna; Theliander, Hans; Brelid, Harald

    2016-01-20

    The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected.

  2. TCF bleaching sequence in kraft pulping of olive tree pruning residues.

    PubMed

    Requejo, A; Rodríguez, A; Colodette, J L; Gomide, J L; Jiménez, L

    2012-08-01

    The aim of the present work was to find a suitable Kraft cooking process for olive tree pruning (OTP), in order to produce pulp of kappa number about 17. The Kraft pulp produced under optimized conditions showed a viscosity of 31.5 mPa·s and good physical, mechanical, and optical properties, which are suitable for paper production. The physical-mechanical and optical properties were measured before and after bleaching. Although the OTP pulp was bleached to 90.9% ISO brightness (kappa<1), the process demanded a long sequence of stages, OZQPOZQPO. The bleached pulp showed a brightness reversion equal to 1.3%. Furthermore, this bleached pulp did not need a high intensity of beating due to high drainability degree in the unbeaten pulp. So that, OTP is suggested as an interesting raw material for cellulosic pulp production because its properties are comparable to those of other agricultural residues, currently used in the paper industry.

  3. Pitt Mill Demonstration

    SciTech Connect

    Oder, R.R.; Borzone, L.A.

    1990-05-01

    Results of a technical and economic evaluation of application of the Pitt Mill to fine coal grinding are presented. The Pitt Mill is a vertically oriented, batch operated, intermediate energy density (0. 025 kW/lb media), stirred ball mill. The mill grinds coal from coarse sizes (typically 3/16 inch or 4 mesh topsize) to the 10 micron to 20 micron mean particle diameter size range in a single step using a shallow grinding bed containing inexpensive, readily available, course grinding media. Size reduction is efficient because of rapid product circulation through the grinding bed caused by action of a novel circulation screw mounted on the agitator shaft. When a dispersant is employed, the grinding can be carried out to 50% to 60% solids concentration. Use of coarse grinding media offers the possibility of enhanced mineral liberation because size reduction is achieved more by impact shattering than by attrition. The batch method offers the possibility of very close control over product particle size distribution without overproduction of fines. A two- phase program was carried out. In the first phase, Grinding Studies, tests were run to determine a suitable configuration of the Pitt Mill. Machine design parameters which were studied included screw configuration, media type, agitator RPM, time, media size, and slurry chamber aspect ratio. During the last part of this phase of the program, tests were carried out to compare the results of grinding Pocahontas seam, Pittsburgh {number sign}8, and East Kentucky Mingo County coals by the Pitt Mill and by a two-stage grinding process employing a Netzsch John mill to feed a high energy density (0.05 kW/Lb media) disc mill. 22 refs., 25 tabs.

  4. Development of a strategy for energy efficiency improvement in a Kraft process based on systems interactions analysis

    NASA Astrophysics Data System (ADS)

    Mateos-Espejel, Enrique

    The objective of this thesis is to develop, validate, and apply a unified methodology for the energy efficiency improvement of a Kraft process that addresses globally the interactions of the various process systems that affect its energy performance. An implementation strategy is the final result. An operating Kraft pulping mill situated in Eastern Canada with a production of 700 adt/d of high-grade bleached pulp was the case study. The Pulp and Paper industry is Canada's premier industry. It is characterized by large thermal energy and water consumption. Rising energy costs and more stringent environmental regulations have led the industry to refocus its efforts toward identifying ways to improve energy and water conservation. Energy and water aspects are usually analyzed independently, but in reality they are strongly interconnected. Therefore, there is a need for an integrated methodology, which considers energy and water aspects, as well as the optimal utilization and production of the utilities. The methodology consists of four successive stages. The first stage is the base case definition. The development of a focused, reliable and representative model of an operating process is a prerequisite to the optimization and fine tuning of its energy performance. A four-pronged procedure has been developed: data gathering, master diagram, utilities systems analysis, and simulation. The computer simulation has been focused on the energy and water systems. The second stage corresponds to the benchmarking analysis. The benchmarking of the base case has the objectives of identifying the process inefficiencies and to establish guidelines for the development of effective enhancement measures. The studied process is evaluated by a comparison of its efficiency to the current practice of the industry and by the application of new energy and exergy content indicators. The minimum energy and water requirements of the process are also determined in this step. The third stage is

  5. Kraft Pulp Bleaching and Delignification by Dikaryons and Monokaryons of Trametes versicolor

    PubMed Central

    Addleman, Katherine; Archibald, Frederick

    1993-01-01

    The ability of 10 dikaryotic and 20 monokaryotic strains of Trametes (Coriolus) versicolor to bleach and delignify hardwood and softwood kraft pulps was assessed. A dikaryon (52P) and two of its mating-compatible monokaryons (52J and 52D) derived via protoplasting were compared. All three regularly bleached hardwood kraft pulp more than 20 brightness points (International Standards Organization) in 5 days and softwood kraft pulp the same amount in 12 days. Delignification (kappa number reduction) by the dikaryon and the monokaryons was similar, but the growth of the monokaryons was slower. Insoluble dark pigments were commonly found in the mycelium, medium, and pulp of the dikaryon only. Laccase and manganese peroxidase (MnP) but not lignin peroxidase activities were secreted during bleaching by all three strains. Their laccase and MnP isozyme patterns were compared on native gels. No segregation of isozyme bands between the monokaryons was found. Hardwood kraft pulp appeared to adsorb several laccase isozyme bands. One MnP isozyme (pI, 3.2) was secreted in the presence of pulp by all three strains, but a second (pI, 4.9) was produced only by 52P. A lower level of soluble MnP activity in one monokaryon (52D) was associated with reduced bleaching ability and a lower level of methanol production. Since monokaryon 52J bleached pulp better than its parent dikaryon 52P, especially per unit of biomass, this genetically simpler monokaryon will be the preferred subject for further genetic manipulation and improvement of fungal pulp biological bleaching. Images PMID:16348851

  6. Production and Characterization of Trametes versicolor Mutants Unable To Bleach Hardwood Kraft Pulp

    PubMed Central

    Addleman, K.; Dumonceaux, T.; Paice, M. G.; Bourbonnais, R.; Archibald, F. S.

    1995-01-01

    Protoplasts of the monokaryotic strain 52J of Trametes versicolor were treated with UV light and screened for the inability to produce a colored precipitate on guaiacol-containing agar plates. Mutants unable to oxidize guaiacol had absent or very low secretion of laccase and manganese peroxidase (MnP) proteins. All isolates unable to secrete MnP were also unable to bleach or delignify kraft pulp. One mutant strain, M49, which grew normally but did not oxidize guaiacol, was tested further with a number of other substrates whose degradation has been associated with delignification by white rot fungi. Compared with the parent, 52J, mutant M49, secreting no MnP and low laccase, could not brighten or delignify kraft pulp, produced less ethylene from 2-keto methiolbutyric acid, released much less (sup14)CO(inf2) from [(sup14)C]DHP (a synthetic lignin-like polymerizate), and produced much less methanol from pulp. This mutant also displayed decreased abilities to oxidize the dyes poly B-411, poly R-478, and phenol red compared with the wild-type strain and was also unable to decolorize kraft bleachery effluent or mineralize its organochlorine. Addition of purified MnP in conjunction with H(inf2)O(inf2), MnSO(inf4), and an Mn(III) chelator to M49 cultures partially restored methanol production, pulp delignification, and biobleaching in some cases. PMID:16535150

  7. Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor.

    PubMed

    Kudahettige-Nilsson, Rasika L; Helmerius, Jonas; Nilsson, Robert T; Sjöblom, Magnus; Hodge, David B; Rova, Ulrika

    2015-01-01

    Acetone-butanol-ethanol (ABE) fermentation was studied using acid-hydrolyzed xylan recovered from hardwood Kraft black liquor by CO2 acidification as the only carbon source. Detoxification of hydrolyzate using activated carbon was conducted to evaluate the impact of inhibitor removal and fermentation. Xylose hydrolysis yields as high as 18.4% were demonstrated at the highest severity hydrolysis condition. Detoxification using active carbon was effective for removal of both phenolics (76-81%) and HMF (38-52%). Batch fermentation of the hydrolyzate and semi-defined P2 media resulted in a total solvent yield of 0.12-0.13g/g and 0.34g/g, corresponding to a butanol concentration of 1.8-2.1g/L and 7.3g/L respectively. This work is the first study of a process for the production of a biologically-derived biofuel from hemicelluloses solubilized during Kraft pulping and demonstrates the feasibility of utilizing xylan recovered directly from industrial Kraft pulping liquors as a feedstock for biological production of biofuels such as butanol. PMID:25460986

  8. Bioplastic production using wood mill effluents as feedstock.

    PubMed

    Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C

    2011-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.

  9. Wastewater treatment of pulp and paper industry: a review.

    PubMed

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques. PMID:23033705

  10. Wastewater treatment of pulp and paper industry: a review.

    PubMed

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques.

  11. 34. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Side view of mill. Vertical drive shaft lying on ground in foreground. When drive-shaft was in upright position its bevel gear was meshed with the bevel gear of the top roll, transmitting the animals'circular motion around the drive shaft to the horizontal rolls. The foundation is of portland cement. The heavy timber mill bed, between the mill and the portland cement foundation has rolled away. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  12. Survey of receiving-water environmental impacts associated with discharges from pulp mills; 2: Gonad size, liver size, hepatic erod activity and plasma sex steroid levels in white sucker

    SciTech Connect

    Munkittrick, K.R.; Servos, M.R. . Great Lakes Lab. for Fisheries and Aquatic Sciences); Van Der Kraak, G.J.; McMaster, M.E. . Dept. of Zoology); Portt, C.B. ); Heuvel, M.R. van den . Dept. of Biology)

    1994-07-01

    Fish collected from the receiving areas of 12 Canadian pulp mills were examined, including sites receiving effluent from kraft mills using chlorine as well as sulfite mills. Field collections included sampling of receiving water for chemistry and toxicity testing, and sampling of local fish for organ weights, hepatic MFO (ethoxyresorufin-O-deethylase, EROD) activity, plasma steroid levels, and levels of liver dioxins. The main objectives of this study were to determine whether the discharge of effluent from pulp mills to sites other than Jackfish Bay was associated with physiological or biochemical disruptions in wild fish, whether there was any correlation between waste treatment and the presence of biological responses in wild fish, and whether there was any association between the use of chlorine as a bleaching agent and these responses. Although white sucker collected near bleached-kraft mills exhibited the highest EROD induction and dioxin levels, elevated enzyme activity was observed in fish from sites that did not use chlorine, and depressions in plasma sex steroid levels was not correlated with the level of EROD activity. The absence of chlorine bleaching or the presence of secondary treatment did not eliminate responses in fish, including decreased circulating levels of sex steroids, decreased gonadal size, and increase liver size. This survey has shown that (a) induction of hepatic EROD enzymes and depressions of plasma sex steroid levels during gonadal growth are found downstream of several pulp mills; (b) these changes are seen at some mills without chlorine bleaching and at mills that have secondary treatment; (c) substantial dilutions of nontoxic effluent do not appear to remove these responses; (d) the dominant factor determining the presence or absence of responses appeared to be dilution level; and (e) lab toxicity tests on invertebrates, rainbow trout, and fat-head minnows could not predict the presence of these responses in wild fish.

  13. 12. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Historical view, 1934, T.T. Waterman Collection, Hawaiian Sugar Planters' Association, Oahu, Hawaii. Masonry-lined passageway leading to the mill at the center of its circular masonry enclosure. The passageway permitted cane to be carried to the mill and cane trash (bagasse) to be carried away after milling. Bridges over the passageways, not in place, permitted the mill animals to circle and power the mill from above. View shows area prior to substantial overgrowth existing in 1978 views of the area. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  14. Understanding Longitudinal Wood Fiber Ultra-structure for Producing Cellulose Nanofibrils Using Disk Milling with Diluted Acid Prehydrolysis

    PubMed Central

    Qin, Yanlin; Qiu, Xueqing; Zhu, J.Y.

    2016-01-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFX) as a severity factor to quantitatively control xylan dissolution and BEP fibril deploymerization. More importantly, we were able to accurately predict the degree of polymerization (DP) of disk-milled fibrils using CHFX and milling time or milling energy consumption. Experimentally determined ratio of fibril DP and number mean fibril height (diameter d), DP/d, an aspect ratio measurer, were independent of the processing conditions. Therefore, we hypothesize that cellulose have a longitudinal hierarchical structure as in the lateral direction. Acid hydrolysis and milling did not substantially cut the “natural” chain length of cellulose fibrils. This cellulose longitudinal hierarchical model provides support for using weak acid hydrolysis in the production of cellulose nanofibrils with substantially reduced energy input without negatively affecting fibril mechanical strength. PMID:27796325

  15. 168. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    168. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND CLASSIFIER AT MIDDLE LEFT. PRIMARY MILL SURGE TANK AND LAUNDERS AT MIDDLE BOTTOM. STAIR TO TROJAN CLASSIFIER LEVEL BEHIND CRANE BENT, UPPER RIGHT. PAIRED PIPES FROM PRIMARY PULP PUMPS TO PRIMARY THICKENERS RISE VERTICALLY AT MIDDLE RIGHT AND RUN HORIZONTALLY ACROSS TOP OF VIEW - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  16. 68. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND CLASSIFIER AT MIDDLE LEFT. PRIMARY MILL SURGE TANK AND LAUNDERS AT MIDDLE BOTTOM. STAIR TO TROJAN CLASSIFIER LEVEL BEHIND CRANE BENT, UPPER RIGHT. PAIRED PIPES FROM PRIMARY PULP PUMPS TO PRIMARY THICKENERS RISE VERTICALLY AT MIDDLE RIGHT AND RUN HORIZONTALLY ACROSS TOP OF VIEW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  17. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    NASA Astrophysics Data System (ADS)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  18. 7 CFR 868.306 - Milling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Principles Governing Application of Standards § 868.306 Milling requirements. The degree of milling for milled rice; i.e., “hard... interpretive line samples for such rice....

  19. 7 CFR 868.306 - Milling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Principles Governing Application of Standards § 868.306 Milling requirements. The degree of milling for milled rice; i.e., “hard... interpretive line samples for such rice....

  20. 7 CFR 868.306 - Milling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Principles Governing Application of Standards § 868.306 Milling requirements. The degree of milling for milled rice; i.e., “hard... interpretive line samples for such rice....

  1. 7 CFR 868.306 - Milling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Principles Governing Application of Standards § 868.306 Milling requirements. The degree of milling for milled rice; i.e., “hard... interpretive line samples for such rice....

  2. 7 CFR 868.306 - Milling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Principles Governing Application of Standards § 868.306 Milling requirements. The degree of milling for milled rice; i.e., “hard... interpretive line samples for such rice....

  3. 2. NORTH AND EAST ELEVATIONS, ALEXANDER'S MILL (WILSON'S MILL). THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. NORTH AND EAST ELEVATIONS, ALEXANDER'S MILL (WILSON'S MILL). THE 2-1/1-STORY MAIN BLOCK, ERECTED IN 1855, HAS OVERTONES OF THE GREEK REVIVAL STYLE. Photographer: louise Taft Cawood, July 1986 - Alexander's Grist Mill, Lock 37 on Ohio & Erie Canal, South of Cleveland, Valley View, Cuyahoga County, OH

  4. 2. INTERIOR VIEW OF MILL, SHOWING THE TWOHIGH HANDOPERATED MILLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. INTERIOR VIEW OF MILL, SHOWING THE TWO-HIGH HAND-OPERATED MILLS (ON THE LEFT HAND SIDE), PRIOR TO THEIR OPERATION; THIS PHOTO WAS TAKEN FROM THE OVERHEAD CRANE - American Brass Company, Kenosha Works, Hot Roll Mill, Kenosha, Kenosha County, WI

  5. 2. AERIAL VIEW SHOWING WASTE WEIR AT MILL RIVER. MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW SHOWING WASTE WEIR AT MILL RIVER. MILL RIVER CULVERT (HAER NY-112) IS VISIBLE IN UPPER RIGHT HAND CORNER. - Old Croton Aqueduct, Mill River Waste Weir, U.S. Route 9 at Sleepy Hollow Cemetery, Tarrytown, Westchester County, NY

  6. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3.

    PubMed

    Barañao, P A; Hall, E R

    2004-01-01

    Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.

  7. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3.

    PubMed

    Barañao, P A; Hall, E R

    2004-01-01

    Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature. PMID:15461393

  8. 2. RW Meyer Sugar Mill: 18761899. Threeroll sugar mill, oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. RW Meyer Sugar Mill: 1876-1899. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Top roll and one bottom roll, mill housing or cheeks, and spur pinion gears. The broken projection on the mill beside the bottom roll indicates the location of the cane tray. The cane juice crushed from the cane flowed into the juice tray below the bottom rolls. It then flowed into a wooden gutter and through a short tunnel in the mill's masonry enclosure and on to the boiling house for further processing. The opening at the base of the masency wall (In the photograph) is where the gutter ran from the mill to the boiling house. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  9. Nanocrystalline cellulose from aspen kraft pulp and its application in deinked pulp.

    PubMed

    Xu, Qinghua; Gao, Yang; Qin, Menghua; Wu, Kaili; Fu, Yingjuan; Zhao, Jian

    2013-09-01

    Nanocrystalline cellulose (NCC) isolated from bleached aspen kraft pulp was characterized, and its application as pulp strengthening additive and retention aid was investigated. Results showed that NCC with high crystallinity of more than 80% can be obtained using 64 wt% sulfuric acid. The structure of nanocrystalline cellulose is parallelepiped rod-like, and their cross-sectional dimension is in the nanometer range with a high aspect ratio. The formation of microparticle retention systems during the application of NCC together with cationic polyacrylamide and cationic starch in deinked pulp was able to further improve pulp retention and strength properties without negative influence on the drainage.

  10. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    SciTech Connect

    Fricke, A.L.; Zaman, A.A.

    1998-05-01

    The overall objective of the program was to develop correlations to predict physical properties within requirements of engineering precision from a knowledge of pulping conditions and of kraft black liquor composition, if possible. These correlations were to include those relating thermodynamic properties to pulping conditions and liquor composition. The basic premise upon which the research was based is the premise that black liquor behaves as a polymer solution. This premise has proven to be true, and has been used successfully in developing data reduction methods and in interpreting results. A three phase effort involving pulping, analysis of liquor composition, and measurement of liquor properties was conducted.

  11. Correlation of Process Data and Electrocheical Noise to Assess Kraft Digester Corrosion: Second Year at Spring Grove

    SciTech Connect

    Pawel, SJ

    2004-04-27

    Electrochemical noise (EN) probes were deployed in the carbon steel continuous kraft digester at Spring Grove at four locations and at one location in the bottom cone of the associated flash tank for a second consecutive year of a corrosion study. The probes contained dual electrodes of 309LSi stainless steel overlay--representing a field repair material applied to a portion of the vessel--and dual electrodes of 312 stainless steel overlay. Current and potential noise, the temperature at each probe location, and the value of 23 process parameters (flow rates, liquor chemistry, etc.) were again monitored continuously for a period of almost one year. Historical vessel inspection data and post-test evaluation of the probe components were used to assess/compare EN corrosion activity with physical changes in wall thickness and corrosion patterns on the digester shell. In addition, attempts were made to correlate EN activity from each electrode type with process parameters. The results indicate the corrosion conditions aggressive to mild steel persist within the digester, as post-test inspection of the vessel revealed localized corrosion of mild steel in locations previously free of attack. Further, there was evidence that the depth of localized attack of exposed steel had increased in some locations. Nevertheless, the stainless steel overlay in the digester was essentially immune to corrosion, as evidenced by retained surface relief and heat tint associated with the original deposition process. The 309LSi electrodes also appeared visually pristine, and post-exposure metallographic examination of the 309LSi electrode materials revealed no attack. The 312 electrode materials were similar in appearance, but exhibited very minor interdendritic attack over the exposed surface. The silver electrodes in the probes were consumed (to Ag{sub 2}S) to variable degree over the course of the exposure indicating a useful life of not more than a year in digester service in this vessel

  12. Evaluation of End Mill Coatings

    SciTech Connect

    L. J. Lazarus; R. L. Hester,

    2005-08-01

    Milling tests were run on families of High Speed Steel (HSS) end mills to determine their lives while machining 304 Stainless Steel. The end mills tested were made from M7, M42 and T15-CPM High Speed Steels. The end mills were also evaluated with no coatings as well as with Titanium Nitride (TiN) and Titanium Carbo-Nitride (TiCN) coatings to determine which combination of HSS and coating provided the highest increase in end mill life while increasing the cost of the tool the least. We found end mill made from M42 gave us the largest increase in tool life with the least increase in cost. The results of this study will be used by Cutting Tool Engineering in determining which end mill descriptions will be dropped from our tool catalog.

  13. Simultaneous ozonation kinetics of phenolic acids present in wastewaters

    SciTech Connect

    Benitez, F.J.; Beltran-Heredia, J.; Acero, J.L.; Pinilla, M.L.

    1996-12-31

    Among the several chemical processes conducted for the removal of organic matter present in wastewaters coming from some agro-industrial plants (wine distilleries, olive oil mills, etc), the oxidation by ozone has shown a great effectiveness in the destruction of specially refractory pollutants: it is demonstrated that the biodegradability of those wastewaters increases aflcer an ozonation pretreatment. Their great pollutant character is imputed to the presence of some organic compounds, like phenols and polyphenols, which are toxic and inhibit the latter biological treatments. In this research, a competitive kinetic procedure reported by Clurol and Nekouinaini is applied to determine the degradation rate constants by ozone of several phenolic acids which are present in the wastewaters from the olive oil obtaining process. The resulting kinetic expressions for the ozonation reactions are useful for the successful design and operation of ozone reactors in water and wastewaters treatment plants.

  14. Correlations for viscosity of kraft black liquors at low solids concentrations

    SciTech Connect

    Zaman, A.A.; Fricke, A. . Dept. of Chemical Engineering)

    1994-01-01

    The kinematic viscosities of several kraft black liquors from a two-level, four-variables, factorial-designed experiments for pulping slash pine were determined for solids concentrations from 10 to 50% and temperatures up to 80 C by glass capillary methods. The four pulping variables were cooking time, cooking temperature, sulfidity, and effective alkali. Relationships between temperature and kinematic viscosity have been developed by using free volume and absolute rate theories. The results from these two methods have been compared and discussed. A reduced variables method for dilute polymer solutions was used to correlate the viscosity with the combined effect of temperature and solids concentration. The viscosity of black liquor is an important parameter in the design and performance of kraft recovery systems. The energy efficiency will be increased by firing black liquors at higher solids concentrations. To evaporate the liquor most efficiently and to achieve higher concentrations, knowledge of viscosity over a wide range of temperatures and solids concentrations is essential. The purpose of this study is to evaluate the utility of various fundamentally based models for correlating viscosity data of black liquors as a function of temperature and concentration of nonvolatile components in the region in which the liquors behave a Newtonian fluids.

  15. Fate of Residual Lignin during Delignification of Kraft Pulp by Trametes versicolor

    PubMed Central

    Reid, Ian D.

    1998-01-01

    The fungus Trametes versicolor can delignify and brighten kraft pulps. To better understand the mechanism of this biological bleaching and the by-products formed, I traced the transformation of pulp lignin during treatment with the fungus. Hardwood and softwood kraft pulps containing 14C-labelled residual lignin were prepared by laboratory pulping of lignin-labelled aspen and spruce wood and then incubated with T. versicolor. After initially polymerizing the lignin, the fungus depolymerized it to alkali-extractable forms and then to soluble forms. Most of the labelled carbon accumulated in the water-soluble pool. The extractable and soluble products were oligomeric; single-ring aromatic products were not detected. The mineralization of the lignin carbon to CO2 varied between experiments, up to 22% in the most vigorous cultures. The activities of the known enzymes laccase and manganese peroxidase did not account for all of the lignin degradation that took place in the T. versicolor cultures. This fungus may produce additional enzymes that could be useful in enzyme bleaching systems. PMID:9603823

  16. Mills, Bernard Yarnton (1920-)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Australian engineer and astronomer, born near Sydney, and worked with the Australian CSIR Division of Radiophysics. He measured the position of Cygnus A and identified a faint nebulosity as its origin, confirmed by a more accurate position by F. G. Smith and 200 in photographs by W BAADE and R MINKOWSKI showing Cygnus A as a peculiar galaxy. Mills built a cross-type radio interferometer at the...

  17. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2002-01-01

    The ion figuring system at the Marshall Space Flight Center has been successfully used for at least three previous investigations into the ion milling of metals. The research was directed toward improving the surface quality of X-ray directing optics. These studies were performed on surfaces that were already hand polished to an excellent surface quality and were intended to remove the residual unwanted figure left by those techniques. The ion milling was typically carried out on test surfaces or mandrels that were several centimeters in width and length. The good thermal conductivity of the metal samples allowed the ion beam to be directed onto the sample for an indefinite period of time. This is not true of sapphire or most electrical insulators and problems have arisen in recent attempts to ion mill thin samples of sapphire. The failure and fracture of the material was likely due to thermal stresses and the relatively low thermal conductivity of sapphire (compared to most metals), These assumed stresses actually provided the key as to how they might be monitored. A thermal gradient in the sapphire sample will induce an effective index of refraction change and because of the shape constraint and the crystal structure and simple thermal expansion, this index change will be nonuniform across the sample. In all but simple cubic crystal structures, this leads to a spatially nonuniform optical retardance induced on any polarized optical beam traversing the sample, and it is this retardance that can be monitored using standard polarimetric procedures.

  18. 40 CFR 63.446 - Standards for kraft pulping process condensates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... megagram (7.2 pounds per ton) of ODP for mills that do not perform bleaching or 5.5 kilograms or more of total HAP per megagram (11.1 pounds per ton) of ODP for mills that perform bleaching. (d) The pulping... do not perform bleaching, treat the pulping process condensates to remove 3.3 kilograms or more...

  19. Exposure of fish to biologically treated bleached-kraft effluent; 1: Biochemical, physiological and pathological assessment of Rocky Mountain whitefish (Prosopium williamsoni) and longnose sucker (Catostomus catostomus)

    SciTech Connect

    Kloepper-Sams, P.J.; Owens, J.W. ); Swanson, S.M. ); Marchant, T. . Dept. of Biology); Schryer, R. )

    1994-09-01

    A suite of biochemical, physiological, and pathological measures was used to assess possible effects of exposure to bleached-kraft mill effluent (BKME) on wild longnose sucker (Catostomus catostomus=LS) and mountain whitefish (Prosopium williamsoni=MW) in the Wapiti/Smoke River system, as compared to similar populations in a reference river system without BKME inputs. Individual fish body burden data were examined for correlations between chemical exposure and biological response. General incidence of gross pathology and histopathology showed no relationship with exposure to BKME, and no neoplastic or preneoplastic lesions were observed in either exposed or reference fish. The few significant differences observed in LS blood parameters were not correlated with exposure to BKME and appeared to reflect habitat gradients. Liver somatic indexes were higher for female BKME-exposed LS, but were not significantly different in male LS nor in MW. Some differences in circulating sex steroid levels were observed in LS exposed to BKME (but not in MW, the species with higher contaminant body burdens). Steroid profile differences may have been related to natural differences in duration of spawning periods in the two fish populations. Other measures of reproductive capacity (relative gonad size, fecundity, young-of-the-year) showed no reductions in exposed fish. The detoxification enzyme cytochrome P4501A was induced in both species, with greater induction in MW than in LS. MW P4501A induction correlated well with some BKME exposure measures, but not with liver or gonad weights, pathology, reproductive capacity, or population-level parameters. Increased liver size and apparent differences in sex steroid profiles in LS did not translate to other health effects or population-level effects. Thus, exposure to this biologically treated BKME produced one consistent biochemical marker of exposure in the two fish species that was not associated with any adverse effects on fish health.

  20. Soil amendment with olive mill wastes: impact on groundwater.

    PubMed

    Caputo, Maria Clementina; De Girolamo, Anna Maria; Volpe, Angela

    2013-12-15

    Two sets of soil lysimeters were amended with solid and liquid olive mill wastes and the composition of leachate was analysed. Five treatments were carried out using: olive mill wastewater (OMW) at two different rates (80 and 320 m(3)/ha); OMW pre-treated by catalytical digestion with MnO2; compost obtained by exhausted olive pomace; freshwater as the control. Electric conductivity, pH, potassium, total polyphenols and nitrates were monitored in the leachate as indexes of potential groundwater contamination. The study demonstrated that the impact of all the selected amendments on groundwater was the minimum. OMW was safely applied to soil even at four times the rate allowed by the Italian law, and pre-treatment by catalytical digestion was not necessary to further reduce the impact on groundwater. The application of olive pomace compost was equally safe.

  1. Wastewater treatment: lagoons. January 1977-February 1988 (Citations from the Selected Water Resources Abstracts data base). Report for January 1977-February 1988

    SciTech Connect

    Not Available

    1988-03-01

    This bibliography contains citations concerning the treatment and storage of wastewaters in lagoons. The design, operation, equipment, and pretreatment processes are discussed. The treatment of wastewater from breweries, tanneries, paper mills, and other industrial operations are considered. Descriptions and evaluations of specific facilities are provided. (This updated bibliography contains 294 citations, 18 of which are new entries to the previous edition.)

  2. 83. Mabry Mill. View of the mill and its dredged ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. Mabry Mill. View of the mill and its dredged reflecting pond illustrating how the parkway has manipulated the landscape to make it more picturesque. Looking north-northwest from interpretative trail. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  3. 252. Mabry Mill. View of the mill and the NPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    252. Mabry Mill. View of the mill and the NPS dredged reflecting pond which illustrates how the parkway has manipulated the landscape to make it more picturesque. Looking north-northwest from interpretative trail. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  4. Important Questions about "Diploma Mills" and "Accreditation Mills."

    ERIC Educational Resources Information Center

    Council for Higher Education Accreditation, Washington, DC.

    This fact sheet discusses "diploma mills" and "accreditation mills," dubious providers of educational offerings or operations that offer certificates and degrees that are considered bogus. Because it is not always easy to identify these operations, questions are provided to help the potential student determine whether a provider is a diploma mill…

  5. 9. VIEW OF MILLING AND LATHE MACHINES, MILLING AND LATHE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF MILLING AND LATHE MACHINES, MILLING AND LATHE MACHINES WERE USED TO FORM COMPONENTS INTO THEIR FINAL SHAPE. IN THE FOUNDRY, ENRICHED URANIUM WAS CAST INTO SPHERICAL SHAPES OR INGOT FROM WHICH WEAPONS COMPONENTS WERE FABRICATED. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  6. Process modeling and analysis of pulp mill-based integrated biorefinery with hemicellulose pre-extraction for ethanol production: a comparative study.

    PubMed

    Huang, Hua-Jiang; Ramaswamy, Shri; Al-Dajani, Waleed Wafa; Tschirner, Ulrike

    2010-01-01

    Pulp and paper mills represent a major platform to use more effectively an abundant, renewable bio-resource - wood. Modification of the modern day pulp mills into integrated forest biorefineries (IFBR) presents an excellent opportunity to produce, in addition to valuable cellulose fiber, co-products including fuel grade ethanol and additional energy, thus resulting in increased revenue streams and profitability and potentially lower the greenhouse gas emissions. A process model to simulate the integrate forest biorefinery manufacturing pulp and other co-products has been developed. This model has been used to compare three integrated biorefinery scenarios: the conventional Kraft pulping process, the pulp mill-based IFBR with hemicelluloses extraction prior to pulping for ethanol production, and the pulp mill-based IFBR with both pre-extracted hemicelluloses and the short fiber for ethanol production. Based on a fixed feedstock throughput of 2000 dry Mg wood/day, results show that the pulp mill-based IFBR with both pre-extracted hemicelluloses and the short fiber cellulose converted to ethanol can produce 0.038 MM m(3) (10.04 MM gal) ethanol per year at a minimum ethanol selling price (MESP) of $491/m(3) ($1.86/gal). The economic feasibility of IFBR can be further improved by using further improvements in the pre-extraction process, other biomass such as corn stover for producing ethanol, and taking advantage of the economies of scale.

  7. Methods for Facilitating Microbial Growth on Pulp Mill Waste Streams and Characterization of the Biodegradation Potential of Cultured Microbes

    PubMed Central

    Mathews, Stephanie L.; Ayoub, Ali S.; Pawlak, Joel; Grunden, Amy M.

    2013-01-01

    The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor. PMID:24378616

  8. Newtonian viscosity of high solids kraft black liquors: Effects of temperature and solids concentrations

    SciTech Connect

    Zaman, A.A.; Fricke, A.L. . Dept. of Chemical Engineering)

    1994-02-01

    The Newtonian (zero shear rate) viscosities of four different softwood kraft black liquors from a four variable-two level factorially designed experiment for pulping slash pine were determined for solids concentrations up to 84% and temperatures up to 140 C (413.2 K). Methods of measurement and estimation of zero shear rate viscosities from viscosity-shear rate data have been described and compared. The combination of the absolute reaction rates and free-volume concepts were used to express the relationship between the Newtonian viscosity and temperature. Attempts were made to obtain a generalized correlation for Newtonian viscosity as a function of temperature and solids concentrations. The results of this model and results of the previous empirical correlation have been compared and discussed.

  9. Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals.

    PubMed

    Lee, Hong-shik; Jae, Jungho; Ha, Jeong-Myeong; Suh, Dong Jin

    2016-03-01

    The hydro-/solvothermolysis of kraft lignin using water and ethanol as a solvent were investigated in this study. The effect of the water-to-ethanol ratio on the yields of monomeric aromatic chemicals (MACs) and the kinetic behavior of MACs was studied in a series of batch experiments. The yields of MACs other than catechol increased as the ratio of ethanol increased, and the content of the total MACs in bio-crude oil (BCO) reached 35% when the ratio of ethanol was 100% at a reaction temperature of 300 °C. The formation of phenol, guaiacol, and alkylguaiacols was enhanced in ethanol, while the formation of catechol was dominant in water. The formation of more substituted MACs such as vanillin, acetoguaiacone, and homovanillic acid was not affected by the solvent. The role of reaction parameters on the yields of MACs was elucidated, and the main reaction pathways in water and in ethanol were proposed. PMID:26722814

  10. Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process.

    PubMed

    Chen, Yuehui; Chai, Liyuan; Tang, Chongjian; Yang, Zhihui; Zheng, Yu; Shi, Yan; Zhang, Huan

    2012-11-01

    This study focused on the biodegradation of kraft lignin (KL) by Novosphingobium sp. B-7 using KL as sole carbon source. Results revealed that Novosphingobium sp. B-7 reduced the chemical oxygen demand (COD) by 34.7% in KL mineral salt medium after 7days of incubation. Additionally, the maximum activities of manganese peroxidase (MnP) of 3229.8Ul(-1) and laccase (Lac) of 1275Ul(-1) were observed at 4th and 5th day, respectively. GC-MS analysis indicated that after incubated with Novosphingobium sp. B-7, low molecular weight alcohols and lignin-related monomer compounds such as ethanediol, p-hydroxy benzoic acid and vanillic acid were formed in the system, which strongly confirmed the degradation of KL by Novosphingobium sp. B-7. PMID:22921251

  11. Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals.

    PubMed

    Lee, Hong-shik; Jae, Jungho; Ha, Jeong-Myeong; Suh, Dong Jin

    2016-03-01

    The hydro-/solvothermolysis of kraft lignin using water and ethanol as a solvent were investigated in this study. The effect of the water-to-ethanol ratio on the yields of monomeric aromatic chemicals (MACs) and the kinetic behavior of MACs was studied in a series of batch experiments. The yields of MACs other than catechol increased as the ratio of ethanol increased, and the content of the total MACs in bio-crude oil (BCO) reached 35% when the ratio of ethanol was 100% at a reaction temperature of 300 °C. The formation of phenol, guaiacol, and alkylguaiacols was enhanced in ethanol, while the formation of catechol was dominant in water. The formation of more substituted MACs such as vanillin, acetoguaiacone, and homovanillic acid was not affected by the solvent. The role of reaction parameters on the yields of MACs was elucidated, and the main reaction pathways in water and in ethanol were proposed.

  12. Molecular Characteristics of Kraft-AQ Pulping Lignin Fractionated by Sequential Organic Solvent Extraction

    PubMed Central

    Wang, Kun; Xu, Feng; Sun, Runcang

    2010-01-01

    Kraft-AQ pulping lignin was sequentially fractionated by organic solvent extractions and the molecular properties of each fraction were characterized by chemical degradation, GPC, UV, FT-IR, 13C-NMR and thermal analysis. The average molecular weight and polydispersity of each lignin fraction increased with its hydrogen-bonding capacity (Hildebrand solubility parameter). In addition, the ratio of the non-condensed guaiacyl/syringyl units and the content of β-O-4 linkages increased with the increment of the lignin fractions extracted successively with hexane, diethylether, methylene chloride, methanol, and dioxane. Furthermore, the presence of the condensation reaction products was contributed to the higher thermal stability of the larger molecules. PMID:21152286

  13. Mill recirculation system

    SciTech Connect

    Musto, R.L.

    1984-10-23

    A mill recirculation system that is operative for purposes of effecting the pulverization and firing of solid fuels, while yet possessing all of the desirable features of a direct fired system. The subject system includes pulverizer means classifier means and burner means as well as a preestablished fluid flow path by which the pulverizer means and the classifier means are interconnected in fluid flow relation with the burner means. In accord with the mode of operation of the subject mill recirculation system a stream of solid fuel is made to flow along the fluid flow path such that the solid fuel is pulverized in the pulverizer means, classified according to particle size in the classifier means and fired in the burner means. Further, a stream of a suitable gaseous medium is made to flow along the flow path such that the gaseous medium is operative to cause the solid fuel to be conveyed therewith through the pulverizer means while being dried thereby and to be conveyed therewith from the pulverizer means to the classifier means. At the classifier means a separation is had of the stream of the gaseous medium such that a portion of the gaseous medium is recirculated along with the oversize solid fuel particles bach to the pulverizer means, while the remainder of the gaseous medium is operative to convey the solid fuel particles that are of the desired size from the classifier means to the burner means for burning, i.e., firing, in the latter.

  14. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  15. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  16. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  17. Effects of olive oil mill waste water (OMWW) on the frog larvae.

    PubMed

    Inceli, Ahmet Levent; Sengezer-Inceli, Meliha

    2012-08-01

    In this research, acute effect of the olive oil mill wastewater (OMWW) on the frog larvae has been studied. Larvae showed hyperactivity symptoms first and loss of balance and remained motionless due to toxicity of wastewater. Toxicity was observed between 2 and 159 min depending on the test concentrations. Upon removing the phenolic compounds from the OMWW, this effect was seen after 248 min. Potential effects of the OMWW in Lake Iznik were also researched. Salinity of the lake water changed from 0.2 ‰ to 0.0 ‰ respectively in the measurements done in May and December.

  18. 35. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Bevel gear at lower end of vertical drive shaft in foreground turned bevel gear of top roll when the vertical drive shaft was in place in the brass-bearing socket in the middle ground of the photograph. The bolts above the top roll and at the side of the two bottom rolls adjusted the pressure and position of the rolls' brass bearings. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  19. White sucker (Catostomus commersoni) growth and sexual maturation in pulp mill-contaminated and reference rivers

    SciTech Connect

    Gagnon, M.M.; Bussieres, D.; Dodson, J.J. ); Hodson, P.V. )

    1995-02-01

    Induction of hepatic ethoxyresorufin-O-deethylase (EROD) activity and accumulation of chlorophenolic compounds typical of bleached-kraft mill effluent (BKME) in fish sampled downstream of a pulp mill on the St. Maurice River, Quebec, Canada, provided evidence of chemical exposure to BKME. In comparison, fish sampled over the same distances and in similar habitats in a noncontaminated reference river, the Gatineau River, demonstrated low EROD activity and contamination levels. Accelerated growth of white suckers occurred between 2 and 10 years of age in both rivers at downstream stations relative to upstream stations, suggesting the existence of gradients of nutrient enrichment independent of BKME contamination. The impact of BKME exposure was expressed as reduced investment in reproduction, as revealed by greater length at maturity, reduced gonad size, and more variable fecundity. These effects were not obvious in simple upstream-downstream comparisons, but became evident when fish from the uncontaminated Gatineau River showed increased gonadal development and reduced age and size at maturity in response to enhanced growth rates.

  20. Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals.

    PubMed

    Teixeira, Ricardo Sposina Sobral; da Silva, Ayla Sant'Ana; Jang, Jae-Hyuk; Kim, Han-Woo; Ishikawa, Kazuhiko; Endo, Takashi; Lee, Seung-Hwan; Bon, Elba P S

    2015-09-01

    Cellulose nanocrystals (CNCs), a biomaterial with high added value, were obtained from pure cellulose, Eucalyptus holocellulose, unbleached Kraft pulp, and sugarcane bagasse, by fibrillating these biomass substrates using wet disk milling (WDM) followed by enzymatic hydrolysis using endoglucanase/β-glucosidase. The hydrolysis experiments were conducted using the commercial enzyme OptimashBG or a blend of Pyrococcus horikoshii endoglucanase and Pyrococcus furiosus β-glucosidase. The fibrillated materials and CNCs were analyzed by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and the specific surface area (SSA) was measured. WDM resulted in the formation of long and twisted microfibers of 1000-5000 nm in length and 4-35 nm in diameter, which were hydrolyzed into shorter and straighter CNCs of 500-1500 nm in length and 4-12 nm in diameter, with high cellulose crystallinity. Therefore, the CNC's aspect ratio was successfully adjusted by endoglucanases under mild reaction conditions, relative to the reported acidic hydrolysis method.

  1. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    SciTech Connect

    Adriaan van Heiningen

    2007-06-30

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and agglomeration problems of

  2. Effect of paper mill effluents on accumulation of heavy metals in coconut trees near Nanjangud, mysore district, Karnataka, India

    NASA Astrophysics Data System (ADS)

    Fazeli, M. Sharif; Sathyanarayan, S.; Satish, P. N.; Muthanna, Lata

    1991-01-01

    Physicochemical characteristics of wastewater from one of the paper mills near Nanjangud and the differential accumulation of heavy metals in parts of coconut trees growing in the area irrigated directly by the wastewaters of a paper mill were investigated. The total dissolved and suspended solids of wastewater were 1,136.9 mg/l and 2,185.4 mg/l, respectively. Biological oxygen demand (BOD) expands and COD is beyond the tolerance limit proposed by Indian standards. The concentrations of heavy metals like Cu, Pb, Zn, Ni, Co, and Cd in coconut water, root, and leaf are higher than the limits suggested by World Health Organization. Survival of coconut trees irrigated by polluted waters indicates tolerance to toxic heavy metals. Since coconut forms part of human food chain, accumulation of toxic heavy metals may lead to organic disorders.

  3. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operated at a minimum temperature of 871 °C (1600 °F) and a minimum residence time of 0.75 seconds; or (4... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a...)(ii)(C) of this section. (A) Each knotter system with emissions of 0.05 kilograms or more of total...

  4. Environmental and cost life cycle assessment of disinfection options for municipal wastewater treatment

    EPA Science Inventory

    This document summarizes the data collection, analysis, and results for a base case wastewater treatment (WWT) plant reference model. The base case is modeled after the Metropolitan Sewer District of Greater Cincinnati (MSDGC) Mill Creek Plant. The plant has an activated sludge s...

  5. Cost-Based Optimization of a Papermaking Wastewater Regeneration Recycling System

    NASA Astrophysics Data System (ADS)

    Huang, Long; Feng, Xiao; Chu, Khim H.

    2010-11-01

    Wastewater can be regenerated for recycling in an industrial process to reduce freshwater consumption and wastewater discharge. Such an environment friendly approach will also lead to cost savings that accrue due to reduced freshwater usage and wastewater discharge. However, the resulting cost savings are offset to varying degrees by the costs incurred for the regeneration of wastewater for recycling. Therefore, systematic procedures should be used to determine the true economic benefits for any water-using system involving wastewater regeneration recycling. In this paper, a total cost accounting procedure is employed to construct a comprehensive cost model for a paper mill. The resulting cost model is optimized by means of mathematical programming to determine the optimal regeneration flowrate and regeneration efficiency that will yield the minimum total cost.

  6. Development of a combined piezoresistive pressure and temperature sensor using a chemical protective coating for Kraft pulp digester process monitoring

    NASA Astrophysics Data System (ADS)

    Mohammadi, Abdolreza R.; Bennington, Chad P. J.; Chiao, Mu

    2011-01-01

    We have developed an integrated piezoresistive pressure and temperature sensor for multiphase chemical reactors, primarily Kraft pulp digesters (pH 13.5, temperatures up to 175 °C, reaching a local maximum of 180 °C and pressures up to 2 MPa). The absolute piezoresistive pressure sensor consisted of a large square silicon diaphragm (1000 × 1000 µm2) and high resistance piezoresistors (10 000 Ω). A 4500 Ω buried piezoresistive wire was patterned on the silicon chip to form a piezoresistive temperature sensor which was used for pressure sensor compensation and temperature measurement. A 4 µm thick Parylene HT® coating, a chemically resistant epoxy and a silicone conformal coating were deposited to passivate the pressure sensor against the caustic environment in Kraft digesters. The sensors were characterized up to 2 MPa and 180 °C in an environment chamber. A maximum thermal error of ±0.72% full-scale output (FSO), an average sensitivity of 0.116 mV (V kPa)-1 and a power consumption of 0.3 mW were measured in the pressure sensor. The sensors' resistances were measured before and after test in a Kraft pulping cycle and showed no change in their values. SEM pictures and topographical surfaces were also analyzed before and after pulp liquor exposure and showed no observable changes.

  7. Modeling total reduced sulfur and sulfur dioxide emissions from a kraft recovery boiler using an artificial neural network, and, Investigating volatile organic compounds in an urban intermountain valley using a TD/GC/MS methodology and intrinsic tracer molecules

    NASA Astrophysics Data System (ADS)

    Wrobel, Christopher Louis

    2000-11-01

    Back-propagation neural networks were trained to predict total reduced sulfur (TRS) and SO2 emissions from kraft recovery boiler operational data. A 0.721 coefficient of correlation was achieved between actual and predicted sulfur emissions on test data withheld from network training. The artificial neural network (ANN) models found an inverse, linear relationship between TRS/SO2 emissions and percent opacity. A number of relationships among operating parameters and sulfur emissions were identified by the ANN models. These relationships were used to formulate strategies for reducing sulfur emissions. Disagreement between ANN model predictions on a subsequent data set revealed an additional scenario for sulfur release not present in the training data. ANN modeling was demonstrated to be an effective tool for analyzing process variables when balancing productivity and environmental concerns. Five receptor sites distributed in the Missoula Valley, Montana, were employed to investigate possible VOC (benzene, 2,3,4-trimethylpentane, toluene, ethylbenzene, m-/p-xylene, o-xylene, naphthalene, acetone, chloroform, α-pinene, β-pinene, p-cymene and limonene) sources. The most dominant source of VOCs was found to be vehicle emissions. Furthermore, anthropogenic sources of terpenoids overwhelmed biogenic emissions, on a local scale. Difficulties correlating wind direction and pollutant levels could be explained by wind direction variability, low wind speed and seasonally dependent meteorological factors. Significant evidence was compiled to support the use of p-cymene as a tracer molecule for pulp mill VOC emissions. Apportionment techniques using o-xylene and p-cymene as tracers for automobile and pulp mill emissions, respectively, were employed to estimate each source's VOC contribution. Motor vehicles were estimated to contribute between 56 and 100 percent of the aromatic pollutants in the Missoula Valley airshed, depending upon the sampling location. Pulp mill emissions

  8. Byssinosis among jute mill workers.

    PubMed

    Chattopadhyay, Bhaskar P; Saiyed, Habibullah N; Mukherjee, Ashit K

    2003-07-01

    Although byssinosis in jute mill workers remains controversial, studies in a few jute mills in West-Bengal, India, revealed typical byssinotic syndrome associated with acute changes in FEV1 on the first working day after rest. The present study on 148 jute mill workers is reported to confirm the occurrence of byssinosis in jute mill workers. Work related respiratory symptoms; acute and chronic pulmonary function changes among exposed workers were studied on the basis of standard questionnaire and spirometric method along with dust level, particle mass size distributions and gram-negative bacterial endotoxins. The pulmonary function test (PFT) changes were defined as per the recommendation of World Health Organization and of Bouhys et al. Total dust in jute mill air were monitored by high volume sampling, technique (Staplex, USA), Andersen cascade impactor was used for particle size distribution and personal exposure level was determined by personal sampler (Casella, London). Endotoxin in airborne jute dust was analysed by Lymulus Amebocyte Lysate (LAL) "Gel Clot" technique. Batching is the dustiest process in the mill. Size distribution showed that about 70-80% dust in diameter of < 10 microm, 40-50%, < 5 microm and 10-20%, < 2 microm. Mean endotoxin levels found in hatching, spinning and weaving, and beaming were 2.319 microg/m3, 0.956 microg/ m3, 0.041 microg/m3 respectively and are comparable to the values obtained up to date in Indian cotton mills. Respiratory morbidity study reported typical byssinotic symptoms along with acute post shift FEV1 changes (31.8%) and chronic changes in FEV1 (43.2%) among exposed workers. The group with higher exposure showed significantly lower FVC, FEV1, PEFR and FEF25-75% values. The study confirmed the findings of the earlier studies and clearly indicated that the Indian jute mill workers are also suffering from byssinosis as observed in cotton, flask and hemp workers.

  9. Electrochemical catalytic treatment of wastewater by metal ion supported on cation exchange resin.

    PubMed

    Wang, Ying; Wang, Bo; Ma, Hongzhu

    2006-10-11

    The electrochemical oxidation of phenol in synthetic wastewater and paper mill wastewater catalyzed by metal ion supported on cation exchange resin in suspended bed electrolytic reactor with graphite electrode has been investigated. The catalyst was characterized by SEM and XPS spectra and the effects of pH, the different metal ion and NaCl on the efficiency of the electrochemical oxidation phenol process were also studied. It was found that the catalyst containing Fe(3+) had the highest electrochemical catalytic activity for the electrochemical oxidation of phenol. When the initial concentration of phenol was 200 ppm, up to 90% chemical oxygen demand (COD) removal was obtained in 10 min. When the catalyst containing Fe(3+) was used to the paper mill wastewater, it still showed high efficiency. The COD removal could get to 75% in 60 min.

  10. 8. VIEW OF THE MILL (FEATURE B27) AND MILL TAILINGS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF THE MILL (FEATURE B-27) AND MILL TAILINGS, FACING EAST. PHOTO TAKEN FROM TOP OF THE TAILINGS. - Nevada Lucky Tiger Mill & Mine, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  11. 7. VIEW TO EAST, MILL WAREHOUSE, DRYERS, GRINDING/ROD MILL, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW TO EAST, MILL WAREHOUSE, DRYERS, GRINDING/ROD MILL, AND MECHANIC SHED. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  12. SUBAQUEOUS DISPOSAL OF MILL TAILINGS

    SciTech Connect

    Neeraj K. Mendiratta; Roe-Hoan Yoon; Paul Richardson

    1999-09-03

    A study of mill tailings and sulfide minerals was carried out in order to understand their behavior under subaqueous conditions. A series of electrochemical experiments, namely, cyclic voltammetry, electrochemical impedance spectroscopy and galvanic coupling tests were carried out in artificial seawater and in pH 6.8 buffer solutions with chloride and ferric salts. Two mill tailings samples, one from the Kensington Mine, Alaska, and the other from the Holden Mine, Washington, were studied along with pyrite, galena, chalcopyrite and copper-activated sphalerite. SEM analysis of mill tailings revealed absence of sulfide minerals from the Kensington Mine mill tailings, whereas the Holden Mine mill tailings contained approximately 8% pyrite and 1% sphalerite. In order to conduct electrochemical tests, carbon matrix composite (CMC) electrodes of mill tailings, pyrite and galena were prepared and their feasibility was established by conducting a series of cyclic voltammetry tests. The cyclic voltammetry experiments carried out in artificial seawater and pH 6.8 buffer with chloride salts showed that chloride ions play an important role in the redox processes of sulfide minerals. For pyrite and galena, peaks were observed for the formation of chloride complexes, whereas pitting behavior was observed for the CMC electrodes of the Kensington Mine mill tailings. The electrochemical impedance spectroscopy conducted in artificial seawater provided with the Nyquist plots of pyrite and galena. The Nyquist plots of pyrite and galena exhibited an inert range of potential indicating a slower rate of leaching of sulfide minerals in marine environments. The galvanic coupling experiments were carried out to study the oxidation of sulfide minerals in the absence of oxygen. It was shown that in the absence of oxygen, ferric (Fe3+) ions might oxidize the sulfide minerals, thereby releasing undesirable oxidation products in the marine environment. The source of Fe{sup 3{minus}} ions may be

  13. Growth and cyanide degradation of Azotobacter vinelandii in cyanide-containing wastewater system.

    PubMed

    Koksunan, Sarawut; Vichitphan, Sukanda; Laopaiboon, Lakkana; Vichitphan, Kanit; Han, Jaehong

    2013-04-01

    Azotobacter vinelandii, a strict aerobic nitrogen-fixing bacterium, has been extensively studied with regard to the ability of N2-fixation due to its high expression of nitrogenase and fast growth. Because nitrogenase can also reduce cyanide to ammonia and methane, cyanide degradation by A. vinelandii has been studied for the application in the bioremediation of cyanide-contaminated wastewater. Cyanide degradation by A. vinelandii in NFS (nitrogen-free sucrose) medium was examined in terms of cell growth and cyanide reduction, and the results were applied for cyanide-contaminated cassava mill wastewater. From the NFS medium study in the 300 ml flask, it was found that A. vinelandii in the early stationary growth phase could reduce cyanide more rapidly than the cells in the exponential growth phase, and 84.4% of cyanide was degraded in 66 h incubation upon addition of 3.0 mM of NaCN. The resting cells of A. vinelandii could also reduce cyanide concentration by 90.4% with 3.0 mM of NaCN in the large-scale (3 L) fermentation with the same incubation time. Finally, the optimized conditions were applied to the cassava mill wastewater bioremediation, and A. vinelandii was able to reduce the cyanide concentration by 69.7% after 66 h in the cassava mill wastewater containing 4.0 mM of NaCN in the 3 L fermenter. Related to cyanide degradation in the cassava mill wastewater, nitrogenase was the responsible enzyme, which was confirmed by methane production. These findings would be helpful to design a practical bioremediation system for the treatment of cyanide-contaminated wastewater. PMID:23568214

  14. Growth and cyanide degradation of Azotobacter vinelandii in cyanide-containing wastewater system.

    PubMed

    Koksunan, Sarawut; Vichitphan, Sukanda; Laopaiboon, Lakkana; Vichitphan, Kanit; Han, Jaehong

    2013-04-01

    Azotobacter vinelandii, a strict aerobic nitrogen-fixing bacterium, has been extensively studied with regard to the ability of N2-fixation due to its high expression of nitrogenase and fast growth. Because nitrogenase can also reduce cyanide to ammonia and methane, cyanide degradation by A. vinelandii has been studied for the application in the bioremediation of cyanide-contaminated wastewater. Cyanide degradation by A. vinelandii in NFS (nitrogen-free sucrose) medium was examined in terms of cell growth and cyanide reduction, and the results were applied for cyanide-contaminated cassava mill wastewater. From the NFS medium study in the 300 ml flask, it was found that A. vinelandii in the early stationary growth phase could reduce cyanide more rapidly than the cells in the exponential growth phase, and 84.4% of cyanide was degraded in 66 h incubation upon addition of 3.0 mM of NaCN. The resting cells of A. vinelandii could also reduce cyanide concentration by 90.4% with 3.0 mM of NaCN in the large-scale (3 L) fermentation with the same incubation time. Finally, the optimized conditions were applied to the cassava mill wastewater bioremediation, and A. vinelandii was able to reduce the cyanide concentration by 69.7% after 66 h in the cassava mill wastewater containing 4.0 mM of NaCN in the 3 L fermenter. Related to cyanide degradation in the cassava mill wastewater, nitrogenase was the responsible enzyme, which was confirmed by methane production. These findings would be helpful to design a practical bioremediation system for the treatment of cyanide-contaminated wastewater.

  15. Kraft lignin/silica-AgNPs as a functional material with antibacterial activity.

    PubMed

    Klapiszewski, Łukasz; Rzemieniecki, Tomasz; Krawczyk, Magdalena; Malina, Dagmara; Norman, Małgorzata; Zdarta, Jakub; Majchrzak, Izabela; Dobrowolska, Anna; Czaczyk, Katarzyna; Jesionowski, Teofil

    2015-10-01

    Advanced functional silica/lignin hybrid materials, modified with nanosilver, were obtained. The commercial silica Syloid 244 was used, modified with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane to increase its chemical affinity to lignin. Similarly, kraft lignin was oxidized using a solution of sodium periodate to activate appropriate functional groups on its surface. Silver nanoparticles were grafted onto the resulting silica/lignin hybrids. The systems obtained were comprehensively tested using available techniques and methods, including transmission electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, elemental analysis and atomic absorption spectroscopy. An evaluation was also made of the electrokinetic stability of the systems with and without silver nanoparticles. Conclusions were drawn concerning the chemical nature of the bonds between the precursors and the effectiveness of the method of binding nanosilver to the hybrid materials. The antimicrobial activity of the studied materials was tested against five species of Gram-positive and Gram-negative bacteria. The addition of silver nanoparticles to the silica/lignin hybrids led to inhibition of the growth of the analyzed bacteria. The best results were obtained against Pseudomonas aeruginosa, a dangerous human pathogen.

  16. Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin.

    PubMed

    Lamminpää, Kaisa; Ahola, Juha; Tanskanen, Juha

    2015-02-01

    In this study, the effects of kraft lignin (Indulin AT) on acid-catalysed xylose dehydration into furfural were studied in formic and sulphuric acids. The study was done using D-optimal design. Three variables in both acids were included in the design: time (20-80 min), temperature (160-180°C) and initial lignin concentration (0-20 g/l). The dependent variables were xylose conversion, furfural yield, furfural selectivity and pH change. The results showed that the xylose conversion and furfural yield decreased in sulphuric acid, while in formic acid the changes were minor. Additionally, it was showed that lignin has an acid-neutralising capacity, and the added lignin increased the pH of reactant solutions in both acids. The pH rise was considerably lower in formic acid than in sulphuric acid. However, the higher pH did not explain all the changes in conversion and yield, and thus lignin evidently inhibits the formation of furfural.

  17. Production of polyols via direct hydrolysis of kraft lignin: effect of process parameters.

    PubMed

    Mahmood, Nubla; Yuan, Zhongshun; Schmidt, John; Charles Xu, Chunbao

    2013-07-01

    Kraft lignin (KL) was successfully depolymerized into polyols of moderately high hydroxyl number and yield with moderately low weight-average molecular weight (Mw) via direct hydrolysis using NaOH as a catalyst, without any organic solvent/capping agent. The effects of process parameters including reaction temperature, reaction time, NaOH/lignin ratio (w/w) and substrate concentration were investigated and the polyols/depolymerized lignins (DLs) obtained were characterized with GPC-UV, FTIR-ATR, (1)H NMR, Elemental & TOC analyzer. The best operating conditions appeared to be at 250°C, 1h, and NaOH/lignin ratio ≈0.28 with 20 wt.% substrate concentration, leading to <0.5% solid residues and ∼92% yield of DL (aliphatic-hydroxyl number ≈352 mg KOH/mg and Mw≈3310 g/mole), suitable for replacement of polyols in polyurethane foam synthesis. The overall % carbon recovery under the above best conditions was ∼90%. A higher temperature favored reduced Mw of the polyols while a longer reaction time promoted dehydration/condensation reactions. PMID:23644065

  18. Use of Electrochemical Noise to Assess Corrosion in Kraft Continuous Digesters

    SciTech Connect

    Pawel, S.J.

    2004-11-29

    Electrochemical noise (EN) probes were deployed in two continuous kraft digesters at a variety of locations representative of corrosion throughout the vessels. Current and potential noise, the temperature at each probe location, and the value of up to 60 process parameters (flow rates, liquor chemistry, etc.) were monitored continuously during each experiment. The results indicate that changes in furnish composition and process upsets were invariably associated with concurrent substantial changes in EN activity throughout the vessels. Post-test evaluation of the mild steel electrode materials in both vessels confirmed general corrosion of a magnitude consistent with historical trends in the respective vessels as well as values qualitatively (and semi-quantitatively) related to EN current sums for each electrode pair. Stainless steel electrodes representing 309LSi and 312 overlay repairs exhibited zero wastage corrosion--as did the actual overlays--but the EN data indicated periodic redox activity on the stainless steel that varied with time and position within the vessel. Little or no correlation between EN probe activity and other operational variables was observed in either vessel. Additional details for each digester experiment are summarized.

  19. Preparation of porous carbons from polymeric precursors modified with acrylated kraft lignin

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.

    2016-04-01

    The presented studies concern the preparation of porous carbons from a BPA.DA-St polymer containing acrylated kraft lignin as a monomer. The porous polymeric precursor in the form of microspheres was synthesized in suspension polymerization process. Next samples of the polymer were impregnated with acetic acid or aqueous solution of acetates (potassium or ammonia), dried and carbonised in nitrogen atmosphere at 450°C. After carbonization microspherical shape of the materials was remained, that is desired feature for potential application in chromatography or SPE technique. Chemical and textural properties of the porous carbon adsorbents were characterized using infrared spectroscopy (ATR-FTIR), thermogravimetry analyses with mass spectrometry of released gases (TG-MS) and nitrogen sorption experiments. The presented studies revealed the impregnation is useful method for development of porous structure of carbonaceous materials. The highest values of porous structure parameters were obtained when acetic acid and ammonium acetate were used as impregnating substances. On the surface of the materials oxygen functional groups are present that is important for specific interactions during sorption processes. The highest contents of functionalities were observed for carbon BPA.DA-St-LA-C-AcNH4.

  20. Investigating the degradation process of kraft lignin by β-proteobacterium, Pandoraea sp. ISTKB.

    PubMed

    Kumar, Madan; Singh, Jyoti; Singh, Manoj Kumar; Singhal, Anjali; Thakur, Indu Shekhar

    2015-10-01

    The present study investigates the kraft lignin (KL) degrading potential of novel alkalotolerant Pandoraea sp. ISTKB utilizing KL as sole carbon source. The results displayed 50.2 % reduction in chemical oxygen demand (COD) and 41.1 % decolorization after bacterial treatment. The maximum lignin peroxidase (LiP) and manganese peroxidase (MnP) activity detected was 2.73 and 4.33 U ml(-1), respectively, on day 3. The maximum extracellular and intracellular laccase activities observed were 1.32 U ml(-1) on day 5 and 4.53 U ml(-1) on day 4, respectively. The decolorization and degradation was maximum on day 2. Further, it registered an increase with the production of extracellular laccase. This unusual trend of decolorization and degradation was studied using various aromatic compounds and dyes. SEM and FTIR results indicated significant change in surface morphology and functional group composition during the course of degradation. Gas chromatography and mass spectroscopy (GC-MS) analysis confirmed KL degradation by emergence of new peaks and the identification of low molecular weight aromatic intermediates in treated sample. The degradation of KL progressed through the generation of phenolic intermediates. The identified intermediates implied the degradation of hydroxyphenyl, ferulic acid, guaiacyl, syringyl, phenylcoumarane, and pinoresinol components commonly found in lignin. The degradation, decolorization, and GC-MS analysis indicated potential application of the isolate Pandoraea sp. ISTKB in treatment of lignin-containing pollutants and KL valorization.

  1. Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.

    PubMed

    Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari

    2006-01-15

    Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.

  2. Methanol fractionation of softwood Kraft lignin: impact on the lignin properties.

    PubMed

    Saito, Tomonori; Perkins, Joshua H; Vautard, Frederic; Meyer, Harry M; Messman, Jamie M; Tolnai, Balazs; Naskar, Amit K

    2014-01-01

    The development of technologies to tune lignin properties for high-performance lignin-based materials is crucial for the utilization of lignin in various applications. Here, the effect of methanol (MeOH) fractionation on the molecular weight, molecular weight distribution, glass transition temperature (Tg ), thermal decomposition, and chemical structure of lignin were investigated. Repeated MeOH fractionation of softwood Kraft lignin successfully removed the low-molecular-weight fraction. The separated high-molecular-weight lignin showed a Tg of 211 °C and a char yield of 47 %, much higher than those of as-received lignin (Tg 153 °C, char yield 41 %). The MeOH-soluble fraction of lignin showed an increased low-molecular-weight fraction and a lower Tg (117 °C) and char yield (32%). The amount of low-molecular-weight fraction showed a quantitative correlation with both 1/Tg and char yield in a linear regression. This study demonstrated the efficient purification or fractionation technology for lignin; it also established a theoretical and empirical correlation between the physical characteristics of fractionated lignins. PMID:24458739

  3. Noise exposure in oil mills

    PubMed Central

    Kumar, G. V. Prasanna; Dewangan, K. N.; Sarkar, Amaresh

    2008-01-01

    Context: Noise of machines in various agro-based industries was found to be the major occupational hazard for the workers of industries. The predominant noise sources need to be identified and the causes of high noise need to be studied to undertake the appropriate measures to reduce the noise level in one of the major agro-based industries, oil mills. Aims: To identify the predominant noise sources in the workrooms of oil mills. To study the causes of noise in oil mills. To measure the extent of noise exposure of oil mill workers. To examine the response of workers towards noise, so that appropriate measures can be undertaken to minimize the noise exposure. Settings and Design: A noise survey was conducted in the three renowned oil mills of north-eastern region of India. Materials and Methods: Information like output capacity, size of power source, maintenance condition of the machines and workroom configurations of the oil mills was collected by personal observations and enquiry with the owner of the mill. Using a Sound Level Meter (SLM) (Model-824, Larson and Davis, USA), equivalent SPL was measured at operator's ear level in the working zone of the workers near each machine of the mills. In order to study the variation of SPL in the workrooms of the oil mill throughout its operation, equivalent SPL was measured at two appropriate locations of working zone of the workers in each mill. For conducting the noise survey, the guidelines of Canadian Centre for Occupational Health and Safety (CCOHS) were followed. Grid points were marked on the floor of the workroom of the oil mill at a spacing of 1 m × 1 m. SPL at grid points were measured at about 1.5 m above the floor. The direction of the SLM was towards the nearby noisy source. To increase accuracy, two replications were taken at each grid point. All the data were recorded for 30 sec. At the end of the experiment, data were downloaded to a personal computer. With the help of utility software of Larson and Davis

  4. Analysis of Industrial Wastewaters.

    ERIC Educational Resources Information Center

    Mancy, K. H.; Weber, W. J., Jr.

    A comprehensive, documented discussion of certain operating principles useful as guidelines for the analysis of industrial wastewaters is presented. Intended primarily for the chemist, engineer, or other professional person concerned with all aspects of industrial wastewater analysis, it is not to be considered as a substitute for standard manuals…

  5. Gas fluidized-bed stirred media mill

    DOEpatents

    Sadler, III, Leon Y.

    1997-01-01

    A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

  6. Changes of floodplain morphology by water mills: Legacy sediments stored behind mill dams as archive and source for pollution - Examples from the Wurm River, Lower Rhine Embayment, Germany

    NASA Astrophysics Data System (ADS)

    Buchty-Lemke, Michael; Frings, Roy; Hagemann, Lukas; Lehmkuhl, Frank; Maaß, Anna-Lisa; Schwarzbauer, Jan

    2016-04-01

    The Wurm River (Lower Rhine Embayment, Germany) is a small stream in a low mountain area near the Dutch-German border that has seen a lot of anthropogenic changes of its morphology since medieval times. Among other influencing factors, water mills, in particular, had an early impact on the sediment dynamics and created sediment traps. Several knickpoints in the long profile may represent the legacy of mill damming - or founded mill building at these spots. The knickpoints may also represent the aftermath of the colliery history. A study site in the upper reaches of the Wurm River features erosion terraces, incised following the demise of a mill dam in the early 20th century. The mill pond most likely collected sediment and additives e.g. used in agricultural and industrial processes. These legacy sediments from behind former mill dams provide information about anthropogenic pollution, particularly for the era of industrialization in the vicinity of the old industrial area of the city of Aachen. Along with the demise of the mill dam and the increased incision tendency, the sediments are also a secondary source for pollution in case of remobilization of contaminated sediments. Two major research questions are addressed. A) Which individual hydrological and geomorphological processes, both upstream and downstream, triggered the incision and the construction of the erosion terraces, which are preserved in the mill pond sediments? Is either the demised mill dam, or subsidence effects, or a combination of both the determining factor? B) Which contaminants are retained in the sediments? Is there a detectable point source for the pollutants or is it a mixture of diffuse anthropogenic (industry, agriculture, traffic, wastewater) and natural origin? To tackle these questions, sedimentological data are combined with geomorphological mapping and evaluation of historical data. A soil profile provides insight into the architecture of the floodplain, which is built of riverbed

  7. ONLINE SAG MILL PULSE MEASUREMENT AND OPTIMIZATION

    SciTech Connect

    Raj Rajamani; Jose Delgadillo; Vishal Duriseti

    2006-06-24

    The grinding efficiency of semi autogenous milling or ball milling depends on the tumbling motion of the total charge within the mill. Utilization of this tumbling motion for efficient breakage of particles depends on the conditions inside the mill. However, any kind of monitoring device to measure the conditions inside the mill shell during operation is virtually impossible due to the severe environment presented by the tumbling charge. An instrumented grinding ball, which is capable of surviving a few hours and transmitting the impacts it experiences, is proposed here. The spectrum of impacts collected over 100 revolutions of the mills presents the signature of the grinding environment inside mill. This signature could be effectively used to optimize the milling performance by investigating this signature's relation to mill product size, mill throughput, make-up ball size, mill speed, liner profile and ball addition rates. At the same time, it can also be used to design balls and liner systems that can survive longer in the mill. The technological advances made in electronics and communication makes this leap in instrumentation certainly viable. Hence, the instrumented grinding ball offers the ability to qualitatively observe and optimize the milling environment.

  8. Galilean Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Basu, Rudranil; Kakkar, Ashish; Mehra, Aditya

    2016-04-01

    We investigate the symmetry structure of the non-relativistic limit of Yang-Mills theories. Generalising previous results in the Galilean limit of electrodynamics, we discover that for Yang-Mills theories there are a variety of limits inside the Galilean regime. We first explicitly work with the SU(2) theory and then generalise to SU( N) for all N, systematising our notation and analysis. We discover that the whole family of limits lead to different sectors of Galilean Yang-Mills theories and the equations of motion in each sector exhibit hitherto undiscovered infinite dimensional symmetries, viz. infinite Galilean Conformal symmetries in D = 4. These provide the first examples of interacting Galilean Conformal Field Theories (GCFTs) in D > 2.

  9. 4. APPROACH OF CARRS MILL ROAD TO THE SOUTH PORTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. APPROACH OF CARRS MILL ROAD TO THE SOUTH PORTAL OF THE MITCHELLS MILL BRIDGE; VIEW TO NORTH. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  10. 4. VIEW OF THE ROAD TO THE MILL, FACING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF THE ROAD TO THE MILL, FACING SOUTH. THE MILL (FEATURE B-27) IS SHOWN IN THE BACKGROUND. - Nevada Lucky Tiger Mill & Mine, Mill, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  11. Elevation, west portal. Sign on portal reads Watson Mill Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation, west portal. Sign on portal reads Watson Mill Bridge, est. 1885. - Watson Mill Bridge, Spanning South Fork Broad River, Watson Mill Road, Watson Mill Bridge State Park, Comer, Madison County, GA

  12. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam

    PubMed Central

    2013-01-01

    Background Lignin is one of the three major components in plant cell walls, and it can be isolated (dissolved) from the cell wall in pretreatment or chemical pulping. However, there is a lack of high-value applications for lignin, and the commonest proposal for lignin is power and steam generation through combustion. Organosolv ethanol process is one of the effective pretreatment methods for woody biomass for cellulosic ethanol production, and kraft process is a dominant chemical pulping method in paper industry. In the present research, the lignins from organosolv pretreatment and kraft pulping were evaluated to replace polyol for producing rigid polyurethane foams (RPFs). Results Petroleum-based polyol was replaced with hardwood ethanol organosolv lignin (HEL) or hardwood kraft lignin (HKL) from 25% to 70% (molar percentage) in preparing rigid polyurethane foam. The prepared foams contained 12-36% (w/w) HEL or 9-28% (w/w) HKL. The density, compressive strength, and cellular structure of the prepared foams were investigated and compared. Chain extenders were used to improve the properties of the RPFs. Conclusions It was found that lignin was chemically crosslinked not just physically trapped in the rigid polyurethane foams. The lignin-containing foams had comparable structure and strength up to 25-30% (w/w) HEL or 19-23% (w/w) HKL addition. The results indicated that HEL performed much better in RPFs and could replace more polyol at the same strength than HKL because the former had a better miscibility with the polyol than the latter. Chain extender such as butanediol could improve the strength of lignin-containing RPFs. PMID:23356502

  13. 1. VIEW LOOKING NORTHWEST AT MAIN ELEVATION OF STARK MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING NORTHWEST AT MAIN ELEVATION OF STARK MILL, A REINFORCED CONCRETE MILL BUILT BY NEW ENGLAND SOUTHERN MILLS IN 1923-24. THE MILL WAS DESIGNED BY LOCKWOOD GREENE ENGINEERS, AND CONTAINED 35,000 SPINDLES FOR MAKING TIRE FABRICS. PART OF THE WEAVING WOULD TAKE PLACE AT HOGANSVILLE MILL (BUILT c. 1900), ANOTHER NEW ENGLAND SOUTHERN MILL NEARBY, UNTIL THE DEMOLITION OF THAT MILL IN THE 1970s. - Stark Mill, 117 Corinth Road, Hogansville, Troup County, GA

  14. A dynamical systems proof of Kraft-McMillan inequality and its converse for prefix-free codes

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin

    2009-03-01

    Uniquely decodable codes are central to lossless data compression in both classical and quantum communication systems. The Kraft-McMillan inequality is a basic result in information theory which gives a necessary and sufficient condition for a code to be uniquely decodable and also has a quantum analogue. In this letter, we provide a novel dynamical systems proof of this inequality and its converse for prefix-free codes (no codeword is a prefix of another—the popular Huffman codes are an example). For constrained sources, the problem is still open.

  15. A dynamical systems proof of Kraft-McMillan inequality and its converse for prefix-free codes.

    PubMed

    Nagaraj, Nithin

    2009-03-01

    Uniquely decodable codes are central to lossless data compression in both classical and quantum communication systems. The Kraft-McMillan inequality is a basic result in information theory which gives a necessary and sufficient condition for a code to be uniquely decodable and also has a quantum analogue. In this letter, we provide a novel dynamical systems proof of this inequality and its converse for prefix-free codes (no codeword is a prefix of another-the popular Huffman codes are an example). For constrained sources, the problem is still open. PMID:19335000

  16. Factors contributing to milling quality differences in MY3, a 'RiceCAP' project milling population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A unique California long grain milling population is being phenotyped for milling and fissuring characteristics within the RiceCAP project. Low milling parent of this population has difference in grain shape, degree of chalkiness, and amylose content, as compared to the high milling parent. Contri...

  17. Correlation of Process Data and Electrochemical Noise to Assess Kraft Digester Corrosion: Kamloops Experiment

    SciTech Connect

    Pawel, SJ

    2002-05-09

    Electrochemical noise (ECN) probes were deployed in a carbon steel continuous kraft digester at five locations roughly equi-spaced from top to bottom of the vessel. Current and potential noise, the temperature at each probe location, and the value of about 60 process parameters (flow rates, liquor chemistry, etc.) were monitored continuously for a period of one year. Historical vessel inspection data, including inspections accomplished immediately prior to and immediately following probe deployment, and post-test evaluation of the probe components were used to assess/compare corrosion indications from the probes with physical changes in wall thickness and corrosion patterns on the digester shell. The results indicate that furnish composition is a significant variable influencing digester corrosion, with increasing amounts of Douglas fir in the nominal furnish correlating directly with increased corrosion activity on the ECN probes. All five probes detected changes in furnish composition approximately simultaneously, indicating rapid chemical communication through the liquor, but the effect was strongest and persisted longest relatively high in the digester. The ECN probes also indicate significant corrosion activity occurred at each probe position during shutdown/restart transients. Little or no correlation between ECN probe corrosion activity and other operational variables was observed. Post-test evaluation of the probes confirmed general corrosion of a magnitude that closely agreed with corrosion current sums calculated for each probe over the exposure period and with historical average corrosion rates for the respective locations. Further, no pitting was observed on any of the electrodes, which is consistent with the ECN data, relevant polarization curves developed for steel in liquor removed from the digester, and the post-test inspection of the digester.

  18. SYSTEM FOR DETECTION AND CONTROL OF DEPOSITION IN KRAFT CHEMICAL RECOVERY BOILERS AND MONITORING GLASS FURNACES

    SciTech Connect

    Dr. Peter Ariessohn

    2003-04-15

    Combustion Specialists, Inc. has just completed a project designed to develop the capability to monitor and control the formation of deposits on the outside of boiler tubes inside an operating kraft recovery furnace. This project, which was carried out in the period from April 1, 2001 to January 31, 2003, was funded by the Department of Energy's Inventions and Innovations program. The primary objectives of the project included the development and demonstration of the ability to produce clear images of deposits throughout the convective sections of operating recovery boilers using newly developed infrared imaging technology, to demonstrate the automated detection and quantification of these deposits using custom designed image processing software developed as part of the project, and to demonstrate the feasibility of all technical elements required for a commercial ''smart'' sootblowing control system based on direct feedback from automated imaging of deposits in real-time. All of the individual tasks have been completed and all objectives have been substantially achieved. Imaging of deposits throughout the convective sections of several recovery boilers has been demonstrated, a design for a combined sootblower/deposit inspection probe has been developed and a detailed heat transfer analysis carried out to demonstrate the feasibility of this design, an improved infrared imager which can be sufficiently miniaturized for this application has been identified, automated deposit detection software has been developed and demonstrated, a detailed design for all the necessary communications and control interfaces has been developed, and a test has been carried out in a glass furnace to demonstrate the applicability of the infrared imaging sensor in that environment. The project was completed on time and within the initial budget. A commercial partner has been identified and further federal funding will be sought to support a project to develop a commercial prototype

  19. Characterization of two novel yeast strains used in mediated biosensors for wastewater.

    PubMed

    Trosok, Steve P; Luong, John H T; Juck, David F; Driscoll, Brian T

    2002-05-01

    After isolation from a pulp mill wastewater treatment facility, two yeast strains, designated SPT1 and SPT2, were characterized and used in the development of mediated biochemical oxygen demand (BOD) biosensors for wastewater. 18S rRNA gene sequence analysis revealed a one nucleotide difference between the sequence of SPT1 and those of Candida sojae and Candida viswanthii. While SPT2 had the highest overall homology to Pichia norvegensis, at only 73.5%, it is clearly an ascomycete, based on BLAST comparisons and phylogenetic analyses. Neighbor-joining dendrograms indicated that SPT1 clustered with several Candida spp., and that SPT2 clustered with Starmera spp., albeit as a very deep branch. Physiological tests, microscopic observations, and fatty acid analysis confirmed that SPT1 and SPT2 are novel yeast strains. Physiological tests also indicated that both strains had potential for use in mediated biosensors for estimation of BOD in wastewater. The lower detection limits of SPT1- and SPT2-based K3Fe(CN)6-mediated biosensors for a pulp-mill effluent were 2 and 1 mg BOD/L, respectively. Biosensor-response times for effluents from eight different pulp mills were in the range of 5 min. Reliability and sensitivity of the SPT1- and SPT2-based biosensors were good, but varied with the wastewater.

  20. Machine Shop. Module 6: Milling. Instructor's Guide.

    ERIC Educational Resources Information Center

    Walden, Charles H.

    This document consists of materials for a 12-unit course on the following topics: (1) introduction to milling; (2) structure and accessories; (3) safety and maintenance; (4) cutting-tool variables; (5) basic set-up activities; (6) squaring a workpiece; (7) hole-making operations; (8) form milling; (9) machining keyways; (10) milling angular…

  1. 77 FR 14837 - Bioassay at Uranium Mills

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... COMMISSION Bioassay at Uranium Mills AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... for public comment draft regulatory guide (DG), DG-8051, ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions...

  2. J. S. Mill on Education

    ERIC Educational Resources Information Center

    Ryan, Alan

    2011-01-01

    Mill may be said either to have written rather little on education or to have written a very great deal. He himself distinguished between a "narrow" and a "wider" sense of education, the former limited to what happens in formal educational settings, the latter embracing all the influences that make us who and what we are. He wrote rather little on…

  3. Extracting lignins from mill wastes

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.

    1977-01-01

    Addition of quaternary ammonium compound and activated charcoal to pulp and mill wastes precipitates lignins in sludge mixture. Methanol dissolves lignins for separation from resulting slurry. Mineral acid reprecipitates lignins in filtered solution. Quaternary ammonium compound, activated charcoal, as well as water may be recovered and recycled from this process.

  4. Reproductive and biochemical biomarkers in largemouth bass sampled downstream of a pulp and paper mill in Florida

    USGS Publications Warehouse

    Sepulveda, M.S.; Gallagher, E.P.; Wieser, C.M.; Gross, T.S.

    2004-01-01

    The objective of this study was to evaluate the effects of bleached/unbleached kraft mill effluents (B/UKME) on the reproductive parameters of free-ranging Florida largemouth bass (Micropterus salmoides floridanus). The reproductive parameters measured included gonadosomatic index (GSI), histological evaluation of gonads, and plasma concentrations of vitellogenin (VTG), 17??-estradiol, and 11-ketotestosterone (11-KT). Hepatic ethoxyresorufin-O-deethylase (EROD) activity was measured as a marker of exposure to cytochrome P450-inducing agents in these effluents. Endpoints were compared among adult bass sampled from tributary and mainstream effluent-contaminated and reference sites. Females sampled from the site closest to the mill outfall had a significant five-fold increase in EROD activity compared to bass sampled from reference streams. Although sex hormones were significantly reduced in bass from exposed sites, there were no differences in VTG and GSI across sites. The absence of organism-level responses was probably not related to a lack of sensitivity, as previous studies in our laboratory have shown that bass exposed to these effluents exhibit changes in GSI and in other measures associated with reproductive success. In females, inverse relationships were observed between VTG and GSI and EROD activity. These relationship, however, were not consistent within all of the sites studied. Collectively, our findings indicate that hepatic EROD induction is an effective marker of B/UKME exposure in largemouth bass and that it might be associated with antiestrogenic effects in this species. ?? 2003 Elsevier Inc. All rights reserved.

  5. Aerobic moving bed bioreactor performance: a comparative study of removal efficiencies of kraft mill effluents from Pinus radiata and Eucalyptus globulus as raw material.

    PubMed

    Villamar, C A; Jarpa, M; Decap, J; Vidal, G

    2009-01-01

    A Moving Bed Bioreactor (MBBR) was operated during 333 days. Two different effluents were fed in six different phases. Phases I and II were fed with effluent where Pinus radiata was used as raw material, while phases III to VI were fed with effluent where Eucalyptus globulus was used as raw material. The HRT was reduced from 85 to 4 h, and the BOD(5):N:P ratio (100:5:1, 100:3:1 and 100:1:1) was also simultaneously evaluated as an operation strategy. When MBBR was operated with Pinus radiata influent, the performance presents a high BOD(5) removal level (above 95%), although COD removal is below 60%. Most of the recalcitrant COD contained in the effluent has a molecular weight higher than 10,000 Da. When MBBR was operated with Eucalyptus globulus influent, the performance is around 97.9-97.6% and 68.6-65.1% for BOD(5) and COD, respectively (with HRT up to 17 h). In the Pinus radiata and Eucalyptus globus effluents, the color was mainly found in the molecular weight fraction up to 10,000 Daltons. PMID:19214005

  6. Skimming oily wastewater

    SciTech Connect

    Hobson, T.

    1996-10-01

    As large generators of oily wastewater tighten effluent controls, the US Environmental Protection Agency (EPA) is targeting smaller generators. Some of the firms receiving their attention are smaller manufacturing plants, automotive garages, mobile equipment service shops and truck farms. Many of these firms do not have access to a sanitary sewer system that will accept oily wastewater. One EPA concern is that oily wastewater will find its way into an underground aquifer that is a source of drinking water. Many oily wastes contain organic and inorganic chemicals in concentrations that exceed the primary drinking water standards established by the Safe Drinking Water Act. So the focus of one EPA program is aimed at preventing contamination of groundwater by controlling oil wastewater at the generator`s site.

  7. MIUS wastewater technology evaluation

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.

    1976-01-01

    A modular integrated utility system wastewater-treatment process is described. Research in the field of wastewater treatment is reviewed, treatment processes are specified and evaluated, and recommendations for system use are made. The treatment processes evaluated are in the broad categories of preparatory, primary, secondary, and tertiary treatment, physical-chemical processing, dissolved-solids removal, disinfection, sludge processing, and separate systems. Capital, operating, and maintenance costs are estimated, and extensive references are given.

  8. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  9. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  10. Survey of receiving-water environmental impacts associated with discharges from pulp mills; 4: Bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalent concentration in white sucker (Catostomus commersoni) in relation to biochemical indicators of impact

    SciTech Connect

    Heuvel, M.R. van den; Dixon, D.G. . Dept. of Biology); Munkittrick, K.R.; Servos, M.R. . Great Lakes Lab. for Fisheries and Aquatic Sciences); Van Der Kraak, G.J.; McMaster, M.E. . Dept. of Zoology); Portt, C.B. )

    1994-07-01

    The H411E rat hepatoma bioassay was used to measure 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalent concentrations (TECs) in livers of white sucker (Catostomus commersoni) collected downstream from eight Ontario pulp mills and five reference sites. Subsamples of liver were also chemically analyzed for dioxins and furans. Bioassay-derived TECs were compared with TECs calculated from chemical residues using toxic equivalency factors (TEFs) specifically generated for the H411E cell line. This indicated that the bioassay-derived TECs could be accounted for largely by the additive effect of the dioxin and furan congeners. Seven of the eight examined mills had significantly higher TECs than the corresponding reference locations. The bioassay-derived TECs were highest at mills that used kraft pulping and chlorine bleaching. Although lower than the kraft mills, the thermomechanical (TMP) and sulfite mills also had higher TECs than the adjacent preference locations. The TECs were compared with hepatic 7-ethoxyresorufin-O-deethylase activity (EROD), as well as with concentrations of the plasma steroid hormones 17[beta]-estradiol, 11-ketotestosterone, and testosterone. Significant correlations were found between EROD activity and TECs in both male and female white sucker. The correlation for males was stronger than that for females. Some of the variability in this relationship for females could be explained by a multivariate regression that added 17[beta]-estradiol to the analysis; a strongly negative relationship between 17[beta]-estradiol and EROD activity was superimposed on the positive EROD-TEC relationship. No significant correlations were found between TECs and 11-ketotestosterone in males, 17[beta]-estradiol in females, and gonadosomatic indexes in either sex. There were significant negative correlations between TECs and testosterone in both sexes.

  11. Effect of effluent from a nitrogen fertilizer factory and a pulp mill on the distribution and abundance of Aeromonas hydrophila in Albemarle Sound, North Carolina.

    PubMed

    Hazen, T C; Esch, G W

    1983-01-01

    The density of Aeromonas hydrophila, standard count bacteria, fecal coliform bacteria, and 18 physical and chemical parameters were measured simultaneously at six sites for 12 months in Albemarle Sound, N.C. One site was above and two sites were below the discharge plume of a Kraft pulping process paper mill. The fourth site was above and the remaining two sites were below the discharge point of a nitrogen fertilizer factory. The impact of the pulp mill on water quality was acute, whereas that of the nitrogen fertilizer factory was chronic and much more subtle. Diffusion chamber studies indicated that A. hydrophila survival is increased by pulp mill effluent and decreased by nitrogen fertilizer factory effluent. From correlation and regression analysis, A. hydrophila was found to be directly affected by phytoplankton density and, thus, indirectly by concentrations of phosphate, nitrate, and total organic carbon. These two point sources are suspect as indirect causes of red-sore disease epizootics, a disease of fish caused by A. hydrophila. PMID:6297393

  12. Biohydrogen production from industrial wastewaters.

    PubMed

    Moreno-Andrade, Iván; Moreno, Gloria; Kumar, Gopalakrishnan; Buitrón, Germán

    2015-01-01

    The feasibility of producing hydrogen from various industrial wastes, such as vinasses (sugar and tequila industries), and raw and physicochemical-treated wastewater from the plastic industry and toilet aircraft wastewater, was evaluated. The results showed that the tequila vinasses presented the maximum hydrogen generation potential, followed by the raw plastic industry wastewater, aircraft wastewater, and physicochemical-treated wastewater from the plastic industry and sugar vinasses, respectively. The hydrogen production from the aircraft wastewater was increased by the adaptation of the microorganisms in the anaerobic sequencing batch reactor.

  13. New industrial heat pump applications to an integrated thermomechanical pulp and paper mill

    SciTech Connect

    1991-01-01

    Application of pinch technology US industries in an early screening study done by TENSA Services (DOE/ID/12583-1) identified potential for heat pumps in several industrial sectors. Among these, processes with large evaporation units were found to be some of the most promising sectors for advanced heat pump placement. This report summarizes the results of a study for Bowater Incorporated, Carolina Division. The units selected for this study are the thermo-mechanical pulper (TMP), kraft digester, evaporators, boiler feed water (BFW) train and pulp dryer. Based on the present level of operation, the following recommendations are made: 1. Install a mechanical vapor compression (MVR) heat pump between the TMP mill and {number sign}3 evaporator. This heat pump will compress the 22 psig steam from the TMP heat recovery system and use it to replace about 70% of the 60 psig steam required in {number sign} evaporator. The boiler feed water heat losses (in the low pressure deaerator) will be supplied by heat available in the TMR's zero psig vent steam. 2. Study the digester to verify the practicality of installing an MVR heat pump which will compress the dirty weapons from the cyclone separator. The compressed vapors can be directly injected into the digester and thus reduce the 135 psig steam consumption. 31 figs., 9 tabs.

  14. Operating experience with constructed wetlands for wastewater treatment

    SciTech Connect

    Knight, R. )

    1993-01-01

    Constructed wetlands are treating a variety of municipal, industrial, and runoff wastewaters. The growing interest in this technology is based on 20 years of research demonstrating the beneficial effects of wetlands on water quality, particularly their ability to assimilate carbonaceous and nitrogenous wastes. Constructed wetlands are an attractive option for applications where a land-intensive, natural' treatment technology is desired and where ancillary wildlife benefits will enhance a project's overall environmental balance sheet. This paper summarizes design and operating experience from constructed wetlands representing a variety of applications, including pilot systems in place at several US pulp mills.

  15. Correlation of Process Data and Electrochemical Noise to Assess Kraft Digester Corrosion: Spring Grove Experiment

    SciTech Connect

    Pawel, SJ

    2003-06-18

    Electrochemical noise (ECN) probes were deployed in a carbon steel continuous kraft digester at four locations and at one location in the bottom cone of the associated flash tank. The probes consisted of carbon steel electrodes, representing the vessel construction material, and 309LSi stainless steel overlay electrodes, representing the weld overlay repair in a portion of the vessel. Current and potential noise, the temperature at each probe location, and the value of about 32 process parameters (flow rates, liquor chemistry, etc.) were monitored continuously for a period of almost one year. Historical vessel inspection data and post-test evaluation of the probe components were used to assess/compare ECN corrosion activity with physical changes in wall thickness and corrosion patterns on the digester shell. In addition, attempts were made to correlate ECN activity from each electrode type with process parameters. The results indicate the high general corrosion rates of steel observed just below the extraction screens--on the order of 35 mils/y for the past few years--accelerated further during the period of probe deployment. The maximum wastage of steel (normalized to one full year exposure) was about 85 mils/y at the ring 6N probe just below the extraction screens. Consistent with recent historical observations, the steel corrosion rate at the ring 6S probe--at the same elevation but directly across the digester from ring 6N--was significantly lower at about 50 mils/y. Just prior to probe deployment, the digester shell below the extraction screens was overlaid with 309LSi stainless steel, which was observed to be essentially immune to corrosion at this location. While the ECN probes detected differences in electrochemical behavior between steel probes and between 309LSi probes at rings 6N and 6S, there was only poor quantitative correlation of current sums with actual corrosion rates at these locations. A significant contribution of redox reactions on both steel

  16. 2. South facade of the Monadnock Mills complex looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. South facade of the Monadnock Mills complex looking east down Water Street. Mill No. 2 is in the center of the photo, Mill No. 1 is to the right. The tower in Mill No. 1 retains its original design. The tower in Mill No. 2 was altered when an elevator was installed. The shed monitor in Mill No. 2 was constructed in 1879. - Monadnock Mills, 15 Water Street, Claremont, Sullivan County, NH

  17. Scale deposits in kraft pulp bleach plants with reduced water consumption: a review.

    PubMed

    Huber, Patrick; Burnet, Auphélia; Petit-Conil, Michel

    2014-08-01

    The general tendency in the pulp industry towards reduced fresh water consumption and minimum effluent causes major deposit problems in mills. Chemical pulp bleach plants are affected by several types of mineral deposits, the most frequent being calcite, barite and calcium oxalate. In this review, the phenomena leading to scaling in chemical pulp bleaching are discussed, together with strategies for limiting deposits. The merits of various chemical methods in estimating scaling risks are compared. Chemical speciation methods are used throughout this review to gain a better understanding and prediction of scaling phenomena. Coupled chemical process simulations are anticipated to be a crucial way of solving deposition problems in bleach plants.

  18. [Modern approaches to wastewater treatment].

    PubMed

    Ivan'ko, O M

    2013-01-01

    The present state and prospects of new methods for cleaning in the water and wastewater using membrane separation, are examples of application of this technology in the treatment of surface and subsurface natural waters, seawater desalination, wastewater treatment plants.

  19. Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment

    SciTech Connect

    Kevin Whitty

    2008-06-30

    The University of Utah's project 'Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment' (U.S. DOE Cooperative Agreement DE-FC26-04NT42261) was a response to U.S. DOE/NETL solicitation DE-PS36-04GO94002, 'Biomass Research and Development Initiative' Topical Area 4-Kraft Black Liquor Gasification. The project began September 30, 2004. The objective of the project was to improve the understanding of black liquor conversion in high pressure, high temperature reactors that gasify liquor through partial oxidation with either air or oxygen. The physical and chemical characteristics of both the gas and condensed phase were to be studied over the entire range of liquor conversion, and the rates and mechanisms of processes responsible for converting the liquor to its final smelt and syngas products were to be investigated. This would be accomplished by combining fundamental, lab-scale experiments with measurements taken using a new semi-pilot scale pressurized entrained-flow gasifier. As a result of insufficient availability of funds and changes in priority within the Office of Biomass Programs of the U.S. Department of Energy, the research program was terminated in its second year. In total, only half of the budgeted funding was made available for the program, and most of this was used during the first year for construction of the experimental systems to be used in the program. This had a severe impact on the program. As a consequence, most of the planned research was unable to be performed. Only studies that relied on computational modeling or existing experimental facilities started early enough to deliver useful results by the time to program was terminated Over the course of the program, small scale (approx. 1 ton/day) entrained-flow gasifier was designed and installed at the University of Utah's off-campus Industrial Combustion and Gasification Research Facility. The system is designed to operate at

  20. Historical decline and altered congener patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans in fish and sediment in response to process changes at a pulp mill discharging into Jackfish Bay, Lake Superior.

    PubMed

    Dahmer, Shari C; Tetreault, Gerald R; Hall, Roland I; Munkittrick, Kelly R; McMaster, Mark E; Servos, Mark R

    2015-11-01

    Improved regulations for pulp and paper mill effluents and an industry shift away from elemental chlorine bleaching in the 1990s greatly reduced the release of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) into the environment. However, the high potential of these contaminants to persist in sediment and bioaccumulate in biota means that they have remained a concern. To document current contamination from bleached kraft pulp mill effluent, PCDD/Fs were measured in white sucker (Catostomus commersoni) collected from Jackfish Bay, Lake Superior. These values were contrasted to historically reported fish data as well as PCDD/F patterns from dated sediment cores. Patterns of PCDD/Fs in sediment cores from Jackfish Bay and reference sites demonstrated a relationship between contamination and mill process changes. During the peak PCDD/F contamination period (1991), when the mill was still using elemental chlorine, the contamination patterns in fish and sediment were distinct and dominated by 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran. Following the reduction in the use of elemental chlorine during the early 1990s, a rapid decline was observed in PCDD/F contamination of fish tissue, and levels are now approaching background conditions with congener patterns more reflective of atmospheric sources. Although surface sediments from Jackfish Bay continue to have elevated PCDD/Fs, with some locations exceeding sediment quality guidelines, they do not appear to be highly bioavailable to benthic fish. PMID:26468966